Cubical arithmetic on abelian varieties: introduction and applications 2025/02/06 — Biextension reading group

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- 6 Perspectives

References

- [Gro72] Grothendieck, Groupes de Monodromie en Géométrie Algébrique (SGA 7) (1972) VII, VIII.
 Biextensions
- [Bre83] Breen, Fonctions thêta et théoreme du cube (1983)
 Symmetric biextensions and cubical torsor structures
- [Mor85] Moret-Bailly, <u>Pinceaux de variétés abéliennes</u> (1985)
 Cubical torsor structures
- © Breen's introduction gives a very nice high level overview
- ② Very abstract (the case of a bitorsor on an arbitrary topos...)
- Not a single explicit formula
- This talk: a "gentle introduction" to cubical arithmetic
- Algorithmic applications: from explicit cubical formulas on a model we obtain pairings and isogeny formulas!
- More details in [Rob24]

Cubical structure associated to a divisor

- A/k a commutative algebraic group, D a divisor on A.
- $p_i: A^3 \to A$ the projections, $p_{ij} := p_i + p_j$, $p_{123} := p_1 + p_2 + p_3 : (P_1, P_2, P_3) \mapsto P_1 + P_2 + P_3$.

Definition (Cubical structure)

A cubical structure on D is a rational function g_D on A^3 such that:

- $\bullet \ \, g_D \, {\rm has \, for \, divisor} \, p_{123}^* D p_{12}^* D p_{13}^* D p_{23}^* D + p_1^* D + p_2^* D + p_3^* D; \\$
- Neutral point: $g_D(0, 0, 0) = 1$.
- $\bullet \ \, \mathsf{Commutativity:For\,all}\ \, \sigma \in \mathfrak{S}_3, g_D(\sigma(P_1,P_2,P_3)) = g_D(P_1,P_2,P_3).$
- Associativity:

$$g_D(P_1+P_2,P_3,P_4)g_D(P_1,P_2,P_4) = g_D(P_1,P_2+P_3,P_4)g_D(P_2,P_3,P_4).$$

Example

The trivial cubical structure: D = 0 and $g_D = 1$.

We will use symmetric cubical structures [Bre83, § 5]: D a symmetric divisor, $g_D(P_1, P_2, -P_1 - P_2) = 1$.

Damien Robert Cubical arithmetic 4/-

Cubical points and cubical arithmetic

- $\mathcal L$ line bundle, $Z \in \Gamma(\mathcal L)$ a section, D the divisor of zeroes of Z
- A cubical point \widetilde{P} above a point $P \in A$ is a choice of coordinate $Z(\widetilde{P}) \in \mathbb{G}_m(k) = k^*$ (This assumes that P is neither a pole or zero of Z)

Definition (Cubical arithmetic)

Given a cube 0, P_1 , P_2 , P_3 , P_2+P_3 , P_1+P_3 , P_1+P_2 , $P_1+P_2+P_3$, a choice of 7 out of 8 cubical points determine the 8th one via

$$\frac{Z(P_1+\widetilde{P_2}+P_3)Z(\widetilde{P_1})Z(\widetilde{P_2})Z(\widetilde{P_3})}{Z(\widetilde{0})Z(P_2+P_3)Z(P_1+P_3)Z(P_1+P_2)}=g_D(P_1,P_2,P_3)$$

Example

- Differential additions: 0, P, Q, -Q, 0, P Q, P + Q, P $\Rightarrow P + Q \text{ from } \widetilde{P}, \widetilde{Q}, P - Q$
- Doublings: $\widetilde{2P}$ from \widetilde{P} (special case of a differential addition with $\widetilde{Q}=\widetilde{P}$).

Translated cubes

• We can also use translated cubes:

$$\frac{Z(R+P_1+P_2+P_3)Z(R+P_1)Z(R+P_2)Z(R+P_3)}{Z(\widetilde{R})Z(R+\widetilde{P_2}+P_3)Z(R+\widetilde{P_1}+P_3)Z(R+\widetilde{P_1}+P_2)} = \frac{g_D(P_1,P_2,P_3+R)}{g_D(P_1,P_3,R)}$$

ullet 8 points $P_1, P_2, P_3, P_4; P_1', P_2', P_3', P_4'$ are part of a translated cube iff there exists Q such that

$$P_1 + P_2 + P_3 + P_4 = 2Q$$
 and $P'_i = Q - P_i$.

(Then the P_i are in the numerator and the P_i' in the denominator in the above formula.)

The general function g_{D,P1,P2,P3}(R) given for a translated cube in [Rob24] is wrong: it has the correct divisor but is not
normalised correctly. The explicit formulas in that paper are correct (at least the implementation gives the correct results!)

Multiscalar exponentiations

- \bullet Consider an $\emph{m}\text{-}\text{dimensional}$ hypercube generated by $0,P_1,P_2,\ldots,P_m$
- Assume that cubical points have been chosen for all squares $\widetilde{0}, \widetilde{P_i}, \widetilde{P_j}, P_i + P_j$
- \bullet Then we can use cubes to fill out the hypercube and obtain $P_1 + \overset{\longleftarrow}{\cdot} + P_m$
- $\bullet \ \ \text{More generally using cubes we can compute } n_1P_1 + \overbrace{\cdot +} n_mP_m \text{ for all } n_i \in \mathbb{Z}.$

Proposition

The resulting cubical point $\sum n_i \widetilde{P_i}$ does not depends on the choice of intermediate cubes used.

Proof.

By the commutativity and associativity assumptions on g_D .

