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1. Introduction

The present work has been motivated by applications to computational aeroacous-
tics, namely the numerical modelling of the propagation of sound in a moving fluid.
This problem is of very great importance from the industrial point of view, particu-
larly in aeronautics : the question of noise reduction from airplanes is an important
question from both environmental and economical issues. The mathematical mod-
els used for the numerical simulations are obtained from the linearization (acoustic
perturbations are small perturbations) of the equations of fluid mechanics around a
reference flow, i. e. a stationary state described through a reference velocity distri-
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bution. By this way one can derive either the well-known linearized Euler equations
or or the Galbrun’s equations 7, that are less popular but equivalent from the
mathematical point of view. One delicate issue in computational aeroacoustics is
the modeling of the interaction between acoustic waves and walls, a question that
cannot be avoided, for instance, when studying the propagation of sound around
an airplane. What makes the problem difficult is the presence in the fluid of a thin
boundary layer in the reference flow at the neighbourhood of the walls. If one wants
to avoid a dramatic mesh refinement at the neighborhood of physical boundaries,
with all the technical problems that this induces, in particular in the time depen-
dent case, a natural idea is to use an equivalent or effective boundary condition that
would represent the conjugated effect of the wall itself and of the thin boundary
layer. Many engineers have proposed several boundary conditions for computational
aeroacoustics, to begin with the well-known Myers condition 15. However, as this
has been recently pointed out in 2, all the boundary conditions proposed in the
literature lead to strongly ill-posed boundary value problems, even in the simple
situation of a flat boundary and a uniform reference flow parallel to this bound-
ary. Our interpretation is that these boundary conditions do not take into account
properly the presence of the thin boundary layer. To solve this problem, it appears
crucial to understand the propagation of sound in such a thin layer. In this perspec-
tive, we have chosen to reconsider the problem from a fundamental point of view
and to begin with the propagation of sound between two parallel flat boundaries
(a thin tube in 2D) in the presence of a strongly varying parallel flow. In this case,
the reference flow can be simply described with the help of a scalar function M(y)
which represents, after appropriate normalisation (it is the Mach number), the lat-
eral variations of the velocity of the reference flow. We shall call this function the
Mach profile. Intuitively one would expect some “1D behaviour” of the solution,
thus a 1D-like simplified model for the propagation of sound, as it is the case in the
absence of flow (standard acoustic propagation in a fluid at rest).

Our objective in this paper is to derive such a simplified model using a formal
asymptotic analysis with respect to the width of the tube. This can also be seen
as a low frequency analysis : the small parameter should be the ratio between the
width of he tube and the wavrlength. We use Galbrun’s equations, which appear to
be better adapted for the asymptotic analysis than linearized Euler equations. The
model that we shall obtain in section 2.1, is a quasi-1D model. This model is local
(differential) in x, the coordinate along the axis of the tube, but non local in y, the
transversal coordinate. Most of the rest of the article is devoted to the analysis of
this limit model. Because of the non-standard structure of this problem, it appears
that classical results (from semi-group theory for instance) can not be applied and
that an ad hoc analysis is needed. Using Fourier transform along x, the analysis can
be reduced to a family of one dimensional problems in y, and then to the spectral
theory of a bounded operator A ∈ L(

L2[−1, 1]2
)

(of non-local nature). This is the
object of section 2.2. In spite of its apparent simplicity, the problem has rather
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surprising properties because of the non normality of A. In section 3 we relate the
well-posedness of the quasi-1D model to the non-existence of non real eigenvalues.
This property clearly depends on the properties of the function M(y), which allows
us to make the distinction between stable and unstable Mach profiles. This is il-
lustrated at the end of section 3 by the analysis of elementary cases and through
numerical calculations. Sections 4, 5 and 6 are the main sections of this paper. In
section 4, we establish sufficient stability conditions for the Mach profile, using an
appropriate approximation process. In section 5, we exhibit unstable profiles by
studying the particular case of odd profiles (Theorems 5.3 and 5.6). Finally, the
content of section 6 is a by-product of our analysis : in the case of unstable profiles,
the ill-posedness of the limit model implies the exponential blow-up in time of the
solution of the original problem (Theorem 6.1).

That is why this paper also provides a contribution to the analysis of hydrody-
namic instabilities in laminar flows (often called Kelvin-Helmholtz instabilities).
The study of the existence 4 and nature 11 (convective or absolute instabilities) of
hydrodynamic instabilities is an important issue in fluid mechanics. The results are
generally established on the linearized model but reveal also instabilities for the
nonlinear case (see 8,9 for instance). Up to our knowledge, most of the results are
established in the compressible case (let us however mention 6,13 for very particular
situations in the compressible case) and that is why that we believe that our results
are new, even though one can emphasize similarities between our results and results
for the compressible case (see Remark 4.2). Technically, which makes the study of
the incompressible case easier is the existence of a velocity potential, which leads to
study a simple scalar differential equation, known as the Rayleigh’s equation. There
is no equivalent of this equation for the incompressible case but, in some sense, our
low frequency model provides such an equation (not differential but of integral type.
We think that the method we develop here is original, even though that one should
notice that using a low frequency (or high frequency) asymptotic analysis has been
used for the study of Rayleigh-Taylor instabilities 3,10.

2. The low frequency model: derivation and well-posedness issues

2.1. Formal derivation of the asymptotic model

Let us consider a thin two-dimensional duct of height 2ε > 0:

Ωε = R × ]− ε, ε [ (2.1)

filled with a perfect compressible fluid which is moving. We suppose that the flow
is stationary and laminar. If (x,y) denotes a current point of Ωε, the flow is char-
acterized by its Mach profile which is given by

∀ y ∈ ]− ε, ε [ , Mε(y) = M(
y
ε
) (2.2)

where M(y), y ∈ ]− 1, 1[ is a given fixed profile such that M ∈ L∞(]− 1, 1[).
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Sound propagation in a duct can be modelized for instance by the following equa-
tions 7 whose unknowns uε(x,y, t) and vε(x,y, t) are respectively the x and the y
components of the perturbation of Lagrangian displacement (the velocity of sound
is taken equal to 1 in the following):





( ∂

∂t
+Mε(y)

∂

∂x

)2

uε − ∂

∂x

(
∂uε

∂x
+
∂vε

∂y

)
= 0,

( ∂

∂t
+Mε(y)

∂

∂x

)2

vε − ∂

∂y

(
∂uε

∂x
+
∂vε

∂y

)
= 0,

(x,y) ∈ Ωε, t > 0. (2.3)

These equations must be completed by the slip condition on the walls y = ± ε :

vε(x,± ε, t) = 0, x ∈ R, t > 0. (2.4)

To derive an asymptotic model when ε tends to 0, we first apply classically the
following scaling (y = ε y) in order to work in a fixed geometrical domain Ω =
R × ]− 1, 1[. Setting

uε(x,y, t) = uε(x,
y
ε
, t) and vε(x,y, t) = vε(x,

y
ε
, t), (2.5)

Galbrun’s equations can be rewritten as follows:



( ∂

∂t
+M(y)

∂

∂x

)2

uε − ∂

∂x

(
∂uε

∂x
+

1
ε

∂vε

∂y

)
= 0,

( ∂

∂t
+M(y)

∂

∂x

)2

vε − 1
ε

∂

∂y

(
∂uε

∂x
+

1
ε

∂vε

∂y

)
= 0,

(x, y) ∈ Ω, t > 0, (2.6)

while the boundary condition becomes:

vε(x,± 1, t) = 0, x ∈ R, t > 0. (2.7)

Postulating a formal asymptotic expansion of the form



uε = u0 + ε u1 + ε2 u2 + · · · ,

vε = v0 + ε v1 + ε2 v2 + · · · ,
(2.8)

where functions uj and vj are independent of ε, we will derive the limit problem
satisfied by (u0, v0). We proceed in three steps:

(i) The term in ε−2 in the second equation of (2.6) gives:

∂2v0

∂y2
= 0.

