TD Elliptic Curves 1

Damien Robert

17 September 2021

1 First SAGE commands

Exercice 1.1. Consult the help of the function is_prime. Is the number $2^{2^{11}} + 1$ prime?

Exercice 1.2. Is the group $(\mathbb{Z}/42\mathbb{Z}) \times (\mathbb{Z}/5\mathbb{Z})$ cyclic? If yes, find a generator.

Exercice 1.3. Look at functions available on a Zmod object. What is the structure of the multiplicative group $(\mathbb{Z}/130\mathbb{Z})^{\times}$? Give a system of generators of this group.

Exercice 1.4. Compute all squares in $\mathbb{Z}/17\mathbb{Z}$.

Exercice 1.5. Fermat's little theorem says that if p is a prime number, then

$$\forall b \in \mathbb{Z}, \quad b^p \equiv b \pmod{p}.$$

- 1. Give a proof of this theorem.
- 2. Show that $m = 10^5 + 7$ is not a prime number.
- 3. What is the difference between the functions is_prime and is_pseudoprime?
- 4. Find a factorisation of m.
- 5. A Carmichael number number is an integer n which is not prime but satisfy Fermat condition. Compute all Carmichael numbers less than 10000.

2 Polynomials and finite fields

Exercice 2.1. Consider the polynomial $P(X) = X^{5} + X^{4} + 2X^{3} - 2X^{2} - 4X - 3$.

- 1. Factorize P in $\mathbb{C}[X]$ and in $\mathbb{Z}[X]$.
- 2. Recall what is the discriminant of a polynomial and what are its properties? Compute the discriminant of P.
- 3. Factorize P in $\mathbb{F}_2[X]$, $\mathbb{F}_{11}[X]$, $\mathbb{F}_{13}[X]$, $\mathbb{F}_{23}[X]$, $\mathbb{F}_{31}[X]$, $\mathbb{F}_{37}[X]$. What do you remark? (Hint: factorize the discriminant.)

Exercice 2.2. The finite field with four elements.

1. Show that \mathbb{F}_4 is isomorphic as a field to

$$\mathbb{F}_2[X]/(X^2+X+1).$$

2. Write the addition and multiplication table of \mathbb{F}_4 .

Exercice 2.3. Let's try to understand \mathbb{F}_8 .

- 1. Let $x \in \mathbb{F}_8 \setminus \mathbb{F}_2$. Show that $\mathbb{F}_8 = \mathbb{F}_2[x]$.
- 2. Deduce that \mathbb{F}_8 is isomorphic as a field to $\mathbb{F}_2[X]/(Q(X))$ where Q(X) is the minimal polynomial of x over \mathbb{F}_2 .
- 3. Give the list of all irreducible degree 3 polynomials over \mathbb{F}_2 .
- 4. Show that \mathbb{F}_8 is isomorphic as a field to

$$\mathbb{F}_2[X]/(X^3 + X + 1) = \mathbb{F}_{8.1}$$

and to

$$\mathbb{F}_2[X]/(X^3 + X^2 + 1) = \mathbb{F}_{8.2}.$$

- 5. Write the addition and multiplicative table of $\mathbb{F}_{8,1}$ and $\mathbb{F}_{8,2}$.
- 6. Let α a root of $X^3 + X + 1$. Show that α^2 and α^4 are the other roots of $X^3 + X + 1$. Show that α^3 , α^5 and α^6 are the roots of $X^3 + X^2 + 1$.
- 7. Write an isomorphism between $\mathbb{F}_{8,1}$ and $\mathbb{F}_{8,2}$.

Exercice 2.4.

- 1. Construct the finite field \mathbb{F}_{3^4} .
- 2. What is the degree of the extension $\mathbb{F}_{3^4}/\mathbb{F}_3$?
- 3. What is the structure of \mathbb{F}_{3^4} as an abelian group?
- 4. What is the multiplicative structure of $(\mathbb{F}_{3^4}^*, \times)$ as an abelian group?

Exercice 2.5 (Frobenius morphism). Let $Q(X) \in \mathbb{F}_p[X]$ be an irreducible polynomial of degree n.

- 1. Show that $\mathbb{F}_p[X]/(Q(X))$ is the finite field of cardinal $q=p^n$, denoted \mathbb{F}_q .
- 2. Show that for all x, y in \mathbb{F}_q and all integer t,

$$(x+y)^{p^t} = x^{p^t} + y^{p^t}.$$

3. Deduce that the application

$$\operatorname{Frob}_p: \mathbb{F}_q \quad \to \quad \mathbb{F}_q$$
$$x \quad \mapsto \quad x^p$$

is an automorphism ¹ of \mathbb{F}_q , and that its set of fixed points is exactly \mathbb{F}_p .

^{1.} Frob_p is the **Frobenius morphism** of \mathbb{F}_q

4. Deduce that for any polynomial P over \mathbb{F}_p , all x in \mathbb{F}_q and all integer t,

$$\left(P(x)\right)^{p^t} = P\left(x^{p^t}\right).$$

5. Show that if α is a root of Q(X), the other roots of Q(X) are $\alpha^p, \alpha^{p^2}, \dots, \alpha^{p^{n-1}}$.

Exercice 2.6. Irreducible polynomials.

- 1. Write a function that compute a random polynomial of degree n over \mathbb{F}_p .
- 2. Compute the irreductibility of this polynomial.
- 3. Give an estimate on the number of tries needed to find an irreducible polynomial.
- 4. Test your code on large p or n i.e. $n > 10^3$ and/or $p > 10^{10}$, 10^{100} .

Exercice 2.7. Discriminants.

- 1. Compute the discriminant of $aX^2 + bX + c$.
- 2. Compute the discriminant of $X^3 + aX + b$.

3 Fast exponentiation

Exercice 3.1. Given a number n, its base 2 decomposition is

$$n = \sum_{i=0}^{k} \varepsilon_i 2^i$$

where $\varepsilon_i \in \{0, 1\}$ for all i.

- 1. Write a function base 2(n) which give the list $(\varepsilon_0, \varepsilon_1, \dots, \varepsilon_k)$ of the digits of n in base 2 from right to left.
- 2. Write an efficient exponentiation algorithm power.
- 3. Try this to compute x^n for $x \in \mathbb{R}$ or x in a finite field, and compare with the built-in method.
- 4. Write a function base2bis(n) which give the list $(\varepsilon_k, \varepsilon_1, \dots, \varepsilon_0)$ of the digits of n in base 2 from left to right.
- 5. Rewrite power using this left to right binary decomposition of n.

Exercice 3.2. Windowing and sliding windows.

- 1. Implement a windowing method of length m to compute power (the windowing method is essentially the same as using the base 2^m decomposition);
- 2. Improve this method by doing a sliding window.