Cubical arithmetic: an introduction 2025/09/11 — Leuven Isogeny Days

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Every talk needs at least one joke

- Those who know how to do it, **do it**.
- Those who don't, teach it.
- Those who can't even teach, teach teaching.

Every talk needs at least one joke

- Those who know how to do cryptography, do protocols.
- Those who don't, find algorithms.
- Those who can't even find algorithms give a tutorial on cubical arithmetic...

Every talk needs at least one joke

- Those who know how to do cryptography, do protocols.
- Those who don't, find algorithms. ← This was me in my PhD.
- Those who can't even find algorithms give a tutorial on cubical arithmetic...

 ← This is me now.

This is me in 20 years:

Back in my day, we used to learn about theta functions directly from Mumford's On the equations defining abelian varieties!

(Back In My Day Meme)

History

- Mumford defines the notion of biextensions in [Mum69]
- Grothendieck gives a detailed study of biextensions in [Gro72, pp. VII, VIII].
 Key tool for his proof of the semistable reduction theorem.
- Breen defines symmetric biextensions and cubical torsor structures in [Bre83]
- Moret-Bailly (implicitely) introduces multi-extension and hypercube structures in [Mor85]
- Biextensions are well known by mathematicians (cubical structures slightly less so)
- <u>Example</u>: Edixhoven and Lido reinterpretation of quadratic Chabauty via the Poincaré biextension [EL23].
- Biextensions and cubical structures are also useful in the theory of p-adic heights Moret-Bailly,
 Pazuki, ...
- Not used in cryptography...
- Except by Stange: elliptic nets gives the Poincaré biextension cocycle on elliptic curves [Stao8, Chapters 14-15]
- This gives a conceptual link between elliptic nets and pairings. But this result is hidden in her PhD...
- R.: cubical arithmetic for cryptography [Rob24]
- Reinterpretation of elliptic nets and "affine lifts of theta null points" as different ways of computing the cubical arithmetic
- See [PRRSS25, Appendix] for a down to earth introduction to cubical arithmetic.

Damien Robert Cubical arithmetic 3

Table of Contents

Biextensions

Cubical arithmetic

Applications and perspectives

Elliptic Curves / Abelian varieties

- An abelian variety A is an arithmetic and geometric object.
- \bullet Elliptic curve cryptography only relies on the arithmetic: $E(\mathbb{F}_q)$ is a finite commutative group
- But this group law comes from geometry

Corollary

- Compact representations
- Efficient formulas
- Different models (curves equations, points representationss)
- Twists (⇒ work in smaller fields)
- Automorphisms, Endomorphisms, Frobenius to speed up the scalar multiplication
- The cohomological bazooka (point counting)
- N.B.: Isogenies are geometric group morphisms
- A geometric map $\phi: A \to B$ is already a group morphism (up to a translation)

Arithmetic beyond the group law: pairings

- ullet There is a richer arithmetic on A than just the addition law: pairings
- Weil pairings:

$$e_\ell:A[\ell]\times\widehat{A}[\ell]\to\mu_\ell$$

Polarised Weil pairings:

$$e_{\mathcal{L},\ell}:A[\ell]\times A[\ell]\to \mu_\ell,$$

where $\phi_{\mathcal{L}}:A o\widehat{A}$ is a polarisation.

Question 1: is there a geometric structure underlying pairings?

Biextensions

• A biextension $Y \to A \times B$ is a geometric object above $A \times B$ (a \mathbb{G}_m -torsor)

It has a biextension arithmetic structure:

- Each slice $Y \mid A \times \{Q\}$ is a commutative group: an extension of A by \mathbb{G}_m
- Likewise for the slices $Y \mid \{P\} \times B$
- These partial group laws are compatible with each other
- Pairings arise naturally from the biextension arithmetic, via monodromy (Grothendieck for the Weil pairing, Stange for the Tate pairing)
- Poincaré biextension: $Y \to A \times \widehat{A}$
- Polarised biextensions: $Y_{\mathcal{L}} \to A \times A$

Algorithmic consequences

 To compute pairings we just need biextension exponentiations (two for the Weil pairing, one for the Tate pairing)

Corollary

- Double and add
- Biextension twists to work with smaller fields
- Automorphisms / Frobenius to speed up these exponentiations
- These algorithmic improvements were already known (Miller's algorithm, twisted pairings, Ate/optimal ate pairings...)
- But the arithmetico-geometric point of view gives more conceptual/simplified arguments [LRZZ25]
- New: other models for biextensions?
- Miller's algorithm is double and add in a specific representation of biextension elements. Are there different models giving faster formulas?
- N.B.: every automorphism of A extends uniquely to $Y_{\mathcal{L}}$: $\operatorname{Aut}(Y_{\mathcal{L}}) = \operatorname{Aut}(A)$.
- ⇒ There are no "pure" biextension automorphisms.
- \Rightarrow Biextension twists are induced by the twists of A

Damien Robert Cubical arithmetic

Biextensions in practice

Y the biextension associated to (0_E) above $E \times E$:

