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Every talk needs at least one joke

1 Those who know how to do it, do it.
2 Those who don’t, teach it.
3 Those who can’t even teach, teach teaching.

Damien Robert Cubical arithmetic 2 / 35



Every talk needs at least one joke

1 Those who know how to do cryptography, do protocols.
2 Those who don’t, find algorithms.
3 Those who can’t even find algorithms give a tutorial on cubical arithmetic…

Damien Robert Cubical arithmetic 2 / 35



Every talk needs at least one joke

1 Those who know how to do cryptography, do protocols.
2 Those who don’t, find algorithms. ⇐ This was me in my PhD.
3 Those who can’t even find algorithms give a tutorial on cubical arithmetic… ⇐ This is me now.
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Every talk needs at least one joke

This is me in 20 years:

Back in my day, we used
to learn about theta func-
tions directly from Mum-
ford’s On the equations

defining abelian varieties!

(Back In My Day Meme)
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History
Mumford defines the notion of biextensions in [Mum69]
Grothendieck gives a detailed study of biextensions in [Gro72, pp. VII, VIII].
Key tool for his proof of the semistable reduction theorem.
Breen defines symmetric biextensions and cubical torsor structures in [Bre83]
Moret-Bailly (implicitely) introduces multi-extension and hypercube structures in [Mor85]

Biextensions are well known by mathematicians (cubical structures slightly less so)
Example: Edixhoven and Lido reinterpretation of quadratic Chabauty via the Poincaré
biextension [EL23].
Biextensions and cubical structures are also useful in the theory of 𝑝-adic heights Moret-Bailly,
Pazuki, …

Not used in cryptography…
Except by Stange: elliptic nets gives the Poincaré biextension cocycle on elliptic curves [Sta08,
Chapters 14-15]
This gives a conceptual link between elliptic nets and pairings. But this result is hidden in her
PhD…

R.: cubical arithmetic for cryptography [Rob24]
Reinterpretation of elliptic nets and“affine lifts of theta null points”as different ways of
computing the cubical arithmetic
See [PRRSS25, Appendix] for a down to earth introduction to cubical arithmetic.
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Elliptic Curves / Abelian varieties

An abelian variety 𝐴 is an arithmetic and geometric object.

Elliptic curve cryptography only relies on the arithmetic:
𝐸(𝔽𝑞) is a finite commutative group

But this group law comes from geometry

Corollary

Compact representations

Efficient formulas

Different models (curves equations, points representationss)

Twists (⇒work in smaller fields)

Automorphisms, Endomorphisms, Frobenius to speed up the scalar multiplication

The cohomological bazooka (point counting)

N.B.: Isogenies are geometric group morphisms

A geometric map 𝜙 ∶ 𝐴 → 𝐵 is already a group morphism (up to a translation)
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Arithmetic beyond the group law: pairings

There is a richer arithmetic on 𝐴 than just the addition law: pairings

Weil pairings:
𝑒ℓ ∶ 𝐴[ℓ] × 𝐴[ℓ] → 𝜇ℓ

PolarisedWeil pairings:
𝑒ℒ,ℓ ∶ 𝐴[ℓ] × 𝐴[ℓ] → 𝜇ℓ,

where 𝜙ℒ ∶ 𝐴 → 𝐴 is a polarisation.

Question 1: is there a geometric structure underlying pairings?
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Biextensions

A biextension 𝑌 → 𝐴 × 𝐵 is a geometric object above 𝐴 × 𝐵 (a 𝔾𝑚-torsor)

It has a biextension arithmetic structure:

Each slice 𝑌 ∣ 𝐴 × {𝑄} is a commutative group: an extension of 𝐴 by 𝔾𝑚

Likewise for the slices 𝑌 ∣ {𝑃} × 𝐵
These partial group laws are compatible with each other

Pairings arise naturally from the biextension arithmetic, via monodromy
(Grothendieck for theWeil pairing, Stange for the Tate pairing)

Poincaré biextension: 𝑌 → 𝐴 × 𝐴
Polarised biextensions: 𝑌ℒ → 𝐴 × 𝐴
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Algorithmic consequences
To compute pairings we just need biextension exponentiations
(two for theWeil pairing, one for the Tate pairing)

Corollary

Double and add

Biextension twists to work with smaller fields

Automorphisms / Frobenius to speed up these exponentiations

These algorithmic improvements were already known (Miller’s algorithm, twisted pairings,
Ate/optimal ate pairings…)
But the arithmetico-geometric point of view gives more conceptual/simplified arguments
[LRZZ25]

New: other models for biextensions?
Miller’s algorithm is double and add in a specific representation of biextension elements. Are
there different models giving faster formulas?

