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RSA

@ Fermat, Euler: if x €(Z/NZ)* then x¢" =1.
@ RSA: n=pgq. p(n)=(p—1)(g—1).
e If N is a product of disjoint primes, then for all x € Z/NZ, x'*#" = x.

Proof.

If N=p, then Fermat shows this work for all x #0, and 0 is trivial to check.
If N=]]p;, by the CRT Z/NZ~[]Z/p;Z as a ring and we are back to the
prime case. O

@ In RSA, if e is prime to ¢(n) and d is its inverse, then for all x€Z/NZ,
x4 =x.

@ Encryption: x — x¢; Decryption: y — y<.

@ Signature: x — x%; Verification: y — y®°.
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Re!uctions on RSA

Given the public key (N, e)

@ RSADP (Decryption Problem): from y = x¢ find x;

@ RSAKRP (Key Recovery Problem): find d such that x¢¢ = x for all
x€Z/NZ*

@ RSAEMP (Exponent Multiple Problem): find k such that x* =1 for all
X e€Z/NZ* (so k is a multiple of (p —1) V(g —1));

@ RSAOP (Order Problem): find ¢(n);

@ RSAFP (Factorisation Problem): recover p and q.

Theorem
RSAKRP < RSAEMP < RSAFP < RSAOP =RSADP

Proof.

RSAFP =RSAOP =RSAKRP =>RSAEMP. The hard part is to show that RSAEMP
=RSAFP. The goal is to find x #+1 such that x>=1. Then x—1An givesa
prime factor. Write k =2z, and look for a random y at x = y?, x2, x2, .x?
until we find 1, say x>*"' =1. Then x? is a square root. The bad cases are
when x = y* =1 (but this has probability less than 1/4) and when x?* =—1

(but this has probability less than 1/2). )




MaHea!i‘ity o' RSA

@ (my-m,)* =m¢-m¢ so from several ciphertexts we can generate a lot
more;

@ As is, RSA is OW-CPA (if factorisation is hard) but malleable.

@ Example of CCA2 attack: we know ¢ = m¢; we ask to decipher a random
rem,=r%and ¢/r:m.;, =(c/r)? (c/r looks random). We recover
m=m,me,.

@ We want IND-CCA2 so we need to add padding.

@ RSA-OAEP: The padding is M @ G(r)|| r @ H(M & G(r)) where r is random
and H and G are two hash functions.
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Attac!s on RSA

1/3)

@ Best algorithm for factorisation is NFS: 20
@ Subexponential: Factor 2 in security needs factor 8 in key length.

)

o Small exponent: if N> m¢ finding m is easy. This can happen if the
same message is sent to several user with public keys (N;, e); by the CRT
we recover m® mod N =[] N;.

@ If e has a small order in (Z/p(N)Z)* iterating the encryption yields the
decryption.

@ If d is small, for instance let p < g <2p, and suppose that d < n'/*/3.
Write ed —1 = ky(n); then for n big enough

e k 1

< —.
n d 2d?

k/d can then be recovered from the continued fraction of e/n which is
computed using Euclide’s algorithm.
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Squares in !nite !e‘!s

@ Let p>2 be a prime. (Z/pZ*, x) is a cyclic group of order p—1;

@ There are (p —1)/2 squares and (p —1)/2 non squares;

o If xeZ/pZ* then x is a square if and only if x*= =1 (by Fermat x*' =1
for all xeZ/pZ*);

@ Legendre symbol:

1  xisasquare
X
(—) =4{—1 xisnotasquare
0 x=0mod p;

X

° (;):x"%l (mod p);

- .. Xy X X
@ Multiplicativity: (—)=(—)(—);
. b pJ\q

@ Quadratic reciprocity: p,q primes > 2:

QAR




Jaco!i sym!o‘

@ Jacobi symbol: if n is odd, define the Jacobi symbol by extending the
Legendre symbol multiplicatively on the bottom argument:

)

@ Extension of quadratic reciprocity:

m m-1n-1 (N q
(—):(—1) T 2 (E) (m and n odd and coprime)
. . -1 1 (2 21
with the extra relations (7) =(-1)z7, (;) =(-1)"7% ;
= The Jacobi symbol can be computed in polynomial time;

. . X n— . . . q q
@ Primality test: if (—)#le then n is not prime (and if n is not prime
n
at least half the x coprime to n will be witnesses).




