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Summary. Anisotropic mesh adaptation is a key feature in many numerical simu-
lations to capture the physical behavior of a complex phenomenon at a reasonable
computational cost. It is a challenging problem, especially when dealing with time
dependent and interface capturing or tracking problems. Here, we describe an ex-
tension of the Delaunay kernel for creating anisotropic mesh elements based on
adequate metric tensors. The accuracy and efficiency of the method is assessed on
various numerical examples of complex three-dimensional simulations.

1 Introduction

In the context of numerical simulations based on variational methods, adap-
tive and anisotropic triangulations have proven to be very effective for solving
complex physical and biomedical problems described by a set of partial differ-
ential equations; see for instance [5, 20, 29, 31]. Actually, many applications
(e.g., in solid and fluid dynamics, combustion, heat transfer, etc.) require lo-
calized regions of the computational domain to have a larger mesh density,
i.e. closely spaced nodes, to capture the singular or nearly singular solutions
that develop in such regions and to resolve large solution variations sufficiently
accurately. Solving these equations with a uniform mesh would require a huge
number of mesh nodes, often out of reach of the current computer technology.
Indeed, the aim of mesh adaptation is twofold: improving the efficiency of the
method for better accuracy and stability at a lower computational expense.

On the other hand, dynamically evolving surfaces arise in numerous com-
putational applications, such as free surfaces in multiphase flows or moving
and deforming interfaces in fluid-structure interactions, biomedical surfaces,
etc. These applications require or involve potentially large displacements or
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deformations of the domain geometry in time. Furthermore, this moving ge-
ometry is generally part of the solution of a set of partial differential equations
and thus it is not known by or described by an analytical model. Such surfaces
can be successfully handled by level set formulations [28] or implicit surfaces.
In many cases, it is again more efficient to use anisotropic elements and to
adapt the mesh to capture the interface or to follow the severe deformations
of the geometry. The goal of this paper is to provide such mesh adaptation
features for unstructured simplicial meshes in view of time-dependent and
geometry evolving simulations.

In general, anisotropic mesh adaptation aims at equidistributing the ap-
proximation error by adjusting locally the mesh density according to a metric
tensor field based on the Hessian of the numerical solution [18, 19]. It relies
on the ability to control the size, the shape and the orientation of the mesh
elements. In addition to improving the accuracy of the solution, anisotropy
allows to preserve the order of convergence of the computational schemes [20].
It has already been largely shown that highly stretched mesh elements can
interpolate a smooth function much more accurately than an isotropic mesh
with regular elements [3, 32, 34]. As we will emphasize here, anisotropic ele-
ments also have the advantage of introducing regularity in the approximation
of interfaces between physical domains.

The contributions of this paper are the following. First, it provides a gen-
eral context for anisotropic Delaunay-based mesh adaptation in three dimen-
sions. In this respect, it can be considered as an extension of previous works
on anisotropic meshing for planar domains. Second, it explains how to build
an anisotropic metric tensor for level set interface tracking, following the ideas
of [16]. Then, we show how this method can be efficiently used to resolve a
moving mesh problem. We demonstrate benchmark and simulation results on
rigid-body and large deformations for fluid dynamics simulations. However, we
will consider in all the simulations that the initial surface esh is not concerned
by adaptation.

The remainder of this paper is organized as follows. Section 2, we review
the main issues of anisotropic mesh adaptation based on Riemannian metric
tensors. This notion of anisotropic metric tensor has been described in a gen-
eral purpose book [19] and in many research papers. In particular, we outline
the definition and construction of a metric tensor based on error estimates,
the notion of metric intersection and interpolation. In Section 3, we show
how the classical Delaunay mesh generation procedure can be extended to
the anisotropic context. In particular, we show how to compute the Delaunay
kernel used for point insertion in the Bowyer-Watson approach to mesh gen-
eration. Numerical examples of simulations are given Section 4 to show the
efficiency of the approach.
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2 Anisotropy and error estimates

As pointed out already [19, 23], anisotropic meshing is closely related to differ-
ential geometry concepts and numerical error estimates. We will briefly review
this theoretical material (curvature estimates, metric tensor field, Delaunay-
based adaptation) for anisotropic meshing as it has already been thoroughly
described in various papers [1, 3, 9, 14, 15, 17, 22, 20].

