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Public key cryptology

Cryptology:
@ Encryption;
@ Authenticity;
@ Integrity.

Public key cryptology is based on a one way (trapdoor) function = asymmetric
encryption, signatures, zero-knowledge proofs...

Applications:
o Military;
@ Privacy;
@ Communications (internet, mobile phones...)
@ E-commerce...
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Paranoia is healthy...

The Prism program collects stored Internet communications based on demands made
to Internet companies (Microsoft, Yahoo!, Google, Facebook, Paltalk, YouTube, AOL,
Skype, Apple...)

“The NSA has been:

@ Tampering with national standards (NIST is specifically mentioned) to promote
weak, or otherwise vulnerable cryptography.

@ Influencing standards committees to weaken protocols.

@ Working with hardware and software vendors to weaken encryption and random
number generators.

@ Attacking the encryption used by “the next generation of 4G phones”.

@ Obtaining cleartext access to “a major internet peer-to-peer voice and text
communications system”

@ Identifying and cracking vulnerable keys.

@ Establishing a Human Intelligence division to infiltrate the global
telecommunications industry.

@ decrypting SSL connections.

” (Matthew GREEN on Bullrun —
http://blog.cryptographyengineering.com/2013/09/on-nsa. html) i
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LFANT: Lithe and fast algorithmic number theory

@ Algorithmic number theory and algebraic geometry;
@ Head: Andreas ENGE;

@ Strong focus on efficiency and correctness (certificates...) (We frequently deal
with very large objects, like polynomials of degree ~ 20000 and precision ~
8000000 bits);

@ Star software: PARI/GP, but also mpc, mpfrcx, cme, cmh, avisogenies, cubic,
euclid, kleinian...

My role in the team: apply the tools from number theory and algebraic geometry to
cryptography.
@ ERC Antics: Algorithmic Number Theory in Computer Science;

@ ANR Peace: Parameter spaces for Efficient Arithmetic and Curve security
Evaluation;

@ ANR Simpatic: SIM and PAiring Theory for Information and Communications
security;

@ Scientific coordinator of team MACISA — Mathematics applied to cryptology and
information security in Africa (Lirima);

@ Idex CPU: Numerical certification and reliability;
@ LFANT Seminar.
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RSA system

Example (RSA 2048 bits)
@ Public key: N=

646340121426220146014297533773399039208882053394309680642606908
55049310277735781786394402823045826927377435921843796038988239118
30098184219017630477289656624126175473460199218350039550077930421
35921152767681351365535844372852395123236761886769523409411632917
04072610085775151783082131617215104798247860771541250357195739496
51006869586445228278180658214398887279173664588210836633923808561
65048739368300064038912423130410691353570679926140940862465162358
05891476615738012476024438178978555840101805075466037613580524358
24525493257830079031474862719924783990207806733511674643922466646

8983279311866542671292347381090267.

@ Private key: The primes number p and g such that N =pg.
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Elliptic curves

Definition (chark #2,3)

An elliptic curve is a plane curve with equation

y*=x+ax+b 4a®+27b* #0.

Exponentiation:

(¢,P)—LP

Discrete logarithm:

(BtP)—t
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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Scalar multiplication on an elliptic curve
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ECC (Elliptic curve cryptography)

Example (NIST-p-256)

@ E elliptic curve
2 =x3—3x +41058363725152142129326129780047268409114441015993725554835256314039467401291 OVer
]Fl15792()89210356248762697446949407573530086143415290314195533631308867097853951
@ Public key:
P=(48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109),
Q = (76028141830806192577282777898750452406210805147329580134802140726480409897389,
85583728422624684878257214555223946135008937421540868848199576276874939903729)

@ Private key: ¢ such that Q =¢P.

@ Recommended by the NSA;
@ Used in Europeans biometric passports.
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Why elliptic curves?

With the same security level, compared to RSA, elliptic curve cryptography is
o faster;
@ more compact;
@ more powerful.

Example (Pairings)

@ On an elliptic curve, from one master public key, we can generate many other
public keys, but generating the corresponding private keys requires the master
private key.

= ldentity-based cryptography, short signatures, one way tripartite Diffie-Hellman,

self-blindable credential certificates, attribute based cryptography, broadcast
encryption...
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Maps... Maps everywhere!

The security of an elliptic curve E/F, depends on its number of points #E(F,). But
@ Endomorphisms acts on (the points of) E;
@ Isogenies map an elliptic curve to another one;
@ Pairings map an elliptic curve to IF;.;

@ E can be lifted to an elliptic curve over a number field (where we can compute
elliptic integrals);
@ The Weil restriction maps E/F,a to an abelian variety over F, of higher dimension.

Remark
This rich structure explain why elliptic curve cryptography is so powerful. J
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How to choose an elliptic curve?