Digression: M|Her-Ra!|n

Miller-Rabin primality test

@ If nis prime and n—1=d2’, then for all a prime to n either
@ a’=1 modn
@ ora®™ =—1 modn (for0<u<t—1)

o for any odd composite n, at least 3/4 of the bases a are witnesses for
the compositeness of n.
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Hea!s or tai‘s

@ Let n=pgq be an RSA number, by the CRT (Z/nZ*, x)=(Z/pZ* x Z/qZ*, x);

X x\(x e X .
° (;)— (;)(;) so if x is prime to n, (;)— 1 when x is a square
modulo n (=square modulo p and square modulo g) or when x is
neither a square modulo p and g;

@ Computing (%) polynomial time;

@ Deciding if x is a real square (and computing the square root) or false
square: factorisation of n

@ x — x?% is a one way trapdoor function!
Heads or tails:
x
@ Bob choose n=pgq and sends x such that (;)z 1;

@ Alice answers “real square” or “false square”;
@ Bob sends p and g so Alice can verify if she was right or not.
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Zero Know‘e!ge i!enti!cation

@ Secret key of Alice: p, g, s mod n=pgq;

@ Public key of Alice: n=pgq, r =52

Zero Knowledge identification:
@ Alice chooses a random u mod n, computes z = u? and sends
t=zr=u?*s? to Bob;
@ Bob either chooses
@ To check z: he asks u to Alice and checks that z = u?;
o To check ¢: he asks us to Alice and checks that ¢ = (us)?.
@ A liar will either produce a false u or a false ¢ and has 1/2 chances to be
catched, Bob will ask for several rounds (30);
@ To always give the correct answer mean that Alice knows the secret s
or is very lucky (probability 1/23°).
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Fermat

@ We want to get a factor of a composite number n (see primality tests);
o If n=x?2—y%then n=(x—y)x+y);

@ More generally if x>=y? mod n then x—y An may be a non trivial
factor (Exercice: if n=pq what is the probability to get a non trivial
factor?)
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Smoot! num!ers

@ n is B-smooth if n can be written as a product of integer < B;

@ Canfield-Erdés-Pomerance: The probability that a number x < n is
B-smooth is

u—u(1+o(1]

where u= }gg,’; and when logn® < u <logn'"*.

@ Subexponential functions: L,(a, 8)=exp(Blog” xloglog'™* x);

@ The probability for a number of size L,(a, ) to be L(y,8)-smooth is
L(a—y,—pla—7)/u+o(1)).

@ Example: a number of size n=L,(1) is L,(1/2) smooth with probability
L,(1/2);
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Linear an! Qua!ratic Sieves

@ Dixon Linear Sieve: Generate squares modulo n: y = x? mod n where y
is B-smooth with B=L,(1/2) = time L,(1/2) to find them;

@ Collect enough relations to use linear algebra so that a suitable product
of y is a square;

@ Pomerance Quadratic Sieve: let m =[n'/?]. Generate the y by
(m+a)?=(m?—n)+a*+2am mod n. The y are of size 4/ rather than
n so the probability to be B-smooth is much higher;

@ A detailed complexity analysis give a complexity of L, (1/2,v2)
(B=L,(1/2,1/+/2)) for the linear sieve and L,(1/2,1) (B =L,(1/2,1/2))
for the quadratic field.
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Genera‘ Num!er !e‘! sieve

@ Invented by Pollard and Lenstra;

@ Generate smooth numbers in two number fields to get relations (see
commutative diagram);

@ Linear algebra on the relations to get two squares;

@ Use sieves (lattice sieving or line sieving) to generate the smooth
numbers;

@ In practice very complex (obstructions from the class group and the
group of unity, taking square roots in number fields)...

@ Heuristic Complexity L,(1/3,(64/9)'/%);
@ See for example CADO-NFS for an open-source implementation.
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Discrete Logarit!m

Definition (DLP)

Let G =(g) be a cyclic group of prime order. Let xeN and h=g~. The
discrete logarithm log,(h) is x.

@ Exponentiation: O(logp). DLP: O(/7) (in a generic group). So we can
use the DLP for public key cryptography.

= We want to find secure groups with efficient addition law and compact
representation.




Discrete ogarit!m pro!‘em

Given a cyclic group G =< g >.

@ Exponentiation x — h =g* (via fast exponentiation algorithm); DLP
h=g*—x.