Combined with the boundary condition v0(x,± 1, t) = 0 this implies:

v0(x, y, t) = 0.

(ii) The term in ε−1 in the second equation of (2.6) gives:

∂

∂y

(
∂u0

∂x
+
∂v1

∂y

)
= 0,
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As a consequence there exists a function c(x, t) independent of y such that
(∂u0

∂x
+
∂v1

∂y

)
(x, y, t) = c(x, t).

The expression of function c(x, t) is derived by integrating with respect to
y and using v1(x,± 1, t) = 0:

c(x, t) =
1
2

∫ 1

−1

∂u0

∂x
(x, ξ, t) dξ.

(iii) The term in ε0 in the first equation of (2.6) gives:
( ∂

∂t
+M(y)

∂

∂x

)2

u0− ∂

∂x

(
∂u0

∂x
+
∂v1

∂y

)
≡

( ∂

∂t
+M(y)

∂

∂x

)2

u0− ∂c

∂x
= 0.

Using the expression of c(x, t), we get finally:
(
∂

∂t
+M(y)

∂

∂x

)2

u0 − 1
2

∂2

∂x2

∫ 1

−1

u0(x, ξ, t) dξ = 0. (2.9)

From now on, we omit the exponent 0 and denote u instead of u0. We also introduce
the following useful notation:

E u(x, t) =
1
2

∫ 1

−1

u(x, y, t) dy (2.10)

and equation (2.9) becomes
(
∂

∂t
+M(y)

∂

∂x

)2

u− ∂2

∂x2
Eu = 0. (2.11)

The object of this paper is the analysis of the well-posedness of (2.11) with appro-
priate initial conditions, which correspomnds to the following evolution problem:




Find u(x, y, t) : R× [−1, 1]× R+ → R,

( ∂
∂t

+M(y)
∂

∂x

)2
u− ∂2

∂x2
Eu = 0, (x, y) ∈ R× [−1, 1], t > 0,

u(x, y, 0) = u0(x, y), (x, y) ∈ R× [−1, 1],

∂u

∂t
(x, y, 0) = u1(x, y), (x, y) ∈ R× [−1, 1].

(2.12)

where (u0, u1) are the initial data. Proving the stability of (2.12), which is strongly
related to the behavior of the profile M(y), has at least two kinds of motivation:

(1) The well-posedness of (2.12) is required, if (2.12) is used as an approximation
of the initial problem (2.6).

(2) Stability properties of (2.6) (or equivalently (2.3)) can be deduced from the
properties of (2.12). In particular, if (2.12) is unstable, one can guess that (2.6)
will be also unstable at low frequency.
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We notice finally that (2.12) is well-posed in the simple case of the uniform flow
(M(y) = M). Indeed in this case, taking the mean value of the equation shows that
ψ = Eu is a solution of the convected wave equation

(
∂

∂t
+M

∂

∂x

)2

ψ − ∂2ψ

∂x2
= 0

which can be easily proved to be well-posed. However, we will prove in the sequel
that stability fails for several profiles, which is not so surprising since, in some sense,
(2.12) can be seen as a perturbation of a weakly hyperbolic system (the squared
advection equation).

2.2. Reduction to a spectral problem

A classical approach for the analysis of stability of a physical model which is in-
variant under translation in one space coordinate x, is the determination of the
so-called normal modes which are the non trivial solutions of (2.11) of the form
(where the function of y is abusively also denoted by u)

u(x, y, t) = u(y) exp i(ωt− kx), k ∈ R, ω ∈ C. (2.13)

The justification of such an analysis relies on the use of the Fourier transform in x.
Injecting (2.13) in equation (2.11) leads to

−(ω −Mk)2u+ k2Eu = 0 (2.14)

where the mean-value operator E can now be seen as a bounded operator acting
on L2(]− 1, 1[), which associates to a function u the constant function equal to its
mean value:

Eu =
1
2

∫ 1

−1

u(y) dy.

Setting ω = kλ and u̇ = (λ−M)u, the previous equation can be written as follows:



Mu+ u̇ = λ u,

Eu+Mu̇ = λ u̇.

(2.15)

It is an eigenvalue problem and the physical instabilities are related to the non-real
eigenvalues λ.

Introducing the bounded operator A of L2(]− 1, 1[)2 defined by:

∀ (u, u̇)t ∈ L2(]− 1, 1[)2, A



u

u̇


 =



M I

E M






u

u̇


 , (2.16)

the system (2.15) takes the following form

A



u

u̇


 = λ



u

u̇


 . (2.17)
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Most of this paper will be devoted to the spectral analysis of the (non-selfadjoint)
operator A, the main question being the existence or non-existence of non-real
spectrum.

In fact, the equivalence between the well-posedness of (2.12) and the absence of
non-real spectrum of A is not obvious and counter-examples exist for non-normal
operators in other applications. Indeed, it is clear that the well-posedness does not
hold if unstable modes (with λ /∈ R) exist (see 1 for a more precise statement)
but the converse is not straightforward. Using a Fourier analysis, well-posedness
of (2.12) can be obtained as a consequence of a uniform estimate of the semi-
groups eiktA for k ∈ R. The difficult question is then to derive this uniform bound.
A possible approach consists in using the Fourier-Laplace transform in (x, t) and
complex variable techniques, as it is done in 12.

For simplicity, we will use in the sequel the following definition:

Definition 2.1. A profile M(y) is said stable (resp. unstable) if σ(A) ⊂ R (resp.
σ(A) 6⊂ R).

3. General properties of the spectrum

Since the function M is real, σ(A) is symmetric with respect to the real axis:

λ ∈ σ(A) ⇒ λ̄ ∈ σ(A).

Notice also that A is non-normal (AA∗ 6= A∗A) but one can easily check that A
and A∗ are similar operators:

A = S A∗ S with S =




0 I

I 0


 .

Both operators A and A∗ have therefore the same eigenvalues and the same spec-
trum. This proves in particular that A has no residual spectrum.

3.1. The continuous spectrum

Let us first point out that

A = A0 +B, (3.1)

where

A0 =



M I

0 M


 and B =




0 0

E 0


 . (3.2)

The operator B has rank 1 and is a fortiori compact. The operator A0 is non-
normal but one can however easily determine its spectrum which coincides with the
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essential range of function M :

σ(A0) = R(M) , (3.3)

where the essential range is defined by

λ ∈ R(M) ⇐⇒ ∀ δ > 0, mes
{
y ∈ ]−1, 1[ / M(y) ∈ ]λ−δ, λ+δ[

}
> 0. (3.4)

Since A is a compact perturbation of A0, we expect the perturbation B to only
produce a possible discrete spectrum outside the range of M . Indeed this holds: it
can be proved directly (see 1) or deduced from non-trivial results of spectral theory
for non-selfadjoint operators 17 (lemma XIII 4.3), using the fact that σ(A0) has an
empty interior :

Theorem 3.1. The range of the Mach profile R(M) is included in σ(A) and its
complementary set in σ(A) is the discrete spectrum of A (which is by definition the
set of eigenvalues of finite multiplicity which are isolated in the spectrum).

3.2. The eigenvalues: general properties

The following result gives a very useful characterization of the discrete spectrum:

Lemma 3.1. The following equivalence holds:

λ ∈ σ(A) \R(M) ⇐⇒ F (λ) = 1 (3.5)

where

F (λ) =
1
2

∫ 1

−1

dy(
λ−M(y)

)2 , λ ∈ D = C \R(M) . (3.6)

Moreover the discrete spectrum σ(A)\R(M) contains only simple eigenvalues.

