Elliptic Curves 5

Damien Robert¹²

¹Inria Bordeaux Sud Ouest ²Univesité de Bordeaux

06 November 2020

The Weil pairing

- The Weil pairing is a non degenerated bilinear pairing $e_{W,\ell}: E[\ell] \times E[\ell] \to \mu_\ell$
- $\bullet \ e_{W,\ell}(P,Q) = (-1)^{\ell} \frac{f_{\ell,P}((Q) (0_E))}{f_{\ell,Q}((P) (0_E))} \ \text{where} \ div f_{\ell,P} = \ell(P) \ell(0_E).$
- $e_{W,\ell}(P,Q)=(-1)^{\ell}\frac{f_{\ell,P}(Q)}{f_{\ell,Q}(P)}$ if the functions $f_{\ell,P}$ and $f_{\ell,Q}$ are normalised at 0_E .

Uniformisers and valuations

- If $P = (x_P, y_P)$, $y_P \neq 0$, a uniformiser is $\pi_P = x x_P$.
- If $g(x,y) = g_1(x) + yg_2(x)$, $g(x) = (x x_P)^n g_1'(x) + yg_2'(x)$, then $v_P(g) = n + v_{x_P} N(g')$.
- If $P = (x_P, 0)$ a Weierstrass point, a uniformiser is $\pi_P = y$.
- If $g(x,y)=g_1(x)+yg_2(x)$, $v_P(g)=\min(2v_{x_P}(g_1),1+2v_{x_P}(g_2))$. Ex: $v_P(x-x_P)=2$.
- If $P = 0_E$, a uniformiser is $\pi_P = x/y$.
- $v_P(g) = -\deg(g)$ with $\deg(x) = 2$ and $\deg(y) = 3$.

Divisors

Definition

• Let C/k be a smooth curve. A divisor D is a (finite) formal sum of points in $C(\bar{k})$:

$$D=n_1(P_1)+\cdots+n_k(P_k).$$

- The degree of D is $\deg D = \sum n_i$.
- There is an obvious group law on divisors: if $D_1=\sum n_i(P_i)$, $D_2=\sum m_i(P_i)$, $D_1+D_2=\sum (n_i+m_i)(P_i)$. The zero divisor is D=0.
- The support of D is $\{P_1, \dots, P_k\}$ where $n_i \neq 0$.

Example

- If $C = \mathbb{P}^1$, $D = (0) + 2(1) 3(\infty)$ if of degree 0.
- D = 3(0) + 2(1) is of degree 5.

Definition

If $f \in k(C)$, its associated divisor is

$$div(f) = \sum_{P \in C(\overline{k})} v_P(f)(P).$$

Example

- If $C = \mathbb{P}^1$, $f = x(x-1)^2$, $div(f) = (0) + 2(1) 3(\infty)$.
- If $C = \mathbb{P}^1$, $f = x^3/(x-2)^4$, $div(f) = 3(0) 4(2) + 1(\infty)$.
- If $C = \mathbb{P}^1$, D = 3(0) + 2(1) does not come from a f.
- If $E: y^2 = h(x)$ is an elliptic curve, f=y, $divf=(P_1)+(P_2)+(P_3)-3(\infty)$, where P_1,P_2,P_3 are the three Weierstrass points.
- If f = x, $div(f) = (\sqrt{h(0)}) + (-\sqrt{h(0)}) 2(\infty)$.
- $div(\bar{f}) = \overline{div(f)}$.

Theorem

If
$$D = div(f)$$
, $deg(D) = 0$.

Proof.

```
If C=\mathbb{P}^1, f=\prod (x-a_i)^{n_i}, div(f)=\sum n_i(a_i)-(\sum a_i)(\infty), \deg divf=\sum n_i-\sum n_i=0. If C=E, and P is not a Weierstrass point, v_P(f)+v_{-P}(f)=v_P(f)+v_P(\bar{f})=v_P(Nf)=v_{x_P}(Nf). If P is a Weierstrass point, v_P(f)=v_P(\bar{f}), so v_P(Nf)=2v_P(f), but v_P(Nf)=2v_{x_P}(Nf) since v_P(x-x_P)=2, so v_P(f)=v_{x_P}(Nf). We get that \deg div_E f=\sum v_P(f)=\sum v_{x_P}(Nf)=\deg div_{\mathbb{P}^1}N(f)=0.
```

Proposition

If
$$div f_1 = div f_2$$
, then $f_1 = \lambda f_2$, $\lambda \in k^*$.

Proof.

