High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.

M. Duruflé
IMB, Bacchus

14th January 2010
Bibliography and motivation

- **S. Fauqueux**, mixed spectral elements for wave and elastic equations (hexahedra)

- **S. Pernet**, Discontinuous Galerkin methods for Maxwell’s equations (hexahedra)

- **G.E. Karniadakis, S. Sherwin, T. Warburton**, continuous and discontinuous finite elements on tetrahedra/prisms/pyramids by considering “degenerated” cube

- **Bedrosian**, Early work on pyramids, nodal basis functions for order 1 and 2

- **Nigam, Philips**, Recent work on finite element spaces for pyramids, infinite pyramid is the reference element
A test case: an optical filter

On the right, transmission coefficient versus frequency

- Frequency $F = 1.0$ is a resonant frequency of the device
- Enlightenment of the device by a gaussian beam.
- PML around the computational domain.
A test case: an optical filter

On the right, transmission coefficient versus frequency

- Frequency $F = 1.0$ is a resonant frequency of the device.
- Enlightenment of the device by a gaussian beam.
- PML around the computational domain.
A test case: an optical filter

On the right, transmission coefficient versus frequency

- Frequency $F = 1.0$ is a resonant frequency of the device
- Enlightenment of the device by a gaussian beam.
- PML around the computational domain.
Advantage to use high order method

Numerical solution for Q_5 with 10 points by wavelength
Advantage to use high order method

On the right, numerical solution for Q_2 with 10 points by wavelength

Which order is optimal to reach an error less than 10%?

<table>
<thead>
<tr>
<th>Order</th>
<th>Nb dofs</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>453,000</td>
</tr>
<tr>
<td>3</td>
<td>69,800</td>
</tr>
<tr>
<td>4</td>
<td>52,000</td>
</tr>
<tr>
<td>5</td>
<td>33,200</td>
</tr>
<tr>
<td>6</td>
<td>47,700</td>
</tr>
<tr>
<td>7</td>
<td>42,200</td>
</tr>
</tbody>
</table>

M. Duruflé (IMB, Bacchus)
Advantage to use high order method

Norm of the solution on the output, according to the frequency
Advantage to use high order method

Norm of the solution on the output, according to the frequency
Which order is optimal to reach an error less than 10%?

<table>
<thead>
<tr>
<th>Order</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb dofs</td>
<td>453 000</td>
<td>69 800</td>
<td>52 000</td>
<td>33 200</td>
<td>47 700</td>
<td>42 200</td>
</tr>
</tbody>
</table>
Helmholtz equation

\[-\rho \omega^2 u - \text{div}(\mu \nabla u) = f \quad \in \Omega\]
Helmholtz equation

\[-\rho \omega^2 u - \text{div}(\mu \nabla u) = f \in \Omega\]

Use of finite element method leads to the following linear system:

\[(-\omega^2 D_h + K_h) U_h = F_h\]
Helmholtz equation

\[-\rho \omega^2 u - \text{div}(\mu \nabla u) = f \quad \in \Omega\]

Use of finite element method leads to the following linear system:

\[(-\omega^2 D_h + K_h) \mathbf{U}_h = F_h\]

Our aim is to develop an efficient iterative solver for an high order of approximation \(r \). Therefore, we need a fast matrix-vector product

\[(-\omega^2 D_h + K_h) \mathbf{U}_h\]
Elementary matrices

Gauss-Lobatto points for Q_5
on the unit square \hat{K}

Tensorized basis functions:

$$\hat{\phi}_i = \hat{\phi}_{i_1}(\hat{x}) \hat{\phi}_{i_2}(\hat{y})$$
Elementary matrices

The transformation F_i

DF_i, J_i jacobian matrix and determinant
Elementary matrices

$$(D_h)_{i,j} = \int_{\hat{K}} \rho J_i \hat{\phi}_i^{GL} \hat{\phi}_j^{GL} d\hat{x}$$

