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A discontinuous Galerkin method is developed for linear hyperbolic systems on general hexahedral
meshes. The use of hexahedral elements and tensorized quadrature formulas to evaluate the integrals
leads to an efficient matrix-vector product. It is shown for high order approximations, the reduction
in computational time can be very important, compared to tetrahedral elements. Two choices
of quadrature points are considered, the Gauss points or Gauss-Lobatto points. The method is
applied to the aeroacoustic system (“simplified” Linearized Euler Equations). Some 3-D numericals
experiments show the importance of penalization, and the advantage of using high order.
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1. Discontinuous Galerkin method on hexahedral meshes

The discontinuous Galerkin method is widely used for many applications, like Maxwell equa-

tions [3], or Linearized Euler Equations (LEE) [16]. The discontinuous Galerkin method is

well suited for equations, for which the functional spaces, where the solution lies, are dif-

ficult to discretize. The use of discontinuous Galerkin method has been widely detailed in

the case of tetrahedral elements [3], but less so for hexahedral elements. Cohen’s article [15]

describes the use of hexahedral elements in the particular case of Maxwell equations. This

paper describes the implementation of the discontinuous Galerkin method on general hyper-

bolic systems, for hexahedral elements with mass lumping techniques, and for application to

Linearized Euler Equations (LEE). A comparison of the computational efficiency between

tetrahedral and hexahedral elements is done in the particular case of aeroacoustic equations
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(LEE). The advantage of using hexahedral elements is shown for high order approximations.

Because of the discontinuity of the space, there are several possible quadrature formulas to

perform mass lumping. Among these possiblities, two are relevant : Gauss Legendre points,

and Gauss-Lobatto points. The Gauss Legendre formulas provide the best accuracy (exact

integration of polynoms in Q2r+1), while the Gauss-Lobatto formulas are a bit less accurate

(exact integration of polynoms in Q2r−1), but have the advantage to include the two ex-

tremities of the interval [0, 1], therefore leading to faster computations. For the application

of the method to LEE, we will show which choice is the more efficient and robust. If nodal

finite element is chosen, some spurious waves appear, and can be removed with some specific

methods, as detailed in this paper solving the Galbrun equation [1]. Such methods are a

bit tedious to implement, particularly on corners (cf. [2]), the exploitation of discontinuous

Galerkin would seem a better alternative. Similar to the treatment for Maxwell’s equations

[13], we show for LEE the importance of adding “penalty” terms to the original discontin-

uous formulation, in order to avoid spurious waves. These penalty terms can be viewed as

considering upwind fluxes instead of centered fluxes.

Let R denote the set of all real numbers, then

Rd = {(x1, · · · , xd) where x1, · · · , xd ∈ R}

Let us consider a linear hyperbolic system to solve in (x, t) ∈ Rd × R+ :





M(x)
∂U

∂t
+

d∑

i= 1

∂(Ai(x)U)

∂xi
= F (x, t)

U(x, 0) = U0(x)

(1)

{
Ai(x) : Rd →Mm(R) , ∀i = 1..d

F : Rd ×R+ → Rm , U0 : Rd → Rm
(2)

The system is hyperbolic in Friedrich’s sense if

• M(x) is symmetric and definite positive,

• A1, · · · , Ad are symmetric matrices for all values of the space variable x.

The original Linearized Euler Equations (LEE) may exhibit instabilities for the con-

tinuous equations. These instabilities are physical (called Kelvin-Helmholtz instabilities)

and are limited by non-linear terms for original Euler equations, whereas they lead to ex-

ponential growths for the LEE. In [16], a special treatment is proposed to remove these

instabilities, and it is compared to the model of Bailly-Bogey-Juve [11]. That model has

been numerically and theoretically proven accurate, is stable, and is particularly simple to

use, which is why we have chosen the Bailly-Bogey-Juve model. In this model, the LEE are
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written by introducing a “right-hand side” called H whose expression is

H =

∣∣∣∣∣∣∣∣

(γ − 1)(p∇ · v0 − ~v · ∇p0)

(ρ0~v + ρv0) · ∇vx
(ρ0~v + ρv0) · ∇vy
(ρ0~v + ρv0) · ∇vz

The LEE are then simplified by neglecting this term, leading to “simplified” LEE. As

a consequence, Kelvin-Helmholtz instabilities are removed and a decoupling of the mass

density ρ and the pressure p is performed. As a consequence, we can discretize only four

unknowns (in 3-D) : the pressure p and the vector w = ρ0 v. The equations associated to

this model, for a flow ~v0, can be written in 2-D as an hyperbolic system as follows :





∂

∂t
p+ ~v0 · ∇p+ c2

0∇ · (~w) = f

∂

∂t
~w +

(
~v0 · ∇wx
~v0 · ∇wy

)
+∇p = ~0

⇐⇒

∂t



p

wx
wy


+



v0x c20 0

1 v0x 0

0 0 v0x


∂x



p

wx
wy


+



v0y 0 c20
0 v0y 0

1 0 v0y


∂y



p

wx
wy


=



f

0

0




⇐⇒

∂tU +A1 ∂x1U +A2 ∂x2U = F

where c2
0 = γρ0

p0
.