 $div f_1 - div f_2 = div(f_1/f_2) = 0$. So $g = f_1/f_2$ has no zeroes nor poles. If $C = \mathbb{P}^1$, then it is easy to check that g is constant. If C = E, then Ng has no zeroes nor poles on \mathbb{P}^1 , so is constant, so g is constant.

In other word: a function f is completely determined, up to a constant, by its divisor $D=\operatorname{div} f$.

- D is principal if D = div f;
- D_1 is linearly equivalent to D_2 if $D_1 D_2$ is principal: $D_1 = D_2 + div f$. Notation: $D_1 \simeq D_2$.
- D is principal $\leftrightarrow D$ is linearly equivalent to 0. Notation: $D \simeq 0$.

Principal divisors on \mathbb{P}^1

Proposition

If $C = \mathbb{P}^1$, D is principal iff $\deg D = 0$.

Proof.

$$D$$
 principal $\Rightarrow \deg D = 0$ is true for all curves. Conversely, if $D = \sum n_i(a_i) + m(\infty)$, then $m = -\sum n_i$ since $\deg D = 0$, so we take $f = \prod (x - a_i)^{n_i}$.

Remark

A (proper smooth) curve C is isomorphic to \mathbb{P}^1 iff there is a rational function such that divf = (P) - (Q), $P \neq Q$. Indeed $f : C \to \mathbb{P}^1$ is an isomorphism which sends P to 0 and Q to ∞ .

Principal divisors on elliptic curves

Definition

Let $D = \sum n_i(P_i)$ be a divisor of degree 0 on an elliptic curve E. We define $[D] = \sum n_i P_i \in E$, the realisation of D in E.

Theorem

A divisor D on E is principal if and only if $\deg D = 0$ and $[D] = 0_E$.

Corollary

If
$$\deg D = 0$$
, $D \simeq ([D]) - (0_E)$.

Proof.

Miller's algorithm gives an explicit function f_D whose divisor is $D-([D])+(0_E)$. It remains to show that $D=(P)-(0_E)$ cannot be principal if $P\neq 0_E$. But if it was, then E would be isomorphic to \mathbb{P}^1 .

Principal divisors on elliptic curves

- If $D = \sum n_i(P_i)$ with $\deg D = \sum n_i = 0$ and $[D] = \sum n_i P_i = 0_E$, then D is principal, so we define f_D a function such that $D = div f_D$;
- f_D is determined up to a constant. We can completely normalise f_D by asking that $f_D(0_E)=1$. This is valid iff 0_E is not a pole or a zero of D.
- \bullet More generally, if $m=v_{0_E}(D)$, we can ask that $\left(f_D/\pi_{0_F}^m\right)(0_E)=1.$
- If $D=\sum n_i(P_i)$ is any divisor, then $D'=D-([D])-(\deg D-1)(0_E)$ is principal. We define $f_D=f_{D'}$.
- If $D = (P) + (-P) 2(0_E)$, $f_D = x x_P$.
- If P is a point of ℓ -torsion, $\ell(P) \ell(0_E)$ is principal, and we define $f_{\ell,P}$ be its normalised function.
- More generally, we let $f_{\ell,P}$ be normalised such that $div f_{\ell,P} = \ell(P) (\ell P) (\ell 1)(0_E)$.

Miller's algorithm

ullet We let $\mu_{P,O}$ the normalised function such that

$$div\,\mu_{P,Q} = (P) + (Q) - (P+Q) - (0_E).$$

- We have $div(x x_P) = (P) + (-P) 2(0_E)$ so we can replace negative coefficients by positive ones: $-(P) + (0_E) \simeq (-P) (0_E)$.
- If $D=(P)+(Q)+D_1$, then $D\simeq (P+Q)+(0_E)+D_1$ via $D=div(\mu_{P,Q})+(P+Q)-(0_E)+D_1$.
- $\begin{array}{l} \bullet \ \ \text{If} \ D_1 = (R) + D_2, \\ D = div(\mu_{P,Q}) + div(\mu_{P+Q,R}) + (P+Q+R) + 2(0_E) + D_2 = \\ div(\mu_{P,Q}\mu_{P+Q,R}) + (P+Q+R) + 2(0_E) + D_2. \end{array}$
- We reduce D until D is of the form $(P)-(0_E)$. D is principal iff $P=0_E$, in which case the algorithm gives us f_D .

