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Linear and quadratic maps

𝑋,𝑌, 𝑍 abelian groups

An affine map 𝜙 ∶ 𝑋 → 𝑍 is a map of degree≤ 1:

𝜙(𝑥 + 𝑦) − 𝜙(𝑥) − 𝜙(𝑦) + 𝜙(0) = 0 ∀𝑥, 𝑦 ∈ 𝑋.

A quadratic map 𝜙 ∶ 𝑋 → 𝑍 is a map of degree≤ 2:

𝜙(𝑥+𝑦+𝑧)−𝜙(𝑦+𝑧)−𝜙(𝑥+𝑧)−𝜙(𝑥+𝑦)+𝜙(𝑥)+𝜙(𝑦)+𝜙(𝑧)−𝜙(0) = 0 ∀𝑥, 𝑦, 𝑧 ∈ 𝑋.

More generally a map 𝜙 ∶ 𝑋 → 𝑍 is of degree≤ 𝑛 if𝛩𝑛+1(𝜙) ∶ 𝑋𝑛+1 → 𝑍 is zero for an
appropriate𝛩𝑛+1.

If 𝑞 is quadratic, 𝑞 = 𝑞0 + 𝑞1 + 𝑞2 where 𝑞0 = 𝑞(0) and 𝑞𝑖 is homogeneous of degree 𝑖:

𝑞𝑖(𝑛𝑥) = 𝑛𝑖𝑞𝑖(𝑥).

By translating, we may assume that 𝜙 is normalised: 𝜙(0) = 0.
For instance, 𝜙 is normalised of degree 1 iff it is linear.
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Bilinear maps

𝑏 ∶ 𝑋 × 𝑌 → 𝑍 is bilinear if 𝑏(𝑥, ⋅) and 𝑏(⋅, 𝑦) are linear for all 𝑥 ∈ 𝑋, 𝑦 ∈ 𝑌.

Equivalently𝛩2,2(𝑏) = 0 for an appropriate𝛩2,2 ∶ 𝑋2 × 𝑌2 → 𝑍.

𝑏 is induced by a linear map𝑋 ⊗ℤ 𝑌 → 𝑍 via the composition𝑋 × 𝑌 → 𝑋 ⊗ℤ 𝑌 → 𝑍.

A bilinear map 𝑏 ∶ 𝑋 × 𝑋 → 𝑍 is symmetric if 𝑏(𝑥, 𝑦) = 𝑏(𝑦, 𝑥) ∀𝑥, 𝑦 ∈ 𝑋.

If 𝑞 ∶ 𝑋 → 𝑍 is quadratic, we can associate a symmetric bilinear form 𝑏𝑞 ∶ 𝑋 × 𝑋 → 𝑍 via

𝑏𝑞(𝑥, 𝑦) ≔ 𝛩2𝑞(𝑥, 𝑦) = 𝑞(𝑥 + 𝑦) + 𝑞(0) − 𝑞(𝑥) − 𝑞(𝑦).

In fact, 𝑞 is quadratic iff 𝑏𝑞 is bilinear.
And more generally 𝜙 ∶ 𝑋 → 𝑍 is of degree ≤ 𝑛 iff 𝛩𝑛(𝜙) ∶ 𝑋𝑛 → 𝑍 is 𝑛-multilinear.

Conversely, given a bilinear 𝑏 ∶ 𝑋 × 𝑋 → 𝑍, we can associate a quadratic form
𝑞𝑏 ∶ 𝑋 → 𝑍, 𝑞𝑏(𝑥) = 𝑏(𝑥, 𝑥).
These are not inverse of each other!

𝑏 → 𝑞 → 𝑏′ gives the symmetrisation of 𝑏:

𝑏′(𝑥, 𝑦) = 𝑏(𝑥, 𝑦) + 𝑏(𝑦, 𝑥)

𝑞 → 𝑏 → 𝑞′ gives 𝑞′ = 2𝑞2, where 𝑞2 is the homogeneous degree 2 part of 𝑞
Even if we restrict to homogeneous normalised 𝑞, there will be trouble if 2 is not inversible …
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Abelian varieties

If𝐴/𝑘 is an abelian variety, there seems to exists a strong analogy between:

Polarisations𝛷 ∶ 𝐴 → ̂𝐴 and symmetric bilinear morphisms𝐴 × 𝐴 → 𝔾𝑚

Line bundlesℒ ∈ Pic(𝐴) over𝐴 and quadratic maps𝐴 → 𝔾𝑚

Furthermore,ℒ ∈ 𝐴 = Pic0(𝐴) “corresponds” to a linear morphisms𝐴 → 𝔾𝑚.

More generally a morphism𝐴 → 𝐵̂ “corresponds” to a bilinear map𝐴 × 𝐵 → 𝔾𝑚.

A slight subtlety is that seeing ℒ in Pic(𝐴) means we work up to isomorphism, in the analogy this corresponds to working with 𝑞
up to translation.

One can fix the isomorphism class of ℒ by rigidifying it at 0𝐴; this corresponds to normalising 𝑞.
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Duality

Define the dual of𝑋 as 𝑋̂ = Hom(𝑋, 𝑍), then by definition an element𝑄 ∈ 𝑋̂ is a linear map
𝑋 → 𝑍.

A bilinear map 𝑏 ∶ 𝑋 × 𝑋 → 𝑍 is the same thing as a linear map𝛷𝑏 ∶ 𝑋 → 𝑋̂, via

𝛷𝑏(𝑥) = 𝑏(𝑥, ⋅), 𝑏(𝑥1, 𝑥2) = 𝛷𝑏(𝑥1)(𝑥2).

𝛷𝑏 is the polarisation associated to 𝑏.

Assume that𝑋 is isomorphic to its bidual, via the natural map 𝑖 ∶ 𝑋 → ̂̂𝑋, 𝑖(𝑥) ∶ 𝜓 ↦ 𝜓(𝑥).
Then 𝑏 is symmetric iff𝛷𝑏 is symmetric:𝛷∨

𝑏 ∶ 𝑋 ≃ ̂̂𝑋 → 𝑋̂ is equal to𝛷𝑏.

If 𝑞 ∶ 𝑋 → 𝑍 is quadratic, its associated bilinear form 𝑏𝑞 corresponds to

𝛷𝑞 ∶ 𝑋 → 𝑋̂, 𝑥 ↦ 𝑡∗𝑥𝑞 − 𝑞 + [𝑞(0) − 𝑞(𝑥)]

where 𝑡∗𝑥𝑞 ∶ 𝑦 ↦ 𝑞(𝑥 + 𝑦).

An abelian variety𝐴 is bidual, and a morphism𝛷 ∶ 𝐴 → ̂𝐴 is a polarisation precisely when it is
symmetric.

Ifℒ is a line bundle on𝐴, the associated polarisation is𝛷ℒ ∶ 𝐴 → 𝐴, 𝑃 ↦ 𝑡∗𝑃ℒ ⊗ℒ−1.
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Morphisms
A bilinear form 𝑏 ∶ 𝑋 × 𝑌 → 𝑍 induces linear maps 𝜙𝑋,𝑏 ∶ 𝑋 → 𝑌∨, 𝑥 ↦ 𝑏(𝑥, ⋅) and
𝜙𝑌,𝑏 ∶ 𝑌 → 𝑋∨, 𝑦 ↦ 𝑏(⋅, 𝑦).
By biduality, 𝜙𝑌,𝑏 ∶ 𝑌 → 𝑋∨ is the dual of 𝜙𝑋,𝑏 ∶ 𝑋 → 𝑌∨.

Canonical bilinear form:
𝑏𝑋 ∶ 𝑋 × 𝑋∨ → 𝑍, (𝑥, 𝜓) ↦ 𝜓(𝑥).

We can recover 𝑏 from 𝜙𝑌,𝑏 or 𝜙𝑋,𝑏 via

𝑏 = (Id×𝜙∗
𝑌,𝑏)𝑏𝑋 = (𝜙𝑋,𝑏 × Id)∗𝑏𝑌.

Bilinear(𝑋 × 𝑌, 𝑍) ≃ Hom(𝑋, 𝑌∨) ≃ Hom(𝑌,𝑋∨)
Via this bijection, 𝑏𝑋 is the bilinear map𝑋 × 𝑋∨ → 𝑍 associated to Id ∶ 𝑋 → 𝑋.

A morphism 𝜙 ∶ 𝐴 → 𝐵∨ corresponds by duality to a morphism 𝜙∨ ∶ 𝐵 → 𝐴∨.

