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The Weil pairing

o Let E/IE'q be an elliptic curve, and € { p;
@ The Weil pairing is a non degenerate bilinear pairing

ew ¢ : E[0] x E[€] — g

((Q)—(0g)) .
o ew ((P,Q) = (—1)“% where divf, p = ((P) — L(0p).

@ ey (P,Q) = (- 1)“](“3((% if the functions f; p and f; o are normalised

at OE



Properties

@ Bilinearity on the right: ey (P, Q + R) = ey (P, Q)ey (P, R);
o Bilinearity on the left ey ((P + Q, R) = ey (P, R)ey ((Q, R);
@ Non degeneracy on the right: if eyy ((P,Q) = 1forall P € E[Q](Fq),

Q= 0g;
@ Non degeneracy on the left if epy (P, Q) = 1forall Q € E[Q](Fq),
P =0g.

@ Antisymmetry: ey ((P, Q) = eW,E(Q,P)_l. (Exercice!)
@ Corollary: eyy (P, P) = 1 (in caracteristic # 2)



Computing the Weil pairing

@ We recall that f; p can be computed via a double and add algorithm;
@ This uses the (normalised) yp ¢ function,
divpp o= (P) + (Q) — (P + Q) — (0p).
@ This computation introduces intermediate zeroes and poles.
@ This is because Miller’s algorithm evaluate intermediate functions

fap(Q);

@ The zeroes and poles of these functions are multiple of P;

@ So if there is a problem during the computation, f) p(Q) is not well
defined, then Q = mP;

@ We know then that ey ((P, Q) = ey ((P,P)" = 1!



The embedding degree

@ ey ¢ has value in py, the group of {-roots of unity of Fq;

What is the smallest extension I« such that iy C F«?

Let  be a primitive {-root of unity. Then { € IF'qk if and only if
() =G iel? = iegt =1 mod L.

The embedding degree k is thus the order of g in Z/{Z.

If € is prime, we have k | { — 1.

Recall that E(]Fq) =g+ 1 —t, t the trace of the Frobenius.

If E(F,) has a point of {-torsion, ¢ | #E(F,) soqg =t —1 mod (.
The embedding degree is then also the order of t — 1 in Z/{Z.




The embedding degree

o IfE[t] C E(F,), the embedding degree kis 1.
@ In particular, £ | g — 1.
° IfE(]Fq) = Z/aZ & Z/bZ with a | b, then E[a] C E(]Fq) soalqg—1.



General definition of the Weil pairing

@ Let Dp be any divisor linearly equivalent to (P) — (Og);
@ Then €Dp is principal, let fyp , be any function with this divisor;

_ leP(DQ) _ ]
(*] eW,E(P,Q) = e(DP,DQ)ftDQTP) (where e(DPIDQ) = i].),

o Exemple: Dp = (P + R) — (R).




An alternative definition of the Weil pairing

Let Dp = (P) e (OE)' and [e]*Dp = ZTI'E’IV:P(T,) - ZTI@T=OE(T);
If Py is such that P = tPg, [(]*Dp = Y. 77—, ((Po +T) = (T));

o Exercice: if P € E[{], [£]*Dp is principal;

Let ¢y p be the corresponding normalised function;
Sop(x+Q)
Sup(x) -~
The proof uses Weil’s reciprocity theorem.
Note: in general, divf o [{] = [{]* divf;
Application: 33,13 = fypo [L];
Indeed both are normalised functions with divisor [{]* (¢(P) — £(0g)).

Then eilw(P, Q) =




Bilinearity

ew (P, Q+R) = % (6]
_ 8pxt Q+R) g p(x+R) -

Sep(x +R) So,p(X)
ew (P, Q)ew ((P,R) (3)

Corollary
ew (P, Q)" =ew ((rP,Q) = ey (O, P) = 1. J




Non degeneracy

o Ifey (P,Q) =1forall Q € E[{](F,), then g p(x + Q) = gy p(x) for
all Q € E[t](F,).

