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The Tate pairing
o E;/kelliptic curve; P € E{ (k) (exact) {-torsion

kis any field, ¢ need not be prime, we do not assume p¢; C k. For simplicity we do restrict to £ prime to p throughout.
° §:E; > Ey=E/(P)i¢:Ey > E
@ The Weil-Cartier pairing e, Ker ¢ x Ker ¢ — p induces an isomorphism 1 : 11y — Ker ¢,
{ — P, the unique point that satisfies eq,(P, PH=¢C

Definition/Theorem

If Q € E;(k), the Tate pairing Ty(P, Q) is the unique element t € k* /k** such that there exists an
isomorphism ¥ : {x e k | xt = t} - ¢_1(Q) where

@ g is Galois equivariant: g o & = 0 o P forall o € Gal(k/k)
Q Ifx’ = x{where { € py, then l/JQ(x’) = P (x) + P(0).

@ Condition 1 states that ¢Q is an isomorphism of Galois sets / an isomorphism of k-schemes
@ Condition 2 gives compatibilities between the fibers and Ker ¢
o Example: Q € ¢(E,(k)) Ty(P,Q) € k**, in which case we have #1,(k) rational
preimages.
@ Exercice: prove existence and unicity
Hint: use Hilbert 9o. Why do we need both conditions for unicity?

‘@ tisunique butnot o  (Exercice: how many 5 can there be?)
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Insert a frame about the Weil-Cartier pairing

P Ay > Ay §: Ay - A
o Weil-Cartier:ey : Ker ¢ x Ker¢p — G,

Compatible with isogenies: Eproprops (P,Q) = ey, (p1(P), $3 (P)) whenever these are well
defined.

Biduality:ifi : A; — /A\\l is the biduality morphism, e&;(Q, i(P)) = 64,(P, Q) !

So as a (horrible) abuse of notation, I'll use

e5(P,Q) = e5(Q,i(P)) ™ = ey (P, Q)



The case of a larger kernel

0 p: A - Ayg:A, > AL QE A (k)

o PeK :=Ker fﬁofexact order ; K’ := (P)+ C K := Ker ¢ (for the Weil-Cartier pairing ep)
@ K'acts on K. The orbits are in bijection with

e K’ actson (])‘1(Q).The orbits are in bijection with {x € klxt= T4,(P, Q)}

@ Galois equivariant and compatible with the Weil-Cartier pairing as before

Proof: ¢ factors out through K’ as ¢ = ¢, o ¢, where Ker ¢, = K’ and Ker ¢p; = (P); and
¢~ HQ)/K = (pl_l (Q). (+ Compatibility of Weil-Cartier pairing with isogenies.)

@ Only depends on P, noton K (as long as P € K)
@ In particular, T¢(P, Q) =Ty(P,Q).

e IfPy,..., P, € K(k), then the Tate pairings T¢(P,-, Q) gives information on (p*] (Q) modulo
(P1, -, Pt

o If we have rational generators Py, ..., P,, of K the T¢(Pl~, Q) allows to recover the full Galois
structure on (/)*1 (Q).



Example: The multiplication by [{] on an elliptic curve

o (P = [e] :E—> E
@ (Pq,P;) basisof E[{], P1, P>, Q € E(k) (so uy C k)
o t1 =Ty(Pq,Q), ty = Ty(Py, Q)
Proposition
t1, tp are the unique elements in k™ / k* such that there exists a rational / Galois equivariant isomorphism
¥0,0, * (1,0 €kl af = 1y, x5 = 1) — [071(Q)

suchthat o, o, (x101,%205) = Yo,,0,(X1,%2) + T where T € E[{] is the unique point that satisfies
eg(P1, T) = §1,60(P2, T) = 0.

v

o t,t, give informations on the Galois structure of [£]1Q
@ They are trivial if and only if Q € [€]E (k)

@ Ifk = F, g C F then Qe [(’,]E(]Fq) iff Ty(P, Q) forall P € E[Z](]Fq)

no need to assume that the full {-torsion is rational (see below)!



