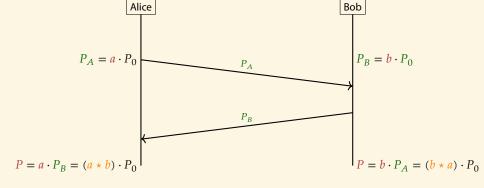
The module action for isogeny based cryptography 2025/06/13 — AGC²T — Luminy

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

NIKE: Non Interactive Key Exchange



CRS Key Exchange ([Couveignes (1997)], [Rostovtsev-Stolbunov (2006)])

The ideal action on ordinary elliptic curves:

$$\begin{array}{ccc} E_0 & \longrightarrow & E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_0 \\ \downarrow & & \downarrow \\ E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_0 & \longrightarrow & E_{[\mathfrak{ab}]} \simeq \mathfrak{ab} \cdot E_0 \end{array}$$

- © Commutative group action
- Restricted group action → Unrestricted group action:
 CSI-FiSh (2019), [Pearl-]Scallop[-HD] (2023–2024), [CKQ]lapoti[s]/Pegasis (2023–2025)
- Classical security $\approx \Delta^{1/4}$
- © Susceptible to Kuperberg's subexponential quantum algorithm \Rightarrow need to work with $\Delta\gg512$ bits

The ordinary ideal action

- E/\mathbb{F}_q ordinary elliptic curve
- ullet $\mathfrak{a}\subset R:=\operatorname{End}_{\mathbb{F}_a}(E)$ invertible ideal in a quadratic imaginary order

Definition (The ideal action)

 $\mathfrak{a} \cdot E$ is the elliptic curve $E/E[\mathfrak{a}]$, where

$$E[\mathfrak{a}] \coloneqq \{P \in E(\overline{\mathbb{F}}_q) \mid \alpha(P) = 0_E, \forall \alpha \in \mathfrak{a}\}$$

- \odot This conflates the codomain $\mathfrak{a} \cdot E$ with the way we compute it as an isogeny $E \to E/E[\mathfrak{a}]$
- Not obvious that $\mathfrak{a} \cdot \mathfrak{b} \cdot E \simeq (\mathfrak{a}\mathfrak{b}) \cdot E$ (Can use that $\deg E[\mathfrak{a}] = N(\mathfrak{a})$) What happens at non invertible ideals?
- ullet As in Deuring's correspondence, can kinda be reframed as an equivalence of category between (equivalence classes of) invertible ideals in R and (isomorphism classes of) elliptic curves "horizontally" isogeneous to E
- An isogeny $\phi: \mathfrak{a} \cdot E \to \mathfrak{b} \cdot E$ corresponds to the invertible ideal \mathfrak{ba}^{-1}
- Not clear distinction of objects and morphisms
- Question 1: intrinsic characterisation of $a \cdot E$?

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

- ullet Idea: Switch to maximal supersingular curves over \mathbb{F}_{p^2}
- ullet No commutative group action \Rightarrow no Kuperberg attack

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

Meme: Gru's plan

- Isogeny based key exchange
- Use supersingular curves
- The graph is non commutative
- The graph is non commutative

SIDH/SIKE: supersingular isogeny key exchange ([De Feo, Jao (2011)],[De Feo, Jao, Plût (2014)])

• Observation: The CRS diagram

$$\begin{array}{cccc} E_0 & \longrightarrow & E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_0 \\ & & \downarrow & & \downarrow \\ E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_0 & \longrightarrow & E_{[\mathfrak{ab}]} \simeq \mathfrak{ab} \cdot E_0 \end{array}$$

is a pushforward if $N(\mathfrak{a})$ is coprime to $N(\mathfrak{b})$

SIDH:

$$E_0 \longrightarrow E_A = E_0/K_A$$

$$\downarrow \qquad \qquad \downarrow$$

$$E_B = E_0/K_B \longrightarrow E_{AB} \simeq E_0/(K_A + K_B)$$

where $K_A\subset E_0[2^a]$, $K_B\subset E_0[3^b]$ and E_0/\mathbb{F}_{p^2} is a maximal supersingular curve

- \odot To compute E_{AB} from E_A and K_B , Bob needs extra torsion information on E_A from Alice
- ©©© SIDH attacks [Castryck-Decru; Maino-Martindale-Panny-Pope-Wesolowski; R. 2023]

A commutative supersingular key exchange?