2.1 Basic definitions

We introduce the following notations: Ω denotes a simply connected open
bounded domain in R3, Ω is the closure of Ω and |Ω| is the d-dimensional
measure or the volume of Ω. We suppose given a conforming triangulation Th

on Ω, h representing the characteristic element size. Each element K ∈ Th is a
closed subdomain of Ω and we assume that Ω =

⋃
K∈Th

K and that the usual
finite element requirements are satisfied (i.e. non-overlapping nor intersecting
elements).

A uniform mesh of Ω is then a mesh in which all elements are equally sized
and regular. In such case, if |Th| represents the number of mesh elements and
hK = diam(K) the diameter of K, the size h = max

K∈Th

hK is given by the

relation:

hK ≈
(
|Ω|
|Th|

)1/d

∀K ∈ Th .

A quasi-uniform mesh is a mesh for which (i) there exist a constant τ such
that

hK

ρK
≤ τ ∀K ∈

⋃

h

Th ,

where, for any open ball Bi ⊂ K, ρK = supi{diam(Bi)} is the in-diameter of
K and (ii) the variation of h is bounded by a constant.

2.2 Metric tensors

Essential to mesh adaptation is the ability to control the size, the shape and
the orientation of mesh elements. This specification is usually based on an
error estimate or an error indicator. Typically, it uses a matrix-valued field
for anisotropic mesh adaptation.

On the continuous level, it is suitable to consider that mesh elements
are represented by ellipsoids. In this geometric representation, the size of the
element is its volume, the shape is associated with the ratio of the lengths of its
semi-axes and the orientation is provided by its principal axis vectors. Then,
their control can be achieved by specifiying a metric tensor M(x) to indicated
the size, shape and orientation of mesh elements on the whole domain. Here,
M(x) is a 3× 3 symmetric positive definite matrix, sometimes referred to as
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monitor function. The function ρ(x) =
√

det(M(x)) is called the adaptation
function. This metric tensor is used to generate a quasi-uniform mesh of Ω in
the metric related to M . The volume of an element K ∈ Th is unitary:

∫

K

√
det(M(x)) dx =

∫

K
ρ(x) dx = 1 , ∀K ∈ Th

and corresponds to the discrete formulation:

|K|
√

det(MK) = 1 , ∀K ∈ Th

where MK is an average of M(x) on K. By extension, the length of a curve γ
in a metric M given by M(x) for any x ∈ Ω is defined as:

|γ|M =
∫ 1

0

√
〈γ′(t), M(γ(t))γ′(t)〉dt ,

where γ(t) : [0, 1] → Rd is a parametrization of γ. By analogy, the length of a
mesh edge e is defined as:

lM (e) =
∫ 1

0

√
etM(t)e dt .

Since the metric tensor M(x) is supposed a symmetric positive definite matrix,
the spectral decomposition theorem allows to decompose M as:

M = P ΛP t =
d∑

i=1

λieiei
t ,

where the normalized eigenvectors of M are the columns of matrix P =
[e1, . . . , ed] such that P P t = P t P = Id and Λ is the diagonal matrix of
the eigenvalues λi. It is obvious to see that the matrix P prescribes the ori-
entation and the matrix Λ prescribes the size and shape of any element K.

