TD Elliptic Curves 4, 5 and 6

Damien Robert

29 October 2020

1 Rational functions

Exercice 1.1.

- Show that if $y_P \neq 0$, a uniformiser at *P* is $x x_P$;
- Show that if $y_P = 0$, a uniformiser at P is y;
- Show that a uniformiser at 0_E is x/y. Deduce that $v_{0_E}(g) = -\deg(g)$ where $\deg(x) = 2$ and deg(y) = 3.

Exercice 1.2. Let *E* be the elliptic curve $y^2 = x^3 - x$ over \mathbb{Q} .

- Compute the order and the value of the rational function x/y at P = (0,0).
- Compute the order and the value of the rational function $\frac{y+x-1}{x-1}$ at P=(1,0).

 Compute the order and the value of the rational function $\frac{x^3}{2y^2}$ at 0_E .
- Compute the order and the value of the rational function $\frac{x^2+y}{xy}$ at 0_E .

Exercice 1.3. Let *E* be the elliptic curve $y^2 = x^3 + 6$ over \mathbb{F}_{11} .

- Compute the order and the value of the rational function -2x y + 4 at P = (-2, 8).
- Compute the order and the value of the rational function x + 3y at P = (-2, 8).

Exercice 1.4. Let *E* be an elliptic curve and *P* a point of *E* which is not a Weierstrass point. Let $r(x,y) = \frac{y-y_P}{x-x_P}$. Compute the order and the value of r at P. Let $P = (x_P, 0)$ a Weierstrass point of E. Compute the order and the value of $x - x_P$ at P.

- **Exercice 1.5.** Let *E* be the elliptic curve $y^2 = x^3 7x + 6$ over \mathbb{Q} .

 Compute the order and the value of the rational function $x^2 + y 1$ at P = (1,0).

 Compute the order and the value of the rational function $x^2 + y^2 1$ at P = (1,0).

 Compute the order and the value of the rational function $x^3 (x^2 1)y 1$ at P = (1,0).

2 Divisors

Exercice 2.1. Let *E* be the elliptic curve $y^2 = x^3 + x + 3$ over \mathbb{F}_{11} , P = (1,4), Q = (3,0), R = (0,6), S = (1,7). Compute the equation and the associated divisor of

— the line going through S and -S;

- the tangent at R;
- the line going through *P* and *Q*;
- the tangent at P;
- the tangent at Q.

Exercice 2.2. Let *E* be the elliptic curve $y^2 = x^3 + x + 1$ over \mathbb{F}_7 and P = (0, 1). Check that $D = 5[P] - [5P] - 4[0_E]$ is principal and compute a function whose associated divisor is *D*.

Exercice 2.3.

- Write a function which takes for input three points $P_1, P_2, Q \in E$ and outputs $\mu_{P_1, P_2}(Q)$ where μ_{P_1, P_2} is a function with divisor $[P_1] + [P_2] [P_1 + P_2] [0_E]$.
- Write a function which takes for input $\ell \in \mathbb{N}$ and two points $P, Q \in E$ and outputs $f_{\ell,P}(Q)$ where $f_{\ell,P}$ is a function with divisor $\ell[P] [\ell P] (\ell 1)[0_E]$.

3 Pairings

Exercice 3.1. The Weil pairing is a \mathbb{Z} -bilinear application, alternate and non degenerate :

$$e_m: E(\overline{\mathbb{F}_p})[m] \times E(\overline{\mathbb{F}_p})[m] \longrightarrow \mu_m(\overline{\mathbb{F}_p})$$

where $\mu_m(\overline{\mathbb{F}_p})$ is the multiplicative group of m-th roots of unity in $\overline{\mathbb{F}_p}$.

The pairings e_m are compatibles between each others : let m' be another integer prime to p, and $P \in E[m], Q \in E[mm']$. Then

$$e_{mm'}(P,Q) = e_m(P,m'Q).$$

- 1. What does the bilinearity of e_m means?
- 2. What does alternate means for e_m ?
- 3. What does non degenerate means for e_m ?
- 4. Show that e_m is antisymmetric, which means that

$$e_m(Q, P) = e_m(P, Q)^{-1}$$

for all tuple $(P, Q) \in E[m]^2$.

5. To which group is $\mu_m(\overline{\mathbb{F}_p})$ isomorphic to? Show that there exists an integer k such that

$$\mu_m(\overline{\mathbb{F}_p}) = \mu_m(\mathbb{F}_{p^k}).$$

What arithmetic condition does k satisfy? What is the smallest k possible?

- 6. Let P and Q two points de m-torsion. Determine a relation between the order of $e_m(P,Q)$, and the orders of P and Q.
- 7. Let $P \in E(\overline{\mathbb{F}_p})$ be a (primitive) point of order m. Show that there exists another (primitive) point Q or order m such that $e_m(P,Q)$ is a primitive m-root of unity.

8. Let R be a multiple of P, and Q as in the previous question. We try to determinate the discrete logarithm, meaning an integer ℓ such that $R = \ell P$. Let ℓ_2 be an integer such that $e_{W,m}(R,Q) = e_{W,m}(P,Q)^{\ell_2}$. Show that $R = \ell_2 P$. Deduce a procedure that determines the discrete logarithm over E from the discrete logarithm over a finite field.

Exercice 3.2. Let r be a prime number. Compute the smallest k (the embedding degree) such that \mathbb{F}_{a^k} contains the r-th roots of unity.

Let E be an elliptic curve over \mathbb{F}_q . Recall that #E = q + 1 - t where t is the trace of the Frobenius. Let $r \mid \#E$, and k the corresponding embedding degree. Show that k is the order of t - 1 modulo r.

- Compute the embedding degree of $y^2 = x^3 x$ over several prime numbers. (Meaning the embedding degree of the group $E(\mathbb{F}_p)$ over several p).
- Compute the embedding degree of $y^2 = x^3 + 1$ over several prime numbers.

Exercice 3.3. Let E be the elliptic curve defined by the long Weierstrass coefficients [1,0,0,-4,-1] over \mathbb{F}_{23} . E is not given by a short Weierstrass equation, but the Sage function weil_pairing still allows to compute the Weil pairing.

- Let P = (5,8) and Q = (-2,1) in $E(\mathbb{F}_{23})$. Check that P is of order 4 and Q of order 2. Compute $e_4(P,Q)$ and deduce that Q is not a multiple of P.
- What is the smallest integer k such that \mathbb{F}_{23^k} contains the 4-th roots of unity?
- Check the help of the function E.division_polynomial which allows to compute the ψ_n , the n-th division polynomial of E. Compute the polynomial ψ_4 of 4-division of E.
- Looking at the factorisation of ψ_4 , check that all points of 4-torsion are defined over \mathbb{F}_{23^2} . (Hint: also use the functions E.is_x_coord and E.lift_x).
- Find a point *R* of order 4 in $E(\mathbb{F}_{23^2})$ such that $e_4(P,R)$ is a primitive 4-th root of unity.

Exercice 3.4.

- Recall the formulae to compute the Weil and Tate pairings from the functions $f_{\ell,P}(Q)$ defined in exercice 2.3.
- Write a function that computes the Tate and Weil pairings. Compare to tate_pairing and weil pairing
- Test some examples on the curve $y^2 = x^3 + 5$ over

 $\mathbb{F}_{16030569034403128277756688287498649515636838101184337499778392980116222246913}.$

(Check your result with tate_pairing and weil_pairing.) What is the embedding degree of this curve?