The reduced Tate pairing
o Ift = Ty(P,Q) and x* = t,then

— g(x
B =5 :0 € Galk/k) » %
gives a cocycle with value in 4
@ Well defined up to a coboundary
@ Explains how Gal(k/k) acts on g[)_l (Q):if Qp = P (x) sothat $(Qp) = Q, then

(Qo) = Qo + P(E(0))
@ Reformulation (which also works for larger kernels P € R: ¢(o) = e¢(P, c(Qp) — Qo) € 1y

e If yty C k, Eis a morphism Gal(k/k) — #g and does not depends on the choice of x
e Hilbertoo:t € k*/k** — 5, € H(k, Mg) is an isomorphism

o Ifk = ]Fq, the cocyle = is uniquely determined by its value on usm

70,(X) a1 i
~w— =t U isthe reduced Tate pairing:

° E(nq) =
ty(P,Q) = T,(P, QU

o Well defined in jug/ (7T, — 1) = HY(F, g).  #py/(7t; — 1) = #F} /F' = #10(F,)
o If ptg C F g, the reduced Tate pairing is well defined in 1y



Properties of the Tate pairing

$: AL - Ay Ay » Ay, Ker ¢ of exponent L, Q € A, (k)i Ty : K(k) x Ay (k) — k*/k*EL.

Bilinearity:
@ Bilinear on the right
Given Q1, Q,, combine lpgl, poZ.This crucially relies on compatibility of poi and .

@ Bilinear on the left (by bilinearity of the Weil pairing)

If Py is of nm-torsion and P, = mP1, naive bilinearity is

Tnm(PZI Q) = Tnm(Pll Q)m

seen in k* /k*/"1™M,
We can also see T,,,,,(P,, Q) as T,,, (P, Q) € k*/k*".We have a natural map H' (k, p,,) - H'(k, t,,,,,) associated to
the inclusion f,, < Ji,,,,,; it corresponds via the isomorphism H(k, Hp) = k* [k o k* kT — kK [X] e
[x™].1tis not injective in general, so we lose some information if we see T ,,,,, (P, Q) = i(T,,,(P5, Q)) € k*/k*™" rather
than T, (P, Q) € k*/k*™.
We also have a map p,,,,, = Hy, ¢ — ¢, whichinduces H' (k, pt,,,,,) — H'(k, u,,), hence p : k* /k*™™ — k*/k*",
given by [x] — [x].
Refined bilinearity is

T, (P2, Q) = (T (P1, Q) € K* /K.
We recover naive bilinearity via i (T, (P>, Q)) = ip(T,,,,(P1,Q)) = T,,,,(P1, Q)" € k*/k*"™.

If 1, C k,theni @ k* /k*™ — k* /k*"™ is injective, and we can ignore this subtlety.



Properties of the Tate pairing

$: Ay - Ay p: Ay > Ay, Ker g of exponent L, Q € Aj (k); Ty : K(k) x Ay (k) — k* /k*E.

Non degeneracy:
@ Non degeneracy on the left ifK(k) = K(E):

Ty(P,Q) =1VP € K & Q € ¢(Ex(k))

Non degeneracy properties over a finite field k = IFq:

o IfPoforder{,and [x] € IF';/IFZ’B, then there exists Q € A; (IF'q) such that T¢(P, Q) = [x]
= Non degeneracy on the right:
ifye(]Fq) # 1, there exists Q € Al(IFq) such that T¢(P, Q) +1e IF;;/IF;’“.
(Direct proof: use that #AZ(IFq) = #Al(IFq))
o Ifu; C IFq, non degeneracy on the left also holds even iff(\(IF'q) + K(?q):
ifTp(P,Q) = 1€ Fy/Fs" forall P € K(F,), then Q € ¢p(Ay(F,).



Computing the Tate pairing

PeE k), $:Ey - E, =E{/(P),Q € E{ (k).

Not easy a priori: how to compute T¢ (P,Q)?
Theorem/Definition

Ty(P,Q) = Ty(P, Q) = fi,p(Q)
where f; p is the normalised Miller function with divisor (£) (P) — (£) (Og).

@ Can be computed in O(log () operations in k

@ Does not require to build ¢ nor E;!



