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High-frequency diffraction
of a plane electromagnetic wave

by an elongated spheroid
Ivan V. Andronov, Daniel P. Bouche and Marc Duruflé

Abstract—An asymptotic formula for the problem of diffrac-
tion by a strongly elongated body of revolution is constructed. Its
uniform nature with respect to the parameter that characterizes
the rate of elongation is demonstrated. The results are in good
agreement with numerical simulations.

Index Terms—Electromagnetic diffraction, high frequency
asymptotics, parabolic wave equation, strongly elongated body.

I. INTRODUCTION

THE field in the shadow zone of convex bodies illumi-
nated by electromagnetic waves is generated by creeping

waves, that propagate along geodesics on the surface of these
bodies. The main geometrical parameter governing the propa-
gation constant of these waves is the radius ρ of curvature of
the geodesic. However, other geometrical parameters modify
the propagation constant of creeping waves. Among these pa-
rameters, the curvature of the object transverse to the creeping
ray deserves special attention, because, for electromagnetic
waves with magnetic field parallel to the surface (called
magnetic creeping waves), the transverse curvature decreases
attenuation.

More generally, large transverse curvature or sharp edges
promote the propagation of waves, as exemplified by the
following cases. Senior [1] observed in 1969, while studying
diffraction by disks that a wave propagates with low atten-
uation along the rim of the disk. The Sommerfeld wave [2]
propagates with only logarithmic attenuation along conducting
wires. Finally, a source on a cylinder excites a wave that
propagates along the generatrix of the cylinder, and only
decreases as the inverse of the square root of the distance
[3].

The impact of transverse curvature on the propagation
constant of creeping waves, and more specifically, the case
of creeping wave on elongated bodies, has been analysed in
[4] (see also [5]). It was shown that, if the transverse radius
of curvature is of the same order as the radius of curvature
of the geodesic, the propagation constant decreases linearly
with transverse curvature. If the transverse curvature is of the
order k2/3ρ−1/3, it gives rise to low attenuation modes, whose
propagation constant is expressed as a solution of dispersion
equations in terms of Heun functions.
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However, for an elongated body, such as a (very) prolate
spheroid, illuminated along its axis by an incident wave, the
whole object is not in the deep shadow, but in the light
shadow transition zone. The extension of the analysis of [4]
to this transition zone, aiming to generalize Fock functions
for elongated objects was only partly successful. Namely the
effect was described correctly at the qualitative level, but
agreement with numerical computations was not perfect.

Another approach, in the spirit of the work of Engineer
et al [6], who studied diffraction by 2D slender bodies, was
initiated in [7]. Here we present a more detailed description of
the asymptotic procedure and study the special function which
describes the induced current on the surface of elongated body.
In particular, we show that, for not too elongated bodies, the
formula reduces to Fock asymptotics, while in the opposite
limiting case we get the geometrical optics solution.

In section 2 of the paper, using separation of variables, that
turns out to be possible for an elongated spheroid, we obtain
a solution for the forward going wave. This solution has the
form of an integral of Whittaker functions.

In section 3, we use this solution to compute the current
on the surface. We check the validity of our approach first by
showing that, in the limit of moderately elongated spheroid,
our solution reverts to Fock function, and by comparing, in
section 4, the results with numerical computations.

II. ASYMPTOTIC FORMULA FOR FORWARD GOING WAVE

We deal with large bodies, such that kρ� 1. The assump-
tion that the body is strongly elongated means that

(kρ)2/3 ρt
ρ

= O(1), (1)

where ρt is the radius of transverse curvature. It is worth
noting that it follows from (1) that kρt = (kρ)1/3, that is
the radius of transverse curvature is also large compared to
the wavelength.

We derive the asymptotics of the field of electromagnetic
wave diffraction by a strongly elongated body under the
following two assumptions. First, the body has angular sym-
metry of revolution, and the field is excited by a plane wave
axially incident on the body. Second, the surface can be well
approximated by spheroidal surface and its deviation from that
surface can be accounted for with the next order terms of the
asymptotics. However, we derive only the principal order term
in this paper.
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A. Coordinate system

Let us introduce the spheroid, which has the same radii of
curvature at the light-shadow boundary as the surface of the
elongated body. The semiaxes (small a and large b) of that
spheroid are defined by the formulae

ρ =
b2

a
, ρt = a. (2)

Here ρ is the radius of curvature of the body in the longitudinal
cross-section on the light-shadow boundary and ρt is its radius
of curvature in transverse cross-section.
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Fig. 1. Geometry of the problem.