• An element $g_{P,Q}$ of Y above $(P,Q) \in E \times E$ is a function with divisor

$$(P+Q) + (0_E) - (P) - (Q)$$

Biextension law:

$$\begin{split} g_{P_1,Q} \star_1 g_{P_2,Q} &= g_{P_1 + P_2,Q} \coloneqq g_{P_1,Q}(\cdot) g_{P_2,Q}(\cdot + P_1) \\ &= g_{P_1,Q}(\cdot) g_{P_2,Q}(\cdot) \frac{g_{P_1,P_2}(\cdot + Q)}{g_{P_1,P_2}(\cdot)} \end{split}$$

N.B: the last equality is not obvious and result from cohomological arguments

- Similar formulas for $g_{P,Q_1} \star_2 g_{P,Q_2}$
- Compatibility:

$$(g_{P_1,Q_1} \star_1 g_{P_2,Q_1}) \star_2 (g_{P_1,Q_2} \star_1 g_{P_2,Q_2}) = (g_{P_1,Q_1} \star_2 g_{P_1,Q_2}) \star_1 (g_{P_2,Q_1} \star_2 g_{P_2,Q_2})$$

Damien Robert Cubical arithmetic 9/3

Biextensions in practice

For a polarised abelian variety (A, \mathcal{L}) , $Y_{\mathcal{L}}$ the biextension associated to \mathcal{L} above $A \times A$:

- \bullet Theorem of the square: $\mathcal{L}_{P+Q} \otimes \mathcal{L} \simeq \mathcal{L}_P \otimes \mathcal{L}_Q$
- An element of $Y_{\mathcal{L}}$ is a choice of isomorphism
- Biextension arithmetic = arithmetic of the isomorphisms of the theorem of the square

For more on biextensions, see Stange's invited talks at ANTS 2024 and AGCT 2025.

Table of Contents

Biextensions

Cubical arithmetic

Applications and perspectives

Polarisations

- In practice we work with (principally) polarised abelian varieties (A,ϕ_{\pounds})
- ullet The polarisation $\phi_{\mathcal{L}}:A o\widehat{A}$ is induced by an (ample) line bundle \mathcal{L}
- Two algebraically equivalent line bundles $\mathcal{L} \sim \mathcal{L}'$ give the same polarisation $\phi_{\mathcal{L}}$ If \mathcal{L} is ample (or just non degenerate), $\mathcal{L} \sim \mathcal{L}' \Leftrightarrow \mathcal{L}' = t_p^* \mathcal{L}$
- \mathcal{L} is a geometric object
- It gives coordinates on A, hence projective embeddings $A \hookrightarrow \mathbb{P}^N$ (if \mathcal{L} is very ample)

Example

The same abelian surface A can be a product of two elliptic curves or a Jacobian of a genus 2 hyperelliptic curve depending on the principal polarisation

Question 2: is there an arithmetic structure on \mathcal{L} , lifting the arithmetic on A?

Arithmetic from line bundles?

Question 2: is there an arithmetic structure on \mathcal{L} , lifting the arithmetic on A?

- Obviously, $\mathcal L$ gives the pairings $e_{\mathcal L,\ell}$!
- And isotropy of a kernel $K \subset A[\ell]$ for the Weil pairing $e_{\mathcal{L},\ell}$ is an important condition to get a polarised isogeny $\phi: (A, \mathcal{L}^{\ell}) \to (B, \mathcal{M})$
- ullet But the "true" geometric object behind these pairings is the biextension Y_{\pounds}
- \bullet And indeed, $\mathcal L$ induces $Y_{\mathcal L}$ via the line bundle

$$m^*\mathcal{L}\otimes\epsilon^*\mathcal{L}\otimes\pi_1^*\mathcal{L}^{-1}\otimes\pi_2^*\mathcal{L}^{-1},$$

where $m:A\times A\to A$ is the addition law, $\pi_i:A\times A\to A$ are the projections, and $\epsilon:A\times A\to A$ is the constant 0_A .

- The biextension arithmetic is an arithmetic above $A \times A$
- Is there an arithmetic directly above A?

Line bundles

\boldsymbol{A} is smooth, hence the following are equivalent:

- ullet A Weil divisor Θ_A on A, up to linear equivalence
- A Cartier divisor on A, i.e. a section of $K(A)/\mathcal{O}_A$
- An invertible sheaf $\mathcal L$ on A, i.e. a sheaf locally isomorphic to $\mathcal O_A$.
- A line bundle $\widetilde{X}_{\mathcal{L}}$ on A, i.e a space $\widetilde{X}_{\mathcal{L}} \to A$ locally isomorphic to $A \times \mathbb{A}^1 \to A$
- ullet A \mathbb{G}_m -torsor $\mathfrak L$ on A. Its total space is $X_{\mathcal L}=\widetilde X_{\mathcal L}\setminus 0$
- A map $A \to B\mathbb{G}_m$, where $B\mathbb{G}_m = [k/\mathbb{G}_m]$ is the moduli stack of \mathbb{G}_m -torsors

To D we associate the invertible sheaf $O_A(-D)$. Conversely an invertible sheaf $\mathcal L$ has a meromorphic section, which gives a divisor D. $\widetilde X_{\mathcal L}$ is the total space of $\mathcal L$, $\mathcal L$ is the sheaf of sections of $\widetilde X_{\mathcal L} \to A$. The torsor $\mathfrak L$ is the isom-sheaf $\mathrm{Isom}(O_A, \mathcal L)$, conversely $\mathcal L = O_A \times_{\mathbb G_m} \mathcal L$.