@ Shanks: the DLP in G can be done in time n = v#G via the Baby Steps,
Giant Steps algorithm (time/memory tradeoff). Let ¢ = VN and write
xX=y+cz, y,z<c. Compute the intersection of {1,g,...,g°} and
{hg=¢,hg=%°,...,hg=*°} to find g* = hg=°Y.

@ Pollard: take a random path of s; = g“ h (typically find a a suitable
function and compute s;,; = f(s;)) until a collision is found: s; =s;.

fatind
Then h =g "% . Birthday paradox: a collision is found in time /7.

@ Pohlig-Helman: the DLP inside G can be reduced to the DLP inside
subroups of side p; | n.

o First reduction: CRT. Z/NZ=[]Z/p;" Z, so to recover x we need to recover

. . 5 €i €j
x;=x mod p/’; via h; =g where by =hN/Pi", g =gN/Pi
e;—1 ej—1
o Second reduction: Hensel lift. Write x; = xo+x;p; and solve h/’*  =g/" ™®

to recover xg; write x; — xo = p(x; + px,) and find x; and so on.
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Security o' t!e DLP

Theorem
On a generic group, the complexity of the DLP is of complexity the square root of
its largest prime divisor.

@ But effective groups are not generic!

@ G=(Z/NZ,+), the DLP is trivial (Euclide algorithm);

@ G =(Z/pZ), same methods and subexponential complexity as for
factorisation: 200",

@ G =F;,, quasi polynomial algorithm: n'°&";

@ Generic ordinary elliptic curve over F,: the generic algorithm is the
best available;

= To get 128 bits of security find an elliptic curve E/F, where p has 256
bits and E(F,) is prime (or almost prime).
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Di!e-HJman Key Exc!ange

@ How to share a secret key across a non confidential channel?

= Encrypt it via an asymmetric scheme;

@ Or use the Diffie-Helman Key Exchange algorithm (predates
asymmetric cryptography).

@ Alice sends g“ to Bob

@ Bob sends g” to Alice

@ The secret key is g?.

@ Diffie-Helman Problem: Eve has to recover g’ from only g, g and g".

@ DLP =DHP
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E‘ Gama‘ encryption

@ Public key: (g,p =g*), Private key: a;

@ Encryption: m — (g%, s = p*.m) (k random);
@ Decryption: m=s/(gk)*.

@ Warning: Never reuse k.



DSA (Signature)

@ Public key: (g,p =g*), Private key: a;

0 d:G—7Z/nZ;

@ Signature: m — (u=®(g*), v =(m +a®(g~))/k) e (Z/nZ);
@ Verification: u=a(gm" p»w™).



Zero Know‘e!ge

@ Alice publish (g, p =g%), her secret is a.

@ Alice choose a random x and sends g =g~;

@ Either Bob asks for x and checks that g =g*;

@ Either Bob asks for a + x and checks that g-p = g**~.



EHIptIC curves

Definition (chark #2,3)

An elliptic curve is a plane curve with equation

y*=x*+ax+b  4a®+27b*#£0.

/-
Exponentiation:
Q
% (¢,P)— (P
! | | n n

Discrete logarithm:

T (PLP)— 1




Scalar mu tiplication on an elliptic curve




Scalar mu tiplication on an elliptic curve

-3P, P I

q
)
=

3Pu




Scalar mu tiplication on an elliptic curve




ECC (Elliptic curve cryptography)

Example (NI 256)

o E elliptic curve y?=x3—3x+
41058363725152142129326129780047268409114441015993725554835256314039467401291 OVEr
]F115792089210356248762697446949407573530086143415290314195533631308867097853951

@ Public key:

P = (48439561293906451759052585252797914202762949526041747995844080717082404635286,
36134250956749795798585127919587881956611106672985015071877198253568414405109),
Q =(76028141830806192577282777898750452406210805147329580134802140726480409897389,
85583728422624684878257214555223946135008937421540868848199576276874939903729)

@ Private key: ¢ such that Q =¢(P.