This should give a “bilinear structure”on𝐴 × 𝐵:

Hom(𝐴, 𝐵∨) ≃ Hom(𝐵, 𝐴∨) = ?

We do have the Weil-Cartier pairing:

𝑒𝜙 ∶ Ker𝜙 × Ker𝜙∨ → 𝔾𝑚.
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Poincaré polarisation
The bilinear map 𝑏𝑋 induces a canonical “universal”quadratic form on𝑋 × 𝑋∨:

𝑞𝑃(𝑥, 𝜓) = 𝜓(𝑥).

In particular,𝜓 ∈ 𝑋∨ is recovered as𝜓 = 𝑞𝑃 ∣ 𝑋 × {𝜓}
Associated bilinear form 𝑏𝑃:

𝑏𝑃((𝑥1, 𝜓1), (𝑥2, 𝜓2)) = 𝜓1(𝑥2) + 𝜓2(𝑥1)

Polarisation:𝛷𝑃 ∶ 𝑋 × 𝑋∨ → 𝑋∨ × 𝑋, (𝑥, 𝜓) ↦ (𝜓, 𝑥) via the biduality𝑋 ≃ ̂̂𝑋.
If 𝑏 ∶ 𝑋 × 𝑋 → 𝑍 bilinear form associated to a polarisation𝛷𝑏 ∶ 𝑋 → 𝑋̂, then
𝑞𝑏 = (Id×𝛷𝑏)∗𝑞𝑃 and 𝑏(𝑥, 𝑦) + 𝑏(𝑦, 𝑥) = (Id×𝛷𝑏)∗𝑏𝑃.

Symmetric Poincaré line bundle 𝑃 on𝐴 × 𝐴 (birigidified at 0), given by applying the universal
property of𝐴 to Id ∶ 𝐴 → 𝐴.
Associated polarisation

𝛷𝑃 ∶ 𝐴 × 𝐴 → 𝐴 × 𝐴, (𝑃,𝑄) ↦ (𝑄, 𝑃)

.
Ifℒ ∈ Pic0(𝐴),ℒ = 𝑃 ∣ 𝐴 × {ℒ}.
If𝛷 ∶ 𝐴 → 𝐴 is a polarisation, we get a symmetric line bundle on𝐴 viaℒ ′ = (Id×𝛷)∗𝑃.
If𝛷 = 𝛷ℒ for a symmetricℒ, thenℒ ′ = ℒ⊗2.
(Recall that if 𝑞 is symmetric, 𝑞′ = 2𝑞.)

Damien Robert Animating quadratic and bilinear forms on abelian varieties 8 / 53



Linear maps and (anti)symmetric line bundles

A quadratic form 𝑞 ∶ 𝑋 → 𝑍 is of degree≤ 1 iff 𝑏𝑞 = 0 iff𝛷𝑞 = 0

A line bundleℒ ∈ Pic(𝐴) is algebraically equivalent to 0, i.e. belongs to Pic0(𝐴) iff𝛷ℒ = 0

Assume 𝑞 is normalised: 𝑞 = 𝑞1 + 𝑞2 where 𝑞1 is linear and 𝑞2 homogeneous of degree 2.
Then 𝑞 is symmetric (i.e.∀𝑥, 𝑞(−𝑥) = 𝑞(𝑥)) iff 𝑞 = 𝑞2.

And 𝑞 is antisymmetric (i.e.∀𝑥, 𝑞(−𝑥) = −𝑞(𝑥)) iff 𝑞 = 𝑞1, i.e. is linear

For any normalised 𝑞, 𝑞(𝑥) + 𝑞(−𝑥) (resp. 𝑞(𝑥) − 𝑞(−𝑥)) is symmetric (resp. antisymmetric).

𝑞(𝑛𝑥) = 𝑛2+𝑛
2 𝑞(𝑥) + 𝑛2−𝑛

2 𝑞(−𝑥).
𝑞(𝑛𝑥) = 𝑛2𝑞(𝑥) if 𝑞 is symmetric, 𝑞(𝑛𝑥) = 𝑛𝑞(𝑥) if 𝑞 is antisymmetric.

Ifℒ is a line bundle on𝐴, it is symmetric (resp. anti-symmetric) iff [−1]∗ℒ ≃ ℒ (resp.
[−1]∗ℒ ≃ ℒ−1).

ℒ ⊗ [−1]∗ℒ is always symmetric andℒ ⊗ [−1]∗ℒ−1 always antisymmetric.

ℒ is antisymmetric iffℒ ∈ Pic0(𝐴).
[𝑛]∗ℒ ≃ ℒ⊗,(𝑛2+𝑛)/2 ⊗ ([−1]∗ℒ)⊗,(𝑛2−𝑛)/2

[𝑛]∗ℒ ≃ ℒ⊗,𝑛2
ifℒ is symmetric, [𝑛]∗ℒ ≃ ℒ⊗,𝑛 ifℒ is antisymmetric.
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Torsors
If𝑋′ is a𝑋-torsor (i.e. there is a free and transitive group action of𝑋 on𝑋′), we can say that
𝑞 ∶ 𝑋′ → 𝑍 is quadratic whenever:

𝑞(𝑤 + 𝑥 + 𝑦 + 𝑧) − 𝑞(𝑤 + 𝑥 + 𝑦) − 𝑞(𝑤 + 𝑦 + 𝑧) − 𝑞(𝑤 + 𝑧 + 𝑥)+
𝑞(𝑤 + 𝑥) + 𝑞(𝑤 + 𝑦) + 𝑞(𝑤 + 𝑧) − 𝑞(𝑤) = 0 ∀𝑤 ∈ 𝑋′, 𝑥, 𝑦, 𝑧 ∈ 𝑋.

It suffices to check that there is one𝑤 ∈ 𝑋′, such that

𝑞(𝑤 + 𝑥 + 𝑦 + 𝑧) + 𝑞(𝑤 + 𝑧) − 𝑞(𝑤 + 𝑥 + 𝑧) − 𝑞(𝑤 + 𝑦 + 𝑧) =
𝑞(𝑤 + 𝑥 + 𝑦) + 𝑞(𝑤) − 𝑞(𝑤 + 𝑥) − 𝑞(𝑤 + 𝑦) ∀𝑥, 𝑦, 𝑧 ∈ 𝑋

We can then define a bilinear form on𝑋 via

𝑏𝑞(𝑥, 𝑦) = 𝑞(𝑤 + 𝑥 + 𝑦) + 𝑞(𝑤) − 𝑞(𝑤 + 𝑥) − 𝑞(𝑤 + 𝑦),

this does not depend on𝑤!

If𝐴′ is an𝐴-torsor,ℒ a line bundle on𝐴′, we can define a polarisation

𝛷ℒ ∶ 𝐴 → 𝑃𝑖𝑐0(𝐴′) ≃ 𝑃𝑖𝑐0(𝐴), 𝛷ℒ(𝑃) = 𝑡∗𝐴′,𝑃ℒ ⊗ℒ−1,

where 𝑡𝐴′,𝑃 is the translation action of 𝑃 ∈ 𝐴 on𝐴′.

Example: if𝐴 = Jac(𝐶) = Pic0(𝐶) is a Jacobian of a curve of genus 𝑔, the Theta divisor

𝛩𝑔 ⊂ Pic𝑔−1(𝐶) (𝛩𝑔 = locus of effective divisors of degree 𝑔 − 1) induces a principal
polarisation on Jac(𝐶).
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Arithmetic consequences

Because [2] ∶ 𝔾𝑚 → 𝔾𝑚, 𝑥 ↦ 𝑥2 is not surjective (only surjective étale locally), a polarisation
𝛷 ∶ 𝐴 → 𝐴may not be induced by a line bundleℒ on𝐴 (it is only induced étale locally)

Tate: if𝐴/𝐾 is principally polarised, ш(𝐴/𝐾) is a square.

Poonen-Stoll: explicit example of𝐶/ℚ such that ш(Jac(𝐶)/ℚ) is not a square.

But we just saw that a Jacobian is principally polarised.

Different notion of principal polarisations! For Tate it comes from a rational line bundle.