Locally means for the Zariski, étale, fppf or fpqc topology (by Hilbert 90).

Cubical points

- Given $P \in A$, a cubical point \widetilde{P} is an element $\widetilde{P} \in X_{\mathcal{L}}$ above P via the projection $X_{\mathcal{L}} \to A$
- All other cubical points are of the form $\lambda \widetilde{P}$ for $\lambda \in \mathbb{G}_m$
- If $\mathcal L$ is very ample, and $X_0, \dots X_N \in \Gamma(A, \mathcal L)$ is a basis of sections, we have a commutative diagram

$$X_{\mathcal{L}} \longrightarrow \mathbb{A}^{N+1} \setminus \{(0, \dots, 0)\}$$

$$\downarrow \qquad \qquad \downarrow$$

$$A \longleftarrow \longrightarrow \mathbb{P}^{N}$$

• A point $P \in A$ is given by projective coordinates:

$$(X_0(P):X_1(P):\cdots:X_N(P))\in\mathbb{P}^N$$

A choice of cubical point \widetilde{P} above P is a choice of affine coordinates:

$$(X_0(P),X_1(P),\ldots,X_N(P))\in \mathbb{A}^{N+1}\setminus\{(0,\ldots,0)\}$$

- ullet This also works to define cubical points \widetilde{P} when $\mathcal L$ is not very ample, as long as P is not a base point of $\mathcal L$
- Exercice: what does a cubical point represent in the other equivalent descriptions of the line bundle \pounds ?

Examples: cubical points on an elliptic curve

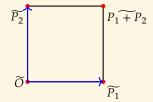
- $D = (0_E)$: level-1 coordinate Z_1
- $D = 2(0_E)$: level-2 coordinates $X_2, Z_2 = Z_1^2$
- $D = 3(0_E)$: level-3 coordinates $X_3 = X_2Z_1, Y_3, Z_3 = Z_1^3$
- Weierstrass coordinates: $x = X_3/Z_3 = X_2/Z_2$, $y = Y_3/Z_3$. $P \in E$ is determined by (x(P), y(P)).
- A level 3 cubical point \widetilde{P} is a choice of $(X_3(\widetilde{P}),Y_3(\widetilde{P}),Z_3(\widetilde{P}))$ above $(X_3(P):Y_3(P):Z_3(P))$. N.B: $D=3(0_E)$ is very ample.
- A level 2 cubical point \widetilde{P} is a choice of $(X_2(\widetilde{P}), Z_2(\widetilde{P}))$ above $(X_2(P): Z_2(P))$. N.B: $D=2(0_E)$ is base point free.
- A level 1 cubical point \widetilde{P} is a choice of $Z_1(P)$. N.B: 0_E is a base point of $D=(0_E)$, so we define $\widetilde{0}_E$ by (for instance) $\frac{Z_1}{x/y}(\widetilde{0}_E)=1$.



(Drake Hotline Bling meme)

Cubical arithmetic: a degenerate case

- Assume that $\mathcal L$ is algebraically equivalent to 0: $\phi_{\mathcal L}=0$ (If D is a divisor on E, this is equivalent to $\deg D=0$)
- $\bullet \;$ Then $X_{\mathcal{L}}$ is a commutative group, an extension of A by \mathbb{G}_m
- ullet Reformulation: we have a squared structure on $X_{\mathcal{L}}$



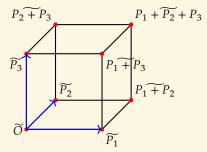
- $\widetilde{P_1 + P_2}$ is uniquely determined by $\widetilde{P_1}$, $\widetilde{P_2}$ (and \widetilde{O})
- ullet The squared structure also determines $-\widetilde{P}$

Corollary

Given \widetilde{P}_i the cubical point $\sum n_i \widetilde{P}_i$ is uniquely determined for all $n_i \in \mathbb{Z}$

Cubical arithmetic: the general case

- We want to work with $\mathcal L$ ample
- We don't have a group / a squared structure anymore
- But we do have a cubical structure!



 $\bullet \ \ P_1 + \widetilde{P_2} + P_3 \text{ is uniquely determined by } \widetilde{P_1}, \widetilde{P_2}, \widetilde{P_3}, P_1 + P_2, P_1 + P_3, P_2 + P_3 \text{ (and } \widetilde{O})$

Corollary

Given $\widetilde{P_i}$ and $P_i + P_j$ for $i \neq j$, the cubical point $\sum n_i \widetilde{P_i}$ is uniquely determined for all $n_i \in \mathbb{N}$.