• Cubical multidimensional ladder: $O_m(\log \max n_i)$

• Homogeneity:
$$\widetilde{P_i} \mapsto \lambda_i \star \widetilde{P_i}$$
, $\widetilde{P_i + P_j} \mapsto \lambda_{ij} \star \widetilde{P_i + P_j}$,

$$\sum n_i \widetilde{P_i} \mapsto \prod_i \lambda_i^{n_i^2} \prod_{i < j} \lambda_{ij}^{n_i n_j} \star \sum n_i \widetilde{P_i}$$

Damien Robert Cubical arithmetic 7/4

Cubical arithmetic on abelian varieties

Theorem (Grothendieck, Breen)

If A/k is an abelian variety, then for every divisor D there is a unique (once $\widetilde{0_A}$ is fixed) cubical structure on D. This cubical structure is symmetric if D is symmetric.

Proof.

Cohomological arguments and the fact that ${\cal A}$ has no non constant global sections.

Explicit construction of g_D :

$$g_D(P_1, P_2, P_3) = \frac{g_{D, P_1, P_2}(P_3)}{g_{D, P_1, P_2}(0)}$$

where g_{D,P_1,P_2} is any function with divisor $t_{P_1+P_2}^*D+D-t_{P_1}^*D-t_{P_2}^*D$.

Corollary

If we take g_{D,P_1,P_2} normalised at 0, then

•
$$g_{D,P_1,P_2}(P_3) = g_{D,P_2,P_3}(P_1) = g_{D,P_3,P_1}(P_2)$$
 (commutativity)

•
$$g_{D,P_1+P_2,P_3}g_{D,P_1,P_2} = g_{D,P_1,P_2+P_3}g_{D,P_2,P_3}$$
 (associativity).

Representing cubical points and extra arithmetic

- If (X_1,\ldots,X_m) are a basis of $\Gamma(\mathcal{L})$, then $Z(\widetilde{P})$ determines $X_i(\widetilde{P})$ via $X_i(\widetilde{P})=x_i(P)Z(\widetilde{P})$ where $x_i=X_i/Z$ is a function on A.
- A choice of cubical point is thus a choice of affine coordinates $(X_1(\widetilde{P}), \dots, X_m(\widetilde{P}))$ above the projective coordinates $(X_1(P): \dots: X_m(P))$ of PThis allows to define \widetilde{P} whenever P is not a base point of D
- ullet Inversion: If $\mathcal L$ is symmetric, a (symmetric) cubical structure also determines $-\widetilde P$ from $\widetilde P$
- Translation by a point T of n-torsion: If $D = n\Theta_A$, Θ_A a principal polarisation (we will say D is of level n), then we also have a translation map $M_T : \widetilde{P} \mapsto \widetilde{P + T}$.
- $M_{\widetilde{T}}$ is linear in the X_i and only depends on the choice of \widetilde{T} .
- [Mor85, § 3, § 4]: The biextension associated to the cubical structure is trivial when restricted to $A[n] \times A$, from which we recover the theta group G(D) and its linear action on $\Gamma(D)$

Damien Robert Cubical arithmetic 9/4;

Analytic cubical points

- Let $A = \mathbb{C}^g/(\mathbb{Z}^g + \Omega \mathbb{Z}^g)$ a principally polarised complex abelian variety;
- The addition law on A lifts to the addition law on $(\mathbb{C}^g, +)$
- The analytic period matrix Ω defines a canonical level structure on A[n] for all n (in a compatible way)
- Let Θ_{Ω} be the principal polarisation associated to Ω , and $D=n\Theta_{\Omega}$. Basis of $\Gamma(A,D)$: the analytic theta functions $\theta_i(z_P,\Omega/n)$
- ullet $P \in A$ is represented by the projective coordinates $(\theta_i(P))$
- If $z_P \in \mathbb{C}^g$ is above P, we can represent z_P by the affine coordinates $(\theta_i(z_P))$.
- A choice of $z_P \Rightarrow$ a choice of cubical point \widetilde{P}
- Knowing $\theta_i(z_1)$, $\theta_i(z_2)$ does not allow to find $\theta_i(z_1+z_2)$.
- But if we have an analytic cube $0, z_1, z_2, z_3, z_2 + z_3, z_1 + z_3, z_1 + z_2, z_1 + z_2 + z_3$, the knowledge ou the $\theta_i(z_j)$, $\theta_i(z_j + z_k)$ is enough to recover the coordinates $\theta_i(z_1 + z_2 + z_3)$: this is precisely the cubical law!
- Multiexponentiation: recover the $\theta_i(\sum_j n_j z_j)$.
- Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)
- Cubical structure = algebraic consequences of our analytic structure

Elliptic curves (level 1)

- $\bullet \ \ \mbox{Level 1:} D=(0_E)$, Z_1 with a zero of order 1 at $O=0_E$.
- Cubical point: $\widetilde{P} = (P, Z_1(\widetilde{P}))$.
- $Z_1(0_E) = 0$. \widetilde{O} defined by $\left(Z/(x/y)\right)(\widetilde{O}) = 1$.

$$\bullet \ g_{(0_E)}(P_1,P_2,P_3) = \tfrac{l_{P_1,P_2}(P_3)}{(x(P_3)-x(P_1))(x(P_3)-x(P_2))} = \tfrac{x(P_1+P_2)-x(P_3)}{l_{P_1,P_2}(-P_3)}$$

- $\bullet \ \, \text{Differential addition:} \ \, Z_1(\widetilde{P+Q})Z_1(\widetilde{P-Q}) = Z_1(\widetilde{P})^2Z_1(\widetilde{Q})^2(x(Q)-x(P)) \\$
- Doubling: $Z_1(2\widetilde{P}) = Z(\widetilde{P})^4 2y(P)$
- Inverse: $Z_1(-\widetilde{P}) = -Z_1(\widetilde{P})$.

Example

Let $P = (x(P), y(P)), Z_1(\widetilde{P}) = 1$. Then $Z_1(n\widetilde{P}) = \psi_n(P), \psi_n$ the division polynomial. And in level 3, if $\widetilde{P} = (x(P), y(P), 1)$,

$$n\widetilde{P}=(\phi_n(P)\psi_n(P),\omega_n(P),\psi_n^3(P)),$$

with ϕ_n , ω_n the extended division polynomials.