@ Thengyp =ho [{].

@ Sodivgp = [{]*divhand divh = (P) — (Og).

@ This implies P = O.

Corollary

Fix  a primitive £-root of unity. If P € E[{] is primitive (if L is prime this means
P #0), thereis a Q such that ey (P, Q) = {. We say that (P,Q) isa
symplectic basis of E[{].

Corollary

Every group morphism E[{] — iy (“a character”) is of the form
Q- ew (P, Q).




Case { not prime

o If{ =mn, P € E[nm], Q € E[n], then ey ,,,,, (P, Q) = ey ,mP, Q.
o Exemple: if P,Q € E[{], ewlgz(P, Q) =1
o Exemple: if P, Q € E[£], P = Py, ey 2(Py, Q) = ew (P, Q).



Applications

Cryptography: discrete logarithm problem in the group (P), P a point of
{-torsion of an elliptic curve;

Lis a large prime, around 22°° for 128 bits of security

@ The Weil pairing allows to reduce the DLP from E(IFqk) to the DLP in

M C IF;k

We have subexponential algorithms for the DLP in ]F;k.

@ Soif k is small: subexponential attack on E!

o Expected: 4 mod {is “random”, so has order =~ {. Very large

Il o o o

embedding degree.

Exemple: a supersingular curve over I, (p > 3) has £ = 0.
The embedding degree is k = 2.

Reduction of the DLP to ]sz.

We need larger extensions to work securely with supersingular curves
(at least g > 21024)1



Constructive applications

o Tripartite Diffie-Helman;
@ Lot of cryptographic applications;

@ Provide instance where Diffie-Helman is hard but decisional
Diffie-Helman is easy;

@ Problem: find curves suitable for crypto £ | #E(]Fq) with suitable
embedding degree.

o Ideally, g =~ 225 and k ~ 12,20.



Field of definition of E[{], £ # 2 prime

Characteristic polynomial of the Frobenius: x,(X) = X? — tX + g;

@ This is the characteristic polynomial of 7t acting on E[£];

E[0] C E(F ) iff 7* = 1d;

/})1 )? ), with Al/\z =q mOd 0.
2)

The order of 77 is then the order of A1 (or A,) in Fy. (Warning: A1, A,
may live in Fp2.)

Three possibilities: 77 = (

A O . _
7'[2(0 A),WlthAzzq mod ().,AEIFQ.
The order of 7t is the order of A.

T = (6‘ i),with)@zq mod (, A € F,.

nr—/v Y
“\0 AT)

The order of 7t is then ord(A) Vv L.




Field of definition of E[{], £ # 2 prime

In the crypto setting, there is one point of {-torsion in E[(’,](]Fq).

S _ (1 0
Three possibilities: 77 = (O q).

o If kis the embedding degree, E[¢] C E(F )

)

E[E] C E(F,).

(3 1)

E[€] C E(F ).




Field of definition of E[{], £ # 2 prime

@ Assume that 71 = <(1)

@ This is the usual cryptographic situation.

2>,withq¢ 1 mod ¢, iek # 1.

o Let Gy C E[(] correspond to the eigenvalue 1.
G; = {P € E[{], t(P) = P}.

o Let G, C E[!] correspond to the eigenvalue g.
G, = {P € E[t], t(P) = gP}.

o Gy = E[lI(F,), G, C E[tI(F ), E[t] = G; & G,.

Corollary

The Weil pairing is non degenerate when restricted to G; x G, or to G, x Gj.




The Tate pairing

o Let E/]Fq be an elliptic curve, and £ | p such that E(IFq) contains a
point of r-torsion;

@ The Tate pairing is a non degenerate bilinear pairing

ery : ELI(F ) x E(F ) /UE(F 1) — IF;k/JF;;f
o ery(P,Q) = fi,p((Q) — (0p)) where divfy p = {(P) — ¢(0f).
@ er (P, Q) = f p(Q) if the function f; p is normalised at Of.



