

Animating quadratic and bilinear forms on abelian varieties

2025/12/16 — Canari Seminar

Damien Robert

Équipe Canari, Inria Bordeaux Sud-Ouest

Table of Contents

- 1 Quadratic and bilinear forms
- 2 Animating quadratic and bilinear forms on abelian varieties
- 3 Algorithmic applications

Linear and quadratic maps

X, Y, Z abelian groups

- An **affine map** $\phi : X \rightarrow Z$ is a map of **degree ≤ 1** :

$$\phi(x+y) - \phi(x) - \phi(y) + \phi(0) = 0 \quad \forall x, y \in X.$$

- A **quadratic map** $\phi : X \rightarrow Z$ is a map of **degree ≤ 2** :

$$\phi(x+y+z) - \phi(y+z) - \phi(x+z) - \phi(x+y) + \phi(x) + \phi(y) + \phi(z) - \phi(0) = 0 \quad \forall x, y, z \in X.$$

- More generally a map $\phi : X \rightarrow Z$ is of **degree $\leq n$** if $\Theta_{n+1}(\phi) : X^{n+1} \rightarrow Z$ is zero for an appropriate Θ_{n+1} .

- If q is quadratic, $q = q_0 + q_1 + q_2$ where $q_0 = q(0)$ and q_i is homogeneous of degree i :

$$q_i(nx) = n^i q_i(x).$$

- By translating, we may assume that ϕ is **normalised**: $\phi(0) = 0$.
- For instance, ϕ is normalised of degree 1 iff it is **linear**.

Bilinear maps

- $b : X \times Y \rightarrow Z$ is **bilinear** if $b(x, \cdot)$ and $b(\cdot, y)$ are linear for all $x \in X, y \in Y$.
- Equivalently $\Theta_{2,2}(b) = 0$ for an appropriate $\Theta_{2,2} : X^2 \times Y^2 \rightarrow Z$.
- b is induced by a linear map $X \otimes_{\mathbb{Z}} Y \rightarrow Z$ via the composition $X \times Y \rightarrow X \otimes_{\mathbb{Z}} Y \rightarrow Z$.
- A bilinear map $b : X \times X \rightarrow Z$ is **symmetric** if $b(x, y) = b(y, x) \quad \forall x, y \in X$.
- If $q : X \rightarrow Z$ is quadratic, we can associate a symmetric bilinear form $b_q : X \times X \rightarrow Z$ via

$$b_q(x, y) := \Theta_{2,2}q(x, y) = q(x + y) + q(0) - q(x) - q(y).$$

- In fact, q is quadratic iff b_q is bilinear.
And more generally $\phi : X \rightarrow Z$ is of degree $\leq n$ iff $\Theta_n(\phi) : X^n \rightarrow Z$ is n -multilinear.
- Conversely, given a bilinear $b : X \times X \rightarrow Z$, we can associate a quadratic form $q_b : X \rightarrow Z$, $q_b(x) = b(x, x)$.
- **These are not inverse of each other!**
- $b \rightarrow q \rightarrow b'$ gives the symmetrisation of b :

$$b'(x, y) = b(x, y) + b(y, x)$$

- $q \rightarrow b \rightarrow q'$ gives $q' = 2q_2$, where q_2 is the homogeneous degree 2 part of q
- Even if we restrict to homogeneous normalised q , there will be trouble if 2 is not invertible ...

Abelian varieties

If A/k is an abelian variety, there seems to exists a strong analogy between:

- **Polarisations** $\Phi : A \rightarrow \hat{A}$ and **symmetric bilinear morphisms** $A \times A \rightarrow \mathbb{G}_m$
- **Line bundles** $\mathcal{L} \in \text{Pic}(A)$ over A and **quadratic maps** $A \rightarrow \mathbb{G}_m$
- Furthermore, $\mathcal{L} \in \hat{A} = \text{Pic}^0(A)$ "corresponds" to a **linear morphisms** $A \rightarrow \mathbb{G}_m$.
- More generally a **morphism** $A \rightarrow \hat{B}$ "corresponds" to a **bilinear map** $A \times B \rightarrow \mathbb{G}_m$.

A slight subtlety is that seeing \mathcal{L} in $\text{Pic}(A)$ means we work up to isomorphism, in the analogy this corresponds to working with q up to translation.

One can fix the isomorphism class of \mathcal{L} by rigidifying it at 0_A ; this corresponds to normalising q .

Duality

- Define the **dual** of X as $\widehat{X} = \text{Hom}(X, Z)$, then by definition an element $Q \in \widehat{X}$ is a **linear map** $X \rightarrow Z$.
- A **bilinear map** $b : X \times X \rightarrow Z$ is the same thing as a **linear map** $\Phi_b : X \rightarrow \widehat{X}$, via

$$\Phi_b(x) = b(x, \cdot), \quad b(x_1, x_2) = \Phi_b(x_1)(x_2).$$

Φ_b is the **polarisation** associated to b .

- Assume that X is isomorphic to its **bidual**, via the natural map $i : X \rightarrow \widehat{\widehat{X}}, i(x) : \psi \mapsto \psi(x)$. Then b is **symmetric** iff Φ_b is **symmetric**: $\Phi_b^\vee : X \simeq \widehat{\widehat{X}} \rightarrow \widehat{X}$ is equal to Φ_b .
- If $q : X \rightarrow Z$ is quadratic, its associated **bilinear form** b_q corresponds to

$$\Phi_q : X \rightarrow \widehat{X}, x \mapsto t_x^* q - q + [q(0) - q(x)]$$

where $t_x^* q : y \mapsto q(x + y)$.

- An **abelian variety** A is **bidual**, and a morphism $\Phi : A \rightarrow \widehat{A}$ is a **polarisation** precisely when it is **symmetric**.
- If \mathcal{L} is a **line bundle** on A , the associated **polarisation** is $\Phi_{\mathcal{L}} : A \rightarrow \widehat{A}, P \mapsto t_P^* \mathcal{L} \otimes \mathcal{L}^{-1}$.

Morphisms

- A bilinear form $b : X \times Y \rightarrow Z$ induces linear maps $\phi_{X,b} : X \rightarrow Y^\vee, x \mapsto b(x, \cdot)$ and $\phi_{Y,b} : Y \rightarrow X^\vee, y \mapsto b(\cdot, y)$.
- By biduality, $\phi_{Y,b} : Y \rightarrow X^\vee$ is the dual of $\phi_{X,b} : X \rightarrow Y^\vee$.
- Canonical bilinear form:

$$b_X : X \times X^\vee \rightarrow Z, (x, \psi) \mapsto \psi(x).$$

- We can recover b from $\phi_{Y,b}$ or $\phi_{X,b}$ via

$$b = (\text{Id} \times \phi_{Y,b}^*) b_X = (\phi_{X,b} \times \text{Id})^* b_Y.$$

- $\text{Bilinear}(X \times Y, Z) \simeq \text{Hom}(X, Y^\vee) \simeq \text{Hom}(Y, X^\vee)$
- Via this bijection, b_X is the bilinear map $X \times X^\vee \rightarrow Z$ associated to $\text{Id} : X \rightarrow X$.
- A morphism $\phi : A \rightarrow B^\vee$ corresponds by duality to a morphism $\phi^\vee : B \rightarrow A^\vee$.
- This should give a “bilinear structure” on $A \times B$:

$$\text{Hom}(A, B^\vee) \simeq \text{Hom}(B, A^\vee) = ?$$

- We do have the Weil-Cartier pairing:

$$e_\phi : \text{Ker } \phi \times \text{Ker } \phi^\vee \rightarrow \mathbb{G}_m.$$

Poincaré polarisation

- The bilinear map b_X induces a canonical “universal” quadratic form on $X \times X^\vee$:

$$q_P(x, \psi) = \psi(x).$$

In particular, $\psi \in X^\vee$ is recovered as $\psi = q_P|_{X \times \{\psi\}}$