1.1. Variational formulation

The Discontinuous Galerkin formulation is written on each element K of the mesh as

∫

K

∂u

∂t
ϕ dx −

d∑

i= 1

∫

K
Ai(x)u

∂ϕ

∂xi
dx +

∫

∂K

d∑

i= 1

niAi(x){u}ϕ dx

+ α

∫

∂K
C(x)[u]ϕdx =

∫

K
f ϕ dx

where ni is the i-th component of the outward normal to the boundary, {u} is the average

value, [u] the half the difference of u across the boundary, i.e.

{u} =
1

2
(u1 + u2)

[u] =
1

2
(u2 − u1)
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where u1 and u2 are the two values of u across the boundary. u1 is the “inside” value defined

on the element considered K.

The computational domain Ω is discretized with a mesh of quadrilateral/hexahedral ele-

ments :

Ω =
⋃

e

Ke

A quadrilateral/hexahedral element is defined as the image, by the classical bilinear/trilinear

map Fe, of the unit square/cube K̂ = [0, 1]d. An illustration of the transformation Fe is

shown in Fig 1. We denote DFe as Jacobian matrix of this transformation, and Je its deter-

c1,0,1

c0,0,1

c0,1,1

c1,1,1

c1,1,0

c0,1,0

c1,0,0

c0,0,0

jK

(1,1,1)

(1,0,0)

(0,0,1) (1,0,1)

(0,0,0)

(0,1,1)

(1,1,0)(0,1,0)
K Fj

Fig. 1. Fe for the dimension 3.

minant. A more detailed definition of the properties required by this trilinear transformation

in order to have a non-degenerated element, can be found in [7]. The finite element space is

U rh = {u ∈ L2(Ω) ∀e, u|Ke ∈ Qr }

where Qr is the space of polynomials whose degree is equal or less than r in each variable.

For the discretization of Qr, the use of tensorized basis functions will take advantage of the

tensorized structure of the cube. Our choice has been to use a “mass-lumping” technique

[14], in order to get a diagonal mass matrix, and to deal easily with the case where the

coefficients Ai vary pointwise inside each element. The mass lumping technique selects the

same points for both quadrature formulas and degrees of freedom (Lagrange interpolation).

We shall consider the Gauss-Legendre or Gauss-Lobatto points and related quadrature

formulas, as described in [8] or [9]. These are obtained by tensor products of 1-D points, as

shown in Fig 2. Below is the fundamental accuracy property of the Gauss and Gauss-Lobatto

quadrature rules
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Fig. 2. 2-D Gauss-Lobatto points for r = 5

Proposition 1.1. If we denote by ( ω̂Gi , ξ̂
G
i ) and ( ω̂GLi , ξ̂GLi ), 1 ≤ i ≤ (r+ 1)d, the Gauss

and Gauss-Lobatto weights and points in K̂ [8], then we have:

∫

bK
f̂(x̂) dx̂ =

(r+1)d∑

k=1

ω̂Gk f̂(ξ̂Gk ) , ∀ f̂ ∈ Q2r+1(K̂) , (3)

∫

bK
ĝ(x̂) dx̂ =

(r+1)d∑

k=1

ω̂GLk ĝ(ξ̂GLk ) , ∀ ĝ ∈ Q2r−1(K̂) . (4)

The basis functions based on these degrees of freedom are tensorized as follows

ϕ̂i(x̂1, x̂2, x̂3) = ϕ̂i1(x̂1) ϕ̂i2(x̂2) ϕ̂i3(ẑ3)

For each “3-D” index i, there is a corresponding tuple denoted (i1, i2, i3). The basis functions

on the hexahedron Ke are defined via the transformation Fe :

ϕi ◦ Fe = ϕ̂i

The problem is to find uh ∈ U rh so that




∀K ∈ Ωh, ∀ϕh ∈ U rh
∫

K

∂uh
∂t

ϕh dx −
d∑

i= 1

∫

K
Ai(x)uh

∂ϕh
∂xi

dx +

∫

∂K

d∑

i= 1

niAi(x) {uh}ϕh dx

+

∫

∂K
C(x) [uh]ϕh dx =

∫

K
f ϕh dx

(5)