N.B.: every automorphism of 𝐴 extends uniquely to 𝑌ℒ : Aut(𝑌ℒ) = Aut(𝐴).
⇒ There are no “pure”biextension automorphisms.
⇒ Biextension twists are induced by the twists of 𝐴

Damien Robert Cubical arithmetic 8 / 35



Biextensions in practice

𝑌 the biextension associated to (0𝐸) above 𝐸 × 𝐸:

An element 𝑔𝑃,𝑄 of 𝑌 above (𝑃, 𝑄) ∈ 𝐸 × 𝐸 is a function with divisor

(𝑃 + 𝑄) + (0𝐸) − (𝑃) − (𝑄)

Biextension law:

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝑔𝑃1+𝑃2,𝑄 ≔ 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅ + 𝑃1)

= 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅)
𝑔𝑃1,𝑃2

(⋅ + 𝑄)
𝑔𝑃1,𝑃2

(⋅)

N.B: the last equality is not obvious and result from cohomological arguments

Similar formulas for 𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

Compatibility:

(𝑔𝑃1,𝑄1
⋆1 𝑔𝑃2,𝑄1

) ⋆2 (𝑔𝑃1,𝑄2
⋆1 𝑔𝑃2,𝑄2

) = (𝑔𝑃1,𝑄1
⋆2 𝑔𝑃1,𝑄2

) ⋆1 (𝑔𝑃2,𝑄1
⋆2 𝑔𝑃2,𝑄2

)
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Biextensions in practice

For a polarised abelian variety (𝐴, ℒ), 𝑌ℒ the biextension associated to ℒ above 𝐴 × 𝐴:

Theorem of the square: ℒ𝑃+𝑄 ⊗ ℒ ≃ ℒ𝑃 ⊗ ℒ𝑄

An element of 𝑌ℒ is a choice of isomorphism

Biextension arithmetic = arithmetic of the isomorphisms of the theorem of the square

For more on biextensions, see Stange’s invited talks at ANTS 2024 and AGCT 2025.
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Polarisations

In practice we work with (principally) polarised abelian varieties (𝐴, 𝜙ℒ)
The polarisation 𝜙ℒ ∶ 𝐴 → 𝐴 is induced by an (ample) line bundle ℒ
Two algebraically equivalent line bundles ℒ ∼ ℒ ′ give the same polarisation 𝜙ℒ
If ℒ is ample (or just non degenerate), ℒ ∼ ℒ ′ ⇔ ℒ ′ = 𝑡∗

𝑃ℒ

ℒ is a geometric object

It gives coordinates on 𝐴, hence projective embeddings 𝐴 ↪ ℙ𝑁 (if ℒ is very ample)

Example

The same abelian surface 𝐴 can be a product of two elliptic curves or a Jacobian of a genus 2
hyperelliptic curve depending on the principal polarisation

Question 2: is there an arithmetic structure on ℒ , lifting the arithmetic on 𝐴?
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Arithmetic from line bundles?

Question 2: is there an arithmetic structure on ℒ , lifting the arithmetic on 𝐴?

Obviously, ℒ gives the pairings 𝑒ℒ,ℓ!

And isotropy of a kernel 𝐾 ⊂ 𝐴[ℓ] for theWeil pairing 𝑒ℒ,ℓ is an important condition to get a
polarised isogeny 𝜙 ∶ (𝐴, ℒℓ) → (𝐵, ℳ)

But the “true”geometric object behind these pairings is the biextension 𝑌ℒ

And indeed, ℒ induces 𝑌ℒ via the line bundle

𝑚∗ℒ ⊗ 𝜖∗ℒ ⊗ 𝜋∗
1ℒ−1 ⊗ 𝜋∗

2ℒ−1,

where 𝑚 ∶ 𝐴 × 𝐴 → 𝐴 is the addition law, 𝜋𝑖 ∶ 𝐴 × 𝐴 → 𝐴 are the projections, and
𝜖 ∶ 𝐴 × 𝐴 → 𝐴 is the constant 0𝐴.

The biextension arithmetic is an arithmetic above 𝐴 × 𝐴
Is there an arithmetic directly above 𝐴?
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Line bundles

𝐴 is smooth, hence the following are equivalent:

A Weil divisor 𝛩𝐴 on 𝐴, up to linear equivalence

A Cartier divisor on 𝐴, i.e. a section of 𝐾(𝐴)/𝒪𝐴

An invertible sheaf ℒ on 𝐴, i.e. a sheaf locally isomorphic to 𝒪𝐴.