- Associated bilinear form b_P :

$$b_P((x_1, \psi_1), (x_2, \psi_2)) = \psi_1(x_2) + \psi_2(x_1)$$

- Polarisation: $\Phi_P : X \times X^\vee \rightarrow X^\vee \times X$, $(x, \psi) \mapsto (\psi, x)$ via the biduality $X \simeq \widehat{\widehat{X}}$.
- If $b : X \times X \rightarrow Z$ bilinear form associated to a polarisation $\Phi_b : X \rightarrow \widehat{X}$, then $q_b = (\text{Id} \times \Phi_b)^* q_P$ and $b(x, y) + b(y, x) = (\text{Id} \times \Phi_b)^* b_P$.
- Symmetric Poincaré line bundle P on $A \times \widehat{A}$ (birigidified at 0), given by applying the universal property of \widehat{A} to $\text{Id} : \widehat{A} \rightarrow \widehat{A}$.
- Associated polarisation

$$\Phi_P : A \times \widehat{A} \rightarrow \widehat{A} \times A, (P, Q) \mapsto (Q, P)$$

- If $\mathcal{L} \in \text{Pic}^0(A)$, $\mathcal{L} = P|_{A \times \{\mathcal{L}\}}$.
- If $\Phi : A \rightarrow \widehat{A}$ is a polarisation, we get a symmetric line bundle on A via $\mathcal{L}' = (\text{Id} \times \Phi)^* P$.
- If $\Phi = \Phi_{\mathcal{L}}$ for a symmetric \mathcal{L} , then $\mathcal{L}' = \mathcal{L}^{\otimes 2}$.
(Recall that if q is symmetric, $q' = 2q$.)

Linear maps and (anti)symmetric line bundles

- A quadratic form $q : X \rightarrow Z$ is of degree ≤ 1 iff $b_q = 0$ iff $\Phi_q = 0$
- A line bundle $\mathcal{L} \in \text{Pic}(A)$ is algebraically equivalent to 0, i.e. belongs to $\text{Pic}^0(A)$ iff $\Phi_{\mathcal{L}} = 0$
- Assume q is **normalised**: $q = q_1 + q_2$ where q_1 is linear and q_2 homogeneous of degree 2.
- Then q is **symmetric** (i.e. $\forall x, q(-x) = q(x)$) iff $q = q_2$.
- And q is **antisymmetric** (i.e. $\forall x, q(-x) = -q(x)$) iff $q = q_1$, i.e. is linear
- For any normalised q , $q(x) + q(-x)$ (resp. $q(x) - q(-x)$) is symmetric (resp. antisymmetric).
- $q(nx) = \frac{n^2+n}{2}q(x) + \frac{n^2-n}{2}q(-x)$.
 $q(nx) = n^2q(x)$ if q is symmetric, $q(nx) = nq(x)$ if q is antisymmetric.
- If \mathcal{L} is a line bundle on A , it is symmetric (resp. anti-symmetric) iff $[-1]^*\mathcal{L} \simeq \mathcal{L}$ (resp. $[-1]^*\mathcal{L} \simeq \mathcal{L}^{-1}$).
- $\mathcal{L} \otimes [-1]^*\mathcal{L}$ is always symmetric and $\mathcal{L} \otimes [-1]^*\mathcal{L}^{-1}$ always antisymmetric.
- \mathcal{L} is antisymmetric iff $\mathcal{L} \in \text{Pic}^0(A)$.
- $[n]^*\mathcal{L} \simeq \mathcal{L}^{\otimes, (n^2+n)/2} \otimes ([-1]^*\mathcal{L})^{\otimes, (n^2-n)/2}$
 $[n]^*\mathcal{L} \simeq \mathcal{L}^{\otimes, n^2}$ if \mathcal{L} is symmetric, $[n]^*\mathcal{L} \simeq \mathcal{L}^{\otimes, n}$ if \mathcal{L} is antisymmetric.

Torsors

- If X' is a X -torsor (i.e. there is a free and transitive group action of X on X'), we can say that $q : X' \rightarrow \mathbb{Z}$ is quadratic whenever:

$$\begin{aligned} q(w+x+y+z) - q(w+x+y) - q(w+y+z) - q(w+z+x) + \\ q(w+x) + q(w+y) + q(w+z) - q(w) = 0 \quad \forall w \in X', x, y, z \in X. \end{aligned}$$

- It suffices to check that there is one $w \in X'$, such that

$$\begin{aligned} q(w+x+y+z) + q(w+z) - q(w+x+z) - q(w+y+z) = \\ q(w+x+y) + q(w) - q(w+x) - q(w+y) \quad \forall x, y, z \in X \end{aligned}$$

- We can then define a bilinear form on X via

$$b_q(x, y) = q(w+x+y) + q(w) - q(w+x) - q(w+y),$$

this does not depend on w !

- If A' is an A -torsor, \mathcal{L} a line bundle on A' , we can define a polarisation

$$\Phi_{\mathcal{L}} : A \rightarrow \text{Pic}^0(A') \simeq \text{Pic}^0(A), \quad \Phi_{\mathcal{L}}(P) = t_{A', P}^* \mathcal{L} \otimes \mathcal{L}^{-1},$$

where $t_{A', P}$ is the translation action of $P \in A$ on A' .

- Example: if $A = \text{Jac}(C) = \text{Pic}^0(C)$ is a Jacobian of a curve of genus g , the Theta divisor $\Theta_g \subset \text{Pic}^{g-1}(C)$ (Θ_g = locus of effective divisors of degree $g-1$) induces a principal polarisation on $\text{Jac}(C)$.

Arithmetic consequences

- Because $[2] : \mathbb{G}_m \rightarrow \mathbb{G}_m, x \mapsto x^2$ is not surjective (only surjective étale locally), a polarisation $\Phi : A \rightarrow \widehat{A}$ may not be induced by a line bundle \mathcal{L} on A (it is only induced étale locally)
- **Tate**: if A/K is principally polarised, $\omega(A/K)$ is a square.
- **Poonen-Stoll**: explicit example of C/\mathbb{Q} such that $\omega(\text{Jac}(C)/\mathbb{Q})$ is not a square.
- But we just saw that a Jacobian is principally polarised.
- Different notion of principal polarisations! For Tate it comes from a rational line bundle.
- In the first case the Cassel-Tate pairing is alternating, in the second only antisymmetric.

Some mysteries

- Let $\Phi : A \rightarrow \widehat{A}$ be a principal polarisation
(i.e. Φ is an isomorphism and is induced by an ample line bundle \mathcal{L})
- We think of Φ as a unimodular positive definite symmetric bilinear form b_Φ
- The Weil pairings $e_{\Phi, [n]} : A[n] \times A[n] \rightarrow \mu_n$ should be incarnations of b .
- But they are **antisymmetric**, not symmetric
- If $A = \mathbb{C}^g/\Lambda$ is a complex abelian variety, a polarisation ϕ can be described by a positive definite Hermitian form H on \mathbb{C}^g such that $\Im H \mid \Lambda \times \Lambda \subset \mathbb{Z}$.
- But H is Hermitian and $E = \Im H$ is symplectic, none are symmetric.
- However, a choice of line bundle \mathcal{L} inducing ϕ is the same as a choice of quasi-character χ for H :

$$\chi(\lambda_1 + \lambda_2) = \chi(\lambda_1)\chi(\lambda_2)e^{i\pi E(\lambda_1, \lambda_2)} \quad \forall \lambda_1, \lambda_2 \in \Lambda$$

- $\chi : \Lambda \rightarrow \mathbb{G}_m$ is **quadratic**.

Table of Contents

- Quadratic and bilinear forms
- **2 Animating quadratic and bilinear forms on abelian varieties**
- Algorithmic applications

Bilinear maps on abelian varieties

- Goal: associate to a line bundle \mathcal{L} on A a quadratic form $q : A \rightarrow \mathbb{G}_m$, and to a polarisation $\phi : A \rightarrow \widehat{A}$ a bilinear form $b : A \times A \rightarrow \mathbb{G}_m$.
- Here A, \mathbb{G}_m are group schemes, so q, b should be morphisms of group schemes.
- And they should satisfy the appropriate version of bilinearity/quadracity.
- A is not a group, it is a group object in the category of schemes
- But schemes embed fully faithfully into the presheaf topos on affine schemes.
- In fact, if X is a scheme, $R \mapsto X(R)$ is an fppf-sheaf.
- A group object G in the category of sheaves is the same thing as giving a group structure on each $G(R)$ such that $\phi : R \rightarrow S$ induces a group morphism $G(\phi) : G(R) \rightarrow G(S)$.
- Similarly, we can define bilinearity and quadracity pointwise.