Use of quadrature formulas (ω^X_m, ξ^X_m) on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate)
Elementary matrices

$$(D_h)_{i,j} = \int_{\hat{K}} \rho J_i \hat{\phi}_i^{GL} \hat{\phi}_j^{GL} d\hat{x}$$

Use of quadrature formulas (ω^X_m, ξ^X_m) on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate)

$$(D_h)_{i,j} = \sum_m \omega^X_m \rho J_i \hat{\phi}_i^{GL}(\xi^X_m) \hat{\phi}_j^{GL}(\xi^X_m) d\hat{x}$$

Matrix-vector product $D_h U$ can be split into three steps:

$$v_m = \sum_j \hat{\phi}_j^{GL}(\xi^X_m) u_j$$

$$w_m = \omega_m \rho J_i(\xi_m) v_m$$

$$y_i = \sum_m \hat{\phi}_i^{GL}(\xi^X_m) w_m$$
Elementary matrices

\[(D_h)_{i,j} = \int_{\hat{K}} \rho J_i \hat{\varphi}_i^{GL} \hat{\varphi}_j^{GL} \, d\hat{x}\]

Use of quadrature formulas \((\omega^X_m, \xi^X_m)\) on the unit square/cube

- \(X\) can be equal to \(GL\) (Gauss-Lobatto quadrature, faster)
- \(X\) can be equal to \(G\) (Gauss quadrature, more accurate)

\[(D_h)_{i,j} = \sum_m \omega^X_m \rho J_i \hat{\varphi}_i^{GL}(\xi^X_m) \hat{\varphi}_j^{GL}(\xi^X_m) \, d\hat{x}\]

Underlying factorization

\[\hat{C}_{i,j} = \hat{\varphi}_i^{GL}(\xi^X_j)\]

\[(A_h)_m = \omega_m \rho J_i(\xi_m)\]

\[D_h = \hat{C} A_h \hat{C}^*\]

\[\Rightarrow\] only storage of \(\omega_m \rho J_i(\xi_m)\)
Elementary matrices

$$(D_h)_{i,j} = \int_{\hat{K}} \rho J_i \hat{\phi}_i^{GL} \hat{\phi}_j^{GL} \, d\hat{x}$$

Use of quadrature formulas (ω^X_m, ξ^X_m) on the unit square/cube

- X can be equal to GL (Gauss-Lobatto quadrature, faster)
- X can be equal to G (Gauss quadrature, more accurate)

Product $Y = \hat{C}U$ is split into three steps:

$$v_{i_1,j_2,j_3} = \sum_{j_1} \hat{\phi}_{j_1}^{GL}(\xi_{i_1}^X) u_{j_1,j_2,j_3}$$

$$w_{i_1,i_2,j_3} = \sum_{j_2} \hat{\phi}_{j_2}^{GL}(\xi_{i_2}^X) v_{i_1,j_2,j_3}$$

$$y_{i_1,i_2,i_3} = \sum_{j_3} \hat{\phi}_{j_3}^{GL}(\xi_{i_3}^X) w_{i_1,i_2,j_3}$$
Fast matrix vector product with any points

\[(K_h)_{i,j} = \int_{\hat{K}} J_i \, DF_i^{-1} \mu DF_i^{-1} (\xi_m) \, \hat{\nabla} \hat{\phi}_j^{GL} \cdot \hat{\nabla} \hat{\phi}_i^{GL} \, d\hat{x}\]
Fast matrix vector product with any points

\[(K_h)_{i,j} = \int_{\hat{K}} J_i D F_i^{-1} \mu D F_i^{* -1} (\xi_m) \hat{\nabla} \hat{\varphi}_j^{GL} \cdot \hat{\nabla} \hat{\varphi}_i^{GL} d\hat{x}\]