We define the mass matrix

(Mh)j,k =
∑

e

∫

Ke

ϕj ϕk dx

the stiffness matrix

(Kh)j,k = −
∑

e

( d∑

i= 1

∫

Ke

Ai(x)ϕk
∂ϕj
∂xi

dx +

∫

∂Ke

d∑

i= 1

niAi(x){ϕk}ϕj dx
)
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and the penalty matrix

(Ph)j,k =
∑

e

∫

∂Ke

C(x)[ϕk]ϕj dx

We then have the following differential system :

Mh
dU

dt
+ Kh U + αPh U = Fh(t)

In the case of a symmetric system (ie the matrices Ai are symmetric), we can split the

matrices Ai as follows

Ai = Bi +B∗i

Several splittings are possible, we propose to use the following one :

Bi =
1

2
Di + Li

where Di is the diagonal matrix of Ai and Li the lower triangular part (not including

diagonal). In the variational formulation, we do integration by parts on one term, so that

we obtain the “split” formulation

∫

K

∂u

∂t
ϕ dx −

d∑

i= 1

∫

K
Bi(x)u

∂ϕ

∂xi
dx +

∫

δK

d∑

i= 1

niBi(x) {u}ϕdx

+

d∑

i= 1

∫

K
B∗i (x)

∂u

∂xi
ϕdx +

∫

δK

d∑

i= 1

niB
∗
i (x) [u]ϕdx

+

∫

K

∂Bi
∂xi

uϕdx +

∫

δK

d∑

i= 1

Ci(x) [u]ϕdx =

∫

K
f ϕ dx

(6)

The advantage of this decomposition is to explicitely show the skew-symmetry of the stiff-

ness matrix Kh, in the special case where the matrices Ai are independent of the location

(the term
∂Ai
∂xi

is equal to 0), and the penalty terms are set to zero.

The disadvantage of this split formulation is slower matrix-vector calculations. Hence, we

have not used this formulation in practice and will provide more detail in the next subsec-

tion.

1.2. Stability

The skew-symmetry of the stiffness matrix induces a conservative scheme, if using a second-

order leap-frog scheme [4]. In this thesis, the author shows the conservation of an energy and

thus the stability of the scheme. This study is done on tetrahedral elements and can easily

be extended to hexahedral elements since the only property needed is the skew-symmetry

of the matrix.
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Theorem 1.1. In the case where the matrices Ai are uniform per element, a quadrature

formula exact for Q2 r+1 is exact for the evaluation of the stiffness matrix

Proof. The demonstration is done in 3-D. Let us define :

Qr1,r2,r3 = span[xα1
1 xα3

2 xαdd ], α ∈ Sr1,r2,r3 = {α ∈ N3, αj ≤ rj , ∀j}. (7)

We have the following assessment

if u ∈ Qr1,r2,r3 , v ∈ Qr′1,r′2,r′3 then uv ∈ Qr1+r′1,r2+r′2,r3+r3

This property will be extensively used to estimate the polynomial degrees of the different

terms. ∇̂ is the gradient operator for variable x̂ relying on the unit cube K̂ whereas ∇ is

the gradient operator for variable x̂ relying on the real hexahedron K. After a change of

variables, the volumic integral in the stiffness matrix can be written as

∑

i

∫

K̂
Ap,qi ϕ̂k ( JeDF

∗−1
e ∇̂ϕ̂j) · ei dx

By definition, the transformation Fe ∈ Q3
1,1,1. Differentiating with respect to each variable,

we lose one order, thus we obtain the following properties for the Jacobian matrix :

(DFe)i,1 ∈ Q0,1,1 , (DFe)i,2 ∈ Q1,0,1 , (DFe)i,3 ∈ Q1,1,0

Matrix JeDF
∗−1
e is the transpose of the cofactors of DFe, and a straightforward computa-

tion provides

(JeDF
∗−1
e )1,i ∈ Q2,1,1 , (JeDF

∗−1
e )2,i ∈ Q1,2,1 , (JeDF

∗−1
e )3,i ∈ Q1,1,2

For a basis function ϕ̂i ∈ Qr,r,r, we have

∇̂ϕ̂i ∈ Qr−1,r,r ×Qr,r−1,r ×Qr,r,r−1

Finally, by summing the polynomial degrees, we get

JeDF
∗−1
e ∇̂ϕ̂i ∈ Q3

r+1

Thus

ϕ̂k (JeDF
∗−1
e ∇̂ϕ̂j) · ei ∈ Q2 r+1

For the surface integral in the stiffness matrix, the change of variables provides