Internal logic of a topos

- Recall: we can see A, \mathbb{G}_m as abelian sheaves for the fppf topology
- Sheaves form a **topos**: in the internal logic of a topos they behave like a set!
- The internal logic is like a compiler, that translates internal statements into external statements.
- For instance, if $\phi : F \rightarrow G$ is a morphism of sheaves, it translates the **internal surjectivity statement**

$$\forall y \in G, \exists x \in F \mid \phi(x) = y$$

into the **external epimorphism statement**:

"For all sections $y \in G(U)$, there is a covering $U = \bigcup U_i$ such that there exists a section $x_i \in F(U_i)$ where $\phi(x_i) = y \mid U_i$ ".

- We can prove internally that a composition $\phi_2 \circ \phi_1$ of two surjective morphisms $\phi_1 : F \rightarrow G$ and $\phi_2 : G \rightarrow H$ is surjective: " $\forall z \in H, \exists y \in G \mid \phi_2(y) = z$, and $\exists x \in F \mid \phi_1(x) = y$, so $\phi_2(\phi_1(x)) = z$ ". The compiler translates this into the usual external proof using coverings of coverings.
- Caveat: the internal logic of a topos is **intuitionistic logic**: for a proposition P , $P \vee \neg P$ is not always true.
- Intuitionistic logic is **constructive**, this is the logic given by the Curry-Howard correspondence. One needs to add **continuations** as first class citizen to recover classical logic.

Bilinear and quadratic forms on an abelian variety via topos

- We can define linear, bilinear and quadratic forms in a topos by using the same definitions as for standard groups, expressed in the internal logic of the topos.
- $b : A \times B \rightarrow \mathbb{G}_m$ is bilinear iff:

$$\forall a_1, a_2 \in A, b_1, b_2 \in B, b(a_1 + a_2, b_1 + b_2) = b(a_1, b_1) \times b(a_2, b_1) \times b(a_1, b_2) \times b(a_2, b_2).$$

- This is a statement in a cartesian theory, hence in particular a geometric theory.
- This recovers the pointwise definition: $b : A(R) \times B(R) \rightarrow \mathbb{G}_m(R)$ should be bilinear (in a compatible way) for all R

Recall that the fppf topos has enough points.

- A bilinear map $A \times B \rightarrow \mathbb{G}_m$ could also be defined as a linear map $A \otimes B \rightarrow \mathbb{G}_m$.
- Unfortunately, for abelian varieties, there are no bilinear maps $A \times B \rightarrow \mathbb{G}_m$: A, B are proper while \mathbb{G}_m is affine, so any such map would be constant.
- Likewise, all maps $A \rightarrow \mathbb{G}_m$ are constant, so there are no non trivial linear or quadratic maps.
- This “naive” approach does not explain the analogy.

Animating bilinear and quadratic maps

- There are no bilinear maps $A \times B \rightarrow \mathbb{G}_m$ when we embed A, B, \mathbb{G}_m into a category of sheafs of sets.
- We will instead embed them into the larger category of sheafs of spaces, or rather **sheafs of anima** (the ∞ -category of homotopy types of spaces)
- Bilinear or quadratic maps on animated abelian groups (i.e. abelian groups in anima) may be seen as higher order bilinear or quadratic forms.
- Let Ani be the ∞ -category of anima, i.e. ∞ -groupoids
(This is the $(\infty, 1)$ -category of $(\infty, 0)$ -categories).
- An **∞ -groupoid** is a Kan complex (up to inverting weak equivalences), i.e. the homotopy type of a space
- An **∞ -category** is a quasi-category, i.e. a weak Kan complex (up to inverting weak equivalences)
- The bible on this is **Lurie**'s books: Higher Topos Theory, Higher Algebra, Spectral schemes.

The animation of a category

- The term animation (due to Clausen) was introduced in [Česnavičius-Scholze \[ČS24\]](#). The authors describe the animation of a locally strongly finitely presentable category C , relying heavily on Lurie's work on ∞ -locally presentable categories.
- If C is a category of [algebraic structures](#) (i.e. of rings, groups, modules, ...), then $\text{Ani}(C)$ is the ∞ -category of these algebraic structures in Ani (animated rings, animated groups, animated modules)...
- Ani itself is the animation of Set : the trivial algebraic structure.

Locally strongly finitely presentable categories

The following are equivalent for a category C

- C is the category of models for an algebraic theory, i.e. there exists a category T with finite products such that $C = \text{Hom}_{\prod}(T, \text{Set})$.
- C is the category of models for a finite product sketch.
- C is the free cocompletion of a small category C_0 with finite coproducts under sifted colimits: $C = \text{sInd}(C_0)$
- C has all small colimits, the category C^{sfp} of strongly finitely presentable objects (also called compact projective objects) is essentially small, and any object in C is a sifted colimit of the canonical diagram of strongly finitely presentable objects mapping into it.
- C^{sfp} has finite coproducts, and the restricted Yoneda embedding $C \hookrightarrow [C^{sfp\circ}, \text{Set}]$ identifies C with the category of finite-product-preserving functors $C^{sfp\circ} \rightarrow \text{Set}$.
- A sifted colimit is a colimit of a diagram $D \rightarrow C$ where D is sifted, i.e. the associated colimits commute with finite products in Set .
- This is a generalisation of an inductive colimit $D \rightarrow C$ where D is required to be filtered, i.e. so that the associated colimits commute with all finite limits in Set .
- A reflexive coequalizer (i.e. the quotient of an equivalence relation) is a sifted colimit. A good rule of thumb is "sifted colimits = inductive colimits + reflexive coequalizer" (but see [ARV10] for caveats).
- $x \in C$ is strongly finitely presentable if $\text{Hom}(x, \cdot)$ commutes with sifted colimit.

Modulo size issues, in the above one can take $C_0 = C^{sfp}$ and $T = C^{sfp\circ}$.

Locally finitely presentable categories

The following are equivalent for a category C

- C is the category of models for an essentially algebraic theory, i.e. there exists a category T with finite limits such that $C = \text{Hom}_{\text{lex}}(T, \text{Set})$.
- C is the category of models for a finite limit sketch.
- C is the free cocompletion of a small category C_0 with finite colimit under filtered colimits: $C = \text{Ind}(C_0)$
- C has all small colimits, the category C^{fp} of finitely presentable objects (also called compact objects) is essentially small, and any object in C is a filtered colimit of the canonical diagram of locally finitely presentable objects mapping into it.
- C^{fp} has finite colimits, and the restricted Yoneda embedding $C \hookrightarrow [C^{fp\circ}, \text{Set}]$ identifies C with the category of finite-limit-preserving functors $C^{fp\circ} \rightarrow \text{Set}$.

Modulo size issues, in the above one can take $C_0 = C^{fp}$ and $T = C^{fp\circ}$.

Properties of a locally strongly finitely presentable category

- If $C = \text{sInd}(C^{sfp})$ is locally strongly finitely presentable, it is locally finitely presentable: $C = \text{Ind}(C^{fp})$
- The finitely presentable objects C^{fp} are the coequalizers (or even reflexive coequalizers) of objects in C^{sfp}
- A functor $F : C \rightarrow D$ preserving sifted colimits (resp. filtered colimits) is the same thing as a functor $F : C^{sfp} \rightarrow D$ (resp. $F : C^{fp} \rightarrow D$): C is the free completion of C^{sfp} under sifted colimit (resp. filtered colimits).
- And F preserve all colimits (i.e. is right exact) iff $F : C^{sfp}$ preserve finite coproducts (or $F : C^{fp}$ preserve finite colimits).
- $C = \text{Hom}_{\prod}(C^{sfp\circ}, \text{Set}) = \text{Hom}_{lex}(C^{fp\circ}, \text{Set}) = \text{Hom}_{cont}(C^\circ, \text{Set})$.

