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CRS Key Exchange ([Couveignes (1997)], [Rostovtsev-Stolbunov (2006)])

The ideal action on ordinary elliptic curves:

EO —)E[a]za-EO

| l

E[b] = bEO —_— E[ab] =~ ab-EO

® Commutative group action

@ Restricted group action ~~ Unrestricted group action:
CSI-FiSh (2019),  [Pearl-]Scallop[-HD] (2023-2024), [CKQ]lapoti[s]/Pegasis (2023-2025)

o Classical security ~ Al/4

® Susceptible to Kuperberg's subexponential quantum algorithm
= need to work with A >> 512 bits



The ordinary ideal action
° E/]Fq ordinary elliptic curve
e aCR:= End]Fq (E) invertible ideal in a quadratic imaginary order

Definition (The ideal action)

a - Eis the elliptic curve E/E[a], where

E[a] := {P € E(F,) | a(P) = 0, V& € a}

® This conflates the codomain a - E with the way we compute it as an isogeny E — E/E[a]

@ Notobviousthata-b-E =~ (ab) - E (CanusethatdegE[a] = N(a))
What happens at non invertible ideals?

@ Asin Deuring’s correspondence, can kinda be reframed as an equivalence of category between
(equivalence classes of) invertible ideals in R and (isomorphism classes of) elliptic curves
“horizontally” isogeneous to E

@ Anisogeny ¢ : a - E — b - E corresponds to the invertible ideal ba~!

@ Not clear distinction of objects and morphisms

@ Question 1:intrinsic characterisation of a - E?
~ DamienRobert  Themoduleactionforisogenybased cryptography  a/15



SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao,
Plat (2014)])

@ Idea: Switch to maximal supersingular curves over Isz

@ No commutative group action = no Kuperberg attack



SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao,
Plat (2014)])

Meme: Gru'’s plan
@ Isogeny based key exchange
@ Use supersingular curves
@ The graph is non commutative

@ The graph is non commutative



SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao,
Plat (2014)])

@ Observation: The CRS diagram

Eg ———— Eggy=a-E;

| l

E[b] = bEO e E[Clb] =~ ab'EO

is a pushforward if N'(a) is coprime to N (b)

o SIDH:
EO —) EA = EO/KA

l l

Ep = Eg/Kg —> Exp = Eg/(Ka + Kp)
where K4 C Eq[2%],Kp C E[3”] and EO/Isz is a maximal supersingular curve

® To compute E 45 from E 4 and Kp, Bob needs extra torsion information on E 4 from Alice

®@®® SIDH attacks [Castryck-Decru; Maino-Martindale-Panny-Pope-Wesolowski; R. 2023]



A commutative supersingular key exchange?

@ Thereis also a supersingular ideal action [Deuring]
] KA = EO[IA]'KB = EO[IB]'IA/IB C DO = Ende(Eo)

@ Problem: the endomorphism ring O 4 of E 4 is distinct from O, so I is not an ideal of it
@ Instead, Bob needs to act by a differentideal Iz C O 4togetEqp =I5 -E»

o Idea:WhatifI 4, I are generated by ideals a, b C R of a commutative quadratic order R C 9?
@ ThenR C DA' and 11’3 is also generated by b (Assume R saturated in © and the ideals a, b invertible in R)
@ And E4[I] = E4[b] can be computed as long as Bob knows how R acts on E 4

@ CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]: start with a supersingular EO/IFP and
R=Z[[-p] = Z[n

@ Oriented group actions [Colo-Kohel 2020], [Onuki 2020] on a (maximal) supersingular curve
Eo/F 2, with R C O arbitrary



Frobenius orientation (CSIDH) and arbitrary orientations (SCALLOP)

Ep ——> Egy=a-E

l l

E[b] = bEO e E[ﬂb] = ab~E0

° EO/IF'pz supersingular curve

@ R C 9 orientation by a quadratic imaginary order; a, b C R invertible ideals

CSIDH: EO/IFp + natural Frobenius orientation T, ™ E (like in CRS)
© Great control on torsion (e.g. if 2° | p + 1, the points in Ey[2¢] are rational over Isz)
® AR = —4p

SCALLOP: arbitrary orientation R C 9y
© Decouple the arithmetic (IFp) with the discriminant A (For an ordinary curve,A(r(p) xp)
© Needs a way to represent the orientation

® Both still susceptible to Kuperberg's subexponential quantum algorithm



A commutative supersingular key exchange (round 2)?

E0—>E1A=IA'EO

l

Ep, =1Ig-Ep
@ Goal: complete the diagram for I 4, I arbitrary ideals of O,

@ Idea:if R C Oy is an orientation by a quadratic order, [ 4, Iz are rank 2 R-modules
o [,Igis nota well defined ideal, but [ 4 ®g Ip is a well defined rank 4 R-module
o Commutativity:lA ®R IB =~ IB ®R IA

@ Question 2: Can we make sense of a module action?



