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Every talk needs at least one joke

@ Those who know how to do it, do it.
@ Those who don't, teach it.

@ Those who can't even teach, teach teaching.



Every talk needs at least one joke

@ Those who know how to do cryptography, do protocols.
@ Those who don't, find algorithms.

@ Those who can't even find algorithms give a tutorial on cubical arithmetic...



Every talk needs at least one joke

@ Those who know how to do cryptography, do protocols.
@ Those who don't, find algorithms. < This was me in my PhD.

@ Those who can't even find algorithms give a tutorial on cubical arithmetic... < This is me now.



Every talk needs at least one joke

This is me in 20 years:

Back in my day, we used
to learn about theta func-
tions directly from Mum-
ford’s On the equations

defining abelian varieties!

(Back In My Day Meme)

Cubical arithmetic

Damien Robert



History
@ Mumford defines the notion of biextensions in [Mumé9]
@ Grothendieck gives a detailed study of biextensions in [Gro72, pp. VII, VIII].
Key tool for his proof of the semistable reduction theorem.
@ Breen defines symmetric biextensions and cubical torsor structures in [Bre83]
@ Moret-Bailly (implicitely) introduces multi-extension and hypercube structures in [Mor85]

@ Biextensions are well known by mathematicians (cubical structures slightly less so)

@ Example: Edixhoven and Lido reinterpretation of quadratic Chabauty via the Poincaré
biextension [EL23].

@ Biextensions and cubical structures are also useful in the theory of p-adic heights Moret-Bailly,
Pazuki, ...

@ Not used in cryptography...

@ Except by Stange: elliptic nets gives the Poincaré biextension cocycle on elliptic curves [Staos,
Chapters 14-15]

@ This gives a conceptual link between elliptic nets and pairings. But this result is hidden in her
PhD...

@ R.: cubical arithmetic for cryptography [Rob24]

@ Reinterpretation of elliptic nets and “affine lifts of theta null points” as different ways of
computing the cubical arithmetic

@ See [PRRSS25, Appendix] for a down to earth introduction to cubical arithmetic.
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Elliptic Curves / Abelian varieties

@ An abelian variety A is an arithmetic and geometric object.

@ Elliptic curve cryptography only relies on the arithmetic:
E(]Fq) is a finite commutative group

@ But this group law comes from geometry

Corollary
@ Compact representations
e Efficient formulas

@ Different models (curves equations, points representationss)

Twists (= work in smaller fields)

Automorphisms, Endomorphisms, Frobenius to speed up the scalar multiplication

@ The cohomological bazooka (point counting)

N.B.: Isogenies are geometric group morphisms

A geometricmap ¢ : A — Bis already a group morphism (up to a translation)



Arithmetic beyond the group law: pairings

@ There is a richer arithmetic on A than just the addition law: pairings

@ Weil pairings:
e AL x AT - e
@ Polarised Weil pairings:
e ALl x AL — py,

wherepp : A — A'is a polarisation.

Question 1:is there a geometric structure underlying pairings?



Biextensions

@ Abiextension Y — A x Bisa geometric object above A x B (a G,,,-torsor)

It has a biextension arithmetic structure:
@ Eachslice Y | A x {Q} is a commutative group: an extension of A by G,,,
o Likewise for the slices Y | {P} x B

@ These partial group laws are compatible with each other

@ Pairings arise naturally from the biextension arithmetic, via monodromy
(Grothendieck for the Weil pairing, Stange for the Tate pairing)

@ Poincaré biextension: Y — A x A

@ Polarised biextensions: Y p - A x A



Algorithmic consequences

To compute pairings we just need biextension exponentiations
(two for the Weil pairing, one for the Tate pairing)

Corollary

Double and add
Biextension twists to work with smaller fields

Automorphisms / Frobenius to speed up these exponentiations

These algorithmic improvements were already known (Miller’s algorithm, twisted pairings,
Ate/optimal ate pairings...)

But the arithmetico-geometric point of view gives more conceptual/simplified arguments
[LRZZ25]

@ New: other models for biextensions?

@ Miller's algorithm is double and add in a specific representation of biextension elements. Are

there different models giving faster formulas?

