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1 Resultants

Exercice 1.1. Compare the method resultant with directly computing the determinant of the
Sylvester matrix. Test with polynomials over different fields.

Exercice 1.2. Let 𝐾 be a field such that the two polynomials 𝑃(𝑥) = 𝑥3 − 1 and 𝑄(𝑥) =
𝑥2 + 3𝑥 + 1 have a common root. What is the characteristic of 𝐾?

Exercice 1.3. Let 𝛼1, 𝛼2 and 𝛼3 be the three complex roots of 𝐴(𝑥) = 𝑥3 + 5𝑥 + 7. Compute
𝐵(𝑥) = (𝑥 − 𝛼2

1)(𝑥 − 𝛼2
2)(𝑥 − 𝛼2

3).

Exercice 1.4. Let 𝐶 ⊂ ℝ2 be the curve parametrised by the equations:

𝑥(𝑡) =
4𝑡(1 − 𝑡2)2

(1 + 𝑡2)3

𝑦(𝑡) =
8𝑡2(1 − 𝑡2)2

(1 + 𝑡2)3 .

Give an implicit equation for the curve 𝐶.

Exercice 1.5. Compute the discriminant of the polynomial 𝑓 (𝑥) = 𝑥3 + 𝑎𝑥 + 𝑏. Compare with
the discriminant of the elliptic curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏.

Exercice 1.6. Compute the points of intersection of the curves 𝑥2 + 2𝑦3 − 3 = 0 and 𝑥2 + 𝑥𝑦 +
𝑦3 − 3 = 0.

2 Weierstrass models

An elliptic curve 𝐸 over a field 𝐾 is defined by a (long) Weierstrass equation

𝑦2 + 𝑎1𝑥𝑦 + 𝑎3𝑦 = 𝑥3 + 𝑎2𝑥2 + 𝑎4𝑥 + 𝑎6

where the coefficients 𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6 are elements in 𝐾 such that the discriminant of the curve
𝐸 is not null. Computer representation:

𝐸 = [𝑎1, 𝑎2, 𝑎3, 𝑎4, 𝑎6].
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2 Weierstrass models

When the characteristic of 𝐾 is different from 2 and 3, every elliptic curve 𝐾 has as (short)
Weierstrass equation:

𝑦2 = 𝑥3 + 𝑎𝑥 + 𝑏

The discriminant of this curve is Δ = −16(4𝑎3 + 27𝑏2), and its 𝑗-invariant is 𝑗 = 1728 4𝑎3

4𝑎3+27𝑏2 .
Note that two distinct equations can define the same elliptic curve (up to isomorphism), and

that the discriminant depends on the equation, not on the curve itself, while the 𝑗-invariant only
depend on the (isomorphism class of the) curve.

Exercice 2.1. 1. Look at the help of the function EllipticCurve.

2. Check with Sage the formulae above for an elliptic curve given by a short Weierstrass
equation.

3. Compute with Sage the discriminant and the 𝑗-invariant for a curve given by a long
Weierstrass equation.

Exercice 2.2. Let 𝐸 be the elliptic curve over ℚ defined by the equation with integer coefficients:

𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20

1. What is the discriminant of 𝐸? Of its invariant 𝑗?

2. Using a change of variable, find an equation of 𝐸 of the form

𝑦2 = 𝑥3 + 𝑝𝑥 + 𝑞

where 𝑝 and 𝑞 are in ℚ. Hint: once you have found a change of variable, you can ei-
ther substitute the new variables on the polynomials with Sage or you use E.change_-
weierstrass_model().

3. Recover the result using E.short_weierstrass_model().

4. Let 𝐸2 = E.change_weierstrass_model([1/3, 0, 0, 0]). Compare the discriminant and
the invariant 𝑗 of 𝐸2 with those of 𝐸.

5. Let 𝐸3 be the elliptic curve given by the short Weierstrass equation 𝑦2 = 𝑥3 − 13392 ∗
𝑥 − 1080432. Is 𝐸3 isomorphic to 𝐸?

Exercice 2.3.