@ Take one at random;

@ Generate one with carefully tweaked parameters (Complex Multiplication
method);

@ Use one standardized (@NIST-p-256, ©Curve25519).

Most important question J

How to assess the security of a particular elliptic curve?

@ Point counting;
@ Endomorphism ring computation (finer, more expensive);
@ Relations to surrounding (isogenous) elliptic curves.

Main research theme

Consider elliptic curves and higher dimensional abelian varieties as families, via their
moduli spaces.

v

Remark

The geometry of the moduli space of elliptic curves incredibly rich (Wiles’ proof of Fermat’s
last theorem).
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http://csrc.nist.gov/groups/ST/toolkit/documents/dss/NISTReCur.pdf
http://cr.yp.to/ecdh.html

Moduli spaces
o If E:y2=x3+ax+b is an elliptic curve, its isomorphism class is given by the
j-invariant
4a3
4a%+27b%
The (coarse) moduli space of elliptic curves is isomorphic via the j-invariant to
the projective line P;
@ The modular curve X,(3) c P? cut out by the modular polynomial

j(E)=1728

03X, V)=X"+ V' — X3Y? +2232X% Y3 +2232X3 Y* — 1069956 X° Y — 1069956 X Y*
+36864000X> +36864000Y° +2587918086X? Y? +8900222976000X> Y
+8900222976000X Y2 + 452984832000000X2 + 452984832000000 Y>
—770845966336000000X Y~+1855425871872000000000X+1855425871872000000000 Y

describes the pairs of 3-isogenous elliptic curves (jg,, jg,);
@ The moduli space of abelian surfaces is of dimension 3;
@ The class polynomials

128i§ +44568631; — 7499223000 =0
(2561, +4456863)i, =580727232i, — 1497069297000
(2561, +4456863)i; = 2305622881, —421831293750

describe the (dimension 0) moduli space of abelian surfaces with complex ...
multiplication by Q(X)/(X*+13X?+41).
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Higher dimension
Dimension 2:

Addition law on the Jacobian of an hyperelliptic curve of genus 2:
y?=f(x), deg f =5.

D=P,+P,— 200
D'=Q+Q -2
D+D'=R,+R,—2x
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Higher dimension

Dimension 2:

5 quadratic equations in P7:
(4ara,+4asae)X1Xe +(4ar1a, +4asas)Xo Xs =
(4azasdaqasz)Xs Xy +(4asasdasas)X; Xg;
(2ayas +2aza6)X? +(2a1as +2a,a6)X; +(—2a3 — 243 — 2a% — 2a2)X; X3 =
(2a5 +2a3 +2a3 +2a%) Xy Xg +(—2a1as — 2a,a6)X; +(—2a,as — 2a,ae)X5;
(4a,a6+4aza5)X1 X2 +(—4asas —4asas) Xz Xs =
(4azas +4asa4)Xs X7 +(—4a a6 —4azas)Xs Xe;
(2a% +2a5 +2a% +2a3)X, Xs +(2a} +2a3 +2a% +2a%) X, Xg +(—2asas — 2a,a4)X; =
(2asas +2asa4)X; +(2azas +2a4a4)X% + (2azaz +2a,a4)Xs;
(2a% —2a5 +2a% —2a) X, X5 +(—2a% +2a5 — 2a% +2a%)Xo X + (—2asas +2a4a4)X; =
(—2asaz+2a,a4)X? +(2asas —2a3a.)X> +(—2a3a3 +2a4a4)X%;

where the parameters live in the (fine) moduli space of abelian surfaces with a
level (2,4)-structure described by 2 quartics equations in P°:
alas+atazag+arasas+aia;+ayasa’+ayas+azaias+azal —2a3—4alal —2a} =0;

atayas+aiaias+aiasai+azaias—4aia’ =0
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Higher dimension

Dimension 3

Jacobians of hyperelliptic curves of genus 3. Jacobians of quartics.
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Abelian surfaces

@ For the same level of security, abelian surfaces need fields half the size as for
elliptic curves (good for embedded devices);

@ The moduli space is of dimension 3 compared to 1 = more possibilities to find
efficient parameters;

@ Pairings on a space of rank 4 rather than 2 = more powerful;

@ Potential speed record (the record holder often change between elliptic curves
and abelian surfaces);

@ But lot of algorithms still lacking compared to elliptic curves!
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Isogeny graphs on elliptic curves

Definition

Isogenies are morphisms between elliptic curves.

Isogenies give links between

arithmetic;

endomorphism rings;

class polynomials;

modular polynomials;

point counting;

canonical lifting;

moduli spaces;

transfering the discrete logarithm problem.
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Isogeny graphs on elliptic curves



Isogeny graphs in dimension 2




Isogeny graphs in dimension 2




Isogeny graphs in dimension 2
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Isogeny graphs in dimension 2
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