A line bundle 𝑋ℒ on 𝐴, i.e a space 𝑋ℒ → 𝐴 locally isomorphic to 𝐴 × 𝔸1 → 𝐴
A 𝔾𝑚-torsor 𝔏 on 𝐴. Its total space is 𝑋ℒ = 𝑋ℒ ∖ 0
A map 𝐴 → 𝐵𝔾𝑚, where 𝐵𝔾𝑚 = [𝑘/𝔾𝑚] is the moduli stack of 𝔾𝑚-torsors

To 𝐷 we associate the invertible sheaf 𝒪𝐴(−𝐷). Conversely an invertible sheaf ℒ has a meromorphic section, which gives a
divisor 𝐷. 𝑋ℒ is the total space of ℒ , ℒ is the sheaf of sections of 𝑋ℒ → 𝐴. The torsor 𝔏 is the isom-sheaf Isom(𝒪𝐴, ℒ),
conversely ℒ = 𝒪𝐴 ×𝔾𝑚 𝔏.
Locally means for the Zariski, étale, fppf or fpqc topology (by Hilbert 90).
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Cubical points

Given 𝑃 ∈ 𝐴, a cubical point 𝑃̃ is an element 𝑃̃ ∈ 𝑋ℒ above 𝑃 via the projection 𝑋ℒ → 𝐴
All other cubical points are of the form 𝜆𝑃̃ for 𝜆 ∈ 𝔾𝑚

If ℒ is very ample, and 𝑋0, … 𝑋𝑁 ∈ 𝛤(𝐴, ℒ) is a basis of sections, we have a commutative
diagram

𝑋ℒ 𝔸𝑁+1 ∖ {(0, … , 0)}

𝐴 ℙ𝑁

A point 𝑃 ∈ 𝐴 is given by projective coordinates:

(𝑋0(𝑃) ∶ 𝑋1(𝑃) ∶ ⋯ ∶ 𝑋𝑁(𝑃)) ∈ ℙ𝑁

A choice of cubical point 𝑃̃ above 𝑃 is a choice of affine coordinates:

(𝑋0(𝑃), 𝑋1(𝑃), … , 𝑋𝑁(𝑃)) ∈ 𝔸𝑁+1 ∖ {(0, … , 0)}

This also works to define cubical points 𝑃̃ when ℒ is not very ample, as long as 𝑃 is not a base
point of ℒ

Exercice: what does a cubical point represent in the other equivalent descriptions of the line
bundle ℒ?
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Examples: cubical points on an elliptic curve

𝐷 = (0𝐸): level-1 coordinate 𝑍1

𝐷 = 2(0𝐸): level-2 coordinates 𝑋2, 𝑍2 = 𝑍2
1

𝐷 = 3(0𝐸): level-3 coordinates 𝑋3 = 𝑋2𝑍1, 𝑌3, 𝑍3 = 𝑍3
1

Weierstrass coordinates: 𝑥 = 𝑋3/𝑍3 = 𝑋2/𝑍2, 𝑦 = 𝑌3/𝑍3.
𝑃 ∈ 𝐸 is determined by (𝑥(𝑃), 𝑦(𝑃)).

A level 3 cubical point 𝑃̃ is a choice of (𝑋3(𝑃̃), 𝑌3(𝑃̃), 𝑍3(𝑃̃)) above
(𝑋3(𝑃) ∶ 𝑌3(𝑃) ∶ 𝑍3(𝑃)).
N.B: 𝐷 = 3(0𝐸) is very ample.

A level 2 cubical point 𝑃̃ is a choice of (𝑋2(𝑃̃), 𝑍2(𝑃̃)) above (𝑋2(𝑃) ∶ 𝑍2(𝑃)).
N.B: 𝐷 = 2(0𝐸) is base point free.

A level 1 cubical point 𝑃̃ is a choice of 𝑍1(𝑃).
N.B: 0𝐸 is a base point of 𝐷 = (0𝐸), so we define ̃0𝐸 by (for instance)

𝑍1
𝑥/𝑦 ( ̃0𝐸) = 1.
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Examples: cubical points on an elliptic curve

/ I am normalising 𝑃 by
fixing 𝑍(𝑃) = 1

, I am rigidifying my étale
𝔾𝑚-torsor at 𝑃!

(Drake Hotline Bling meme)
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Cubical arithmetic: a degenerate case

Assume that ℒ is algebraically equivalent to 0: 𝜙ℒ = 0
(If 𝐷 is a divisor on 𝐸, this is equivalent to deg𝐷 = 0)
Then 𝑋ℒ is a commutative group, an extension of 𝐴 by 𝔾𝑚

Reformulation: we have a squared structure on 𝑋ℒ

𝑂
𝑃1

𝑃2 ̃𝑃1 + 𝑃2

̃𝑃1 + 𝑃2 is uniquely determined by 𝑃1, 𝑃2 (and 𝑂)

The squared structure also determines −𝑃̃

Corollary

Given 𝑃̃𝑖 the cubical point∑ 𝑛𝑖𝑃̃𝑖 is uniquely determined for all𝑛𝑖 ∈ ℤ
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Cubical arithmetic: the general case

We want to work with ℒ ample

We don’t have a group / a squared structure anymore

But we do have a cubical structure!