@ Used by the NSA;
@ Used in Europeans biometric passports.
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ECC vs RSA tor 128 bits of security

ECC (Curve25519) 256 bits:

AAAAC3NZzaC11ZDIINTESAAAAIMONrNYhU7CY1Xs6v4Nm1V6oRHs /FEE8P+XaZoPcxPzz

RSA 3248 bits:

MITHRGIBAAKCAZCAV1GW+b5L2tmgb5bUIMrfLHgr2 ga/Q/8135Q1qeSsB7XLVT/
ODN3KNSPxyjaHmDNADTwgs ikZvPYey ZWWF LPOBOvVgWDqQugUGHVFgac73Z01qZk6
1nA45XZGHUPt98p4+ghPag5]yvAVsflcF/V1ttBHbu/noyIAC4F3tHP81nn+10nB
eilEALbdmvGTTZ5jcRrt4IDT5a4IeI9yTe@aVdTsUI6990hpKrVzyTOuleoxp5eV
KQ7aIX6es9Xjnr8widZunM8rghBWIEMmLqabnXZItPQoV3rUAnwKzDLV7ES56vik
S2xU5+95IctYu/RTTbf3wTxnkDOgxIdOMONHyBIsukXgYKxVB1fWhBKZ4tWuilgw
UCTiKTqLml2zJhLn4WovaxrvvTx@e82S0xncEfYDXYud4xbRnIn+ZsTTguqufwCiM
U4MYRdWy7uj+H1EmIGU169FwONKuCitWI9dFpcDtSP+/1eEN7wc2F1xhDIRweroF
6I11P4StWn1luQyHzsTLVdcP+rqA1AsvbWBCKL4ravEO2CEQIDAQABACIBLIWt5Y0]
YZzk4RXbkSX/LvmWICfdmkjTKW6F 1w+P4TnotCreWPGOObDoANIoUcnbSqNGMgCu
01SF8q9+UuDwZx4KBZm@j8IPOPzJ2nYcK5dYDhyMHzDq1LJ14z1fgPQGQ5WWg2BWm
2RHDhADATth6YZArs/z9hAqtA9gqMPNMPcdQpIv1sHSON@6zBID8sIQA+kOXG+Y2
GS8NakLcUV1DpNd/Q+QHkv4AW1ge2EF8QumKtU/9rekOBgWNm2Tapd6RtAhZWPIX
UhD9yiesTF6rjZ1ZcMGXUaN5Rt@zD3D4zowRz2ILtCe4Gkimtc3waN6hullalqz
boIllevgnbatqnC4rCq8sf21lyZqalUIbwH41W2G3K8xMINh3iy8cgHTYneNYa+/d
7xyNW1MO9SK1HsyaPcWv98BdD+At@x/6R6YPYkeR+qXI9ETGFKWAU6iNbBQXOMbh
kZb1Ry8vfMH8VsYIzh8Edg6aqo@ScU57KiDS/Gc8KuqIévmf2leCdCa487kvVCgwe
CcGXQ2bLZGYBiMZFf001pCQECgCcWASZUh3/8yS@duNhsDz3sgC2u4@HwWHUbxuSOUa
a5t4CoUY9iuF7b7ghBEcvdLgI0iXA5x0+r4p@xgbLvDUTSRR1ImrDM2+wRcjjwXc
pFaMFR12Rr72yLUC7NOWNcoUshrNL4X/1j8T4WLRcannpXcor+/knlrwdLEbRCC+
ZRTAdJ1gMPt4kwleHtE9Mzw2/03GX3MeLvzvIklzvpCGw2ON/2Yqjs++V5hXoHPs
21y6y6/FV097dVvFctf7NahS@4]sjubfnjOMx89AUNZsCgcwAlDfabCGISCkmQ+mg
2q91DPJz6r29wmBtYyT200Z2kd4QBHrOp@t59yG4bvdRqcZG/Dr5LjuVDWMPyetV
dksK7hVYQz2B7Nzy7W3waPVrhA@N4fgbIFGxih5QiSFG7/oroZ8PdZDcfVRKrohl
/337r1z/ZBQCLRS5t7/G2BOkBDOMMM+@2wR60CTmXUhmgvsoDZWRpSKKha5PSvZa
WAU2CN3mXNK72RLF3RFUVUhNYNnkOE j50aulRaGgpZoB@ITKYIOnffbe8up+DV8MC
gCcwA18be28Ti5FXyg+/IGQ3EBHfucCTiTDQQA2EW/8pTFK+z0kroyYISsKXUuaSk
+skghkhPcrugW8LgabH4GT/zGu+1H4btyekSBxeCtFqTtpED1IWIOWD20zi7NXSjd
YrhF+VCcMCWA7ek0qSHjkmT4XMO/wPab4VFEKzgLnHzQ1cZB3ke7/4/0HNDSCIE7
VWVNeRCdYdRggT+wBX+Y6bxp142Smj8uyuloDmpmR5ZUCnTdqT408K/RTOx4jCeC
CUhGV5rVill07bS4CdkCgctXvnQwCzmwvVrV744TfTuhu81TwHngGWaA/ LKU3wW9
T/x9baluHFXkaWvRba61LIcDGPsYM4hwTYokqYnfbC2rvOWOf6rtnX1P1An3y61V
ovQfgDeNiFmIyvnviPPEM@JIZA+QnburLYwOx4DgwYvyBnpal8WPo8c3L/J4hkwlm