In the first case the Cassel-Tate pairing is alternating, in the second only antisymmetric.
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Some mysteries

Let𝛷 ∶ 𝐴 → 𝐴 be a principal polarisation
(i.e.𝛷 is an isomorphism and is induced by an ample line bundleℒ)

We think of𝛷 as a unimodular positive definite symmetric bilinear form 𝑏𝛷

TheWeil pairings 𝑒𝛷,[𝑛] ∶ 𝐴[𝑛] × 𝐴[𝑛] → 𝜇𝑛 should be incarnations of 𝑏.
But they are antisymmetric, not symmetric

If𝐴 = ℂ𝑔/𝛬 is a complex abelian variety, a polarisation 𝜙 can be described by a positive
definite Hermitian form𝐻 onℂ𝑔 such that ℑ𝐻 ∣ 𝛬 × 𝛬 ⊂ ℤ.

But𝐻 is Hermitian and 𝐸 = ℑ𝐻 is symplectic, none are symmetric.

However, a choice of line bundleℒ inducing 𝜙 is the same as a choice of quasi-character 𝜒 for𝐻:

𝜒(𝜆1 + 𝜆2) = 𝜒(𝜆1)𝜒(𝜆2)𝑒𝑖𝜋𝐸(𝜆1,𝜆2) ∀𝜆1, 𝜆2 ∈ 𝛬

𝜒 ∶ 𝛬 → 𝔾𝑚 is quadratic.
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Bilinear maps on abelian varieties

Goal: associate to a line bundleℒ on𝐴 a quadratic form 𝑞 ∶ 𝐴 → 𝔾𝑚, and to a polarisation
𝜙 ∶ 𝐴 → 𝐴 a bilinear form 𝑏 ∶ 𝐴 × 𝐴 → 𝔾𝑚.

Here𝐴,𝔾𝑚 are group schemes, so 𝑞, 𝑏 should be morphisms of group schemes.

And they should satisfy the appropriate version of bilinearity/quadracity.

𝐴 is not a group, it is a group object in the category of schemes

But schemes embed fully faithfully into the presheaf topos on affine schemes.

In fact, if𝑋 is a scheme,𝑅 ↦ 𝑋(𝑅) is an fppf-sheaf.

A group object𝐺 in the category of sheafs is the same thing as giving a group structure on each
𝐺(𝑅) such that 𝜙 ∶ 𝑅 → 𝑆 induces a group morphism𝐺(𝜙) ∶ 𝐺(𝑅) → 𝐺(𝑆).
Similarly, we can define bilinearity and quadracity pointwise.
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Internal logic of a topos

Recall: we can see𝐴,𝔾𝑚 as abelian sheafs for the fppf topology

Sheafs form a topos: in the internal logic of a topos they behave like a set!

The internal logic is like a compiler, that translates internal statements into external statements.

For instance, if 𝜙 ∶ 𝐹 → 𝐺 is a morphism of sheafs, it translates the internal surjectivity statement

∀𝑦 ∈ 𝐺,∃𝑥 ∈ 𝐹 ∣ 𝜙(𝑥) = 𝑦

into the external epimorphism statement:
“For all sections 𝑦 ∈ 𝐺(𝑈), there is a covering𝑈 = ⋃𝑈𝑖 such that there exists a section
𝑥𝑖 ∈ 𝐹(𝑈𝑖)where 𝜙(𝑥𝑖) = 𝑦 ∣ 𝑈𝑖”.

We can prove internally that a composition 𝜙2 ∘ 𝜙1 of two surjective morphisms 𝜙1 ∶ 𝐹 → 𝐺
and 𝜙2 ∶ 𝐺 → 𝐻 is surjective: “∀𝑧 ∈ 𝐻,∃𝑦 ∈ 𝐺 ∣ 𝜙2(𝑦) = 𝑧, and∃𝑥 ∈ 𝐹 ∣ 𝜙1(𝑥) = 𝑦, so
𝜙2(𝜙1(𝑥)) = 𝑧”. The compiler translate this into the usual external proof using coverings of
coverings.

Caveat: the internal logic of a topos is intuitionistic logic: for a proposition 𝑃, 𝑃 ∨ ¬𝑃 is not
always true.

Intuitionistic logic is constructive, this is the logic given by the Curry-Howard correspondance.
One needs to add continuations as first class citizen to recover classical logic.
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Bilinear and quadratic forms on an abelian variety via topos

We can define linear, bilinear and quadratic forms in a topos by using the same definitions as for
standard groups, expressed in the internal logic of the topos.

𝑏 ∶ 𝐴 × 𝐵 → 𝔾𝑚 is bilinear iff:

∀𝑎1, 𝑎2 ∈ 𝐴, 𝑏1, 𝑏2 ∈ 𝐵, 𝑏(𝑎1 + 𝑎2, 𝑏1 + 𝑏2) = 𝑏(𝑎1, 𝑏1) × 𝑏(𝑎1, 𝑏2) × 𝑏(𝑎2, 𝑏1) × 𝑏(𝑎2, 𝑏2).

This is a statement in a cartesian theory, hence in particular a geometric theory.

This recovers the pointwise definition: 𝑏 ∶ 𝐴(𝑅) × 𝐵(𝑅) → 𝔾𝑚(𝑅) should be bilinear (in a
compatible way) for all𝑅
Recall that the fppf topos has enough points.

A bilinear map𝐴 × 𝐵 → 𝔾𝑚 could also be defined as a linear map𝐴⊗ 𝐵 → 𝔾𝑚.

Unfortunately, for abelian varieties, there are no bilinear maps𝐴 × 𝐵 → 𝔾𝑚:𝐴, 𝐵 are proper
while𝔾𝑚 is affine, so any such map would be constant.

Likewise, all maps𝐴 → 𝔾𝑚 are constant, so there are no non trivial linear or quadratic maps.

This “naive”approach does not explains the analogy.
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Animating bilinear and quadratic maps

There are no bilinear maps𝐴 × 𝐵 → 𝔾𝑚 when we embed𝐴, 𝐵,𝔾𝑚 into a category of sheafs of
sets.

We will instead embed them into the larger category of sheafs of spaces, or rather sheafs of anima
(the∞-category of homotopy types of spaces)

Bilinear or quadratic maps on animated abelian groups (i.e. abelian groups in anima) may be seen
as higher order bilinear or quadratic forms.

Let Ani be the∞-category of anima, i.e.∞-groupoids
(This is the (∞, 1)-category of (∞, 0)-categories).
An∞-groupoid is a Kan complex (up to inverting weak equivalences), i.e. the homotopy type of a
space

An∞-category is a quasi-category, i.e. a weak Kan complex (up to inverting weak equivalences)

The bible on this is Lurie’s books: Higher Topos Theory, Higher Algebra, Spectral schemes.
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The animation of a category

The term animation (due to Clausen) was introduced in Česnavičius-Scholze [ČS24]. The authors
describe the animation of a locally strongly finitely presentable category𝐶, relying heavily on
Lurie’s work on∞-locally presentable categories.

If𝐶 is a category of algebraic structures (i.e. of rings, groups, modules, …), then Ani(𝐶) is the
∞-category of these algebraic structures in Ani (animated rings, animated groups, animated
modules)…

Ani itself is the animation of Set: the trivial algebraic structure.
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Locally strongly finitely presentable categories
The following are equivalent for a category𝐶

𝐶 is the category of models for an algebraic theory, i.e. there exists a category 𝑇with finite
products such that𝐶 = Hom∏(𝑇, Set).
𝐶 is the category of models for a finite product sketch.
𝐶 is the free cocompletion of a small category𝐶0 with finite coproducts under sifted colimits:
𝐶 = sInd(𝐶0)
𝐶 has all small colimits, the category𝐶𝑠𝑓 𝑝 of strongly finitely presentable objects (also called
compact projective objects) is essentially small, and any object in𝐶 is a sifted colimit of the
canonical diagram of strongly finitely presentable objects mapping into it.
𝐶𝑠𝑓 𝑝 has finite coproducts, and the restricted Yoneda embedding𝐶 ↪ [𝐶𝑠𝑓 𝑝°, Set] identifies𝐶
with the category of finite-product-preserving functors𝐶𝑠𝑓 𝑝° → Set.

A sifted colimit is a colimit of a diagram𝐷 → 𝐶where𝐷 is sifted, i.e. the associated colimits
commute with finite products in Set.
This is a generalisation of an inductive colimit𝐷 → 𝐶where𝐷 is required to be filtered, i.e. so
that the associated colimits commute with all finite limits in Set.
A reflexive coequalizer (i.e. the quotient of an equivalence relation) is a sifted colimit. A good rule
of thumb is “sifted colimits = inductive colimits + reflexive coequalizer” (but see [ARV10] for
caveats).
𝑥 ∈ 𝐶 is strongly finitely presentable ifHom(𝑥, ⋅) commutes with sifted colimit.

