
An introduction to Cryptology1

2015/03/ — EMA, Franceville, Gabon

Damien Robert

Équipe LFANT, Inria Bordeaux Sud-Ouest
Institut de Mathématiques de Bordeaux

Équipe MACISA, Laboratoire International de Recherche en Informatique et Mathématiques Appliquées

1A big thanks to my colleagues of the Caramel team in Nancy who provided most of the
content for this course

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Cryptology

Cryptology = Cryptography + Cryptanalysis
Usage:

SSL/TLS, ssh, gpg

GSM, Wifi, Bluetooth

Credit Card, Transport card, Passport

Remark

Cryptology ⊂ Security

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Public Canal

Alice communicates with Bob through a public canal. Eve does passive
attacks on this canal (spying) and Charlie does active attacks.

Active attacks:

Usurpation of identity;

Altering data;

Repudiation

Replay, repetition

Man in the middle

Delay, Destruction

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Primitives

Confidentiality

Symmetric encryption, Asymmetric encryption

Integrity

Cryptographic hash functions

Authenticity

Signature, MAC

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Primitives

Confidentiality Symmetric encryption, Asymmetric encryption

Integrity Cryptographic hash functions

Authenticity Signature, MAC

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Primitive

Without key: hash, random generator

With key
symmetric

MAC
Encryption: stream, block

asymmetric: number theory, codes, lattices…
signature
Encryption

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Confidentiality, Authenticity

Confidentiality: E : {0, 1}n →{0, 1}n a permutation; D = E −1. Encryption:
m 7→ c = E (m), Decryption: c 7→m =D (c).

Authenticity: c = A(m). Alice sends (m , v). Bob receives (m ′, v ′).
Verification: V (m ′, v ′) =OK, NOT OK.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Kerchoff’s laws

E and D needs to be secret;

So no external validation of security possible;

And transmitting the algorithmes in painful;

Kerchoff: parametrizes the algorithms by a key K ;

E : {0, 1}n ×{0, 1}k →{0, 1}n such that E (·, K) is a permutation for all K ;

E can be public, the only secret is the secret key K .

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Channels of communications

Public

Authenticated

Confidential

Authenticated + Confidential

Goals

Using a authenticated and/or confidential channel, construct an
authenticated and/or confidential channels inside a public channel.

The goal if of course to use the preexisting authenticated/confidential
channel as little as possible, and do everything else in the
authenticated/confidential channel constructed inside the public channel.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Example 1: integrity

Alice sends m through the public channel, and h (m) through the integrity
channel, where h : {0, 1}∗→{0, 1}256 is a cryptographic hash function.

Security:

Preimage resistance;

Second-Preimage resistance;

Collision resistance.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Example 2: authenticity (symmetric)

A secret key K is generated (randomisation) and sent to Alice and Bob
through a authenticated and confidential channel. Alice sends
(m , MAC(m , K)) through the public channel. Bob verify via VERIF(m , K). The
MAC is a hash function parametrized by K .

Security: from several couples (M , C)

Can’t retrieve K ;

Can’t generate a new (M ′, C ′);

Can’t distinguish the distribution C from a uniform distribution.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Example 2: authenticity (asymmetric)

A couple (KS , KP) is generated by Alice and she sends the public key KP to
Bob via an authenticated channel. Alice sends (m ,SIGN(m , KS)) through the
public channel, and Bob verify via VERIF(m , KP).

Security: from several couples (M , C) and KP

Can’t retrieve KS ;

Can’t generate a new (M ′, C ′);

Can’t distinguish the distribution C from a uniform distribution.

Signature vs MAC:

Public verification

Non repudiation

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Example 3: confidentiality (symmetric)

A secret key K is generated (randomisation) and sent to Alice and Bob
through a authenticated and confidential channel. Alice sends c = E (m , K)
through the public channel, Bob decrypts via m =D (c , K).

Security: from several ciphers C , several couples (M , C = E (M , K)) (chosen
plain text attack) and several couples (C , M =D (M , K)) (chosen cipher text
attack)

Can’t retrieve K ;

Can’t find M ′ from a new C ′;

Can’t distinguish the distribution C from a uniform distribution.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Example 3: confidentiality (asymmetric)

A couple (KS , KP) is generated by Bob and he sends the public key KP to Alice
via an authenticated channel. Alice sends c = E (m , KP) through the public
channel, and Bob decrypt via m =D (c , KS).

