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Ideals and isogenies: the oriented case

@ Eg/k k = ]Fq, elliptic curve with a primitive orientation by a quadratic imaginary order
R = Z[V-A] < End,(Eyp)
@ Oriented isogeny: ¢ : E; — E, that commutes with the orientations

@ Oriented kernel: K stable by R

Unique R-orientation compatible on E /K with the quotient isogeny E — E/K, and the isogeny is horizontal or ascending

Example: Frobenius orientation
@ Eg/k with non trivial 7ti-action: ordinary curves, supersingular curves over IF'p

@ 7 -oriented isogenies = rational isogenies.

Kernels, isogenies, and ideals
o [ — ¢;: Ey — Ejoriented isogeny with kernel E[I] = {P € EO(E),a(P) =0,Va el}
e K- J(K):={x € R|a(K) =0}
o | - Ey[I] & K — J(K):bijections” between R-stable kernels and integral ideals I of R
@ l|deals & oriented isogenies
ol ~]eE =E

At least in the separable case: Eo[np] is not represented by an ideal if p inertin R



Class group actions
e E;:= Ey/Ey[I] primitively oriented by O(I) := {a € R®7 Q |al C I}
o [isinvertible & O(I) = R < theisogeny is horizontal
@ Pic(R) := {[I], Iinvertible ideal}

@ Invertible ideals I of R < oriented horizontal isogenies ¢y : E — E;
[Colo-Kohel 2020, Onuki 2020]

pr=¢;:Ei—>E

Special case: p inert in R (can only happen for an orientation on a supersingular curve E/sz)

T, E — EY is not represented by an ideal

An oriented isogeny ¢ : E — E' comes from an ideal iff the representations o (E) and pr (E") are equivalent, o (E)

representation of R on the k-vector space T (E)

Group action:
@ Pic(R) O {E primitively R-oriented}
o [[1-Em E;
@ Free and transitive action  (if p ramified or split; two orbits if p inert in R)

E[m] (%) =~ R/mR as R-modules [Lenstra 1996] (p A m = 1)
Generalised class group action (ray class groups modulo m) to incorporate m-level structure
[ACELV 2024]



Applications of class group actions

o Let{Ey,..., Ex} be the orbit of Eg under Pic(R).Then H(X) = [](X —j(E;)) is the
reduction modulo p of the Hilbert class polynomial Hg.

@ Reduction modulo p of CM class polynomials can also be understood in term of actions by the
Shimura class group

@ The CRS/ CSIDH key exchange:

Ep — E, =hL"E

l |

E,,=5L-Ey — Ep gz, = il - Eg

‘@ Asacommutative group action, susceptible to Kuperberg's subexponential quantum algorithm



Ideals and isogenies: the supersingular case

Deuring correspondance

Maximal orders Q in B, = supersingular curves E/Isz (up to quadratic twists and Galois
conjugates)

I — Ey[I],K - T(K): bijection between kernels and left Op-ideals  (Oy = End(Eg))
Ideals & Isogenies
End(E;) = Og(I) theright order of ; deg ¢; = N(I) := nrd(I)

Ideal to isogeny: [ < Ey — E;:= Ey/E[I]
@ Nota group action!

@ SIDH relied on pushforwards, these depend on the paths, so need extra informations:

o

Ey, — Epp



Table of Contents

H |deals

Modules

W The module action on elliptic curves

l Applications to exploring isogeny graphs

I Applications to isogeny based cryptography



The power object in an abelian category
@ A € Aanabelian category, R C End , (A)
o If X € A, Hom (X, A) has a natural R-module structure
@ If M fp. R-module, the power object HO Mg (M, A) exists in A:

Hom 4 (X, HOMg (M, A)) = Homg (M, Hom ,(X,A)) VX €€ A

@ If Ris commutative, we have an abelian category Ay of R-oriented objects, and HOMp (M, A)
is naturally R-oriented, and is the power object both in A and Ag.