Examples of locally strongly finitely presentable categories

- Every algebraic theory gives a locally strongly finitely presentable category
- Main examples: Set, Groups, Abelian groups, (commutative) Rings, Modules over a ring
- In all these examples, strongly finitely presentable object / compact projective objects are the retract of finite free objects, i.e. the Cauchy completion of finite free objects.
- Finite free rings: $R = \mathbb{Z}[x_1, \dots, x_m]$.
- Finite free modules: $M = R^m$.

Animating a locally strongly finitely presentable category

- If $C = \text{sInd}(C^{sfp})$ is locally strongly finitely presentable, $\text{Ani}(C)$ is the free completion of C^{sfp} under sifted colimit in the $(\infty, 2)$ -category of $(\infty, 1)$ -categories.
- If $D \in \text{Ani}$ is a ∞ -category with sifted colimits, a functor $F : \text{Hom}_{\text{sifted}}(\text{Ani}(C), D)$ is the same thing as a functor $C^{sfp} \rightarrow D$.
- In an ∞ -category sifted colimits are generated by filtered colimits and geometric realisations, i.e. colimits indexed by Δ° (reflexive coequalizers are colimits indexed by $\tau_{\leq 1} \Delta^\circ$).
- $\text{Ani}(C)$ is the ∞ -category of functors $\text{Hom}_{\prod}(C^{sfp\circ}, \text{Ani})$.
- This is also the category of simplicial objects in C up to inverting weak equivalences.
- A functor $F : C \rightarrow D$ of locally strongly finitely presentable categories that preserves sifted colimits lifts to a functor $\text{Ani}(F) : \text{Ani}(C) \rightarrow \text{Ani}(D)$.
- Given $G : D \rightarrow E$, there is a natural transformation

$$\text{Ani}(G) \circ \text{Ani}(F) \rightarrow \text{Ani}(G \circ F),$$

which is an equivalence if $F(C^{sfp}) \subset \text{Ind } D^{sfp}$ in D or $\text{Ani}(G)(F(C^{sfp})) \subset E$ in $\text{Ani}(E)$.

Animation: a summary

- A $(1, 1)$ -category is a category enriched over Set
- Set itself is the free completion of finite sets under 1-sifted colimits
- A $(\infty, 1)$ -category is a category enriched over Ani
- Ani itself is the free completion of finite sets under ∞ -sifted colimits (i.e. inductive limits and geometric realisations).
- A locally strongly finitely presentable category C is the free completion of a small category C_0 with coproducts under 1-sifted colimits.
- $C = \text{Hom}_{\prod}(C_0^\circ, \text{Set})$
- Its animation $\text{Ani}(C)$ is the free completion of C_0 under 1-sifted colimits.
- $\text{Ani}(C) = \text{Hom}_{\prod}(C_0^\circ, \text{Ani})$

Animating an abelian category

- **Dold-Kan correspondance:** if \mathcal{A} is an abelian category, $\text{Ani}(\mathcal{A})$ is equivalent to the connective part $D_{\geq 0}(\mathcal{A})$ of the ∞ -derived category of $D(\mathcal{A})$.
(For cochains: $\text{Ani}(\mathcal{A}) \simeq D^{\leq 0}(\mathcal{A})$),
- And $D(\mathcal{A})$ is recovered as the **stabilisation** $\text{Stab}(\text{Ani}(\mathcal{A}))$ of $\text{Ani}(\mathcal{A})$
- If (X, τ) is a site, the **animation** of the sheaf topos $\text{Sh}(X, \text{Set})$ is the **hypercompletion** of the ∞ -topos $\text{Sh}_{\infty}(X, \text{Ani})$
- And **stabilisation** commute with **localisation**:

$$\text{Stab}(\text{Sh}(X, \text{Ani})) = \text{Sh}(X, \text{Spectra})$$

where $\text{Spectra} = \text{Stab}(\text{Ani})$ is the stable ∞ -category of spectra.

The standard derived category

- \mathcal{A} an abelian category. For simplicity $\mathcal{A} = \mathbb{Z} - \text{modules}$
- $C(\mathcal{A})$ the category of complexes on \mathcal{A}
- Unit interval: $I \in C(\mathcal{A})$: $I[0] = \mathbb{Z}[0] \oplus \mathbb{Z}[1]$, $I[1] = [I]$ with $d[I] = [1] - [0]$.
- Homotopy: map $X \otimes I \rightarrow Y$
- $K(\mathcal{A})$: complexes up to homotopy equivalence
- $D(\mathcal{A})$: $K(\mathcal{A})$ localised in the quasi-isomorphisms (i.e. we invert "formally" the morphisms in $K(\mathcal{A})$ which induces isomorphisms on all H^i). Localisation means that in the map $i : K(\mathcal{A}) \rightarrow D(\mathcal{A})$ quasi-isomorphisms are sent to isomorphisms, and $D(\mathcal{A})$ is universal for this property.
- $K(\mathcal{A}), D(\mathcal{A})$ are triangulated categories: the distinguished triangles are given by (isomorphisms class of) mapping cones.
- If $F : \mathcal{A} \rightarrow \mathcal{B}$ is a left exact functor, the right derived functor RF (if it exists) is the right Kan extension of $F : K(\mathcal{A}) \rightarrow K(\mathcal{B}) \rightarrow D(\mathcal{B})$ along $i : K(\mathcal{A}) \rightarrow D(\mathcal{A})$: it is the universal functor $RF : D(\mathcal{A}) \rightarrow D(\mathcal{B})$ such that there is a natural transformation $RF \circ i \Rightarrow F$.

- The internal logic of an ∞ -topos is described by HoTT: homotopy type theory
- In HoTT, all objects have a type: $a : A$ means that a has type A
- The main difference with standard type theory is that the identity type $\text{Id}_A(a = b)$ is no longer a boolean true/false (i.e. the 0-category of -1 -categories) but a type itself.
- One may interpret $\text{Id}_A(a = b)$ as an Anima, a witness w for equality $a = b$ can be interpreted as a path from a to b , and then a witness in $\text{Id}_{\text{Id}_A}(w_1 = w_2)$ between two witnesses w_1, w_2 may be interpreted as an homotopy between w_1 and w_2 and so on.

Animating bilinear and quadratic forms

We can embed abelian schemes into the (stabilisation of the) ∞ -topos of sheaves of anima, and look at animated bilinear and quadratic forms with values in $\text{Ani}(\mathbb{G}_m)$.

Definition

- The **dual abelian variety** \widehat{A} is the (appropriate truncation of) animated linear maps $\text{Hom}(\text{Ani}(A), \text{Ani}(\mathbb{G}_m))$;
- The category of **(symmetric) biextensions** $\text{BiExt}(A, B; \mathbb{G}_m)$ is the (appropriate truncation of) animated bilinear maps $\text{Ani}(A) \times \text{Ani}(B) \rightarrow \text{Ani}(\mathbb{G}_m)$
- The category of **cubical structures** on A $\text{Cube}(A, \mathbb{G}_m)$ is (the appropriate truncation of) animated quadratic maps $\text{Ani}(A) \rightarrow \text{Ani}(\mathbb{G}_m)$

For the truncation: we work over the suspension $\Sigma(\text{Ani}(\mathbb{G}_m))$ and truncate to the **connective part** of the canonical t -structure of the stable ∞ -category. We end up with ordinary categories.

One can see **biextensions** and **cube structures** as bilinear maps and quadratic maps **with values in $B\mathbb{G}_m$** rather than in \mathbb{G}_m .

Bilinear and quadratic forms on an abelian variety via the derived category of fppf sheaves

Using the Dold-Kan correspondance, we can reinterpret these constructions in the derived category $D(Sh_{fppf})$ of fppf sheaves. (We work with cochains, so shift correspond to suspension and $\pi_i = H^{-i}$)

- **Weil:** the dual

$$\widehat{A} \simeq \tau_{\leq 0} R \operatorname{Hom}(A, \mathbb{G}_m[1])$$

In particular, $Q \in \widehat{A}$ induces a group extension $G(Q)$ of A by \mathbb{G}_m .