Security: from KP , several ciphers C , several couples (M , C = E (M , K))
(chosen plain text attack) and several couples (C , M =D (M , K)) (chosen
cipher text attack)

Can’t retrieve KS ;

Can’t find M ′ from a new C ′;

Can’t distinguish the distribution C from a uniform distribution.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Asymmetric vs symmetric

N persons⇒ N keys rather than N 2;

Does not need a confidential channel;

Much slower.

⇒ Use an asymmetric cipher to send a symmetric secret key and switch
to the symmetric channel to increase speed.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Security

Only cipher known

Chosen plain text: CPA, Adaptative chosen plain text: CPA2

Chosen cipher text: CCA, Adaptative chosen cipher text: CCA2

⇒ Invert the function: OW (One Wayness)

⇒ Indistiguinbility: IND. Detect an encryption of 1 from an encryption of 0
with probability > 0.5+ ε. IND = Semantic security.

Ultimate goal: IND-CCA2 cryptosystem.

Attacks:

Black box or structural analysis;

Side channels.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Security parameters

240: One minute on a standard computer;

260: One year on a standard computer;

280: One year with 106 cores at 5G H z = NSA?

2128: security goal.

Remark

One may want to take higher security parameters 192 bits or 256 bits for
very long term security and for protection against potential attacks. For
instance quantum computers can divide by 2 the security of some problems
(and completely kill others like factorisation or the discrete logarithm
problem).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

One way function

Origin: hash table to speed up lookup

Very important in cryptology, needs strong properties

One way function x 7→ f (x) easy, but y 7→ f −1(y) hard.

Example

Multiplication, exponentiation in (Z/pZ∗,×).

In asymmetric key cryptography, use of trapdoor one way function: a secret
trap can allows to compute f −1.

Example

If N = p q , x 7→ x 2 is a trapdoor one way function.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Hash function

Origin: hash table to speed up lookup;

h : {0, 1}∗→{0, 1}n ;
Very important in cryptology, needs strong properties:

No preimage

No second preimage

No collision

Example

A checksum is not an hash function

x 7→ x 2 mod p q is one way but not a cryptographic hash function.

MD5 (Broken), SHA-1 (Almost broken), SHA-2, SHA-3

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Collision

Let h be an hash function with n bits of output; N = 2n .

Given y � {0, 1}n , finding y at random requires Θ(2n) tries;

What about a collision: x1 6= x2 | h (x1) = h (x2)?

After k tries, the probability of not finding a collision is

p (k) = (1−1/N)(1−2/N) . . . (1−k/N)

So we have the inequalities (in fact it is an order of equivalence)

log p (k) =
∑

log(1− i/N)¶−i
∑

i/N ¶−k 2/2N

p (k)¶ exp(−k 2/2N)

So if k =Θ(
p

N), p (k) is small and the probability of collision is high;

To get 128 bits of security we need n = 256

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Construction

Compression function f : {0, 1}2n →{0,1}n ;
Merkle-Damgard (IV=Input Vector)

h (m1, . . . , mk) = f (f (. . . f (f (I V , m1), m2), . . . , mk)

If m is not of length a multiple of n , pad n with its length

Theorem

If f is collision resistant, then h too.

Remark

A small weakness in f can lead to a big weakness in h (MD5);

From h (m), we can compute h (m ||m0) without knowing m .

Constructing f : mixing boolean operations, addition (non bit-linear), into
multiple rounds with some magic constants.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Mise en gage

Alice can publish h (m) to prove later that she selected m ;

If m is small (YES/NO), necessity to pad with a random sequence. “The
hash of my CB card is
fe9e5fa6d82a071422a576064d0ed49a7266ccb49390037c255e6e7baa8d4535”
is a bad idea. Better idea: publish the hash of (CB card + long random
sequence of characters).