We introduce elongated spheroidal coordinates (ξ, η, ϕ) [8]

z = pξη, r = p
√
ξ2 − 1

√
1− η2, p =

√
b2 − a2, (3)

where (r, ϕ, z) are cylindrical coordinates with the z axis
coincident with the axis of the spheroid, and z = 0 in the
center of the spheroid (see Fig. 1). Coordinate ξ is called radial
and takes values ξ ≥ 1, coordinate η is angular and varies on
the interval −1 ≤ η ≤ 1. The surface of the spheroid is given
by the formula

ξ = ξ0 ≡
b√

b2 − a2
. (4)

Let us introduce the usual asymptotic parameter

m =

(
kρ

2

)1/3

(5)

and the parameter κ which characterizes the rate of elongation
of the body

κ = 2m2 ρt
ρ
. (6)

We shall derive an asymptotic expansion for the electromag-
netic field in a thin layer near the surface assuming that m� 1
and κ = O(1), which corresponds to the case of a strongly
elongated body. Under these two assumptions in the leading
order by m we get

ξ0 = 1 +
κ

4m2
. (7)

B. Maxwell equations

We introduce vectors E =
√
ε0E and H =

√
µ0H, where

E and H are the usual electric and magnetic vectors. Maxwell
equations for these vectors{

rot E = ikH,
rot H = −ikE (8)

in spheroidal coordinates take the form

∂

∂η

(
hϕEϕ

)
− ∂

∂ϕ

(
hηEη

)
= −ikhηhϕHξ, (9)

∂

∂ϕ

(
hξEξ

)
− ∂

∂ξ

(
hϕEϕ

)
= −ikhϕhξHη, (10)

∂

∂ξ

(
hηEη

)
− ∂

∂η

(
hξEξ

)
= −ikhξhηHϕ, (11)

∂

∂η

(
hϕHϕ

)
− ∂

∂ϕ

(
hηHη

)
= ikhηhϕEξ, (12)

∂

∂ϕ

(
hξHξ

)
− ∂

∂ξ

(
hϕHϕ

)
= ikhϕhξEη, (13)

∂

∂ξ

(
hηHη

)
− ∂

∂η

(
hξHξ

)
= ikhξhηEϕ, (14)

where hξ, hη and hϕ are metric coefficients. For the coordinate
system of elongated spheroid, the metric coefficients are given
by the formulae [8]

hξ = p

√
ξ2 − η2

ξ2 − 1
, hη = p

√
ξ2 − η2

1− η2
,

hϕ = p
√
ξ2 − 1

√
1− η2. (15)

Assuming the field dependence on the angle ϕ in the form
of ei`ϕ and using equations (9), (10), (12) and (13) we express
Eξ, Eη , Hξ and Hη via Eϕ and Hϕ. Substituting these
expressions into equations (11) and (14) yields the system
of differential equations for Eϕ and Hϕ. We exploit now the
symmetry of these two equations, and by setting

Eϕ = P̂ + Q̂, Hϕ = −iP̂ + iQ̂, (16)

reduce this system to two independent equations. However,
these equations are to cumbersome and we de not present
them here.

C. Parabolic equation method

In order to solve these cumbersome equations we use
asymptotic approach. For that we introduce the new radial
(normal) coordinate ν by the formula

ξ = 1 +
ν

4m2
. (17)

Note that on the surface ν = κ.
Further we extract the quick oscillating factor

P̂ = exp(ikpξ0η)P (η, ν), Q̂ = exp(ikpξ0η)Q(η, ν)
(18)

and sort the terms in the equations for P and Q by the powers
of the large parameter m. Representing functions P and Q in
the form of the series

P =
∑
j=0

Pjm
−j , Q =

∑
j=0

Qjm
−j (19)

we get a recurrent system of equations for Pj and Qj . In the
leading order we get

L1−` P0 = 0, L1+` Q0 = 0, (20)
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where

Ln = ν
∂2

∂ν2
+

∂

∂ν
+
i

2

√
κ

2

(
1− η2

) ∂
∂η

+
1

8

(
κν − κ2(1− η2)− 2i

√
2κη − 2n2

ν

)
. (21)

Equations (20) are of Schrödinger type, but in Diffraction
Theory analogous equations are traditionally called parabolic
[10].