($G(Q)$ is necessarily commutative since the commutator pairing $A \times A \rightarrow \mathbb{G}_m$ is constant).

- **Grothendieck:** morphisms $\phi : A \rightarrow \widehat{B}$ correspond bijectively to **biextensions** of $A \times B$ by \mathbb{G}_m , which in turn are given by

$$\tau_{\leq 0} R \operatorname{Hom}(A \otimes^L B, \mathbb{G}_m[1]).$$

- **Breen:** polarisations $\phi_{\mathcal{L}}$ on A corresponds to **symmetric biextensions** on $A \times A$ by \mathbb{G}_m , which "corresponds" to

$$\tau_{\leq 0} R \operatorname{Hom}(R \operatorname{Sym}^2 A, \mathbb{G}_m[1]).$$

- **Breen:** a line bundle \mathcal{L} corresponds to a **cubic structure** on A by \mathbb{G}_m , which in turns "corresponds" to

$$\tau_{\leq 0} R \operatorname{Hom}(R \Gamma_2 A, \mathbb{G}_m[1]).$$

Here Γ_2 is the component of degree 2 of the divider power algebra

- $F \mapsto \operatorname{Sym}^2 F$ and $F \mapsto \Gamma_2 F$ are **quadratic** rather than additive functors, so care must be taken when taking their derived version (we need to use **simplicial resolutions**).

Line bundles

- $B\mathbb{G}_m = [*/\mathbb{G}_m]$ is the classifying stack of \mathbb{G}_m -torsors: this is the delooping of \mathbb{G}_m .
- To give a line bundle \mathcal{L} on a scheme X is the same thing as giving a map $X \rightarrow \mathbb{G}_m$.
- Under the Dold-Kan correspondance for cochains, the shift corresponds to the suspension Σ , aka to delooping, the inverse of the loop function Ω .
- Hence we have:

$$\begin{aligned} H^0 R\text{Hom}(A, \mathbb{G}_m[1]) &\simeq \text{Ext}^1(A, \mathbb{G}_m) \simeq \text{Hom}(A, B\mathbb{G}_m) \\ &\simeq \pi_0 \text{Hom}(\text{Ani}(A), \Sigma \text{Ani}(\mathbb{G}_m)) \end{aligned}$$

- Here $\text{Hom}(A, B\mathbb{G}_m)$ denotes morphisms respecting the group law ("morphisms of Picard stacks")
- An element in $\text{Hom}(A, B\mathbb{G}_m)$ corresponds to a line bundle \mathcal{L} algebraically equivalent to 0: $\mathcal{L} \in \text{Pic}^0(A)$
- We recover the isomorphism $\widehat{A} = \text{Pic}^0(A) \simeq \text{Ext}^1(A, \mathbb{G}_m)$, given concretely by the theta group: $\mathcal{L} \mapsto G(\mathcal{L})$

Biextensions and cubical structures

- Recall: biextensions and cube structures are bilinear maps and quadratic maps with values in $B\mathbb{G}_m$ rather than in \mathbb{G}_m
- But since we work in the internal logic of an ∞ -topos, the bilinear equation $b(x + y, z) = b(x, z) + b(y, z)$ needs to be witnessed by a “path” satisfying some further coherency conditions
- A biextension is a “bilinear map” $b : A \times B \rightarrow B\mathbb{G}_m$, in particular we get a line bundle \mathcal{L} above $A \times B$
- The bilinearity $\Theta_{2,2}(b) = 0$ gives a section s on $\Theta_{2,2}(\mathcal{L})$ above $A^2 \times B^2$
- This section s has to satisfy some cocycle conditions
- A cubical structure is a “quadratic map” $q : A \rightarrow B\mathbb{G}_m$, in particular we get a line bundle \mathcal{L} above A
- The quadraticity $\Theta_3(q) = 0$ gives a section s on $\Theta_3(\mathcal{L})$ above A^3
- This section s has to satisfy some cocycle conditions
- **Moret-Bailly** the cocycle conditions are equivalent to the fact that, up to replacing A, G by $A' \twoheadrightarrow A$ and $\mathbb{G}_m \hookrightarrow G'$, there is a trivialisation t' of the induced G' -torsor \mathcal{L}' on A' induced by \mathcal{L} such that $\Theta_3(t') = s'$ where s' is the trivialisation on $\Theta_3(\mathcal{L}')$ induced by s . Similarly for biextensions.

Squared structures on line bundles

- Let's work out in more detail what a "linear map" $\phi : G \rightarrow B\mathbb{G}_m$ should be for a commutative group scheme G
- First we have a map to $B\mathbb{G}_m$, hence a line bundle \mathcal{L} on G .
- Secondly we have $\Theta_2(\phi) = 0$, i.e. a **squared structure**.
- This is witnessed by a section s of $\Theta_2(\mathcal{L})$ above $G \times G$: for every $x, y \in G$, we have an isomorphism $t_x^* \mathcal{L} \otimes t_y^* \mathcal{L} \simeq t_{x+y}^* \mathcal{L} \otimes \mathcal{L}$
(Recall that $\Theta_2(f) : (x, y) \mapsto f(x+y) + f(0) - f(x) - f(y)$.)
- The coherence/cocycles conditions on s amount to the fact that s should induce a **group structure on \mathcal{L}** , which is a **commutative group extension of G by \mathbb{G}_m** .
- If A is an abelian variety, the fact that $\text{Hom}(A, \mathbb{G}_m) = 0$ automatically give such a squared structure (uniquely!) for any $\mathcal{L} \in \text{Pic}^0(A)$
- Similarly for biextensions and cube structures: a line bundle $\mathcal{L} \in \text{Pic}(A)$ automatically has a unique cube structure.

Pairings from biextensions

- Once we have a cubical structure on A or biextension on $A \times B$, every equality inside $B\mathbb{G}_m$ in the internal logic give us a trivialisation of some line bundle, and equality between these equalities correspond to maps between these trivialisations, i.e. maps to \mathbb{G}_m , which satisfy some conditions.
- For instance, given a principal polarisation $b : A \times A \rightarrow B\mathbb{G}_m$, then nb is zero on $A[n] \times A$ and $A \times A[n]$. This gives two different trivialisations on $A[n] \times A[n]$, and the map between them is the Weil pairing $e_{b,n}$
- We can also write

$$nb(x, y) = b(nx, y) = b(x, ny) = 0$$

where the later equalities take place in the biextension associated to b . We recover Stange's interpretation of the Weil pairing as monodromy.

- Likewise, the Tate pairing "comes" from $b(nx, y) = 0$ for $x \in A[n]$.
- Note that, even if we have a symmetric biextension, the compatibility conditions "one level up" need not be symmetric.
- Indeed, symmetric biextensions on the trivial torsor are given by alternate forms $a(x_1, x_2)$. This biextension is a trivial symmetric biextension on X iff $a(x_1, x_2) = b(x_1, x_2) - b(x_2, x_1)$ for some bilinear form $b : X \times X \rightarrow \mathbb{G}_m$.
- Likewise, if $A = \mathbb{C}^g/\Lambda$, the cube structure induced by a line bundle \mathcal{L} on A becomes trivial over \mathbb{C}^g . The cube structure on A is then encoded by the descent of the trivial cube structure on \mathbb{C}^g along Λ .
- This recovers semi-characters and the theory of theta functions [Breen].