@ Symmetric monoidal contravariant action:
M- A:= HOMr(M, A)

M;-My, A= (M;®gM,)-A
@ Functorial action: morphisms and objects act on morphisms and objects

@ The copower object M ® g A also exists in A
Hom (M ®r A, X) = Homg (M, Hom , (4, X)) VX e A
@ If R commutative, this is also the copower object in Ag and we have a covariant action

Mo M@gA

@ All monoidal actions are of this type (using an enrichement in a presheaf category)



Explicit constructions of the power object

o HOMg(R™,A) = A"

R" FR" 5 M 50
0 - HOMg(M,A) — A" -F" gm

@ If M projective module, R" = M & M’ =

A" = HOMg(M,A) ® HOMg(M’, A)

@ Splitting of idempotents

Theorem (The action by projective modules)
IfEndg (A) = R, then Hompg (M, M;) = Hom, (My - A, M, - A) for My, M, £.p. projective
R-modules.

The action M — M - A gives an antiequivalence of category between f.p. projective R-modules and the
Cauchy completion (for categories enriched in R-modules) of A in AR.




Exactness properties

@ Left exact on the left and right exact on the right:

O—’M2L>M1 —»Ml/Mz—)O,
0—) (Ml/Mz)A—)MlAHMzA

0—)A1 L’Az—»AB—)O,
0—)M‘A1 —’M'A2—)M‘A3

@ The right exact functor HO Mg (-, A) gives rise to derived functors 8xt}'{(-,A)

@ Taking a free resolution of M, applying HOMp (-, A) and taking the cohomology gives the
Exth
R

0—>M2'—)M1 —»Ml/M2—>O,
0— (M/Mp)-A—M;-A—M,-A— Exth(My/My, A) - Exty (M, A) — -



The power object on abelian varieties

A abelian category of proper group schemes over the base field k
If A/k s an abelian variety with R C End(A), M - A is a proper group scheme in general
If R domain,

dimM - A = rankg M x dim A

If M projective, M - A is an abelian variety

More generally, we say that M is compatible with A if M is torsion free and M - A is an abelian
variety
If Risadomainand0 - M — R" - P — 0, M - A is an abelian variety iff EXE}Q(P,A) =0.

Example
@ Torsion:R/I - A = A[I]
@ Rational points: (M - A) (k") =~ Homg (M, A(k")), k' a k-algebra

We can define the liootl"2 more formally by embedding group schemes over k in the category of fppf sheafs over k.

From now on, we implicitly assume that M is compatible with A



Isogenies

Definition (Module isogeny)

A module isogeny is a monomorphism M, < M); of torsion free modules with finite cokernel
M, /M,

& monomorphism M, < Mj of torsion free modules of the same rank

& finite cokernel map M, — M, of torsion free modules of the same rank

Proposition (Module isogeny to abelian variety isogeny)

If R domain and each M; is compatible with A, then My - A - M, - A is an isogeny with kernel
(M;1/M3) - A:

ie, Ext (My/My, A) =0

Isogeny = epimorphism (with finite kernel) & monomorphism (=inclusion) of modules (with finite
cokernel)



Duality

(A, A4) [k ppav, = the Rosatti involution on Endy (A)
(R,7) C End(A) domain

Then R is a“CM order”

Either R is totally real and X = x

Or R is a quadratic imaginary extension of a totally real order, and X is the complex conjugation

(M- A)Y =~ M*- AV, where M* = Homg (M, R) and AV the dual abelian variety
(M-A)Y =MV - A where MV = Homy(M, R)

oyY:M;-M,p-A: M -A->M, A
° YV i My = M,y = (v e P(0)
oV -A: M) AV - MY AV

@ This is the dual of 1.



Hermitian modules and polarisations

@ A polarisation @ on B = M - A corresponds to:
@ AmorphismB — BY
@ Whichisautodual @ = @V : B~ BVY - BV
@ Andinduced by an ample line bundle

@ A polarisation ¥ on M corresponds to:
@ Amorphism MY — M
@ Which is autodual under the double duality: M =~ MV, m e (¢ — W)
@ Andis “positive”

@ Thisis an integral positive definite Hermitian form H on MV

We will assume R Gorenstein for simplicity to have good biduality theorems. This is the case if the real suborder of R is

maximal, e.g. R quadratic imaginary.