Example

Head or tails by phone

Zero-Knowledge via coloring graphs

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

MAC: Message authentification code

hK (m) were K is a secret key between Alice and Bob to prove the
identity of the emitter

Security: Eve can not produce (m ′, hK (m ′));

HMAC(K , m) =H (K ⊕ c1 ||H (K ⊕ c2) ||m); proven secure

H (M || K) or H (K ||M) is a bad idea if h is constructed via
Merkle-Damgard (MD5, SHA-1, SHA-2) but should be ok if h use a
sponge function (SHA-3).

hK could also be a block cipher

In fact a bloc cipher E can define a hash function via
hi = E (hi−1, mi)⊕hi−1 (Davies-Meyer) but we want a faster hash
function.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Randomness generator

Vital in a cryptosystem

Sony: random = constant

Debian ssh: random = date

RSA key: a lot of common primes in public modulus

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Statistic properties

Standard randomness: good statistic properties

Linear congruence: xn+1 = a xn + b mod M very fast but some statistic
bias

Cryptographic randomness: needs much stronger properties

Can’t predict the next bit from the observed ones

Broken for linear congruences

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Seed

True alea = non compressable (Kolmogorov)

By definition an algorithm can’t generate a true alea

⇒ Pseudorandom generator.

Construction: a small seed (true alea) used by the pseudorandom
generator

Hash function = Compress state; PRNG = Expand state.

s internal state: s = f (s) (update internal state), x = g (s) (output next
random bit)

Remark

Finite number of internal states 2n ⇒ the PRNG will loop

Birthday paradox: A “random” update of the seed loop in time
p

internal states

Arithmetic PNRG can force a loop of 2n

Bad idea for cryptography

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

True alea

We need a true alea to initialize the seed

Use physical input: input/output, mouse mouvements, IP packets…

⇒ In linux, /dev/random collects the entropy and outputs a random
sequence until the entropy is 0⇒ blocks waiting for new entropy

/dev/urandom uses the entropy inside a PRNG to output a random
sequence which never blocks

Problem: in early boot, urandom may output a sequence while the seed
had not enough entropy yet;

In an idle machine not a lot of entropy; even worse for virtual machine
without help from the container;

Possible solution: with a good PRNG, we just need an initial seed of
true 256 bits of entropy; keep the current state across reboots.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Entropy

Quantity of information: if p (x = 1) = 0.99 and p (x = 0) = 0.01, observing
x = 0 is much more useful than x = 1;

Quantity of information: Q I (m = x) = log2(1/p (x))

The entropy is the average value of the Q I :

e =−
∑

pi log2 pi

n bits of entropy ≈ information that needs n bits to be encoded.

Example

x � {0, 1 . . . , 15} uniformly: 4 bits of entropy

pA = 0.5, pB = 0.25, pC = 0.25. e = 1/2+2/4+2/4= 3/2. Encode A with 0, B
with 10 and C with 11⇒ 3/2 bits on average to encode the message.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Historical ciphers

CESAR: translate letter in the alphabet by the same amount

Alphabetical substitution

VIGENERE: CESAR depending on the position of the letter:

CRYPTOGRAPHYINGABON

SECRETSECRETSECRETS

UVAGXHYVCGLRARIRFHF

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Statistical attacks

The messages correspond to word in a language, they are not uniform;

If the ciphers are still non uniform⇒ statistical attacks

Alphabetical substitution: most frequent letters, vowels are linked with
many other letters;

Index of correlation: split the message into several lines. Probability
that one letter is the same as the letter below (ie probability that two
random letters are the same);

Uniform messages: index of correlation is 1/26;

Far from the case in French: 10−15%;

Vigenere: if we split the messages into blocks of length k and find an
index of correlation similar to the French one then high probability
than the length of the secret is a divisor of k and we are back to CESAR.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Enigma

Keyboard Plug P (several disjoint transposition)

Several rotors Ri (each rotor is a permutation): 3 then 4

Reflector M : 13 couples for the 26 letters
A↔D , B↔M , …

E (m) = P −1R−1
1 R−1

2 R−1
3 M R3R2R1P

After each output, R1 makes a turn; if R1 has made a full

The secret state is given by the position of the plugboard and the initial
position of the rotors.

Feature: E 2 = Id so decryption use the same initial state as encryption;

Security problem: for all letter x , E (x) 6= x . Big statistical drawback;

Cryptanalysis of Enigma (Poland then England+USA). A bombe explores
a lot of Enigma position, using statistical analysis to greatly speed up
the process.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Modern attacks

Linearity: solve big linear systems

Algebraic attacks: solve big multivariate algebraic systems

Differential attacks: let Ek (m ⊕∆m) = c ⊕∆c and study the distribution
of ∆c .