Modulo size issues, in the above one can take𝐶0 = 𝐶𝑠𝑓 𝑝 and 𝑇 = 𝐶𝑠𝑓 𝑝°.
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Locally finitely presentable categories

The following are equivalent for a category𝐶
𝐶 is the category of models for an essentially algebraic theory, i.e. there exists a category 𝑇with
finite limits such that𝐶 = Hom𝑙𝑒𝑥(𝑇, Set).
𝐶 is the category of models for a finite limit sketch.

𝐶 is the free cocompletion of a small category𝐶0 with finite colimit under filtered colimits:
𝐶 = Ind(𝐶0)
𝐶 has all small colimits, the category𝐶𝑓 𝑝 of finitely presentable objects (also called compact
objects) is essentially small, and any object in𝐶 is a filtered colimit of the canonical diagram of
locally finitely presentable objects mapping into it.

𝐶𝑓 𝑝 has finite colimits, and the restricted Yoneda embedding𝐶 ↪ [𝐶𝑓 𝑝°, Set] identifies𝐶with
the category of finite-limit-preserving functors𝐶𝑓 𝑝° → Set.

Modulo size issues, in the above one can take𝐶0 = 𝐶𝑓 𝑝 and 𝑇 = 𝐶𝑓 𝑝°.
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Properties of a locally strongly finitely presentable category

If𝐶 = sInd(𝐶𝑠𝑓 𝑝) is locally strongly finitely presentable, it is locally finitely presentable:
𝐶 = Ind(𝐶𝑓 𝑝)
The finitely presentable objects𝐶𝑓 𝑝 are the coequalizers (or even reflexive coequalizers) of
objects in𝐶𝑠𝑓 𝑝

A functor 𝐹 ∶ 𝐶 → 𝐷 preserving sifted colimits (resp. filtered colimits) is the same thing as a
functor 𝐹 ∶ 𝐶𝑠𝑓 𝑝 → 𝐷 (resp. 𝐹 ∶ 𝐶𝑓 𝑝 → 𝐷):𝐶 is the free completion of𝐶𝑠𝑓 𝑝 under sifted colimit
(resp. filtered colimits).

And 𝐹 preserve all colimits (i.e. is right exact) iff 𝐹 ∣ 𝐶𝑠𝑓 𝑝 preserve finite coproducts (or 𝐹 ∣ 𝐶𝑓 𝑝

preserve finite colimits).

𝐶 = Hom∏(𝐶𝑠𝑓 𝑝°, Set) = Hom𝑙𝑒𝑥(𝐶𝑓 𝑝°, Set) = Hom𝑐𝑜𝑛𝑡(𝐶°, Set).
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Examples of locally strongly finitely presentable categories

Every algebraic theory gives a locally strongly finitely presentable category

Main examples: Set, Groups, Abelian groups, (commutative) Rings, Modules over a ring

In all these examples, strongly finitely presentable object / compact projective objects are the
retract of finite free objects, i.e. the Cauchy completion of finite free objects.

Finite free rings:𝑅 = ℤ[𝑥1,… , 𝑥𝑚].
Finite free modules:𝑀 = 𝑅𝑚.
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Animating a locally strongly finitely presentable category

If𝐶 = sInd(𝐶𝑠𝑓 𝑝) is locally strongly finitely presentable, Ani(𝐶) is the free completion of𝐶𝑠𝑓 𝑝

under sifted colimit in the (∞, 2)-category of (∞, 1)-categories.
If𝐷 ∈ Ani is a∞-category with sifted colimits, a functor 𝐹 ∶ Hom𝑠𝑖𝑓 𝑡𝑒𝑑(Ani(𝐶),𝐷) is the

same thing as a functor𝐶𝑠𝑓 𝑝 → 𝐷.

N In an∞-category sifted colimits are generated by filtered colimits and geometric realisations, i.e.
colimits indexed by 𝛥° (reflexive coequalizers are colimits indexed by 𝜏≤1𝛥°).

Ani(𝐶) is the∞-category of functorsHom∏(𝐶𝑠𝑓 𝑝°,Ani).
This is also the category of simplicial objects in𝐶 up to inverting weak equivalences.

A functor 𝐹 ∶ 𝐶 → 𝐷 of locally strongly finitely presentable categories that preserves sifted
colimits lifts to a functor Ani(𝐹) ∶ Ani(𝐶) → Ani(𝐷).
Given𝐺 ∶ 𝐷 → 𝐸, there is a natural transformation

Ani(𝐺) ∘ Ani(𝐹) → Ani(𝐺 ∘ 𝐹),

which is an equivalence if 𝐹(𝐶𝑠𝑓 𝑝) ⊂ Ind𝐷𝑠𝑓 𝑝 in𝐷 or Ani(𝐺)(𝐹(𝐶𝑠𝑓 𝑝)) ⊂ 𝐸 in Ani(𝐸).
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Animation: a summary

A (1, 1)-category is a category enriched over Set

Set itself is the free completion of finite sets under 1-sifted colimits

A (∞, 1)-category is a category enriched over Ani

Ani itself is the free completion of finite sets under∞-sifted colimits (i.e. inductive limits and
geometric realisations).

A locally strongly finitely presentable category𝐶 is the free completion of a small category𝐶0
with coproducts under 1-sifted colimits.

𝐶 = Hom∏(𝐶0°, Set)
Its animation Ani(𝐶) is the free completion of𝐶0 under 1-sifted colimits.

Ani(𝐶) = Hom∏(𝐶0°,Ani)
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Animating an abelian category

Dold-Kan correspondance: if𝒜 is an abelian category, Ani(𝒜) is equivalent to the connective
part𝐷≥0(𝒜) of the∞-derived category of𝐷(𝒜).
(For cochains: Ani(𝒜) ≃ 𝐷≤0(𝒜)),
And𝐷(𝒜) is recovered as the stabilisation Stab(Ani(𝒜)) of Ani(𝒜)

If (𝑋, 𝜏) is a site, the animation of the sheaf topos Sh(𝑋, Set) is the hypercompletion of the
∞-topos Sh∞(𝑋,Ani)
And stabilisation commute with localisation:

Stab(Sh(𝑋,Ani)) = Sh(𝑋, Spectra)

where Spectra = Stab(Ani) is the stable∞-category of spectra.
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The standard derived category

𝒜 an abelian category. For simplicity𝒜 = ℤ− 𝑚𝑜𝑑𝑢𝑙𝑒𝑠
𝐶(𝒜) the category of complexes on𝒜
Unit interval: 𝐼 ∈ 𝐶(𝒜): 𝐼[0] = ℤ[0] ⊕ ℤ[1], 𝐼[1] = [𝐼]with 𝑑[𝐼] = [1] − [0].
Homotopy: map𝑋 ⊗ 𝐼 → 𝑌
𝐾(𝒜): complexes up to homotopy equivalence

𝐷(𝒜):𝐾(𝒜) localised in the quasi-isomorphisms (i.e. we invert “formally” the morphisms in
𝐾(𝒜)which induces isomorphisms on all𝐻𝑖). Localisation means that in the map
𝑖 ∶ 𝐾(𝒜) → 𝐷(𝒜) quasi-isomorphisms are sent to isomorphisms, and𝐷(𝒜) is universal for
this property.

𝐾(𝒜),𝐷(𝒜) are triangulated categories: the distinguished triangles are given by
(isomorphisms class of ) mapping cones.

If 𝐹 ∶ 𝒜 → ℬ is a left exact functor, the right derived functor𝑅𝐹 (if it exists) is the right Kan
extension of 𝐹 ∶ 𝐾(𝒜) → 𝐾(ℬ) → 𝐷(ℬ) along 𝑖 ∶ 𝐾(𝒜) → 𝐷(𝒜): it is the universal functor
𝑅𝐹 ∶ 𝐷(𝒜) → 𝐷(ℬ) such that there is a natural transformation𝑅𝐹 ∘ 𝑖 ⇒ 𝐹.
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Internal logic of an∞-topos

The internal logic of an∞-topos is described by HoTT: homotopy type theory

In HoTT, all objects have a type: 𝑎 ∶ 𝐴means that 𝑎 has type𝐴
The main difference with standard type theory is that the identity type Id𝐴(𝑎 = 𝑏) is no longer a
boolean true/false (i.e. the 0-category of−1-categories) but a type itself.