The cubical structure does not determine $-\widetilde{P}$ anymore. But if \mathscr{L} is symmetric there is a notion of Σ -cubical structure to define $-\widetilde{P}$ in a way compatible with the cubical arithmetic. This allows to define $\sum n_i \widetilde{P}_i$ for $n_i \in \mathbb{Z}$.

Damien Robert Cubical arithmetic 17/

Formulas 1

Cubical arithmetic arises from a canonical isomorphism

$$\mathcal{L}_{P_1+P_2+P_3} \otimes \mathcal{L}_{P_1} \otimes \mathcal{L}_{P_2} \otimes \mathcal{L}_{P_3} \simeq \mathcal{L} \otimes \mathcal{L}_{P_2+P_3} \otimes \mathcal{L}_{P_1+P_3} \otimes \mathcal{L}_{P_1+P_2}$$

• Given $Z \in \Gamma(A, \mathcal{L})$ with associated divisor D, the isomorphism comes from a function cub_D :

$$\frac{Z(P_1 + \widetilde{P_2} + P_3) \cdot Z(\widetilde{P_1}) \cdot Z(\widetilde{P_2}) \cdot Z(\widetilde{P_3})}{Z(\widetilde{O}) \cdot Z(P_2 + P_3) \cdot Z(P_1 + P_3) \cdot Z(P_1 + P_2)} = \mathsf{cub}_D(P_1, P_2, P_3)$$

Proposition

- *Neutrality*: $\operatorname{cub}_D(0_A, 0_A, 0_A) = 1$.
- Commutativity: $\operatorname{cub}_D(\sigma(P_1,P_2,P_3)) = \operatorname{cub}_D(P_1,P_2,P_3)$ for all $\sigma \in \mathfrak{S}_3$.
- Associativity:

$$\mathrm{cub}_D(P_1 + P_2, P_3, P_4) \cdot \mathrm{cub}_D(P_1, P_2, P_4) = \mathrm{cub}_D(P_1, P_2 + P_3, P_4) \cdot \mathrm{cub}_D(P_2, P_3, P_4).$$

- For a Σ -cubical structure: (Anti)-symmetry: $\operatorname{cub}_D(P_1,P_2,-P_1-P_2)=\pm 1$.
- ullet Associativity means that the cubical point $\sum n_i \widetilde{P}_i$ does not depend on the choices of cubes used to compute it
- N.B.: Z^m is a section of mD, and $\operatorname{cub}_{mD} = \operatorname{cub}_D^m$: cubical arithmetic of level n induces the cubical arithmetic of level nm.

Formulas 2

Theorem

$$\operatorname{cub}_{D}(P_{1}, P_{2}, P_{3}) = \frac{g_{D, P_{1}, P_{2}}(P_{3})}{g_{D, P_{1}, P_{2}}(0_{A})}$$

where g_{D,P_1,P_2} is any function with divisor $t_{P_1+P_2}^*D+D-t_{P_1}^*D-t_{P_2}^*D$.

Proposition

If we take g_{D,P_1,P_2} normalised at $\mathbf{0}_A$, then

- Neutrality: $g_{D,P_1,P_2}(0_A) = 1$.
- Commutativity: $g_{D,P_1,P_2}(P_3) = g_{D,P_2,P_3}(P_1) = g_{D,P_3,P_1}(P_2)$
- Associativity: $g_{D,P_1+P_2,P_3}g_{D,P_1,P_2} = g_{D,P_1,P_2+P_3}g_{D,P_2,P_3}$
- For a Σ -cubical structure: (Anti)-symmetry: $g_{D,P_1,P_2}(-P_1-P_2)=\pm 1$.

Cubical arithmetic on elliptic curves

$$\begin{split} \mathrm{cub}_{(0_E)}(P_1,P_2,P_3) &= \frac{\begin{vmatrix} 1 & x(P_1) & y(P_1) \\ 1 & x(P_2) & y(P_2) \\ 1 & x(P_3) & y(P_3) \end{vmatrix}}{(x(P_2)-x(P_1))(x(P_3)-x(P_1))(x(P_3)-x(P_2))} \\ &= \frac{l_{P_1,P_2}(P_3)}{(x(P_3)-x(P_1))(x(P_3)-x(P_2))} = \frac{x(P_1+P_2)-x(P_3)}{l_{P_1,P_2}(-P_3)} \end{split}$$

- $\bullet \ \, \text{Differential addition:} Z_1(\widetilde{P+Q})Z_1(\widetilde{P-Q}) = Z_1(\widetilde{P})^2Z_1(\widetilde{Q})^2(x(Q)-x(P))$
- Doubling: $Z_1(2\widetilde{P}) = Z(\widetilde{P})^4 2y(P)$
- Inverse: $Z_1(-\widetilde{P}) = -Z_1(\widetilde{P})$.