Metric intersection

Suppose that two metric tensors are specified at a vertex p ∈ Th. For mesh
generation purposes, we would like to deal with a single metric at the vertex.
To this end, we define a metric intersection procedure. Geometrically speaking,
it consists in defining the largest ellipsoid E included in the intersection of
the two ellipsoids E1 and E2 associated with the two metric tensors. From
the algebraic point of view, we use the simutaneous reduction of the two
underlying quadratic forms to find a basis of the vector space in which the
matrices M and N associated with E1 and E2 are represented respectively by
In and D, a diagonal matrix of Mn(R). In other words, the idea is to find a
basis (e1, e2, e3) in which M and N are congruent to a diagonal matrix and
then to deduce the metric tensor of the intersection.
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To achieve this result, the matrix N ′ = M−1 N is introduced. The matrix
N ′ is diagonalizable in R and admits a basis of eigenvectors (orthogonal).
In this basis, the terms of the diagonal matrices associated to the metric
tensors M and N are obtained using the Rayleigh formula: λi = eT

i Mei and
µi = eT

i Nei, i = 1, 3. Denoting by P =
(
e1 e2 e3

)
the invertible matrix of

GL3(R) formed by the eigenvectors ei, i = 1, 3 of the matrix N ′ leads to define
the intersection matrix M∩ as:

M∩ = (PT )−1




max(λ1, µ1) 0 0

0 max(λ2, µ2) 0
0 0 max(λ3, µ3)



 P−1 .

M∩ is a symmetric positive definite matrix since detM∩ =
(
P−1

)2 det Λ,
where Λ = (max(λi, µi)).

Metric interpolation

Consider a parametrization of a mesh edge pq as c : [0, 1] → R3, c(t) =
(1−t)p+tq and two metric tensors Mp and Mq associated with the endpoints.
We are looking for the metric tensor at t, hence for a matrix M(t) defined along
the segment c(t) for any value of the parameter t ∈ [0, 1]. The definition of this
matrice M(t) involves the interpolation of the eigenvalues of the matrices Mp

and Mq. This procedure allows to define a continuous metric field along the
segment. To this end, we suggest the following linear interpolation scheme:

M(t) =
(
(1− t)M− 1

2
p + tM

− 1
2

q

)−2
, 0 ≤ t ≤ 1 . (1)

Finding the interpolated metric tensor Mt requires to express the two matrices
in a basis {ei} in which both are congruent to a diagonal matrix and then to
deduce the metric tensor at point t. In other words, this scheme is similar to
reducing simultaneously the two quadratic forms associated with the metrics.

2.3 Mesh quality measures

There are several reasons for assessing a mesh and controlling its quality.
In particular, it is useful to know if the mesh elements are aligned with the
physical solution, especially in the anisotropic context. Then, in the adaptive
context, it is important to know how closely the equiditribution and aligne-
ment conditions are satisfied by the mesh. Finally, in three dimensions, a
quasi-uniform mesh is not easy to produce if only controlling the lengths of
mesh edges. Well-known slivers (null volume) elements may occur that cannot
be detected by simply checking the length of edges.

The topics of mesh quality and mesh assessment have been studied in the
context of finite element methods in numerous papers. We refer the reader
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to [2] and the references therein for more details on the related issues. Clas-
sical quality measures include minimal angle condition [38] or maximal angle
condition [4] as well as aspect ratio considerations. Other works include error
estimates to account for the shape of the element and the solution behavior
[8]. The adequacy between anisotropic elements and the anisotropy of the
solution can be measured by a matching function [26].

Given a metric tensor field M(x), it is natural to define critera to measure
how closely the mesh elements are aligned and equidistributed with respect
to M(x). For practical reasons, we introduce a single measure to evaluate the
quality of an element K (given here in dimension d):

Qani(K) = αd

(
k∑

i=1

〈ei, MKei〉
)d

|K|
√

det(MK)
,

where ei represents any of the k egdes of K and αd is a normalisation constant
such that Qani(K) = 1 for a regular element. Notice that Qani ≥ 1 for all
K ∈ Th and thus the larger max

K
Qani(K) is, the less the triangulation Th

matches the metric specifications.
In addition, we define an efficiency index τ that provides a single scalar

value to evaluate how well a mesh complies with the metric requirements:

τ = exp



 1
ne

∑

1≤i≤ne

(M (ei)



 , (M (ei) =

{
lM (ei)− 1 if lM (ei) < 1

l−1
M (ei)− 1 else

(2)

and ne denotes the total number of mesh edges.