Damien Robert Cubical arithmetic 11

Elliptic curves (level 2)

- Level 2: $D = 2(0_E)$, with sections $X_2, Z_2 = Z_1^2$
- Cubical point: $\widetilde{P} = (X_2(\widetilde{P}), Z_2(\widetilde{P}))$
- $\widetilde{O} = (1,0)$.
- $\qquad \text{Symmetry: } Z_2(-\widetilde{P}) = Z_1^2(-\widetilde{P}) = Z_2(\widetilde{P}).$
- $\bullet \ g_D = g_{(0_E)}^2$ depends only on the x-coordinates of the $P_i, P_i + P_j$
- \Rightarrow Cubical arithmetic in level 2 valid on cubes on the Kummer line $E/\pm 1$.
 - N.B.: for x-only arithmetic, knowing $x(P_1)$, $x(P_2)$, $x(P_3)$, $x(P_1+P_2)$, $x(P_1+P_3)$ is enough to recover $x(P_2+P_3)$, $x(P_1+P_2+P_3)$ (see [LR16]) so does not quite require the full cube.

Formulas on elliptic curves

Example (Montgomery model in level 2: $y^2 = x^3 + Ax^2 + x$)

- $\bullet \ Z(2\widetilde{P}) = 4X(\widetilde{P})Z(\widetilde{P})(X(\widetilde{P})^2 + \mathcal{A}X(\widetilde{P})Z(\widetilde{P}) + Z(\widetilde{P})^2)$
- $\bullet \ Z(\widetilde{P+Q})Z(\widetilde{P-Q}) = \left(X(\widetilde{Q})Z(\widetilde{P}) X(\widetilde{P})Z(\widetilde{Q})\right)^2$
- \Rightarrow The standard Montgomery ladder gives (almost) the cubical ladder $\widetilde{P}\mapsto n\widetilde{P}$
- T=(0:1) 2-torsion, $\widetilde{T}=(0,1)$, $\widetilde{P+T}=(Z_2(\widetilde{P}),X_2(\widetilde{P}))$.
- Montgomery curves have very efficient cubical formulas!

Example (Elliptic nets = cubical arithmetic in level 1 [Stao8])

- $\bullet \ \ \text{Given } \widetilde{P_i}, P_i + P_j, \text{ the elliptic net } W(n_1, \ldots, n_m) \text{ is simply } Z_1(\sum n_i \widetilde{P_i}) \\$
- ullet Amazingly, knowing sufficiently many of these Z_1 is enough to recover all of them (via the elliptic net recurrence relation)

Damien Robert Cubical arithmetic 13/43

Summary

- Cubical point \widetilde{P} = point P with additional marking (in \mathbb{G}_m)
- Cubical arithmetic: coherent way to keep track of this marking
- ⇒ New algorithmic tools!

Going further

- The "correct point of view" is that of cubical isomorphisms of fppf-torsors (this makes the cubical arithmetic well defined on any point)
- Cubical point \widetilde{P} = choice of rigidification of our torsor at P; cubical coordinates = encoding of this rigidification
- Moret-Bailly: "au royaume des torseurs, il n'y a pas de signe"
 Contrast this with the sign ambiguity inherent in the Weil pairing, even [Gro72] has sign mistakes!
- Grothendieck-Breen's theorem holds for abelian schemes A/S and semi-abelian schemes (and more) over a normal base: equivalence of categories between cubical torsors and rigidified torsors
- Allows to study degenerations of abelian varieties
- Cubical arithmetic induces theta group and biextension arithmetic, the algebraic structures behind isogenies and pairings respectively.
- ullet Universality: [Bre83, Theorem 8.9]: the cubical structure on $\mathcal L$ encodes all the quadratic information associated to the polarisation $\mathcal L$

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- 6 Perspectives

Cubical functions

- E elliptic curve, $D = (0_E)$
- $\bullet \ \ \widetilde{R} \mapsto Z(\widetilde{R} + \sum n_i \widetilde{P}_i) \text{ is a "function" with divisor } t^*_{\sum n_i P_i} D.$
- Depends on the choices of $\widetilde{P_i}$, $\widetilde{P_i + P_j}$.
- But also of \widetilde{R} , $\widetilde{R+P_i}$
- ⇒ Not a genuine function. Cubical function.
- But combining these cubical functions we can get genuine elliptic functions.

Example

$$R \mapsto g_{P_1,P_2}(R) = \frac{Z(R + \widetilde{P_1} + P_2)Z(\widetilde{R})}{Z(R + \widetilde{P_1})Z(R + P_2)}$$

is a genuine function g_{D,P_1,P_2} with divisor $t^*_{P_1+P_2}D+D-t^*_{P_1}D-t^*_{P_2}D$. It only depends on the choices of $\widetilde{P_1},\widetilde{P_2},P_1+P_2$.

Cubical functions for pairings

- $P \in E[\ell](k), Q \in E(k)$
- ullet Tate pairing: $f_{\ell,P}((Q)-(0_E))$ with $f_{\ell,P}$ a function of divisor $\ell D-\ell t_P^*D$
- Cubical function: $\widetilde{Q} \mapsto \left(\frac{Z(\widetilde{Q})}{Z(\widetilde{P+Q})}\right)^{\ell}$
- Not a genuine function!
- Instead rewrite the divisor as $t_{\ell P}D + (\ell-1)D \ell t_P^*D$ and use:

$$f_{\ell,P}(Q) = \frac{Z(\ell \widetilde{P} + \widetilde{Q})Z(\widetilde{Q})^{\ell-1}}{Z(\widetilde{P} + Q)^{\ell}}$$