∑

i

∫

∂K̂
dse neA

p,q
i ϕ̂jϕ̂k dx

The weighed normal dse ne belongs to Q1 because each face of the hexahedron is defined as

image of a bilinear transformation FN from the unit square. As a consequence dse ne ϕ̂jϕ̂k ∈
Q2 r+1. Therefore, We need a quadrature formula exact for Q2 r+1, to exactly compute the

stiffness matrix.
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The use of Gauss points leads then to an exact evaluation of the stiffness matrix (for the

mass matrix, the integration is not exact in 3-D, because Je ∈ Q2). That’s why we have

the same stability result as for tetrahedral elements. The use of Gauss-Lobatto points pro-

vide an approximate integration, and one can prove the stability only when using the split

formulation (6). If we use the original formulation (5) to compute the stiffness matrix with

Gauss-Lobatto points, the computed stiffness matrix is not skew-symmetric and can lead to

instabilities. Nevertheless, these instabilities can be removed by setting a penalty term large

enough in the original formulation. However, the stability in that case is an open question :

an explanation can be that the instability is eliminated for a sufficiently long period of time

so that the instability is not observed in our experiments.

1.2.1. Effect of penalization

We introduced a penalization term with a matrix C. If an upwind flux is chosen (Roe flux),

the matrix C would read

C = |
∑

Aini|

In the case of a null flow, it is possible to prove that (if α = δ = 1)

C =

(
α 0

0 δn n∗

)

with α < 0 and δ < 0.

We could also have taken C = αId or C diagonal with negative coefficients, the effects are

similar. We chose to consider the same matrix C even for a non-uniform flow, the main

advantage is to have a matrix C independent of the flow. The case where α = delta = 0

corresponds to centered fluxes, whereas the case α = δ = 1 correspond to classical Roe

fluxes (upwind fluxes). For the acoustic equation (flow set to zero), the effect of penaliza-

tion is to reduce the dispersion [5] and improve the order of convergence [3], but it adds

some dissipation and degrades the CFL stability condition. To illustrate the benefit of the

penalization in the solution, we display in Fig 3 the time-harmonic solution in an open

domain (bounded with PML layers). The solution is slightly better, but the necessity of

penalization is not obvious.

Let us try the same experiment with an uniform flow M = (0.5; 0). As shown in Fig 4, the

improvment is remarkable. We observe the same type of results, if absorbing, Neumann, or

periodic boundary conditions are used. The penalization has the effect of removing spuri-

ous modes, as it has been observed for Maxwell equations [13]. Another beneficial effect of

penalization is the possibility of using Gauss-Lobatto points without using the split formu-

lation (6).

The need for penalization in the case of a non-null flow is obvious. So, we shall always use

this penalization in the numerical experiments. For the choice of the coefficients α and δ,
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Fig. 3. Point source in an open domain with a null flow. At left, without penalization and at right with
α = −0.5. A triangular mesh split of quadrilaterals is used.

Fig. 4. Point source in an open domain with a uniform flow. At left, without penalization and at right with
α = δ = −0.5. Triangular meshes split in quadrilaterals are used.

the error made on the solution displayed in Fig 4 is computed for different values of these

parameters. In Fig 5, we can see that the solution is dramatically improved by adding these

penalization terms. For a regular mesh, the error decreases from 5 % to 0.2 %, and for a

distorted mesh, the error decreases from 35 % to 1 %. There is no “special” optimal value

of these parameters, but a good choice can be

α = δ = −0.5

When the mesh is refined, or if the order of approximation is modified, similar error reduc-

tions are observed.
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Fig. 5. Relative error according to the absolute value of α or δ, if we choose α = δ , α = 0 or δ = 0. At
left, the mesh is regular, at right the mesh is composed of triangles split in quads. Gauss-Lobatto points are
used with a Q5 approximation.

These penalization terms decrease the CFL number, which slows the computation. To illus-

trate this effect, the maximal time step for which stability is observed is displayed in Fig 6

when α = δ for a Runge-Kutta scheme. In these results, the CFL doesn’t decrease until the
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0.01
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α = δ

∆ 
t

 

 
CFL on regular meshes
CFL on split triangles

Fig. 6. Maximal ∆t for which the fourth order Runge-Kutta scheme is stable, for a regular or distorted mesh.
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value approaches

α = δ = −0.5

Then, the reduction scales as 1/α. In the case of distorted mesh, the CFL observed for very

small values of α is equal to 0, because Gauss-Lobatto points are used with the original

formulation (5). We have already mentioned that in this case, instabilities can be observed.

It is important to note that these instabilities are “spatial” in the sense that they always

occur at the same time T , independently of the time scheme and time step used. The effect

of the penalization is to reduce these instabilities, i.e. the value T increases with the value of

|α|, so that for |α| large enough, we do not observe the instability during the simulation time

period. An illustration of this phenomenon is provided in Fig 7 For α = −0.5, instability

0 500 1000 1500 2000 2500 3000
−5

0

5

10

15

20

Time (s)

lo
g 10

(||
u|

|)

 

 
α = 0
α = −0.02
α = −0.05
α = −0.1
α = −0.5

Fig. 7. Time evolution of the logarithm of the L2 norm of the solution. Gauss-Lobatto points are used on a
distorted mesh and different values of the penalization parameter are selected

was not observed until T = 100 000s.

