Resultants

Damien Robert

1 Definition

Let *A* be a domain, K = Frac(A).

Lemma 1.1. If $M: A^n \to A^n$ is a matrix, then M is injective iff det $M \neq 0$. We have $M co M = \det M so \Im M \supset \det MA^n$.

Definition 1.2. Let f and g be two polynomials in A[x], f of degree ℓ and g of degree m. We define the linear application $\mu: A[x]_{m-1} \oplus A[x]_{l-1} \to A[x]_{l+m-1}$, $(C,D) \mapsto Cf + Dg$. Here $A[x]_n$ denotes the polynomials of degree at most n.

Then the resultant Res(f, g) is $Res(f, g) = \det \mu$.

Theorem 1.3. Res(f,g) = 0 iff μ is not injective iff there exists $C,D,\deg C \leq m-1,\deg D \leq \ell-1$ such that Cf + Dg = 0, iff $gcd(f,g) \in K[X]$ is non trivial, iff there is a common root in the algebraic closure \overline{K} of K.

Note: since $\Im \mu \supset \operatorname{Res}(f,g)$, there exists C,D such that $\operatorname{Res}(f,g) = Cf + Dg$.

2 Computing the resultant and properties

Let Syl(f,g) be the Sylvester matrix; this is the matrix of μ by taking a basis of the form

 $(x^n, x^{n-1}, \dots 1)$ to represent $A[x]_n$. For instance if $f = f_2x^2 + f_1x + f_0$, $g = g_3x^3 + g_2x^2 + g_1x + g_0$, then

$$Syl(f,g) = \begin{pmatrix} f_2 & 0 & 0 & g_3 & 0 \\ f_1 & f_2 & 0 & g_2 & g_3 \\ f_0 & f_1 & f_2 & g_1 & g_2 \\ 0 & f_0 & f_1 & g_0 & g_1 \\ 0 & 0 & f_0 & 0 & g_0 \end{pmatrix}$$

Proposition 2.1.

- $\operatorname{Res}(f,g) = (-1)^{\ell m} \operatorname{Res}(g,f)$ $\operatorname{If} m \ge \ell, \operatorname{Res}(f,g) = f_{\ell}^{m-d} \operatorname{Res}(f,g \mod f) \text{ where } d \text{ is the degree of } g \mod f.$
- $Res(f, g_1g_2) = Res(f, g_1) Res(f, g_2).$
- $-\operatorname{Res}(x-a,x-b)=a-b.$

- So if
$$f = f_l \prod (x - a_i)$$
 and $g = g_m \prod (x - b_j)$, $\text{Res}(f, g) = f_l^m g_m^l \prod (a_i - b_j) = (-1)^{\ell m} g_m^{\ell} \prod f(b_j) = f_l^m \prod g(a_i)$.

Corollary 2.2. If $P(x) = \prod (x - a_i)$ is a unitary polynomial with roots $a_1, ..., a_n$, and Q is a polynomial, then we can construct the polynomial P_1 with roots $Q(a_1), ..., Q(a_n)$ as $P_1(y) = \text{Res}_x(P(x), y - Q(x))$. So P_1 can be computed over A without knowing the roots of P.

In particular, if $\chi_M(X)$ is the characteristic polynomial of a matrix M, $\chi_{Q(M)}(Y) = \text{Res}_X(\chi_M(X), Y - Q(X))$.

Démonstration. Let
$$g = y - Q(x)$$
, then by Proposition 2.1, $\operatorname{Res}_x(P(x), y - Q(x)) = \prod g(a_i) = \prod y - Q(a_i)$.

Remark 2.3. The resultant can also be used to compute the minimal polynomial of $\alpha + \beta$ and of $\alpha\beta$ if we know the minimal polynomial of α and the one of β .

Definition 2.4 (discriminant). Discriminant of a polynomial of degree d: Disc $(P) = (-1)^{d(d-1)/2} \operatorname{Res}(P, P')$.

Lemma 2.5. If P unitary polynomial of degree d, $Disc(P) = \prod_{i < j} (a_i - a_j)^2 = (-1)^{d(d-1)/2} \prod_{i \neq j} (a_i - a_j)$.

So Disc P = 0 iff P ha a multiple root over \overline{K} iff the factorisation of P in K[X] has multiple factors.

Example 2.6. Disc $(aX^2 + bX + c) = b^2 - 4ac$.

3 Using the resultant to find common roots

Let $f = x^3 + 2y^3 - 3$, $g = x^2 + xy + y^3 - 3$. We want to find all the points of intersection over \mathbb{C} .

We can see f and g as elements of $\mathbb{C}[y][x]$. Since $\mathbb{C}[y]$ is a domain we can apply the results above.

The resultant, with respect to x, $\operatorname{Res}_x(f,g)$ is then an element of $\mathbb{C}[y]$. Since the resultant R is a linear polynomial combination R = Cf + Dg of f and g, then if (a,b) is a common root of f and g, we have $\operatorname{Res}_x(f,g)(a,b) = \operatorname{Res}_x(f,g)(b) = 0$.

Thus we can search for b such that $\operatorname{Res}_{x}(f,g)(b) = 0$, and for these b find the correspondings a.

Warning : implicitly when we write $\operatorname{Res}(f,g)$ we should write $\operatorname{Res}_{\ell,m}(f,g)$ since ℓ and m determines the size of the Sylvester matrix. We have $\operatorname{Res}_{x,\ell,m}(f,g)(b) = \operatorname{Res}_{x,\ell,m}(f(x,b),g(x,b))$. So, **if** f(x,b) **is still of degree** ℓ **and** g(x,b) **still of degree** m, we have $\operatorname{Res}_{x,\ell,m}(f(x,b),g(x,b)) = \operatorname{Res}_x(f(x,b),g(x,b))$. By Théorème 1.3, this is zero whenever there is a common root a in \overline{K} of f(x,b) and g(x,b). So in this case we know that the root b of $\operatorname{Res}_x(f,g)$ always correspond to a common root (a,b) of f and g over \overline{K} .

But if b is such that f(x,b) and g(x,b) have their leading term becoming zero (meaning that their degrees in x drops), then we always have $\mathrm{Res}_x(f,g)(b) = \mathrm{Res}_{x,\ell,m}(f(b),g(b)) = 0$ even if $\mathrm{Res}_x(f(x,b),g(x,b)) \neq 0$, because we are computing a Sylvester matrix for degrees ℓ and m bigger than the ones of f(x,b) and g(x,b). In this case, this root b of $\mathrm{Res}_x(f,g)$ may not correspond to a common root (a,b) of f and g over \overline{K} .

3 Using the resultant to find common roots

In summary : roots b of $\operatorname{Res}_x(f,g)(y)=0$ correspond either to common roots (a,b) of f and g or to a drop of degree of f and g with respect to x.

Example 3.1. Let f(x,y) = xy - 1, $g(x,y) = y^2x$, then the resultant with respec to x is y^2 , but y = 0 does not corresponds to a common root (x,y) of f and g, instead it corresponds to a drop of degree.