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Unconditional security

Vernam cipher (One time pad) ci =mi ⊕ki

Shannon: unconditionally secure if k = k1 . . . kn is uniform random
(Proof: distribution of m ⊕ uniform distribution = uniform distribution);

Not convenient: key of same length as the message

Reusing key (or part of the key) is catastrophic: if c1 =m1⊕k and
c2 =m2⊕k then c1⊕ c2 =m1⊕m2; this reveals a lot of information;

Unconditonal security is too strong, we only care about computational
security.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Stream cipher

Simulate the One Time Pad by using a PRNG parametrized by a secret
key k ;

Internal state: si . Update: si+1 = f (si , K). Output xi = g (si , K).

Encryption/Decryption: ci =mi ⊕ xi .

Remark

Problems of synchronisation. Autosynchronising stream ciphers: use the
last t ciphers as the state: xi = g (ci−t , . . . , ci−1, K). If there is an error of
transmission, this corrupt the decryption for only t bits.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Linear Feedback Shift Register (LFSR)

A LFSR has L cells.

Output x0;

Shift: xi = xi+1;

Feedback: xL−1 = xi1
⊕ xi2
⊕ · · ·⊕ xik

.

Definition

The retroaction polynomial is P (x) = x L +
∑

xik
x k .

The LFSR is uniquely determined by its initial value and its retroaction
polynomial.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Linear algebra

The state of the vector X = (x0, . . . , xL1
) in the LFSR is linear

For instance if P (x) = x 4+ x +1, then at step i +1, X i+1 =M X i where

M =







0 1 0 0
0 0 1 0
0 0 0 1
1 0 1 1






� F2

The characteristic polynomial of M is P (x).

The LFSR will loop when M k = Id

This is the order of X in F2[X]/P (x) (if P is the minimal polynomial).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Order of the LFSR

If P (x) is irreducible then K =F2[X]/P (X) =F2(x) is a field of degree L .
The order of x in K divides 2L −1.
If P is primitive the order is exactly 2L −1;
If P =
∏

Pi is a product of distinct irreducible polynomials then
K =
∏

F2[X]/Pi (X) is a product of fields (CRT) and the period divides
∏

2deg Pi −1< 2L −1.
The highest period is given by primitives polynomials.

Theorem

There is ϕ(2
L−1)
L primitive polynomials of degree L in F2[x].

In particular if 2L −1 is prime (a Mersenne prime) then there is (2L −2)/L
primitive polynomials of degree L and all irreducible polynomials are primitive.

Proof.

The splitting field of an irreducible polynomial of degree L is always F2L

since the absolute Galois group is procyclic. There is ϕ(2L −1) generators of
the multiplicative group F2L . The Galois group splits this group into
ϕ(2L −1)/L orbits (since the Frobenius is of order L), each orbit corresponds
to a primitive polynomial.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Security

An LFSR can have a high period;

But the output is linear, from 2L terms one can recover its retroaction
polynomial (Berlekamp Masse)

Proof.

There exists a fraction P0/P1 whose formal sum
∑

xi X i corresponds to the
bit output by the LFSR. The Euclidean algorithm between

∑2L−1
i=0 xi X i and

X 2L recovers this fraction (as the continued fraction algorithm recovers the
rational fraction p/q from its decimal development).

In practice combine several LFSR with a non linear filter function

A5/1 (GSM) combines 3 LFSR; but the filter function is weak⇒ attacks if
enough data is gathered.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Block cipher

c = EK (m), m =DK (c) where m is a block of n bits and K is block of k
bits;

There is (2n)! bijections and 2k possible keys; so we can have k >m .

If the block is too small (n = 8) dictionary attacks;

AES works with blocks of 128 bits but has three level of security: 128,
192 and 256 bits (which corresponds to 10, 12 and 14 rounds).

Security: Observing (m , c) should reveal no information on K or allows
to generate (m ′, c ′).

Related keys: changing one bit of K should completely change the
(m , c).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Feistel scheme

Several rounds: m = L0 ||R0.

L i+1 =Ri , Ri+1 = L i ⊕ FKi
(Ri) (Ki is a key derived from K for round i)

This is always inversible, even if FKi
is not injective!