N.B.: every automorphism of A extends uniquely to Y p: Aut(Y ) = Aut(A).
There are no “pure” biextension automorphisms.
Biextension twists are induced by the twists of A



Biextensions in practice

Y the biextension associated to (Og) above E x E:

@ Anelementgp o of Y above (P, Q) € E x E is a function with divisor
(P+ Q)+ (0p) = (P) = (Q)
@ Biextension law:

8P,,Q *18P,,Q = 8P,+P,,0 = 8P,,0()8P,,0( + P1)

8p,,p, (- +Q)

= ) ()2 =
8P,,Q\)8P,,Q gPI,P2<')

N.B: the last equality is not obvious and result from cohomological arguments

o Similar formulas for gp o, *2 ¢p,0,
@ Compeatibility:

(8P,,0, *18P,,Q,) *2 §P,,Q, *18P,,Q,) = (8P,,0, *28P,,Q,) *1 (8P,,0, *28P,,Q,)



Biextensions in practice

For a polarised abelian variety (A, .L), Y ; the biextension associated to AL above A x A:
@ Theorem of the square: Lp, o ® L = Lp ® Ly
@ Anelementof Y  is a choice of isomorphism

@ Biextension arithmetic = arithmetic of the isomorphisms of the theorem of the square

For more on biextensions, see Stange’s invited talks at ANTS 2024 and AGCT 2025.
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Polarisations

@ In practice we work with (principally) polarised abelian varieties (A, ¢ 1)

The polarisation ¢, : A — Alisinduced by an (ample) line bundle £

Two algebraically equivalent line bundles .L ~ L’ give the same polarisation ¢ ;
If .L is ample (or just non degenerate), L ~ L' & L' = 3L

o Lisageometric object
@ It gives coordinates on A, hence projective embeddings A & PN (if . is very ample)

Example

The same abelian surface A can be a product of two elliptic curves or a Jacobian of a genus 2
hyperelliptic curve depending on the principal polarisation

Question 2: is there an arithmetic structure on L, lifting the arithmetic on A?



Arithmetic from line bundles?

Question 2:is there an arithmetic structure on L, lifting the arithmetic on A?

© Obviously, L gives the pairings e 1, o!

@ And isotropy of a kernel K C A[{] for the Weil pairing e 1, , is an important condition to geta
polarised isogeny ¢ : (4, LY > (B, M)

@ But the “true” geometric object behind these pairings is the biextension Y
@ Andindeed, .L induces Y ; via the line bundle
mLeeLem Ll ®mnyL],
wherem : A x A — A'is the addition law, 77; : A x A — A are the projections, and

€:AxA — Aisthe constant 0 4.

@ The biextension arithmetic is an arithmetic above A x A

@ Is there an arithmetic directly above A?



Line bundles

A is smooth, hence the following are equivalent:

@ A Weil divisor © 4 on A, up to linear equivalence
A Cartier divisor on A, i.e. a section of K(A)/O4
An invertible sheaf .L on A, i.e. a sheaf locally isomorphic to O.

A G,,-torsor £ on A. Its total spaceis X ; = X ; \ 0

°

°

@ Aline bundle X,C on A, i.e aspace X:C — Alocally isomorphicto A x Al — A
°

@ AmapA — BG,,, where BG,, = [k/G,,] is the moduli stack of G,,,-torsors

To D we associate the invertible sheaf O 4 (—D). Conversely an invertible sheaf .L has a meromorphic section, which gives a
divisor D. X  is the total space of .L, .L is the sheaf of sections of X ; — A.The torsor £ is the isom-sheaf Isom (O, L),
conversely L = Oy xg,, £.

Locally means for the Zariski, étale, fppf or fpgc topology (by Hilbert 90).



Cubical points

Given P € A, a cubical point Dis an element D € X 1 above P via the projection X , — A
All other cubical points are of the form AP for A € G,,

If L is very ample, and Xy, ... Xjy € I'(A, L) is a basis of sections, we have a commutative
diagram

Xy — ANTIN((O,...,0)}

A 3 PN
A point P € A is given by projective coordinates:

(Xo(P) : X1(P) : - : Xn(P)) € PN
A choice of cubical point P above P is a choice of affine coordinates:
(Xo(P), X1 (P), ..., Xn(P)) € ANYINA(, ..., 0))
This also works to define cubical points P when L is not very ample, as long as P is not a base

point of L

Exercice: what does a cubical point represent in the other equivalent descriptions of the line
bundle .L?