@ Hermitian module action: the action by a polarised module (M, Hp) on a polarised abelian
variety (A, A 4) gives a polarised abelian variety (M - A, Hpyg - A 4)
@ If A4 is principal and Hy; unimodular, Hy; - A 4 is principal.

Example
@ The Shimura class group is the class group of unimodular rank 1 Hermitian R-modules

@ Givena CM ppav (A, A 4), acting by the Shimura class group gives other CM ppavs




Hermitian forms

Definition (Hermitian forms)
@ R-sesquilinearrH : M x M — R, H(ax,y) = aH(x,y), H(x,ay) = H(x,y)x
@ Hermitian: H(y, x) = W,y)
e Positive definite: H(x,x) € Z>9, Vx+0eM

@ Unimodular:H : M =~ MV, m — H(m,-)
oM =(veM®QH(mv)ER YmeR =M

Corollary (Principal polarisations, (A, A ) ppav)

@ Unimodular Hermitian R-form H on M = Principal polarisationA : M - A — (M - A)Y
o N-similitude @ : (M,,Hy) — (My,Hy)

‘P*Hl - NH2
= N-isogeny ¢ : (A1, A4,) = (Ag,An,) (A;=M;-A)

Proposition (Contragredient = Adjoint)

Ifp=1-A: (A, ) = (Ay,Ay) for : (My, Hy) — (My, Hy), thend = ¢ - A, where
¥+ My — M, istheadjoint: Hy ((x),y) = Hp (x, ¥*(y))
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A general equivalence of category

Oriented case: Eq/k primitively oriented by R quadratic imaginary

Theorem (Module antiequivalence of category)

The action M — M - E gives an antiequivalence of category between the category of R-oriented abelian
varieties % A k-isogenous to E‘g and R-oriented k-morphisms; and the category of f.p. torsion free
R-modules M of rank § and R-module morphisms.

Inverse map: A — Hompg (A, Eq): module of (oriented) morphisms from A to E

“with the technical condition p (A) = &%, pr (Eq)

[Waterhouse 1969], [Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018],
[Kirschmer, Narbonne, Ritzenthaler, R. 2021], [Page-R. 2023]
Alternative approaches to equivalences of category of abelian varieties (e.g. via lifting to characteristic zero): [Deligne, Howe,

Centeleghe-Stix, Marseglia]...
Example

@ Frobenius orientation: all rational isogenies at level “above” Ej in the volcano

@ Supersingular case: the action by f.p. left Oy-modules also gives an antiequivalence of categories
to maximal supersingular abelian varieties, Og = End(E).




Warmup: ideals
o I%RinduceS(pI:EO :REO —>EI:I'E0
@ Canonical unimodular Hermitian form on I

i
Hz(x,y) = Wyl)

@ Theinclusion (I, Hy) C (R,Hg) isa N (I)-similitude

@ Handles ascending isogenies: I not invertible (the R-orientation needs not be primitive on Ej)

¢ :Ep, > Ep,, I, Iyinvertible
@ Ideal point of view: ¢p & some integral ideal ] equivalentto I = 1211_1
o I''=T/N(I)soiftx e ] :=Ix/N(I) ~I, N({J) =N(x)/N{)

@ Module pointof view: ¢p < 9 : (I, Hx/N(I)) = (I1,Hgr/N (7))
o lfzel iy, i 7 zrisaN = N(z)N(I)/N(I;)-similitude
e z=x/N{),N =N(x)/NU)

e If[integral: canonical isogenyviaz =1 € R c I}

@ Module point of view + specific isogeny Eq — E =ideal point of view



Forgetting the orientation on supersingular elliptic curves

EO/Isz supersingular, R C 9 := End(E,) primitive orientation

Two type of actions: by left f.p. R-modules M and by left f.p. Oy-modules Mo
|fA = MR ‘R Eo,A = (DO ®R MR) 'DO EO

Forgetting the orientation

@ Conversely: M = Homg (A, Ey), My = Hom(A, Eg)

Example (Rational isogenies from irrational endomorphisms)

In CSIDH, if we know O = End(E), we can recover | = Hom(E, E)) by linear algebra, hence the
module a = Hom]Fp (E, Ep) as the morphisms in I commuting with 7z.
This simplifies an argument due to [Castryck, Panny, Vercauteren 2019].