Aside: roots of unity in a finite field

F3/Fy' = py/ (7my — 1) is of cardinal €y = #py(F ).
lo = A (q—1),and g, = py, (Fp)

Writing € = '€y, the exponentiation j1y — py , § = " induces an isomorphism

He/ (115 = 1) = puy

The corresponding isomorphism ]F;/IF,’;’E = IF;;/IF;’EO is given by [x] — [x]

If Pis of order €, Ty(P, Q) = Ty, (U'P, Q) € F}/Fy0
If ¢ is the isogeny induced by (P) and t[)’ the one induced by (£’ P), we see that the Galois
structure of the small fiber (p’_l (Q) completely determines the Galois structure of the larger

fiber p~1(Q).



Questions

Why “geometric”?

What are some applications of this interpretation?

Why is the Tate pairing fast to compute?

How do we link the geometric interpretation with Miller’s algorithm?

Can we build an isomorphism ¢ : {x € klxt= Ty(P,Q)} - qb_l(Q) explicitly?

Whatif ¢ : E, — Ej is rational, cyclic of order £, Q € Eq (k), but Ker &has no rational
generator P?

If P lives in an extension k', t = T (P, Q) is well defined in k’*/k’*’z, but changing f by tx! where x € k' may change the
k-Galois structure of {x | x* = }!
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Usual applications of the Tate pairing

@ Non degeneracy = pairing based cryptography

@ Subgroup membership testing [Koshelev]

o If A/F, isan abelian variety, Ty, ..., T, a basis of A[£](F ;) where T; is of order {;, and jy C F,
then by non degeneracy

T : A(F)/AL(F,) - [ [, P = t(T;, P)
i=1

is an isomorphism. (Reijnders'’s profiles)

@ This allows to probe Z-torsion information on the subgroup (P;) generated by some sampled
points P;.

@ Forinstance, if { is prime, (P;) generates the {-Sylow ofA(IFq) iff the T'(P;) generate ;.
@ Example: Entangled basis is a special case of this when E/]sz is supersingular and { = 2.

@ See [Rei25] paper for more applications and generalisations of the entangled basis algorithm

@ Here we only focus only on applications from the geometric interpretation
@ Ittells us that Tate pairings allow us to probe the Galois structure of the fiber of an isogeny ¢

@ How can we use this information?



Montgomery curves

P € Eq[2](k),$: Ey —» E, =E1/(P),¢ : E; —» Eq
o Ex[2] = ¢~ (0g) U¢~H(P)

° ¢_1 (OEl) =~y = Z/27Z (p # 2) so we always have at least one rational point of 2-torsion on
E, generating the dual isogeny

@ E, has full rational two torsion if and only if (])‘1 (P) has rational points, if and only if T (P, P) is
a square
Sending P to (0, 0), we obtain:

Proposition

LetE : By2 = x3 + Ax? + tx,and P = (0, 0) the point of 2-torsion on it. Then
T>(P,P) = [t] € k*/ k*2 and t is a square if and only if E /(P has full rational 2-torsion.




Montgomery curves

Proposition

LetE : By2 = x3 + Ax? + tx,and P = (0, 0) the point of 2-torsion on it. Then
T,(P,P) = [t] € k*/ k*2 and t is a square if and only if E / (P has full rational 2-torsion.

Conversely, if t € k* is any representative of T, (P, P), then up to a change of (X : Z) variables,
translation by Pis given by (X : Z) — (Z : tX) [BRS23, § 6], so:

o If x = X/Z, the 2-torsion on E; isgivenby x = o, 0,a, t/a
@ The 4-torsion points P’ above P satisfy x(P') = i\ﬁ
@ In this model, E : By2 =x3 + Ax? + tx

Example

o If T, (P, P) is a square, P is of “Montgomery type’, and taking t = 1 we obtain that E; is
isomorphic to:
By?=x3+Ax>+x, A=—-a—1/a

@ Otherwise, we recover the Montgomery—-model of [CD20]:

By? = x3 + Ax® + &x

[1=Ty(P,P), ¢ € k* \ k*?




Probing the Galois structure of an isogeneous elliptic curve

o E;/F; E1(Fy) = (Py,Py) abasis, P1, P> of order ny, ny.
o PeE(Fy) oforder,$: Ey - E, = E1/(P), ¢ : E;, - E4

@ Since (/J(Ez(]Fq)) CE (]Fq), the IFq—Ganis structure of the fibers ¢—1 (Py), ¢—1 (P5) encodes
the group structure of Ez(]Fq)

@ Hence the Tate pairings f; = T¢(P, Py),ty = T4, (P, P5) encode all the information about
EZ(IFq).

