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Quadratic and bilinear forms



Linear and quadratic maps

X, Y, Z abelian groups
@ Anaffinemap ¢ : X — Zisamap of degree < 1:

Ppx+y) —px) —dy) +¢0) =0 Vx,yeX.

@ Aquadraticmap ¢ : X — Zisamap of degree < 2:

Px+y+2)—Pp(y+2z)—Pp(x+2)—p(x+y) +d(xX)+d ) +¢(2)—¢p(0) =0 Vx,y,z € X.

o More generallyamap ¢ : X — Zis of degree < 11if @, 1 (¢) : X"*1 — Zis zero for an
appropriate @, , 1.

e Ifgis quadratic, g = gg + g1 + g where gy = q(0) and g; is homogeneous of degree i:

g;(nx) = nig;(x).

@ By translating, we may assume that ¢ is normalised: ¢(0) = 0.

@ Forinstance, ¢ is normalised of degree 1 iff it is linear.



Bilinear maps
@ b:XxY — Zishilinearifb(x, -) and b(-,y) arelinearforallx € X,y € Y.
e Equivalently ©, , (b) = 0 foran appropriate ©, 5 : X? x Y2 - Z.
o bisinduced by alinearmap X ® 7 Y — Z via the compositon X XY - X @5 Y — Z.
@ Abilinearmapb : X x X — Zissymmetricifb(x,y) = b(y,x) Vx,y € X.

@ Ifg: X — Zis quadratic, we can associate a symmetric bilinear form bq : X x X - Zvia
by (x,y) = O2q(x,y) = G(x + ) +q(0) — q(x) —4(y).
o Infact, g is quadratic iff b, is bilinear.

And more generally ¢ : X — Zis of degree < n iff @,,(¢p) : X" — Zis n-multilinear.

@ Conversely, given a bilinearb : X x X — Z, we can associate a quadratic form
gy : X = Z,qp(x) = b(x, x).

@ These are not inverse of each other!

@ b — g — b’ gives the symmetrisation of b:
b'(x,y) = b(x,y) + by, x)

@ g —» b — ¢’ givesq' = 2g,, where g, is the homogeneous degree 2 part of g

o Even if we restrict to homogeneous normalised g, there will be trouble if 2 is not inversible ...



Abelian varieties

If A/k is an abelian variety, there seems to exists a strong analogy between:
@ Polarisations @ : A — A and symmetric bilinear morphisms A x A — G,,
@ Line bundles L € Pic(A) over A and quadratic maps A —» G,,,
o Furthermore, L € A = PicO(A) “corresponds”to a linear morphisms A — G,,.

@ More generally a morphism A — B“corresponds”to a bilinear map A x B — G,,.

Asslight subtlety is that seeing .Lin Pic(A) means we work up to isomorphism, in the analogy this corresponds to working with g
up to translation.

One can fix the isomorphism class of .C by rigidifying it at 0 4; this corresponds to normalising g.



Duality

@ Define the dual of X as X = Hom(X, Z), then by definition an element Q € Xis alinear map
X - Z

@ Abilinearmapb : X x X — Z s the same thing as a linear map @, : X — X, via
Dy (x) = b(x,+), b(x1,x) = Pplx1)(xp).

@, is the polarisation associated to b.

o Assume that X is isomorphic to its bidual, via the natural map i : X — X, i(x) : P = P(x).
Then b is symmetric iff @y, is symmetric: @) : X = X — Xisequal to @,

o Ifg: X — Zis quadratic, its associated bilinear form bq corresponds to
D, X - X, x - £ — g+ [9(0) — 4(x)]
wheretq 1y — q(x + ).
@ An abelian variety A is bidual, and a morphism @ : A — Aisa polarisation precisely when it is

symmetric.
o If Lisaline bundle on A, the associated polarisationis @ ; : A — A,P — t;:)aC ® L1



Morphisms

@ Abilinearformb : X x Y — Zinduces linear maps ¢x 5 : X — YV,x — b(x,-) and
Gyp:Y = XV, y = b(,y).
@ By biduality, ¢y , : ¥ — XVisthedualof ¢x , : X — YV.

@ Canonical bilinear form:
bx : X x XV > Z,(x,9) — P(x).
© We can recover b from ¢y ;, or ¢ , via
b= (ld X(P;,b)bx = (¢X,h X Id)*by

Bilinear(X x Y, Z) ~ Hom(X,YV) =~ Hom(Y, XV)
Via this bijection, by is the bilinear map X x XV — Z associatedto Id : X — X.

A morphism ¢ : A — BV corresponds by duality to a morphism ¢V : B — AV.

This should give a “bilinear structure”on A x B:

Hom(A,BY) ~ Hom(B,AV) =?

We do have the Weil-Cartier pairing:
eg i Kerg x KergV — G,



Poincaré polarisation

@ The bilinear map by induces a canonical “universal” quadratic form on X x XV:

gp(x, ) = P(x).

In particular, i € XV is recovered as i = gp | X x {1}
@ Associated bilinear form bp:

bp((x1, 1), (X2, 12)) = P1(x2) + P (x7)

@ Polarisation: @p : X x XV - XV x X, (x, 1) — (¢, x) via the biduality X =~ X
o Ifb: X x X — Z bilinear form associated to a polarisation &}, : X — X, then
gy = (IdxPy)*qp and b(x, y) + by, x) = (1d xP})*bp.