Table of Contents

- Quadratic and bilinear forms
- Animating quadratic and bilinear forms on abelian varieties
- Algorithmic applications

The Poincaré biextension on an elliptic curve

Y the biextension associated to (0_E) above $E \times E$:

- An element $g_{P,Q}$ of Y above $(P, Q) \in E \times E$ is a function with divisor

$$(P + Q) + (0_E) - (P) - (Q)$$

- Biextension law:

$$\begin{aligned} g_{P_1,Q} \star_1 g_{P_2,Q} &= g_{P_1+P_2,Q} := g_{P_1,Q}(\cdot)g_{P_2,Q}(\cdot + P_1) \\ &= g_{P_1,Q}(\cdot)g_{P_2,Q}(\cdot) \frac{g_{P_1,P_2}(\cdot + Q)}{g_{P_1,P_2}(\cdot)} \end{aligned}$$

N.B: the last equality is not obvious and result from cohomological arguments

- Similar formulas for $g_{P,Q_1} \star_2 g_{P,Q_2} = g_{P,Q_1+Q_2}$
- Bilinearity property: for every Q (resp. every P), \star_1 (resp. \star_2) gives a commutative group law on the $g_{P,Q}$ (=linearity on the left/right).
- Compatibility:

$$(g_{P_1,Q_1} \star_1 g_{P_2,Q_1}) \star_2 (g_{P_1,Q_2} \star_1 g_{P_2,Q_2}) = (g_{P_1,Q_1} \star_2 g_{P_1,Q_2}) \star_1 (g_{P_2,Q_1} \star_2 g_{P_2,Q_2})$$

Pairings via biextensions

- If $P = 0_E$ or $Q = 0_E$, $(P + Q) + (0_E) - (P) - (Q) \sim 0$, so a biextension element $g_{0_E, Q}$ or $g_{P, 0_E}$ is a constant function on E .
- If $P \in E[n](\mathbb{F}_q)$ and $Q \in E(\mathbb{F}_q)$, the function $g_{nP, Q} = g_{P, Q}^{\star_1, n}$ is a constant $t \in \mathbb{F}_q^*$.
- Changing $g_{P, Q}$ by $\lambda g_{P, Q}$ changes t by $t\lambda^n$, so t is well defined in $\mathbb{F}_q^* / \mathbb{F}_q^{*, n}$.
- This is the **Tate pairing**!
- Likewise, the **Weil pairing** is given by

$$e_n(P, Q) = \frac{g_{P, Q}^{\star_1, n}}{g_{P, Q}^{\star_2, n}}$$

for $P, Q \in E[n]$.

Cubical points

- If \mathcal{L} is a line bundle on A , seen as a fibration $\mathcal{L} \rightarrow A$ with fibers \mathbb{A}^1 rather than an invertible sheaf, we let $X_{\mathcal{L}} = \mathcal{L} \setminus 0$.
- Given $P \in A$, a **cubical point** \tilde{P} is an element $\tilde{P} \in X_{\mathcal{L}}$ above P via the projection $X_{\mathcal{L}} \rightarrow A$
- All other cubical points are of the form $\lambda \tilde{P}$ for $\lambda \in \mathbb{G}_m$ (\mathcal{L} is a \mathbb{G}_m -torsor)
- If \mathcal{L} is **very ample**, and $X_0, \dots, X_N \in \Gamma(A, \mathcal{L})$ is a **basis of sections**, we have a **commutative diagram**

$$\begin{array}{ccc} X_{\mathcal{L}} & \hookrightarrow & \mathbb{A}^{N+1} \setminus \{(0, \dots, 0)\} \\ \downarrow & & \downarrow \\ A & \xrightarrow{\quad} & \mathbb{P}^N \end{array}$$

- A point $P \in A$ is given by **projective coordinates**:

$$(X_0(P) : X_1(P) : \dots : X_N(P)) \in \mathbb{P}^N$$

- A choice of cubical point \tilde{P} above P is a choice of **affine coordinates**:

$$(X_0(P), X_1(P), \dots, X_N(P)) \in \mathbb{A}^{N+1} \setminus \{(0, \dots, 0)\}$$

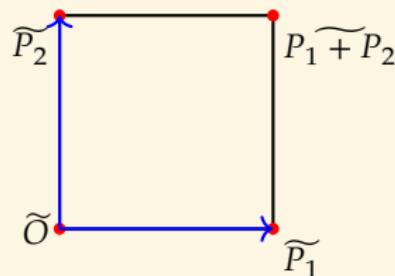
- This also works to define cubical points \tilde{P} when \mathcal{L} is not very ample, as long as P is not a **base point** of \mathcal{L}
- **Exercice:** what does a **cubical point** represent in the other equivalent descriptions of the line bundle \mathcal{L} ?

Examples: cubical points on an elliptic curve

- $D = (0_E)$: level-1 coordinate Z_1
- $D = 2(0_E)$: level-2 coordinates $X_2, Z_2 = Z_1^2$
- $D = 3(0_E)$: level-3 coordinates $X_3 = X_2 Z_1, Y_3, Z_3 = Z_1^3$
- Weierstrass coordinates: $x = X_3/Z_3 = X_2/Z_2, y = Y_3/Z_3$.
 $P \in E$ is determined by $(x(P), y(P))$.
- A level 3 cubical point \tilde{P} is a choice of $(X_3(\tilde{P}), Y_3(\tilde{P}), Z_3(\tilde{P}))$ above $(X_3(P) : Y_3(P) : Z_3(P))$.
N.B: $D = 3(0_E)$ is very ample. Example: fix $\tilde{O} = (0, 1, 0)$.
- A level 2 cubical point \tilde{P} is a choice of $(X_2(\tilde{P}), Z_2(\tilde{P}))$ above $(X_2(P) : Z_2(P))$.
N.B: $D = 2(0_E)$ is base point free. Example: fix $\tilde{O} = (0, 1)$.
- A level 1 cubical point \tilde{P} is a choice of $Z_1(P)$.
N.B: 0_E is a base point of $D = (0_E)$, so we define $\tilde{0}_E$ by (for instance) $\frac{Z_1}{x/y}(\tilde{0}_E) = 1$.

Cubical arithmetic: a degenerate case

- Assume that \mathcal{L} is algebraically equivalent to 0 : $\phi_{\mathcal{L}} = 0$
(If D is a divisor on E , this is equivalent to $\deg D = 0$)
- Then $X_{\mathcal{L}}$ is a commutative group, an extension of A by \mathbb{G}_m
- Reformulation: we have a **squared structure** on $X_{\mathcal{L}}$



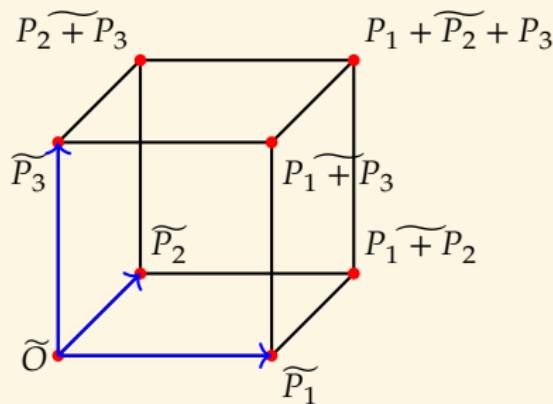
- $\widetilde{P}_1 + \widetilde{P}_2$ is uniquely determined by $\widetilde{P}_1, \widetilde{P}_2$ (and \widetilde{O})
- The squared structure also determines $-\widetilde{P}$

Corollary

Given \widetilde{P}_i the cubical point $\sum n_i \widetilde{P}_i$ is uniquely determined for all $n_i \in \mathbb{Z}$

Cubical arithmetic: the general case

- We want to work with \mathcal{L} ample
- We don't have a group / a squared structure anymore
- But we do have a **cubical structure!**



- $P_1 + \widetilde{P}_2 + P_3$ is uniquely determined by $\widetilde{P}_1, \widetilde{P}_2, \widetilde{P}_3, P_1 + \widetilde{P}_2, P_1 + \widetilde{P}_3, P_2 + \widetilde{P}_3$ (and \widetilde{O})

Corollary

Given \widetilde{P}_i and $P_i + \widetilde{P}_j$ for $i \neq j$, the cubical point $\sum n_i \widetilde{P}_i$ is uniquely determined for all $n_i \in \mathbb{N}$.

The cubical structure does not determine $-\widetilde{P}$ anymore. But if \mathcal{L} is symmetric there is a notion of Σ -cubical structure to define $-\widetilde{P}$ in a way compatible with the cubical arithmetic. This allows to define $\sum n_i \widetilde{P}_i$ for $n_i \in \mathbb{Z}$.