BAAARTA I il assArml e St mC L OManC /Lot s VTART Al «DOmLLETT ILINA AT OV e+
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A!!ition ‘aw on t!e Welerstrass mo!e‘

E:y*>=x%+ax+b (short Weierstrass form).
@ Distinct points P and Q:

P+Q=—R=(xg,—¥r)
_Jo—Jp
XQ—xP
Xp=0"—Xp—Xo Yr=Yp+a(xXg—xp)
(If xp = xo then P=—Q and P +Q =0g).
o If P=Q, then @ comes from the tangent at P:
3x2+b
a=—2~
2yp

Xg=0"—2Xp Yp=Yyp+a(xg—xp)

@ Indeed write I, : y =ax + f the line between P and Q (or the tangent
to E at P when P=Q). Then y z=ax_z+p and yp =axp+ so
V- =a(xz—xp)+ yp. Furthemore xz, xp, x, are the three roots of
x+ax+b—(ax+p) so xp+xg+xp =0’
= Avoid divisions by working with projective coordinates (X : Y : Z):
E:Y*Z=X+aXZ*+bZ>.
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Sca‘ar multiplication

@ The scalar multiplication P — n.P is computed via the standard double
and add algorithm;

@ On average logn doubling and 1/2logn additions;
@ Standard tricks to speed-up include NAF form, windowing ...

@ The multiscalar multiplication (P,Q)— n.P + m.Q can also be computed
via doubling and the addition of P, Q or P+Q according to the bits of n
and m;

@ On average log N doubling and 3/4log N additions where N = max(n, m);

@ GLV idea: if there exists an efficiently computable endomorphism a
such that a(P)= u.P where u~ /7, then replace the scalar
multiplication n.P by the multiscalar multiplication n, P + n,a(P);

@ One can expect n, and n, to be half the size of n = from logn doubling
and 1/2logn additions to 1/2logn doubling and 3/8logn additions.
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E!war!s curves

E:x*+y?2=1+dx?y? d+#0,—1.
@ Addition of P =(x;,3)and Q =(x,, 3»):

P+Q=( X1)o+ X )1 NYo— X1 X, )

L+dxi %0 1—dx X))

@ When d =0 we get a circle (a curve of genus 0) and we find back the
addition law on the circle coming from the sine and cosine laws;

@ Neutral element: (0,1); —(x,y)=(x,y); T =(1,0) has order 4, 2T =(0,1).

@ If d is not a square in K, then there are no exceptional points: the
denominators are always nonzero = complete addition laws;

= Very useful to prevent some Side Channel Attacks.
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Tw1ste! E!war!s curves

@ E:ax’+y*=1+dx%y?
@ Extensively studied by Bernstein and Lange;
@ Addition of P =(x;, ) and Q =(x,, »):

P+Q=( X1+ X N)e—aXi X, )

l+dx %0y, 1—dxun),

@ Neutral element: (0,1); —(x,y)=(x,y); T =(0,—1) has order 2;
@ Complete addition if a is a square and d not a square.
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Montgomery

@ E:By?’=x3+Ax*>+x;
@ Birationally equivalent to twisted Edwards curves;
@ The map E — Al,(x,y)— (x) maps E to the Kummer line Ky =E/=+1;

@ We represent a point £P € K by the projective coordinates (X : Z)
where x =X/Z;

o Differential addition: Given £P, = (X, : Z,), £P,=(X,: Z,) and
+(P,— PB,))=(X5: Z3); then one can compute +(P, + B,)=(X, : Z,) by