Proposition

@ We have an isomorphism of Galois sets:
p7HEL(F) = {x € Fy | x' = 171132,0 < ay < 17,0 < ap < mp}/F)

@ IfP; is of order n;, as a Galois-set, Ez(]Fq) ~{x € ]Fq |xt = t‘{ltgz,O <a; < n;}

The isomorphisms 1[Jp1, 1/JP2 are unique only up to a translation by T € Ker ¢(]Fq). Since T is rational, this ambiguity still allows

to recover the group structure of E (]Fq ).



Probing the {-torsion of an isogeneous elliptic curve
e Pe El(]Fq) oforderl’,,fﬁ: El g E2 = E1/<P>,¢ : E2 hd El

o P(Ex[U]) = (P)so Ex[t] = ¢~ ((P))
@ The self Tate pairing t = T¢(P,P) € ]F;/IF,;’Q encodes all the information about the Galois
structure of E5[{]

@ We have an isomorphism of Galois sets:

Ex[0](Fy) =~ {x € F, | x' = *}/F;

@ For fun, we can also use the reduced Tate pairing
tp(P,Q) = 9D/ € g/ (my — 1)
= ey(P, m;Qo — Qo) where £Qp = Q
@ Pickarepresentative { = ( of tp (P, Q) inpy = (Lp)-

@ There exists a basis Q, Q, of E5[{] (ﬁq) such that

> $(Qq) = O, e4(P, Q1) = {o-We have 71,(Q1) = qQ since Ker ¢ = piy;
> ¢(Qp) =P and 71, (Q2) = Qo + uQy

0
~ DamienRobet  GeometricTate . a6/35

@ So the matrix of 7T, acting on E,[0] is equivalent to (q L{)



Volcanoes

E/]Fq ordinary, { | #E(]Fq), { prime

The {-isogeny graph forms a volcano structure

On level 0 (the floor): E[¢](F,) = Z/¥Z

Onlevel 1:E[(*](F,) = Z/¥ ' Z x Z/Z

Onlevelm < f/2:E[(*)(F,) = Z/¥™"Z x Z/U"Z

If we reach level m = f /2 (the stability level), then f has to be even, and at all levels 1 > f /2:

E[°1(F,) = Z/¥/*Z x Z/¥/*Z

A cyclic descending isogeny stays descending

A cyclic ascending isogeny stays ascending, until it eventually reach the crater, where it can have
horizontal then descending steps.

If ¢ : E; - E, isacyclic £°-isogeny and we know the level of E; and E,, then we know exactly
how many ascending/horizontal/descending steps ¢ took.



Pairing the volcano [lJ10]

Proposition
IfP € El[Qe](IFq) and pie C IFq, then

Ey[€°)(F,) = Z/WCZ x Z/t° Z

where (¢’ is the order of tee (P, P).

The lower the order of the self Tate pairing, the more rational points of £°-torsion we have on the
codomain, and the higher we are in the volcano:

o Ife’ > 0then we know that E, is at level ¢ — ¢
@ Otherwise, we only know that E; is at level > e

See [Rob23, Example 5.16] for a fully detailed discussion, including the case ptye ¢ ]Fq.

Example (2-isogenies)
If P € E[2],t,(P,P) =1 & E/(P) has full rational two torsion < E/(P) is at level > 1.




A case study: the CSIDH volcano

° E/]Fp supersingular elliptic curve, p = w2 —1 (u odd),f >3sop=7 (mod 8).
@ The CSIDH volcano is of height 1 (and yzf(IFp) = 1Uy)

Torsion:

@ On the floor: primitive orientation by Z[np]
E(F,) ~ Z/(p + 1)Z,s0 E[2*)(F,) = Z/2'Z
If E' is the quadratic twist of E, E[2]] = E[2/](F 2) = E[2](F,) & E'[2](F,)

1+
1
E(F,) =~ Z/Y5 Z x Z/2Z, 50 E[2°\(F,) = Z/2 "' Z x Z/2Z.