@ Symmetric Poincaré line bundle P on A x Zf(birigidiﬁed at 0), given by applying the universal
propertyof Atold : A — A.
@ Associated polarisation

Dp:AxA—-AxA P,Q) ~ (QP)

o If.L € Pic’(A), L = P | A x {.L}.
o If®: A — Aisa polarisation, we get a symmetric line bundle on A via £’ = (1d x®)*P.
o If ® = &, fora symmetric L, then L' = L&,

(Recall that if g is symmetric, g" = 24.)



Linear maps and (anti)symmetric line bundles

@ Aquadraticformq : X — Zis of degree < 1 iff bq = 0iff <Dq =0

@ Alinebundle .L € Pic(A) is algebraically equivalent to 0, i.e. belongs to pic’ (A)iffd, =0

Assume q is normalised: 4 = qq + g, where g4 is linear and g, homogeneous of degree 2.

@ Then qis symmetric (i.e. VX, g(—x) = q(x))iffq = g,.

And g is antisymmetric (i.e. Vx, g(=x) = —q(x)) iffq = g4, i.e.is linear
@ Forany normalised g, 4(x) + q(—x) (resp.q(x) — g(—x)) is symmetric (resp. antisymmetric).

112+}’l 712—1’1

g(nx) = ——q(x) + ——q(=x).
q(nx) = nzq(x) if g is symmetric, g(nx) = nqg(x) if g is antisymmetric.

o If Lisaline bundle on A, it is symmetric (resp. anti-symmetric) iff [—1]*.L ~ . (resp.
[-1]*L = L71).

o L ® [—1]*Lis always symmetricand L ® [—1]*.L~! always antisymmetric.

o Lisantisymmetriciff L € PiCO(A).

o [n]*L =~ L8 +1)/2 & ([—1]*¢C)®'(”2‘”>/2
[n]*.L =~ L& if Lis symmetric, [1n]*.L =~ L& if Lis antisymmetric.
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Torsors
o If X" isa X-torsor (i.e. there is a free and transitive group action of X on X’), we can say that
g : X' - Zis quadratic whenever:
gw+x+y+z)—qw+x+y) —qw+y+2z) —qgw+z+x)+
qw+x) +qw+y) +qw+z) —qw) =0 YweX, xyzeX

o It suffices to check that there is one w € X', such that

qw+x+y+z)+qw+2z) —qw+x+2z) —g(w+y+z) =
qw+x+y)+qw) —qw+x) —qw+y) VxyzeX
@ We can then define a bilinear form on X via
bq(x,y) =qw+x+y)+qw) —qw+x)—qgw+y),

this does not depend on w!

@ If A" isan A-torsor, L a line bundle on A’, we can define a polarisation
@ : A Pic®(A') = Pic®(A), Pp(P) =ty pL L],
where t 4 p is the translation action of P € Aon A’
o Example:if A = Jac(C) = PiCO(C) is a Jacobian of a curve of genus g, the Theta divisor
@g C Pics™! (®) (@g = locus of effective divisors of degree ¢ — 1) induces a principal
polarisation on Jac(C).
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Arithmetic consequences

2

Because [2] : G, = G,,,, x — x“is not surjective (only surjective étale locally), a polarisation
@ : A — A may not be induced by a line bundle .L on A (it is only induced étale locally)

Tate: if A/Kis principally polarised, w(A/K) is a square.
Poonen-Stoll: explicit example of C/Q such that w(Jac(C)/Q) is not a square.

°

°

@ But we just saw that a Jacobian is principally polarised.

o Different notion of principal polarisations! For Tate it comes from a rational line bundle.
°

In the first case the Cassel-Tate pairing is alternating, in the second only antisymmetric.



Some mysteries

o Let®: A — A bea principal polarisation
(i.e. @ is an isomorphism and is induced by an ample line bundle .)

@ We think of @ as a unimodular positive definite symmetric bilinear form bg
@ The Weil pairings g ,,1 : A[1] x A[n] — p,, should be incarnations of b.

@ But they are antisymmetric, not symmetric

o IfA = C8/Aisacomplex abelian variety, a polarisation ¢ can be described by a positive
definite Hermitian form H on C8 suchthat JH | A x A C Z.

@ But H is Hermitian and E = JH is symplectic, none are symmetric.

@ However, a choice of line bundle L inducing ¢ is the same as a choice of quasi-character x for H:

XA+ A5) = x(ADx(Ap)eTEMAD WA A, € A

X : A - G, is quadratic.
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Bilinear maps on abelian varieties

@ Goal: associate to a line bundle L on A a quadratic form g : A — G,,, and to a polarisation
¢:A— Aabilinearformb: AxA - G,,.

@ Here A, G,,, are group schemes, so g, b should be morphisms of group schemes.

@ And they should satisfy the appropriate version of bilinearity/quadracity.

@ Aisnotagroup,itisagroup object in the category of schemes
@ But schemes embed fully faithfully into the presheaf topos on affine schemes.
@ Infact, if X'isa scheme, R — X (R) is an fppf-sheaf.

@ A group object G in the category of sheafs is the same thing as giving a group structure on each
G(R) suchthat¢ : R — Sinduces a group morphism G(¢) : G(R) — G(S).

@ Similarly, we can define bilinearity and quadracity pointwise.