The module action
o If Ay, Ay /k are two abelian varieties oriented by R, then Homg (A1, A,) is a R-module

Definition (The power object)

If A is an abelian variety oriented by R and M a (finite type) R-module, M - A := Homg (M, A) is the
(unique) R-oriented abelian variety, if it exists, such that

Hompg_ap (X, Homg (M, A)) = Homg (M, Homg_,p(X,A)) VX € R — Ab

R — Ab: category of R-oriented abelian varieties and R-oriented morphisms

[Giraud 1968] (credits Serre+Tate), [Serre 1985]

@ Functoriality: an R-linear map ¢ : M, — M induces an oriented morphism
¢ : Ho/mR(Ml,A) - HOMR(MZ,A)

o leftexactnesssMy = My = 0~ 0 — Homg(My, A) & Homg (M, A)
00— Al = A2 ~ 0> HOH’LR(M,Al) = HOMR(M,Az)

e Commutativity:if R is commutative, My - My - A = Hompg (My, Homg (M, A)) =
Homg (M ®g My, A) = (M; ®g Mp) -A=M; - M, - A



Construction of the module action

@ Embed both categories into R-modules for the (big) fppf-topos (sheafs for the fppf site of Spec k)
o Homg(M, A) := Homp_gp,c(M, A) is the R-Hom sheaf (internal R-Hom in the fppf-topos)

M is the fppf-sheafification of the constant sheaf M
@ Functor of points: If S/k is a fit. k-algebra,
Homg (M, A)(S) = Homg (M, A(S))

[Waterhouse 1969, Appendix A] (cites [Serre 1965, 1967])

@ This is always the (sheaf associated to) a proper commutative group scheme, of dimension
dim Homg (M, A) = rank M x dim A

o Homg (M, A) is an abelian variety if M is projective [Serre]

@ Exactness:if0 — My — My — My /M, — Oisexact, and Homg (M,, A) is an abelian
variety, then

00— HOMR(Ml/MZ,A) d HOMR(Ml,A) d HOMR(Mz,A) -0
is exact



An equivalence of category
Oriented case: Eq/k elliptic curve primitively oriented by R quadratic imaginary

Theorem (Module anti-equivalence of category)

The action M — M - Ey = Hompg (M, Eg) gives an antiequivalence of category between the category
of R-oriented abelian varieties @ A k-isogenous to E‘g and R-oriented k-morphisms; and the category of f.p.
torsion free R-modules M of rank ¢ and R-module morphisms.

Inverse map: A — Hompg (A, Eq): module of (oriented) morphisms from A to E

9with the technical condition pg (A) = ®§:1PR(E0)r where o (A) is the representation of R/pR on Lie A

[Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018], [Page-R. 2023]

Example
@ Frobenius orientation for EO/IFP: all I, -rational isogenies at level above E‘g

@ Ifpisinertin R, the Frobenius isogeny TT, Ey— Eg’) cannot be represented by an R-module
morphism = Needs extra “Dieudonné” information to handle general inseparable isogenies, see
[Centeleghe-Stix 2015, 2023; Bergstrom-Karemaker-Marseglia 2024]

e Symmetric monoidal structure: (M - Eg) ®g, (Mp - Eg) := (M ®@r M) -Eg = My - M, -E
This is an abelian variety if My ® g M is torsion free.



Computing the module action
@ Needs to work with polarised abelian varieties. For simplicity: stick to ppavs.

@ Since the Rosati involution on E induces the complex conjugation on R, a principal polarisation
onM - Eg corresponds to a unimodular R-Hermitian form on M
[Serre 1985, 2001], [Kirschmer, Narbonne, Ritzenthaler, R. 2021],

If (My,H;), (M5, Hy) are unimodular torsion free Hermitian R-modules of rank ¢ then
(A;,Ap) = (M, Hy) - (Eg, Ag) are principally polarised abelian varieties of dimension ¢
@ We have a M;-module orientation on Aq:if my € Mq,themap R — My, r — rmy induces

mq : Ay - Ep.

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])

Ify : (Mp,Hy) = (My,Hy) isan N-similitude (i.e. p*Hy = NHp), then ¢ : (A1,A1) = (Ap,Ay)is
an N-isogeny of ppavs, with kernel

Ker¢ = My/M, - A = A1[Mp] = {P € Ay (k) | m(P) = Og Vm € My}

Corollary (Clapoti for the module action)

Ifwe can find two N;-similitudes (M, Hyg) — (RS, Hgs), with Ny coprime to Ny, we can compute
(M, Hp,) - Egin polynomial time.

v




Computing the module action

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])
Iflp : (Mz,Hz) g (MllHl) is an N-similitude (i.e. lp*Hl = NHz), then(p : (Al,/\l) d (AZIAZ) is
an N-isogeny of ppavs, with kernel

Ker¢ = My/M, - A = A1[Mp] = {P € Ay (k) | m(P) = 0, Vm € M}

Example (The ideal action)
Ifa C R, we have a canonical unimodular Hermitian form:
Xy

Hy(x,y) = N

The inclusion (a, H;) C (R, Hg) isa N (a)-similitude, hence we obtain a N (a)-isogeny
¢,:E=R-E—-a-E

with kernel (R/a) - E = E[a].