Similitudes to isogenies

Module morphism to morphism of abelian varieties:

R™ > R™ » M, > 0 B 00— M- A— A —3 A1
Rr.nz 5 ha % M, s 0 0 —3 My-Ac—3 A2 — 3 A2

R™ is a projective module, so we can lift module maps. The commutative diagram allows to find the kernel of M; - A — M, - A.

@ N-similitudes < N-isogenies
(Mz,H/N) C (erH)=>¢ : Al :Ml CA _»AZ = M2 -A

M; = Hom(R,M;),som; € My inducesmy -A:A; - A
We say that My is a module orientationon A; = M7 - A

Ker ¢ = A1[M,] C A{[N]

A1[My] == {P € Ay (k), m - A)(P) = 0,Ym € My}

Equivalence practical if N smooth, the N-torsion on Ay is accessible, and the orientation of M
on Ay is effective



Computing the module action

We want to compute A = (M, H) - E,
@ Find a smooth similitude (M, H) — (RS, HgR)
@ The R&€-module orientation on E‘g is effective (as long as the R-orientation on E is)

@ So we can convert the similitude to an isogeny E‘g - A

Clapoti(s): it suffice to build two N, N,-similitudes with Ny A N, =1 (or small)

‘@ There are unimodular Hermitian R-modules (M, H) such that no N-similitude RS < M exist
forany N, c.f. the arithmetic obstructions in [Kirschmer, Narbonne, Ritzenthaler, R. 2021]

o Solution: lookat R8*!1 & M x R

‘¢ Conductor gap: a N-isogeny Eg — E x A (with the product polarisations) inducing a non trivial
isogeny Ej — E satisfy
fE/EU IN



Module kernels and kernel modules

e A1 = M; - A, M;-oriented abelian variety
M, C My » A[M,] = (P € A (k), (m - Ay)(P) = 0,Ym € My}
KC Ay » M(K) = {m € M;,m(K) = 0}

These are Galoisian adjunctions

This restrict to a bijection between module kernels and kernel modules

In our case (A ~ E‘g), every module is a kernel module; and a kernel is a module kernel iffAl /K
is in the orbit of A by the module action.

Isogeny to similitude:
@ ¢ : Ay —» A, aN-isogeny of kernel Kinduced by ¢ : M, — M;
e A = M; - A with effective orientation
o My :={meM;,m-(K)=0}H, =H{/N
Need:s efficient DLPs in A1 [IN] to compute M,

@ The orientation of M, on A; descends to an effective orientation on A,
(via isogeny division, at least in nice cases)



Direct sums and pushforwards

(AllAl) = (Ml/Hl) ‘AO and (Az,/\z) = (MZ,Hz) o AO
Product polarisations: (A] x A5, A1 xAy) = (M; & M, H, @ Hy) - Ay

Pushforwards:
o Ifgy : Ag > Arand ¢, : Ag — A, correspondto iy : My — Mand ¢, : M — M,, their
pushforward A1, corresponds to the fiber product My xps My
o Ifpy : Ag = Ay, ¢y : Ag > Ay areisogenies, Py : My = M, ¢, : My = Mare
monomorphisms, and the fiber product My x; M, is just the intersection My N M, C M

AO —)) Al = M (—> Ml
4 I )
Ay —» Ap M, <— M;NM,
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Finding curves with many points

o C/F,isadefectocurveif #C(F,) =1+¢q +¢12,/91
@ ThenJac(C) ~ Eg, E of trace —[Zﬁj.
e Jac(C) =M -Ey (if Ej at the bottom of the volcano)

Algorithm [Kirschmer, Narbonne, Ritzenthaler, R. 2021]:
@ List all unimodular Hermitian modules (M, H) over R = End]Fq (Eg)

Enumerate all O-genus, and construct an Oy -lattice L for each genus
R™9 R 9
Explore adjacent lattices to L until we have found all O ;-isometry classes in the genus
p J] R y 9
© Build the R-isometry classes of unimodular lattices from the Og-unimodular lattices