2.4 Error estimates

Suppose we want to solve the following model problem:
find u ∈ W such that a(u, v) = f(v), for all v ∈ V ,
where V and W are Hilbert spaces, f ∈ V ′ and a ∈ L(W × V, R). Suppose
also that the bilinear form a satisfies the hypothesis of the Nečas theorem,
i.e. that this problem is well-posed. Given a mesh Th of the domain Ω, and
approximation spaces Wh and Vh, we consider the numerical problem:
find uh ∈ Wh such that a(uh, vh) = f(vh), for all vh ∈ Vh,
that is also assumed to be well-posed.

A function e(h, uh, f) is called a posteriori error if ‖u−uh‖W ≤ e(h, uh, f).
Furthermore, if e(h, uh, f) can be written as:

e(h, uh, f) =

(
∑

K∈Th

eK(uh, f)2
)1/2

,

then eK(uh, f) is called an error indicator.
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Generally speaking, the aim is to obtain an anisotropic bound where the
physical derivatives are related to the size, the shape and the orientation of
mesh elements. Research has been very active these recent years to develop
mathematically-based error estimates and several references are provided in
the bibliography section of this paper. From the numerical point of view, it is
interesting to obtain estimates for the classical L1 and L2 norms or the H1

seminorm. Such estimates have been provided for the interpolation error on
linear Lagrange finite elements and involve the eigenvalues and eigenvectors
of the Jacobian matrix of the affine mapping between the reference element
and a mesh element [17, 30] or based on the Hessian matrix of the solution
[19, 1].

Following this idea, a local error model is defined at a mesh vertex p as:

eM (p) =
d∑

i=1

h2
i

∣∣∣∣
∂2u

∂α2
i

∣∣∣∣ ,

where the αi are the coefficients of the diagonal matrix Λ (see above) and
hi indicate the local sizes in the directions of the eigenvectors of the Hessian
matrix. Actually, the local error indicator can be defined in L∞ norm as:

eK = ‖u− Phu‖∞,K ≤ C max
y∈K

max
c⊂K

〈v, |D2u(y)|v〉 ,

where D2u represents the hessian matrix of the function u and C is a constant
independent of h.

3 Anisotropic Delaunay mesh generation

As indicated, our approach is based on a modification of the classical point in-
sertion procedure in a Delaunay triangulation to acount for anisotropic metric
specifications. At first, we briefly recall the Delaunay kernel in the isotropic
context and then, we introduce the modifications in the anisotropic context.

3.1 The Delaunay kernel

In the classical isotropic context, mesh points are inserted in an existing Delau-
nay triangulation using the so-called Delaunay kernel [19]. This incremental
yet practical method provides an efficient mean for constructing a Delaunay
triangulation.

Theorem 1. (Delaunay kernel) Let Ti be the Delaunay triangulation of the
convex hull of a set of point S ⊂ Rd and let p /∈ S be a vertex enclosed in Ti.
The Delaunay kernel procedure can be written as:

Ti+1 = Ti \ C(p) + B(p) , (3)

and provides Ti+1, a Delaunay triangulation of the convex hull of S ∪ {p}.
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In this fundamental result, C(p) stands for the cavity of point p: the set of
simplices in Ti such that their circumspheres contain point p and B(p) denotes
the ball of point p: the set of simplices formed by joining p to the external
faces of C(p) (Figure 1). Practically, this result ensures that the cavity C(p) is
a star-shaped polytope with respect to point p.