Internal logic of a topos

Recall: we can see A, G,,, as abelian sheafs for the fppf topology
Sheafs form a topos: in the internal logic of a topos they behave like a set!

The internal logic is like a compiler, that translates internal statements into external statements.

Forinstance, if ¢ : F — G is a morphism of sheafs, it translates the internal surjectivity statement
VyeGIxeF|¢px) =y

into the external epimorphism statement:
“For all sections y € G(U), thereis a covering U = | U; such that there exists a section
x; € F(U;) where ¢(x;) =y | U;"

@ We can prove internally that a composition ¢, o ¢ of two surjective morphisms ¢ : F — G
and ¢, : G - Hissurjective:'Vz € H,Jy € G| ¢, (y) =z, andIx € F | ¢1(x) =y, 50
¢ (¢1(x)) = z"The compiler translate this into the usual external proof using coverings of
coverings.

@ Caveat: the internal logic of a topos is intuitionistic logic: for a proposition P, P Vv =P is not
always true.

@ Intuitionistic logic is constructive, this is the logic given by the Curry-Howard correspondance.
One needs to add continuations as first class citizen to recover classical logic.



Bilinear and quadratic forms on an abelian variety via topos

@ We can define linear, bilinear and quadratic forms in a topos by using the same definitions as for
standard groups, expressed in the internal logic of the topos.

@ b:AxB — G,,isbilinear iff:
vﬂl,ﬂz S A, b]/bZ (S B,b(al +ap, bl + bz) = b(ﬂl,bl) X b(ﬂl,bz) X b(ﬂz,bl) X b(az, bz)

@ This is a statement in a cartesian theory, hence in particular a geometric theory.

@ This recovers the pointwise definition: b : A(R) x B(R) = G,,,(R) should be bilinear (in a
compatible way) for all R
Recall that the fppf topos has enough points.

@ Abilinearmap A x B —» G, could also be defined asalinearmap A ® B - G,,,.

@ Unfortunately, for abelian varieties, there are no bilinear maps A x B - G,,,;: A, B are proper
while G,,, is affine, so any such map would be constant.

@ Likewise, all maps A — G,,, are constant, so there are no non trivial linear or quadratic maps.

@ This “naive” approach does not explains the analogy.



Animating bilinear and quadratic maps

@ There are no bilinear maps A x B —» G,,, when we embed A, B, G,,, into a category of sheafs of
sets.

@ We will instead embed them into the larger category of sheafs of spaces, or rather sheafs of anima
(the co-category of homotopy types of spaces)

@ Bilinear or quadratic maps on animated abelian groups (i.e. abelian groups in anima) may be seen
as higher order bilinear or quadratic forms.

@ Let Ani be the co-category of anima, i.e. co-groupoids
(This is the (oo, 1)-category of (oo, 0)-categories).

@ An co-groupoid is a Kan complex (up to inverting weak equivalences), i.e. the homotopy type of a
space

@ An co-category is a quasi-category, i.e. a weak Kan complex (up to inverting weak equivalences)

@ The bible on this is Lurie’s books: Higher Topos Theory, Higher Algebra, Spectral schemes.



The animation of a category

@ The term animation (due to Clausen) was introduced in Cesnavi¢ius-Scholze [CS24]. The authors

describe the animation of a locally strongly finitely presentable category C, relying heavily on
Lurie’s work on co-locally presentable categories.

o If Cis a category of algebraic structures (i.e. of rings, groups, modules, ...), then Ani(C) is the

co-category of these algebraic structures in Ani (animated rings, animated groups, animated
modules)...

@ Aniitself is the animation of Set: the trivial algebraic structure.



Locally strongly finitely presentable categories
The following are equivalent for a category C

@ Cisthe category of models for an algebraic theory, i.e. there exists a category T with finite
products such that C = Homl—[ (T, Set).

o Cis the category of models for a finite product sketch.

@ Cisthe free cocompletion of a small category C with finite coproducts under sifted colimits:
C = sInd(Cyp)

@ C has all small colimits, the category CIP of strongly finitely presentable objects (also called
compact projective objects) is essentially small, and any object in C is a sifted colimit of the
canonical diagram of strongly finitely presentable objects mapping into it.

o C¥P has finite coproducts, and the restricted Yoneda embedding C < [C¥P°, Set] identifies C
with the category of finite-product-preserving functors C¥7° — Set.

@ Asifted colimit is a colimit of a diagram D — C where D is sifted, i.e. the associated colimits
commute with finite products in Set.

@ This is a generalisation of an inductive colimit D — C where D is required to be filtered, i.e. so
that the associated colimits commute with all finite limits in Set.

@ A reflexive coequalizer (i.e. the quotient of an equivalence relation) is a sifted colimit. A good rule
of thumb is “sifted colimits = inductive colimits + reflexive coequalizer” (but see [ARV10] for
caveats).

o x € Cisstrongly finitely presentable if Hom(x, -) commutes with sifted colimit.

Modulo size issues, in the above one can take Cy = C¥Pand T = C¥Pe,
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Locally finitely presentable categories

The following are equivalent for a category C

@ Cis the category of models for an essentially algebraic theory, i.e. there exists a category T with
finite limits such that C = Hom,,, (T, Set).

o Cis the category of models for a finite limit sketch.

o Cis the free cocompletion of a small category Cy with finite colimit under filtered colimits:

C == lnd(Co)

@ C has all small colimits, the category o of finitely presentable objects (also called compact
objects) is essentially small, and any object in C is a filtered colimit of the canonical diagram of
locally finitely presentable objects mapping into it.

o (7 has finite colimits, and the restricted Yoneda embedding C < [Cfp", Set] identifies C with
the category of finite-limit-preserving functors afre 5 set.