Theorem

The Tate pairing is given by

$$e_{T,\ell}(P,Q) = \frac{Z(\ell\widetilde{P}+\widetilde{Q})}{Z(\ell\widetilde{P})} \left(\frac{Z(\widetilde{P})Z(\widetilde{Q})}{Z(P+Q)Z(\widetilde{O})}\right)^{\ell}$$

• The Weil pairing is given by

$$e_{W,\ell}(P,Q) = \frac{Z(\ell\widetilde{P} + \widetilde{Q})Z(\ell\widetilde{Q})}{Z(\ell\widetilde{P})Z(\ell\widetilde{Q} + \widetilde{P})}$$

Double and add algorithm

- We can normalize our functions by setting $Z(\widetilde{P+Q})=Z(\widetilde{P})=Z(\widetilde{Q})=1$
- $\bullet \ f_{m,P}((Q)-(0)) = \frac{Z(m\widetilde{P}+\widetilde{Q})}{Z(m\widetilde{P})}$
- $\bullet \ \ \text{Double and add:} \ \frac{Z((m_1+m_2)\tilde{P}+\widetilde{Q})}{Z((m_1+m_2)\tilde{P})} = \frac{Z(m_1\tilde{P}+\widetilde{Q})}{Z(m_1\tilde{P})} \cdot \frac{Z(m_2\tilde{P}+\widetilde{Q})}{Z(m_2\tilde{P})} \cdot \frac{Z((m_1+m_2)\tilde{P}+\widetilde{Q})Z(\widetilde{Q})}{Z((m_1\tilde{P}+\widetilde{Q})Z(m_2\tilde{P}+\widetilde{Q}))}$
- We recover the double and add formula for Miller's algorithm:

$$f_{m_1+m_2,P}(Q) = f_{m_1,P}(Q)f_{m_2,P}(Q)g_{D,m_1P,m_2P}(Q).$$

- The cubical arithmetic allows to compute $Z(m\widetilde{P}+\widetilde{Q})$ and $Z(m\widetilde{P})$ separately!
- Much more flexible!
- ullet These are not genuine functions, so not defined using only x,y coordinates!

Alternate formulas for the Weil pairing

- If $h_{\ell,P}$ is a function with divisor $[\ell]^*(D-t_P^*D)$, then the (original definition of the) Weil pairing $e_{W,\ell}(P,Q)$ is given by $h_{\ell,P}(Q+R)/h_{\ell,P}(R)$ for any point R
- $\bullet \ \, \text{Cubical function} \, \widetilde{R} \mapsto Z(\ell \widetilde{R})/Z(\ell \widetilde{R} + \widetilde{P}) \\$
- ullet Keeping track of the projective factors, we see that we can build the genuine $h_{\ell,P}$ as

$$h_{\ell,P}(R) = \frac{Z(\ell \widetilde{R}) Z(\ell \widetilde{P} + \widetilde{R})}{Z(\ell \widetilde{R} + \widetilde{P}) Z(\widetilde{R})}$$

ullet Using this Weil pairing alternate formula with R=0, we find again

$$e_{W,\ell}(P,Q) = \frac{Z(\ell\widetilde{P}+\widetilde{Q})Z(\ell\widetilde{Q})}{Z(\ell\widetilde{P})Z(\ell\widetilde{Q}+\widetilde{P})}$$

- Notice how we can compute $h_{\ell,P}$ efficiently via the cubical ladder! By contrast Miller's algorithm for $h_{\ell,P}$ needs the coordinates of the ℓ -torsion points $T \in E[\ell]$ and of P_0 such that $\ell P_0 = P$; and cannot use a double and add method because the points on the support of the divisor $[\ell]^*(D-t_P^*D) = \sum_{T \in E[\ell]} ((T)-(T-P_0))$ only have multiplicity one.
- ullet Extends to Weil-Cartier pairings $e_{\phi}(P,Q)$ by using cubical isogeny formulas $\widetilde{\phi}$ for ϕ .
- $\qquad \text{But not clear how to compute } \widetilde{\phi}\widetilde{P} + \widetilde{Q} \text{ without knowing a preimage } Q_0 \in \phi^{-1}(Q) \text{ and using } \widetilde{\phi}(\widetilde{P} + \widetilde{Q_0})$

Summary

- The cubical arithmetic allows us to easily build functions with prescribed divisors
- We can use intermediate cubical functions in our computations, as long as the end result is a genuine elliptic function
- Greater flexibility!
- New insights: Doliskani's probabilistic supersingularity test is a self pairing test: all points on E
 have trivial self Tate pairing if E is supersingular.
- Faster pairing formulas for Montgomery curves

Going further:

- If P is of ℓ -torsion, and we choose cubical points \widetilde{P} , \widetilde{Q} , $\widetilde{P+Q}$, we have $\ell\widetilde{P}=\lambda_P\star\widetilde{O}$, $\ell\widetilde{P}+\widetilde{Q}=\lambda_{P,Q}\star\widetilde{Q}$, with $\lambda_P,\lambda_{P,Q}\neq 1$ in general
- ullet The pairing formulas show that these monodromy values (in \mathbb{G}_m) give the Tate and Weil pairings
- The mathematical framework for the monodromy interpretation of the pairings is Mumford's notion of biextension (see [Gro72; Stao8, Chapter 14])
- [Rob24]: monodromy interpretation of the Ate and optimal Ate pairings on abelian varieties
- Cubical arithmetic induces (and is finer) than biextension arithmetic
- This gives some extra flexibility in our arithmetic for pairing computations: we just need formulas
 that are valid for the biextension arithmetic, even if they are not valid for the cubical arithmetic.