@ Computeall ppavs (A,A4) = (M,Hyy) - Eg
@ Find which are Jacobians of defect 0 curves

‘e, Beware of twists! In the non hyperelliptic case, a maximal Jacobian may only correspond to a
minimal curve

@ We use algebraic modular forms to check in which case we are



The isogeny graph of oriented isogenies in higher dimension

Assume R quadratic imaginary, A ~ E‘g, soA=M-E,

@ M torsion free of rank gM =~ Rg_l @ I Assume R maximal for simplicity
-1 n -
0 Ax Eg x Ejas unpolarised varieties

@ #CI(R) isomorphism classes of non-polarised R-oriented abelian varieties R-isogenous to E‘g

@ Polarisations add supersingular like graph complexity if ¢ > 1 (EndR(E‘g) = Mg(R))
@ Universal group action:I - (M, Hpg) = (IM,Hp;/N(I)) C (M,Hy,) (Linvertible)
o [-A=A;:=A/A[l]

@ Intuition: multiplication by [n] = multiplication by [I]

°

Multiple orbits; linked together by oriented isogenies (which are not multiplication by [I])



Example: rational supersingular abelian surfaces

o Eo/F, supersingular, R = End]Fp(E) = Z[[—p] (or its maximal order)

@ g = 2:graph of supersingular abelian surfaces isogeneous to E% over IFp and IFp—rationaI
isogenies

@ Universal group action from CI(R)

o Conjecture: = p3/2

o If¢ = [[splitsin R, A[¢] = A[l] ® A[[] = action by [and |
and { + 1 (?) other oriented {-isogenies.

nodes (= #supersingular curves x # CI(R))



Weil's restriction of supersingular elliptic curves
Ey/E, supersingular, R = End]Fp(E) = Z[[-p]
° IfE/Isz, its Weil restriction W 2/]FpE is a p.p. abelian surface over IF, (which is neither a
P
Jacobian nor a product of curves over ]Fp).
@ The Weil restriction of an N-isogeny (p/]sz :E{ - E,,isan IFp-rationaI isogeny between
rational the abelian surfaces A; — Ay, A; = Wy Z/IFPEZ'
P
= If Eismaximal, Wg ,p_(E) isisogeneous to e
P 14
o I’lol'n]l::’7 (W]sz/]l—"pEll WIFPZ/]F;;EZ) = H()l’l'l]l'.*p2 (WFPZ/]FpEl ®]Fp ]sz, Ez) =
Hom]sz (El ® E({, Ez) = Hom]sz (El’ Ez) &b HO]’T]]F;72 (El, Ez)[f

@ The dimension 2 supersingular graph over IF'p contains, via the Weil restriction, the supersingular
graph of elliptic curves over ]sz (with E collapsed with EY)

= Convenient way to obtain ]Fp—rational isogenies in dimension 2

= Module-Inversion in dimension 2 at least as hard as the supersingular isogeny path problem.

@ Weil restriction from the module point of view: Ifgb/]sz : E; — Ejisrepresented by 1/ O : I, — Iy, we can find
directly the module representation ¥ /R : My — M of Wg 2/]FP¢
P
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Symmetric monoidal actions

Definition (The module monoidal contravariant action)
o If Miis a projective module, the action by M is M - A = HOMp (M, A).
o If¢p: Ay > AsisaN-isogeny, M- ¢ : M ®r A1 - M ®p A, is a N-isogeny.
o If : My — M isaN-similitude, - A : My - A — M, - Aisa N-isogeny.