E[2X 1] = B[ T11(F 2) = E[2 T )(F,) + E'[2 7 1(E,), with:

On the crater: primitive orientation by Z[

E[2711(F,) N E'[21(F,) = E[2]
o) =025 ) =p,p
e 2| nk— 1,pi_1p_ | 7, — 1Lp " lp, | m, + 1.



The CSIDH volcano: on the floor

o E[2°](F,) = Z/2Z.

e Py agenerator, Ty := 2/ 1Py,

o T generates the ascending isogeny, and £, (T, Ty) = 1 as expected.

o The reduced Tate pairing t,(Pg, Pg) = t,(Ty, Pg) = —1 € py is non trivial by non
degeneracy, so E/(Pg) is on the floor.

@ The isogeny generated by P\ goes up, goes in the "+ horizontal direction for f — 2 steps, then
goes down again.

o If P{ a generator of E'[2%°] (IF'p), the isogeny generated by P, goes up, goes in the " horizontal
direction for f — 2 steps, then goes down again.



The CSIDH volcano: on the crater

Isogenies:
o E[2](F,) = {0g, T_, Ty, T} where:

> T generates the descending isogeny ¢y : E — E
> E[p,]=(T)sothat¢_:E - E_, ¢, : E - E, arethe two horizontal isogenies

@ P, agenerator ofE[pﬁ__l], itis of order 2/ ~1 and above T ,..
@ Py agenerator of Eq(F,) 2]

Images (up to renormalisation):
o ¢, (E[Z1(F,) = (¢, (P)) ® (¢, (T_)) = Z/2 27 x Z/2Z.

. (P,) =2P%, ¢ (2P, =T
¢ (T_) = ¢ (Tg) =TE+, ¢, (3P, +T_) =Tg".

o ¢_(E[21(F,)) = (¢p_(P,)) = Z/2 L s09_(P,) = P;-.
o ¢o(P,) = 2Py and $o(Py) = P, + T.



The CSIDH volcano: on the crater

Pairings:

o T, is the only point divisible by 2 in E(IFP), so all pairings ¢, (T;, T, ) are trivial

o T,,T_ are horizontal, so have trivial self pairings; T\ goes down, so has non trivial self pairing.

e Only T, isin the rational image of ¢ (outof T, , T_, Tp)
@ The isogeny of @: is of type —, so only T is in the rational image

@ The isogeny of $: is of type +, so all T; are in the rational image

Proposition

tz(T_, T_) = 1 t2(T_, To) = 1 tz(T_,T+) = 1
tr(To, T-) = -1 t2(To, Tg) = -1 tr(To, T;) =1
t2(T+, T_) =-1 t2(T+, To) =-1 t2(T+,T+) =1

t(T_,P,) = -1
t2(T0,P+) = 1
tr(T,,P.) =1




The CSIDH volcano: applications

On the floor:
@ P generates the full cyclic rational 2/ torsion if and onlyifty(Ty, P) = —1.

o Thisis equivalent to x(P) — x(T) is not a square

On the crater:
@ T is the unique point of 2-torsion with non trivial self pairing
o t5(Ty, Ty) = £1,sowe canidentify T, T_
@ Arational point P € E[2%] (IFP) is of exact order 2 1 & itis not in the image of c’ﬂ: (E_ (IF'p))
et (T_,P)=-1

@ A rational point P of exact order of -1 generates an horizontal isogeny (hence is P ) if and only if
t,(T,,P)=1.

See [DEF+25, Appendix D] for other cool applications!



Evaluating divided endomorphisms

@ Assumethat E[{] C E(F,)
@ Then 71, — lisdivisible by ¢

=1
[J

o IfP e E(IFq),we want to evaluate (P)

o LetP' € E(Fq) such that {P" = P.

m,—1
@ Then qT(P) = (1, — P’

@ Can we compute this without computing P'?

@ Picka basis T1, T, of E[{]

@ We know how 7T, acts on P’ thanks to the reduced Tate pairings to (T4, P), t(T5, P)!

nq—l
3
@ See [DEF+25, Appendix D.2] for the details.

@ Hence we can evaluate

without using division points (this requires DLPs in py through)



Multiradical isogenies

@ Let¢, : A; — A, bean l-isogeny of rank g of ppavs

@ ¢, : Ay, — Ajzissaid to be non (partially) backtracking if ¢, o ¢ is still of rank g
e Equivalently: ker ¢, N Ker¢; =0

@ So ¢ induces a bijection between Ker ¢, and Ker ¢;.