Matrix-vector product $K_h U$ can be split into three steps

\[
v_m = \sum_j \hat{\nabla} \hat{\varphi}_j^{GL}(\xi_m) u_j
\]

\[
w_m = \omega_m J_i D F_i^{-1} \mu D F_i^{* -1} v_m
\]

\[
y_i = \sum_q \hat{\nabla} \hat{\varphi}_i^{GL}(\xi_m) w_m
\]
Fast matrix vector product with any points

\[(K_h)_{i,j} = \int_{\hat{K}} J_i \, DF_i^{-1} \mu DF_i^{*-1} (\xi_m) \, \hat{\nabla} \hat{\phi}_j^{GL} \cdot \hat{\nabla} \hat{\phi}_i^{GL} \, d\hat{x} \]

Underlying factorization

\[\hat{S}_{i,j} = \hat{\nabla} \hat{\phi}_i^{GL}(\xi_j^X)\]

\[(B_h)_m = \omega_m J_i \, DF_i^{-1} \mu DF_i^{*-1}\]

\[K_h = \hat{S} B_h \hat{S}^*\]

\[\Rightarrow\text{ only storage of } J_i \, DF_i^{-1} \mu DF_i^{*-1}\]
Fast matrix vector product with any points

By using the matrices

\[\hat{C}_{i,j} = \hat{\phi}_i^{GL}(\xi_j^X) \]
\[\hat{S}_{i,j} = \hat{\nabla} \hat{\phi}_i^{GL}(\xi_j^X) \]
\[\hat{R}_{i,j} = \hat{\nabla} \hat{\phi}_i^X(\xi_j^X) \]

we have \(\hat{S} = \hat{R} \hat{C} \)

final matrix: \(\hat{C}(-\omega^2 A_h + \hat{R} B_h \hat{R}^*) \hat{C}^* \)
Fast matrix vector product with any points

\(r \) is the order of approximation
For hexahedral elements (tensorization), complexity in \(O(r^4) \)
For tetrahedral elements (no tensorization), complexity in \(O(r^6) \)

- If we use Gauss-Lobatto points to integrate: \(\hat{C} = I \)
- Same storage for Gauss or GL points
- Matrix-vector product slower with Gauss integration
- Loss of one order for GL points in 3-D
Matrix vector product faster than with tetrahedral?

Comparison between hexahedral and tetrahedral elements, for computational time (left plot) and storage (right plot)
Iterative methods used

Evolution of the residual norm for the scattering of a perfectly conductor disc (Dirichlet condition).

- GMRES, BICGSTAB and QMR for complex unsymmetric matrices
- COCG, BICGCR for complex symmetric matrices
Evolution of the residual norm for the scattering of a dielectric disc ($\rho = 4$).
Iterative methods used

- We choose to use BICGCR (faster) or COCG (less storage)
- Need of preconditioning techniques to have less iterations
Preconditioning used

- Incomplete factorization with threshold on the damped Helmholtz equation:

 \[-k^2(\alpha + i\beta)u - \Delta u = 0\]

- see Y. Saad, Iterative methods for sparse linear systems
Preconditioning used

- Incomplete factorization with threshold on the damped Helmholtz equation:

\[-k^2(\alpha + i\beta)u - \Delta u = 0\]

- see Y. Saad, *Iterative methods for sparse linear systems*
- We use a Q_1 subdivided mesh to compute matrix

On the left, initial mesh Q_3, on the right, subdivided mesh Q_1
Preconditioning used

- Incomplete factorization with threshold on the damped Helmholtz equation:

\[-k^2(\alpha + i\beta)u - \Delta u = 0\]

- see Y. Saad, Iterative methods for sparse linear systems

- Multigrid method on the damped Helmholtz equation

- see Y. A. Erlangga and al, (Phd at Delft)
Preconditioning used

- Incomplete factorization with threshold on the damped Helmholtz equation:

\[-k^2(\alpha + i\beta)u - \Delta u = 0\]

- see Y. Saad, Iterative methods for sparse linear systems

- Multigrid method on the damped Helmholtz equation
 - see Y. A. Erlangga and al, (Phd at Delft)

- Without damping, both preconditioners do not lead to convergence.