Modulo size issues, in the above one can take Cy = CfPand T = CfPe.
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Properties of a locally strongly finitely presentable category

IfC = slnd(Csfp) is locally strongly finitely presentable, it is locally finitely presentable:

C = Ind(CfP)

The finitely presentable objects P are the coequalizers (or even reflexive coequalizers) of
objects in C¥P

Afunctor F : C — D preserving sifted colimits (resp. filtered colimits) is the same thing as a
functor F : C¥P - D (resp. F : C? - D): Cis the free completion of C¥? under sifted colimit
(resp. filtered colimits).

And F preserve all colimits (i.e. is right exact) iff F | csfp preserve finite coproducts (or F | cfr
preserve finite colimits).

C = Homyy(C¥7°,Set) = Homy,, (C'7°, Set) = Hom,,,,(C°, Set).



Examples of locally strongly finitely presentable categories

@ Every algebraic theory gives a locally strongly finitely presentable category
@ Main examples: Set, Groups, Abelian groups, (commutative) Rings, Modules over a ring

@ In all these examples, strongly finitely presentable object / compact projective objects are the
retract of finite free objects, i.e. the Cauchy completion of finite free objects.

@ Finite freerings: R = Z[xq, ..., X,,].

@ Finite free modules: M = R™.



Animating a locally strongly finitely presentable category

o IfC = sInd(C¥?) is locally strongly finitely presentable, Ani(C) is the free completion of C¥/7
under sifted colimit in the (oo, 2)-category of (oo, 1)-categories.

@ If D € Aniis a co-category with sifted colimits, a functor F : Homsifted(Ani (C), D) is the
same thing as a functor C¥? - D.

s

In an co-category sifted colimits are generated by filtered colimits and geometric realisations, i.e.
colimits indexed by A° (reflexive coequalizers are colimits indexed by T.1A°).

@ Ani(C) is the co-category of functors Hompy (C¥P°, Ani).
@ This is also the category of simplicial objects in C up to inverting weak equivalences.

@ Afunctor F : C — D of locally strongly finitely presentable categories that preserves sifted
colimits lifts to a functor Ani(F) : Ani(C) — Ani(D).

@ Given G : D — E, thereis a natural transformation
Ani(G) o Ani(F) - Ani(G o F),

which is an equivalence if F(C¥?) C Ind D¥? in D or Ani(G) (E(C¥?)) C E in Ani(E).
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Animation: a summary

A (1, 1)-category is a category enriched over Set
Set itself is the free completion of finite sets under 1-sifted colimits
A (o0, 1)-category is a category enriched over Ani

Ani itself is the free completion of finite sets under co-sifted colimits (i.e. inductive limits and
geometric realisations).

A locally strongly finitely presentable category C is the free completion of a small category Cy
with coproducts under 1-sifted colimits.

C = Hompy(Cy®, Set)
@ Its animation Ani(C) is the free completion of Cyy under 1-sifted colimits.
Ani(C) = Homl—[(C0°,Ani)



Animating an abelian category

@ Dold-Kan correspondance: if A is an abelian category, Ani(A) is equivalent to the connective
part D (A) of the co-derived category of D(A).
(For cochains: Ani(A) =~ DSO(A)),

@ And D(A) is recovered as the stabilisation Stab(Ani(A)) of Ani(A)

o If (X, T) is a site, the animation of the sheaf topos Sh (X, Set) is the hypercompletion of the
oo-topos Sh, (X, Ani)

@ And stabilisation commute with localisation:
Stab(Sh(X, Ani)) = Sh(X, Spectra)

where Spectra = Stab(Ani) is the stable co-category of spectra.



The standard derived category

A an abelian category. For simplicity A = Z — modules

C(A) the category of complexes on A

Unitinterval: T € C(A):I[0] = Z[0] & Z[1],I[1] = [I]withd[I] = [1] — [0].
Homotopy:map X ® [ - Y

K(A): complexes up to homotopy equivalence

D(A): K(A) localised in the quasi-isomorphisms (i.e. we invert “formally” the morphisms in
K (A) which induces isomorphisms on all HY). Localisation means that in the map

i: K(A) = D(A) quasi-isomorphisms are sent to isomorphisms, and D (A ) is universal for
this property.

K(A), D(A) are triangulated categories: the distinguished triangles are given by
(isomorphisms class of) mapping cones.

IfF : A — Bis aleft exact functor, the right derived functor RF (if it exists) is the right Kan
extension of F : K(A) = K(B) = D(B)alongi: K(A) = D(A):itis the universal functor
RF : D(A) — D(8) such that there is a natural transformation RF o i = F.



Internal logic of an co-topos

@ The internal logic of an co-topos is described by HoTT: homotopy type theory
@ In HoTT, all objects have a type: a : A means that a has type A

@ The main difference with standard type theory is that the identity type 1d 4 (2 = b) is no longer a
boolean true/false (i.e. the 0-category of —1-categories) but a type itself.
@ One may interpret Id4 (@ = b) as an Anima, a witness w for equality @ = b can be interpreted as

a path from a to b, and then a witness in ld|dA (w1 = w,) between two witnesses wy, W, may
be interpreted as an homotopy between w; and w, and so on.