Proposition

Assume that we have rational generators P4, ..., P, of Ker ¢1. Then each choice of isotropic
Q; € $1_1 (Pq), ..., Qg € &;1 (Pg) gives a different non backtracking isogeny ¢, via
Ker ¢p = (Qy, ..., Qg), and they all arise this way.

So there are £8€+1)/2 sych isogenies.

Theorem (Multiradical isogenies)

There is a rational bijection between these choices and the solutions of {xfj =Ty(P;, Pj) 11 <j}




Multiradical isogenies

Proposition

Assume that we have rational generators P, ..., Pg of Ker ¢1. Then each choice of isotropic
Qe (751_1 (Pq), ..., Qg € (}H‘l (Pg) gives a different non backtracking isogeny ¢, via
Ker ¢, = (Qq, ..., Qg), and they all arise this way.

So there are £8€+1/2 sych isogenies.

Theorem (Multiradical isogenies)

There is a rational bijection between these choices and the solutions of {xf'j = TP, Py) 11 <j}

Proof.

Without the isotropy condition on the Q;, we know by the geometric interpretation that there is a
(rational) bijection ¥ between T = {xfj = TE(P,-,Pj) |1 <1i,j < g}andthe set

{(Qy, -, Q) | Q; € $7"(Py)).

Adding the isotropy condition gives via ¥~ a (rational) subset T’ C T.Working a bit more, we can
prove that the projectionmap T — T”, (x4, 1<i,j<g) (x4 1<i<j<g)restrictstoa
bijection T’ =~ T”, see [Rob23, Theorem 5.19]. Composing all maps, we obtain a rational bijection
between the subset of isotropic Q; and {xfj = Ty(P;, Pj) [i<j}

Damien Robert Geometric Tate
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Making the isomorphism effective

o E/kelliptic curve; P € E; (k) C-torsion, ¢ : E; — E; = E1/(P).Q € E;(k),

o We want to build an explicit rational isomorphism

Yo : Specklx]/(x' = Ty(P,Q)) —» ¢71(Q).

@ We will use cubical arithmetic!

o Pick up a cubical point P above P, possibly over an extension, such that {P = 0

(no need for P to be symmetric here)
o Pick some rational cubical points Q, P + Q and compute {P + Q = Ag- Q
@ Cubical theory tells us that /\Q is rational (even if Pis not) and a representative of T (P, Q).
@ Forany A suchthat At = A@. then replacing P+ QbyA - P+ Q above we get that

(P + Q = Q (and conversely).

o If we work with (cubical) coordinates X, ..., X,, of level 11 prime to {, then the X; (jPTQ) gives
the (cubical) coordinates of level 1€ of the point in ¢p~1(Q) corresponding to A

@ We can use a magic 5 x 5 matrix to descend from level 1n{ to coordinates of level 7.

@ See [Rob24, § 6.2] and [Rob25]

Damien Robert Geometric Tate 25/35
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A descent story

We have a k-rational isogeny ¢ : A — A, between abelian varieties.

Goal: We want to recover A, (k).

A rational point Q € A, (k) may come from a non rational point P € A k).

How can we recover the rational points on A, from the geometric points on A;?

General descent theory:

o If ¢ : X - Yisan epimorphism, we can look at the pullback X xy X =3 X.

o ApointT — Yinduces by pullback points T" — Xand T” — X xy X and an action
T" = T' xy X — T’ satisfying appropriate gluing condition (“descent data”).

@ If Ty — T, is a morphism above Y, the pullback gives a morphism T7 — T compatible with
the descentdata T} — T;.

@ Conversely, if ¢ is a descent epimorphism (e.g. ¢ is fppf), then all morphisms T} — T above X
respecting the descent data come from a morphism T; — T, above Y.

o If ¢ is of effective descent, we can even reconstruct the objects T — Y from the descent data,
without knowing a priori that it already exists.

Damien Robert Geometric Tate 27/35



Torsor galore

If ky /ky is a Galois field extension of Galois group G, then Speck, — Speck; is a G-torsor:
Speck; =~ [Speck,/G]
Specky Xspeck, SPeck, = Speck, x G

The two natural maps to Speck; are given by (x, o) — xand (x,0) — o(x).