𝑂
𝑃1

𝑃2

𝑃3

̃𝑃1 + 𝑃2

̃𝑃1 + 𝑃3

̃𝑃2 + 𝑃3 ̃𝑃1 + 𝑃2 + 𝑃3

̃𝑃1 + 𝑃2 + 𝑃3 is uniquely determined by 𝑃1, 𝑃2, 𝑃3, ̃𝑃1 + 𝑃2, ̃𝑃1 + 𝑃3, ̃𝑃2 + 𝑃3 (and 𝑂)

Corollary

Given𝑃𝑖 and ̃𝑃𝑖 + 𝑃𝑗 for 𝑖 ≠ 𝑗, the cubical point∑ 𝑛𝑖𝑃𝑖 is uniquely determined for all𝑛𝑖 ∈ ℕ.

The cubical structure does not determine −𝑃̃ anymore. But if ℒ is symmetric there is a notion of 𝛴-cubical structure to define −𝑃̃
in a way compatible with the cubical arithmetic. This allows to define ∑ 𝑛𝑖𝑃𝑖 for 𝑛𝑖 ∈ ℤ.
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Formulas 1

Cubical arithmetic arises from a canonical isomorphism
ℒ𝑃1+𝑃2+𝑃3

⊗ ℒ𝑃1
⊗ ℒ𝑃2

⊗ ℒ𝑃3
≃ ℒ ⊗ ℒ𝑃2+𝑃3

⊗ ℒ𝑃1+𝑃3
⊗ ℒ𝑃1+𝑃2

Given 𝑍 ∈ 𝛤(𝐴, ℒ) with associated divisor 𝐷, the isomorphism comes from a function cub𝐷:

𝑍( ̃𝑃1 + 𝑃2 + 𝑃3) ⋅ 𝑍(𝑃1) ⋅ 𝑍(𝑃2) ⋅ 𝑍(𝑃3)
𝑍(𝑂) ⋅ 𝑍( ̃𝑃2 + 𝑃3) ⋅ 𝑍( ̃𝑃1 + 𝑃3) ⋅ 𝑍( ̃𝑃1 + 𝑃2)

= cub𝐷(𝑃1, 𝑃2, 𝑃3)

Proposition

Neutrality: cub𝐷(0𝐴, 0𝐴, 0𝐴) = 1.
Commutativity: cub𝐷(𝜎(𝑃1, 𝑃2, 𝑃3)) = cub𝐷(𝑃1, 𝑃2, 𝑃3) for all𝜎 ∈ 𝔖3.

Associativity:

cub𝐷(𝑃1 + 𝑃2, 𝑃3, 𝑃4) ⋅ cub𝐷(𝑃1, 𝑃2, 𝑃4) = cub𝐷(𝑃1, 𝑃2 + 𝑃3, 𝑃4) ⋅ cub𝐷(𝑃2, 𝑃3, 𝑃4).

For a𝛴-cubical structure: (Anti)-symmetry: cub𝐷(𝑃1, 𝑃2, −𝑃1 − 𝑃2) = ±1.

Associativity means that the cubical point ∑ 𝑛𝑖𝑃̃𝑖 does not depend on the choices of cubes used
to compute it

N.B.: 𝑍𝑚 is a section of 𝑚𝐷, and cub𝑚𝐷 = cub𝑚
𝐷: cubical arithmetic of level 𝑛 induces the cubical arithmetic of level 𝑛𝑚.
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Formulas 2

Theorem

cub𝐷(𝑃1, 𝑃2, 𝑃3) =
𝑔𝐷,𝑃1,𝑃2

(𝑃3)
𝑔𝐷,𝑃1,𝑃2

(0𝐴)

where 𝑔𝐷,𝑃1,𝑃2
is any function with divisor 𝑡∗

𝑃1+𝑃2
𝐷 + 𝐷 − 𝑡∗

𝑃1
𝐷 − 𝑡∗

𝑃2
𝐷.

Proposition

If we take 𝑔𝐷,𝑃1,𝑃2
normalised at 0𝐴, then

Neutrality: 𝑔𝐷,𝑃1,𝑃2
(0𝐴) = 1.