One may interpret Id𝐴(𝑎 = 𝑏) as an Anima, a witness𝑤 for equality 𝑎 = 𝑏 can be interpreted as
a path from 𝑎 to 𝑏, and then a witness in IdId𝐴

(𝑤1 = 𝑤2) between two witnesses𝑤1, 𝑤2 may
be interpreted as an homotopy between𝑤1 and𝑤2 and so on.
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Animating bilinear and quadratic forms

We can embed abelian schemes into the (stabilisation of the)∞-topos of sheafs of anima, and look at
animated bilinear and quadratic forms with values in Ani(𝔾𝑚).

Definition

The dual abelian variety𝐴 is the (appropriate truncation of) animated linear maps
Hom(Ani(𝐴),Ani(𝔾𝑚));
The category of (symmetric) biextensions BiExt(𝐴, 𝐵;𝔾𝑚) is the (appropriate truncation of)
animated bilinear maps Ani(𝐴) × Ani(𝐵) → Ani(𝔾𝑚)
The category of cubical structures on𝐴 Cube(𝐴,𝔾𝑚) is (the appropriate truncation of)
animated quadratic maps Ani(𝐴) → Ani(𝔾𝑚)

For the truncation: we work over the suspension 𝛴(Ani(𝔾𝑚)) and truncate to the connective part of the canonical 𝑡-structure of

the stable ∞-category.We end up with ordinary categories.

One can see biextensions and cube structures as bilinear maps and quadratic maps with values in
𝐵𝔾𝑚 rather than in𝔾𝑚.
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Bilinear and quadratic forms on an abelian variety via the derived category of fppf
sheaves
Using the Dold-Kan correspondance, we can reinterpret these constructions in the derived category
𝐷(𝑆ℎ𝑓 𝑝𝑝𝑓) of fppf sheaves. (We work with cochains, so shift correspond to suspension and𝜋𝑖 = 𝐻−𝑖)

Weil: the dual
𝐴 ≃ 𝜏≤0𝑅Hom(𝐴,𝔾𝑚[1])

In particular,𝑄 ∈ 𝐴 induces a group extension𝐺(𝑄) of𝐴 by𝔾𝑚.
(𝐺(𝑄) is necessarily commutative since the commutator pairing𝐴 × 𝐴 → 𝔾𝑚 is constant).

Grothendieck: morphisms 𝜙 ∶ 𝐴 → 𝐵̂ correspond bijectively to biextensions of𝐴 × 𝐵 by𝔾𝑚,
which in turn are given by

𝜏≤0𝑅Hom(𝐴⊗𝐿𝐵,𝔾𝑚[1]).

Breen: polarisations 𝜙ℒ on𝐴 corresponds to symmetric biextensions on𝐴 × 𝐴 by𝔾𝑚, which
“corresponds” to

𝜏≤0𝑅Hom(𝑅 Sym2 𝐴,𝔾𝑚[1]).

Breen: a line bundleℒ corresponds to a cubic structure on𝐴 by𝔾𝑚, which in turns
“corresponds” to

𝜏≤0𝑅Hom(𝑅𝛤2𝐴,𝔾𝑚[1]).

Here 𝛤2 is the component of degree 2 of the divider power algebra

N 𝐹 ↦ Sym2 𝐹 and 𝐹 ↦ 𝛤2𝐹 are quadratic rather than additive functors, so care must be taken
when taking their derived version (we need to use simplicial resolutions).
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Line bundles

𝐵𝔾𝑚 = [∗/𝔾𝑚] is the classifying stack of𝔾𝑚-torsors: this is the delooping of𝔾𝑚.

To give a line bundleℒ on a scheme𝑋 is the same thing as giving a map𝑋 → 𝔾𝑚.

Under the Dold-Kan correspondance for cochains, the shift corresponds to the suspension𝛴, aka
to delooping, the inverse of the loop function𝛺.

Hence we have:

𝐻0𝑅Hom(𝐴,𝔾𝑚[1]) ≃ Ext1(𝐴,𝔾𝑚) ≃ Hom(𝐴, 𝐵𝔾𝑚)
≃ 𝜋0Hom(Ani(𝐴), 𝛴Ani(𝔾𝑚))

HereHom(𝐴, 𝐵𝔾𝑚) denotes morphisms respecting the group law (“morphisms of Picard
stacks”)

An element inHom(𝐴, 𝐵𝔾𝑚) corresponds to a line bundleℒ algebraically equivalent to 0:
ℒ ∈ Pic0(𝐴)
We recover the isomorphism𝐴 = Pic0(𝐴) ≃ Ext1(𝐴,𝔾𝑚), given concretely by the theta
group:ℒ ↦ 𝐺(ℒ)
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Biextensions and cubical structures

Recall: biextensions and cube structures are bilinear maps and quadratic maps with values in
𝐵𝔾𝑚 rather than in𝔾𝑚

But since we work in the internal logic of an∞-topos, the bilinear equation
𝑏(𝑥 + 𝑦, 𝑧) = 𝑏(𝑥, 𝑧) + 𝑏(𝑦, 𝑧) needs to be witnessed by a “path” satisfying some further
coherency conditions

A biextension is a “bilinear map”𝑏 ∶ 𝐴 × 𝐵 → 𝐵𝔾𝑚, in particular we get a line bundleℒ above
𝐴 × 𝐵
The bilinearity𝛩2,2(𝑏) = 0 gives a section 𝑠 on𝛩2,2(ℒ) above𝐴2 × 𝐵2

This section 𝑠 has to satisfy some cocycle conditions

A cubical structure is a “quadratic map”𝑞 ∶ 𝐴 → 𝐵𝔾𝑚, in particular we get a line bundleℒ
above𝐴
The quadraticity𝛩3(𝑞) = 0 gives a section 𝑠 on𝛩3(ℒ) above𝐴3

This section 𝑠 has to satisfy some cocycle conditions

Moret-Bailly the cocyle conditions are equivalent to the fact that, up to replacing𝐴,𝐺 by
𝐴′ ↠ 𝐴 and𝔾𝑚 ↪ 𝐺′, there is a trivialisation 𝑡′ of the induced𝐺′-torsorℒ ′ on𝐴′ induced by
ℒ such that𝛩3(𝑡′) = 𝑠′ where 𝑠′ is the trivialisation on𝛩3(ℒ ′) induced by 𝑠.
Similarly for biextensions.
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Squared structures on line bundles

Let’s work out in more detail what a “linear map”𝜙 ∶ 𝐺 → 𝐵𝔾𝑚 should be for a commutative
group scheme𝐺
First we have a map to 𝐵𝔾𝑚, hence a line bundleℒ on𝐺.

Secondly we have𝛩2(𝜙) = 0, i.e. a squared structure.

This is witnessed by a section 𝑠 of𝛩2(ℒ) above𝐺 × 𝐺: for every 𝑥, 𝑦 ∈ 𝐺, we have an
isomorphism 𝑡∗𝑥ℒ ⊗ 𝑡∗𝑦ℒ ≃ 𝑡∗𝑥+𝑦ℒ ⊗ℒ
(Recall that𝛩2(𝑓 ) ∶ (𝑥, 𝑦) ↦ 𝑓 (𝑥 + 𝑦) + 𝑓 (0) − 𝑓 (𝑥) − 𝑓 (𝑦).)
The coherence/cocycles conditions on 𝑠 amount to the fact that 𝑠 should induce a group
structure onℒ, which is a commutative group extension of𝐺 by𝔾𝑚.

If𝐴 is an abelian variety, the fact thatHom(𝐴,𝔾𝑚) = 0 automatically give such a squared
structure (uniquely!) for anyℒ ∈ Pic0(𝐴)
Similarly for biextensions and cube structures: a line bundleℒ ∈ Pic(𝐴) automatically has a
unique cube structure.
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Pairings from biextensions

Once we have a cubical structure on𝐴 or biextension on𝐴 × 𝐵, every equality inside 𝐵𝔾𝑚 in
the internal logic give us a trivialisation of some line bundle, and equality between these
equalities correspond to maps between these trivialisations, i.e. maps to𝔾𝑚, which satisfy some
conditions.

For instance, given a principal polarisation 𝑏 ∶ 𝐴 × 𝐴 → 𝐵𝔾𝑚, then 𝑛𝑏 is zero on𝐴[𝑛] × 𝐴 and
𝐴 × 𝐴[𝑛]. This gives two different trivialisations on𝐴[𝑛] × 𝐴[𝑛], and the map between them is
theWeil pairing 𝑒𝑏,𝑛

We can also write
𝑛𝑏(𝑥, 𝑦) = 𝑏(𝑛𝑥, 𝑦) = 𝑏(𝑥, 𝑛𝑦) = 0

where the later equalities take place in the biextension associated to 𝑏. We recover Stange’s
interpretation of theWeil pairing as monodromy.