The behaviour of the deterioration of the CFL appears to depend on the time scheme, the

mesh and the order of approximation, Let us denote α∗ as the value at which the CFL

begins to decrease. In Fig 6, α∗ is approximately −0.5. When the mesh is refined or the

order increased , α∗ increases.

The effect of penalization is similar when using Gauss points instead of Gauss-Lobatto.

The only difference is that Gauss points provide always stable solutions (e.g. the figure 7 is

not observed for Gauss points) as proven theoretically in a previous theorem.



May 13, 2008 10:9 WSPC/130-JCA AeroCastel

12 N. Castel, G. Cohen, M. Duruflé

1.3. Fast matrix-vector product

Let us denote n the number of unknowns (4 for the 3-D aeroacoustic equations), Ndof the

number of degrees of freedom on an hexahedron (Ndof = (r+1)3) The row index is denoted

(p, e, j) where e is the number of element and j the local number of degree of freedom inside

the element, p the number of the unknown. The column index is denoted (q, e′, k).

1.3.1. Mass matrix

Because of mass-lumping, the mass matrix is diagonal and we have

(Mh)(p,e,j),(q,e′,k) = δp,q δe,e′ δj,k Je(ξk)ωk

1.3.2. Stiffness matrix

We can split the stiffness matrix in two parts: Kh = Rh + Sh
The volumic integral component in the stiffness matrix is:

(Rh)(p,e,j),(q,e′,k) = δe,e′

∫

Ke

∑

i

Ap,qi ϕk
∂ϕj
∂xi

dx

≈ δe,e′
∑

i

ωk (JeA
p,q
i )(ξ̂k)

∂ϕj
∂xi

(ξk)

= δe,e′
∑

i,m

ωk[( JeDF
−1
e )m,iA

p,q
i ](ξ̂k)

∂ϕ̂j
∂x̂m

(ξ̂k)

So, we choose to store only the d× d matrices JeDF
−1
e , i.e. the values of JeDF

−1
e at each

degree of freedom. The matrix-vector product Y = RhU is calculated “on the fly”, for each

element, in three steps :

(1) vi,p,k =

n∑

q=1

Ap,qi uqk, i = 1..d, p = 1..n, k = 1..Ndof

(2) wm,p,k = ωk

d∑

i=1

(JeDF
−1
e )m,i(ξ̂k) vi,p,k, m = 1..d, p = 1..n, k = 1..Ndof

(3) yp,j =

d∑

m=1

Ndof∑

k=1

∂ϕ̂j
∂x̂m

(ξ̂k)wm,p,k, p = 1..n, j = 1..Ndof

The first step applies the matrices Ai, the second step applies geometrical transformations

and the final step performs the integration against derivatives of basis functions.

These steps can be seen as a factorization of matrix Rh as follows

Rh = Ŝ DFh Ah

The multiplication by the matrices Ah, DFh and Ŝ corresponds to the first, second and

third step of the previous algorithm. Matrix DFh is a d× d block-diagonal matrix.

The calculational scaling of the two first steps is obviously in O(r3) whereas the last step
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seems to scale as O(r6) because of the loop in Ndof. But that order is too high because

matrix Ŝ is very sparse on hexahedral elements due to the tensorization of the degrees of

freedom. To compute each derivative, only r+ 1 values are needed, and not (r+ 1)3 values.

To illustrate this property, we decompose each index into its three coordinates :

j = (j1, j2, j3), k = (k1, k2, k3)

The basis functions are tensorized as follows

ϕ̂j(x̂1, x̂2, x̂3) = ϕ̂j1(x̂1) ϕ̂j2(x̂2) ϕ̂j3(x̂3)

The first term of the last step can be then written as

yp,j =
r+1∑

k1,k2,k3=1

∂ϕ̂j1
∂x̂1

(ξ̂k1) ϕ̂j2(ξ̂k2) ϕ̂j3(ξ̂k3)w1,p,k

The basis functions are Lagrange functions with the fundamental property :

ϕ̂i(ξ̂j) = δi,j

Thus, the triple sum is reduced to a single sum :

yp,j =

r+1∑

k1=1

∂ϕ̂j1
∂x̂1

(ξ̂k1)w1,p,(k1,j2,j3)

We clearly see that we need only r + 1 terms to compute the derivative along x1. Similar

computations can be done for the derivatives along x2 and x3.