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- 6 Perspectives

Vélu's formulas

- $E_1/k: y_1^2 = x_1^3 + ax_1 + b_1$ elliptic curve, $K = \langle T \rangle$ cyclic kernel of order ℓ , $E_2 = E_1/K$
- $x_2(P) := \sum_{i=0}^{\ell-1} (x_1(P+iT) \sum_{i=1}^{\ell-1} x_1(iT))$
- $y_2(P) := \sum_{i=0}^{\ell-1} (y_1(P+iT) \sum_{i=1}^{\ell-1} y_1(iT))$
- x_2 has for polar divisor $\sum_{i=0}^{\ell-1} 2(iT)$ and is invariant by the translation by T, hence defines a section of $2(0_{E_2})$ on E_2
- \bullet Likewise, y_2 defines a section of $3(0_{{\cal E}_2})$ on ${\cal E}_2$
- The Weierstrass equation between x_2, y_2 can be found by evaluating on a few points or working in the formal group of E_1 .

Vélu's formulas in higher dimension?

- $(A_1,\Theta_{A_1})/k$ ppav of dimension $g,K=\langle T_1,\dots,T_g \rangle \subset A_1[\ell]$ isotropic kernel of rank $g,\phi:A_1\to A_2=A_1/K$
- $\quad \phi \text{ is an ℓ-isogeny: } \phi^*\Theta_{A_2} = \ell\Theta_{A_1}$
- $\bullet \ \, x_1, \ldots, x_m \in \varGamma(n\Theta_{A_1})$ system of coordinates of level n on A_1
- $x_i'(P) = \sum_{T \in K} x_i(P+T) + \text{constant}$
- x_i' invariant by translation by $T \in K$, so defines a coordinate on A_2
- ullet We just need to evaluate on a few points and recover the equations for $A_2...$ Except this does not seem to work?
- $x_i=X_i/X_0$. Putting everything in the same denominator, the trace x_i' has degree ℓ^g on A_1 , so is of degree ℓ^{g-1} on A_2
 - Here the degree is taken with respect to $n\Theta_{A_1}$ and $n\Theta_{A_2}$ respectively
- \bullet More precisely: $\sum_{T\in K} t_T^* n\Theta_{A_1} \sim \ell^g \Theta_{A_1}$
- This divisor is invariant by translation by $T \in K$, so descends to a divisor $\sim \ell^{g-1} n \Theta_{A_2}$ on A_2 , but it is of too large degree (unless g=1)

Damien Robert Cubical arithmetic 23

Cubical Vélu's formulas in higher dimension

- Rather than taking a trace of the affine coordinates $x_i = X_i/X_0$, we want to take a trace on the projective coordinates X_i directly
- For instance the trace of X_i^ℓ gives $X_i'(P) = \sum_{T \in K} X_i^\ell(P+T)$.
- This is of correct degree!
- But the coordinates $(X_i(P+T))$ are only defined up to projective factors λ_T that depends on $T \in K!$
- The values $X_i^{\ell}(P+T)$ do not make sense!
- Except it does as a coordinate $X_i^{\ell}(\widetilde{P+T})$ on a cubical point.
- Taking a cubical trace works!

Technical details: theta groups and the cubical arithmetic

- $\bullet \;$ We need to build a divisor Θ_{ϕ} on A_1 such that:
 - $oldsymbol{\Theta}_{\phi}$ is invariant by translation by K
 - $\Theta_{\phi} \sim \ln \Theta_{A_1}$
- $\bullet \ \ \, \text{Descent theory: (symmetric) lifts } \widetilde{K} \text{ of } K \text{ in the theta group } G(\ell n \Theta_{A_1}) \Leftrightarrow \text{(symmetric) divisors } \Theta_{\phi}$
- $\bullet\;$ Symmetric \varTheta_{\varPhi} unique (up to linear equivalence) if n even and ℓ odd
- [Rob21]: explicit formulas of the action of $G(\ell n\Theta_{A_1})$ on $\Gamma(\ell n\Theta_{A_1})$ allows to take the trace of actions under \widetilde{K} and compute the isogeny ϕ
- These explicit formulas exist in the theta model [LR12; CR15; LR22]
- ullet [Rob24]: the cubical arithmetic on level n allows to recover the theta group action of level ℓn
- Cubical arithmetic ⇒ explicit isogeny formulas

Excellent cubical lifts

Proposition

 $T \in A[\ell]$, ℓ odd. \widetilde{T} a cubical point above T. TFAE:

- $(\ell'+1)\widetilde{T} = -\ell'\widetilde{T} \text{ for } \ell = 2\ell'+1$

A point \widetilde{T} satisfying these properties is said to be an excellent cubical lift of T, there are ℓ of them: if \widetilde{T} is excellent then $\zeta\star\widetilde{T}$ is too for $\zeta\in\mu_{\ell}$

- $T \in A[\ell]$, \widetilde{T} arbitrary cubical lift
- $\bullet \ \ell \widetilde{T} = \lambda_0 \star \widetilde{O}, (\ell+1)\widetilde{T} = \lambda_0 \lambda_1 \star \widetilde{T}$
- $(\ell' + 1)\widetilde{T} = \alpha \star \ell'\widetilde{T}$
- $\lambda_1 = e_{T,\ell}(T,T)$ (non reduced Tate pairing)
- $\bullet \ \lambda_0^2 = \lambda_1^\ell, \lambda_1 = \alpha^2, \lambda_0 = \alpha^\ell$
- The excellent lifts are given by $\gamma\star\widetilde{T}$ for $\gamma^\ell=\alpha$

Theta group action from excellent lifts

- If $T \in A[\ell]$, a cubical point \widetilde{T} of level n induces a cubical point $\widetilde{T}^{\otimes \ell}$ of level $n\ell$, hence an element $g_T \in G(\ell n\Theta_A)$ of the theta group
- $\bullet \ \ \widetilde{T} \ \text{and} \ \zeta \star \widetilde{T} \ \text{induce the same point} \ \widetilde{T}^{\otimes \ell} \ \text{for} \ \zeta \in \mu_{\ell}$
- ullet The excellent lifts \widetilde{T} all induce the unique symmetric element g_T of order ℓ in $G(\ell n\Theta_A)$
- $\bullet \ \, \text{Excellent lift of } K : \widetilde{K} = \langle \widetilde{T}^{\otimes \ell} \mid T \in K \rangle \text{ (subgroup of } G(\ell n \Theta_A) \text{ since } K \text{ is isotropic)}.$