34 Chapitre 2. Mailler un domaine polygonal

la bôıte initiale. On prend ensuite un point du nuage. On re-
garde dans quel triangle il est inclus (un ou deux au plus s’il est
sur une arête de triangle). Cet unique (ou ces deux) triangle(s)
forme(nt) la base du point à insérer. Cette base initialise une
cavité. On examine alors les voisins des triangles de la cavité
actuelle. Si le point à insérer est dans le cercle circonscrit à un
tel voisin (c’est le !!critère de Delaunay"" (Chap. I), on l’ajoute
dans la cavité. On examine successivement tous les triangles de
la cavité et, tant qu’elle évolue (c’est-à-dire que des triangles
viennent s’ajouter), on la complète de la même façon.

P7

P6

a5

P5

a4
P4

a3

P3

a2

P2

a1

P1

a7

P8

a6

P

Fig. 2.5 – Insertion du point P . Ce point est dans le triangle
P8P2P5, sa base. Sa cavité est formée par l’union des triangles
dont le cercle circonscrit contient P . Ces triangles sont détruits,
leurs arêtes externes, ai, sont jointes au point P et forment les
nouveaux triangles (en tiretés).

Fig. 1. Construction of the Delaunay triangulation using the Delaunay kernel (bold
lines indicate the external edges of C(P ) in two dimensions).

However, in numerical simulations, at least two specific problems arise,
related to the necessity of:

i) inserting specific entities in the triangulations (a given set of edges defining
the domain boundary, for instance) and

ii) creating additional vertices in the triangulation that are not part of the
initial set S (for instance internal vertices during mesh adaptation).

Regarding the last requirement, the following result provides the existence of
a triangulation:
Lemma 1. Let Ti be an arbitrary triangulation and let p ∈ Rd be a point en-
closed in Ti, p not being a vertex of Ti. Then, a valid conforming triangulation
Ti+1 having p as vertex can be created using the Delaunay kernel, Theorem 1.

Defining the cavity C(p) of a point p requires identifying all simplices
having a circumsphere that contains point p. The radius of the sphere circum-
scribed to a simplex K corresponds to the distance between any vertex pi of
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K and the circumcenter O of K: rK = d(pi, O) = ‖Opi‖. The circumcenter O
can be computed as the solution of a linear system of the form:

‖Op1‖ = ‖Opi‖ , ∀pi ∈ K , pi .= p1, i = 2, . . . , d .

Hence, given a point p, an element K belongs to the cavity C(p) iif the following
relation holds:

α(p, K) =
‖Op‖
rK

< 1 ,

α(p, K) being called the Delaunay measure of point p with respect to the
simplex K.

Inserting a point p in a given (Delaunay) triangulation Th requires at first
to identify all simplices that belong to the cavity C(p). This can be achieved
by finding the simplex or, in some peculiar cases, the set {K ∈ Th , p ∈
K} of all simplices containing p. Then, using adjacency relationships, it is
possible to enumerate the set C(p). Although Theorem 1 ensures that the
cavity C(p) is star-shaped polytope with respect to point p, this must be
check and eventually enforced numerically.

3.2 Anisotropic point insertion

The extension to the anisotropic case consists in introducing a metric tensor,
hence a symmetric positive definite matrix Mp at each point p ∈ Rd. This will
allow us to consider the Euclidean norm of any vector in Rd given the inner
product 〈·, ·〉M . Hence, all distance checks involved in the Delaunay measure
will be replaced by length checks according to the given matrix Mp, namely:

αMp(p, K) =
‖Op‖MP

(rK)Mp

< 1 .