Linking the supersingular ideal action with an oriented rank 2 module action

EO/]Fp primitively oriented by R = Z[ﬂ:p].
Proposition (Weil restriction)
If1 C DO andEI =1- Eo, then
(M;, Hy) - (Eole) = W]sz/le (Ep,Ap

where Wy /E,, s the Weil restriction, M isI seen as an R-module, and H is derived from the
P

quaternionic Hermitian form
HDO,I cx,y €1 - xy/NA).

Corollary (Module inversion)

The rank 2 unimodular module supersingular action inversion problem over IFp is at least as hard as the
supersingular isogeny path problem over ]sz.
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EIZ ANANS A12 = W]’sz/]FpEll ®E6 W]IF EIZ

02/ Fp

Ey:y>=x>—x/F, p=u2-1 (Exp=5-2248_1)

Alice and Bob each compute a 2°-isogeny from E(, over ]sz

Then the common key A1, requires computing a 2°-isogeny in dimension 4 over IF'p

No need for coprime degrees!

Conjecture: 512 bits NIKE for 128 bits of quantum security

This conjecture holds if:

@ the module Diffie-Helmann problem is as hard as module action inversion;
@ The difficulty of recovering the supersingular isogeny Efj — E11 has e/2 bits of quantum security.

Help needed!

Need good dimension 4 modular invariants to represent A1, (e.g. suitable symmetric polynomials in
the theta constants?)




Perspectives

Implement this!

Public Key Encryption via an EIGamal approach

Signatures?

Other protocols? (Problem: the dimension grows exponentially with the number of actions...)

@ Can handle twists by looking at Galoisian R[G]-modules actions to encode descent data
Example (Quadratic twists: G = GaI(Isz/IFp) = (o))
e ifR" = Rwith 0 acting by —1,then R’ - Ej = E(t) is the quadratic twist, and
R -I-R-Ey=1-E,

O W]sz/lF,,EO = R[G] - Eg

@ Extend the module equivalence of category to a ppav (A, Ag) primitively oriented by a CV
order () with maximal real multiplication.
(And such that the Rosati involution restricts to the complex conjugation on (). Maximal real multiplication ensures that () is

a Bass order)



Constructing the power object

@ Embed R — Ab into R-oriented proper commutative group schemes to get an abelian category

@ Embed both categories (R-modules and R-oriented proper commutative group schemes) inside
the (big) fppf-topos  (sheafs for the fppf site of Spec k)

@ We obtain abelian subcategories of fppf R-modules.
More precisely we have exact fully faithful morphisms:

> to an R-oriented proper commutative group scheme G we associate its functor of points S — G(S),
which is an fppf sheaf
> toan R-module M we associate M is the fppf-sheafification of the constant (pre)sheaf M

o Homg(M,A) := HamR_fppf(l\_/I, A) is the R-Hom sheaf (internal R-Hom in the fppf-topos)

4

‘¢ This is only the power object in the larger category of R-modules. Still, if this is (the sheaf
associated to) an abelian variety, then it has to be the power object for (R-oriented) abelian

varieties.

@ If M is f.p,, this is always (the sheaf associated to) a proper commutative group scheme.



Exactness properties

@ Recall:if0 > M, — M; = M;/M, — Qis exact, and Hompg (M5, A) is an abelian variety,
then
0 g HOMR(Ml/Mz,A) d HOMR(Ml,A) g HOmR<M2,A) - 0

is exact

@ In general, we have a long exact sequence

0 —» Homg(My/M,,A) » Homg (M7, A) —» Homg(M,,A) —
Exth (M1/My, A) — Exth (M, A) - Exth (M, A) -

There are different variants of 8901511? we can take here:

o Exty(M,A) = Exly_g,,c (M, A) = H (RHomg_gppe (M, A))

° 8octR (M, A) = fppfext _pgp (M, A) where 1fppf is the fppf sheafification of presheaves



Scholten’s construction

@ To have lots of 2°-torsion, we work with p = 7 (mod 8), so we have a non trivial 2-volcano

@ For technical reasons, we will start with a curve Eb on the crater of the 2-volcano rather than on
the floor

° End]Fp(E()) is the maximal order Og of R = Z[np], and the conductor f C Z[np] is of index 2
@ We use a slight variant of the Weil restriction: W, 2/F, = f-r Wg 2/F,
P P
(we can prove that Wﬂ; /F gives Scholten’s construction)
P P
o |fEIl =I. E’O forI' C Db, we still have (MI/,HII) ‘Og <E,0’A6) = W]II:pz/]I:p(EI"/\I’)

! !

@ In practice: take E : y2 =x3— x/IFp, so that Wy, ,/F,Eo = EE)Z
P 14
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