D. Separation of variables

Equations (20) allow variables separation. Substituting
V (ν, η) = Φ(ν)Ψ(η) into the equation LnV = 0 and dividing
it by V , we get

ν
Φ̈

Φ
+

Φ̇

Φ
+
α2ν

4
− n2

4ν
=

= −α
2

(1− η2)
Ψ̇

Ψ
+
α4

2
(1− η2) +

iα

2
η, (22)

where dot denotes derivative of a function by its argument and
α =

√
κ/2. The left-hand side of (22) depends only on ν and

the right-hand side depends only on η. Thus they are equal to
a constant which we denote as iαµ. The differential equation
for function Φ(ν) reduces to Whittaker equation [9]

d2F

dx2
+

(
−1

4
+
µ

x
+

1− n2

4x2

)
F = 0. (23)

Denoting its solution as Fµ, n/2(x) we get

Φ(ν) =
1√
ν
Fµ, n/2 (−iαν) . (24)

The differential equation for the function Ψ(η) can be solved
in elementary functions

Ψ(η) =
exp(−iα3η)√

1− η2

(
1− η
1 + η

)µ
. (25)

A particular solution of equation LnUn = 0 can be written as
a superposition of elementary solutions Φ(ν)Ψ(η) in the form
of an integral with µ being the variable of integration

Un = Un(Ω, F )

=
exp(−iα3η)
√
ν
√

1− η2

∫
Ω(µ)

(
1− η
1 + η

)µ
Fµ, n/2(−iαν)dµ, (26)

where Ω is an arbitrary function. We do not fix the path of
integration in (26), it will be chosen later.

Then
P0 = U1−`, Q0 = U1+`. (27)

The electromagnetic field has the form of the sum of the
incident plane wave and some wave reflected from the surface.
This reflected wave is subject to the radiation condition. So,
when writing the representation (26) for the reflected wave
one needs to choose such a solution of Whittaker’s equation
which has its asymptotics in the form of an outgoing wave.
Such a solution is the Whittaker function Wµ, n/2(x), having
the asymptotics

Wµ, n/2(x) ∼ xµe−x/2, |x| → +∞. (28)

The incident wave can be prolongated inside the spheroid
and is finite on the axis, that is at ν = 0. So, when
using the representation (26) for the incident wave we should
choose another solution of Whittaker’s equation, the Whittaker
function Mµ, n/2(x), which is regular at zero.

E. Representation of the incident wave

Consider the plane incident wave

E(inc) = E0e
ikzey, H(inc) = −E0e

ikzex, (29)

where E0 is the amplitude, ex are ey are the unit vectors
in Cartesian coordinate system. In the spheroidal coordinate
system this wave has the components (same as in cylindrical)

E(inc)
ϕ = E0e

ikpξη cosϕ, H(inc)
ϕ = E0e

ikpξη sinϕ.
(30)

Then for the functions P , Q we get

P
(inc)
0 =

E0

2
eiϕ exp

(
i

2

√
κ

2
(ν − κ)η

)
,

Q
(inc)
0 =

E0

2
e−iϕ exp

(
i

2

√
κ

2
(ν − κ)η

)
. (31)

On the other hand, functions P (inc) and Q(inc) can be
represented in the form of the solutions (26), where, as noted
above, one should set Fµ, n/2(−iαν) = Mµ, n/2(−iαν)

P
(inc)
0 = eiϕU0(Ω(inc),M), Q

(inc)
0 = e−iϕU0(Ω(inc),M),

(32)
where Ω(µ)(inc) is to be determined. To find Ω(µ)(inc) it is
sufficient to equate the representations (31) and (32) at a fixed
value of coordinate ν. We do that at ν = κ, that is on the
surface of the spheroid. Then we get the following integral
equation

exp(−iα3η)
√
κ
√

1− η2

∫
Ω(inc)(µ)

(
1− η
1 + η

)µ
Mµ, 0(−iακ)dµ =

E0

2
.