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2: $y^2 = x^3 + Ax^2 + x$)

- $\bullet \ Z(2\widetilde{P}) = 4X(\widetilde{P})Z(\widetilde{P})(X(\widetilde{P})^2 + \mathcal{A}X(\widetilde{P})Z(\widetilde{P}) + Z(\widetilde{P})^2)$
- $Z(\widetilde{P+Q})Z(\widetilde{P-Q}) = (X(\widetilde{Q})Z(\widetilde{P}) X(\widetilde{P})Z(\widetilde{Q}))^2$

Damien Rohert Cubical arithmetic 20/3

Caveats

- In level 2(X,Z)-cubical coordinates, cubical exponentiation $\ell\mapsto\ell\widetilde{P}$ can be computed via a Montgomery style ladder, using cubical doublings and cubical differential additions.
- Very similar to x = (X : Z)-only arithmetic
- $\bullet \ \ \text{However, } \ell \widetilde{P} = \widetilde{0}_E \text{ and } (\ell+1)\widetilde{P} = \widetilde{P} \text{ implies } (m\ell+n)\widetilde{P} = n\widetilde{P} \text{ for all } m,n.$
- x-only arithmetic does not depend on the quadratic twist $By^2 = x^3 + a_2x^2 + a_4x + a_6$

Complex abelian varieties

- $A=\mathbb{C}^g/(\mathbb{Z}^g+\Omega\mathbb{Z}^g)$ a principally polarised complex abelian variety, Θ_Ω the principal polarisation associated to Ω
- The addition law on A lifts to the addition law on $(\mathbb{C}^g, +)$
- Basis of $\Gamma(A,n\Theta_\Omega)$: the analytic theta functions $\theta_i(z_P,\Omega/n), i\in\mathbb{Z}^g/n\mathbb{Z}^g$
- ullet $P \in A$ is represented by the projective coordinates $(\theta_i(P))$
- If $z_P \in \mathbb{C}^g$ is above P, we can represent z_P by the affine coordinates $(\theta_i(z_P))$.
- A choice of $z_P \Rightarrow$ a choice of cubical point \widetilde{P}
- Knowing $(\theta_i(z_1))$, $(\theta_i(z_2))$ does not allow to find $\theta_i(z_1+z_2)$.
- But if we have an analytic cube $0, z_1, z_2, z_3, z_2 + z_3, z_1 + z_3, z_1 + z_2, z_1 + z_2 + z_3$, the knowledge ou the $(\theta_i(z_j)), (\theta_i(z_j + z_k))$ is enough to recover the coordinates $(\theta_i(z_1 + z_2 + z_3))$: this is precisely the cubical law!
- Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)
- Cubical structure = algebraic consequences of our analytic structure

We have an exact sequence $0 \to \Lambda \to \mathbb{C}^g \xrightarrow{\pi} A \to 0$, and the cubical structure on $\pi^*\mathcal{L}$ is trivial over \mathbb{C}^g . The theory of descents of cubical structures of [Bre83, Proposition 3.10] gives an algebraic construction of theta functions, which gives an alternative to Mumford's construction via the theta group action.

Damien Robert Cubical arithmetic 22

Extra technical details

Polarised biextensions from the Poincaré biextension

- Canonical Poincaré biextension $Y \to A \times \widehat{A}$
- $\begin{array}{l} \bullet \ \ Q \in \widehat{A} \mapsto Y \mid A \times \{Q\} \in \operatorname{Ext}^1(A,\mathbb{G}_m) \text{ is an isomorphism:} \\ \widehat{A} = \operatorname{Hom}(A,B\mathbb{G}_m) \simeq \operatorname{Ext}^1(A,\mathbb{G}_m) \end{array}$
- ullet $Y_{\mathcal{L}}$ is the pullback of the Poincaré biextension $Y o A imes \widehat{A}$ by $\operatorname{Id} imes \phi_{\mathcal{L}}$
- ullet It only depends on the polarisation $\phi_{\mathcal{L}}$, i.e. the algebraic class of $\mathcal{L} \in NS(A)$
- ullet There is a unique biextension structure on $Y_{\mathcal{L}}$ Grothendieck

Extra technical details

Theta groups

- Two kind of theta groups: commutative and non commutative
- If $\mathcal{M} \in \operatorname{Pic}^0(A)$ is algebraically equivalent to $0, G(\mathcal{M})$ is a commutative theta group: an extension of A by \mathbb{G}_m
- If $\mathcal M$ corresponds to $Q \in \widehat A$, $G(\mathcal M)$ is precisely the slice $Y \mid A \times \{Q\}$ of the Poincaré biextension
- ullet If $\mathcal L$ is ample, $G(\mathcal L)$ is a non commutative extension of $K(\mathcal L) \coloneqq \operatorname{Ker} \phi_{\mathcal L} \subset A$ by $\mathbb G_m$
- ullet $G(\mathcal{L})$ is the arithmetico-geometric structure classifying the descents of \mathcal{L} to isogeneous abelian varieties A o B
- There is an action of $G(\mathcal{L})$ on $\Gamma(\mathcal{L})$ lifting the translation action by $K(\mathcal{L})$ on A
- ullet The Weil pairing $e_{\mathcal{L},\ell}$ is the commutator pairing on $G(\mathcal{L}^\ell)$
- A symmetric theta structure is a choice of symplectic basis on $K(\mathcal{L})$ and of rigidifications of μ_2 -torsors (given by suitable 2-Tate pairings) associated to this basis.
- ⇒ Compatibility of symmetric theta structures with isogenies