1.3.3. “Jump” matrix

We now show the method to calculate the “jump” matrix, i.e. matrix coming from bound-

ary integrals of the variational formulation. For the sake of simplicity, we write only the

“internal” part of the jump matrix (and not interactions between the elements).

Sh(p,e,j),(q,e′,k) = δe,e′

∫

∂K̂
dse

∑

i

niA
p,q
i ϕ̂k ϕ̂j dx

where dse is the length of an edge in 2D or the surface of a face in 3D.

After integration over quadrature points ζ̂m on the boundary, the matrix-vector product

can be written as

(Sh U)p,j =
∑

m,q,k,i

ωm (ni dseA
p,q
i )(ζ̂m) ϕ̂k(ζ̂m) ϕ̂j(ζ̂m)uqk

This can be split into three steps

(1) vq,m =
∑

k

ϕ̂k(ζ̂m)uqk
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(2) wp,m = ωm
∑

q,i

(ni dseA
p,q
i )(ζ̂m) vq,m

(3) yp,j =
∑

m

ϕ̂j(ζ̂m)wp,m

This also can be seen as the following factorization

Sh = Ê Nh Ê
∗

Matrix Ê computes the extrapolation needed to determine the value of U on quadrature

points on edges.

When we use Gauss-Lobatto points, matrix Ê is the identity matrix, because the Gauss-

Lobatto points contain the two ends of the interval [0, 1]. Thus, we have the values on edges.

In the case of Gauss points, we need to know the values on Gauss points on edges/faces. By

using hexahedral mesh, matrix Ê is very sparse because of the tensorization of the degrees

of freedom.

In Fig 8, an example is shown for Q2.

Fig. 8. Degrees of freedom necessary to compute extrapolation on the quadrature points of the edge.

1.4. Computational complexity

In order to compare hexahedral elements to tetrahedral elements, we show computational

scaling. In the case of tetrahedral elements, one can write similar algorithms by using any

type of interpolation points (it works only for straight elements, i.e. without curvature),

without the mass lumping technique [3]. Again the notations are d the dimension, r the

order of approximation, n the number of unknowns and Ndof the number of degrees of

freedom inside an element.

For hexahedra, Ndof = (r + 1)3 and for tetrahedra Ndof = (r+1)(r+2)(r+3)
6

Matrices Ai are considered full, whereas in most applications, these matrices are sparse and

require less operations.

All the costs detailed next, are costs for ONE element of the mesh.
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Cost of the product by mass matrix : Ndof n operations

Cost of the product by Rh for hexahedral elements : 2 dn2 Ndof + 2 d2 nNdof +

2 dnNdof (r + 1)

Cost of the product by Rh for tetrahedral elements : 2 dn2 Ndof + 2 d2 nNdof + 2 dnN2
dof

Cost of the product by Sh for hexahedral elements (Gauss points) : 24nNdof + 18 dn2 (r+

1)2

Cost of the product by Sh for hexahedral elements (GL points) : 18 dn2 (r + 1)2

Cost of the product by Sh for tetrahedral elements : 6 dn2 r (r + 1)

The main economy realized by using hexahedral elements is for the evaluation of derivatives.

For each point of quadrature, only (r+ 1) values are needed to evaluate derivative along x.

This results in a scaling of O(r4) (the greatest term is 2 dnNdof (r+ 1), the scaling Ndof is

of O(r3)). For tetrahedral elements all the Ndof values are needed to evaluate derivatives,

resulting in scaling of O(r6). In Fig 9, we have displayed the number of operations needed
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Fig. 9. Number of operations per dof for tetrahedral or hexahedral elements according the order of approxi-
mation. We selected d = 3 n = 4 (four unknowns for the aeroacoustic equations). At right, gain obtained
by using Gauss points for hexahedral elements over tetrahedral elements or Gauss-Lobatto points.

by degree of freedom. The cost for hexahedral elements is almost constant versus the order

of approximation, whereas it can become very large for tetrahedral elements. In particular

example, for a Q5 approximation, hexahedra are three times faster than tetrahedra.

For tetrahedral elements, the storage required is quite neglegible because the matrices DFe
are constant inside each element, whereas for hexahedral elements we need to store the values

of DFe on each degree of freedom, and also the normal vector on each face. It induces a

storage of 9+ 9
r+1 coefficients per degree of freedom. for the aeroacoustic system, for example

(n = 4), this storage is equivalent between two and three vectors. The additional storage

induced by the use of hexahedral elements is minimal.
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1.4.1. Gauss or Gauss-Lobatto ?

As described in the previous section, the Gauss-Lobatto points enable a faster matrix-vector

product than Gauss points.