- A good choice of parameter is \(\alpha = 1, \beta = 0.5\)
Scattering by a cobra cavity

- Cobra cavity of length 20, and depth 4
- First order absorbing boundary condition on the yellow face
Scattering by a cobra cavity

Number of dofs to reach less than 5 % L^2 error

<table>
<thead>
<tr>
<th>Order</th>
<th>struct Q_4</th>
<th>struct Q_6</th>
<th>struct Q_8</th>
<th>n.s. Q_4</th>
<th>n.s. Q_6</th>
<th>n.s. P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nb dofs</td>
<td>330,000</td>
<td>185,000</td>
<td>95,600</td>
<td>567,000</td>
<td>466,000</td>
<td>360,000</td>
</tr>
</tbody>
</table>
Finite element analysis

<table>
<thead>
<tr>
<th></th>
<th>Structured Q_8</th>
<th>Non-structured Q_6</th>
<th>Non-structured P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preconditioning</td>
<td>9,860 s</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>ILUT(0.01)</td>
<td>1,021 s</td>
<td>13,766 s</td>
<td>8,036 s</td>
</tr>
<tr>
<td>Two-grid</td>
<td>1,082 s</td>
<td>6,821 s</td>
<td>14,016 s</td>
</tr>
</tbody>
</table>

Scattering by a cobra cavity

M. Duruflé (IMB, Bacchus)
Scattering by a cobra cavity

Finite Element Methods

<table>
<thead>
<tr>
<th>Finite element</th>
<th>structured Q_8</th>
<th>non-structured Q_6</th>
<th>non-structured P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preconditioning</td>
<td>9 860 s</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>ILUT(0.01)</td>
<td>1 021 s</td>
<td>13 766 s</td>
<td>8 036 s</td>
</tr>
<tr>
<td>Two-grid</td>
<td>1 082 s</td>
<td>6 821 s</td>
<td>14 016 s</td>
</tr>
</tbody>
</table>

Memory Requirements

<table>
<thead>
<tr>
<th>Finite element</th>
<th>structured Q_8</th>
<th>non-structured Q_6</th>
<th>non-structured P_4</th>
</tr>
</thead>
<tbody>
<tr>
<td>No preconditioning</td>
<td>32 Mo</td>
<td>162 Mo</td>
<td>251 Mo</td>
</tr>
<tr>
<td>ILUT(0.01)</td>
<td>150 Mo</td>
<td>1 250 Mo</td>
<td>1 400 Mo</td>
</tr>
<tr>
<td>Two-grid</td>
<td>60 Mo</td>
<td>283 Mo</td>
<td>710 Mo</td>
</tr>
</tbody>
</table>
Scattering by a plane

- Real part of the diffracted for an oblique incident plane wave
- Q4, 7.2 million of dofs (2 Go memory)
- 280 iterations and 2 hours with multigrid preconditioning
- More than 20 000 iterations without preconditioning
Displacement components u_x and u_z

Q7, 4.3 million of dofs (with PML layers)

170 iterations and 50mn with multigrid preconditioning

More than 20 000 iterations without preconditioning
Why do we choose Q_r for hexahedra?

- P_r optimal finite element space for tetrahedra
- Is Q_r the right choice for hexahedra? Why not choosing P_r (with DG method for instance)?

- If transformation F_i is affine (i.e. paralleloid), P_r is the optimal finite element space
- If transformation F_i is trilinear (general hexahedron), Q_r is the optimal finite element space
Why do we choose Q_r for hexahedra?

- P_r optimal finite element space for tetrahedra
- Is Q_r the right choice for hexahedra? Why not choosing P_r (with DG method for instance)?

If transformation F_i is affine (i.e. paralleloid), P_r is the optimal finite element space.