- There is also a supersingular ideal action [Deuring]
- $\bullet \ K_A = E_0[I_A], K_B = E_0[I_B], I_A, I_B \subset \mathfrak{O}_0 \coloneqq \operatorname{End}_{\overline{\mathbb{F}}_p}(E_0)$
- **Problem**: the endomorphism ring \mathfrak{O}_A of E_A is distinct from \mathfrak{O}_0 , so I_B is not an ideal of it
- Instead, Bob needs to act by a different ideal $I_B' \subset \mathfrak{O}_A$ to get $E_{AB} = I_B' \cdot E_A$
- Idea: What if I_A , I_B are generated by ideals \mathfrak{a} , $\mathfrak{b} \subset R$ of a commutative quadratic order $R \subset \mathfrak{O}$?
- $\bullet \ \ \text{Then} \ R \subset \mathfrak{O}_{A}, \ \text{and} \ I_B' \ \text{ is also generated by } \mathfrak{b} \qquad \text{(Assume R saturated in \mathfrak{O} and the ideals \mathfrak{a}, \mathfrak{b} invertible in R)}$
- $\bullet \ \ {\rm And} \ E_A[I_B'] = E_A[\mathfrak{b}]$ can be computed as long as Bob knows how R acts on E_A
- CSIDH [Castryck-Lange-Martindale-Panny-Renes 2018]: start with a supersingular E_0/\mathbb{F}_p and $R=\mathbb{Z}[\sqrt{-p}]=\mathbb{Z}[\pi_p]$
- Oriented group actions [Colò-Kohel 2020], [Onuki 2020] on a (maximal) supersingular curve E_0/\mathbb{F}_{p^2} , with $R\subset \mathfrak{O}_0$ arbitrary

Frobenius orientation (CSIDH) and arbitrary orientations (SCALLOP)

$$\begin{split} E_0 & \longrightarrow E_{[\mathfrak{a}]} = \mathfrak{a} \cdot E_0 \\ \downarrow & \downarrow \\ E_{[\mathfrak{b}]} = \mathfrak{b} \cdot E_0 & \longrightarrow E_{[\mathfrak{ab}]} \simeq \mathfrak{ab} \cdot E_0 \end{split}$$

- E_0/\mathbb{F}_{p^2} supersingular curve
- $R \subset \mathfrak{D}_0$ orientation by a quadratic imaginary order; $\mathfrak{a}, \mathfrak{b} \subset R$ invertible ideals

<u>CSIDH</u>: E_0/\mathbb{F}_p + natural Frobenius orientation $\pi_p \curvearrowright E_0$ (like in CRS)

- \odot Great control on torsion (e.g. if $2^e \mid p+1$, the points in $E_0[2^e]$ are rational over \mathbb{F}_{p^2})

SCALLOP: arbitrary orientation R ⊂ \mathfrak{D}_0

- \odot Decouple the arithmetic (\mathbb{F}_p) with the discriminant Δ_R (For an ordinary curve, $\Delta(\pi_p) \approx p$)
- Needs a way to represent the orientation
- Both still susceptible to Kuperberg's subexponential quantum algorithm

A commutative supersingular key exchange (round 2)?

$$E_0 \xrightarrow{E_{I_A}} E_{I_A} = I_A \cdot E_0$$

$$\downarrow$$

$$E_{I_B} = I_B \cdot E_0$$

- ullet Goal: complete the diagram for I_A , I_B arbitrary ideals of \mathfrak{O}_0
- Idea: if $R \subset \mathfrak{O}_0$ is an orientation by a quadratic order, I_A , I_B are rank 2R-modules
- I_AI_B is not a well defined ideal, but $I_A \otimes_R I_B$ is a well defined rank 4 R-module
- Commutativity: $I_A \otimes_R I_B \simeq I_B \otimes_R I_A$
- Question 2: Can we make sense of a module action?

The module action

• If $A_1, A_2/k$ are two abelian varieties oriented by R, then $\operatorname{Hom}_R(A_1, A_2)$ is a R-module

Definition (The power object)

If A is an abelian variety oriented by R and M a (finite type) R-module, $M \cdot A := \mathcal{H}om_R(M,A)$ is the (unique) R-oriented abelian variety, if it exists, such that

$$\operatorname{Hom}_{R-\operatorname{Ab}}(X,\mathcal{H}om_R(M,A)) = \operatorname{Hom}_R(M,\operatorname{Hom}_{R-\operatorname{Ab}}(X,A)) \quad \forall X \in R-\operatorname{Ab}(X,A)$$