(33)
To simplify this expression, we introduce the new variable

t by setting

η =
t− 1

t+ 1
. (34)

When η varies from η = −1 to η = 1, the variable t takes
values from zero to infinity. Equation (33) takes the form∫

t−µf(µ)dµ = f̂(t), (35)

where

f(µ) = Mµ, 0(−iακ)Ω(inc)(µ), (36)

f̂(t) = E0

√
κ

√
t

t+ 1
exp

(
iα3 t− 1

t+ 1

)
. (37)

Noting that, if we choose the path of integration along the
imaginary axis, the left-hand side of this equation takes the
form of inverse Mellin transform [11]. The solution is obtained
by direct Mellin transform

f(µ) =
1

2πi

+∞∫
0

f̂(t)tµ−1dt. (38)
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Changing the integration variable in this integral to −η, we
note that up to a multiplier this integral coincides with the
integral representation of Whittaker function Mµ, 0(−iακ)
(see [9]). Thus, we finally get

Ω(inc) = E0
e−iπ/4

2π

1√
α

Γ

(
1

2
− µ

)
Γ

(
1

2
+ µ

)
. (39)

We shall search the total field of diffraction in the following
form with unknown functions ω0 and ω1

Eϕ(η, ν) = E0 exp (ikpη)
e−iπ/4

π

cosϕ
√
αν
√

1− η2
×

×
+i∞∫
−i∞

Γ

(
1

2
− µ

)
Γ

(
1

2
+ µ

)(
1− η
1 + η

)µ (
Mµ,0(−iαν)

− ω0(µ)Wµ,0(−iαν) + ω1(µ)Wµ,1(−iαν)
)
dµ, (40)

Hϕ(η, ν) = E0 exp (ikpη)
e−iπ/4

π

sinϕ
√
αν
√

1− η2
×

×
+i∞∫
−i∞

Γ

(
1

2
− µ

)
Γ

(
1

2
+ µ

)(
1− η
1 + η

)µ (
Mµ,0(−iαν)

− ω0(µ)Wµ,0(−iαν)− ω1(µ)Wµ,1(−iαν)
)
dµ. (41)

The terms containing Whittaker functions M correspond to
the incident wave. For the representation of the reflected field
we have chosen the same path of integration, so that we can
apply the boundary conditions to the subintegral expressions,
which will define functions ω0 and ω1.

F. Boundary conditions

On the surface of the spheroid stretched radial coordinate
ν is equal to the parameter κ. The boundary conditions on
the surface of a perfectly conducting spheroid have the form
Eη(η, κ) = 0 and

Eϕ(η, κ) = 0. (42)

With the help of the formula expressing Eη via Eϕ and Hϕ

and accounting for (42), the first condition yields

2κ
∂Hϕ(η, κ)

∂ν
+Hϕ(η, κ) = 0. (43)

Substituting representations (40) and (41) into the conditions
(42) and (43), we get the system of algebraic equations for
the amplitude functions ω0 and ω1{

ω0Wµ,0(−iακ)− ω1Wµ,1(−iακ) = Mµ,0(−iακ),

ω0Ẇµ,0(−iακ) + ω1Ẇµ,1(−iακ) = Ṁµ,0(−iακ).
(44)

Here and below, dot denotes the derivative of a function with
respect to the argument. Solving this system, we find

ω0 =
Mµ,0(−iχ)Ẇµ,1(−iχ) + Ṁµ,0(−iχ)Wµ,1(−iχ)

Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)
,

(45)

ω1 =
Γ−1(1/2− µ)

Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)
.

(46)

In the last formula we introduced χ = ακ and have taken
into account the expression for the Wronskian of Whittaker
functions, which can be easily derived by using the formulae
13.1.22 and 13.1.32 from [9],

Ṁµ,0Wµ,0 −Mµ,0Ẇµ,0 = Γ−1 (1/2− µ) . (47)

III. THE ELECTRIC CURRENT ON THE SURFACE

A. Special function

The induced current J is given by the vector product
of the unit vector of the normal to the surface and the
magnetic field H on the surface. The longitudinal component
of magnetic vector is asymptotically small (electromagnetic
field is transversal in the leading order). Therefore the main
component of the current is its longitudinal component which
we denote as J . It coincides with Hϕ on the surface. Substi-
tuting expressions (45) and (46) into representation (41) and
setting ν = κ, we can find the current on the surface. We
represent it by introducing a special function

A(η;χ) =
2e−iπ/4

π

e−iχη/2

√
χ
√

1− η2

+i∞∫
−i∞

(
1− η
1 + η

)µ
×

× Γ(1/2 + µ) Wµ,1(−iχ)