1. Write a function ellisoncurve that checks if a point is on an elliptic curve.

2. Test this function with the curve 𝐸 ∶ 𝑦2 = 𝑥3 + 17 and the points 𝑃1 = (−2, 3) et
𝑃2 = (−1, 4).

3. Write a function elladd that computes the sum of two points in an elliptic curve (you
may assume that 𝐸 is given by a short Weierstrass model).
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3 Edwards models

4. Compute 𝑃1 + 𝑃1, 𝑃1 − 𝑃1 et 𝑃1 + 0𝐸.

5. Compute some multiples 𝑛1𝑃1 + 𝑛2𝑃2.

Exercice 2.4.
Let 𝐸/ℚ be the elliptic curve 𝑦2 = 𝑥3 + 𝑥2 + 𝑥 − 2.

1. Let 𝑃 = (1, 1). Check that 𝑃 is a point on 𝐸.

2. Compute [𝑛]𝑃 for several values of 𝑛.

3. Write a function ellmul(𝐸, 𝑃, 𝑛) based on the method of binary exponentiation to com-
pute [𝑛]𝑃 where 𝑛 is an integer and 𝑃 ∈ 𝐸(𝐾) is a point of 𝐸. (Warning: here 𝐸 is not
given by a short Weierstrass model so you need to convert to a short Weierstrass model
to use elladd or instead you could use Sage’s native addition directly.)

4. Compare the speed of this function with the native Sage implementation.

Exercice 2.5. 1. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 256. Check that 𝑃 = (0, 16) is on the curve. Check that
it is a torsion point and compute its order using the function from the preceding exercice.

2. Same question with 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥/4 et 𝑃 = (1/2, 1/2).

3. Same question with 𝐸 ∶ 𝑦2 = 𝑥3 − 43𝑥 + 166 et 𝑃 = (3, 8).

4. Compare with the method from Exercice 4.1.

3 Edwards models

An Edwards model is a curve given by the equation:

𝑥2 + 𝑦2 = 𝑐2(1 + 𝑑𝑥2𝑦2)

where 𝑐𝑑(1 − 𝑑𝑐4) ≠ 0. There are only two parameters: computer representation 𝐸 = [𝑐, 𝑑].
The curve 𝐸 is an elliptic curve, whose addition law is given by

(𝑥1, 𝑦1) + (𝑥2, 𝑦2) = (
𝑥1𝑦2 + 𝑦1𝑥2

𝑐(1 + 𝑑𝑥1𝑥2𝑦1𝑦2) ,
𝑦1𝑦2 − 𝑥1𝑥2

𝑐(1 − 𝑑𝑥1𝑥2𝑦1𝑦2)) .

Note that the addition formula also directly give the duplication formula, contrary to the case
of the Weierstrass model. However the Edward curve is not smooth at infinity, so to be rigorous
we would need to remove singularities. But away from the singularities the addition law is well
defined and more efficient than the Weierstrass model.

Check that

1. The neutral point is the affine point (0, 𝑐).

2. The opposite of a point (𝑥, 𝑦) is (−𝑥, 𝑦).
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4 Group of points of an elliptic curve

Exercice 3.1.

1. Write a function Edwards(𝑐, 𝑑) which print the equation of the Edwards curve with
parameters 𝑐, 𝑑.

2. Write a function Edwardsisoncurve(𝐸, 𝑃) which test if a point 𝑃 is on the Edwards cruve
𝐸.

3. Given two points 𝑃 and 𝑄 in 𝐸, write a function Edwardsadd(𝐸, 𝑃, 𝑄) which compute
𝑃 + 𝑄.

4. On a generic model 𝐸 = [𝑐, 𝑑], compute the order of the points (0, −𝑐), (𝑐, 0) et (−𝑐, 0).

5. Bonus: rewrite these functions using a Sage class for Edwards curves and one for Edwards
points.

Exercice 3.2. We will study how to go from an Edwards model to a Weierstrass model. We use
that (generically), an equation of the type 𝑥2 + 𝑦2 = 1 + 𝑑𝑥2𝑦2 is birationally equivalent to the
Weierstrass curve

1
1 − 𝑑𝑣2 = 𝑢3 + 2

1 + 𝑑
1 − 𝑑𝑢2 + 𝑢.

We use the rational change of variables (𝑢, 𝑣) ↦ (𝑥, 𝑦) where

𝑥 = 2𝑢/𝑣 and 𝑦 = (𝑢 − 1)/(𝑢 + 1)

1. Consider the Weierstrass curve 𝐸1 ∶ 𝑣2 = 𝑢3 + 3𝑢2 + 𝑢. Show that it is birationally
equivalent to the Edwards curve 𝐸2 ∶ 𝑥2 + 𝑦2 = 1 + 5𝑥2𝑦2.