 $R-{\sf Ab}$: category of R-oriented abelian varieties and R-oriented morphisms

[Giraud 1968] (credits Serre+Tate), [Serre 1985]

ullet Functoriality: an R-linear map $\psi:M_2 o M_1$ induces an oriented morphism

$$\phi: \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A)$$

- Left exactness: $M_1 M_2 0 0 Hom_R(M_2,A) Hom_R(M_1,A)$ $0 A_1 A_2 0 Hom_R(M,A_1) Hom_R(M,A_2)$
- Commutativity: if R is commutative, $M_2 \cdot M_1 \cdot A = \mathcal{H}om_R(M_2, \mathcal{H}om_R(M_1, A)) = \mathcal{H}om_R(M_1 \otimes_R M_2, A) = (M_1 \otimes_R M_2) \cdot A = M_1 \cdot M_2 \cdot A$

Construction of the module action

- Embed both categories into \underline{R} -modules for the (big) fppf-topos (sheafs for the fppf site of Spec k)
- $\mathcal{H}om_R(M,A) := \mathcal{H}om_{R-fppf}(\underline{M},A)$ is the \underline{R} -Hom sheaf (internal \underline{R} -Hom in the fppf-topos) \underline{M} is the fppf-sheafification of the constant sheaf M
- Functor of points: If S/k is a f.t. k-algebra,

$$\mathcal{H}om_R(M,A)(S) = \operatorname{Hom}_R(M,A(S))$$

[Waterhouse 1969, Appendix A] (cites [Serre 1965, 1967])

This is always the (sheaf associated to) a proper commutative group scheme, of dimension

$$\dim \mathcal{H}om_R(M,A) = \operatorname{rank} M \times \dim A$$

- $\mathcal{H}om_R(M,A)$ is an abelian variety if M is projective [Serre]
- Exactness: if $0 \to M_2 \to M_1 \to M_1/M_2 \to 0$ is exact, and $\mathcal{H}om_R(M_2,A)$ is an abelian variety, then

$$0 \to \mathcal{H}om_R(M_1/M_2,A) \to \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A) \to 0$$

is exact

An equivalence of category

Oriented case: E_0/k elliptic curve primitively oriented by R quadratic imaginary

Theorem (Module anti-equivalence of category)

The action $M \mapsto M \cdot E_0 = \mathcal{H}om_R(M, E_0)$ gives an antiequivalence of category between the category of R-oriented abelian varieties aA k-isogenous to E_0^g and R-oriented k-morphisms; and the category of f.p. torsion free R-modules M of rank g and R-module morphisms.

Inverse map: $A \mapsto \operatorname{Hom}_R(A, E_0)$: module of (oriented) morphisms from A to E_0

 a with the technical condition $ho_R(A)\simeq \oplus_{i=1}^g
ho_R(E_0)$, where $ho_R(A)$ is the representation of R/pR on Lie A

[Kani 2011], [Jordan, Keeton, Poonen, Rains, Shepherd-Barron, Tate 2018], [Page-R. 2023]

Example

- ullet Frobenius orientation for E_0/\mathbb{F}_p : all \mathbb{F}_p -rational isogenies at level above E_0^g
- If p is inert in R, the Frobenius isogeny $\pi_p: E_0 \to E_0^{(p)}$ cannot be represented by an R-module morphism \Rightarrow Needs extra "Dieudonné" information to handle general inseparable isogenies, see [Centeleghe-Stix 2015, 2023; Bergström-Karemaker-Marseglia 2024]
- Symmetric monoidal structure: $(M_1 \cdot E_0) \otimes_{E_0} (M_2 \cdot E_0) := (M_1 \otimes_R M_2) \cdot E_0 = M_1 \cdot M_2 \cdot E_0$ This is an abelian variety if $M_1 \otimes_R M_2$ is torsion free.

Computing the module action

- Needs to work with polarised abelian varieties. For simplicity: stick to ppavs.
- ullet Since the Rosati involution on E_0 induces the complex conjugation on R, a principal polarisation on $M \cdot E_0$ corresponds to a unimodular R-Hermitian form on M [Serre 1985, 2001], [Kirschmer, Narbonne, Ritzenthaler, R. 2021],
- If (M_1, H_1) , (M_2, H_2) are unimodular torsion free Hermitian R-modules of rank g then $(A_i, \lambda_i) = (M_i, H_i) \cdot (E_0, \lambda_0)$ are principally polarised abelian varieties of dimension g
- We have a M_1 -module orientation on A_1 : if $m_1 \in M_1$, the map $R \to M_1$, $r \mapsto rm_1$ induces

$$m_1:A_1\to E_0.$$

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])