Extra technical details

Cubical arithmetic

- ullet $X_{\mathcal{L}} o A$ depends on the isomorphism class of \mathcal{L}
- ullet There is a unique cubical structure on $X_{\mathcal{L}}$ Breen
- ullet The biextension $Y_{\mathcal{L}}$ comes from the line bundle $m^*\mathcal{L}\otimes \epsilon^*\mathcal{L}\otimes \pi_1^*\mathcal{L}^{-1}\otimes \pi_2^*\mathcal{L}^{-1}$
- $Y_{\mathcal{L}}$ is trivial on $A \times K(\mathcal{L}) = \operatorname{Ker} \phi_{\mathcal{L}}$ (since $\phi_{\mathcal{L}} = 0$ on $K(\mathcal{L})$
- ullet This formally defines the theta group $G(\mathcal{L})$ and its action on $\Gamma(\mathcal{L})$
- The cubical point of view unifies biextensions and both flavors of theta groups
- ⇒ Cubical arithmetic induces the biextension arithmetic and the theta group arithmetic along with its action on sections.
- \Rightarrow There is a well defined cubical translation for cubical points \widetilde{P} above $P \in K(\mathcal{L})$.
- \Rightarrow We can define a symmetric theta structure in term of choices of suitable cubical points \widetilde{P} above a basis of $K(\mathcal{L})$

Table of Contents

Biextensions

Cubical arithmetic

Applications and perspectives

Algorithmic applications

Given a model of an abelian variety (A,\mathcal{L}) with explicit formulas for the cubical arithmetic on $X_{\mathcal{L}}$, we have algorithms for:

- Computing the pairings $e_{\mathcal{L},\ell}$
- Computing (polarised) isogenies $\phi:(A,\mathcal{L}^{\ell})\to(B,\mathcal{M})$
- Computing isogeny preimages
- Computing radical isogenies
- Computing functions with prescribed divisors
- Changing level
- N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the theorem of the square

Algorithmic intuition

High level overview:

- The cubical structure on $X_{\mathcal{L}} \to A$ induces the biextension $Y_{\mathcal{L}} \to A \times A$
- Cubical arithmetic ⇒ biextension arithmetic ⇒ pairings
- This biextension $Y_{\mathcal{L}}$ is trivial over $K(\mathcal{L}) \times A$
- \bullet For formal reasons, this recovers the theta group $G(\mathcal{L})$ and its action on sections
- Cubical arithmetic ⇒ theta group arithmetic ⇒ isogenies

Unicity of cubical structures:

- Level-n cubical arithmetic on A induces level- $n\ell$ cubical arithmetic on A (and conversely) \Rightarrow change of level
- Level- $n\ell$ cubical arithmetic on A induces level-n cubical arithmetic on B, where B is ℓ -isogeneous to $A \Rightarrow$ isogenies
- Level-n cubical arithmetic on A induces level- $n\ell$ cubical arithmetic on B, where B is ℓ -isogeneous to $A\Rightarrow$ isogeny preimages

Example: Vélu's formulas

- $E_1/k : y_1^2 = x_1^3 + ax_1 + b_1$ elliptic curve
- $\phi: E_1 \to E_2 = E_1/K$, isogeny with kernel $K = \langle P \rangle$
- Vélu's formulas use traces:

$$x_2(P) := \sum_{i=0}^{\ell-1} (x_1(P+iT) - \sum_{i=1}^{\ell-1} x_1(iT), \quad y_2(P) := \sum_{i=0}^{\ell-1} (y_1(P+iT) - \sum_{i=1}^{\ell-1} y_1(iT))$$

- Recall that $x_1 = X/Z$, $y_1 = Y/Z$ are rational functions
- Cubical arithmetic allows us to directly take "cubical traces" of X, Y, Z
- Vélu's formulas do not extend directly to higher dimension (for degree reasons)
- But the cubical trace approach does!
- Cosset-Lubicz-R. isogeny formulas already used (without knowing!) "cubical traces" of theta functions
- Algorithms thoroughly optimised in [YOOKN25]
- Cubical point of view brings more flexibility ⇒ Corte-Real Santos 30% improvement for isogenies and 50% improvement for images compared to [YOOKN25] (work in progress)

Damien Robert Cubical arithmetic 27/

Example: Radical isogeny formulas

- We have working radical isogeny formulas in various variants of the Montgomery model
- Speed up of $\approx 2 \times$ to $\approx 2.5 \times$ compared to Decru's formulas in [Dec24] (Depending on the model and whether ℓ is a sum of two squares or not)
- Works in x-only coordinates, using (X, Z)-cubical arithmetic (This is the main source of savings: we can use symmetry to only compute only half the points)
- Example: In the theta model, a ℓ -radical isogeny (for ℓ a sum of two squares) costs a ℓ -th root, and $1I + 6\ell M + O(\log \ell)M$ arithmetic operations
- And the "preimage" of a point through the dual isogeny costs a ℓ -th root, and $1I + 5\ell M + O(\log \ell)M$ arithmetic operations
- Decru: $3I + (16\ell 25)M$
- Still a work in progress
- The difference of complexity for a prime $\ell \equiv 1 \pmod 4$ vs $\ell \equiv 3 \pmod 4$ comes from the way we compute the cubical descent of level from level 2ℓ to level 2.
- Question: Better descent of level formulas?