Xy =Z3(X, — Z)) (X + Z,)+ (X, + Z)( X — Z,))
Z,=X3((X1 — Z)) (X + Z,)— (X, + Z) X — Z,)f
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Montgomery’s scaLr mu‘tip‘ication

@ The scalar multiplication +P — +n.P can be computed through
differential additions if we can construct a differential chain;

o If £[n]P=(X,—Z~,), then
Xonin = Zm-n (X — Zp ) Xy + Z) + (X + Z,)( X, — Z,, ))2
Zpin = Xien (Xpp — Zp ) (X + Z3,) = (X + Z,0)( X, _Zn))z

@ Montgomery’s ladder use the chain nP, (n+1)P;

@ From nP,(n+1)P the next iteration computes 2nP, (2n+1)P or
(2n+1)P, (2n+2)P via one doubling and one differential addition.
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Si!e c!anne‘ resistant sca‘ar mu‘tip‘ication

@ Start with Ty=0; and T, = P. At each step do
o Ifkj=1, H=T+T, 1 =2T
o Else 1=Ty+ T, Ty =2T,
@ Constant time execution, but vulnerable to branch prediction attacks.
Remove the branch:

E—ki=R+nr TkiZZT;Ci

@ The memory access pattern depend on the secret bit k; = vulnerable to
cache attacks. Use bit masking to mask the memory access pattern:
o M =(k;...k;), the bitmask
° R=Ty+T, S=2((M&T)|(M&T,))
o Ty=(M&S)|(M&R)
o T, =(M&R)|(M&S)
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Pairing—!ase! cryptograp!y

Definition

A pairing is a non-degenerate bilinear application e : G, x G, — G, between
finite abelian groups.

If the pairing e can be computed easily, the difficulty of the DLP in G,
reduces to the difficulty of the DLP in G,.

= MOV attacks on supersingular elliptic curves.

Identity-based cryptography [BF03].

Short signature [BLS04].

One way tripartite Diffie-Hellman [Jouo4].
Self-blindable credential certificates [Vero1l.
Attribute based cryptography [SWO05].
Broadcast encryption [GPS+06].
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Example of applications

Tripartite Diffie-Helman
Alice sends g¢, Bob sends g?, Charlie sends g¢. The common key is

)abc

e(g,8)" =e(g’ g) =e(g‘,g") =e(g*.8") <G,.

Example (Identity-based cryptography)

@ Master key: (P, sP),s. seN,PeG;.
@ Derived key: Q, sQ. QeG,.
@ Encryption, meG,: m'=m®e(Q,sP)", rP. reN.

@ Decryption: m=m'®e(sQ, rP).
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Divisors

@ Let C be a projective smooth and geometrically connected curve;

@ Adivisor D is a formal finite sum of points on C:
D =m[P ]+ ny[B]+---n,[P,]. The degree degD = n,.
@ If fek(C)is a rational function, then

Divf = ord,(f)[P]
P

((O¢)p the stalk of functions defined around P is a discrete valuation
ring since C is smooth and ord,(f) is the corresponding valuation of f
at P).

If C =P, then Div

=>ela;]=> filBil+ OB =D a;)oo. In particular
degDiv f =0 and conversely any degree 0 divisor comes from a rational
function.

l'[( ﬁf')
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Linear equiva‘ence c‘ass o' !ivisors

@ For a general curve, if f e k(C), Div(f) is of degree 0 but not any
degree 0 divisor D comes from a function f;

@ A divisor which comes from a rational function is called a principal
divisor. Two divisors D, and D, are said to be linearly equivalent if they
differ by a principal divisor: D, = D, + Div(f).

@ Pic C =Div’ C/Principal Divisors

@ A principal divisor D determines f such that D =Div f up to a
multiplicative constant (since the only globally regular functions are
the constants).
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Divisors on eHiptic curves

Theorem

Let D =" n,[P;] be a divisor of degree 0 on an elliptic curve E. Then D is the
divisor of a function f e k(E) (ie D is a principal divisor) if and only if

> n; P, =0y € E(k) (where the last sum is not formal but comes from the
addltlon on the elliptic curve).

In particular P € E(k)— [P]—[0z]€Jac(E) is a group isomorphism between the
points in E and the linear equivalence classes of divisors;
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T!e Wei‘ pairing on eHiptic curves

@ Let E: y?=x3+ax+b be an elliptic curve over a field k (chark #2,3,
4a3+27b*#0.)
@ Let PQ < E[/] be points of ¢-torsion.