Formulas 1

- Cubical arithmetic arises from a canonical isomorphism

$$\mathcal{L}_{P_1+P_2+P_3} \otimes \mathcal{L}_{P_1} \otimes \mathcal{L}_{P_2} \otimes \mathcal{L}_{P_3} \simeq \mathcal{L} \otimes \mathcal{L}_{P_2+P_3} \otimes \mathcal{L}_{P_1+P_3} \otimes \mathcal{L}_{P_1+P_2}$$

- Given $Z \in \Gamma(A, \mathcal{L})$ with associated divisor D , the isomorphism comes from a function cub_D :

$$\frac{Z(P_1 + \widetilde{P_2} + P_3) \cdot Z(\widetilde{P_1}) \cdot Z(\widetilde{P_2}) \cdot Z(\widetilde{P_3})}{Z(\widetilde{O}) \cdot Z(P_2 + \widetilde{P_3}) \cdot Z(P_1 + \widetilde{P_3}) \cdot Z(P_1 + \widetilde{P_2})} = \text{cub}_D(P_1, P_2, P_3)$$

Proposition

- *Neutrality*: $\text{cub}_D(0_A, 0_A, 0_A) = 1$.
- *Commutativity*: $\text{cub}_D(\sigma(P_1, P_2, P_3)) = \text{cub}_D(P_1, P_2, P_3)$ for all $\sigma \in \mathfrak{S}_3$.
- *Associativity*:

$$\text{cub}_D(P_1 + P_2, P_3, P_4) \cdot \text{cub}_D(P_1, P_2, P_4) = \text{cub}_D(P_1, P_2 + P_3, P_4) \cdot \text{cub}_D(P_2, P_3, P_4).$$

- For a Σ -cubical structure: *(Anti)-symmetry*: $\text{cub}_D(P_1, P_2, -P_1 - P_2) = \pm 1$.
- *Associativity* means that the cubical point $\sum n_i \widetilde{P}_i$ does not depend on the choices of cubes used to compute it
- N.B.: Z^m is a section of mD , and $\text{cub}_{mD} = \text{cub}_D^m$: cubical arithmetic of level n induces the cubical arithmetic of level nm .

Formulas 2

Theorem

$$\text{cub}_D(P_1, P_2, P_3) = \frac{g_{D, P_1, P_2}(P_3)}{g_{D, P_1, P_2}(0_A)}$$

where g_{D, P_1, P_2} is any function with divisor $t_{P_1+P_2}^* D + D - t_{P_1}^* D - t_{P_2}^* D$.

Proposition

If we take g_{D, P_1, P_2} normalised at 0_A , then

- **Neutrality:** $g_{D, P_1, P_2}(0_A) = 1$.
- **Commutativity:** $g_{D, P_1, P_2}(P_3) = g_{D, P_2, P_3}(P_1) = g_{D, P_3, P_1}(P_2)$
- **Associativity:** $g_{D, P_1+P_2, P_3} g_{D, P_1, P_2} = g_{D, P_1, P_2+P_3} g_{D, P_2, P_3}$
- **For a Σ -cubical structure: (Anti)-symmetry:** $g_{D, P_1, P_2}(-P_1 - P_2) = \pm 1$.

Cubical arithmetic on elliptic curves

$$\begin{aligned}\text{cub}_{(0_E)}(P_1, P_2, P_3) &= \frac{\begin{vmatrix} 1 & x(P_1) & y(P_1) \\ 1 & x(P_2) & y(P_2) \\ 1 & x(P_3) & y(P_3) \end{vmatrix}}{(x(P_2) - x(P_1))(x(P_3) - x(P_1))(x(P_3) - x(P_2))} \\ &= \frac{l_{P_1, P_2}(P_3)}{(x(P_3) - x(P_1))(x(P_3) - x(P_2))} = \frac{x(P_1 + P_2) - x(P_3)}{l_{P_1, P_2}(-P_3)}\end{aligned}$$

- Differential addition: $Z_1(\widetilde{P+Q})Z_1(\widetilde{P-Q}) = Z_1(\widetilde{P})^2Z_1(\widetilde{Q})^2(x(Q) - x(P))$
- Doubling: $Z_1(2\widetilde{P}) = Z(\widetilde{P})^4 2y(P)$
- Inverse: $Z_1(-\widetilde{P}) = -Z_1(\widetilde{P})$.

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2): $y^2 = x^3 + \mathcal{A}x^2 + x$

- $Z(2\widetilde{P}) = 4X(\widetilde{P})Z(\widetilde{P})(X(\widetilde{P})^2 + \mathcal{A}X(\widetilde{P})Z(\widetilde{P}) + Z(\widetilde{P})^2)$
- $Z(\widetilde{P+Q})Z(\widetilde{P-Q}) = (X(\widetilde{Q})Z(\widetilde{P}) - X(\widetilde{P})Z(\widetilde{Q}))^2$

Caveats

- In level 2 (X, Z) -cubical coordinates, cubical exponentiation $\ell \mapsto \ell \tilde{P}$ can be computed via a Montgomery style ladder, using cubical doublings and cubical differential additions.
- Very similar to $x = (X : Z)$ -only arithmetic

💡 We can have $\ell \tilde{P} = \tilde{0}_E$ but $(\ell + 1) \tilde{P} \neq \tilde{P}$

- However, $\ell \tilde{P} = \tilde{0}_E$ and $(\ell + 1) \tilde{P} = \tilde{P}$ implies $(m\ell + n) \tilde{P} = n \tilde{P}$ for all m, n .
- x -only arithmetic does not depend on the quadratic twist $By^2 = x^3 + a_2x^2 + a_4x + a_6$
- 💡 But (X, Z) -level 2 cubical arithmetic does depend on the twist!

Algorithmic applications

Given a model of an abelian variety (A, \mathcal{L}) with explicit formulas for the cubical arithmetic on $X_{\mathcal{L}}$, we have algorithms for:

- Computing the pairings $e_{\mathcal{L}, \ell}$
- Computing (polarised) isogenies $\phi : (A, \mathcal{L}^\ell) \rightarrow (B, \mathcal{M})$
- Computing isogeny preimages
- Computing radical isogenies
- Computing functions with prescribed divisors
- Changing level

• N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the theorem of the square

High level overview:

- The cubical structure on $X_{\mathcal{L}} \rightarrow A$ induces the biextension $Y_{\mathcal{L}} \rightarrow A \times A$
- In practice: represent $g_{P,Q}$ by the four cubical points $\widetilde{0_E}, \widetilde{P}, \widetilde{Q}, \widetilde{P+Q}$.
- Cubical arithmetic \Rightarrow biextension arithmetic \Rightarrow pairings
- This biextension $Y_{\mathcal{L}}$ is trivial over $K(\mathcal{L}) \times A$
- For formal reasons, this recovers the theta group $G(\mathcal{L})$ and its action on sections
- Cubical arithmetic \Rightarrow theta group arithmetic \Rightarrow isogenies

Unicity of cubical structures:

- Level- $n\ell$ cubical arithmetic on A induces level- $n\ell$ cubical arithmetic on A (and conversely) \Rightarrow change of level
- Level- $n\ell$ cubical arithmetic on A induces level- n cubical arithmetic on B , where B is ℓ -isogeneous to A \Rightarrow isogenies
- Level- n cubical arithmetic on A induces level- $n\ell$ cubical arithmetic on B , where B is ℓ -isogeneous to A \Rightarrow isogeny preimages

Example: Vélu's formulas

- $E_1/k : y_1^2 = x_1^3 + ax_1 + b_1$ elliptic curve
- $\phi : E_1 \rightarrow E_2 = E_1/K$, isogeny with kernel $K = \langle P \rangle$
- Vélu's formulas use **traces**:

$$x_2(P) := \sum_{i=0}^{\ell-1} (x_1(P + iT) - \sum_{i=1}^{\ell-1} x_1(iT)), \quad y_2(P) := \sum_{i=0}^{\ell-1} (y_1(P + iT) - \sum_{i=1}^{\ell-1} y_1(iT))$$