Decrypting: Ri = L i+1, L i =Ri+1⊕ FKi
(L i+1).

Used by DES: Feistel scheme with 16 rounds.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

DES

Blocks of 64 bits, key of 56 bits;

Good for the time (1976);

Key size too low now.

Triple DES used instead (now superseded by AES):
EK1 ,K2

=DESK1
◦DES−1

K2
◦DESK1

;

Key length of Triple DES is 112 bits.

Some plain text attacks⇒ effective security of 80 bits.

Exercice

1 Why not simply use EK1 ,K2
=DESK2

◦DESK1
?

2 Why the DES−1
K2

in the middle?

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

AES

Selection by NIST in 2001;

Blocks of size 128, Keys of size 128, 192, 256;

Several rounds (10, 12, 14) parametrized by subkeys;

One round: 128 bits = 16 bytes, organized in a 4×4 square;

1 SubBytes: inversion in F28 =F2[x]/x 8+ x 4+ x 3+ x +1
2 ShiftRows: rows are shifted (by a different value)
3 MixColumns: linear
4 AddRoundKey: XOR with the derived keys.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Electronic Code Book (ECB)

ci = EK (mi);

Example (From Wikipedia)

Name + Salaries encrypted through ECB with blocks of 2 characters.
Jack salary is 105000€ by year, and the encrypted data is Q92DFPVXC9IO.
The other encrypted data are TOAV6RFPY5VXC9, YPFGFPDFDFIO,

Q9AXFPC9IOIO, ACED4TFPVXIOIO, UTJSDGFPRTAVIO

What is the salary of Jane, Jack’s boss?

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Cipher-block chaining (CBC)

Initialisation: c0 = I V (input/initialisation vector)

ci = EK (ci−1⊕mi);

mi = ci−1⊕DK (ci);

Randomizing the IV⇒ same plain text to different cipher text.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Counter

I0 = I V

c j =m j ⊕EK (I j); I j+1 = I j +1,

This is actually a stream cipher!

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Output feedback (OFB)

I0 = I V

c j =m j ⊕ I j ; I j+1 = EK (I j)

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

MAC + Encryption

A block cipher can also be used as a MAC: the last cipher block is the
MAC (needs a good operational mode).

MAC then Encrypt? (SSL); Encrypt and MAC? (SSH); Encrypt then MAC?

Encrypt then MAC is secure; MAC then Encrypt has a lot of problem
(decryption oracle); Encrypt and MAC has theoretical problems (For
instance MAC = E ⊕m) but no strong practical problems.

Authenticity+Integrity: HMAC, Poly1305, Galois Message Authentication
Code (GMAC);

Confidentiality+Authenticity+Integrity: GCM (Galois Counter Mode),
CCM (Counter Mode + CBC-Mac)

Block ciphers: AES

Stream ciphers: Salsa20 (and the variant Chacha20), also used in the
BLAKE hash function, ESTREAM.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Protocols

TLS Key exchange + Authentication algorithms: RSA, DHE-RSA, DHE-DSS,
ECDH-ECDSA, ECDHE-ECDSA, ECDH-RSA, ECDHE-RSA

TLS Ciphers: AES-CBC, AES-CCM, AES-GCM, Chacha20-Poly1305

SSH Authentication: id_dsa, id_rsa, id_ecdsa, id_ed25519

SSH Key exchange algorithms: curve25519-sha256@libssh.org,
ecdh-sha2-nistp256, ecdh-sha2-nistp384, ecdh-sha2-nistp521,
diffie-hellman-group-exchange-sha256,
diffie-hellman-group-exchange-sha1, diffie-hellman-group14-sha1,
diffie-hellman-group1-sha1

SSH Ciphers: aes128-ctr, aes192-ctr, aes256-ctr, arcfour256, arcfour128,
aes128-gcm@openssh.com, aes256-gcm@openssh.com,
chacha20-poly1305@openssh.com, aes128-cbc, 3des-cbc, blowfish-cbc,
cast128-cbc, aes192-cbc, aes256-cbc, arcfour

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

RSA

Fermat, Euler: if x � (Z/NZ)∗ then xϕ(n) = 1.

RSA: n = p q . ϕ(n) = (p −1)(q −1).

If N is a product of disjoint primes, then for all x � Z/NZ, x 1+ϕ(n) = x .