@ Let f» be a function associated to the principal divisor £(P)—£(0), and f,
to £(Q)—¢(0). We define:

Jp((Q)—(0))

ewdBQA= % P (o)

@ The application ey, : E[¢]x E[¢]— u,(k) is a non degenerate pairing: the
Weil pairing.

Definition (Embedding degree)
The embedding degree d is the smallest number such that ¢| g —1; F,a is

then the smallest extension containing u,(k).




T!e Tate pairing on e‘ iptic curves over I,

Definition

The Tate pairing is a non degenerate bilinear application given by

er: BIUIxE[F)/LEF,) — TFru/Fy,
(PQ — f(Q-0)

where

Ey[t]={P e E[{](Fga)| n(P)=[q]P}.

@ On F,q, the Tate pairing is a non degenerate pairing
er: E[)(Fga) x E(Fga)/LE(F ga) = Fry [Foy" = uy;

(4] |f€2+E(]qu) then E(]qu)/[E(]qu)z E[Z](]qu);
@ We normalise the Tate pairing by going to the power of (g4 —1)/¢.




MiHer’s 'unctlons

@ We need to compute the functions f, and f,. More generally, we define
the Miller’s functions:

Definition
Let AeN and X € E[¢], we define f, x € k(E) to be a function thus that:

(fox)=2AX)=([A]X)—(A—1)(0).

@ We want to compute (for instance) f; »((Q)—(0)).




MiHer’s a‘gorlt!m

@ The key idea in Miller’s algorithm is that

f7L+u,X = fux ﬁt,Xf}L,y,X

where f; , x is a function associated to the divisor
([A1X) + ((p]X) = ([A + p]1X)—(0).

@ We can compute f; , x using the addition law in E: if [A]X =(x;, ;) and
[UX =(x,, 3) and @ = (1 — 1»)/(x, — x,), we have

y—alx—x)—n

Fapx = X+(x+x)—a?’




Miller’s algorithm

[AIX =(x1,31)  [WX =(x,, 15)

o
- +wX
1+
X
f "é - o - : f
] o) 0.5 0 0.5 1.5 2
_1,,
+u)X
24k
y—a(x—x)—n

ik = G F )=
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MiHer’s a‘gorit!m on eHiptic curves

Algorithm (Computing the Tate pairing)

Input: £eN, P=(x, 1) € E[l](F,),Q=(xy,)5) € E(Fga).
Output: er(P,Q).

@ Compute the binary decomposition: €:=3";_ b;2'. let T=P fi=1,f=1.

@ Foriin[I..0] compute
© ¢, the slope of the tangent of E at T.
Q T=2T.T=(x3,)3)
O fi=fip—alx—x3)— ), fo= (X +(x +x3)—a?).
@ If b; =1, then compute
@ o, the slope of the line going through P and T.
Q T=T+Q. T=(x3,)3)
Q fi= flz(J’Z —a(x—x3)— 13), o = (30 + (1 + X3) — &?).

Return
g%-1

(7) "
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Ring Learning Wit! Errors

@ R=17/qZ[x])/®,, where ®,, = x¥" +1;

@ RLWE assumption: from (a;, b; = a;s + ¢;) where s is secret and e; are
small Gaussian error terms, the b; look random;

@ Encryption: fix ¢ a power of two and m— P =(as+te+m)—aX. We
have P(s)=m mod t;

Decryption: P+ P(s) mod ¢;
Homomorphic addition: P, + P, = Py, m;
Homomorphic multiplication: P, x P, = Pym;

The homomorphic properties are valid as long as the coefficient of P,,,
P, are small enough (to not overflow g) and in the case of
multiplication when degP,, + deg P, < 2";

on+l

@ Optimisations: when g =1 mod 2"*!, then x>~ —1 and hence x?" +1

split totally modulo g;
@ Modulus switching to reduce noise;

@ Security: based on assumptions about ideal lattices (beware recent
attacks on these kinds of lattices).

lorzia—.




	RSA
	Mathematical problems

	ZK
	ZK

	NFS
	NFS

	DLP
	DLP

	Elliptic curves
	Weierstrass
	Models

	Pairings
	Pairings
	Divisors
	Miller's algorithm

	RLWE
	RLWE