- Recall that $x_1 = X/Z, y_1 = Y/Z$ are **rational functions**
- Cubical arithmetic allows us to directly take "cubical traces" of X, Y, Z
- Vélu's formulas **do not** extend directly to higher dimension (for degree reasons)
- But the **cubical trace approach** does!
- **Cosset-Lubicz-R.** isogeny formulas already used (without knowing!) "cubical traces" of **theta functions**
- Algorithms thoroughly **optimised** in **[YOKN25]**
- Cubical point of view brings more **flexibility** \Rightarrow **Corte-Real Santos et al** 30% improvement for isogenies and 50% improvement for images compared to **[YOKN25]** (work in progress)

Example: Radical isogeny formulas

- We have working radical isogeny formulas in various variants of the Montgomery model
- Speed up of $\approx 2\times$ to $\approx 2.5\times$ compared to Decru's formulas in [Dec24]
(Depending on the model and whether ℓ is a sum of two squares or not)
- Works in x -only coordinates, using (X, Z) -cubical arithmetic
(This is the main source of savings: we can use symmetry to only compute only half the points)
- Example: In the theta model, a ℓ -radical isogeny (for ℓ a sum of two squares) costs a ℓ -th root, and $1I + 6\ell M + O(\log \ell)M$ arithmetic operations
- And the “preimage” of a point through the dual isogeny costs a ℓ -th root, and $1I + 5\ell M + O(\log \ell)M$ arithmetic operations
- **Decru**: $3I + (16\ell - 25)M$
- Still a work in progress
- The difference of complexity for a prime $\ell \equiv 1 \pmod{4}$ vs $\ell \equiv 3 \pmod{4}$ comes from the way we compute the cubical descent of level from level 2ℓ to level 2.
- **Question**: Better descent of level formulas?

Cubical functions

- $Z \in \Gamma(A, \mathcal{L})$ with associated divisor D
- $\widetilde{R} \mapsto Z(\widetilde{R} + \sum n_i \widetilde{P}_i)$ is a “cubical function” with divisor $t_{\sum n_i P_i}^* D$.
- Depends on the choices of \widetilde{P}_i , $\widetilde{P_i + P_j}$, but also of \widetilde{R} , $\widetilde{R + P_i}$
- Combining these cubical functions we can get genuine elliptic functions, not depending on the choices of \widetilde{R} , $\widetilde{R + P_i}$

Cubical functions

Example

$$R \mapsto g_{P_1, P_2}(R) = \frac{Z(R + \widetilde{P_1} + P_2)Z(\widetilde{R})}{Z(R + \widetilde{P_1})Z(R + \widetilde{P_2})}$$

is a genuine function g_{D, P_1, P_2} with divisor $t_{P_1 + P_2}^* D + D - t_{P_1}^* D - t_{P_2}^* D$.
It only depends on the choices of $\widetilde{P_1}, \widetilde{P_2}, \widetilde{P_1 + P_2}$.

$$R \mapsto \frac{Z(\ell \widetilde{P} + \widetilde{R})Z(\widetilde{R})^{\ell-1}}{Z(\widetilde{P + R})^\ell}$$

is a genuine function $f_{D, \ell, P}$ with divisor $t_{\ell P}^* D + (\ell - 1)D - \ell t_P^* D$.

- If $P \in A[\ell]$,

$$R \mapsto \frac{Z(\ell \widetilde{R})Z(\ell \widetilde{P} + \widetilde{R})}{Z(\ell \widetilde{R} + \widetilde{P})Z(\widetilde{R})}$$

is a genuine function with divisor $[\ell]^*(D - t_P^* D)$.

(Compare with how we would compute this function with Miller's algorithm.)

Pairings via cubical arithmetic

- Up to $\approx 2\times$ faster pairing computation for isogeny based cryptography, compared to Miller's algorithm [PRRSS25]
- Pairings entirely on the Kummer line, using level 2 cubical arithmetic
- N.B.: since level 2 cubical arithmetic gives the pairings $e_{2(0_E),\ell} = e_{(0_E),\ell}^2$, a priori we only recover squared pairings.
- But we have a trick to recover the level -1 pairings $e_{(0_E),\ell}$ when ℓ is even
(New: and also when ℓ is odd!)
- Potentially useful for pairings based cryptography too [LRZZ25]

The Discrete Logarithm Problem

- One can reduce DLPs on A/k to cubical DLPs (via “excellent cubical lifts”)
- Conversely, cubical DLPs reduce to DLPs on A and k^*
- (Similarly for biextensions and theta groups DLPs)

- With extra information, cubical DLPs may only need DLPs in k^*

⇒ Monodromy leak

- Leaking the result $(X(nP), Z(nP))$ of a Montgomery ladder $x(P) \mapsto x(nP)$ on a Montgomery curve is enough to recover n via a DLP in \mathbb{F}_q^*
- See <https://jonathke.github.io/monoDOOM>

Higher degree and higher level

- We can also animate degree n and multilinear forms.
- n -multi-extension of $\prod A_i$ by $\mathbb{G}_m \simeq n$ -multilinear map $\prod A_i \rightarrow \mathbb{G}_m$
- $(n + 1)$ -hypercube structure on A by $\mathbb{G}_m \simeq$ degree n map $A \rightarrow \mathbb{G}_m$
- A n -bilinear map $b : A^n \rightarrow \mathbb{G}_m$ gives a degree n function

$$q : A \rightarrow \mathbb{G}_m, q(x) \mapsto b(x, \dots, x)$$

- Conversely a degree n function gives a symmetric n -bilinear map $A^n \rightarrow \mathbb{G}_m$
- The same holds for n -multi-extensions and $(n + 1)$ -hypercube structures.
- Unfortunately on abelian varieties, a tri-extension is trivial (it is induced by a biextension), so there are no interesting hypercube structures [Grothendieck].
- If $\pi : X \rightarrow S$ is a proper flat morphism of relative dimension n , then the determinant functor $R\pi_*$ has a $(n + 2)$ -hypercube structure which gives a multilinear pairing $\mathrm{Pic}(X)^{n+1} \rightarrow \mathrm{Pic}(S)$ [Deligne]
- We could also look at higher level bilinear and quadratic forms, i.e. with values in $B^2 \mathbb{G}_m$ rather than $B\mathbb{G}_m$.
- This would give us quadratic forms in gerbes rather than in torsors.

Bibliography

[ARV10] J. Adámek, J. Rosicky, and E. M. Vitale. "What are sifted colimits?" In: [Theory and Applications of Categories \[electronic only\]](#) 23 (2010), pp. 251–260 (cit. on p. [19](#)).

[ČS24] K. Česnavičius and P. Scholze. "Purity for flat cohomology". In: [Annals of Mathematics](#) 199.1 (2024), pp. 51–180 (cit. on p. [18](#)).

[Dec24] T. Decru. "Radical Vélu N-Isogeny Formulae". In: [Annual International Cryptology Conference \(Eurocrypt 2024\)](#). Springer. 2024, pp. 107–128 (cit. on p. [48](#)).

[LRZZ25] J. Lin, D. Robert, C.-A. Zhao, and Y. Zheng. "Biextensions in pairing-based cryptography". Accepted for publication at [Designs, Codes and Cryptography](#). Oct. 2025 (cit. on p. [51](#)).

[PRRSS25] G. Pope, K. Reijnders, D. Robert, A. Sferlazza, and B. Smith. "Simpler and Faster Pairings from the Montgomery Ladder". Accepted for publication at [IACR Communications in Cryptology \(CiC\)](#). Apr. 2025 (cit. on p. [51](#)).

[YOOKN25] R. Yoshizumi, H. Onuki, R. Ohashi, M. Kudo, and K. Nuida. "Efficient theta-based algorithms for computing (ℓ, ℓ) -isogenies on Kummer surfaces for arbitrary odd ℓ ". In: [International Conference on Post-Quantum Cryptography](#). Springer. 2025, pp. 3–37 (cit. on p. [47](#)).