Obviously, taking into account only the metric tensor at the given point p is
not sufficient and accurate in many applications. It is therefore highly recom-
mended to consider all matrices related to the vertices of element K [21]. By
doing so however, leads to solving a non-linear system of equations; overcom-
ing this problem may be tedious and we propose the following answer. The
center OK of the sphere circumscribed to tetrahedra K is the solution of the
following system: 





lMp(OK , p1) = lMp(OK , p2)
lMp(OK , p1) = lMp(OK , p3)
lMp(OK , p1) = lMp(OK , p4)

with (pi)i=1..4 denote the vertices of K. Then, the length of an edge OKpi in
the metric Mp is given by:

lMp(OK , pi) = 2m12 (xi −Ox)(yi −Oy) + m11 (xi −Ox)2
+ 2m13 (xi −Ox)(zi −Oz) + m22 (yi −Oy)2
+ 2m23 (yi −Oy)(zi −Oz) + m33 (zi −Oz)2,
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where pi = (xi, yi, zi)t, OK = (Ox, Oy, Oz)t and the metric at point p is
defined as Mp = (mij)1≤i,j≤3. Finding the center OK simply leads to solving
the following linear system:




a2 b2 c2

a3 b3 c3

a4 b4 c4








Ox

Oy

Oz



 =




d1

d2

d3



 ,

with the coefficients:

ai = 2 (m11 (xi − x1) + m12 (yi − y1) + m13 (zi − z1)),
bi = 2 (m22 (yi − y1) + m12 (xi − x1) + m23 (zi − z1)),
ci = 2 (m33 (zi − z1) + m13 (xi − x1) + m23 (yi − y1)),
di = m11 x2

i + 2 m12 xi yi + 2 m13 xi zi + m22 y2
i + 2 m23 yi zi + m33 z2

i

−(m11 x2
1 + 2 m12 x1 y1 + 2 m13 x1 z1 + m22 y2

1 + 2 m23 y1 z1 + m33 z2
1).

In two dimensions, we have the following result:

Lemma 2. The Delaunay measure, αMp(p, K) < 1, provides a valid anisotropic
Delaunay kernel.

The proof consists in checking that the so-defined cavity is a star-shaped
polygon with respect to point P [21].

From the numerical point of view, it can be of interest to take into account
the metric tensors at all element vertices Mpi to define the cavity. Finally, we
hae found practical and efficient to assess the cavity with two inequalities:






αMp(p, K) < 1,
4∑

i=1

αMpi
(p, K) + αMp(p, K) < 5.

(4)

3.3 Local mesh adaptation

Adaptive meshing methods belong to two categories depending on whether
they proceed by global or local remeshing of the computational domain at
each iteration. Global remeshing techniques consist in constructing a new
mesh of the domain at each iteration, to ensure that the elements are in
good agreement with the anisotropic metric-related prescriptions. The latter
are supplied at the vertices of the previous mesh that is then acting as a
control space. Obviously, the order of complexity of the meshing method re-
mains the same throughout the whole adaptation scheme. One disadvantage
of this technique for steady-state adaptative simulations is that the amount
of modifications shall decrease with the iterations since a fixed point of the
pair (mesh,solution) is targeted. In other words, once mesh features have been
identified and captured by adjusting the local node density, numerical accu-
racy is only a matter of introducing a few more nodes in critical regions while
most of the mesh is kept unchanged.



Anisotropic Delaunay mesh adaptation for unsteady simulations 11

In our approach, we rely on local mesh modifications. Vertex insertion
is handled using the anisotropic extension of the Delaunay kernel described
hereabove. The description of the other operators that are involved can be
found in the book [19]. Their extension to the anisotropic case is straightfor-
ward. Let us simply mention here that we use a combination of edge flips,
edge collapsing, node relocation and vertex insertion operations, all driven by
the anisotropic metric specifications.

4 Application examples

We provide here a set of numerical examples to assess the proposed approach.

4.1 Analytical metric

At first, we prescribe the size, shape and orientation of the mesh elements
using the following analytical metric:

M =




h−2

1 0 0
0 h−2

max 0
0 0 h−2

max



 . (5)

with h1 = hmax|1− e−|x−0,5|| + 0, 003 for hmax = 0, 2. This metric simulates
the capture of a planar shock in the computational domain: Ω = [−1 , 1]3.