Proof. Let λ ∈ σ(A) \ R(M); by theorem 3.1 λ is an eigenvalue of A. If (u, u̇)t

denotes an associated eigenvector, one has:




(λ−M)2 u = Eu,

u̇ = (λ−M) u.

The function u cannot be equal to 0 and its mean value Eu is also not equal to 0
since (λ−M)2u = 0 implies u = 0. Therefore

u =
Eu

(λ−M)2
and u̇ =

Eu

λ−M
(3.7)

which proves that the eigenvalue is simple. Integrating the first equality of (3.7)
between −1 and 1 and using again Eu 6= 0 gives the characterization.

Corollary 3.1. A profile M(y) is stable (in the sense of definition 2.1) if and only
if the equation F (λ) = 1 has no solutions λ such that λ /∈ R. Equivalently, a profile
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M(y) is unstable (in the sense of definition 2.1) if and only if there exists λ /∈ R
such that F (λ) = 1.

We deduce from lemma 3.1 the existence of at most two real eigenvalues outside
the range of M . Let us set:

M− = infM(y), M+ = supM(y). (3.8)

Theorem 3.2. The operator A has at most one eigenvalue λ− in the interval
]−∞,M−[ and at most one eigenvalue λ+ in the interval ]M+,+∞[. More precisely,
the eigenvalue λ− exists if and only if

1 <
1
2

∫ 1

−1

dy(
M− −M(y)

)2 ≤ +∞,

and it is characterized by:

λ− < M− and F (λ−) = 1.

Likewise, the eigenvalue λ+ exists if and only if

1 <
1
2

∫ 1

−1

dy(
M+ −M(y)

)2 ≤ +∞,

and it is characterized by:

λ+ > M+ and F (λ+) = 1.

Proof. Let us study the function F in the real interval ] −∞,M− [ ∪ ] M+,+∞ [
where it takes real values. Its derivative is given by:

F ′(λ) = −
∫ 1

−1

dy

(λ−M(y))3
,

which proves that F is strictly increasing on ]−∞,M−[ and strictly decreasing on
]M+,+∞[. Moreover, using Lebesgue monotone convergence theorem, one has:

lim
λ→±∞

F (λ) = 0, lim
λ→M±

F (λ) =
1
2

∫ 1

−1

dy(
M± −M(y)

)2 ≤ +∞.

The result follows easily by the intermediate value theorem.

Remark 3.1. If M(y) reaches the value M± at a point y± where it is C1 at the
left or at the right, one check easily that

∫ 1

−1

dy(
M± −M(y)

)2 = +∞,

which ensures the existence of λ±.

From the two previous sections, we deduce that investigating the existence of non
real eigenvalues of A amounts to study the possible existence of non real solutions of
the characteristic equation (3.5). The rest of the paper is devoted to this question.
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3.3. Some elementary examples

3.3.1. The uniform profile

The simplest case corresponds to the case of uniform profile:

Lemma 3.2. Suppose M(y) = M , ∀y ∈]− 1, 1[. Then

σ(A) = {λ−,M, λ+}

with λ± = M ± 1, and M(y) is stable (in the sense of definition 2.1).

Proof. The lemma is a straightforward consequence of lemma 3.1. Indeed we have
for a uniform flow:

F (λ) =
1

(λ−M)2

and λ± are the two roots of equation F (λ) = 1.

The eigenvalues λ− and λ+ are associated to classical acoustic convected modes.
If the flow is subsonic (|M | < 1), they propagate respectively downstream and
upstream with phase velocities equal to 1+|M | and 1−|M |. If the flow is supersonic,
both of them propagate downstream.

3.3.2. The linear profile

Let us consider now the case of a linear profile:

Lemma 3.3. Suppose M(y) = My +m, ∀y ∈]− 1, 1[. Then

σ(A) = {λ−, λ+} ∪ [−M +m,M +m]

with λ± = m±√1 +M2, and M(y) is stable (in the sense of definition 2.1).

Proof. A simple integration gives:

F (λ) =
1

2M

(
1

λ−m−M
− 1
λ−m+M

)
=

1
(λ−m)2 −M2

and one can check again that λ± are the two roots of equation F (λ) = 1.

Notice that there are two propagative modes which propagate respectively with a
phase velocity equal to λ±. Let us point out that the two modes propagate in oppo-
site directions if |m| < √

1 +M2 and both propagate downstream if |m| ≥ √
1 +M2

(this last condition does not impose to the flow to be everywhere supersonic).
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Fig. 1. The function F (λ) for a uniform (left) or linear (right) Mach profile.

3.3.3. The step profile

Let us consider finally the case of a step profile taking two different values.

Lemma 3.4. Suppose

M(y) =
{
M1 if −1 < y < a

M2 if a < y < 1

with −1 < a < 1 and M1 6= M2, and define δ(a) by:

δ(a) =
1√
2

(
(1− a)1/3 + (1 + a)1/3

)3/2

.

If |M1−M2| 6= δ(a), then the operator A has exactly four eigenvalues different from
M1 and M2 and the following alternative holds:

• if |M1 −M2| > δ(a), the four eigenvalues are real,

• if |M1 −M2| < δ(a), two eigenvalues are real and two eigenvalues are non real
and complex conjugated.

If |M1−M2| = δ(a), then the operator A has exactly three real eigenvalues different
from M1 and M2. In conclusion, the profile M(y) is stable (in the sense of definition
2.1) if and only if |M1 −M2| ≥ δ(a).

Proof. For the step profile, the function F which has the following expression

F (λ) =
1
2

(
1 + a

(λ−M1)2
+

1− a

(λ−M2)2

)

takes positive values everywhere. It can easily be checked that the equation F (λ) =
1, which has four complex solutions, has exactly one real solution λ− < M− =
min (M1,M2) and one real solution λ+ > M+ = max (M1,M2). In the interval
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Fig. 2. The function F (λ) for a step stable (left) or unstable (right) Mach profile.

]M−,M+[, F is strictly convex and tends to infinity when λ → M±. Its minimal
value in this interval is given by

Fmin =
(1− a)1/3 + (1 + a)1/3

2(M1 −M2)2
.

The lemma follows since:

Fmin < 1 ⇐⇒ |M1 −M2| > δ(a).

Surprisingly, the flow is more stable if the jump is large. Notice that δ(a) takes its
maximum value when the step is located in the middle of the duct (a = 0): in that
case (which is the most unstable) δ(0) = 2 so that a step subsonic flow is always
unstable. When a varies from the middle to the walls of the duct, δ(a) decreases
and its minimum value is δ(−1) = δ(1) = 1.

3.4. The discretized problem

A way to compute the spectrum for an arbitrary Mach profile could be to discretize
the eigenvalue problem (2.15). We now want to illustrate the fact that a natural
discretization process will produce parasitic non real eigenvalues. As a consequence,
a standard discretization of (2.12) will generally be unstable, even if the continuous
problem is stable.

Let Vh be a finite dimensional subspace of L2([−1, 1]), whose dimension tends to
infinity as h tends to 0. We can for example set

Vh = span[ψj , j = −Nh, · · · , Nh − 1] where Nh =
1
h

and ψj =
1√
2h

χj+ 1
2
,

χj+ 1
2

being the characteristic function of the interval [jh, (j + 1)h]. The ψj form
an orthonormal family of L2([−1, 1]) and the dimension of Vh is 2Nh. A Galerkin
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approach leads then to consider the following eigenvalue problem




Find (uh, u̇h, λ) ∈ V2
h × C, (uh, u̇h) 6= (0, 0), such that ∀(ũh, ˜̇uh) ∈ V2

h

∫ 1

−1

M(y)uh(y) ũh(y) dy +
∫ 1

−1

u̇h(y) ũh(y) dy = λ

∫ 1

−1

uh(y) ũh(y) dy

1
2

∫ 1

−1

∫ 1

−1

uh(y) ˜̇uh(y) dxdy +
∫ 1

−1

M(y) vh(y) ˜̇uh(y) dy = λ

∫ 1

−1

u̇h(y) ˜̇uh(y) dy

(3.9)
This leads to approximate the spectrum of operator A (which is composed of a
continuous part and a possible discrete part) by the discrete eigenvalues of the
4Nh × 4Nh matrix:

Ah =




Mh I

Eh Mh




where matrices Mh and Eh are given by:

(Mh)i,j =
∫ 1

−1

M(y)ψi(y)ψj(y)dy and (Eh)i,j =
1
2

∫ 1

−1

∫ 1

−1

ψi(y)ψj(x) dxdy.