Commutativity: 𝑔𝐷,𝑃1,𝑃2
(𝑃3) = 𝑔𝐷,𝑃2,𝑃3

(𝑃1) = 𝑔𝐷,𝑃3,𝑃1
(𝑃2)

Associativity: 𝑔𝐷,𝑃1+𝑃2,𝑃3
𝑔𝐷,𝑃1,𝑃2

= 𝑔𝐷,𝑃1,𝑃2+𝑃3
𝑔𝐷,𝑃2,𝑃3

For a𝛴-cubical structure: (Anti)-symmetry: 𝑔𝐷,𝑃1,𝑃2
(−𝑃1 − 𝑃2) = ±1.
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Cubical arithmetic on elliptic curves

cub(0𝐸)(𝑃1, 𝑃2, 𝑃3) =

∣∣∣∣∣

1 𝑥(𝑃1) 𝑦(𝑃1)
1 𝑥(𝑃2) 𝑦(𝑃2)
1 𝑥(𝑃3) 𝑦(𝑃3)

∣∣∣∣∣
(𝑥(𝑃2) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃2))

=
𝑙𝑃1,𝑃2

(𝑃3)
(𝑥(𝑃3) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃2)) =

𝑥(𝑃1 + 𝑃2) − 𝑥(𝑃3)
𝑙𝑃1,𝑃2

(−𝑃3)

Differential addition: 𝑍1( ̃𝑃 + 𝑄)𝑍1( ̃𝑃 − 𝑄) = 𝑍1(𝑃̃)2𝑍1(𝑄)2(𝑥(𝑄) − 𝑥(𝑃))
Doubling: 𝑍1(2𝑃̃) = 𝑍(𝑃̃)42𝑦(𝑃)
Inverse: 𝑍1(−𝑃̃) = −𝑍1(𝑃̃).

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2: 𝑦2 = 𝑥3 + 𝒜𝑥2 + 𝑥)
𝑍(2𝑃̃) = 4𝑋(𝑃̃)𝑍(𝑃̃)(𝑋(𝑃̃)2 + 𝒜𝑋(𝑃̃)𝑍(𝑃̃) + 𝑍(𝑃̃)2)

𝑍( ̃𝑃 + 𝑄)𝑍( ̃𝑃 − 𝑄) = (𝑋(𝑄)𝑍(𝑃̃) − 𝑋(𝑃̃)𝑍(𝑄))
2
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Caveats

In level 2 (𝑋, 𝑍)-cubical coordinates, cubical exponentiation ℓ ↦ ℓ𝑃̃ can be computed via a
Montgomery style ladder, using cubical doublings and cubical differential additions.

Very similar to 𝑥 = (𝑋 ∶ 𝑍)-only arithmetic

" We can have ℓ𝑃̃ = ̃0𝐸 but (ℓ + 1)𝑃̃ ≠ 𝑃̃
However, ℓ𝑃̃ = ̃0𝐸 and (ℓ + 1)𝑃̃ = 𝑃̃ implies (𝑚ℓ + 𝑛)𝑃̃ = 𝑛𝑃̃ for all 𝑚, 𝑛.

𝑥-only arithmetic does not depend on the quadratic twist 𝐵𝑦2 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6

" But (𝑋, 𝑍)-level 2 cubical arithmetic does depend on the twist!
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Complex abelian varieties

𝐴 = ℂ𝑔/(ℤ𝑔 + 𝛺ℤ𝑔) a principally polarised complex abelian variety, 𝛩𝛺 the principal
polarisation associated to 𝛺
The addition law on 𝐴 lifts to the addition law on (ℂ𝑔, +)

Basis of 𝛤(𝐴, 𝑛𝛩𝛺): the analytic theta functions 𝜃𝑖(𝑧𝑃, 𝛺/𝑛), 𝑖 ∈ ℤ𝑔/𝑛ℤ𝑔

𝑃 ∈ 𝐴 is represented by the projective coordinates (𝜃𝑖(𝑃))
If 𝑧𝑃 ∈ ℂ𝑔 is above 𝑃, we can represent 𝑧𝑃 by the affine coordinates (𝜃𝑖(𝑧𝑃)).
A choice of 𝑧𝑃 ⇒ a choice of cubical point 𝑃̃

Knowing (𝜃𝑖(𝑧1)), (𝜃𝑖(𝑧2)) does not allow to find 𝜃𝑖(𝑧1 + 𝑧2).
But if we have an analytic cube 0, 𝑧1, 𝑧2, 𝑧3, 𝑧2 + 𝑧3, 𝑧1 + 𝑧3, 𝑧1 + 𝑧2, 𝑧1 + 𝑧2 + 𝑧3, the
knowledge ou the (𝜃𝑖(𝑧𝑗)), (𝜃𝑖(𝑧𝑗 + 𝑧𝑘)) is enough to recover the coordinates
(𝜃𝑖(𝑧1 + 𝑧2 + 𝑧3)): this is precisely the cubical law!

Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)

Cubical structure = algebraic consequences of our analytic structure

We have an exact sequence 0 → 𝛬 → ℂ𝑔 𝜋−−→ 𝐴 → 0, and the cubical structure on 𝜋∗ℒ is trivial over ℂ𝑔. The theory of

descents of cubical structures of [Bre83, Proposition 3.10] gives an algebraic construction of theta functions, which gives an

alternative to Mumford’s construction via the theta group action.
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Extra technical details

Polarised biextensions from the Poincaré biextension

Canonical Poincaré biextension 𝑌 → 𝐴 × 𝐴
𝑄 ∈ 𝐴 ↦ 𝑌 ∣ 𝐴 × {𝑄} ∈ Ext1(𝐴, 𝔾𝑚) is an isomorphism:
𝐴 = Hom(𝐴, 𝐵𝔾𝑚) ≃ Ext1(𝐴, 𝔾𝑚)

𝑌ℒ is the pullback of the Poincaré biextension 𝑌 → 𝐴 × 𝐴 by Id×𝜙ℒ

It only depends on the polarisation 𝜙ℒ , i.e. the algebraic class of ℒ ∈ 𝑁𝑆(𝐴)
There is a unique biextension structure on 𝑌ℒ Grothendieck
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Extra technical details

Theta groups

Two kind of theta groups: commutative and non commutative

If ℳ ∈ Pic0(𝐴) is algebraically equivalent to 0, 𝐺(ℳ) is a commutative theta group: an
extension of 𝐴 by 𝔾𝑚

If ℳ corresponds to 𝑄 ∈ 𝐴, 𝐺(ℳ) is precisely the slice 𝑌 ∣ 𝐴 × {𝑄} of the Poincaré biextension

If ℒ is ample, 𝐺(ℒ) is a non commutative extension of 𝐾(ℒ) ≔ Ker𝜙ℒ ⊂ 𝐴 by 𝔾𝑚

𝐺(ℒ) is the arithmetico-geometric structure classifying the descents of ℒ to isogeneous abelian
varieties 𝐴 → 𝐵
There is an action of 𝐺(ℒ) on 𝛤(ℒ) lifting the translation action by 𝐾(ℒ) on 𝐴
The Weil pairing 𝑒ℒ,ℓ is the commutator pairing on 𝐺(ℒℓ)

A symmetric theta structure is a choice of symplectic basis on 𝐾(ℒ) and of rigidifications of
𝜇2-torsors (given by suitable 2-Tate pairings) associated to this basis.

⇒ Compatibility of symmetric theta structures with isogenies
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Extra technical details

Cubical arithmetic

𝑋ℒ → 𝐴 depends on the isomorphism class of ℒ
There is a unique cubical structure on 𝑋ℒ Breen

The biextension 𝑌ℒ comes from the line bundle 𝑚∗ℒ ⊗ 𝜖∗ℒ ⊗ 𝜋∗
1ℒ−1 ⊗ 𝜋∗

2ℒ−1

𝑌ℒ is trivial on 𝐴 × 𝐾(ℒ) = Ker𝜙ℒ (since 𝜙ℒ = 0 on 𝐾(ℒ)
This formally defines the theta group 𝐺(ℒ) and its action on 𝛤(ℒ)
The cubical point of view unifies biextensions and both flavors of theta groups

⇒ Cubical arithmetic induces the biextension arithmetic and the theta group arithmetic along with
its action on sections.

⇒ There is a well defined cubical translation for cubical points 𝑃̃ above 𝑃 ∈ 𝐾(ℒ).
⇒ We can define a symmetric theta structure in term of choices of suitable cubical points 𝑃̃ above a

basis of 𝐾(ℒ)
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Algorithmic applications

Given a model of an abelian variety (𝐴, ℒ) with explicit formulas for the cubical arithmetic on 𝑋ℒ , we
have algorithms for:

Computing the pairings 𝑒ℒ,ℓ

Computing (polarised) isogenies 𝜙 ∶ (𝐴, ℒℓ) → (𝐵, ℳ)
Computing isogeny preimages

Computing radical isogenies

Computing functions with prescribed divisors

Changing level

N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the
theorem of the square
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Algorithmic intuition

High level overview:

The cubical structure on 𝑋ℒ → 𝐴 induces the biextension 𝑌ℒ → 𝐴 × 𝐴
Cubical arithmetic ⇒ biextension arithmetic ⇒ pairings

This biextension 𝑌ℒ is trivial over 𝐾(ℒ) × 𝐴
For formal reasons, this recovers the theta group 𝐺(ℒ) and its action on sections

Cubical arithmetic ⇒ theta group arithmetic ⇒ isogenies

Unicity of cubical structures:

Level-𝑛 cubical arithmetic on 𝐴 induces level-𝑛ℓ cubical arithmetic on 𝐴 (and conversely) ⇒
change of level

Level-𝑛ℓ cubical arithmetic on 𝐴 induces level-𝑛 cubical arithmetic on 𝐵, where 𝐵 is ℓ-isogeneous
to 𝐴 ⇒ isogenies

Level-𝑛 cubical arithmetic on 𝐴 induces level-𝑛ℓ cubical arithmetic on 𝐵, where 𝐵 is ℓ-isogeneous
to 𝐴 ⇒ isogeny preimages
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Example: Vélu’s formulas