Wµ,0(−iχ)Ẇµ,1(−iχ) + Ẇµ,0(−iχ)Wµ,1(−iχ)
dµ (48)

of two variables η and χ. The current of the forward going
wave is given in the leading order approximation by m � 1
by the formula

J = E0e
ikz sin(ϕ)A

(
z
√
ρρt

; kρt

√
ρt
ρ

)
. (49)

Here we expressed

η =
z

b
, and χ =

ka2

b
(50)

via the initial parameters of the problem.
To compute the Whittaker function involved in the definition

(48) of the special function A, we can use the program
developed in [12]. For that, we introduce new variable of
integration t = iµ and use the relation [12]

W−it, λ+ 1
2
(−iχ) = exp

(
i
π

2
λ− π

2
t
)
×

×

√
Γ(1 + λ− it)
Γ(1 + λ+ it)

H+
λ

(
t,
χ

2

)
(51)

which expresses Whittaker function via Coulomb wave func-
tion H+

λ . After applying the symmetry formula for Gamma
function we get

A(η, χ) =
4√
π

e−iχη/2

√
χ
√

1− η2

+∞∫
−∞

(
1 + η

1− η

)it
Ω(t) dt, (52)
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where

Ω(t) =
eπt/2√
cosh(πt)

×

×

(
Ḣ+
−1/2 (t, χ/2) +

Ḣ+
1/2 (t, χ/2)

H+
1/2 (t, χ/2)

H+
−1/2 (t, χ/2)

)−1

.

(53)

B. Asymptotics of special function A for large χ

When χ increases, formula (49) should turn into the usual
Fock asymptotics

J = eiksg(σ), (54)

where s is the arc-length measured from the light-shadow
boundary, g(σ) is the Fock function [13]

g(σ) =
1√
π

∫
eiσζ

1

ẇ1(ζ)
dζ, and σ = m

s

ρ
. (55)

Here ẇ1(ζ) is the derivative of the Airy function w1(ζ) in
V.A.Fock notations (see formula (62) below).

To prove this, we first express z in terms of the arc-length s
by the well-known formula valid in Fock’s domain where the
radius ρ can be approximated by its constant value at light-
shadow boundary. We have

z = s− s3

6ρ2
+ . . . (56)

This allows us to express the first argument of the special
function A in the two leading orders by χ as

η ≈
(

2

χ

)1/3

σ − σ3

3k
√
ρρt

. (57)

Then, for small η we use the decomposition

log

(
1 + η

1− η

)
∼ 2η +

2

3
η3 ∼ 2σ

(
2

χ

)1/3

+
4

3

σ3

χ
− 2

3

σ3

k
√
ρρt

.

(58)
Now, we consider the asymptotics of the Coulomb wave

functions H+
` (t, χ/2) for t � 1, 2t ∼ χ/2 (see [9], formula

14.6.12). We have

H+
` (t, χ/2) = G`(t, χ/2) + iF`(t, χ/2)

∼
√
π

{
t`

1 + `(`+ 1)t−2
`

}1/6 (
Bi(ξ) + iAi(ξ)

)
, (59)

where Ai and Bi are Airy functions and

t` = t+
√
t2 + `(`+ 1), ξ = (t`− t)

(
1

t`
+
`(`+ 1)

t3`

)1/3

.

(60)
For small values of `, formulae (60) simplify to

t` ≈ 2t, ξ ≈
(

2t− χ

2

)( 2

χ

)1/3

. (61)

We also use relations for Airy functions, in particular

√
πAi(x) = v(x), v

(
xe2πi/3

)
=

1

2
e−πi/6w1(x), (62)

and get
H+
` (t, χ/2) ∼ −(2t)1/6w1(ξ). (63)

The asymptotics (63) allows us to find the asymptotics of
the density in the integral representation of the special function
A. We find

Ω(t) ∼ 1√
2

(χ
2

)1/6 1

ẇ1(ξ)
. (64)

Finally we change the variable of integration from t to ξ and,
after simple derivations, we obtain the desired asymptotics

A(η, χ) ∼ 1√
π
eiσ

3/3

∫
eiξσ

dξ

ẇ1(ξ)
, (65)

that is

A(η, χ) ∼ exp

(
i
χη3

6

)
g(σ), χ→ +∞. (66)

This shows that the asymptotic formula (49) indeed transforms
to the usual Fock asymptotics.