Let us consider for instance the case of a linear profile M(y) = y: we already know
that the associated spectrum is given by

σ(A) = [−1, 1] ∪ {−
√

2,
√

2}.
Figure 3 represents the spectrum of Ah in the complex plane for different values of
Nh. Let us point out that the scales for the real and the imaginary parts are very
different. We observe that the spectrum of Ah is composed of two real eigenvalues
and 4Nh−2 non real eigenvalues. The two real eigenvalues are good approximations
of the exact eigenvalues −√2 and

√
2. The set of the 4Nh − 2 non real eigenvalues

is symmetric with respect to the real axis, and corresponds to the discretization of
the continuous spectrum [−1, 1]. Their imaginary part decreases as Nh increases.
The same phenomena are observed with a spectral discretization 1.

These results show that is could be dangerous to use a discrete approach to conclude
to the stability or instability of a given flow. We propose instead a rigorous approach
which is the object of section 4 and 5.

4. Stability conditions for continuous profiles

We will now focus on the main object of the present paper, which is the question of
existence of instabilities for the asymptotic model. Our methodology combines an
approximation process of the Mach profile by a step-linear profile, and the applica-
tion to this step-linear profile of the characterization established above.
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Fig. 3. Eigenvalues of the discretized problem for a linear profile

4.1. The methodology

Let us now consider a general continuous profile M . The idea is to approximate M
by a profile Mh such that Mh →M uniformly as h→ 0, and such that the study of
equation Fh(λ) = 1 is simpler than the study of equation F (λ) = 1. The main point
which results from spectral perturbation theory is that the profile M is necessarily
stable if all Mh profiles are stable. In the following, we denote by Ah the operator
defined by (2.16) where M is replaced by Mh.

Lemma 4.1. Let M ∈ L∞(] − 1, 1[) and let Mh ∈ L∞(] − 1, 1[) be a family of
profiles (for 0 < h < 1) such that:

‖M −Mh‖L∞(]−1,1[) −→ 0 when h −→ 0. (4.1)

If σ(Ah) ⊂ R ∀h ∈]0, 1[, then σ(A) ⊂ R.

Proof. Suppose by contradiction that there exists λ ∈ σ(A) such that λ /∈ R. By
theorem 3.1, λ belongs to the discrete spectrum of A. As

A−Ah =



M −Mh 0

0 M −Mh




it is clear that:

‖A−Ah‖ = ‖M −Mh‖L∞([−1,1])

and it results from classical spectral perturbation theory that any neighborhood of
λ should contain, for h small enough, an eigenvalue of Ah (see theorem 3.6 chapter
4 §3.1 in 14). This is in contradiction with the hypothesis σ(Ah) ⊂ R.
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Remark 4.1. This lemma means that the subset of stable (resp. unstable) profiles
(in the sense of definition 2.1) is closed (resp. open) in L∞(]− 1, 1[).

Let us now explain how the approximated profiles Mh are chosen. A priori, the
simplest solution consists in choosing a piecewise constant profile Mh. For such
profile one can easily derive an explicit expression of function Fh which is a rational
fraction. But this approach does not work. Indeed, proceeding as in the proof of
lemma 3.4, one can check easily that such approximated profile Mh is unstable for
h small enough (because the gap between two successive constant values becomes
too small).

The natural choice is then to approximateM by a piecewise linear profile Mh. Again
the corresponding function Fh is a rational fraction whose expression can be easily
derived. Therefore the number Nr of complex solutions of equation Fh(λ) = 1
is known a priori. To prove the stability of a profile Mh, we just have to prove
that the equation Fh(λ) = 1 has (at least) Nr real solutions. This can be proved
under specific geometrical conditions on Mh by very simple arguments, such as the
intermediate value theorem.

4.2. The piecewise linear profiles

Using simple integration rules, we can easily derive the expression of the function
F for an arbitrary piecewise linear profile and establish the following lemma:

Lemma 4.2. Let M ∈ C0([−1, 1]) andSuppose that there exist

x0 = −1 < x1 < · · · < xN = 1, (4.2)

such that M is linear on ]xi, xi+1[ for every 0 ≤ i < N :

∀ 0 ≤ i ≤ N − 1, M(y) = αiy + βi in [xi, xi+1] (4.3)

with αi ∈ R, βi ∈ R and αi 6= αi+1. Then the function F (λ) is a rational function,
it has at most N + 1 poles located on the real axis. More precisely, if

M0 < M1 < . . . < MP

denote the P ordered values M(xi):

{M0,M1, . . .MP } = {M(xi); i = 0, . . . N},
then the rational function F has a partial fraction expansion of the following form:

F (λ) =
P∑

j=0

γj

λ−Mj
+

P∑

j=0

ζj
(λ−Mj)2

(4.4)

with real coefficients γj and ζj satisfying

γ0 < 0, γP > 0 and ζj ≥ 0, ∀ 0 ≤ j ≤ P.
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Proof. Suppose first that αi 6= 0 ∀i. Reminding that

F (λ) =
1
2

∫ 1

−1

dy(
λ−M(y)

)2 , λ ∈ D = C \R(M)

then a simple integration provides :

F (λ) =
1
2

(
− 1
α0

1
λ−M(x0)

+
N−1∑

i=1

[
1

αi−1
− 1
αi

]
1

λ−M(xi)
+

1
αN−1

1
λ−M(xN )

)
.

(4.5)
The expression (4.4) follows with ζj = 0 for all j and with the following expression
of γj where we have set α−1 = αN = +∞ :

γj =
∑

0 ≤ i ≤ N
M(xi) = Mj

1
2

[
1

αi−1
− 1
αi

]
. (4.6)

To prove that γ0 < 0, notice that M0 = infM(y) and that:

(1) If M0 = M(x0), the function M is necessarily increasing on [x0, x1], so that:
−1
2α0

< 0.

(2) If M0 = M(xN ), the function M is necessarily decreasing on [xN−1, xN ], so
that:

1
2αN−1

< 0.

(3) If M0 = M(xi) for some i, 0 < i < N , the function M is decreasing on [xi−1, xi]
and increasing on [xi, xi+1], so that:

1
2

(
1

αi−1
− 1
αi

)
< 0.

Therefore γ0 is negative since it is a sum of negative terms. One can prove in the
same way that γP > 0, with MP = supM(y).

If some αi vanish, the calculations can be handled similarly, leading to (4.4) with
some non-vanishing positive ζj . The details are left to the reader.

Using the expression of function F , we can establish sufficient conditions on the
profile ensuring that all solutions of F (λ) = 1 are real. This is the object of the
following lemma:

Lemma 4.3. Consider the same hypotheses as in lemma 4.2. Then, if ζj = 0 for all
j and if there exist two integers k′ and k, satisfying 0 ≤ k′ < P and 0 ≤ k < P −k′,
such that: 



γj < 0 for 0 ≤ j ≤ k′,
γj > 0 for k′ + k + 1 ≤ j ≤ P,

γj = 0 for k′ < j < k′ + k + 1,
(4.7)
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then all complex solutions λ of F (λ) = 1 are real numbers and M is stable (in the
sense of definition 2.1). The same result holds if there exists k′ ≤ ` ≤ k′ + k + 1
such that ζ` > 0 and ζj = 0 for any j 6= `.