General definition of the Tate pairing

Let Dp be any divisor linearly equivalent to (P) — (0g);

Then €Dp is principal, let fp, be any function with this divisor;

et (P, Q) = fip,(Dg);

_ fup(Q+R)

T fup®

This allows to circumvent the problem of intermediate poles and zeroes
introduced by Miller’s algorithm.

Exemple: et ((P, Q)

@ Warning: unlike for the Weil pairing, we may have er ((P, P) # 1.




Normalisation of the Tate pairing

gk-1

° ]F;k/]F;'E ~ ppviax - x €.

@ The (normalised or reduced) Tate pairing is a non degenerate bilinear
pairing ex ¢ : E[€](F k) x E(F ) /CE(F 1) — py,

k_1
@ er(P,Q) =f(a,P(Q)qT

k1
@ This power to qT is called the final exponentiation;

o If Lis prime and E(]Fqk) does not contain a point of {2-torsion,
E[(’,](]Fqk) = E(IF'qk)/(),E(IF'qk) since the inclusion is injective and they
have the same cardinal.

@ The (normalised) Tate pairing is then a non degenerate bilinear pairing
er,o * ELL](F ) x E[E](F ) — py.



Alternative definition of the reduced Tate pairing

o Let P € E[t](F ), Q € E(F 1) /CE(F );

o Let Qg such that Q = £Q;

o Thener 4(P,Q) = ey (P, 7°Qy — Qp);

@ This does not depend on the choice of Q (if E[{] C E(IFqk) this is
because another choice Q; = Qg+ T, T € E[{] C E(IF'qk) so
a*T — T = 0).

0 IfQ e QE(IF'qk), we may take Qg € E(IFqk), so °Qy = Q,,
er (P, Q) =1

@ This allows to prove bilinearity and non degeneracy.

Proof.

k-1

80P (T*Qp) k_
eW,E(Pr 7TkQ0 —Qo) = % = ge,p(Qo)q = gﬁ/,,(Qo)
g1

fop(Q) v =T, (P, Q) using thatg%J = fyp o [€].




Restricting the Tate pairing to subgroups (£ prime)

@ The Tate pairing stays non degenerate when restricted to
Gy x E(F,)/CE(F,) - 1F;k/1F;;f

o If E(IFq) does not contain a point of {2-torsion,

E(]Fq)/BE(]Fq) =Gy = E[(’,](IFq) so the Tate pairing is non degenerate
on Gz X Gl'

@ In particular, if the embedding degree k = 1 but E[{] ¢ E(]Fq), the Tate
pairing is non degenerate on E[{] (]Fq) X E[(’,](]Fq) (while the Weil
pairing degenerates).

@ In this situation, if P € E[Q](IF'q), er (P, P) # 1.

e Ifk>1,and E(]Fqk) does not contain a point of 2-torsion, the Tate
pairing is non degenerate on G; x G.



Algorithmic computation of the Tate pairing (£ prime)

e If P € Gy and Q € Gy, all the computations of f p are done over Fy
its only the evaluation at the end which is done over IF'qk;

o since I« is the smallest extension of F, containing j, if z € Fa is in
a strict subfield (d | k, d # k), then it is killed by the final

=
exponentiation:z © € py N Fa = {1}

o Ifk = 2dis even, and Q € G,, then X € ]qu.

o Indeed 77(Q) = gQ. Butsinceg* =1 mod ¢, ¢ = —1 mod ¢ (since
k is the embedding degree).

@ So nd(Q) =-Q, nd(xQ) =XxQ,Xg € ]qu.

@ Since the denominators durinr Miller’s algorithm for the evaluation of

fi,p only involve x5 (and the coordinates of P which are in F,), the
denominator is in ]qu.

o Itis killed by the final exponentiation!