C. Asymptotics for the special function A(η, χ) for small χ
In this section we derive the asymptotics for the special

function A(η, χ) for small values of χ. The expression (48) for
the function A(η, χ) in terms of Whittaker functions appears
more suitable for that purpose. We shall need a representation
of Whittaker functions of small argument. To find it, we use
formulae 13.1.33 and 13.1.6 of [9] and get

Wµ,0(z) = − z1/2

Γ(1/2− µ)

[
log(z) + Ψ

(
1

2
− µ

)
+ 2γ

]
+. . . ,

(67)

Wµ,1(z) =
−z3/2

2Γ(−1/2− µ)

[
log(z) + Ψ

(
3

2
− µ

)
+2γ − 3

2

]
+

1

Γ(3/2− µ)
z−1/2 + . . . (68)

Here Ψ is psi-function, γ is the Euler constant and dots denote
terms wanishing at z = 0. Substituting these approximations
into (48), we get in the leading order by χ→ 0 the following
expression

A(η, χ) ∼ 2i

π
√

1− η2

+i∞∫
−i∞

Γ

(
1

2
+ µ

)
Γ

(
1

2
− µ

)
×

×
(

1− η
1 + η

)µ
dµ. (69)

Now we use the symmetry property of Gamma function and
change the variable of integration to t = −iµ. This gives

A(η, χ) =
−2√
1− η2

+∞∫
−∞

(
1− η
1 + η

)it
dt

cosh(πt)
. (70)

Finally, we change the integration variable to τ = πt and
rewrite the integral as the integral along the positive semi-
axis. This results in the following asymptotics of the special
function A(η, χ) for small χ:

A(η, χ) ∼ − 4

π

1√
1− η2

+∞∫
0

cos(θτ)

cosh(τ)
dτ, (71)
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where
θ =

1

π
log

(
1− η
1 + η

)
. (72)

The integral in (71) can be found explicitly
+∞∫
0

cos(θτ)

cosh(τ)
dτ =

π

2
sech

(
πθ

2

)
, (73)

which, due to η = − tanh (πθ/2), allows to rewrite the
asymptotics (71) as

A(η, χ) ∼
χ→0
−2. (74)

That means that we get the current of geometrical optics,
which is the physically expected result for extremely elongated
body. In this case, the whole surface of the body is very
close to the illuminated domain, and geometrical optics is
the expected limit. This result may also have some relation
to Sommerfeld wave, in the limit of perfectly conducting
cylinder.

IV. NUMERICAL RESULTS

A. Conversion of the integrals

Numerical analysis shows that function Ω(t) rapidly de-
creases when t→ ±∞. Figure 2 presents the absolute values
of Ω(t) for different values of the parameter χ. It can be seen
from Fig. 2, that only a finite interval of t gives the main
contribution to the integral. The lower boundary of this interval
does not depend on χ and can be taken equal to −5 to achieve
sufficiently high accuracy. The upper bound increases with χ
and we take it equal to χ/2 + 5.

0.0

0.5

1.0

|Ω|

0 2.5 5 7.5 t

Fig. 2. Absolute values of |Ω(t)| for χ = 1 (solid line), 5 (doted), 10
(dashed), 20 (dash-doted) and 40 (long dashes).

B. Reference solutions

Reference solutions have been computed by considering
Maxwell’s equations in axisymmetric domains. The compu-
tational domain is made of quadrilaterals, and a finite element
method is used to compute the electric field E, and magnetic

field H . These fields can be decomposed in their Fourier
series:

E =

∞∑
m=−∞

 Er
Eϕ
Ez

 e−imϕ, H =

∞∑
m=−∞

 Hr

Hϕ

Hz

 e−imϕ

(75)
Maxwell’s equations then have the form

−iωεrEr + imHz +
∂(rHϕ)

∂z
= 0

−iωεrEϕ + r(
∂Hz

∂r
− ∂Hr

∂z
) = 0

−iωεrEz − imHr −
∂(rHϕ)

∂r
= 0

(76)



−iωµrHr − imEz −
∂(rEϕ)

∂z
= 0

−iωµrHϕ − r(
∂Ez
∂r
− ∂Er

∂z
) = 0

−iωµrHz + imEr +
∂(rEϕ)

∂r
= 0

(77)

We introduce the following notations

rotu =

 ∂u

∂z

−∂u
∂r

 , rot(v) =
∂vz
∂r
− ∂vr

∂z
, ṽ =

(
vz

−vr

)
.