Cubical functions

- $Z \in \Gamma(A, \mathcal{L})$ with associated divisor D
- $\bullet \ \ \widetilde{R} \mapsto Z(\widetilde{R} + \sum n_i \widetilde{P}_i) \text{ is a "cubical function" with divisor } t^*_{\sum n_i P_i} D.$
- Depends on the choices of $\widetilde{P_i}$, $\widetilde{P_i+P_j}$, but also of \widetilde{R} , $\widetilde{R+P_i}$
- Combining these cubical functions we can get genuine elliptic functions, not depending on the choices of \widetilde{R} , $\widetilde{R+P_i}$

Cubical functions

Example

0

$$R\mapsto g_{P_1,P_2}(R)=\frac{Z(R+\widetilde{P_1}+P_2)Z(\widetilde{R})}{Z(R+\widetilde{P_1})Z(R+\widetilde{P_2})}$$

is a genuine function g_{D,P_1,P_2} with divisor $t_{P_1+P_2}^*D+D-t_{P_1}^*D-t_{P_2}^*D$. It only depends on the choices of $\widetilde{P_1}$, $\widetilde{P_2}$, P_1+P_2 .

 $R\mapsto \frac{Z(\ell\widetilde{P}+\widetilde{R})Z(\widetilde{R})^{\ell-1}}{Z(\widetilde{P+R})^{\ell}}$

is a genuine function $f_{D,\ell,P}$ with divisor $t_{\ell P}D + (\ell-1)D - \ell t_P^*D$.

• If $P \in A[\ell]$,

$$R \mapsto \frac{Z(\ell \widetilde{R}) Z(\ell \widetilde{P} + \widetilde{R})}{Z(\ell \widetilde{R} + \widetilde{P}) Z(\widetilde{R})}$$

is a genuine function with divisor $[\ell]^*(D-t_P^*D)$.

(Compare with how we would compute this function with Miller's algorithm.)

Pairings via cubical arithmetic

- Up to ≈ 2× faster pairing computation for isogeny based cryptography, compared to Miller's algorithm [PRRSS25]
- Pairings entirely on the Kummer line, using level 2 cubical arithmetic
- N.B.: since level 2 cubical arithmetic gives the pairings $e_{2(0_E),\ell}=e_{(0_E),\ell}^2$, a priori we only recover squared pairings.
- But we have a trick to recover the level -1 pairings $e_{(0_E),\ell}$ when ℓ is even (New: and also when ℓ is odd!)
- Potentially useful for pairings based cryptography too [LRZZ25]

The Discrete Logarithm Problem

- One can reduce DLPs on A/k to cubical DLPs (via "excellent cubical lifts")
- ullet Conversely, cubical DLPs reduce to DLPs on A and k^*
- (Similarly for biextensions and theta groups DLPs)
- ullet With extra information, cubical DLPs may only need DLPs in k^*
- ⇒ Monodromy leak
 - Leaking the result (X(nP),Z(nP)) of a Montgomery ladder $x(P)\mapsto x(nP)$ on a Montgomery curve is enough to recover n via a DLP in \mathbb{F}_q^*
 - See https://jonathke.github.io/monoDOOM

Perspectives

- Find cubical formulas in more models
- <u>Currently:</u> cubical arithmetic in level-1 on elliptic curves (in the Weierstrass model), and level-n
 cubical arithmetic on abelian varieties via level-n theta functions (n even)
- **Question**: level-1 cubical arithmetic on more models? E.g.:
 - ▶ Jacobians / Jacobians of hyperelliptic curves?
 - ► Level-2 theta models?

 (This would allow to extend the ThetaCGL hash function [KMM+25] to any dimension)
- Stange sesquilinear biextensions, which give sesquilinear pairings [Sta24]
- Question: sesquilinear cubical arithmetic?
- Isogeny formulas for $\phi:(A,\mathcal{L}^\ell)\to (B,\mathcal{M})$ allow to move between the symmetric biextensions $Y_{\mathcal{M}}\to B\times B, Y_{\mathcal{L}^\ell}\to A\times A$, and the non symmetric biextension $Y_{\phi}\to A\times B$
- Isogenies lift to cubical isogenies
- Question: algorithmic applications?
- Question: New insights on ECC DLPs?

Cryptography from biextensions?