Examples: cubical points on an elliptic curve

D = (0g):level-1 coordinate Z;

@ D = 2(0g):level-2 coordinates X,, Z, = Z%

o D = 3(0): level-3 coordinates X3 = XpZ1, Y3, 73 = Z3
@ Weierstrass coordinates:x = X3/Z3 = Xy /Z5,y = Y3/Zs.
P € Eis determined by (x(P),y(P)).

@ Alevel 3 cubical point Pis a choice of (X3 (ﬁ), Y3 (T’), Z3(ﬁ)) above
(X3(P) : Y3(P) : Z3(P)).
N.B: D = 3(0g) is very ample.

@ Alevel 2 cubical point? is a choice of (XZ(F),ZZ@)) above (X, (P) : Z5(P)).
N.B: D = 2(0f) is base point free.

@ Alevel 1 cubical point Pis a choice of Z1(P).

N.B: O is a base point of D = (0f), so we define O by (for lnstance) L0p) =1

x/y



Examples: cubical points on an elliptic curve

® | am normalising P by
fixing Z(P) =1

© | am rigidifying my étale

G,,,-torsor at P!

(Drake Hotline Bling meme)

Damien Robert Cubical arithmetic 15/35



Cubical arithmetic: a degenerate case
@ Assume that L is algebraically equivalent to 0: ¢p p = 0

(If D'is a divisor on E, this is equivalent to deg D = 0)

@ Then X ; is a commutative group, an extension of A by G,

@ Reformulation: we have a squared structure on X p

P, Py +P,
0 —
Py

@ P{ + Py is uniquely determined by P7, P, (and O)

@ The squared structure also determines —P

Corollary
Given E the cubical point Y, nilN’i is uniquely determined foralln; € Z J




Cubical arithmetic: the general case

@ We want to work with . ample
@ We don't have a group / a squared structure anymore

@ But we do have a cubical structure!

P, + Py Py +P5 + P4
P, Py +HP;
j 2 P ¥P,
0] _
Py

@ P; +P; + P5is uniquely determined by Py, P, P5, Py + P5, P{ + P3,P, + P5 (and O)

Corollary

Given P; and P; + 1 P;fori # j, the cubical point > 1;P; is uniquely determined for alin; € N.

The cubical structure does not determine —P anymore. But if .C is symmetric there is a notion of X-cubical structure to define -pP
in a way compatible with the cubical arithmetic. This allows to define Y 1;P; forn; € Z.



Formulas 1

@ Cubical arithmetic arises from a canonical isomorphism
Lp,+p,+p, ® Lp, ® Lp, ® Lp, = L ® Lp,.p, ® Lp 4p, ® Lp, 1 p,
@ Given Z € I'(A, L) with associated divisor D, the isomorphism comes from a function cubp:

Z(Py + P, + P3) - Z(P) - Z(Py) - Z(P5)
Z(D) - Z(P; ¥ P3) - Z(P{ ¥ P3) - Z(P{ ¥ Py)

= CubD(Pl,Pz,P3)

Proposition
o Neutrality:cubp(04,04,04) = 1.
e Commutativity:cubp (o (Py, Py, P3)) = cubp (Py, Py, P3) forallo € Gs.
@ Associativity:

cubp (P + Py, P3, Py) - cubp (Pq, Py, Py) = cubp (Pq, Py + P3, Py) - cubp (Py, P3, Py).

@ Fora X-cubical structure: (Anti)-symmetry: cubp (Pq, Po, =Py — Py) = +1.

v

@ Associativity means that the cubical point ) n,ﬁi does not depend on the choices of cubes used
to compute it

@ NB.:Z™ isasection of mD, and cub,,, = cubp: cubical arithmetic of level 71 induces the cubical arithmetic of level 71711



Formulas 2

Theorem

8p,p,,p,(P3)

cubp (P, P,, P3) =
prLTs 8p,p,,p,(04)

wheregp p, p, is any function with divisor t};l +P2D +D - t}ZlD = t}ZZD.

Proposition
Ifwetake gp p, p, normalised at 0 4, then
o Neutrality:gp,p,,p,(04) = 1.
e Commutativity:gp p, p,(P3) = &p,p,,p,(P1) = &p,p,,p, (P2)

© Associativity:gp p,+p, P,8D,Py,P, = 8D,Py,Py+P38D,Py,Ps
® Fora X-cubical structure: (Anti)-symmetry:gp p, p,(=P1 — Pp) = 1.