If $\psi:(M_2,H_2)\hookrightarrow (M_1,H_1)$ is an N-similitude (i.e. $\psi^*H_1=NH_2$), then $\phi:(A_1,\lambda_1)\to (A_2,\lambda_2)$ is an N-isogeny of ppavs, with kernel

$$\operatorname{Ker} \phi = M_1/M_2 \cdot A = A_1[M_2] = \{P \in A_1(\overline{k}) \mid m(P) = 0_{E_0} \forall m \in M_2\}$$

Corollary (Clapoti for the module action)

If we can find two N_i -similitudes $(M,H_M) \to (R^g,H_{R^g})$, with N_1 coprime to N_2 , we can compute $(M,H_M) \cdot E_0$ in polynomial time.

Computing the module action

Proposition ([Kirschmer, Narbonne, Ritzenthaler, R. 2021])

If $\psi:(M_2,H_2)\hookrightarrow (M_1,H_1)$ is an N-similitude (i.e. $\psi^*H_1=NH_2$), then $\phi:(A_1,\lambda_1)\to (A_2,\lambda_2)$ is an N-isogeny of ppavs, with kernel

$$\operatorname{Ker} \phi = M_1/M_2 \cdot A = A_1[M_2] = \{ P \in A_1(\overline{k}) \mid m(P) = 0_{E_0} \forall m \in M_2 \}$$

Example (The ideal action)

If $\mathfrak{a} \subset R$, we have a canonical unimodular Hermitian form:

$$H_{\mathfrak{a}}(x,y) = \frac{x\overline{y}}{N(\mathfrak{a})}$$

The inclusion $(\mathfrak{a}, H_{\mathfrak{a}}) \subset (R, H_R)$ is a $N(\mathfrak{a})$ -similitude, hence we obtain a $N(\mathfrak{a})$ -isogeny

$$\phi_{\mathfrak{a}}: E = R \cdot E \to \mathfrak{a} \cdot E$$

with kernel $(R/\mathfrak{a}) \cdot E = E[\mathfrak{a}]$.

Linking the supersingular ideal action with an oriented rank 2 module action $\frac{1}{2}$

 E_0/\mathbb{F}_p primitively oriented by $R=\mathbb{Z}[\pi_p].$

Proposition (Weil restriction)

If $I \subset \mathfrak{O}_0$ and $E_I = I \cdot E_0$, then

$$(M_I,H_I)\cdot(E_0,\lambda_0)=W_{\mathbb{F}_{p^2}/\mathbb{F}_p}(E_I,\lambda_I)$$

where $W_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ is the Weil restriction, M_I is I seen as an R-module, and H_I is derived from the auaternionic Hermitian form

$$H_{\mathfrak{O}_0,I}: x,y \in I \mapsto x\overline{y}/N(I).$$

Corollary (Module inversion)

The rank 2 unimodular module supersingular action inversion problem over \mathbb{F}_p is at least as hard as the supersingular isogeny path problem over \mathbb{F}_{p^2} .

- $E'_0: y^2 = x^3 x/\mathbb{F}_p$, $p = u2^e 1$. (Ex: $p = 5 \cdot 2^{248} 1$.)
- $\bullet \;$ Alice and Bob each compute a 2^e -isogeny from E_0' over \mathbb{F}_{p^2}
- ullet Then the common key A_{12} requires computing a 2^e -isogeny in dimension 4 over \mathbb{F}_p
- No need for coprime degrees!
- Conjecture: 512 bits NIKE for 128 bits of quantum security
 This conjecture holds if:
 - the module Diffie-Helmann problem is as hard as module action inversion;
 - $igoplus The difficulty of recovering the supersingular isogeny <math>E_0' o E_{I_1}$ has e/2 bits of quantum security.

Help needed!

Need good dimension 4 modular invariants to represent A_{12} (e.g. suitable symmetric polynomials in the theta constants?)

Perspectives

- Implement this!
- Public Key Encryption via an ElGamal approach
- Signatures?
- Other protocols? (Problem: the dimension grows exponentially with the number of actions...)
- ullet Can handle twists by looking at Galoisian R[G]-modules actions to encode descent data

Example (Quadratic twists: $G = \operatorname{Gal}(\mathbb{F}_{p^2}/\mathbb{F}_p) = \langle \sigma \rangle$)

ullet if R'=R with σ acting by -1, then $R'\cdot E_0=E_0^t$ is the quadratic twist, and

$$R' \cdot I \cdot R' \cdot E_0 \simeq \overline{I} \cdot E_0$$

 $\bullet \ W_{\mathbb{F}_{p^2}/\mathbb{F}_p} E_0 = R[G] \cdot E_0$

• Extend the module equivalence of category to a ppav (A_0, λ_0) primitively oriented by a CM order O with maximal real multiplication.