Animating bilinear and quadratic forms

We can embed abelian schemes into the (stabilisation of the) co-topos of sheafs of anima, and look at
animated bilinear and quadratic forms with values in Ani(G,,,).

Definition
@ The dual abelian varietyA\is the (appropriate truncation of) animated linear maps
Hom(Ani(A), Ani(G,,));

@ The category of (symmetric) biextensions BIEXt(A, B; G,,,) is the (appropriate truncation of)
animated bilinear maps Ani(A) x Ani(B) — Ani(G,,)

@ The category of cubical structures on A Cube(A, G,,,) is (the appropriate truncation of)
animated quadratic maps Ani(A) — Ani(G,,)

For the truncation: we work over the suspension 2 (Ani(G,,)) and truncate to the connective part of the canonical f-structure of

the stable co-category. We end up with ordinary categories.

One can see biextensions and cube structures as bilinear maps and quadratic maps with values in
BG,, ratherthanin G,,,.



Bilinear and quadratic forms on an abelian variety via the derived category of fppf
sheaves

Using the Dold-Kan correspondance, we can reinterpret these constructions in the derived category
D(Shfppf) of fppf sheaves. (We work with cochains, so shift correspond to suspension and 77; = H ™)

@ Weil: the dual
A =1 oRHom(A4, G, [1])

In particular, Q € A induces a group extension G(Q) of A by G,
(G(Q) is necessarily commutative since the commutator pairing A x A — G,,, is constant).

@ Grothendieck: morphisms ¢ : A — B correspond bijectively to biextensions of A x B by G,

which in turn are given by
TooRHOomM(A®LB, G, [1]).

@ Breen: polarisations ¢ » on A corresponds to symmetric biextensions on A x A by G,,,, which
“corresponds” to
7-oR Hom(RSym? A, G,,,[1]).

@ Breen:a line bundle .L corresponds to a cubic structure on A by G,,,, which in turns
“corresponds” to
T<oRHOom(RIZA, G,,[1]).
Here I'; is the component of degree 2 of the divider power algebra
‘e Fr Sym2 Fand F — I,F are quadratic rather than additive functors, so care must be taken
when taking their derived version (we need to use simplicial resolutions).



Line bundles

e BG,, = [#/G,,] is the classifying stack of G,,,-torsors: this is the delooping of G ,,.
@ To give a line bundle .L on a scheme X is the same thing as givingamap X —» G,,,.

@ Under the Dold-Kan correspondance for cochains, the shift corresponds to the suspension X, aka
to delooping, the inverse of the loop function (2.

@ Hence we have:

HORHom(A, G,,[1]) ~ Ext}(A, G,,) =~ Hom(A, BG,,)
=~ 719 Hom(Ani(A), ZAni(G,,))
@ Here Hom(A, BG,,,) denotes morphisms respecting the group law (“morphisms of Picard
stacks”)
@ Anelementin Hom(A, BG,,) corresponds to a line bundle L algebraically equivalent to 0:
L e Pic’(A)
@ We recover the isomorphism A = pic° (A) = Ext! (A, G,,,), given concretely by the theta
group: L — G(.L)
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Biextensions and cubical structures
@ Recall: biextensions and cube structures are bilinear maps and quadratic maps with values in
BG,, ratherthanin G,

@ But since we work in the internal logic of an co-topos, the bilinear equation
b(x +y,z) = b(x,z) + b(y, z) needs to be witnessed by a “path” satisfying some further
coherency conditions

@ A biextension is a“bilinear map”b : A x B —» BG,,,, in particular we get a line bundle L above
AXxB

@ The bilinearity @, 5 (b) = 0 gives a section s on @, 5 (L) above A2 x B2

@ This section s has to satisfy some cocycle conditions

@ A cubical structure is a“quadratic map”g : A — BG,,,, in particular we get a line bundle L
above A

@ The quadraticity @3(q) = 0 gives a section s on @3 (L) above A3
@ This section s has to satisfy some cocycle conditions

@ Moret-Bailly the cocyle conditions are equivalent to the fact that, up to replacing A, G by
A" » Aand G,,, & G, there s a trivialisation ¢’ of the induced G’-torsor L on A" induced by
L such that ©5(t') = s" where s’ is the trivialisation on @3 (L") induced by s.
Similarly for biextensions.
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Squared structures on line bundles

@ Let’s work out in more detail what a“linear map” ¢ : G = BG,, should be for a commutative
group scheme G

o First we have a map to BG,,,, hence a line bundle L on G.
@ Secondly we have @, (¢) = 0, i.e.asquared structure.

@ This is witnessed by a section s of @, (L) above G x G:for every x,y € G, we have an
isomorphism £3.L ® ty.L =~ t3,, L ® L
(Recall that O, (f) : (x,y) — f(x+y) +£(0) —f(x) —f(y))

@ The coherence/cocycles conditions on s amount to the fact that s should induce a group
structure on J, which is a commutative group extension of G by G,,.

@ If A is an abelian variety, the fact that Hom (A, G,,;) = 0 automatically give such a squared
structure (uniquely!) for any L € PicO(A)

@ Similarly for biextensions and cube structures: a line bundle L, € Pic(A) automatically has a
unique cube structure.