(78)
By denoting the new unknowns :

E =

(
Er
Ez

)
, H =

(
Hr

Hz

)
, Ẽϕ = iEϕ, H̃ϕ = iHϕ, (79)

the following system of equations is obtained

−ω2εrE +mH̃− rot(rH̃ϕ) = 0

−ω2εrẼϕ + rrot(H) = 0

µrH +mẼ− rot(rẼϕ) = 0

µrH̃ϕ + rrot(E) = 0

(80)

The advantage of such a system is that the imaginary part in
the variational formulation appears only from either absorbing
media, absorbing boundary condition or PML layers. The
variational formulation without boundary terms reads : for any
functions θ, ψ, φ and λ

∫
Ω

(
−ω2εrE · θ +mθ ×H− rH̃ϕrot(θ)

)
dx = 0∫

Ω

(
−ω2εrẼϕ · ψ + H · rot(rψ)

)
dx = 0∫

Ω

(−µrH · φ+mE× φ+ φ · rot(rθEϕ)) dx = 0∫
Ω

(
−µrH̃ϕλ− rλrot(E)

)
dx = 0

(81)
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This variational formulation is symmetric. We consider the
following polynomial space :

Qm,n =


m∑
i=0

n∑
j=0

ai,j x̂
iŷj , ai,j ∈ C

 (82)

If we denote by F the mapping from unit square K̂ = [0, 1]2

to a quadrilateral K, the associated finite element spaces are
equal to :

E∈VE={E∈H(curl,Ω), DF ∗E ◦F |K ∈Qr−1,r×Qr,r−1},
(83)

Ẽϕ ∈ VEϕ
= {u ∈ H1(Ω), u ◦ F |K ∈ Qr,r}, (84)

H ∈ VH = {H ∈ L2(Ω), DF ∗H◦F |K ∈ Qr,r×Qr,r}, (85)

H̃ϕ ∈ VHϕ
= {u ∈ L2(Ω), u ◦ F |K ∈ Qr−1,r−1}. (86)

We remark that unknown E is discretized with elements of
Nedelec’s first family [14] whereas Ẽϕ is discretized with
usual continuous finite elements [15]. The unknowns H and
H̃ϕ are local, therefore eliminated through static condensa-
tion (by computing the Schur complement associated with
unknowns E and Ẽϕ). The resulting linear system is solved
by a direct solver. The mesh (see Fig. 3) consists only of
quadrilaterals, with curved quadrilaterals in order to fit the
geometry. A local refinement is performed near the tip of

Fig. 3. Typical mesh used for the experiments.

the ellipse, when a is small. The computational domain is
surrounded by PML layers (not displayed in the graph). The
typical order of approximation r is equal to r = 8 so that the
reference solution is quite accurate. Since the incident plane
wave is axial (the wave vector is oriented in z-axis), only two
modes are involved (m = −1, and m = +1).

C. Comparison with test results

We consider four spheroids at two frequencies. The param-
eters are presented in Table I. The problems for spheroid no. 1
at frequency of 1 GHz is equivalent to the problem for spheroid
no. 2 at frequency of 2 GHz.

TABLE I
TEST PROBLEMS PARAMETERS.

no. f (GHz) a (m) b (m) χ kb
1 1 1.0 2.5 8.38338 52.39613
1 2 1.0 2.5 16.76676 104.79225
2 1 0.5 1.25 4.19169 26.19806
2 2 0.5 1.25 8.38338 52.39613
3 1 0.5 1.76776695 2.96397 37.04966
3 2 0.5 1.76776695 5.92795 74.09931
4 1 0.3125 1.39754249 1.46452 29.29032
4 2 0.3125 1.39754249 2.92903 58.58065

-1 -0.5 0 0.5 η
0

1

2

|J |

-1 -0.5 0 0.5 η
0

1

2

|J |

Fig. 4. Absolute values of test current and current of forward going wave
at frequencies of 1 GHz (upper) and 2 GHz (lower) on spheroid no. 1.