Cubical arithmetic on elliptic curves

1 x(Pl) y(Pl)
1 x(Pz) y(Pz)
1 x(P3) y(P3)

b P,P,,P3) =
Wb P1 P2 Fs) = o B i (Py) — x(P1)) (3 (P5) = x(By))
_ lPl,Pz(PS) _ x(Pq + Py) — x(P3)
= &Py —x(P)(x(P5) —x(PD)  Ip p,(~P3)

o Differential addition: Z; (P + Q)Z; (P — Q) = Z;(P)2Z1(D)2(x(Q) — x(P))
@ Doubling: Z; (2P) = Z(P)*2y(P)
@ Inverse: Zl(—ﬁ) = —Zl(ﬁ).

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2:y2 =x3 4+ Ax? +x)
o Z(2P) = 4X(P)Z(P)(X(P)2 + AX(P)Z(P) + Z(P)?)
o ZPFQZP=Q) = (XQZ®) - XP)ZD)’




Caveats

@ Inlevel 2 (X, Z)-cubical coordinates, cubical exponentiation £ — (P can be computed via a
Montgomery style ladder, using cubical doublings and cubical differential additions.

@ Verysimilarto x = (X : Z)-only arithmetic

‘@ Wecanhave (P = 0p but ({ + 1)P # P
o However, (D = Op and (£ + 1)P = Pimplies (mt + n)P = nP forallm, n.

@ x-only arithmetic does not depend on the quadratic twist By2 =23+ apx? +agx + ag
‘¢ But (X, Z)-level 2 cubical arithmetic does depend on the twist!



Complex abelian varieties
o A = C8/(Z8 + QZE) aprincipally polarised complex abelian variety, ®(, the principal
polarisation associated to (2

@ The addition law on A lifts to the addition law on (C$, +)

@ Basis of I'(A, 1O p): the analytic theta functions 6;(zp, Q/n),i € Z8 /nZ8
e P € Aisrepresented by the projective coordinates (6;(P))
@ Ifzp € C8 isabove P, we can represent zp by the affine coordinates (6;(zp)).

@ A choice of zp = a choice of cubical point p

@ Knowing (0;(z1)), (8;(z)) does not allow to find 6;(z + z5).

@ Butif we have an analytic cube 0, z1, 25, 23,25 + 23,27 + 23,21 + 2,21 + 25 + 23, the
knowledge ou the (Gi(z]») ), (Gi(zj + z;)) is enough to recover the coordinates
(0;(z1 + z5 + z3)): this is precisely the cubical law!

@ Explicit cubical formulas: Riemann relations (for analytic or algebraic theta functions)

@ Cubical structure = algebraic consequences of our analytic structure

We have an exact sequence 0 - A — C8 Z5 A — 0, and the cubical structure on 7. is trivial over C&. The theory of
descents of cubical structures of [Bre83, Proposition 3.10] gives an algebraic construction of theta functions, which gives an

alternative to Mumford’s construction via the theta group action.



Extra technical details

Polarised biextensions from the Poincaré biextension
@ Canonical Poincaré biextension Y — A x A

° 9 €EA- Y |Ax {Q} e Ext! (A, G,,,) is an isomorphism:
A =Hom(A, BG,,) ~ Ext'(A, G,,)

@ Y is the pullback of the Poincaré biextension Y — A x A by Id x¢
@ Itonly depends on the polarisation ¢ , i.e. the algebraic class of L e NS(A)

@ There is a unique biextension structure on Y ;, Grothendieck



Extra technical details

Theta groups

@ Two kind of theta groups: commutative and non commutative

o If M € Pic° (A) is algebraically equivalent to 0, G (M) is a commutative theta group: an
extension of A by G,,,

@ If M correspondsto Q € A, G (M) is precisely the slice Y | A x {Q} of the Poincaré biextension

o If Lisample, G(.L) is a non commutative extension of K(L) := Ker¢ , C Aby G,,

o G(L) is the arithmetico-geometric structure classifying the descents of .L to isogeneous abelian
varieties A — B

@ Thereis an action of G(L) on I' (L) lifting the translation action by K (L) on A
@ The Weil pairing e 1, ¢ is the commutator pairing on G(LY

@ A symmetric theta structure is a choice of symplectic basis on K (.L) and of rigidifications of

Ho-torsors (given by suitable 2-Tate pairings) associated to this basis.