$\mu_{P,Q}$ on $E: y^2 = x^3 + ax + b$

- If P = -Q, $\mu_{P,Q} = (x x_P)$.
- Otherwise, $\mu_{P,Q} = \frac{l_{P,Q}}{v_{P+Q}}$ where $l_{P,Q}$ is the line going through P and Q (or the tangent line at P if P=Q), and v_{P+Q} is the vertical line going through P+Q.
- Let R = -P Q be the third point of intersection of $l_{P,Q}$.

•
$$l_{P,Q} = y - y_P - \alpha(x - x_P)$$
, $\alpha = \frac{y_Q - y_P}{x_Q - x_P}$ or $\frac{3x_P^2 + a}{2y_P}$;

- $div l_{P,Q} = (P) + (Q) + (R) 3(0_E)$.
- $v_{P+Q} = x x_{P+Q}$
- $div v_{P+Q} = (R) + (-R) 2(0_E) = (-P Q) + (P + Q) 2(0_E).$

$$\bullet \ \mu_{P,Q} = \tfrac{y - y_P - \alpha(x - x_P)}{x - x_{P+Q}} = \tfrac{y - y_P - \alpha(x - x_P)}{x + x_P + x_O - \alpha^2};$$

•
$$div \mu_{P,Q} = (P) + (Q) - (P + Q) - (0_E)$$
.

Double and add algorithms

- If $D=div f_{\ell,P}=\ell(P)-(\ell P)-(\ell-1)(0)$, the naïve Miller algorithm to get $f_{\ell,P}$ computes P,P+P,P+P+P, ..., ℓP .
- But to compute ℓP directly we can use a double and add algorithm;
- We can do the same in Miller's algorithm: decompose $D = D_1 + 2D_2 + 4D_3 + \cdots + 2^nD_n$, and do double and add.

Proposition

$$f_{\ell_1 + \ell_2, P} = f_{\ell_1, P} \cdot f_{\ell_2, P} \cdot \mu_{\ell_1 P, \ell_2 P}$$

- Double and add algorithm:
- Initialisation: T = P, $f = 1 = f_{1,P}$.
- Double: $f := f^2 \mu_{Q,Q}$, Q := Q + Q;
- Add if $b_i = 1: f := f \mu_{O,P}$, Q := Q + P.

Evaluating a function at a divisor

- If $f \in k(C)$ and $D = \sum n_i(P_i)$, $f(C) = \prod f(P_i)^{n_i}$.
- This is well defined is D and f have disjoint support. (Otherwise we may still define f(D) by normalizing f along uniformisers on the intersection of the supports).
- If $\deg D = 0$, $f(D) = (\lambda f)(D)$. So if E is a principal divisor, $f_E(D)$ is well defined and does not depend on a choice of normalisation of f_E .

Theorem (Weil's reciprocity)

Let D_1, D_2 be two principal divisors (with disjoint support).

$$f_{D_1}(D_2) = f_{D_2}(D_1).$$

Remark

- If D_1 and D_2 have non disjoint support, we have $f_{D_1}(D_2)=\epsilon f_{D_2}(D_1)$ with $\epsilon=+1=(-1)^{\sum_P v_P(D_1)v_P(D_2)}$.
- If $C = \mathbb{P}^1$, $f,g \in k[x]$, $divf(divg) = \operatorname{Res}(f,g)$, so Weil's reciprocity comes from $\operatorname{Res}(f,g) = (-1)^{\deg f \deg g} \operatorname{Res}(g,f)$ (f,g have a common pole at ∞).

Evaluating $f_{\ell,P}(Q)$

- $f_{\ell,P}((Q) (0)) = f_{\ell,P}(Q)$ by our choice of normalisation.
- Double and add algorithm:
- Initialisation: T = P, f = 1.
- Double: $\alpha = \frac{3x_T^2 + a}{2y_T}$, $x_{2T} = \alpha^2 2x_T$, $y_{2T} = -y_T \alpha(x_{2T} x_T)$, $f := f^2 \frac{y_Q y_T \alpha(x_Q x_T)}{x_Q + 2x_T \alpha^2}$, T := 2T;
- $\begin{array}{l} \bullet \ \ \text{Add if} \ b_i = 1 : \alpha = \frac{y_T y_P}{x_T x_P}, \ x_{T+P} = \alpha^2 x_T x_P, \\ y_{T+P} = -y_T \alpha(x_{T+P} x_T), f := f \frac{y_Q y_T \alpha(x_Q x_T)}{x_Q + x_P + x_T \alpha^2}, \ T := T + P; \end{array}$
- Warning, at the last step $f := f(x_Q x_T)$.