Likewise, the Tate pairing “comes” from 𝑏(𝑛𝑥, 𝑦) = 0 for 𝑥 ∈ 𝐴[𝑛].

Note that, even if we have a symmetric biextension, the compatibility conditions “one level up”need not be symmetric.

Indeed, symmetric biextensions on the trivial torsor are given by alternate forms 𝑎(𝑥1, 𝑥2). This biextension is a trivial
symmetric biextension on 𝑋 iff 𝑎(𝑥1, 𝑥2) = 𝑏(𝑥1, 𝑥2) − 𝑏(𝑥2, 𝑥1) for some bilinear form 𝑏 ∶ 𝑋 × 𝑋 → 𝔾𝑚.

Likewise, if 𝐴 = ℂ𝑔/𝛬, the cube structure induced by a line bundle ℒ on 𝐴 becomes trivial over ℂ𝑔. The cube structure on
𝐴 is then encoded by the descent of the trivial cube structure on ℂ𝑔 along 𝛬.

This recovers semi-characters and the theory of theta functions [Breen].
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The Poincaré biextension on an elliptic curve

𝑌 the biextension associated to (0𝐸) above 𝐸 × 𝐸:

An element 𝑔𝑃,𝑄 of𝑌 above (𝑃,𝑄) ∈ 𝐸 × 𝐸 is a function with divisor

(𝑃 + 𝑄) + (0𝐸) − (𝑃) − (𝑄)

Biextension law:

𝑔𝑃1,𝑄 ⋆1 𝑔𝑃2,𝑄 = 𝑔𝑃1+𝑃2,𝑄 ≔ 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅ + 𝑃1)

= 𝑔𝑃1,𝑄(⋅)𝑔𝑃2,𝑄(⋅)
𝑔𝑃1,𝑃2

(⋅ + 𝑄)
𝑔𝑃1,𝑃2

(⋅)

N.B: the last equality is not obvious and result from cohomological arguments

Similar formulas for 𝑔𝑃,𝑄1
⋆2 𝑔𝑃,𝑄2

= 𝑔𝑃,𝑄1+𝑄2

Bilinearity property: for every𝑄 (resp. every 𝑃), ⋆1 (resp. ⋆2) gives a commutative group law on
the 𝑔𝑃,𝑄 (=linearity on the left/right).

Compatibility:

(𝑔𝑃1,𝑄1
⋆1 𝑔𝑃2,𝑄1

) ⋆2 (𝑔𝑃1,𝑄2
⋆1 𝑔𝑃2,𝑄2

) = (𝑔𝑃1,𝑄1
⋆2 𝑔𝑃1,𝑄2

) ⋆1 (𝑔𝑃2,𝑄1
⋆2 𝑔𝑃2,𝑄2

)
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Pairings via biextensions

If 𝑃 = 0𝐸 or𝑄 = 0𝐸, (𝑃 + 𝑄) + (0𝐸) − (𝑃) − (𝑄) ∼ 0, so a biextension element 𝑔0𝐸,𝑄 or
𝑔𝑃,0𝐸

is a constant function on 𝐸.

If 𝑃 ∈ 𝐸[𝑛](𝔽𝑞) and𝑄 ∈ 𝐸(𝔽𝑞), the function 𝑔𝑛𝑃,𝑄 = 𝑔⋆1,𝑛
𝑃,𝑄 is a constant 𝑡 ∈ 𝔽∗

𝑞.

Changing 𝑔𝑃,𝑄 by 𝜆𝑔𝑃,𝑄 changes 𝑡 by 𝑡𝜆𝑛, so 𝑡 is well defined in𝔽∗
𝑞/𝔽∗,𝑛

𝑞 .

This is the Tate pairing!

Likewise, the Weil pairing is given by

𝑒𝑛(𝑃,𝑄) =
𝑔⋆1,𝑛

𝑃,𝑄

𝑔⋆2,𝑛
𝑃,𝑄

for 𝑃,𝑄 ∈ 𝐸[𝑛].
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Cubical points
Ifℒ is a line bundle on𝐴, seen as a fibrationℒ → 𝐴with fibers𝔸1 rather than an invertible
sheaf, we let𝑋ℒ = ℒ ∖ 0.
Given 𝑃 ∈ 𝐴, a cubical point 𝑃̃ is an element 𝑃̃ ∈ 𝑋ℒ above 𝑃 via the projection𝑋ℒ → 𝐴
All other cubical points are of the form 𝜆𝑃̃ for 𝜆 ∈ 𝔾𝑚 (ℒ is a𝔾𝑚-torsor)

Ifℒ is very ample, and𝑋0,…𝑋𝑁 ∈ 𝛤(𝐴,ℒ) is a basis of sections, we have a commutative
diagram

𝑋ℒ 𝔸𝑁+1 ∖ {(0,… , 0)}

𝐴 ℙ𝑁

A point 𝑃 ∈ 𝐴 is given by projective coordinates:

(𝑋0(𝑃) ∶ 𝑋1(𝑃) ∶ ⋯ ∶ 𝑋𝑁(𝑃)) ∈ ℙ𝑁

A choice of cubical point 𝑃̃ above 𝑃 is a choice of affine coordinates:

(𝑋0(𝑃), 𝑋1(𝑃),… ,𝑋𝑁(𝑃)) ∈ 𝔸𝑁+1 ∖ {(0,… , 0)}

This also works to define cubical points 𝑃̃whenℒ is not very ample, as long as 𝑃 is not a base
point ofℒ

Exercice: what does a cubical point represent in the other equivalent descriptions of the line
bundleℒ?
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Examples: cubical points on an elliptic curve

𝐷 = (0𝐸): level-1 coordinate𝑍1

𝐷 = 2(0𝐸): level-2 coordinates𝑋2, 𝑍2 = 𝑍2
1

𝐷 = 3(0𝐸): level-3 coordinates𝑋3 = 𝑋2𝑍1, 𝑌3, 𝑍3 = 𝑍3
1

Weierstrass coordinates: 𝑥 = 𝑋3/𝑍3 = 𝑋2/𝑍2, 𝑦 = 𝑌3/𝑍3.
𝑃 ∈ 𝐸 is determined by (𝑥(𝑃), 𝑦(𝑃)).

A level 3 cubical point 𝑃̃ is a choice of (𝑋3(𝑃̃), 𝑌3(𝑃̃), 𝑍3(𝑃̃)) above
(𝑋3(𝑃) ∶ 𝑌3(𝑃) ∶ 𝑍3(𝑃)).
N.B:𝐷 = 3(0𝐸) is very ample. Example: fix𝑂 = (0, 1, 0).

A level 2 cubical point 𝑃̃ is a choice of (𝑋2(𝑃̃), 𝑍2(𝑃̃)) above (𝑋2(𝑃) ∶ 𝑍2(𝑃)).
N.B:𝐷 = 2(0𝐸) is base point free. Example: fix𝑂 = (0, 1).

A level 1 cubical point 𝑃̃ is a choice of𝑍1(𝑃).
N.B: 0𝐸 is a base point of𝐷 = (0𝐸), so we define ̃0𝐸 by (for instance)

𝑍1
𝑥/𝑦 ( ̃0𝐸) = 1.
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Cubical arithmetic: a degenerate case

Assume thatℒ is algebraically equivalent to 0: 𝜙ℒ = 0
(If𝐷 is a divisor on 𝐸, this is equivalent to deg𝐷 = 0)
Then𝑋ℒ is a commutative group, an extension of𝐴 by𝔾𝑚

Reformulation: we have a squared structure on𝑋ℒ

𝑂
𝑃1

𝑃2 ̃𝑃1 + 𝑃2

̃𝑃1 + 𝑃2 is uniquely determined by 𝑃1, 𝑃2 (and𝑂)

The squared structure also determines−𝑃̃

Corollary

Given 𝑃̃𝑖 the cubical point∑𝑛𝑖𝑃̃𝑖 is uniquely determined for all𝑛𝑖 ∈ ℤ
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Cubical arithmetic: the general case

We want to work withℒ ample

We don’t have a group / a squared structure anymore

But we do have a cubical structure!