= Compatibility of symmetric theta structures with isogenies



Extra technical details

Cubical arithmetic

X — A depends on the isomorphism class of L
There is a unique cubical structure on X/, Breen

The biextension Y ; comes from the line bundle m* L ® €* L @ i} L1 ® m3 L1

Y pistrivialon A x K(L) = Ker ¢ ¢, (since ¢, = 0on K(L)
This formally defines the theta group G (L) and its action on I" (.L)
The cubical point of view unifies biextensions and both flavors of theta groups

Cubical arithmetic induces the biextension arithmetic and the theta group arithmetic along with
its action on sections.

There is a well defined cubical translation for cubical points PaboveP € K(L).

We can define a symmetric theta structure in term of choices of suitable cubical points Pabovea
basis of K(.L)
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Algorithmic applications

Given a model of an abelian variety (A, L) with explicit formulas for the cubical arithmetic on X ;, we
have algorithms for:

@ Computing the pairings e

@ Computing (polarised) isogenies ¢ : (A, LY - (B, M)
@ Computing isogeny preimages

@ Computing radical isogenies
°

Computing functions with prescribed divisors

Changing level

@ N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the
theorem of the square



Algorithmic intuition

High level overview:
@ The cubical structure on X ; — A induces the biextensionY ; - A x A

@ Cubical arithmetic = biextension arithmetic = pairings

@ This biextension Y is trivial over K(.L) x A
@ For formal reasons, this recovers the theta group G (L) and its action on sections

@ Cubical arithmetic = theta group arithmetic = isogenies

Unicity of cubical structures:
@ Level-n cubical arithmetic on A induces level-n{ cubical arithmetic on A (and conversely) =
change of level
@ Level-n{ cubical arithmetic on A induces level-n cubical arithmetic on B, where B is {-isogeneous
to A = isogenies
@ Level-n cubical arithmetic on A induces level-n{ cubical arithmetic on B, where B is {-isogeneous
to A = isogeny preimages



Example: Vélu's formulas

o Ey/k:y3 = x? + axq + by elliptic curve
@ ¢: E; —» E, = E{/K, isogeny with kernel K = (P)
@ Vélu's formulas use traces:

=1 0—1 =1 =1
%(P) =) (x((P+iT)= ) x1(T), y2(P):=) (y1(P+iT)— ) y1(iT)
i=0 i=1 i=0 i=1

@ Recallthatx; = X/Z,y; = Y/Z are rational functions

@ Cubical arithmetic allows us to directly take “cubical traces” of X, Y, Z

@ Vélu's formulas do not extend directly to higher dimension (for degree reasons)

@ But the cubical trace approach does!

o Cosset-Lubicz-R. isogeny formulas already used (without knowing!) “cubical traces” of theta
functions

@ Algorithms thoroughly optimised in [YOOKN25]

@ Cubical point of view brings more flexibility = Corte-Real Santos 30% improvement for isogenies
and 50% improvement for images compared to [YOOKN25] (work in progress)



Example: Radical isogeny formulas

@ We have working radical isogeny formulas in various variants of the Montgomery model

@ Speed up of ~ 2x to ~ 2.5% compared to Decru’s formulas in [Dec24]
(Depending on the model and whether £ is a sum of two squares or not)

@ Works in x-only coordinates, using (X, Z)-cubical arithmetic
(This is the main source of savings: we can use symmetry to only compute only half the points)

@ Example: In the theta model, a {-radical isogeny (for £ a sum of two squares) costs a (-th root, and
11 + 60M + O(log ¢) M arithmetic operations

@ And the “preimage” of a point through the dual isogeny costs a {-th root, and
11 + 5¢M + O(log £) M arithmetic operations

@ Decru:3[ + (16{ — 25)M

@ Still awork in progress

@ The difference of complexity foraprime { =1 (mod 4) vs{ = 3 (mod 4) comes from the
way we compute the cubical descent of level from level 2{ to level 2.

@ Question: Better descent of level formulas?