Since the boundary mesh is not adapted, we started the adaptation loop
with an initial mesh T0 containing no internal vertex and for which the bound-
ary triangulation was already adapted to the metric (Figure 2). This mesh T0

contains 4399 vertices and 13978 tetrahedra. Table 1 reports the main char-

Fig. 2. Initial mesh with adapted surface and zoom.
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acteristics of the first and final adapted mesh after 5 iterations. We can notice
that the final mesh is in good agreement with the prescribed metric as indi-
cated by the efficiency index. Moreover, more than 99% of the elements have a
shape quality better than 3. The computational time is obviously decreasing
at each iteration, since the mesh is close to the optimal mesh, only minor
adjustements are needed to match the metric presciptions. Figure 3 shows the
tetrahedral elements intersected by an arbitrary cutting plane.

Fig. 3. Mesh adaptaton: cutting plane through the final adapted tetrahedral mesh
and local enlargement on the anisotropic elements.

4.2 Capture of an interface

An interesting potentiality of local anisotropic mesh adaptation is related to
the accuracte tracking and aproximation of a dynamically evolving interface
[16]. In this approach, the metric tensor field is related to the intrinsic prop-
erties of the manifold of codimension one that correspond to the interface.

Here, we consider an implicitly defined scalar valued function u on a do-
main Ω ⊂ R3 and we denote by Γ the surface associated to the isovalue u = 0.
The objective is to produce a mesh where the density is high in the vicinity
of the isosurface so as to minimize the piecewise affine approximation of this
interface. To this end, we defined the following metric tensor at the vertices
of all mesh elements intersected by the manifold:

ne τ CPU (sec.) Q < 3 ( %)
1st iteration 81 336 0.8526 21.39 92.05
5th iteration 51 440 0.8712 1.94 99.96

Table 1. Mesh features of the anisotropic adaptated meshes.
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M = R




1/ε2 0 0

0 |λ2|/ε 0
0 0 |λ3|/ε



 tR,

with R =
(
∇u v1 v2

)
, where (v1, v2) is a basis of the tangent plane to the

surface and λi are the eigenvalues of the Hessian of u. At all other vertices,
we define the metric αI3 with α ∈ R+.

Figure 4 shows an example of analytical surface captured with this method,
defined in spherical coordinates as:

r = 0.45 + 0.3 sin(3φ),

with θ ∈ [0; 2π] and φ ∈ [−π

2
;
π

2
]. We started from an initial uniform mesh of

size h = 0.2. In the final mesh after 8 iterations, the minimal element size is
h = 10−3 and the mesh contains 106 vertices. The approximation error in L∞
norm between the surface and its piecewise affine discretization is lesser than
10−4.

Fig. 4. Example of mesh adaptation to capture an implicitely defined surface: cutting
plane through tetrahedral elements (left) and isosurface reconstruction (right).

4.3 Rigid bodies displacements

As mentioned previously, our local anisotropic mesh adaptation approach al-
lows to handle rigid-body displacement problems without difficulty. The pro-
cedure is straightforward and can be decomposed in three successive stages:
given a field of displacements prescribed at the domain boundaries, e.g. result-
ing from a fluid calculation, (ii) solve a linear elasticity equation as suggested
by [6] to define a discrete displacement field at all mesh vertices and (iii) move
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the mesh vertices to the positions prescribed by this field and (iv) optimize
the resulting mesh. Notice that this routine preserves the number of mesh
vertices. Mesh optimization is usually based on local vertex reconnection (em
i.e. edge flips) and vertex relocation, but it could also take advantage of vertex
insertion or vertex deletion if needed or supported by the application.

Moving spheres through an anisotropic mesh

This aim of this analytical test case is to ilustrate the coupling between
rigid-body displacement and anisotropic specifications. Here, we consider two
spheres of radius 0.5 in a computatonal domain Ω = [−2 , 2] × [−2 , 6] ×
[−10 , 1.5]. The initial mesh is adapted to a planar shock corresponding
to a metric specification very similar to that given by Equation (5): with
h1 = hmax|1− e−|z+4|| + 0.008 and hmax = 0.5.