Order Q1 Q2 Q3 Q4 Q5 Q6 Q7

Gauss points 0.50000 0.24748 0.15063 0.10164 0.07319 0.05518 0.04308

GL points 1.00000 0.39493 0.21966 0.14019 0.09686 0.07071 0.05377

Table 1. 1-D CFL numbers for Gauss or GL points, with no penalization (α = δ = 0), no flow and for a
leap frog scheme

Another advantage of Gauss-Lobatto points is that the CFL number is higher than that of

Gauss points. The CFL number in dimension d on a regular mesh is related to 1-D CFL

number

CFLdD =
1√
d
CFL1D

We see from table 1, (extracted from [5]). that the CFL number for GL points of order r+1

is merely the same as the CFL for Gauss points of order r. Moreover, if a leap frog scheme

is chosen, the penalty terms can be centered whereas it is not possible for Gauss points in

an explicit scheme.

The main advantage of Gauss points is to produce a more accurate integration (integration

of the stiffness matrix is exact for straight elements) and consequently more accurate solu-

tions. This increase of accuracy has been shown by a dispersion analysis [5].

Finally, both Gauss points and Gauss-Lobatto points have advantages, but the choice of

which to use is difficult. Only experiments can provide guidance as to the best choice and

then only if there is the possiblity of clear benefit. We show a comparison in the next section.

2. Numerical results

2.1. Non-uniform flows

Let us recall that Vector U and matrices Ai are then equal to :

U =




p

ρ0 v1

ρ0 v2

ρ0 v3


 Ai =

(
vi c

2
0ei

ei viI

)

For the expression of boundary conditions in a discontinuous Galerkin framework, please re-

fer to [4], where Neumann and first-order absorbing boundary conditions are developed. The

computation of boundary integrals is performed with the same method as for the “jump”
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matrix.

The type of the time integration scheme is important, but not essential in this paper. So

we have chosen to use an explicit, low-storage (2N) Runge-Kutta scheme for all the experi-

ments [12]. For all the experiments, the meshes are produced by CUBIT, and isoparametric

curved elements are used to correctly approximate the geometry.

2.2. 2-D computations

The computational domain is a square [0, 12]2 with an interior circular hole. A Neumann

condition is set on the circular hole, and boundaries y = ymin and y = ymax. On the other

boundaries, an absorbing boundary condition is set. In order to obtain a stationary flow

compatible with the Neumann condition, one can solve the following Poisson problem




∆u = 0

∂u

∂n
= M · n on Σ

∂u

∂n
= 0 on Γ

where Σ represents the external boundary to the computational domain, and Γ the interior

boundaries. M is the velocity vector of the flow at infinity and taken equal to :

M = (0.5, 0)

The flow v0 is then deduced from u by the relation

v0 = ∇u

Density ρ0 and pressure p0 are uniform so that the velocity c0 is uniformly equal to 1. The

obtained flow around the disk is displayed in Fig 10. The source function f is sinusoidal

and is modulated by a gaussian function in time and in space (centered at the origin) as

follows




f(t;x, y) = r(t) g(x, y)

r(t) = sin(2πt) exp(−α(t − t0)2)

g(x, y) = e
−7(x2+y2)

r2
0

r0 is the influence radius of the gaussian, and α = 0.25. The experiment is simulated

until t = 15s. In table 2, we compute the number of degrees of freedom and the number

of operations needed to reach an error less than 2% for the solution at t = 14s. When

referring to the number of degrees of freedom, multiply by the number of unknowns (three

unknowns in 2-D) to get the size of a vector. Except for Q2 and Q3, the efficiency of the
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Fig. 10. Calculated flow around a disk. At left, component of the stationary flow along x, at right component
along y.

Element Q2 Q3 Q4 Q5 Q6

57 987 29 264 22 275 18 540 19 649

Gauss ∆t = 0.0138 ∆t = 0.0173 ∆t = 0.0168 ∆t = 0.0167 ∆t = 0.0145

69 GFlops 27 GFlops 21 GFlops 18.2 GFlops 23 GFlops

Element Q3 Q4 Q5 Q6 Q7

52 016 31 525 25 416 23 128 20 608

Gauss-Lobatto ∆t ,= 0.0164 ∆t = 0.0177 ∆t = 0.0172 ∆t = 0.0150 ∆t = 0.0133

39.2 Gflops 22.2 GFlops 19.0 GFlops 20.6 GFlops 21.6 GFlops

Table 2. Number of dofs, time stepping and operations needed to reach an error less than 2% for the disk.

other orders shows little difference, thus there is no advantage between Gauss points and

Gauss-Lobatto points.