Cubical functions

o Z € I'(A, L) with associated divisor D
o R Z(R+ Y n;P;) is a “cubical function” with divisor t*Z "iPz‘D'
@ Depends on the choices of P;, PiTP]-, butalso of R, R+ P;

@ Combining these cubical functions we can get genuine elliptic functions, not depending on the
choices of R, R + P;



Cubical functions

Example
° —_— ~
Z(R+ Py + Py)Z(R)
R gp, p,(R) = ———1—2—
Z(R+P1)Z(R + Py)

is a genuine function gp p, p, with divisor t;1+P2D D)= t}lD = t};zD.
It only depends on the choices of Py, Py, P{ + P5.

. Z({P + R)Z(R)*1
Z(P+R)!
is a genuine function fp, ¢ p with divisor £ypD + (£ —1)D — £t} D.

IfP e A[(],
R ZUR)Z((P + R)

ZUR +P)Z(R)

is a genuine function with divisor [£]* (D — t;D).
(Compare with how we would compute this function with Miller’s algorithm.)




Pairings via cubical arithmetic

@ Up to =~ 2x faster pairing computation for isogeny based cryptography, compared to Miller’s
algorithm [PRRSS25]

@ Pairings entirely on the Kummer line, using level 2 cubical arithmetic

@ N.B.:since level 2 cubical arithmetic gives the pairings €200p)8 = E(ZOE) ¢ @ priori we only recover
squared pairings.

o Butwe have a trick to recover the level —1 pairings e (g ,.) o when {is even
(New: and also when € is odd!)

@ Potentially useful for pairings based cryptography too [LRZZ25]



The Discrete Logarithm Problem

@ One can reduce DLPs on A /k to cubical DLPs (via “excellent cubical lifts”)
@ Conversely, cubical DLPs reduce to DLPs on A and k*

@ (Similarly for biextensions and theta groups DLPs)

@ With extra information, cubical DLPs may only need DLPs in k*
= Monodromy leak

@ Leaking the result (X (nP), Z(nP)) of a Montgomery ladder x(P) + x(nP) on a Montgomery
curve is enough to recover 7 via a DLP in IF;

@ Seehttps://jonathke.github.io/monoDOOM


https://jonathke.github.io/monoDOOM

Perspectives

@ Find cubical formulas in more models

Currently: cubical arithmetic in level-1 on elliptic curves (in the Weierstrass model), and level-n
cubical arithmetic on abelian varieties via level-11 theta functions (11 even)

Question: level-1 cubical arithmetic on more models? E.g.:

» Jacobians / Jacobians of hyperelliptic curves?
> Level-2 theta models?
(This would allow to extend the ThetaCGL hash function [KMM+25] to any dimension)

@ Stange sesquilinear biextensions, which give sesquilinear pairings [Sta24]

Question: sesquilinear cubical arithmetic?

Isogeny formulas for ¢ : (A, LY — (B, M) allow to move between the symmetric biextensions
Yy = BxB,Y ;i » A x A, and the non symmetric biextension Y¢ - AXB

Isogenies lift to cubical isogenies

Question: algorithmic applications?

Question: New insights on ECC DLPs?



Cryptography from biextensions?

Y — E x E the biextension associated to (Of)

Can be seen as a family of commutative groups GQ :=Y | E x {Q} (extensions of E by G,,,),
parametrised by points Q € E

@ The biextension arithmetic induces group morphisms GQI XE GQz - GQ1+Q2

The action by G,,, on Y and a choice of rigidification of Y | {Og} x {Og} induces compatible
canonical isomorphisms Gy, = E x G,,,and Gg | {0g} = G,,

Question: can we exploit this cryptographically?



Hypercube structures

The analogies:
@ Squared structure = group extension of A by G,,, ~ linearmap A —» G,,
@ Biextension of Ay x A, by G, =~ bilinearmap A; x A, - G,,
@ Cubical structure on A by G,,, ~ quadraticmap A - G,,
extend to higher degree Moret-Bailly:
@ n-multi-extension of [ [ 4; by G,,, = n-multilinearmap [[ 4; - G,,,
@ (n + 1)-hypercube structure on A by G,,, ~ degreenmap A —» G,

@ An-bilinearmapb : A" —» G, gives a degree n function
g:A-G,,qx) - bx,..,x)

o Conversely a degree 1 function gives a symmetric n-bilinear map A" - G,,,

@ The same holds for n-multi-extensions and (1 + 1)-hypercube structures.

Question: is there a natural geometric object that has a (1 + 1)-hypercube structure, n > 2?
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