Given X, Y /kq, the descent data corresponds to the Galois action on Xy, and Ykz and a map
Xk, = Y, descends to ky iff it is Galois equivariant.

o Likewiseif ¢ : Ay — Aj isanisogeny over k with kernel K, ¢isa K-torsor: Ay = [A1/K].
o Ay XA, Aq = A; x Kwith the two natural maps given by (x, t) — xand (x,f) — x + t.

@ k-points on A, corresponds to K-orbits on A,



The rational points of the isogeneous abelian variety

Putting everything together:

Ay(k) ~{P+K|P €A (k°P),c(P+K)=P+K Vo e Gal(k*P/k)}
~{P e A (kP),0c(P) —P e K Vo e Gal(k*?/k)}/K

@ We do not want to work in A ).

@ Switching the roles: if we have an isogeny ¢’ : A, — Aq, then each rational point P on A;
corresponds to some Galois stable fiber gb/_l (P) C A,.

@ Westayin A (k), but the corresponding descent data lives in Ay, which we don’t know (yet).

@ Idea: use duality!

o lfp: Ay - Ay A, — A}.Apoint Q € A; corresponds to a rational divisor Dgin A4
(algebraically equivalent to 0). The fiber ¢~ ' (Q) C A, corresponds to the divisors D in A
such that ¢*Dp = DQ.

@ The fiber (:5_1 (Q) encodes the descent of Dgto A5 through ¢. We can reexpress this in terms of
descent dataon Aq!



In a stack no one can hear you scream

@ At this point, it is convenient to use the language of stacks.

Or it's because | had to learn about stacks for a paper, so now | try to mention them everytime...

@ An algebraic stack X behaves exactly like a scheme/an algebraic space, except that the points
X (R) form a groupoid rather than just a set

@ Hencetwomaps T 3 X can be (2)-isomorphic without being equal.

@ Let BG,, = [k/G,,] be the stacky quotient. BG,,, is the classifying stack of G,,-torsor, hence
of line bundles / divisors (up to linear equivalence).



In a stack no one can hear you scream

Back to ourisogeny ¢ : Ay — A,.
A (linear class of) divisor D on A; corresponds to a map @ : A; — BG,,.

D is algebraically equivalent to Qif and only if this map is invariant (up to isomorphism) by
translation by Pforall P € Ay (k):t;@p = @p

Equivalently: this diagram is commutative (up to isomorphism)

Al %Al

N
BG,,

Al = Hom(A;,BG,,) (morphisms of Picard stacks)
Descending D to D’ on A, means finding a map @p, : A, —» BG,, such that the composition
Aq iR Ay — BG,, is (isomorphic to) the map @ : A} — BG,,: ¢*Pp, = Pp,.

A1+>A2

®p
BG,,

Concretely, this consists in picking up for each P € Ker 4)(%) a choice of an isomorphism
tp®Pp = Pp, ina compatible way.




Long story short

° ¢:A; - Apofkernel K
e Qe 21 corresponds to a divisor D on A4
o G(Dg) the theta group:
G(Dg) (k) = {(P,gp,0)}

where ¢p ¢ induces an isomorphism between D and 5D .
@ We may see gp g as a function with divisor t;D 5 — Dg.
@ The fiber ([7‘1 Q) C 22 is in bijection with K-descent data for D
@ These descent data (datum?) correspond exactly to lifts KofKto G(DQ).

@ This is Galois equivariant: Kcorresponds to a rational point Q' € $‘1 (Q) ifand only ifitis
invariant by Galois.

@ Any explicit description of G(DQ) allows to compute these descent data

o If X — A, x Aj is the Poincaré biextension, G(Dg) is the pullback of X to A7 x Q
@ So we can use our favorite biextension arithmetic: Miller’s representation, cubical arithmetic, ...

@ Generic framework to recover the Galois structure of fibers of any isogeny!