If transformation F_i is trilinear (general hexahedron), Q_r is the optimal finite element space.
Condition of optimality

We define the finite element space with real element K_i:

$$V_h = \{u \in H^1(\Omega) \text{ such that } u|_{K_i} \in V^r_F\}$$

V^r_F : finite element space for the real element

We define the finite element space with reference element \hat{K}:

$$V_h = \{u \in H^1(\Omega) \text{ such that } u|_{K_i \circ F_i} \in \hat{V}^r\}$$

\hat{V}^r : finite element space for the reference element

Condition of optimality:

$$V^r_F \supset P_r$$

For hexahedra, we can prove:

$$V^r_F \supset P_r \iff \hat{V}^r \supset Q_r$$
Idea of the reason of optimality of Q_r

We consider a monomial of P_r:

$$x^m y^n z^p, \quad m + n + p \leq r$$

and we write its expression on reference element with transformation F_i:

$$x = a_1 + a_2 \hat{x} + a_3 \hat{y} + a_4 \hat{z} + a_5 \hat{x} \hat{z} + a_6 \hat{y} \hat{z} + a_7 \hat{x} \hat{y} + a_8 \hat{x} \hat{y} \hat{z}$$

$$y = b_1 + b_2 \hat{x} + b_3 \hat{y} + b_4 \hat{z} + b_5 \hat{x} \hat{z} + b_6 \hat{y} \hat{z} + b_7 \hat{x} \hat{y} + b_8 \hat{x} \hat{y} \hat{z}$$

$$z = c_1 + c_2 \hat{x} + c_3 \hat{y} + c_4 \hat{z} + c_5 \hat{x} \hat{z} + c_6 \hat{y} \hat{z} + c_7 \hat{x} \hat{y} + c_8 \hat{x} \hat{y} \hat{z}$$

By expanding $x^m y^n z^p$, the higher-degree term is equal to:

$$a_8^m b_8^n c_8^p \hat{x}^{m+n+p} \hat{y}^{m+n+p} \hat{z}^{m+n+p}$$

Hence we have obtained for $m + n + p = r$ the higher-degree term of Q_r.
Influence of quadrature

Then, thanks to Bramble-Hilbert lemma, it is easy to get:

\[\| u - u_h \|_1 \leq C h^r \| u \|_{r+1} \]

However, in our case, integrals are not evaluated exactly, we have to consider Strang Lemma:

\[\| u - u_h \|_1 \leq C \inf_{v_h \in V_h} \{ \| u - v_h \|_1 + \sup_{w_h \in V_h} \frac{|a(v_h, w_h) - a_h(v_h, w_h)|}{\| w_h \|_1} \} \]

Here we choose \(v_h = \Pi_r u \) with the projector on real space, so that

\[v_h \in P_r \Rightarrow \hat{v}_h \in Q_r \]

\[\nabla v_h \in P_{r-1} \Rightarrow \hat{\nabla} v_h \in Q_{r-1} \]
Thus, we are able to prove that:

\[(D - D_h)(v_h, w_h) = (D - D_h)(v_h - \pi_{r-1} v_h, w_h - \pi_0 w_h)\]

for Gauss rules, since \(J_i \in Q_2\) (so \(J_i \pi_{r-1} v_h w_h \in Q_{2r+1}\))

\[
\iff |(D - D_h)(v_h, w_h)| \leq C h^{r+1} \|v_h\|_r \|w_h\|_1
\]

for Gauss-Lobatto rules

\[(D - D_h)(v_h, w_h) = (D - D_h)(v_h - \pi_{r-3} v_h, w_h - \pi_0 w_h)\]

\[
\iff |(D - D_h)(v_h, w_h)| \leq C h^{r-1} \|v_h\|_{r-2} \|w_h\|_1
\]