Definition

If $P \in A$, $\widetilde{P+T}$ is an excellent lift relative to \widetilde{P} and \widetilde{T} (for \widetilde{T} excellent) if $\widetilde{P}+\ell\widetilde{T}=\widetilde{P}$. In that case, $\widetilde{P}+(j\ell+i)\widetilde{T}=\widetilde{P}+i\widetilde{T}$

- There are ℓ possible relative excellent lifts $\widetilde{P+T}$ that all induce the same point $\widetilde{P+T}^{\otimes \ell}$
- The action of $g_T \in G(\ell n \Theta_A)$ is given by

$$\widetilde{T}^{\otimes \ell} \cdot \widetilde{P}^{\otimes \ell} = \widetilde{P + T}^{\otimes \ell}$$

• N.B.: if $P,Q \in A[\ell]$, \widetilde{P} , \widetilde{Q} excellent lift, then one can take $\widetilde{P+Q}$ excellent relative to both $(\widetilde{Q},\widetilde{P})$ and $(\widetilde{P},\widetilde{Q})$ (i.e. $\ell\widetilde{P}+\widetilde{Q}=\widetilde{Q}$ and $\widetilde{P}+\ell\widetilde{Q}=\widetilde{P}$) iff P,Q are isotropic for the Weil pairing.

Damien Robert Cubical arithmetic 27/

Cubical isogeny formulas

Theorem

Let $X_i \in \Gamma(n\Theta_{A_1})$. Fix excellent lifts \widetilde{T} for $T \in K$ and $\widetilde{P} + T$ relative to \widetilde{P} . Then

$$X_i'(P) = \sum_{T \in K} X_i^{\ell}(\widetilde{P+T})$$

gives a coordinate on $A_2 = A_1/K$.

- ullet Recovering equations for A_2 from the X_i' will depend on the type of model we seek
- The action of $G(n\Theta_{A_1})$ on the X_i allows us to recover the action of $G(n\Theta_{A_2})$ on the X_i' (assume $\ell \wedge n = 1$ for simplicity), hence (for instance) a theta model of level n for A_2
- Flexible: if $\ell=\sum a_{u'}^2$ we can use $X_i'(P)=\sum_{T\in K}\prod_u X_i(a_u(\widetilde{P}+\widetilde{T}))$ N.B.: $P\mapsto X_i(a_uP)$ is of degree a_u^2
- ullet Cubical isogeny $\widetilde{\phi}$: compatibility between cubes of level $n\ell$ on A_1 and cubes of level $n\ell$ on A_2

Summary

- Generalisation of Vélu's formula to higher dimension via cubical traces
- Flexible framework (choice of coordinate to put in the trace)

Going further:

- The mathematical framework for computing isogenies is descent theory, hence theta groups
- Amazing fact: cubical arithmetic in level n allows to compute the theta group action in level $\ell n!$
- Isogenies lift to cubical isogenies (compatible with cubes) and cubical traces naturally compute cubical isogenies
- Compatibility of pairings and isogenies is a special case of the compatibility of cubical isogenies and cubical arithmetic

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- 6 Perspectives

Preimages

- $\quad \Phi: E_1 \to E_2 \text{ isogeny of elliptic curves (for simplicity) with cyclic kernel } K = \langle T \rangle \text{ of order } \ell$
- We saw how to compute isogeny images $P \mapsto \phi(P)$
- Goal: compute isogeny preimages: $\phi^{-1}(Q)$
- For ease of notations: let $\hat{\phi}: E_2 \to E_1$ be the contragredient isogeny, we will compute the preimages $\hat{\phi}^{-1}(P) \subset E_2$
- Radical isogenies: the preimages $T_2 \in \hat{\phi}^{-1}(T)$ are in bijection with the non-backtracking isogenies $\phi_2: E_2 \to E_3$

Torsors

- $\bullet \ \phi/k: E_1 \to E_2, P \in E_1(k)$
- If $\hat{\phi}^{-1}(P)$ contains a rational point $Q \in E_2(k)$, then the fiber is in bijection with $\ker \hat{\phi}$ via $\hat{\phi}^{-1}(P) = Q + \ker \hat{\phi}$
- It certainly contains such a point over the separable closure of k (assume ϕ separable)
- $\Rightarrow \hat{\phi}^{-1}(P)$ is an (étale) $\operatorname{Ker} \hat{\phi}$ -torsor
 - If $\operatorname{Ker} \phi = \langle T \rangle$ with $T \in E_1(k)$, then $\operatorname{Ker} \phi \simeq \mathbb{Z}/\ell\mathbb{Z}$, so $\operatorname{Ker} \hat{\phi} \simeq \mu_\ell$ (via the Weil-Cartier pairing)
 - $\hat{\phi}^{-1}(P)$ is an (étale) μ_{ℓ} -torsor
- \Rightarrow Hilbert 90: we have an isomorphism of schemes over $k: \hat{\phi}^{-1}(P) \simeq \{x^{\ell} = C\}$

Theorem

By the geometric interpretation of the Tate pairing, $C=e_{T,\ell}(T,P)$ (non reduced Tate pairing)

• Goal: make this isomorphism explicit

Cubical arithmetic for preimages

- $\qquad \qquad \textbf{Goal: compute } \hat{\phi}^{-1}(P), \phi: E_1 \rightarrow E_2 \text{ with kernel } K = \langle T \rangle$
- ullet Fix an excellent lift \widetilde{T}
- Fix \widetilde{P} and an excellent lift $\widetilde{P+T}$ relative to \widetilde{P} and \widetilde{T} .
 - \bullet Start with an arbitrary lift $\widetilde{P+T}$
 - © Compute $\widetilde{P} + \ell \widetilde{T} = \lambda_P \widetilde{P}$ N.B.: λ_P is the Tate pairing of P with T!
 - $\textcircled{3} \ \, \mathsf{Then} \, \lambda_P^{1/\ell} \star \widetilde{P+T} \, \mathsf{is an excellent lift relative to} \, \widetilde{P}, \widetilde{T} \\$
- \bullet Construct the cubical points $\widetilde{P}+i\widetilde{T}$ for $i=0,\ldots,\ell-1$
- These give the coordinates (in level $n\ell$) of a point $Q \in \hat{\phi}^{-1}(P)!$
- ullet The ℓ choices for $\lambda_P^{1/\ell}$ give the ℓ preimages.