Back to elliptic curves

o P e E (k)oforderl, ¢ : E; - E, = E{/(P)
o Q€ E (k),Dg = (Q) — (Op)

Actually it should be (—Q) — (Og) but everyone is used to the “wrong” divisor (Q) — (Of) in the literature.

o Aliftof K = (P) to the theta group G(Dy) corresponds to a choice of biextension function
&p,o with divisor’
divgp,o = (P) + (Q) = (P + Q) — (0p)

which is of order { for the biextension group law.

o K=1{1,8p0,82p,0/83p,0 -}

@ Let gp  be the biextension function normalised to 1 at O, .

© Then gyp o = fi p(Q) where fy p is the normalised Miller function with divisors {(P) — €(0g, )
@ The biextension function Agp ; is of order £ if and only ifA=t = fop(Q)

o Since 0 (gp,g) = gp, o, e have U'(AgP,Q) = U(A)gP,Q

e Sothe fiber =1 (Q) is Galois-isomorphic to {x | x! = fip(Q)}.

@ This gives Condition 1 of the geometric Tate pairing. For condition 2 we need to work more and
use that the biextension arithmetic also gives the Weil pairing.

"Technically: dngP,Q = (=P —-Q) + (0g) = (=P) = (-Q) and divfy p = l(OEl) —I(-=P)
~ DamienRobet  GeometricTate 355



The case of a non rational generator

The theta group/biextension point of view allow to handle rational kernels with non rational
generators.

o LetP € E; (Fq) of order £ which generate a F -rational isogeny ¢ : E; — E; with kernel K.

@ We have nq(P) = mP for some m prime to {.

Let Q € Eq (F,), and gp o be the normalised biextension function.
iFA~E :fz’P(Q),gl)’Q B= /\gP,Q generates a lift K= {LgP,Q/gZP,Q/ ...} of Kin G(DQ).

@ This time, 77, (8p, o) is the normalised biextension function g, p o above (mP,Q), so

7,(8p,0) = A8mp -

SoK = (gp,Q) is rational (hence corresponds to a rational point in $_1 (Q)) ifand only if
73(8p,0) = &mp,0-

Evaluating at O, this gives an equation A7 = A™'f,, p(Q).

(The biextension arithmetic gives that g,,p 5 (Og,) = f,,p(Q).)

More generally, o ((Agp ) = (A'gp ) where A satisfy AT = A""'f,, p(Q).

This gives the EifGanis structure on the solutions {(/\gp,Q)) [Ab = Ty(P,Q)}

Example (The geometric interpretation of the Ate pairing)

Take P € E[({] of eigenvalue g for the Frobenius: nq(P) = ¢P.The action of 7T, on the fiber ai_l (Q)
is described by 7'[,;1 (fq,p(Q)) Wherefq,p(Q)) is the Ate pairing! (See also [Rob24, Remark 3.21])
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Last slide: The geometric interpretation of the Tate pairing

@ Secretly the geometric interpretation is about étale /-torsors

o Ay/k P € A (k) t-torsion,  : Ay —» A, = A1 /(P), ¢ : Ay — Ay, Q € Ay (k)

o Pinduces anisomorphism Ker ¢ = iy, T — e, (P, T), hence an isomorphism B Ker ¢ =~ By,
e A, — Speckis Ker ¢-equivariant (taking the trivial action on Spec k), hence induces a map

[A,/ Ker ¢] — BKer ¢

We have the following pullback diagram:

¢~ (Q) ——— Speck Speck ¢— {x' =1t}
ok | |
Ay —— Ay = [Ay/ Ker ¢] Gy = [G/pe) <= G
Speck ———— BKer¢ = > Buy < Speck




Last slide: The geometric interpretation of the Tate pairing
We have the following pullback diagram:

¢~1(Q) ——— Speck Speck «+—— {(x' =1t}
L, b L
Ay —— Ay = [Ay/ Ker @] G =[Gy /] W G
l l ! !

Speck ———— BKer¢ = > By < Speck

Definition (The Tate pairing)
@ Givenapoint Q : Speck — Ay, the Tate pairing is the map

T¢(P,Q) : Speck — By,

given by the composition Speck — A; — BKer ¢ — By

@ Since Byy(k) = k* /k**, there is a representative £ in k* such that Ty (P, Q) : Speck — Bpyis
isomorphicto t : Speck — Bjiy, hence gives an isomorphism of j/-torsors:

P7HQ) = (xt =t} )
I T T
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