𝑂
𝑃1

𝑃2

𝑃3

̃𝑃1 + 𝑃2

̃𝑃1 + 𝑃3

̃𝑃2 + 𝑃3 ̃𝑃1 + 𝑃2 + 𝑃3

̃𝑃1 + 𝑃2 + 𝑃3 is uniquely determined by 𝑃1, 𝑃2, 𝑃3, ̃𝑃1 + 𝑃2, ̃𝑃1 + 𝑃3, ̃𝑃2 + 𝑃3 (and𝑂)

Corollary

Given𝑃𝑖 and ̃𝑃𝑖 + 𝑃𝑗 for 𝑖 ≠ 𝑗, the cubical point∑𝑛𝑖𝑃𝑖 is uniquely determined for all𝑛𝑖 ∈ ℕ.

The cubical structure does not determine −𝑃̃ anymore. But if ℒ is symmetric there is a notion of 𝛴-cubical structure to define −𝑃̃
in a way compatible with the cubical arithmetic. This allows to define ∑ 𝑛𝑖𝑃𝑖 for 𝑛𝑖 ∈ ℤ.
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Formulas 1

Cubical arithmetic arises from a canonical isomorphism
ℒ𝑃1+𝑃2+𝑃3

⊗ℒ𝑃1
⊗ℒ𝑃2

⊗ℒ𝑃3
≃ ℒ ⊗ℒ𝑃2+𝑃3

⊗ℒ𝑃1+𝑃3
⊗ℒ𝑃1+𝑃2

Given𝑍 ∈ 𝛤(𝐴,ℒ)with associated divisor𝐷, the isomorphism comes from a function cub𝐷:

𝑍( ̃𝑃1 + 𝑃2 + 𝑃3) ⋅ 𝑍(𝑃1) ⋅ 𝑍(𝑃2) ⋅ 𝑍(𝑃3)
𝑍(𝑂) ⋅ 𝑍( ̃𝑃2 + 𝑃3) ⋅ 𝑍( ̃𝑃1 + 𝑃3) ⋅ 𝑍( ̃𝑃1 + 𝑃2)

= cub𝐷(𝑃1, 𝑃2, 𝑃3)

Proposition

Neutrality: cub𝐷(0𝐴, 0𝐴, 0𝐴) = 1.
Commutativity: cub𝐷(𝜎(𝑃1, 𝑃2, 𝑃3)) = cub𝐷(𝑃1, 𝑃2, 𝑃3) for all𝜎 ∈ 𝔖3.

Associativity:

cub𝐷(𝑃1 + 𝑃2, 𝑃3, 𝑃4) ⋅ cub𝐷(𝑃1, 𝑃2, 𝑃4) = cub𝐷(𝑃1, 𝑃2 + 𝑃3, 𝑃4) ⋅ cub𝐷(𝑃2, 𝑃3, 𝑃4).

For a𝛴-cubical structure: (Anti)-symmetry: cub𝐷(𝑃1, 𝑃2, −𝑃1 − 𝑃2) = ±1.

Associativity means that the cubical point∑𝑛𝑖𝑃̃𝑖 does not depend on the choices of cubes used
to compute it

N.B.: 𝑍𝑚 is a section of 𝑚𝐷, and cub𝑚𝐷 = cub𝑚
𝐷: cubical arithmetic of level 𝑛 induces the cubical arithmetic of level 𝑛𝑚.
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Formulas 2

Theorem

cub𝐷(𝑃1, 𝑃2, 𝑃3) =
𝑔𝐷,𝑃1,𝑃2

(𝑃3)
𝑔𝐷,𝑃1,𝑃2

(0𝐴)

where 𝑔𝐷,𝑃1,𝑃2
is any function with divisor 𝑡∗𝑃1+𝑃2

𝐷+𝐷− 𝑡∗𝑃1
𝐷− 𝑡∗𝑃2

𝐷.

Proposition

If we take 𝑔𝐷,𝑃1,𝑃2
normalised at 0𝐴, then

Neutrality: 𝑔𝐷,𝑃1,𝑃2
(0𝐴) = 1.

Commutativity: 𝑔𝐷,𝑃1,𝑃2
(𝑃3) = 𝑔𝐷,𝑃2,𝑃3

(𝑃1) = 𝑔𝐷,𝑃3,𝑃1
(𝑃2)

Associativity: 𝑔𝐷,𝑃1+𝑃2,𝑃3
𝑔𝐷,𝑃1,𝑃2

= 𝑔𝐷,𝑃1,𝑃2+𝑃3
𝑔𝐷,𝑃2,𝑃3

For a𝛴-cubical structure: (Anti)-symmetry: 𝑔𝐷,𝑃1,𝑃2
(−𝑃1 − 𝑃2) = ±1.
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Cubical arithmetic on elliptic curves

cub(0𝐸)(𝑃1, 𝑃2, 𝑃3) =

∣∣∣∣∣

1 𝑥(𝑃1) 𝑦(𝑃1)
1 𝑥(𝑃2) 𝑦(𝑃2)
1 𝑥(𝑃3) 𝑦(𝑃3)

∣∣∣∣∣
(𝑥(𝑃2) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃2))

=
𝑙𝑃1,𝑃2

(𝑃3)
(𝑥(𝑃3) − 𝑥(𝑃1))(𝑥(𝑃3) − 𝑥(𝑃2))

=
𝑥(𝑃1 + 𝑃2) − 𝑥(𝑃3)

𝑙𝑃1,𝑃2
(−𝑃3)

Differential addition:𝑍1( ̃𝑃 +𝑄)𝑍1( ̃𝑃 −𝑄) = 𝑍1(𝑃̃)2𝑍1(𝑄)2(𝑥(𝑄) − 𝑥(𝑃))
Doubling:𝑍1(2𝑃̃) = 𝑍(𝑃̃)42𝑦(𝑃)
Inverse:𝑍1(−𝑃̃) = −𝑍1(𝑃̃).

Proposition

Level 2 cubical arithmetic descends to the Kummer line.

Example (Montgomery model in level 2: 𝑦2 = 𝑥3 +𝒜𝑥2 + 𝑥)
𝑍(2𝑃̃) = 4𝑋(𝑃̃)𝑍(𝑃̃)(𝑋(𝑃̃)2 +𝒜𝑋(𝑃̃)𝑍(𝑃̃) + 𝑍(𝑃̃)2)

𝑍( ̃𝑃 +𝑄)𝑍( ̃𝑃 −𝑄) = (𝑋(𝑄)𝑍(𝑃̃) − 𝑋(𝑃̃)𝑍(𝑄))
2
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Caveats

In level 2 (𝑋, 𝑍)-cubical coordinates, cubical exponentiation ℓ ↦ ℓ𝑃̃ can be computed via a
Montgomery style ladder, using cubical doublings and cubical differential additions.

Very similar to 𝑥 = (𝑋 ∶ 𝑍)-only arithmetic

N We can have ℓ𝑃̃ = ̃0𝐸 but (ℓ + 1)𝑃̃ ≠ 𝑃̃
However, ℓ𝑃̃ = ̃0𝐸 and (ℓ + 1)𝑃̃ = 𝑃̃ implies (𝑚ℓ + 𝑛)𝑃̃ = 𝑛𝑃̃ for all𝑚, 𝑛.

𝑥-only arithmetic does not depend on the quadratic twist 𝐵𝑦2 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6

N But (𝑋, 𝑍)-level 2 cubical arithmetic does depend on the twist!
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Algorithmic applications

Given a model of an abelian variety (𝐴,ℒ)with explicit formulas for the cubical arithmetic on𝑋ℒ, we
have algorithms for:

Computing the pairings 𝑒ℒ,ℓ

Computing (polarised) isogenies 𝜙 ∶ (𝐴,ℒℓ) → (𝐵,ℳ)
Computing isogeny preimages

Computing radical isogenies

Computing functions with prescribed divisors

Changing level

N.B.: formulas for cubical arithmetic can be derived from sufficiently explicit formulas for the
theorem of the square
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Algorithmic intuition

High level overview:

The cubical structure on𝑋ℒ → 𝐴 induces the biextension𝑌ℒ → 𝐴 × 𝐴
In practice: represent 𝑔𝑃,𝑄 by the four cubical points 0̃𝐸, 𝑃̃, 𝑄, ̃𝑃 +𝑄.