Example (The action by ideals)
I ®g M = IM when I is inversible (or simply f; A fa; = 1),501 - A recovers the usual CSIDH action

Definition (Tensor product)
|fA1 = Ml . Ao,A2 = M2 'AO'Al ®A0 A2 = (Ml ®r Mz) 'AO




The module action for isogeny based cryptography

Proposition (Higher dimensional CSIDH via the monoidal action)

AO’\/\/W\/W\N\r)Alel-AO

¢ ¢

AZ =M2 'AO 2% A12 = (Ml ®RM2) 'AO
Ifd|m AU = go, ranle = gll rankMz = gz, then d]m A12 = gOgng'

Example (Monoidal action by rank 2 modules: Ay = E, g1 = $» = 2)

M,; projective module of rank 2 & E(Z) —> A; apath:

7 SN

| H

Ay > A @ Ay

Common secret: the dimension 4 abelian variety A; ®g, A




The module action for isogeny based cryptography

Proposition (Higher dimensional CSIDH via the monoidal action)

AO'\/VWVW\NV)Alel.AO

¢ ¢

A2 =M2'A0 2% A12 = (M; ®g M>) 'AO

Ifd|m AO = go, l‘anle = gll rankMz = gz, then d]m A12 = gOgng'

® Acting by rank g projective modules increase the dimensionif g > 1

©® Protects (hopefully!) from Kuperberg

@ Security: Action-DDH < Action-CDH < Action-Inversion

@ Action-Inversion ~ HomModule-Inversion
Indeed, if M = Homg (A, Eg), then A = M - E,

Recall that, thanks to Weil's restriction, Module-Inversion on supersingular abelian surfaces over ]Fp is at least as hard as

solving the supersingular isogeny path problem over ]sz

@ Action-CDH: Hope for exponential quantum security when g > 1



Computing the symmetric monoidal action

M; projective of rank g, Ay = M; - Eg

We want to compute M7 - A, for an R-oriented A, (with effective R-orientation)

General idea: look at how we construct A; = M - E from E;, and apply the same recipe replacing
EO by Az.

The smooth case:

@ Suppose we can construct a smooth similitude RS C M (by duality, this is equivalent to
constructing a smooth isogeny Eg — A;), this gives us a smooth similitude A‘g - M; A,

@ Via the orientation, we can transpose the kernel of Eg — A to the kernel ong — M - Ay.The
codomain gives us M - A,

@ Similar to the usual way the CSIDH action is computed

The general case:
o Ifinstead Aq is computed via Clapoti(s), splitting an appropriate endomorphism on Egl

@ Then we can compute M; - A, by splitting an appropriate endomorphism on A‘gl
® Needs to work in dimension 2¢1 >
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Computing the symmetric monoidal action: the smooth case

RS ¢—— M, =S E‘g—»Al

M§ <— M; ®g M, A — Ay ®p, Ay =M - A,

Proposition (Computing projective module actions: the smooth case)

le% - Ay & My < RE, wecancompute Ay ®g, A as the quotient of A; = E‘g ®k, Az given by
the kernel K C A‘g induced by M; ® My = RE ® M,:if My is generated by (1, ..., m,,), and
m; = (Déil,...,lxig) S Rg thenK = Ag[ml ®M2,...,mn ®M2] and

(@
AS[m; ® M,] = Ker A3 —— 7 — Ay

Corollary (Computing the action in practice)

o IfAqisthe quotientong byEg[ml, m,, ], where
E$[m,] = Ker(ES — Eg, (P, ..., P ) — Y a;P;)

o Then Ay ®g, A, is the quotient ofA‘ég byA [m1 ® My, ..., m, ® M,], where
AS[m; ® My] = Ker(A3 — Ay, (Py, ..., Pg) = Y ayP))

° AndifE‘E — Aq isa N-isogeny, A‘g — Ay ®, Ay isaN-isogeny




Computing the symmetric monoidal action: the smooth case
Commutative diagram:

R81 @y R82 &— M, ® R$2 o E§' ®p, E5? ~ E'? — Ay ®p E§? ~ AT
Rgl ®R M2 — Ml ®R Mz E‘gl ®E0 A2 = Agl _— Al ®E0 Az

Pairing analogy: ®EO = categorified bilinear map
Assume we don't know how to compute e(P+, P5) for general Py, P,, but we know e(P, P,).Thenif P; = mP, we can
compute e(P, P,) = e(Py, Py)™

Here we use that E‘g ®k, Ay = A‘g and our known path E‘g - Ajq.