Proof. Suppose first that all ζj are equal to 0. Then by (4.7):

F (λ) = F ∗(λ) :=
k′∑

j=0

γj

λ−Mj
+

P∑

j=k′+k+1

γj

λ−Mj

where all the coefficients γj are different from 0. As a consequence, the equation
F (λ) = 1 can be written as a polynomial equation of degree P +1− k. To establish
the lemma, we will prove that the equation F (λ) = 1 has exactly P +1− k distinct
real solutions.

Considering the function λ 7−→ F (λ) on the real axis, we notice that:

lim
λ→−∞

F (λ) = lim
λ→+∞

F (λ) = 0.

Moreover for 0 ≤ j ≤ k′, γj < 0 implies

lim
λ

<→Mj

F (λ) = +∞ and lim
λ

>→Mj

F (λ) = −∞

and for k′ + k + 1 ≤ j ≤ P , γj > 0 implies

lim
λ

<→Mj

F (λ) = −∞ and lim
λ

>→Mj

F (λ) = +∞.

By the intermediate value theorem, the equation F (λ) = 1 has at least one real
solution in each interval ]−∞,M0[, ]M0,M1[,..., ]Mk′−1,M

′
k[ and one real solution in

each interval ]Mk′+k+1,Mk′+k+2[,..., ]MP−1,MP [, ]MP ,+∞[, which gives, summing
up, P + 1− k real and distinct solutions.

Let us now consider the case where there exists k′ ≤ l ≤ k′+ k+1 such that ζ` > 0
and ζj = 0 for ; j 6= `. In this case

F (λ) = F ∗(λ) +
ζ`

(λ−M`)2
.

The reader will first remark that the same argument as above still apllies which
shows the existence of P + 1 − k distinct roots of F (λ) = 1 which are outside the
interval [M ′

k,Mk′+k+1]. To conclude, we distinguish three cases :

(i) If ` = k′, it is clear that F (λ) = 1 is a polynomial equation of degrees P −k+2.
To conclude it suffices to prove the existence of an additionnal real solution in
the interval ]M ′

k,Mk′+k+1[ (where F is continuous). Since ζk′ > 0, one has:

lim
λ

>→Mk′
F (λ) = +∞ while lim

λ
<→Mk′+k+1

F (λ) = −∞

which allows us to conclude easily.
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Fig. 4. Illustration of lemma 4.3 (the case where ζj = 0 for all j)

(ii) When ` = k′ + k + 1, one proceeds similarly as above.
(iii) When k′+1 ≤ ` ≤ k′+k, F (λ) = 1 is a polynomial equation of degree P+3−k.

To conclude, it suffices to prove the existence of one solution in each intervals
]Mk′ ,M`[ and ]M`,Mk′+k+1[ which is done again using the intermediate value
theorem. Indeed since ζ` > 0 we have :

lim
λ

>→Ml

F (λ) = lim
λ

<→Ml

F (λ) = +∞

while

lim
λ

>→Mk′
F (λ) = lim

λ
<→Mk′+k+1

F (λ) = −∞

4.3. The results

Combining lemmas 4.1 and 4.3, we will now state some geometrical assumptions on
the profile M ensuring its stability (in the sense of definition 2.1).

Theorem 4.1. Let M ∈ C0(] − 1, 1[). Then M is stable if one of these conditions
is satisfied:

(1) M is a convex (resp. concave) function.

(2) M is increasing (resp. decreasing) and there exists yS ∈]− 1, 1[ such that M is
concave (resp. convexe) in ]− 1, yS [ and convex (resp. concave) in ]yS , 1[.

Remark 4.2. The first condition is not surprising, if one reminds the well-known
result by Rayleigh 16 for incompressible linearized Euler equations: an unstable
profile necessarily admits inflexion points. Note also that the second condition is
equivalent to Fjortoft criterium 5:

M ′′(yS) = 0 and M ′′(y)(M(y)−M(yS)) ≥ 0, ∀y 6= yS ,
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which is a sufficient condition of stability, again in the incompressible case. We are
not aware of any similar results in the compressible case.

Proof. Let h = 1/N and consider a regular mesh of [−1, 1] given by the points

xi = i h, i = 0, · · · , N
Let Mh(y) be the piecewise linear interpolation function of M on this mesh. Then:

‖M −Mh‖L∞([−1,1]) ≤ ω(M,h),

where

ω(M,h) = sup
|y1−y2|<h

|M(y1)−M(y2)|.

In particular

‖M −Mh‖L∞([−1,1]) → 0 when h→ 0.

If we prove that for the profile Mh, hypothesis (4.7) holds, then the lemma follows
from lemmas 4.1 and 4.3.

Let us consider a convex profile M . Clearly, Mh is also convex which implies that

αi > αi−1, 0 < i < N.

Then reminding that γP > 0 and using (4.6) we can check easily that :

γj > 0, ∀ j > 0.

We can prove in the same way that

γj < 0, ∀ j < P,

for a concave profile Mh.

Finally if M is increasing and there exists yS ∈]− 1, 1[ such that M is concave on
]− 1, yS [ and convex in ]yS , 1[ then Mh is increasing and one easily sees that there
exists iS ∈]0, N [ such that Mh is concave on ]x0, xiS

[ and convex in ]xiS
, xN [. As

Mh is increasing we have P = N , M(xi) = Mi and we deduce from (4.6) that :

γj =
1

αj−1
− 1
αj
, ∀ 0 < j < P.

Mh is concave on ]x0, xiS
[ so that αi > αi+1 for i < iS . As a consequence, reminding

that γ0 < 0 we get from the previous equation:

γj < 0, 0 ≤ j < iS .

Similarly we get :

γj > 0, iS < j ≤ P.

To conclude we only have to notice that whatever happens to γiS , (4.7) holds.
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5. Instability conditions for odd continuous profiles

We consider now the particular case of an odd (and not necessarily continuous)
Mach profile, i.e. a profile M such that M(−y) = −M(y) for all y ∈ [−1, 1].

We will prove that the corresponding F function takes real values F (λ) for purely
imaginary λ. As a consequence, the intermediate value theorem applies to the func-
tion ν 7−→ F (iν). This will allow to derive sufficient conditions on the Mach profile
M(y) such that the equation F (λ) = 1 has non real solutions, leading to the insta-
bility of M(y).

Remark 5.1.

• Notice that, as adding a constant m to the profile (M(y) → M(y) + m) re-
sults in a translation of the spectrum (λ → λ + m), all results of this section
can be easily extended to profiles which are odd up to an additive constant:
M(−y) +M(y) = 2m for all y ∈ [−1, 1]. Let us point out that there is however
a main difference between the cases m = 0 and m 6= 0: indeed, for m = 0, the
instabilities which are studied in this section are “absolute” ones (as defined by
11) while they are ”convective” instabilities if m 6= 0.

• Thanks to remark 4.1, if an odd profile M(y) is unstable, all profiles which are
close enough to M(y) (in L∞(] − 1, 1[)) are unstable. As a consequence, the
following instability results still hold for almost odd profiles.

5.1. A first instability condition

First we have the

Lemma 5.1. If M is odd, then:

(1) ∀ λ /∈ R(M), F (λ) = F (−λ),

(2) ∀ ν ∈ R∗, F (iν) ∈ R .

Proof. The change of variable y → −y in (3.6) gives the first equality. Then using
the obvious identity F (λ) = F (λ), we get for ν ∈ R∗:

F (iν) = F (−iν) = F (iν) = F (iν)

which proves that F takes real values on the imaginary axis.