Pairings from biextensions

Once we have a cubical structure on A or biextension on A x B, every equality inside BG,,, in
the internal logic give us a trivialisation of some line bundle, and equality between these
equalities correspond to maps between these trivialisations, i.e. maps to G,,,, which satisfy some
conditions.

For instance, given a principal polarisation b : A x A — BG,,,, then nb is zero on A[n] x A and
A x A[n].This gives two different trivialisations on A[n] x A[n], and the map between them is
the Weil pairing ¢;, ,,
We can also write

nb(x,y) = b(nx,y) =b(x,ny) =0
where the later equalities take place in the biextension associated to b. We recover Stange’s
interpretation of the Weil pairing as monodromy.
Likewise, the Tate pairing “comes” from b(nx,y) = 0 forx € A[n].

Note that, even if we have a symmetric biextension, the compatibility conditions “one level up” need not be symmetric.

Indeed, symmetric biextensions on the trivial torsor are given by alternate forms a(x1, x,). This biextension is a trivial
symmetric biextension on X iff a(xq, X,) = b(x1,Xp) — b(x,, x1) for some bilinearformb : X x X —» G,,,.

Likewise, if A = C8 /A, the cube structure induced by a line bundle L on A becomes trivial over C&.The cube structure on
A is then encoded by the descent of the trivial cube structure on C$ along A.

This recovers semi-characters and the theory of theta functions [Breen].
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The Poincaré biextension on an elliptic curve

Y the biextension associated to (Og) above E x E:

@ Anelement gp o of Yabove (P,Q) € E x Eisa function with divisor
(P+Q)+0p) —(P)—(Q)
@ Biextension law:

8P,,0 *18P,,Q = 8P, +P,,0 = 8P,,0()8P,,0(- + P1)
gp,,p, (- +Q)
8p,,0()8P,,0 (") 2p 20

N.B: the last equality is not obvious and result from cohomological arguments
o Similar formulas for gp o, *2 8p,0, = §P,0,+0,

@ Bilinearity property: for every Q (resp. every P), x1 (resp. x,) gives a commutative group law on
the gp o (=linearity on the left/right).

@ Compeatibility:

(8P,,0, *18P,,Q,) *2 §P,,Q, *18P,,Q,) = (8P,,Q, *28P,,Q,) *1 (8P,,0, *28P,,Q,)



Pairings via biextensions

0 IfP=0g0orQ =0g (P+ Q) + (0g) — (P) — (Q) ~ 0, so abiextension element g o or
8p,0,. is a constant function on E.

o IfP e E[n](IFq) andQ € E(]Fq),the functiong,,p o = g;lQ" isaconstantf € IF;.

@ Changing gp o by Agp g changes t by tA", so t is well defined in IF;/IF';’".

@ This is the Tate pairing!

o Likewise, the Weil pairing is given by

g
en(P,Q) = 22
8r,0

for P,Q € E[n].



Cubical points

@ If Lisaline bundle on A, seen as a fibration .L — A with fibers A1 rather than an invertible
sheaf, welet X p = L\ 0.

o Given P € A, acubical point Pisan element P € X ; above P via the projection X ;, — A

@ All other cubical points are of the form APforA € G,, (Lisa G,,-torsor)

o If Lisvery ample,and Xy, ... X € I'(A, L) is a basis of sections, we have a commutative
diagram

Xy — ANFIN {(0,...,0))
| )

A S PN
@ Apoint P € Ais given by projective coordinates:

(Xo(P) : X1(P) : - : Xpn(P)) € PN
@ A choice of cubical point P above P is a choice of affine coordinates:
(Xo(P), X1 (P), ..., Xn(P)) € AN*IN ((0, .., 0)}
@ This also works to define cubical points P when Lis not very ample, as long as P is not a base

point of L

@ Exercice: what does a cubical point represent in the other equivalent descriptions of the line
bundle L?



Examples: cubical points on an elliptic curve

D = (0g):level-1 coordinate Z;

@ D = 2(0g):level-2 coordinates X,, Z, = Z%

o D = 3(0): level-3 coordinates X3 = XpZ1, Y3, 73 = Z3
@ Weierstrass coordinates:x = X3/Z3 = Xy /Z5,y = Y3/Zs.
P € Eis determined by (x(P),y(P)).

@ Alevel 3 cubical point Pis a choice of (X3(13), Y3(?), Zs(T’)) above
N.B: D = 3(0g) is very ample. Example:fixO = (0,1,0).

@ Alevel 2 cubical point Pis a choice of (X, (P, Z%Sﬁ)) above (X, (P) : Z5(P)).
N.B: D = 2(0f) is base point free. Example: fix O = (0, 1).

@ Alevel 1 cubical point Pis a choice of Z1(P).

N.B: O is a base point of D = (0f), so we define O by (for lnstance) L0p) =1.

x/y



Cubical arithmetic: a degenerate case
@ Assume that Lis algebraically equivalent to 0: ¢ p = 0

(If D'is a divisor on E, this is equivalent to deg D = 0)

@ Then X  is a commutative group, an extension of A by G,,,

@ Reformulation: we have a squared structure on X p

P, Py +P,
0 —
Py

@ P{ + Py is uniquely determined by P7, P, (and O)

@ The squared structure also determines —P

Corollary
Given E the cubical point Y, niT’i is uniquely determined foralln; € Z J




Cubical arithmetic: the general case

@ We want to work with .L ample
@ We don't have a group / a squared structure anymore

@ But we do have a cubical structure!