- $Y \to E \times E$ the biextension associated to (0_E)
- Can be seen as a family of commutative groups $G_Q := Y \mid E \times \{Q\}$ (extensions of E by \mathbb{G}_m), parametrised by points $Q \in E$
- ullet The biextension arithmetic induces group morphisms $G_{Q_1} imes_E G_{Q_2} o G_{Q_1 + Q_2}$
- The action by \mathbb{G}_m on Y and a choice of rigidification of $Y \mid \{0_E\} \times \{0_E\}$ induces compatible canonical isomorphisms $G_{0_E} \simeq E \times \mathbb{G}_m$ and $G_Q \mid \{0_E\} \simeq \mathbb{G}_m$
- Question: can we exploit this cryptographically?

Hypercube structures

The analogies:

- Squared structure = group extension of A by $\mathbb{G}_m \simeq \operatorname{linear map} A \to \mathbb{G}_m$
- Biextension of $A_1 \times A_2$ by $\mathbb{G}_m \simeq \text{bilinear map } A_1 \times A_2 \to \mathbb{G}_m$
- \bullet Cubical structure on A by $\mathbb{G}_m \simeq \operatorname{quadratic} \operatorname{map} A \to \mathbb{G}_m$

extend to higher degree Moret-Bailly:

- n-multi-extension of $\prod A_i$ by $\mathbb{G}_m \simeq n$ -multilinear map $\prod A_i \to \mathbb{G}_m$
- $\bullet \ \ (n+1)$ -hypercube structure on A by $\mathbb{G}_m \simeq \operatorname{degree} n \operatorname{map} A \to \mathbb{G}_m$
- A n-bilinear map $b:A^n\to \mathbb{G}_m$ gives a degree n function

$$q:A\to \mathbb{G}_m, q(x)\mapsto b(x,\dots,x)$$

- ullet Conversely a degree n function gives a symmetric n-bilinear map $A^n o \mathbb{G}_m$
- ullet The same holds for n-multi-extensions and (n+1)-hypercube structures.

Question: is there a natural geometric object that has a (n + 1)-hypercube structure, n > 2?

Damien Robert Cubical arithmetic 34

Bibliography

pp. 107-128 (cit. on p. 35).

[Bre83]

[Dec24]

[EL23]	B. Edixhoven and G. Lido. "Geometric quadratic Chabauty". In: <u>Journal of the Institute of Mathematics of Jussieu</u> 22.1 (2023), pp. 279–333 (cit. on p. 6).
[Gro72]	A. Grothendieck. <u>Groupes de Monodromie en Géométrie Algébrique (SGA 7). Séminaire de Géométrie Algébrique du Bois Marie - 1967-69.</u> Vol. 288. Lecture Notes in Mathematics. Springer-Verlag, 1972 (cit. on p. 6).
[KMM+25]	S. Kunzweiler, L. Maino, T. Moriya, C. Petit, G. Pope, D. Robert, M. Stopar, and Y. B. Ti. "Radical 2-isogenies and cryptographic hash functions in dimensions 1, 2 and 3". In: Public-Key Cryptography – PKC 2025. Vol. 15676, Lecture Notes in Computer Science. Springer, May 2025, pp. 265–299. doi: https://doi.org/10.1007/978-3-031-91826-1_9 (cit. on p. 40).
[LRZZ25]	J. Lin, D. Robert, CA. Zhao, and Y. Zheng. "Biextensions in pairing-based cryptography". Apr. 2025 (cit. on pp. 11, 38).
[Mor85]	L. Moret-Bailly. Pinceaux de variétés abéliennes. Société mathématique de France, 1985 (cit. on p. 6).
[Mum69]	D. Mumford. "Bi-extensions of formal groups". In: Algebraic geometry 307-322 (1969) (cit. on p. 6).
[PRRSS25]	G. Pope, K. Reijnders, D. Robert, A. Sferlazza, and B. Smith. "Simpler and Faster Pairings from the Montgomery Ladder". Accepted for publication at IACR Communications in Cryptology (CiC). Apr. 2025 (cit. on pp. 6, 38).
[Rob24]	D. Robert. "Fast pairings via biextensions and cubical arithmetic". Apr. 2024 (cit. on p. 6).
[Stao8]	K. Stange. "Elliptic nets and elliptic curves". PhD thesis. Brown University, 2008. url: https://repository.library.brown.edu/studio/item/bdr:309/PDF/ (cit. on p. 6).
[Sta24]	$K.\ E.\ Stange.\ \textit{"Sesquilinear pairings on elliptic curves"}.\ In: \underline{arXiv\ preprint\ arXiv:2405.14167}\ (2024)\ (cit.\ on\ p.\ \textbf{40}).$
[YOOKN25]	R. Yoshizumi, H. Onuki, R. Ohashi, M. Kudo, and K. Nuida. "Efficient theta-based algorithms for computing (£, £)-isogenies on Kummer surfaces for arbitrary odd £". In: International Conference on Post-Quantum Cryptography . Springer. 2025, pp. 3–37 (cit. on p. 34).

T. Decru. "Radical Vélu N-Isogeny Formulae". In: Annual International Cryptology Conference (Eurocrypt). Springer. 2024,

L. Breen. Fonctions thêta et théoreme du cube. Vol. 980. Springer, 1983 (cit. on pp. 6, 27).