𝐸1/𝑘 ∶ 𝑦2
1 = 𝑥3

1 + 𝑎𝑥1 + 𝑏1 elliptic curve

𝜙 ∶ 𝐸1 → 𝐸2 = 𝐸1/𝐾, isogeny with kernel 𝐾 = ⟨𝑃⟩
Vélu’s formulas use traces:

𝑥2(𝑃) ≔
ℓ−1
∑
𝑖=0

(𝑥1(𝑃 + 𝑖𝑇)−
ℓ−1
∑
𝑖=1

𝑥1(𝑖𝑇), 𝑦2(𝑃) ≔
ℓ−1
∑
𝑖=0

(𝑦1(𝑃 + 𝑖𝑇)−
ℓ−1
∑
𝑖=1

𝑦1(𝑖𝑇)

Recall that 𝑥1 = 𝑋/𝑍, 𝑦1 = 𝑌/𝑍 are rational functions

Cubical arithmetic allows us to directly take “cubical traces” of 𝑋, 𝑌, 𝑍

Vélu’s formulas do not extend directly to higher dimension (for degree reasons)

But the cubical trace approach does!

Cosset-Lubicz-R. isogeny formulas already used (without knowing!) “cubical traces”of theta
functions

Algorithms thoroughly optimised in [YOOKN25]

Cubical point of view brings more flexibility ⇒ Corte-Real Santos 30% improvement for isogenies
and 50% improvement for images compared to [YOOKN25] (work in progress)
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Example: Radical isogeny formulas

We have working radical isogeny formulas in various variants of the Montgomery model

Speed up of ≈ 2× to ≈ 2.5× compared to Decru’s formulas in [Dec24]
(Depending on the model and whether ℓ is a sum of two squares or not)

Works in 𝑥-only coordinates, using (𝑋, 𝑍)-cubical arithmetic
(This is the main source of savings: we can use symmetry to only compute only half the points)

Example: In the theta model, a ℓ-radical isogeny (for ℓ a sum of two squares) costs a ℓ-th root, and
1𝐼 + 6ℓ𝑀 + 𝑂(log ℓ)𝑀 arithmetic operations

And the “preimage” of a point through the dual isogeny costs a ℓ-th root, and
1𝐼 + 5ℓ𝑀 + 𝑂(log ℓ)𝑀 arithmetic operations

Decru: 3𝐼 + (16ℓ − 25)𝑀

Still a work in progress

The difference of complexity for a prime ℓ ≡ 1 (mod 4) vs ℓ ≡ 3 (mod 4) comes from the
way we compute the cubical descent of level from level 2ℓ to level 2.
Question: Better descent of level formulas?
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Cubical functions

𝑍 ∈ 𝛤(𝐴, ℒ) with associated divisor 𝐷
𝑅̃ ↦ 𝑍(𝑅̃ + ∑ 𝑛𝑖𝑃̃𝑖) is a “cubical function” with divisor 𝑡∗

∑ 𝑛𝑖𝑃𝑖
𝐷.

Depends on the choices of 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗, but also of 𝑅̃, ̃𝑅 + 𝑃𝑖

Combining these cubical functions we can get genuine elliptic functions, not depending on the
choices of 𝑅̃, ̃𝑅 + 𝑃𝑖
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Cubical functions

Example

𝑅 ↦ 𝑔𝑃1,𝑃2
(𝑅) =

𝑍( ̃𝑅 + 𝑃1 + 𝑃2)𝑍(𝑅̃)
𝑍( ̃𝑅 + 𝑃1)𝑍( ̃𝑅 + 𝑃2)

is a genuine function 𝑔𝐷,𝑃1,𝑃2
with divisor 𝑡∗

𝑃1+𝑃2
𝐷 + 𝐷 − 𝑡∗

𝑃1
𝐷 − 𝑡∗

𝑃2
𝐷.

It only depends on the choices of 𝑃1, 𝑃2, ̃𝑃1 + 𝑃2.

𝑅 ↦
𝑍(ℓ𝑃̃ + 𝑅̃)𝑍(𝑅̃)ℓ−1

𝑍(𝑃 + 𝑅)ℓ

is a genuine function 𝑓𝐷,ℓ,𝑃 with divisor 𝑡ℓ𝑃𝐷 + (ℓ − 1)𝐷 − ℓ𝑡∗
𝑃𝐷.

If 𝑃 ∈ 𝐴[ℓ],

𝑅 ↦
𝑍(ℓ𝑅̃)𝑍(ℓ𝑃̃ + 𝑅̃)
𝑍(ℓ𝑅̃ + 𝑃̃)𝑍(𝑅̃)

is a genuine function with divisor [ℓ]∗(𝐷 − 𝑡∗
𝑃𝐷).