Let us consider the flow around a NACA airfoil (see Fig 11). We see that near the two

extremities of the airfoil, the flow is varying rapidly because of the high curvature. The

airfoil geometry has been defined by a closed spline (the right end is curved, and is not a

corner). Because the Neumann condition is imposed in a weak sense, this condition is not

numerically satisfied, especially on the two ends of the airfoil. Hence, we need to modify

the flow in order to satisfy this condition :

v0xnx + v0yny + v0znz = 0

The component modified is related to the maximum normal component. If this modification

is not done, instabilities can appear. The computed solution is displayed in Fig 12. In this

“difficult case”, because of the sharp right extremity, Gauss-Lobatto points provide unstable

algorithms, while Gauss points provide acceptable results. In table 3, we computed the
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Fig. 11. At left, component of the stationary flow along x, at right component along y.

Fig. 12. Pressure at t = 9s and t = 14s for the NACA airfoil.

number of degrees of freedom and the number of operations needed to reach an error less

than 2%, for the solution at t = 14s. In that case, Q3 is the optimal order, with 14.7 GFlops.

Because of the geometry, local refinement near the extremities is needed for approximations

of an order greater than three, reducing computational speeed.. The mesh used for Q6 is

displayed in the Fig 13.
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Order Q2 Q3 Q4 Q5 Q6

Dofs 27 792 18 000 15 500 13 788 14 602

Time Step ∆t = 0.025 ∆t = 0.0195 ∆t = 0.0139 ∆t = 0.0134 0.0085

Operations 18.3 GFlops 14.7 GFlops 17.9 GFlops 16.9 GFlops 29.1 GFlops

Table 3. Number of dofs, time stepping and operations needed to reach an error less than 2% for the NACA
airfoil.

Fig. 13. Mesh used for Q6 and NACA airfoil.

2.3. 3-D computations

Another method to obtain a stationary flow, satisfying the condition v ·n = 0 on the surface

of the objects, is to solve a Poisson problem for v0x





∆v0x = 0

v0x = 0.5 on Σ

v0x = 0 on Γ

where Σ represents the external boundary to the computational domain, and Γ the internal

boundaries. The flow obtained for a spherical obstacle is displayed in Fig 14. On the sphere

and the lateral sides of the external parallelipedic boundary, we impose a Neumann bound-

ary condition. On the left and right side, a first-order absorbing boundary condition is set.

Fig 15 shows the temporal evolution of the pressure. The temporal source is a sinusoid

modulated by a gaussian function, like for the 2-D cases.

We will determine the minimal number of dofs needed to reach an error less than 5%. The

time step, dofs, and number of operations are displayed in table 4. We observe a reduction

by ten of the computational time, by using Q7 instead of Q3. We note that the complexity

of Gauss points of order r is almost equivalent to the complexity of Gauss-Lobatto points

of order r + 1. For example, Q3 Gauss needs 31 TeraFlops while Q4 Lobatto needs 26

Tflops and Q4 Gauss needs 13.6 Tflops while Q5 Lobatto needs 14.4 Tflops ... That is why

the choice between the Gauss and Gauss-Lobatto points is not crucial. Nevertheless, we

were not able to prove stability for Gauss-Lobatto points, and in practice such instabilities
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Fig. 14. Flow v0x around the sphere.

Element Q3 Q4 Q5 Q6 Q7

2.412 Mdof 1.189 Mdof 0.849 Mdof 0.677 Mdof 0.623 Mdof

Gauss ∆t = 0.0112 ∆t = 0.0123 ∆t = 0.0128 ∆t = 0.011 ∆t = 0.0111

31.23 TFlops 13.55 TFlops 9.22 TFlops 8.61 TFlops 7.98 TFlops

7.06 Mdof 2.68 Mdof 1.513 Mdof 0.851 Mdof 0.734 Mdof

Gauss-Lobatto ∆t ,= 0.0105 ∆t = 0.0119 ∆t = 0.0121 ∆t = 0.0129 ∆t = 0.0124

81.3 Tflops 26.16 TFlops 14.39 TFlops 7.64 TFlops 6.99 TFlops

Table 4. Efficiency of the method for the sphere.

can be observed if we use this points for the unsplit formulation. A solution is to use the

split formulation, which ensures the stability, whatever the quadrature formula. However,

the split formulation induces additional computational time, that’s why it seems better to

use Gauss points, for which the stability (in the case of an uniform flow) is certified for

the unsplit formulation. For non-uniform flows, we didn’t observe any instability by using

Gauss points with the unsplit formulation.
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Fig. 15. Evolution of a gaussian source in space with a spherical obstacle. Snapshots at t = 6s, 8s, 10s and
12s.
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[4] M. Bernacki, Méthodes de type Galerkin discontinu pour la propagation des ondes en

aéroacoustique, PhD Thesis, Ecole Nationale des Ponts et Chaussées (2005)
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