Descending level

Theorem

If X_1, \ldots, X_n are a basis of section of level n on E_1 , then the $X_m(\widetilde{P}+i\widetilde{T})$ form a basis of sections of level ℓn on E_2 , evaluated on Q

- We want to describe Q with coordinates X'_i of level n
- Goal: take linear combinations of the $X_m(\widetilde{P}+i\widetilde{T})$ of the form $X_m'(Q)X_0'^{\ell-1}(Q)$.
- ullet We recover projective coordinates of level n for Q
- Method: use descent through a well chosen isogeny

Descending level on an abelian variety

• Write $\ell=1+a^2+b^2+c^2+d^2$ and take $F:A^5\to A^5$ given by the matrix

$$\begin{pmatrix} 1 & a & b & c & d \\ a & -1 & 0 & 0 & 0 \\ b & 0 & -1 & 0 & 0 \\ c & 0 & 0 & -1 & 0 \\ d & 0 & 0 & 0 & -1 \end{pmatrix}$$

- The kernel of F is given by the image of $A[\ell]$ into A^5 via $P \mapsto (P, aP, bP, cP, dP)$
- $\bullet \ \ \text{There is a block diagonal matrix} \ M = \begin{pmatrix} 1 & 0 \\ 0 & M_2 \end{pmatrix} \text{such that} \ t_F M F = \ell \ \text{Id}.$
- So F is an ℓ -isogeny $(A, \Theta_A)^5 \to (A, \Theta_A) \times (A^4, \Theta')$ (Θ') non principal non product polarisation)
- ullet Applying the isogeny formulas to F allows to recover the level n coordinates on A by projecting to the left factor
- N.B: here we are already in level ℓn on the domain so the isogeny formulas are simple. The kernel is of size ℓ^{2g} but half of the points give a trivial action, so we take a trace under ℓ^g terms.
- Complexity for descending from level ℓn to level n: $O(\ell^g)$

Damien Robert Cubical arithmetic 35/

Multiradical isogenies

- A of dimension $g, K = \langle T_1, \dots, T_g \rangle, \phi : A \to B$
- $\ell^{g(g+1)/2}$ choice of excellent lifts for $\widetilde{T_i}$, $\widetilde{T_i} + T_j \Rightarrow$ all our possible $\ell^{g(g+1)/2}$ multiradical isogenies (after descending back to level n)
- ullet These involve the (sqrt of the) "self" Tate pairings $e_{T,\ell}(T_i,T_j)$ (ℓ odd)
- If $P \in A$, ℓ^g choices for $P + T_i \Rightarrow \text{all } \ell^g$ possible preimages $Q \in \hat{\phi}^{-1}(P)$ (after descending back to level n)
- ullet These involves the Tate pairings $e_{T,\ell}(T_i,P)$

Summary

- Cubical arithmetic allows to go up and down in level, not only on the same abelian variety but also across an isogeny
- Explicit algorithms to compute preimages and radical isogenies
- The Tate pairings naturally appear in these algorithms

Open questions:

- Interpretation of the cubical coordinates of the neutral points of 0_A and 0_B as modular forms (in the spirit of [KNRR21])?
- Simpler descent formulas?
- Radical SqrtVelu formulas?
- In progress: explicit radical formulas for Montgomery curves

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- 6 Perspectives

Cubical arithmetic and DLP

- $P \in E(\mathbb{F}_q)$ a point of ℓ -torsion, $Q = s \cdot P$
- DLP: given (P,Q) recover s
- Assume $\ell \nmid q-1$, then $\mu_\ell \cap \mathbb{F}_q = \{1\}$ (Otherwise use pairings to reduce the DLP to \mathbb{F}_q^*)
- Then there is only one canonical excellent lift $\hat{P} := \widetilde{P}$ above P with coordinates in \mathbb{F}_q (there is only one rational root of $x^\ell = e_{T,\ell}(P,P)$)
- \hat{P} , \hat{Q} are easy to compute
- $\bullet \ \ \text{We have} \ s \cdot \hat{P} = \hat{Q}$
- This lifts the DLP to a cubical DLP
- $\bullet \ \ \text{Now assume that someone leaks } (\widetilde{P},\widetilde{Q}=s\cdot\widetilde{P}) \ \text{for some cubical point (not canonical)} \ \widetilde{P} \ \text{above } P$
- Write $\widetilde{P} = \lambda \star \widehat{P}$
- Then $\widetilde{Q} = s \cdot \widetilde{P} = \lambda^{s^2} \star s \cdot \widehat{P} = \lambda^{s^2} \star \widehat{Q}$.
- We know (λ, λ^{s^2}) . A DLP in \mathbb{F}_q^* allows to recover s^2 , hence s (modulo the multiplicative order of λ).
- If λ has large enough order, we obtain s.
- $\bullet\,$ This assumes q-1 has not too many factor so that there are not too many sqrt of s^2 to check.