Therefore, we have a loss of order for Gauss-Lobatto rules
Quadrature error

For stiffness term, we have:

$$(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_r \nabla v_h, \nabla w_h)$$

for Gauss rules, since $J_i DF_i^{-1} \hat{\nabla} \hat{w} h \in Q_{r+1}$

$$\Leftrightarrow |(K - K_h)(v_h, w_h)| \leq Ch^{r+1} ||v_h||_{r+1} ||w_h||_1$$

for Gauss-Lobatto rules

$$(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_{r-2} \nabla v_h, \nabla w_h)$$

$$\Leftrightarrow |(D - D_h)(v_h, w_h)| \leq Ch^{r-1} ||v_h||_{r-1} ||w_h||_1$$

Therefore, we have a loss of order for Gauss-Lobatto rules.
Quadrature error

Illustration of this effect for a cube meshed with split tetrahedra
Automatic generation of high-quality hexahedral meshes is difficult

“Solution of split tetrahedra” is not interesting

Some mesh tools are able to produce meshes with a high ratio of hexahedra and some remaining pyramids/tets/prisms.

Pyramids elements not as well known as other elements.
Two main approaches

\[\hat{K} \]

\[\hat{S}_1 = (-1, -1, 0) \]

\[\hat{S}_2 = (1, -1, 0) \]

\[\hat{S}_3 = (1, 1, 0) \]

\[\hat{S}_4 = (-1, 1, 0) \]

\[\hat{S}_5 = (0, 0, 1) \]

Simplest expression of \(F_i \) (Bedrosian):

\[F_i(\hat{x}, \hat{y}, \hat{z}) = A + B\hat{x} + C\hat{y} + D\hat{z} + \frac{\hat{x}\hat{y}}{4(1 - \hat{z})}(S_1 + S_3 - S_2 - S_4) \]
Two main approaches

- Use of rational fractions to define F_i
 - Early work of Bedrosian with explicit first and second order basis functions
 - Work of Sherwin, Karniadakis, Warburton: h-p Basis functions obtained by considering a degenerated cube (coincidence with Bedrosian functions for $r = 1$)
 - Recent work of Nigam, Phillips with a reference infinite pyramid (but same basis functions as Bedrosian for $r = 1$)

- Use of piecewise polynomial to define F_i (polynomial on each sub-tetrahedron)
 - Work of Wieners, with first and second order basis functions
 - Work of Knabner and Summ, with an analysis of this transformation
 - Work of Bluck and Walker, with a proposition of high order basis functions
Optimal finite element space

Same approach than for hexahedra: We consider a monomial of P_r:

$$x^m, \quad m \leq r$$

$$\left(a + b\hat{x} + c\hat{y} + d\hat{z} + \alpha \left(\frac{\hat{x}\hat{y}}{1 - \hat{z}}\right)\right)^m$$

$$\sum_k C^k_m (a + b\hat{x} + c\hat{y})^k (d\hat{z})^k \alpha^{m-k} \left(\frac{\hat{x}\hat{y}}{1 - \hat{z}}\right)^{m-k}$$

After some calculations, you can show that the optimal finite element space is

$$\hat{V}^r = P_r \oplus \sum_{k=0}^{r-1} \left(\frac{\hat{x}\hat{y}}{1 - \hat{z}}\right)^{r-k} P_k(\hat{x}, \hat{y})$$
Numerical comparison between different methods

We perform a dispersion analysis on the following hybrid mesh:
Numerical comparison between different methods

-3 -2.5 -2 -1.5 -1 -0.5 0

$\log_{10}(kh/r)$

$\log_{10}(error)$

Optimal $r=2$
Optimal $r=3$
Sherwin $r=2$
Sherwin $r=3$
Nigam $r=2$
Nigam $r=3$
Walker $r=2$

M. Duruflé (IMB, Bacchus)
High-order Finite Element Methods on Hybrid Meshes Including Pyramids. Application to Wave Equation and Helmholtz Equation.
14th January 2010
Numerical comparison between different methods

- We obtained same finite element space as Demkowicz/Zaglmayr
- We obtained a smaller finite element space than Nigam/Phillips
- We proposed modifications of basis functions of Sherwin/Karniadakis/Warburton so that they span the optimal finite element space
- Alternative approach using piecewise polynomial (by splitting pyramid in two or four tets) is not consistent for non-affine pyramids
Then, thanks to Bramble-Hilbert lemma, it is easy to get:

\[\|u - u_h\|_1 \leq C h^r \|u\|_{r+1} \]