P, + Py Py +P5 + P4
P, Py +HP;
j 2 P ¥P,
0] _
Py

@ P; +P; + P5is uniquely determined by Py, P, P5, Py + P5, P{ + P3,P, + P5 (and O)

Corollary

Given P; and P; + | P;fori # j, the cubical point > 1;P; is uniquely determined for alin; € N.

The cubical structure does not determine —D anymore. But if L is symmetric there is a notion of X-cubical structure to define -p
in a way compatible with the cubical arithmetic. This allows to define Y 1;P; forn; € Z.



Formulas 1

@ Cubical arithmetic arises from a canonical isomorphism
Lp,+p,+p, ® Lp, ® Lp, ® Lp, = L ® Lp,.p, ® Lp 4p, ® Lp, 1 p,
@ Given Z € I'(A, L) with associated divisor D, the isomorphism comes from a function cubp:

Z(Py + P, + P3) - Z(P) - Z(Py) - Z(P5)
Z(D) - Z(P; ¥ P3) - Z(P{ ¥ P3) - Z(P{ ¥ Py)

= CubD(Pl,Pz,P:;)

Proposition
o Neutrality:cubp(04,04,04) = 1.
e Commutativity:cubp (o (Py, Py, P3)) = cubp (Py, Py, P3) forallo € Gs.
@ Associativity:

cubp (P + Py, P3, Py) - cubp (Pq, Py, Py) = cubp (Pq, Py + P3, Py) - cubp (Py, P3, Py).

@ Fora X-cubical structure: (Anti)-symmetry: cubp (P1, Py, =Py — Pp) = +1.

v

@ Associativity means that the cubical point ) n,ﬁi does not depend on the choices of cubes used
to compute it

@ NB.:Z™ isasection of mD, and cub,,, = cubp: cubical arithmetic of level 71 induces the cubical arithmetic of level 71711



Formulas 2

Theorem

8p,p,,p,(P3)

cubp (P, P,, P3) =
prLTs 8p,p,,p,(04)

wheregp p, p, is any function with divisor t};l +P2D +D - t}ZlD = t}ZZD.

Proposition
Ifwetake gp p, p, normalised at 0 4, then
o Neutrality:gp,p,,p,(04) = 1.
e Commutativity:gp p, p,(P3) = &p,p,,p,(P1) = &p,p,,p, (P2)

© Associativity:gp p,+p, P,8D,Py,P, = 8D,Py,Py+P38D,Py,Ps
® ForaX-cubical structure: (Anti)-symmetry:gp p, p,(=P1 — Pp) = 1.




Cubical arithmetic on elliptic curves

1 x(Pl) y(Pl)
1 x(Pz) y(Pz)
1 x(P3) y(P3)

b P,P,,P3) =
Wb P1 P2 Fs) = o B i (Py) — x(P1)) (3 (P5) = x(By))
_ lPl,Pz(PS) _ x(Pq + Py) — x(P3)
= &Py —x(P)(x(P5) —x(PD)  Ip p,(~P3)

o Differential addition: Z; (P + Q)Z; (P — Q) = Z;(P)2Z1(D)2(x(Q) — x(P))
@ Doubling: Z; (2P) = Z(P)*2y(P)
@ Inverse: Zl(—ﬁ) = —Zl(ﬁ).

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2:y2 =x3 4+ Ax?> +x)
o Z(2P) = 4X(P)Z(P)(X(P)2 + AX(P)Z(P) + Z(P)?)
o ZPFQZP=Q) = (XQZ®) - XP)ZD)’




Caveats

@ Inlevel 2 (X, Z)-cubical coordinates, cubical exponentiation £ — (P can be computed via a
Montgomery style ladder, using cubical doublings and cubical differential additions.

@ Verysimilarto x = (X : Z)-only arithmetic

‘Y We can have (P = 0 but (¢ + 1)P+D
o However, (D = O and (£ + 1)P = Pimplies (ml + n)P = nPforallm, n.

@ x-only arithmetic does not depend on the quadratic twist By2 = x3 + ayx? +agx + ag
‘@ But (X, Z)-level 2 cubical arithmetic does depend on the twist!



Algorithmic applications

Given a model of an abelian variety (A, .L) with explicit formulas for the cubical arithmetic on X , we
have algorithms for:

@ Computing the pairings e

@ Computing (polarised) isogenies ¢ : (A, LY - (B, M)
@ Computing isogeny preimages

@ Computing radical isogenies
°

Computing functions with prescribed divisors

Changing level

@ N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the
theorem of the square



Algorithmic intuition

High level overview:
@ The cubical structure on X ; — A induces the biextensionY ; - A x A
@ In practice: represent gp ;5 by the four cubical points OE, P, Q, PTQ.