Monoidal actions for isogenies
o M| & M; - RE @A‘g - My - Ay » M] - A, =recover it via the isogeny factorisation:
AS[M; ®g My] C AZ[M; ®g M;]
e If Ay — A, then we recover M; ®g Ay, — M; ®g Aj via isogeny division:

A —— M- A,

l l

A — M, - A



Computing the symmetric monoidal action: the general case

g \ \ g
= > A > ES
A} — A1 ®p Ay — A3

Proposition (Computing projective module actions: the general case)

Assume A is constructed from E via Clapoti(s), i.e. constructing a Ny and N»-similitude R8 < My, and
then splitting the induced N1 N5-endomorphism 7y : Eg - Eg. So 7y is given by an explicit matrix in

My (R).

Theny ®g, 1d 4, is the same matrix acting as an endomorphism Ag - A‘g via the R-orientation, and
splitting this N1 N -endomorphism gives Ay ®  Ay.




®-MIKE

Ey ——— E4

! ¢

Ey ~~> Wiz g E1 ®k, Wiz, E>

Start with our good old friend EO/IFp supersingular  (with p e.g. the SQISign2d prime)
Alice and Bob compute (smooth or not) isogenies over ]szi Ey— E{,Ej— E,

They send j(Eq),j(E;): no torsion information!

Validation: check that E; is supersingular

The common key is the dimension 4 ppav A1, := W]F,%/]FpEl ®F, W]F%/]FPEZ

Alice can compute it by converting her isogeny E) — E; to the module map representing

= W]F%/]FPEO - W]F%/]FpEl and then applying the module action to W]F%/]FPEZ'

The smooth case requires a dimension 4 isogeny, and the non smooth case requires splitting a dimension 4 endomorphism,

so a dimension 8 isogeny...

o Size:p = 2A,j(E;) = 2log, (p) = 4A:64B. Very compact!
@ NIKE. PKE a la ElGamal/SiGamal

‘¢, Need good dimension 4 modular invariants to represent A1, (e.g. suitable symmetric
polynomials in the theta constants?)
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Security? Action-CDH on supersingular abelian surfaces coming from the Weil restriction of elliptic curves
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Ey —— E;

! ¢

Ey ~~> Wz g, E1 ®, Wiz, E>

Example of parameters:
o p=u2—1lExp=5-2248 1

@ Alice and Bob each compute a 2°-isogeny from E, over IF'pz

@ Then the common key requires computing a 2°-isogeny in dimension 4 over IFp

@ Unfortunately, for the dimension 4 isogeny, the theta null point will only be defined over ]sz, SO
our known isogeny formulas will require to work over Isz for the dimension 4 isogeny too

@ Solution: use Scholten’s construction WIIFZ/IF instead of the Weil restriction
— 2

@ Start with Eg at the bottom of the 2-volcano, End(E() = R = Z[.[—p]
@ The climbing 2-isogeny is given by Eq — fE, f the conductorideal in Og = Z[(1 + /=p) /2]

/ _ . -

° W]sz/]FpE = fW]sz/]FpE = explicit construction in term of modules

o Spedial case: If Eg : y* = x° + x, Ey : y* = x° — xis its quartic twist,and Wy, Ej = E)*
Iz p
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Ey ——— E4

! ¢

Ey ~~> Wiz g E1 ®k, Wiz, E>

Example of parameters:
o p=u2—1lExp=5-2248 1
@ Alice and Bob each compute a 2°-isogeny from E, over ]sz CEe
@ Then the common key requires computing a 2°-isogeny in dimension 4 over F,

| am beginning to have serious doubts about the security of action-CDH when both isogenies
have the same degree 2°¢

Solution: take coprime degrees
® Unfortunately this slows down the scheme
o Either we use 2¢ and 3f-isogenies like in SIDH, but this requires to double the size of p to obtain
the required torsion, so this double the key size. And a 3-isogeny in dimension 4 is going to be
~ 5x slower than a 2-isogeny
@ Or we build our isogenies via Clapotis, splitting an appropriate dimension 1 supersingular
endomorphism. The good new is that our curves E; will be statically uniform. The bad new is that
computing the key exchange will require splitting a dimension 4 endomorphism, hence involves
a dimension 8 isogeny, for a ~ 32x slow down.
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