However, in our case, integrals are not evaluated exactly, we have to consider Strang Lemma:

\[\|u - u_h\|_1 \leq C \inf_{v_h \in V_h} \left\{ \|u - v_h\|_1 + \sup_{w_h \in V_h} \frac{|a(v_h, w_h) - a_h(v_h, w_h)|}{\|w_h\|_1} \right\} \]

Here we choose \(v_h = \Pi_r u \) with the projector on real space, so that

\[v_h \in P_r \Rightarrow \hat{v}_h \in \hat{V}^r \]

\[\nabla v_h \in P_{r-1} \Rightarrow \hat{\nabla} v_h \in \hat{V}^{r-1} \]
Quadrature error

By expressing integrals on the cube, we are able to prove that:

\[(D - D_h)(v_h, w_h) = (D - D_h)(v_h - \pi_r v_h, w_h - \pi_0 w_h)\]

for Gauss-Jacobi rules (because of \((1 - \hat{z})^2\) weight), since \(J_i \in Q_1\) (so \(J_i \pi_r v_h w_h \in Q_{2r+1}\))

\[\iff |(D - D_h)(v_h, w_h)| \leq Ch^{r+2} \|v_h\|_{r+1} \|w_h\|_1\]

We could use Gauss-Jacobi-Lobatto rules for mass term without loss of accuracy.
For stiffness term, we have:

\[(K - K_h)(v_h, w_h) = (D - D_h)(\nabla v_h - \pi_r \nabla v_h, \nabla w_h)\]

for Gauss rules, since \(J_i D F_i^{*-1} \hat{\nabla} \hat{w}h \in Q_{r+1} \)

\[\iff |(K - K_h)(v_h, w_h)| \leq C h^{r+1} \|v_h\|_{r+1} \|w_h\|_1 \]

we can’t use Gauss-Jacobi-Lobatto rules without loss of an order
Numerical results for Helmholtz equation

Comparison of three kind of meshes:
Numerical results for Helmholtz equation

For the scattering of a sphere:
Numerical results for Helmholtz equation

For order 4 for tets, and order 5 for hex/hybrid, less than 2 % error:

<table>
<thead>
<tr>
<th>Mesh type</th>
<th>Tetra</th>
<th>Hexa</th>
<th>Split Tetra</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>number of dofs</td>
<td>339 000</td>
<td>315 000</td>
<td>520 000</td>
<td>266 000</td>
</tr>
<tr>
<td>multigrid prec.</td>
<td>119 iter (587s)</td>
<td>130 iter (152s)</td>
<td>93 iter (266s)</td>
<td>128 iter (161s)</td>
</tr>
</tbody>
</table>
Numerical results for wave equation

Use of Discontinuous Galerkin formulation for solving wave equation:

\[\frac{\partial^2 u}{\partial t^2} - \Delta u = 0 \]
Efficiency of different kind of meshes for the piano-shaped cavity with a third order approximation on a fine mesh:

<table>
<thead>
<tr>
<th>Mesh type</th>
<th>Tetra</th>
<th>Split Tetra</th>
<th>Hybrid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Obtained accuracy</td>
<td>5.7%</td>
<td>9.4%</td>
<td>6.3%</td>
</tr>
<tr>
<td>Number of dofs</td>
<td>16.9 millions</td>
<td>49.3 millions</td>
<td>14.9 millions</td>
</tr>
<tr>
<td>Time step (freq = 14)</td>
<td>$\Delta t = 0.0004$</td>
<td>$\Delta t = 0.0002$</td>
<td>$\Delta t = 0.0005$</td>
</tr>
<tr>
<td>Computational time</td>
<td>4.3 days</td>
<td>12.3 days</td>
<td>1.2 day</td>
</tr>
</tbody>
</table>

Computational time obtained by summing computational time for each processor without cost of communications.