Proof.

If N = p , then Fermat shows this work for all x 6= 0, and 0 is trivial to check.
If N =
∏

pi , by the CRT Z/NZ'
∏

Z/piZ as a ring and we are back to the
prime case.

In RSA, if e is prime to ϕ(n) and d is its inverse, then for all x � Z/NZ,
x e d = x .

Encryption: x 7→ x e ; Decryption: y 7→ y d .

Signature: x 7→ x d ; Verification: y 7→ y e .

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Reductions on RSA

Given the public key (N , e)
RSADP (Decryption Problem): from y = x e find x ;
RSAKRP (Key Recovery Problem): find d such that x e d = x for all
x � Z/NZ∗

RSAEMP (Exponent Multiple Problem): find k such that x k = 1 for all
x � Z/NZ∗ (so k is a multiple of (p −1)∨ (q −1));
RSAOP (Order Problem): find ϕ(n);
RSAFP (Factorisation Problem): recover p and q .

Theorem

RSAKRP⇔ RSAEMP⇔ RSAFP⇔ RSAOP⇒RSADP

Proof.

RSAFP⇒RSAOP⇒RSAKRP⇒RSAEMP. The hard part is to show that RSAEMP
⇒RSAFP. The goal is to find x 6=±1 such that x 2 = 1. Then x −1∧n gives a
prime factor. Write k = 2s t , and look for a random y at x = y t , x 2, x 22

, …x 2 j

until we find 1, say x 2 j0+1 = 1. Then x 2 j
is a square root. The bad cases are

when x = y t = 1 (but this has probability less than 1/4) and when x 2 j0 =−1
(but this has probability less than 1/2).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Malleability of RSA

(m1 ·m2)e =m e
1 ·m

e
2 so from several ciphertexts we can generate a lot

more;

As is, RSA is OW-CPA (if factorisation is hard) but malleable.

Example of CCA2 attack: we know c =m e ; we ask to decipher a random
r : mr = r d and c /r : mc /r = (c /r)d (c /r looks random). We recover
m =mr mc /r .

We want IND-CCA2 so we need to add padding.

RSA-OAEP: The padding is M ⊕G (r) || r ⊕H (M ⊕G (r)) where r is random
and H and G are two hash functions.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Attacks on RSA

Best algorithm for factorisation is NFS: 2O (n1/3);

Subexponential: Factor 2 in security needs factor 8 in key length.

Small exponent: if N >m e finding m is easy. This can happen if the
same message is sent to several user with public keys (Ni , e); by the CRT
we recover m e mod N =

∏

Ni .

If e has a small order in (Z/ϕ(N)Z)∗ iterating the encryption yields the
decryption.

If d is small, for instance let p < q < 2p , and suppose that d < n 1/4/3.
Write e d −1= kϕ(n); then for n big enough

|
e

n
−

k

d
|<

1

2d 2
.

k/d can then be recovered from the continued fraction of e /n which is
computed using Euclide’s algorithm.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Discrete logarithm problem

Given a cyclic group G =< g >.

Exponentiation x 7→ h = g x (via fast exponentiation algorithm); DLP
h = g x 7→ x .

Shanks: the DLP in G can be done in time n =
p

#G via the Baby Steps,
Giant Steps algorithm (time/memory tradeoff). Let c =

p
N and write

x = y + c z , y , z ¶ c . Compute the intersection of {1, g , . . . , g c } and
{hg −c , hg −2c , . . . , hg −c c } to find g z = hg −c y .

Pollard: take a random path of si = g ui h vi (typically find a a suitable
function and compute si+1 = f (si)) until a collision is found: si = s j . Then

h = g
ui −u j
vi −v j . Birthday paradox: a collision is found in time

p
n .

Pohlig-Helman: the DLP inside G can be reduced to the DLP inside
subroups of side pi | n .

First reduction: CRT. Z/NZ=
∏

Z/p ei
i Z, so to recover x we need to recover

xi = x mod p ei
i ; via hi = g xi

i where hi = h N /p
ei
i , g i = g N /p

ei
i .

Second reduction: Hensel lift. Write xi = x0+ x1p ; and solve h
p ei −1

i = g
p ei −1 x0
i

to recover x0; write xi − x0 = p (x1 +p x2) and find x1 and so on.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Security of the DLP

Theorem

On a generic group, the complexity of the DLP is of complexity the square root of
its largest prime divisor.