2. Write a function converting points in 𝐸1 to points in 𝐸2.

3. Write a function converting points in 𝐸2 to points in 𝐸1.

4. Compare over several finite field (in large and small characteristics) the speed of the
addition law on 𝐸1 and on 𝐸2.

4 Group of points of an elliptic curve

Exercice 4.1. The goal of this exercice is to have methods to compute the order of a point on an
elliptic curve.

1. Write a method which give the order of a point, provided a a multiple of its order is known.

2. Apply this method to the elliptic curve defined over 𝔽173 by

𝑦2 = 𝑥3 + 146𝑥 + 33

and the points 𝑃 = (168, 133), 𝑄 = (147, 74). What multiple of their order do you
know?
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4 Group of points of an elliptic curve

3. Deduce that 𝑄 = 𝑛.𝑃 for some 𝑛 and find 𝑛.

4. Find all rational points of 𝑛-torsion for 2 ≤ 𝑛 ≤ 5.

Exercice 4.2. Let 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥.

1. For which 𝑝 is 𝐸/𝔽𝑝 an elliptic curve?

2. Compute the cardinal of 𝐸(𝔽𝑝) and of 𝐸(𝔽𝑝2) for 𝑝 = 3, 𝑝 = 5, 𝑝 = 7, 𝑝 = 11 or more
generally all primes 𝑝 ≤ 100 (provided that 𝐸/𝔽𝑝 is an elliptic curve).

3. Same questions for 𝐸 ∶ 𝑦2 = 𝑥3 + 1.

4. When 𝐸 ∶ 𝑦2 = 𝑥3 +𝑥 (resp. 𝐸 ∶ 𝑦2 = 𝑥3 +1), find an interesting pattern on the cardinals
of 𝐸(𝔽𝑝) and 𝐸(𝔽𝑝2) when 𝑝 ≡ 3 (mod 4) (resp. 𝑝 ≡ 2 (mod 3)).

5. Explain how to compute the characteristic polynomial of 𝜋𝑛 given the characteristic
polynomial of 𝜋. (Hint: use a resultant.) Deduce a method to compute the cardinal of
𝐸(𝔽𝑝𝑛) given only the cardinal of 𝐸(𝔽𝑝).

Exercice 4.3.

1. For which primes 𝑝 does the equation 𝑦2 + 𝑦 = 𝑥3 − 𝑥2 − 10𝑥 − 20 define an elliptic
curve 𝔽𝑝 ? If 𝑝 is such a prime, we denote 𝐸𝑝 the corresponding curve over 𝔽𝑝.

2. Compute 𝐸𝑝(𝔽𝑝) for all primes less than 100. Is this group always cyclic?

3. Compute the group 𝐸(ℚ)tors, and give the list of all its elements.

4. Is the reduction modulo 𝑝 application

𝐸(ℚ)tors ⟶ 𝐸𝑝(𝔽𝑝)

injective, surjective? Give some examples. (Be careful that your reduction map is well
defined.)

In general, when 𝐸 is an elliptic curve given by aWeierstrass equation with integral coefficients
𝑎𝑖, the Nagell-Lutz theorem states that, if 𝑃 = (𝑥, 𝑦) is a point of torsion defined over ℚ, then 𝑥
and 𝑦 are integral, except when 𝑃 is a point of 2-torsion, in which case 𝑃 = (𝑐/4, 𝑑/8) with 𝑐
and 𝑑 integers. If furthermore 𝐸 is given by a short Weierstrass equation, then 𝑥, 𝑦 ∈ ℤ (even if
𝑃 is of order 2), and either 𝑦 = 0, or 𝑦2 ∣ Δ𝐸.

In particular, the reduction
𝐸(ℚ)tors ⟶ 𝐸𝑝(𝔽𝑝)

is injective for all prime 𝑝 not dividing 2Δ𝐸.
Another consequence is that if 𝑃 does not have integral coordinates and is not of the form

(𝑐/4, 𝑑/8), then 𝑃 is of infinite order. In fact, if there exist 𝑛 > 0 such that [𝑛]𝑃 is not of this
form, then 𝑃 is of infinite order.

Exemple: the point 𝑃 = (1, 1) on the curve 𝐸 ∶ 𝑦2 = 𝑥3 + 𝑥2 + 𝑥 − 2 is of infinite order.
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