A simple calculation gives:

∀ν ∈ R∗ F (iν) =
1
2

∫ 1

−1

dy(
iν −M(y)

)2 =
∫ 1

0

M(y)2 − ν2

(M(y)2 + ν2)2
dy . (5.1)

A consequence of the previous lemma is the following corollary, which will be the
main tool of this section:
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Corollary 5.1. If M is odd and if

lim sup
ν→0

F (iν) > 1 (5.2)

then the operator A has at least two eigenvalues iν and −iν with ν > 0, and the
profile M is unstable (in the sens of definition 2.1).

Proof. The function ν 7−→ F (iν) is continuous on R+∗ and tends to 0 when ν

tends to +∞. By the intermediate value theorem, if condition (5.2) is satisfied,
there exists at least one value of ν, ν 6= 0, such that F (iν) = F (−iν) = 1. The
corollary then follows from lemma 3.1.

The condition (5.2) is a sufficient condition for instability in the case of an odd
profile. Clearly it is not in general a necessary condition for instability: indeed non
real eigenvalues of the operator A are not necessarily on the imaginary axis and
even if A has non real eigenvalues on the imaginary axis, condition (5.2) may not
be true. However, we can establish some partial converse statements. For instance,
we have the

Lemma 5.2. If M is a continuous and odd function of y on [−1, 1], and is a concave
increasing function of y on [0, 1], then M is unstable if and only if condition (5.2)
is fulfilled.

Proof. Suppose M is unstable and let us prove that condition (5.2) holds. We
denote by λM a complex number satisfying F (λM ) = 1 and =(λM ) > 0.

Let h = 1/N and consider a regular mesh of the interval [−1, 1] given by the points
xi = i h, i = −N, · · · , 0, · · · , N. Let Mh(y) be the piecewise linear interpolation of
M on this mesh, so that ‖M −Mh‖L∞([−1,1]) tends to 0 with h. From lemma 4.1,
we know that there exists λh such that Fh(λh) = 1 and λh → λM as h→ 0.

Clearly Mh(y) is odd and continuous, and is a concave increasing function of y on
[0, 1]. By symmetry, denoting M(jh) = Mj , we get from (4.5):

Fh(λ) = h

N∑

j=1

γh
j

(
1

λ−Mj
− 1
λ+Mj

)

with

γh
j = −2

Mj+1 +Mj−1 − 2Mj

(Mj −Mj−1)(Mj+1 −Mj)
for j = 1, · · ·N − 1,

and

γh
N =

1
MN −MN−1

.

By the concavity and the monotonicity of M(y), we have γh
j < 0 for j = 0, · · ·N −1

and γh
N > 0. Hence, proceeding as in the proof of lemma 4.3, we see that equation
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Fig. 5. Illustration of the proof of lemma 5.2: impossible behaviours of the function F (iν).

Fh(λ) = 1, which has at most 2N different complex roots, has at least 2N − 2
different real roots. In other words, equation Fh(λ) = 1 has at most two non real
solutions. By lemma 5.1, this proves that λh ∈ iR, otherwise Fh(λ) = 1 would have
four different roots λh,−λh, λh and −λh. More precisely, λh = iνh where νh is the
unique solution of Fh(iν) = 1 for ν > 0. Notice that a fortiori, λM = iνM where
νM is the unique solution of F (iν) = 1 for ν > 0.

To go further, we must use the following result, proved in appendix :

if
d

dν
Fh(iν) = 0 for ν > 0, then Fh(iν) ≤ 0. (5.3)

As a consequence, (recall that Fh(iν) = 1 tends to 0 at infinity), the behaviour
represented on the left on figure 5 is not allowed, and we have:

Fh(iν) > 1 if 0 < ν < νh ,

and therefore (using the uniqueness of the solution of F (iν) = 1):

F (iν) > 1 if 0 < ν < νM .

This proves that

lim sup
ν→0

F (iν) ≥ 1.

To conclude, notice that if lim supν→0 F (iν) = 1 (see figure 5 on the right), then
for h small enough, there exists ν such that 0 < ν < νh and d

dνFh(iν) = 0, which
contradicts (5.3).

In the following, we will exhibit various situations for which we can prove the
existence and compute the value of the limit of the function F (iν) as ν → 0.
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5.2. Application to singular profiles

The simplest case where the limit of F (iν) as ν → 0 can be obtained is the case
where Lebesgue’s dominated convergence theorem can be used:

Theorem 5.1. Let M be an odd profile such that
∫ 1

0

dy

M(y)2
< +∞. (5.4)

Then the profile M is unstable (in the sense of definition 2.1) if the following con-
dition holds: ∫ 1

0

dy

M(y)2
> 1, (5.5)

If moreover M is a continuous and odd function of y on [−1, 1], and a concave
increasing function of y on [0, 1], then M is unstable if and only if (5.5) holds.

Proof. For ν > 0, we have:

|F (iν)| ≤ 1
2

∫ 1

−1

dy

ν2 +M(y)2
≤

∫ 1

0

dy

M(y)2
.

This proves that Lebesgue’s dominated convergence theorem applies and we get:

lim
ν→0

F (iν) =
∫ 1

0

dy

M(y)2
.

The theorem then follows from corollary 5.1 and lemma 5.2.

Notice that (5.5) proves that any subsonic profile satisfying (5.4) is unstable.

The condition (5.4) is clearly satisfied for a profile M which does not vanish: as M
is odd, it must then be discontinuous at y = 0. For instance, if M is an odd step
profile, we recover a part of lemma 3.4.

Let us now consider a continuous profile. Then condition (5.4) cannot be fulfilled
by a regular profile M but it can be used for example if M(y) behaves like yα with
0 < α < 1/2 for y >→ 0:

Lemma 5.3. The odd profile defined by M(y) = M+yα with 0 < α < 1/2 is
unstable (in the sense of definition 2.1) if and only if

(1− 2α)M2
+ < 1 (5.6)

In other words, unstable modes exist if and only if M+ < Mα with Mα = 1/(1−2α).
Notice that Mα

>→ 1 when α → 0, again in accordance with the case of the step-
profile.

One can wonder what happens if 1/2 < α < 1. We will prove now that such profile
is always unstable:
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Fig. 6. Stability area of the M+yα profiles in the (α, M+) plane

Lemma 5.4. The odd profile defined by M(y) = ayα with a > 0 and 1/2 < α < 1
is unstable (in the sense of definition 2.1).

Proof. For such profile, the function F (iν) has the following expression:

F (iν) =
∫ 1

0

a2y2α − ν2

(a2y2α + ν2)2
dy.

A simple change of variable gives:

F (iν) = ν1/α−2a−1/α

∫ (a/ν)1/α

0

y2α − 1
(y2α + 1)2

dy,

so that:

lim
ν→0

F (iν)
ν2−1/α

= a−1/αS(α) with S(α) =
∫ +∞

0

y2α − 1
(y2α + 1)2

dy.