(Compare with how we would compute this function with Miller’s algorithm.)
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Pairings via cubical arithmetic

Up to ≈ 2× faster pairing computation for isogeny based cryptography, compared to Miller’s
algorithm [PRRSS25]

Pairings entirely on the Kummer line, using level 2 cubical arithmetic

N.B.: since level 2 cubical arithmetic gives the pairings 𝑒2(0𝐸),ℓ = 𝑒2
(0𝐸),ℓ, a priori we only recover

squared pairings.

But we have a trick to recover the level −1 pairings 𝑒(0𝐸),ℓ when ℓ is even
(New: and also when ℓ is odd!)

Potentially useful for pairings based cryptography too [LRZZ25]
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The Discrete Logarithm Problem

One can reduce DLPs on 𝐴/𝑘 to cubical DLPs (via “excellent cubical lifts”)

Conversely, cubical DLPs reduce to DLPs on 𝐴 and 𝑘∗

(Similarly for biextensions and theta groups DLPs)

With extra information, cubical DLPs may only need DLPs in 𝑘∗

⇒ Monodromy leak

Leaking the result (𝑋(𝑛𝑃), 𝑍(𝑛𝑃)) of a Montgomery ladder 𝑥(𝑃) ↦ 𝑥(𝑛𝑃) on a Montgomery
curve is enough to recover 𝑛 via a DLP in 𝔽∗

𝑞

See https://jonathke.github.io/monoDOOM
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Perspectives

Find cubical formulas in more models

Currently: cubical arithmetic in level-1 on elliptic curves (in theWeierstrass model), and level-𝑛
cubical arithmetic on abelian varieties via level-𝑛 theta functions (𝑛 even)
Question: level-1 cubical arithmetic on more models? E.g.:

▶ Jacobians / Jacobians of hyperelliptic curves?
▶ Level-2 theta models?

(This would allow to extend the ThetaCGL hash function [KMM+25] to any dimension)

Stange sesquilinear biextensions, which give sesquilinear pairings [Sta24]

Question: sesquilinear cubical arithmetic?

Isogeny formulas for 𝜙 ∶ (𝐴, ℒℓ) → (𝐵, ℳ) allow to move between the symmetric biextensions
𝑌ℳ → 𝐵 × 𝐵, 𝑌ℒℓ → 𝐴 × 𝐴, and the non symmetric biextension 𝑌𝜙 → 𝐴 × 𝐵
Isogenies lift to cubical isogenies

Question: algorithmic applications?

Question: New insights on ECC DLPs?
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Cryptography from biextensions?

𝑌 → 𝐸 × 𝐸 the biextension associated to (0𝐸)
Can be seen as a family of commutative groups 𝐺𝑄 ≔ 𝑌 ∣ 𝐸 × {𝑄} (extensions of 𝐸 by 𝔾𝑚),
parametrised by points 𝑄 ∈ 𝐸
The biextension arithmetic induces group morphisms 𝐺𝑄1

×𝐸 𝐺𝑄2
→ 𝐺𝑄1+𝑄2

The action by 𝔾𝑚 on 𝑌 and a choice of rigidification of 𝑌 ∣ {0𝐸} × {0𝐸} induces compatible
canonical isomorphisms 𝐺0𝐸

≃ 𝐸 × 𝔾𝑚 and 𝐺𝑄 ∣ {0𝐸} ≃ 𝔾𝑚

Question: can we exploit this cryptographically?
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Hypercube structures

The analogies:

Squared structure = group extension of 𝐴 by 𝔾𝑚 ≃ linear map 𝐴 → 𝔾𝑚

Biextension of 𝐴1 × 𝐴2 by 𝔾𝑚 ≃ bilinear map 𝐴1 × 𝐴2 → 𝔾𝑚

Cubical structure on 𝐴 by 𝔾𝑚 ≃ quadratic map 𝐴 → 𝔾𝑚

extend to higher degree Moret-Bailly:

𝑛-multi-extension of ∏ 𝐴𝑖 by 𝔾𝑚 ≃ 𝑛-multilinear map ∏ 𝐴𝑖 → 𝔾𝑚

(𝑛 + 1)-hypercube structure on 𝐴 by 𝔾𝑚 ≃ degree 𝑛 map 𝐴 → 𝔾𝑚

A 𝑛-bilinear map 𝑏 ∶ 𝐴𝑛 → 𝔾𝑚 gives a degree 𝑛 function

𝑞 ∶ 𝐴 → 𝔾𝑚, 𝑞(𝑥) ↦ 𝑏(𝑥, … , 𝑥)

Conversely a degree 𝑛 function gives a symmetric 𝑛-bilinear map 𝐴𝑛 → 𝔾𝑚

The same holds for 𝑛-multi-extensions and (𝑛 + 1)-hypercube structures.

Question: is there a natural geometric object that has a (𝑛 + 1)-hypercube structure, 𝑛 > 2?
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