Here, we prescribed the constant translation vector (0 , 0 , −0.3) to all
mesh vertices on the sphere boundaries and the two spheres will reach the
bottom of the box after 34 iterations. In this example, the main problem is to
preserve the anisotropic refinement throughout the simulation. To this end,
we decided to allow vertex insertion and vertex deletion, in addition to vertex
relocation and edge flips, during the adaptation loop. Table 2 reports some
statistics on the mesh quality. Figure 5 represents several adapted meshes
during the simulation, in the vicinity of the anisotropically refined region.

np ne τ CPU (sec.) Q < 3 ( %)
Initial mesh 12 200 60 323 0.85 - 98.66
14th move 11 026 53 224 0.85 209.40 98.30
16th move 11 316 54 950 0.85 189.03 95.72
18th move 11 133 53 567 0.85 3.57 98.12
34th move 11 282 54 441 0.86 34.49 98.83

Table 2. Mesh features for the moving spheres test case.

Airflow around a rotating helicopter propeller

Finally, we have coupled the moving mesh method with an airflow simulation
around an helicopter propeller. Here, the flow is governed by the classical com-
pressible Euler equations of the fluid dynamics and the numerical resolution
uses the software Fluidbox based on finite volume and Arbitrary Lagrangian
Eulerian (ALE) method [27]. The solver uses implicit time stepping scheme.
Furthermore, we consider that the propeller turns with a constant angular
velocity θ = 2π/10 rad.s−1, i.e. thus making 10 full rotations per second. In
this simulation, one mesh is generated at each time step dt = 1e− 4 seconds,
thus 1000 meshes are needed to achieve a complete revolution.
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Fig. 5. Moving spheres test case: adapted meshes at iterations 14, 16 and 18.

In this simulation, ALE formulation imposes the meshes to have a constant
number of vertices and the connectivity to remains identical to that of the
initial mesh. Unfortunately, this appeared too much of a constraint. Inevitably,
twisted elements will be created thus leading to invalid meshes. To overcome
this problem, a few edge flips were introduced on badly shaped elements to
improve the overall mesh quality and the solution had then to be interpolated
on the adapted optimized mesh. In this simulation, we applied edge flips every
100 rotations, but the number of mesh vertices remained constant at all time.

Table 3 reports statistics about adapted meshes for this simulation. The
overall quality of the adapted meshes can be considered as good: the vast ma-
jority of elements has a quality value above 3. At iteration 99 (just before edge
flips occur), the worst element quality is close to 47 and does not perturbate
the simulation. Figure 6 presents some cutting planes through the tetrahedral
adapted meshes after several rotations. Figure 7 show several streamlines of
the airflow.

ne τ CPU (sec.) Q < 3 ( %) Qbad

Initial mesh 301 380 0.83 - 98.55 26
1st rotation 301 380 0.83 20.59 98.55 26
99th rotation 301 380 0.814 24.77 97.46 47
100th rotation 301 418 0.82 20.46 98.57 26
500th rotation 302 427 0.80 31.31 98.45 26
1000th rotation 302 918 0.794 27.91 98.29 32

Table 3. Mesh features for the ALE airflow simulation.
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Fig. 6. Airflow simulation: adapted meshes at iterations 1, 45, 99, 100, 145 and
500.

Fig. 7. Airflow simulation: velocity modulus and streamlines.
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5 Conclusions and perspectives

In this paper, we have presented an efficient method for obtaining anisotropic
adapted meshes based on Riemannian metric specifications. This approach is
based on a modification of the classical Delaunay kernel and involve local mesh
modification operations. The results obtained so far in the numerical simula-
tions are promising. The next stage will be to handle dynamically evolving
domains where the geometry and the topology of the domains may change in
time.
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