One easily computes that for α > 1/2:

S(α) =
∫ 1

0

1− y2α

(y2α + 1)2
1− y2−2α

y2−2α
dy

which shows that S(α) > 0 for 1/2 < α < 1. Thus limν→0 F (iν) = +∞ and the
lemma results from corollary 5.1 and lemma 5.2

All the results concerning the yα profiles are summarized in figure 5.2.
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5.3. A perturbation technique

If M is an odd regular profile (say for instance C1), the previous results do not
apply. Some results will be however deduced from the following lemma:

Lemma 5.5. Suppose that M and M̃ are two odd profiles such that
∫ 1

0

∣∣∣∣∣
M(y)− M̃(y)
M(y)2M̃(y)

∣∣∣∣∣ dy < +∞ and
∫ 1

0

∣∣∣∣∣
M(y)− M̃(y)
M(y)M̃(y)2

∣∣∣∣∣ dy < +∞ (5.7)

then (with an obvious definition of F̃ ), F (iν)− F̃ (iν) has a finite limit as ν tends
to 0 given by:

lim
ν→0

(F (iν)− F̃ (iν)) =
1
2

∫ 1

0

M̃(y)2 −M(y)2

M(y)2M̃(y)2
dy (5.8)

Proof. For λ /∈ R, we have:

F (λ)− F̃ (λ) =
1
2

∫ 1

−1

(
1(

λ−M(y)
)2 −

1(
λ− M̃(y)

)2

)
dy

=
1
2

∫ 1

−1

[(
λ− M̃(y)

)
+

(
λ−M(y)

)]
(M(y)− M̃(y))

(
λ−M(y)

)2(
λ− M̃(y)

)2 dy

=
1
2

∫ 1

−1

(
M(y)− M̃(y)(

λ−M(y)
)2(

λ− M̃(y)
) +

M(y)− M̃(y)(
λ−M(y)

)(
λ− M̃(y)

)2

)
dy

Taking λ = iν, thanks to hypothesis (5.7), we can apply Lebesgue’s dominated
convergence theorem to prove that:

lim
ν→0

(F (iν)− F̃ (iν)) =
−1
2

∫ 1

−1

(
M(y)− M̃(y)
M(y)2M̃(y)

+
M(y)− M̃(y)
M(y)M̃(y)2

)
dy

which gives (5.8).

This result is useful when M̃ is chosen such that limν→0 F̃ (iν) is known. In par-
ticular, if limν→0 F̃ (iν) = +∞, the previous lemma proves the instability of M . A
simple application is given by the following lemma:

Lemma 5.6. Let 1/2 < α < 1 and M(y) be an odd profile such that
∫ 1

0

|M(y)− ayα|
y3α

dy < +∞, (5.9)

then M is unstable (in the sense of definition 2.1).

Proof. Let us set M̃(y) = ayα. Then by lemma 5.4, limν→0 F̃ (iν) = +∞.
On the other hand, (5.9) is equivalent to (5.7). Finally, lemma 5.5 proves that
limν→0 F (iν) = +∞.
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5.4. Application to a regular profiles

Let us now show how lemma 5.5 applies to a regular profile:

Theorem 5.2. Let M be an odd profile, C1 in a neighborhood of 0, such that:

(1) M(y) 6= 0 for y 6= 0,

(2) M ′(0) 6= 0,

(3)
∫ 1

0

|M(y)−M ′(0) y|
y3

dy < +∞ .

Then M is unstable (in the sense of definition 2.1) if the following conditions holds

1 +M ′(0)2 <
∫ 1

0

M ′(0)2 − (M(y)/y)2

M(y)2
dy . (5.10)

If moreover M is a continuous function of y on [−1, 1] and a concave increasing
function of y on [0, 1], then M is unstable if and only if (5.10) holds.

Remark 5.2. Notice that the hypothesis 3) of theorem 5.2 is automatically satisfied
if M is a C2 odd profile since M”(0) = 0.

Proof. Let us set M̃(y) = M ′(0)y. Then, as we already noticed, F̃ has a simple
expression:

F̃ (iν) =
−1

ν2 +M ′(0)2
,

which gives directly limν→0 F̃ (iν) = −1/M ′(0)2. On the other hand, the third
hypothesis is in this case equivalent to (5.7), so that lemma 5.5 applies and (5.8)
reads:

lim
ν→0

F (iν) +
1

M ′(0)2
=

1
2

∫ 1

0

M ′(0)2y2 −M(y)2

M(y)2M ′(0)2y2
dy

which gives (5.10).

The reader will notice that the condition (5.10) relates the behavior at 0 (left hand
side) to a global quantity (right hand side). As this condition is rather difficult to
interpret, let us illustrate it on the case of more specific profiles.

Corollary 5.2. For a > 0 and α > 0, let M be the profile defined by

M(y) = a tanh(αy)

and let α∗ > 0 be the unique solution of equation α tanhα = 1. Then, the profile M
is unstable (in the sense of definition 2.1) if and only if

α > α∗ and a < 1− 1
α tanhα

Again, the result for a step profile is recovered when α→ +∞.
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6. Back to the analysis of stability of the duct case

We will prove now that the stability properties of the asymptotic model (2.12)
(obtained for ε→ 0) can be related to the stability properties of the Cauchy problem
in a duct of height ε > 0. More precisely, we will show that, if the Mach profile M(y)
is unstable (in the sense of definition 2.1), then for all ε > 0, the Cauchy problem
associated to equations (2.6, 2.7) is unstable.

6.1. The modal approach

A classical approach for the analysis of stability is the determination of the so-called
normal modes which are the nontrivial solutions of (2.6, 2.7) of the form :





uε(x, y, t) = u(y) e−iωt eikx,

vε(x, y, t) = v(y) e−iωt eikx,

(6.1)

with k ∈ R and ω ∈ C. Injecting (6.1) in (2.6) leads to




(
k2 − (ω − kM(y))2

)
u =

ik

ε

dv

dy
,

(ω − kM(y))2 v +
ik

ε

du

dy
+

1
ε2
d2v

dy2
= 0 ,

(6.2)

while the boundary condition becomes :

v(±1) = 0. (6.3)

The stability analysis consists in looking for possible values of ω ∈ C+ where

C+ = {z ∈ C; =(z) > 0}
such that (6.2) has nontrivial solutions in L2(] − 1, 1[)2. Notice that if (u, v) is a
solution of (6.2) associated to (ω, k), then (u,−v) (resp. (ū,−v̄)) is a solution of
(6.2) associated to (−ω,−k) (resp. (ω̄, k)). Summing up, we can restrict the study
to solutions such that =(ω) > 0 and k > 0. For such values of ω and k, the first
equation of (6.2) becomes:

u =
ik

ε

1
k2 − (ω − kM(y))2

dv

dy
.

Then, setting

λ =
ω

k
, η = ε2k2, γλ(y) = M(y)− λ , (6.4)

and eliminating u in the second equation of (6.2), we obtain :

η γ2
λ(y)

(
1− γ2

λ(y)
)
v(y)− 2 γ′λ(y) γλ(y)

1− γ2
λ(y)

dv(y)
dy

− γ2
λ(y)

d2v(y)
dy2

= 0 , (6.5)

which can be rewritten as follows :

η γ2
λ(y)v(y)− d

dy

(
γ2

λ(y)
1− γ2

λ(y)
dv(y)
dy

)
= 0 . (6.6)
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Here η can be seen as a parameter. We will say that the Cauchy problem associated
to equations (2.6, 2.7) is unstable if there exists λ ∈ C+ such that (6.5) (or equiv-
alently (6.6)) as a nontrivial solution. Indeed, in that case there will exist a nomal
mode of the form (6.1) solution of (2.6, 2.7) with =(ω) > 0 so that its norm grows
exponentially with respect to t.

6.2. The perturbation technique

6.2.1. The limit result

We are first going to see what happens when η → 0, which makes a link with the
analysis of stability of the asymptotic model (2.12).

Lemma 6.1. Let λ ∈ C+ and η = 0. Then (6.5) has non-trivial solutions v ∈
H1

0 (]− 1, 1[) if and only if

F (λ) = 1

where the function F is defined by (3.6), or, equivalently, if and only if the profile
M(y) is unstable (in the sense of definition 2.1).

Proof. For η = 0, (6.5) becomes:

d

dy

( γ2
λ(y)

1− γ2
λ(y)

dv(y)
dy

)
= 0.

which implies that the existence of a constant β ∈ C, β 6= 0 such that:

dv

dy
= β

1− γ2
λ

γ2
λ

Using the boundary conditions v(±1) = 0, we get finally:
∫ 1

−1

1− γ2
λ(y)

γ2
λ(y)

dy = 0 (6.7)

which gives the desired result by using the definition of γλ.