Absolute values of the current are presented on Figs. 4–7.
We accept the amplitude of the incident plane wave E0 = 1.
Numerical results are given by solid curves, results computed
by asymptotic formula are given by dashed curves. The doted
curves present Fock asymptotics (54) which does not take into
account the elongation of the body. We see good coincidence
of our asymptotic formula with numerical results, while the
standard Fock asymptotics gives much underestimated approx-
imation. The curves computed with the use of the asymptotics
(52) give a kind of mean value of oscillating curves computed
numerically. These oscillations are due to the interference of
forward and backward going wave and can be reproduced
when taking into account not only the forward going wave,
but backward going wave as well.

We conclude that the asymptotic formula (52) describes
the absolute values of the currents on the surface of the
perfectly conducting spheroids pretty well. To compare the
phases, we present on Figs. 8–11 phase differences δΨ =
arg(J)− arg(Jnum) between the values of the current found
asymptotically (J) and numerically (Jnum). These figures
also show good agreement between asymptotic and numerical
results.

The difference of asymptotic and numerical results, in fact,
is the result of two factors. First, we used only the principal
order term of the asymptotic formula. The correction due to
next order terms should decrease with frequency. This can be
seen from the comparison of the errors for the frequency of
1GHz (on the left-hand side graphics) and for the frequency



8

-1 -0.5 0 0.5 η
0

1

2

|J |

-1 -0.5 0 0.5 η
0

1

2

|J |

Fig. 5. Absolute values of test current and current of forward going wave
at frequencies of 1 GHz (upper) and 2 GHz (lower) on spheroid no. 2.
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|J |
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Fig. 6. Absolute values of test current and current of forward going wave
at frequencies of 1 GHz (upper) and 2 GHz (lower) on spheroid no. 3.
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Fig. 7. Absolute values of test current and current of forward going wave
at frequencies of 1 GHz (upper) and 2 GHz (lower) on spheroid no. 4.
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Fig. 8. Phase errors for spheroid no. 1 at frequencies of 1 GHz (upper) and
2 GHz (lower).
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Fig. 9. Phase errors for spheroid no. 2 at frequencies of 1 GHz (upper) and
2 GHz (lower).
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Fig. 10. Phase errors for spheroid no. 3 at frequencies of 1 GHz (upper)
and 2 GHz (lower).

of 2 GHz (right-hand side graphics). The second part is due
to the fact that the total electromagnetic field is the sum of
two wave processes. The first of them propagates in forward
direction, the other is formed by reflection of the forward wave
by the shadowed extremity of the spheroid and propagates in
the backward direction. The attenuation of waves decreases
with the increase the parameter χ and, as a result, the backward
going wave contributes more on the more elongated spheroids.

−1 -0.5 0 0.5 η

0◦

5◦

δΨ

−1 -0.5 0 0.5 η

0◦

5◦

δΨ

Fig. 11. Phase errors for spheroid no. 4 at frequencies of 1 GHz (upper)
and 2 GHz (lower).

We see that by comparing results for spheroids from no. 1 to
no. 4.

We see also that the error increases at the shadowed
extremity of spheroids. This is natural, because when deriving
the asymptotic formula, we assumed that the quick oscillating
factor is eikz , which is true only in the middle domain of
spheroids. Further, we have not taken into account the effect
of focusing which takes place at the shadowed extremity of
spheroids.

Some error especially in the phase can be also present in
the numerical results, with which we compare our asymptotic
approximation.

V. CONCLUSION

We have derived an asymptotic formula for the currents on
an elongated spheroid, which shows good coincidence with
numerical results. It improves the usual Fock asymptotics by
taking into account the effect of transverse curvature and
allows to consider diffraction on both not so elongated and
very elongated bodies. In the limit of not elongated body, this
new asymptotics reduces to Fock results. In the opposite limit
of extremely elongated body, we get a wave which does not
attenuate, and obtain the current of geometrical optics.

The domain of applicability of the new asymptotic formula
is restricted to a region in the middle part of the surface. When
the observation point approaches to the shadowed extremity,
the asymptotic formula gives diverging results. Though we
have not derived the next order term of the asymptotic expan-
sion which is 1/m times smaller, we expect that the order of
the singularity at η = 1 will increase at each next order and
due to that the derived approximation looses its asymptotic
character when 1− η = O(1/m).

Analysis of the lower bound of the frequency domain, where
the derived approximation is applicable, requires additional
comparison with numerical results. Note that the minimal
value of asymptotic parameter m for the presented in this
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paper tests is ≈ 3.2, but we expect that the formula can be
used for smaller values of m, too.
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