(And such that the Rosati involution restricts to the complex conjugation on O. Maximal real multiplication ensures that O is a Bass order)

Constructing the power object

- ullet Embed $R-{
 m Ab}$ into R-oriented proper commutative group schemes to get an abelian category
- Embed both categories (*R*-modules and *R*-oriented proper commutative group schemes) inside the (big) fppf-topos (sheafs for the fppf site of Spec *k*)
- We obtain abelian subcategories of fppf <u>R</u>-modules.
 More precisely we have exact fully faithful morphisms:
 - ▶ to an R-oriented proper commutative group scheme G we associate its functor of points $S \mapsto G(S)$, which is an fppf sheaf
 - lacktriangle to an R-module M we associate \underline{M} is the fppf-sheafification of the constant (pre)sheaf M
- $\bullet \ \mathcal{H}om_R(M,A) := \mathcal{H}om_{R-fppf}(\underline{M},A) \text{ is the } \underline{R}\text{-Hom sheaf (internal } \underline{R}\text{-Hom in the fppf-topos)}$
- This is only the power object in the larger category of \underline{R} -modules. Still, if this is (the sheaf associated to) an abelian variety, then it has to be the power object for (R-oriented) abelian varieties.
- ullet If M is f.p., this is always (the sheaf associated to) a proper commutative group scheme.

Exactness properties

• Recall: if $0 \to M_2 \to M_1 \to M_1/M_2 \to 0$ is exact, and $\mathcal{H}om_R(M_2,A)$ is an abelian variety, then

$$0 \to \mathcal{H}om_R(M_1/M_2,A) \to \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A) \to 0$$

is exact

• In general, we have a long exact sequence

$$0 \to \mathcal{H}om_R(M_1/M_2,A) \to \mathcal{H}om_R(M_1,A) \to \mathcal{H}om_R(M_2,A) \to \\ \mathcal{E}xt^1_R(M_1/M_2,A) \to \mathcal{E}xt^1_R(M_1,A) \to \mathcal{E}xt^1_R(M_1,A) \to \dots$$

There are different variants of $\mathcal{E}xt^1_R$ we can take here:

- $\bullet \ \mathcal{E}xt^1_R(M,A) \coloneqq \mathcal{E}xt^1_{R-fppf}(\underline{M},A) = H^1(\mathcal{R}\mathcal{H}om_{R-fppf}(\underline{M},A))$
- $\bullet \ \, \mathcal{E}xt^1_R(M,A) \coloneqq i^*_{fppf} \mathcal{E}xt^1_{R-PSh}(M,A) \text{ where } i^*_{fppf} \text{ is the fppf sheafification of presheaves}$

Scholten's construction

- To have lots of 2^e -torsion, we work with $p \equiv 7 \pmod{8}$, so we have a non trivial 2-volcano
- ullet For technical reasons, we will start with a curve E_0' on the crater of the 2-volcano rather than on the floor
- $\bullet \ \ \operatorname{End}_{\mathbb{F}_p}(E_0') \text{ is the maximal order } O_R \text{ of } R = \mathbb{Z}[\pi_p] \text{, and the conductor } \mathfrak{f} \subset \mathbb{Z}[\pi_p] \text{ is of index } 2 \text{ index } 2 \text{ or } 2 \text$
- We use a slight variant of the Weil restriction: $W'_{\mathbb{F}_{p^2}/\mathbb{F}_p} = \mathfrak{f} \cdot_R W_{\mathbb{F}_{p^2}/\mathbb{F}_p}$ (we can prove that $W'_{\mathbb{F}_{n^2}/\mathbb{F}_p}$ gives Scholten's construction)
- $\bullet \ \ \text{If } E_{I'} = I' \cdot E_0' \text{ for } I' \subset \mathfrak{O}_0', \text{we still have } (M_{I'}, H_{I'}) \cdot_{O_R} (E_0', \lambda_0') = W_{\mathbb{F}_{p^2}/\mathbb{F}_p}'(E_{I'}, \lambda_{I'})$
- $\bullet \ \ \text{In practice: take} \ E_0': y^2 = x^3 x/\mathbb{F}_p, \text{so that} \ W_{\mathbb{F}_{p^2}/\mathbb{F}_p}' E_0' \simeq {E_0'}^2$