Denis Benois

Denis.Benoismath.u-bordeaux.fr
+33 5 40 00 64 38
Bureau 376 (IMB)
Mon Site Web

                                                                                                            Preprints

14.  D. Benois, Introduction to p-adic Hodge theory (expository paper)  .pdf

13.  D. Benois and K. Büyükboduk, Critical p-adic L-functions and interpolation of Beilinson-Kato elements,  arXiv

12.  D. Benois and S. Horte,  On extra zeros of p-adic Rankin-Selberg L-functions, version of 03/07/2020  .pdf

11.  D. Benois and K. Büyükboduk, On the exceptional zeros of p-non-ordinary p-adic L-functions and a conjecture of Perrin-Riou  arXiv

                                                                  

                                                                                                Selected publications

10.  D. Benois, p-adic heights and p-adic Hodge theory, Mémoires de la Soc. Math. France  167 (2020) pp. vi+135.  Version of 17/02/2019 .pdf

 9. D. Benois, Selmer complexes and p-adic Hodge theory,  in "Arithmetic Geometry",  LMS Lecture Notes Series 420 (2015),   pp. 36-88,  preliminary  version at arXiv

  8. D. Benois, On extra-zeros of p-adic L-functions: the crystalline case, in "Iwasawa theory 2012. State of the Art and Recent Advances", Contributions in Mathematic and  Computational Sciences Vol. 7,  Springer 2015,  preliminary version at arXiv

  7. D. Benois, Trivial zeros of p-adic L-functions at near central points, Journal of the Institut of Mathematics of Jussieu, 13, No.3 (2014), 561-598,preliminary version at arXiv

  6. D. Benois,  Infinitesimal deformations and the $\ell$-invariant, Documenta Math. Extra volume: Andrei A. Suslin 60th birthday, 2011, 5-31, .pdf

  5. D. Benois, A generalization of Greenberg's $\mathcal L$-invariant, Amer. J. of Math., 133 (2011), 1573-1632, preliminary version at arXiv

  4. D. Benois and L. Berger, Théorie d'Iwasawa des représentations cristallines II, Comment. Math. Helv. 83 (2008), 603-677, preliminary version at  arXiv

  3. D. Benois and T. Nguyen Quang Do, Les nombres de Tamagawa locaux et la conjecture de Bloch et Kato pour les motifs Q(m) sur un corps abélien,

    Ann. Sci. ENS, 35 (2002), 641-672

  2. D. Benois, On Iwasawa theory of crystalline representations, Duke Math. J. 104, No. 2 (2000), 211-267

  1. D. Benois, Périodes p-adiques et lois de réciprocité explicites,  J. reine angew. Math. 493 (1997), 115-151