The idea now is to prove that if M(y) is unstable (in the sense of definition 2.1),
then unstable modes exist not only for η = 0 but also for any small values of η. This
will be a consequence of Steinberg’s theorem which we recall in the next paragraph.

6.2.2. Steinberg’s theorem

We give here the formal statement of Steinberg’s theorem 18 and of a corollary
better suited for our purpose.

Proposition 6.1. Suppose T (λ, η) is a family of compact operators which are an-
alytic in λ for fixed η and real analytic in η for fixed λ, for all (λ, η) ∈ D×R (D is
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an open connected set of C). If in addition, for all η ∈ R , I − T (λ, η) is invertible
for some λ ∈ D, then

• λ → I − T (λ, η) is invertible except for isolated points in D and the function
λ→ (

I − T (λ, η)
)−1 is meromorphic.

• Moreover if λ0 ∈ D is a pole of λ→ (
I − T (λ, η0)

)−1, then there exists at least
a function λ(η) defined on an interval ]a, b[⊂ R containing η0, continuous in
η (and analytic in η1/p for some integer p) such that λ(η0) = λ0 and λ(η) is a
pole of λ→ (

I − T (λ, η)
)−1.

As a consequence of the compacity of T (λ, η) the following equivalence holds:

Ker
[
I − T

(
λp, η

)] 6= {0} ⇔ λp is a pole of λ→ (I − T (λ, η))−1.

This allows us to refourmulate the proposition 6.1 as follows

Corollary 6.1. Under the conditions of previous theorem, suppose there exists λ∗ ∈
D such that

Ker
[
I − T (λ∗, 0)

] 6= {0}
then there exist η∗ ∈ R+ and a function λ∗ : ] − η∗, η∗[→ Ω continuous in η (and
analytic in η1/p for some integer p) satisfying λ∗(0) = λ∗ and

Ker
[
I − T

(
λ∗(η), η

)] 6= {0}, ∀ η ∈]− η∗, η∗[ .

6.2.3. The main result

As a consequence of corollary 6.1, we will obtain the

Theorem 6.1. Suppose M(y) is unstable (in the sense of definition 2.1). Then, for
all ε > 0, the Cauchy problem associated to equations (2.6, 2.7) is unstable, in the
sense that, for η small enough, there exists λ ∈ C+ such that (6.5) (or equivalently
(6.6)) as a nontrivial solution.

Proof. Let us consider the operators A and K(λ, η) defined on H1
0 (]− 1, 1[) by:

(Av, u)H1 = a(v, u),
(
K(λ, η)v, u

)
H1 = k(λ, η; v, u), ∀ (u, v) ∈ (

H1
0 (]− 1, 1[)

)2

where a(·, ·) and k(λ, η ; ·, ·) denote the two following bilinear forms :




a(v, u) =
∫ 1

−1

dv

dy

du

dy
dy,

k(λ, η; v, u) =
∫ 1

−1

(
η (1− γ2

λ)v u− 2 γ′λ
(1− γ2

λ) γλ

dv

dy
u

)
dy.

(6.8)

Using a variational formulation of (6.5,6.3) leads to prove the existence of η > 0
and λ ∈ C+ such that

∃ v ∈ H1
0(]− 1, 1[), v 6= 0 such that Av +K(λ, η)v = 0
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Since A is invertible and K(λ, η) is compact (see lemma 6.2), we can equivalently
show the existence of η > 0 and λ ∈ C+ such that I +A−1K(λ, η) is not invertible.
Clearly T (λ, η) = A−1K(λ, η) is a family of compact operators which are analytic
in λ for fixed η and real analytic in η for fixed λ, for all (λ, η) ∈ C+ × R. Finally,
by lemma 6.3, for all η ∈ R, there exists λ ∈ C+ such that I − T (λ, η) is invertible.

The theorem is therefore a direct consequence of corollary 6.1 : indeed, if M(y) is
unstable (in the sense of definition 2.1), there exists λ∗ ∈ C+ such that F (λ∗) = 1
and by lemma 6.1, this means that Ker

[
I − T (λ∗, 0)

] 6= {0}.

We now state and prove the two lemmas used in the previous proof.

Lemma 6.2. For all λ ∈ C with =(λ) > 0 and η ∈ R, K(λ, η) is a compact
operator.

Proof. Consider a bounded sequence (un) in H1
0 (]−1, 1[). Our goal is to prove that

there exists a subsequence (unk
) such that

(
K(λ, η)unk

)
converges in H1

0 (]− 1, 1[).
The sequence

(
K(λ, η)un

)
being bounded in H1

0 (]− 1, 1[), we can extract a subse-
quence

(
K(λ, η)unk

)
that converges in L2(] − 1, 1[) (Rellich’s theorem). Moreover,

for any v in H1
0 ( ]− 1, 1[ ) abd by definition of K(λ, η):

||K(λ, η)v||2H1 = k(λ, η; v,K(λ, η)v) ≤ C ||v||H1 ||K(λ, η)v||L2 . (6.9)

Taking v = unk
− un`

in (6.9), we obtain that
(
K(λ, η)unk

)
is a Cauchy sequence

in H1
0 (]− 1, 1[). In particular, it converges and K(λ, η) is compact.

Lemma 6.3. For all η ∈ R, there exists λ ∈ C+ such that I + A−1K(λ, η) is
invertible.

Proof. It is equivalent to prove that for all η ∈ R there exists λ ∈ C+ such that
the only solution of (6.6,refcnd) is equal to 0. This results from the coerciveness,
for some λ ∈ C+, of the following bilinear form:

b(v, u) =
∫ 1

−1

η γ2
λ v u+

γ2
λ

1− γ2
λ

dv

dy

du

dy
dy ∀(u, v) ∈ (

H1
0 (]− 1, 1[)

)2
. (6.10)

First, we notice that lim
|λ|→∞

− γ2
λ(y)

1− γ2
λ(y)

= 1 uniformly in y. So that:

<e
(
− γ2

λ(y)
1− γ2

λ(y)

)
≥ 1

2
, ∀ y ∈]− 1, 1[, (6.11)

for |λ| large enough. The coerciveness follows by choosing λ such that

<e
(−η γ2

λ(y)
) ≥ 0, ∀ y ∈]− 1, 1[,

which is always possible.
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Appendix

The object of this appendix is to prove the result (5.3) used in the proof of lemma
5.2. Using the same hypotheses and notations as in lemma 5.2, this result has the
following statement:

if
d

dν
Fh(iν) = 0 for ν > 0, then Fh(iν) ≤ 0.

Proof. Taking λ = iν in the expression of Fh used in lemma 5.2, we get :

Fh(iν) = −h
N∑

j=1

γh
j

2Mj

ν2 +M2
j

Suppose
d

dν
Fh(iν) = 0 for a ν > 0; then we have:

N∑

j=1

γh
j

2Mj

(ν2 +M2
j )2

= 0 (6.12)

Using the previous equation, we get:

Fh(iν) = −h
N∑

j=1

γh
j

2Mj(ν2 +M2
j )

(ν2 +M2
j )2

= −h
N∑

j=1

γh
j

2M3
j

(ν2 +M2
j )2

Using γh
j < 0 for j = 0, · · ·N − 1, γh

N > 0 and 0 < M1 < · · · < MN which are
consequences of the concavity and the monotonicity ofM(y) (see the proof of lemma
5.2), we easily obtain from (6.12) the following inequality :

γh
N

2M3
N

(ν2 +M2
N )2

> −
N−1∑

j=1

γh
j

2M3
j

(ν2 +M2
j )2

which immediately implies Fh(iν) < 0.
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