Cubical arithmetic⇒ biextension arithmetic⇒ pairings

This biextension𝑌ℒ is trivial over𝐾(ℒ) × 𝐴
For formal reasons, this recovers the theta group𝐺(ℒ) and its action on sections

Cubical arithmetic⇒ theta group arithmetic⇒ isogenies

Unicity of cubical structures:

Level-𝑛 cubical arithmetic on𝐴 induces level-𝑛ℓ cubical arithmetic on𝐴 (and conversely)⇒
change of level

Level-𝑛ℓ cubical arithmetic on𝐴 induces level-𝑛 cubical arithmetic on 𝐵, where 𝐵 is ℓ-isogeneous
to𝐴⇒ isogenies

Level-𝑛 cubical arithmetic on𝐴 induces level-𝑛ℓ cubical arithmetic on 𝐵, where 𝐵 is ℓ-isogeneous
to𝐴⇒ isogeny preimages
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Example: Vélu’s formulas

𝐸1/𝑘 ∶ 𝑦2
1 = 𝑥3

1 + 𝑎𝑥1 + 𝑏1 elliptic curve

𝜙 ∶ 𝐸1 → 𝐸2 = 𝐸1/𝐾, isogeny with kernel𝐾 = ⟨𝑃⟩
Vélu’s formulas use traces:

𝑥2(𝑃) ≔
ℓ−1
∑
𝑖=0

(𝑥1(𝑃 + 𝑖𝑇)−
ℓ−1
∑
𝑖=1

𝑥1(𝑖𝑇), 𝑦2(𝑃) ≔
ℓ−1
∑
𝑖=0

(𝑦1(𝑃 + 𝑖𝑇)−
ℓ−1
∑
𝑖=1

𝑦1(𝑖𝑇)

Recall that 𝑥1 = 𝑋/𝑍, 𝑦1 = 𝑌/𝑍 are rational functions

Cubical arithmetic allows us to directly take “cubical traces” of𝑋,𝑌, 𝑍

Vélu’s formulas do not extend directly to higher dimension (for degree reasons)

But the cubical trace approach does!

Cosset-Lubicz-R. isogeny formulas already used (without knowing!) “cubical traces”of theta
functions

Algorithms thoroughly optimised in [YOOKN25]

Cubical point of view brings more flexibility⇒ Corte-Real Santos et al 30% improvement for
isogenies and 50% improvement for images compared to [YOOKN25] (work in progress)
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Example: Radical isogeny formulas

We have working radical isogeny formulas in various variants of the Montgomery model

Speed up of≈ 2× to≈ 2.5× compared to Decru’s formulas in [Dec24]
(Depending on the model and whether ℓ is a sum of two squares or not)

Works in 𝑥-only coordinates, using (𝑋, 𝑍)-cubical arithmetic
(This is the main source of savings: we can use symmetry to only compute only half the points)

Example: In the theta model, a ℓ-radical isogeny (for ℓ a sum of two squares) costs a ℓ-th root, and
1𝐼 + 6ℓ𝑀 +𝑂(log ℓ)𝑀 arithmetic operations

And the “preimage” of a point through the dual isogeny costs a ℓ-th root, and
1𝐼 + 5ℓ𝑀 +𝑂(log ℓ)𝑀 arithmetic operations

Decru: 3𝐼 + (16ℓ − 25)𝑀

Still a work in progress

The difference of complexity for a prime ℓ ≡ 1 (mod 4) vs ℓ ≡ 3 (mod 4) comes from the
way we compute the cubical descent of level from level 2ℓ to level 2.
Question: Better descent of level formulas?
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Cubical functions

𝑍 ∈ 𝛤(𝐴,ℒ)with associated divisor𝐷
𝑅̃ ↦ 𝑍(𝑅̃ +∑𝑛𝑖𝑃̃𝑖) is a “cubical function” with divisor 𝑡∗∑ 𝑛𝑖𝑃𝑖

𝐷.

Depends on the choices of 𝑃𝑖, ̃𝑃𝑖 + 𝑃𝑗, but also of 𝑅̃, ̃𝑅+ 𝑃𝑖

Combining these cubical functions we can get genuine elliptic functions, not depending on the
choices of 𝑅̃, ̃𝑅+ 𝑃𝑖
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Cubical functions

Example

𝑅 ↦ 𝑔𝑃1,𝑃2
(𝑅) =

𝑍( ̃𝑅+ 𝑃1 + 𝑃2)𝑍(𝑅̃)
𝑍( ̃𝑅+ 𝑃1)𝑍( ̃𝑅+ 𝑃2)

is a genuine function 𝑔𝐷,𝑃1,𝑃2
with divisor 𝑡∗𝑃1+𝑃2

𝐷+𝐷− 𝑡∗𝑃1
𝐷− 𝑡∗𝑃2

𝐷.

It only depends on the choices of 𝑃1, 𝑃2, ̃𝑃1 + 𝑃2.

𝑅 ↦
𝑍(ℓ𝑃̃ + 𝑅̃)𝑍(𝑅̃)ℓ−1

𝑍(𝑃 + 𝑅)ℓ

is a genuine function 𝑓𝐷,ℓ,𝑃 with divisor 𝑡ℓ𝑃𝐷+ (ℓ − 1)𝐷 − ℓ𝑡∗𝑃𝐷.

If 𝑃 ∈ 𝐴[ℓ],

𝑅 ↦
𝑍(ℓ𝑅̃)𝑍(ℓ𝑃̃ + 𝑅̃)
𝑍(ℓ𝑅̃ + 𝑃̃)𝑍(𝑅̃)

is a genuine function with divisor [ℓ]∗(𝐷 − 𝑡∗𝑃𝐷).
(Compare with how we would compute this function with Miller’s algorithm.)
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Pairings via cubical arithmetic

Up to≈ 2× faster pairing computation for isogeny based cryptography, compared to Miller’s
algorithm [PRRSS25]

Pairings entirely on the Kummer line, using level 2 cubical arithmetic

N.B.: since level 2 cubical arithmetic gives the pairings 𝑒2(0𝐸),ℓ = 𝑒2
(0𝐸),ℓ, a priori we only recover

squared pairings.

But we have a trick to recover the level−1 pairings 𝑒(0𝐸),ℓ when ℓ is even
(New: and also when ℓ is odd!)

Potentially useful for pairings based cryptography too [LRZZ25]
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The Discrete Logarithm Problem

One can reduce DLPs on𝐴/𝑘 to cubical DLPs (via “excellent cubical lifts”)

Conversely, cubical DLPs reduce to DLPs on𝐴 and 𝑘∗

(Similarly for biextensions and theta groups DLPs)

With extra information, cubical DLPs may only need DLPs in 𝑘∗

⇒ Monodromy leak

Leaking the result (𝑋(𝑛𝑃), 𝑍(𝑛𝑃)) of a Montgomery ladder 𝑥(𝑃) ↦ 𝑥(𝑛𝑃) on a Montgomery
curve is enough to recover 𝑛 via a DLP in𝔽∗

𝑞

See https://jonathke.github.io/monoDOOM
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Higher degree and higher level
We can also animate degree 𝑛 and multilinear forms.

𝑛-multi-extension of∏𝐴𝑖 by𝔾𝑚 ≃𝑛-multilinear map∏𝐴𝑖 → 𝔾𝑚

(𝑛 + 1)-hypercube structure on𝐴 by𝔾𝑚 ≃ degree 𝑛map𝐴 → 𝔾𝑚

A 𝑛-bilinear map 𝑏 ∶ 𝐴𝑛 → 𝔾𝑚 gives a degree 𝑛 function

𝑞 ∶ 𝐴 → 𝔾𝑚, 𝑞(𝑥) ↦ 𝑏(𝑥,… , 𝑥)

Conversely a degree 𝑛 function gives a symmetric 𝑛-bilinear map𝐴𝑛 → 𝔾𝑚

The same holds for 𝑛-multi-extensions and (𝑛 + 1)-hypercube structures.

Unfortunately on abelian varieties, a tri-extension is trivial (it is induced by a biextension), so
there are no interesting hypercube structures [Grothendieck].

If𝜋 ∶ 𝑋 → 𝑆 is a proper flat morphism of relative dimension 𝑛, then the determinant functor
𝑅𝜋∗ has a (𝑛 + 2)-hypercube structure which gives a multilinear pairing Pic(𝑋)𝑛+1 → Pic(𝑆)
[Deligne]

We could also look at higher level bilinear and quadratic forms, i.e. with values in 𝐵2𝔾𝑚 rather
than 𝐵𝔾𝑚.

This would give us quadratic forms in gerbes rather than in torsors.
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