@ Cubical arithmetic = biextension arithmetic = pairings

This biextension Y  is trivial over K(L) x A

For formal reasons, this recovers the theta group G(.L) and its action on sections

Cubical arithmetic = theta group arithmetic = isogenies

Unicity of cubical structures:

@ Level-n cubical arithmetic on A induces level-n{ cubical arithmetic on A (and conversely) =
change of level

@ Level-n{ cubical arithmetic on A induces level-# cubical arithmetic on B, where B is {-isogeneous
to A = isogenies

o Level-n cubical arithmetic on A induces level-n{ cubical arithmetic on B, where B is {-isogeneous
to A = isogeny preimages



Example: Vélu's formulas

o Ey/k:y3 = x? + axq + by elliptic curve
e ¢: Eq; —» E, = E{/K isogeny with kernel K = (P)
@ Vélu's formulas use traces:

=1 -1 =1 -1
%(P) =) (x((P+iT)= ) x1(T), y2(P):=) (y1(P+iT)— ) y1(iT)
i=0 i=1 i=0 i=1

@ Recallthatx; = X/Z,y; = Y/Z are rational functions

@ Cubical arithmetic allows us to directly take “cubical traces” of X, Y, Z

@ Vélu's formulas do not extend directly to higher dimension (for degree reasons)

@ But the cubical trace approach does!

o Cosset-Lubicz-R. isogeny formulas already used (without knowing!) “cubical traces” of theta
functions

@ Algorithms thoroughly optimised in [YOOKN25]

@ Cubical point of view brings more flexibility = Corte-Real Santos et al 30% improvement for
isogenies and 50% improvement for images compared to [YOOKN25] (work in progress)



Example: Radical isogeny formulas

@ We have working radical isogeny formulas in various variants of the Montgomery model

@ Speed up of ~ 2x to ~ 2.5% compared to Decru’s formulas in [Dec24]
(Depending on the model and whether £ is a sum of two squares or not)

@ Works in x-only coordinates, using (X, Z)-cubical arithmetic
(This is the main source of savings: we can use symmetry to only compute only half the points)

@ Example: In the theta model, a {-radical isogeny (for £ a sum of two squares) costs a (-th root, and
11 + 60M + O(log ¢) M arithmetic operations

@ And the “preimage” of a point through the dual isogeny costs a {-th root, and
11 + 5¢M + O(log £) M arithmetic operations

@ Decru:3[ + (16{ — 25)M

@ Still awork in progress

@ The difference of complexity foraprime { =1 (mod 4) vs{ = 3 (mod 4) comes from the
way we compute the cubical descent of level from level 2{ to level 2.

@ Question: Better descent of level formulas?



Cubical functions

o Z € I'(A, L) with associated divisor D
o R Z(R + Y n,;P;) is a“cubical function” with divisor t*z "z‘PfD'
@ Depends on the choices of P;, P,-’TP]., butalso of R, R + P;

@ Combining these cubical functions we can get genuine elliptic functions, not depending on the
choices of R, R + P;



Cubical functions

Example
° —_— ~
Z(R+ Py + Py)Z(R)
R gp, p,(R) = ———1—2—
Z(R+P1)Z(R + Py)

is a genuine function gp p, p, with divisor t;1+P2D D)= t}lD = t};zD.
It only depends on the choices of Py, Py, P{ + P5.

. Z({P + R)Z(R)*1
Z(P+R)!
is a genuine function fp, ¢ p with divisor £ypD + (£ —1)D — £t} D.

IfP e A[(],
R ZUR)Z((P + R)

ZUR +P)Z(R)

is a genuine function with divisor [£]* (D — t;D).
(Compare with how we would compute this function with Miller’s algorithm.)




Pairings via cubical arithmetic

@ Up to =~ 2x faster pairing computation for isogeny based cryptography, compared to Miller’s
algorithm [PRRSS25]

@ Pairings entirely on the Kummer line, using level 2 cubical arithmetic

@ N.B.:since level 2 cubical arithmetic gives the pairings €200p)8 = E(ZOE) ¢ @ priori we only recover
squared pairings.

o Butwe have a trick to recover the level —1 pairings e (g ,.) o when {is even
(New: and also when € is odd!)

@ Potentially useful for pairings based cryptography too [LRZZ25]



The Discrete Logarithm Problem

@ One can reduce DLPs on A /k to cubical DLPs (via “excellent cubical lifts”)
@ Conversely, cubical DLPs reduce to DLPs on A and k*

@ (Similarly for biextensions and theta groups DLPs)

@ With extra information, cubical DLPs may only need DLPs in k*
= Monodromy leak

@ Leaking the result (X (nP), Z(nP)) of a Montgomery ladder x(P) + x(nP) on a Montgomery
curve is enough to recover 7 via a DLP in IF;

@ Seehttps://jonathke.github.io/monoDOOM


https://jonathke.github.io/monoDOOM

Higher degree and higher level

We can also animate degree 71 and multilinear forms.
n-multi-extension of [ [ A; by G,,, ~ n-multilinearmap [ [ 4; - G,,
(n + 1)-hypercube structure on A by G,,, ~ degreenmap A — G,

An-bilinearmap b : A" - G,, gives a degree 1 function
g:A-G,,qx) - bx,..,x)

Conversely a degree 1 function gives a symmetric n1-bilinear map A" —» G,,

The same holds for 72-multi-extensions and (7 + 1)-hypercube structures.

Unfortunately on abelian varieties, a tri-extension is trivial (it is induced by a biextension), so
there are no interesting hypercube structures [Grothendieck].

If 1 : X — Sis a proper flat morphism of relative dimension 7, then the determinant functor
R7t, has a (11 + 2)-hypercube structure which gives a multilinear pairing Pic(X)"*1 — Pic(S)
[Deligne]

We could also look at higher level bilinear and quadratic forms, i.e. with values in Bsz rather
than BG,,,.
This would give us quadratic forms in gerbes rather than in torsors.
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