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Introduction

Extending mesh adaptation algorithms to parallel is a recent trend in the field of mesh
generation. Most of today’s finite element solvers are working in parallel. They are able to
scale reasonably when they are run on distributed memory clusters. Mesh adaptation should
therefore also be used in parallel.

We propose a parallel mesh adaptation procedure that make use of an existing serial
mesh adaptation algorithm. In the parallel extension of the algorithm, edges that are on
inter-processor boundaries are frozen i.e. are left unchanged during the iteration. At the end
of the iteration, the elements that are situated at inter-processor boundaries are migrated so
that they can be modified at the next iteration.

The advantage of the approach is its simplicity. Yet, despite of the very naive nature of the
principle, we are able to produce very large meshes that are well adapted i.e. that respect
well a given metric field. Moreover, a reasonable scaling was obtained up to 64 processors.

Parallel mesh algorithm

Principle: on each processor, we put contraints on a part of the boundary and we use an existing remeshing software. During the remeshing phase, the edge that is shared by several processors
is not touched. So the mesh is adapted with constraints independently on each processor. Then, inter processors boundaries are moved: if a vertex is shared by several processors, all its adjacent
elements are migrated into a common processor. And the remeshing process is again applied.

Algorithm: Each figure represents a stage of the algorithm.

Initial mesh : each color
represents a partition. The
interface edges are drawn in
red.

Each partition has been
adapted without touching
interface edges (red color).

The interface edges moved:
if an edge was shared by sev-
eral processor, the two adja-
cent triangles are migrated
into a common processor.
The new interface edges are
drawn in blue.

Each new partition has been
adapted.

The interface edges moved.
The new interface edges are
drawn in red.

The new partitions have
been adapted.

Mesh adaptation

Metric definition: the mesh adaptation procedure is based on metric tensor. This
metric is a symetric definite positive matrix:

M = RΛR−1

with Λ = diag (λ1, λ2, λ3), R the eigenvector matrix and λi the eigenvalues of M.
The eigenvectors of M are the directions wished for the mesh edges and its eigenvalues theirs
sizes.

Unit mesh: we search to generate an unit mesh: a mesh such that all its edges ~e has a
length equal (or close) to one in M:

lM(~e) = 〈~e,~e〉
1

2

M =
√

t~eM~e = 1.

Mesh adaptation procedure: Given the mesh metric field defined over the domain,
local mesh modification is applied to yield the desired anisotropic mesh. Mesh modification
operators include entity (i) split, (ii) collapse, (iii) swap and (iv) reposition. To make any
given mesh satisfying the given mesh size field by mesh modifications, we take philosophy as
follows:

• identify those mesh entities not satisfying the mesh size field;

• perform appropriate mesh modifications so that local mesh will better satisfy the mesh
size field;

• repeat above steps until the mesh size field is satisfied to an acceptable degree.

Since it is not possible to ensure that all mesh edges exactly match the requested lengths,
the goal of mesh modifications is to make the transformed length of all mesh edges fall into
an interval close to one. Particularly, we choose interval [0.5, 1.4] in the examples which is
large enough to avoid oscillations [1, 2].
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Examples

2d isotropic case: two Archimede’s spirals.
The following size is defined:

h = min(hmax|ρ−a× θ1|+hmin1, hmax|ρ−a× θ2|+hmin2)

with a = 1, hmax = 0.8, hmin1 = 0.02, hmin2 = 0.05,ρ =
√

x2 + y2, θ1 = θ + ρ/π and θ2 = θ − ρ/π where θ =
atan(y/x) + π

nb vertex nb triangles
init. mesh 12,705 25,016

adapt. mesh 745,000 1,490,000

nproc CPU migr.
1 199 -
2 146 29
4 85 18
8 53 9
16 43 5
32 36 3

2d anisotropic case: planar shocks.
We defined the following analytical size field:

hxi = 0.6|1 − e−|x−xci|| + 0.003

hyi = 0.6|1 − e−|y−yci|| + 0.003

where xci = −20 + 2 × i and yci = −47 + 5 × i.
The analytical metric is given by R = Id and

Λ = diag

(

(

min
i=0..20

(hxi)

)−2 (

min
i=0..20

(hyi)

)−2

h−2
max

)

nb vertex nb triangles
init. mesh 6855 13,392

adapt. mesh 362,000 726,000

nproc CPU migr.
1 698 -
8 45 22

3d isotropic case: some portions of Archimede’s spiral.
We use the following parameters: a = 0.1, hmax = 0.2
and hmin1 = hmin2 = 0.008.

nb vertex nb triangles
init. mesh 2992 16,653

adapt. mesh 430,000 2,500,000

nproc CPU migr.
1 1297 -
2 386 147
4 244 143
8 202 114
16 179 106
32 144 72