But effective groups are not generic!

G = (Z/NZ,+), the DLP is trivial (Euclide algorithm);

G = (Z/pZ)∗, same methods and subexponential complexity as for
factorisation: 2O (n1/3);

G =F∗2n , quasi polynomial algorithm: n log n ;

Generic ordinary elliptic curve over Fp : the generic algorithm is the
best available;

⇒ To get 128 bits of security find an elliptic curve E /Fp where p has 256
bits and E (Fp) is prime (or almost prime).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Diffie-Helman Key Exchange

How to share a secret key across a non confidential channel?

⇒ Encrypt it via an asymmetric scheme;

Or use the Diffie-Helman Key Exchange algorithm (predates
asymmetric cryptography).

Alice sends g a to Bob

Bob sends g b to Alice

The secret key is g a b .

Diffie-Helman Problem: Eve has to recover g a b from only g , g a and g b .

DLP⇒DHP

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

El Gamal encryption

Public key: (g , p = g a), Private key: a ;

Encryption: m 7→ (g k , s = p k .m) (k random);

Decryption: m = s/(g k)a .

Warning: Never reuse k .

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

DSA (Signature)

Public key: (g , p = g a), Private key: a ;

Φ : G →Z/nZ;
Signature: m 7→ (u =Φ(g k), v = (m +aΦ(g k))/k) � (Z/nZ)2;
Verification: u =Φ(g m v−1

p u v−1).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Zero Knowledge

Alice publish (g , p = g a), her secret is a .

Alice choose a random x and sends q = g x ;

Either Bob asks for x and checks that q = g x ;

Either Bob asks for s + x and checks that q ·p = g s+x .

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Authentification

Challenge / Answer

Bob chooses a random r , computes x = h (r) and sends the challenge
(x , EKP

(r)) to Alice;

Alice decrypt to find r , checks that x = h (r) and sends the answer r to
Bob;

Question: Why use a hash function here and not just send EKP
(r)?

Signature

Bob sends a random message r to Alice;

Alice appends random noise to r and signs this.

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Public Key Infrastructure

Even with asymmetric cryptography, we still need an authenticated
channel to transmit the public key KP ;

Web of trust (decentralized): I trust the persons trusted by the persons
I trust. Used by gpg.

PKI (centralized): public key signed by an organism via a certificate.
Verification done recursively until we find a root certificate. Used by
TLS/SSL: 166 root certificates on my computer.

Certificate for n persons: n certificates? 1 certificate using a binary
hash tree: recursively if the node N has two children C1, C2 then
h (N) = h (C1 ||C2). We only need to verify the authenticity of the root
node R ; verification of a node N only uses the path between N and R
⇒ O (log n).

Concepts Randomness and hash function Stream ciphers Block ciphers Public key cryptography

Bibliography

Novels
Dan Brown, Digital Fortress as an exercice to find the numerous
technical mistakes about cryptography in the novel
Neal Stephenson, Cryptonomicon, where the hero use the Solitaire
encryption algorithm by Schneier which just needs a deck of card.

Historical
David Kahn, The Codebreakers;
Simon Singh, The Code Book (Histoire des Codes Secrets);
Jacques Stern, La Science du Secret;

Reference
Steven D. Galbraith, Mathematics of Public Key Cryptography.
Jeffrey Hoffstein, Jill Pipher et Joseph H. Silverman, An Introduction to
Mathematical Cryptography;
Antoine Joux, Algorithmic Cryptanalysis;
Alfred J. Menezes, Paul C. van Oorschot et Scott A. Vanstone, Handbook
of Applied Cryptography
http://www.cacr.math.uwaterloo.ca/hac/;
Serge Vaudenay, A Classical Introduction to Cryptography;
Bruce Schneier, Applied Cryptography;
Douglas R. Stinson, Cryptography: Theory and Practice.

http://www.cacr.math.uwaterloo.ca/hac/

	Concepts
	Usage
	Primitives
	Channels
	Security

	Randomness and hash function
	Hash functions
	Randomness

	Stream ciphers
	Symmetric ciphers
	LFSR

	Block ciphers
	Construction
	Operating modes
	Methods

	Public key cryptography
	Mathematical problems