Damien Robert Cubical arithmetic 20 /

The monodromy leak

- $\bullet \;$ For the attack to work, we need someone to leak \widetilde{P} , $\widetilde{Q}=s\cdot \widetilde{P}$
- How would that be possible? Nobody uses cubical arithmetic for standard ECC, right?
- Actually, many implementations use the Montgomery ladder.
- And this is (almost!) the cubical ladder.
- Montgomery ladder: Start from (X(P), Z(P) = 1) and compute (X(sP), Z(sP))
- Then output x(sP) = X(sP)/Z(sP). If division not in constant time, this leaks Z(sP).
- Hence this leaks $s \cdot \widetilde{P}$ for $\widetilde{P} = (x(P), 1)$
- N.B.: Montgomery ladder is not quite the cubical ladder, so we solve a different degree two
 equation to recover s.

The general DLP:

- If we have only (P,Q), we take arbitrary choices of $\widetilde{P},\widetilde{Q}$.
- We have $\widetilde{Q} = t \cdot \widetilde{P}$ for some $t \equiv s \mod \ell$ (if \widetilde{P} is chosen to have order $\ell(q-1)$)
- Apply the monodromy leak attack to recover t modulo q-1
- Problem: ℓ is coprime to q-1, so this gives zero information on $s \mod \ell$.
- The monodromy leak only works when we know that $0 < t < \ell!$

Damien Robert Cubical arithmetic 4o/43

Table of Contents

- Cubical arithmetic
- Constructing functions with prescribed divisors, applications to pairings
- Computing isogenies
- Isogeny preimages, and radical isogenies
- The monodromy leak
- **6** Perspectives

Perspectives

- DLP, pairing inversion from the cubical point of view?
- Cubical arithmetic allows to reduce the elliptic curve DLP to a DLP between "quasi"-cyclic matrices of size $\ell \times \ell$. Not very useful but gives new point of view on pairings attacks (take an eigenvalue of these matrices to reduce to a DLP in dimension 1)
- Investigate the arithmetic of non symmetric biextensions induced by (non symmetric) isogenies
- R-sesquilinear pairings [Sta24] from the cubical point of view? (Replace \mathbb{G}_m torsors by $\mathbb{G}_m^{\otimes R}$ -torsors?)
- Related: computing multidimensional endomorphism ladders $\sum \alpha_i \widetilde{P}_i$?
- Self pairings [CHM+23] from the cubical point of view?
- [Bre83]: if we have a symmetric cubical torsor structure on (G,\mathcal{L}) , $G \subset A[n]$, then there is a canonical trivialisation of the induced cubical structure on $[2n]^*\mathcal{L}$.
- Similarity with self pairings: if P is of n-torsion, then the self pairing e(P,P) lives in μ_{2n} .

Bibliography

[Sta24]

[Bre83]	L. Breen. Fonctions thêta et théoreme du cube. Vol. 980. Springer, 1983 (cit. on pp. 3, 4, 14, 42).
[CHM+23]	W. Castryck, M. Houben, SP. Merz, M. Mula, S. v. Buuren, and F. Vercauteren. "Weak instances of class group action based cryptography via self-pairings". In: Annual International Cryptology Conference. Springer. 2023, pp. 762–792. (cit. on p. 42).
[CR15]	R. Cosset and D. Robert. "An algorithm for computing (ℓ,ℓ) -isogenies in polynomial time on Jacobians of hyperelliptic curves of genus 2". In: Mathematics of Computation 84.294 (Nov. 2015), pp. 1953–1975. doi: 10.1090/S0025-5718-2014-02899-8 (cit. on p. 25).
[Gro72]	A. Grothendieck. Groupes de Monodromie en Géométrie Algébrique (SGA 7). Séminaire de Géométrie Algébrique du Bois Marie - 1967-69. Vol. 288. Lecture Notes in Mathematics. Springer-Verlag, 1972 (cit. on pp. 3, 14, 20).
[KNRR21]	M. Kirschmer, F. Narbonne, C. Ritzenthaler, and D. Robert. "Spanning the isogeny class of a power of an elliptic curve". In: Mathematics of Computation 91.333 (Sept. 2021), pp. 401–449. doi: 10.1090/mcom/3672. arXiv: 2004.08315 (cit. on p. 37).
[LR12]	D. Lubicz and D. Robert. "Computing isogenies between abelian varieties". In: Compositio Mathematica 148.5 (Sept. 2012), pp. 1483–1515. doi: 10.1112/S0010437X12000243. arXiv: 1001.2016 [math.AG] (cit. on p. 25).
[LR16]	D. Lubicz and D. Robert. "Arithmetic on Abelian and Kummer Varieties". In: Finite Fields and Their Applications 39 (May 2016), pp. 130–158. doi: 10.1016/j.ffa.2016.01.009 (cit. on p. 12).
[LR22]	D. Lubicz and D. Robert. "Fast change of level and applications to isogenies". In: Research in Number Theory (ANTS XV Conference) 9.1 (Dec. 2022). doi: 10.1007/s40993-022-00407-9 (cit. on p. 25).
[Mor85]	L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de France, 1985 (cit. on pp. 3, 9).
[Rob21]	D. Robert. "Efficient algorithms for abelian varieties and their moduli spaces". HDR thesis. Université Bordeaux, June 2021. url: http://www.normalesup.org/~robert/pro/publications/academic/hdr.pdf. Slides: 2021-06-HDR-Bordeaux.pdf (1h, Bordeaux). (Cit. on p. 25).
[Rob24]	D. Robert. "Fast pairings via biextensions and cubical arithmetic". Apr. 2024 (cit. on pp. 3, 6, 20, 25).
[Stao8]	K. Stange. "Elliptic nets and elliptic curves". PhD thesis. Brown University, 2008. url: https://repository.library.brown.edu/studio/item/bdr:309/PDF/ (cit. on pp. 13, 20).

K. E. Stange. "Sesquilinear pairings on elliptic curves". In: arXiv preprint arXiv:2405.14167 (2024) (cit. on p. 42).