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Bibliography and motivation

@ Runge-Kutta-Nystrom methods well adapted to solve y” = f(t, y)

@ Proposed methods (by Hairer, Dormand Prince, etc) have been
optimized for non-stiff problems

@ Stability condition (CFL) optimized by Chawla and Sharma for
order 3, 4, 5
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Bibliography and motivation

@ Runge-Kutta-Nystrom methods well adapted to solve y” = f(t, y)

@ Proposed methods (by Hairer, Dormand Prince, etc) have been
optimized for non-stiff problems

@ Stability condition (CFL) optimized by Chawla and Sharma for
order 3, 4, 5

@ Numerical optimization for orders 6, 7, 8 and 10

@ Application to stiff problems (non-linear Maxwell’s equations)
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Runge-Kutta Nystrom schemes

@ One-step schemes that solve y” = f(t, y)
@ y,.1and y, , are computed from y, and y;,.

@ Defined through coefficients ¢;, b;, b; and a; j, that must satisfy
order conditions to obtain a scheme of order p

@ If a Runge-Kutta scheme is known, a Runge-Kutta-Nystrom (RKN)
scheme can be obtained by setting A= A2, b= ATh
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Runge-Kutta Nystrom schemes

Initial conditions : o, ¥4

Kk = f(tn+c,-At, Yo+ Ci Aty + AP Za,-_,k,-)
j
Yot = Yo+ Aty + A bk
j

Vst = Yo+ ALY bk
j
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Second-order scheme (p=2)

Order conditions to satisfy to obtain a second-order scheme:
1 _
zj:bi: 1 Zj:biciz > Zi:b":

A one-stage scheme satisfies these conditions:

A = (0), c:(;), b=(1), B:(é)

N —
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Second-order scheme (p=2)

2 n
At?

yn+1 = }/n T Al‘y',, aF Tko

At At
G = f(tn-l—?, yn+—y’)

y/n-s-1 = y,+ Atk

@ Conservative scheme

@ Stability condition : At < Al (for f linear and replaced by a
2

matrix A)
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Second-order scheme (p=2)

Compared to the usual second-order two-step scheme:

Yn+1 — 2Yn + Yn—1

Atz = f(tn7.yn)

Similar properties:

= Conservative scheme
2

VI1All2

= these two schemes are optimal with respect to this stability condition

= Same stability condition : At <
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Stability condition

Linear case : f(t,y)=Ay
A being the symbol of A (an eigenvalue), we have:

|: Yn+1 :| _ D(Atzz) |: Yn :|
W1 Wn

Let us note R
z=AtPA

D(z) is a 2x2 matrix whose entries are polynomials in z, the
coefficients of the polynomials depend on b;, ¢;, b; and &; ;.
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Stability condition

Matrix D(z) for order 2

1+ 5 erZ—2
D(z) = 2 i
1 143
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Stability condition

Matrix D(z) for order 3

2
1+§+{3022 z+%+/)’123

D(z) = 5 >
- < y 2
4= 145+ 5oz

Coefficients 3; depend on b;, ¢;, b; and 2
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Stability condition

Matrix D(z) for order 4

2 2

1+242 188 245 + 82+ 62
2 24 6
D(z) = 5 > 2
142 4 3322 142+ 2 4 B2
+6+“32 +2+24+L4Z

Coefficients 3; depend on b;, ¢;, b; and &, ;
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Stability condition

Matrix D(z) for order 5

Z 72 2 3

z z

14+ 2+ 4+ B2+ 612 z4+" 4+ =—— + 8,2 z°

D) - +5 + 57 + 5z + By + 5+ 15 + P2 + B3
2 2

2, %2 5.3 zZ,Z 3 4

1+6+120+J4z 1+2+24+/35z + B6Z

= Taylor expansion of cos (v/—z) and sin (v/-2)
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Stability condition

Amplification factor
G(z) = Spectral radius of D(z)
CFL number is defined as the first time when G(z) > 1:
CFL number = min,<o{v/—z such that G(z) > 1}
Stability condition is then given as:

¢ < CFL number
VA2

For p = 2, we have obtained

CFL number = 2
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Numerical computation of the CFL

Amplification factor G(z) versus \/—z for a 6-th order RKN scheme

2.0

1.5¢

1.0

Amplification factor

0.51

Presence of a local maximum
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Numerical computation of the CFL

Trajectory of the two eigenvalues of D(z)

2.0

1.5+

Imaginary part
o
o

-2.0 L L L " "
-1.5 -1.0 -05 0.0 0.5 1.0 1.5

Real part

The local maximum occurs when the two eigenvalues of D(z) are real
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Numerical computation of the CFL

Amplification factor G(z) versus v/—z for a 7-th order RKN scheme
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Numerical computation of the CFL

Amplification factor G(z) versus v/—z for a 7-th order RKN scheme
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Numerical computation of the CFL

Main elements of the algorithm used to compute the CFL:

@ Check that G(—107°) <=1

@ Decrease z by a variable step size Az to capture the intersection
of eigenvalues

@ Compute a local maximum if we find z such that
G(z) > max(G(z — Azk), G(z + Azk_1))

@ The final CFL number is found by bisection method when we have
found zy and z; such that G(zp) < 1 and G(z1) > 1
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Optimization with a minimal number of stages

@ For order 3, 4, 5, 6, 7, 8, we are optimizing the families proposed
in Méthodes de Nystrém pour I'équation différentielle y” = f(x, y),
E. Hairer

@ For order 10, we are optimizing the family proposed in A one-step
method of order 10 for y” = f(x, y), E. Hairer

@ These families achieve the desired order with a minimal number of
stages

@ A large number of values for free parameters are tested, an

optimization (the simplex method by Nelder and Mead) is
performed for the best candidates
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Order 3 (two stages)

2 — 3«
Cy = @, C1:3—6a
a1
2 3
b: 5 b:1_b
° " olcr —a) °
Cq 1
— 5_6 __1__
bo_c1—co’ bi =5 —bo
L1
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Order 3 (two stages)

« is a free parameter

C=a G =
An optimal CFL of 2.498 is obtained for

a—s_\/é
6
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Order 4 (three stages)

Co= c _ ] c =1

0= G =35 -«
b—_i1 by =1-2by, bo=b
0= s —2a2 0, 0

bo = bo(1 — o), by =bi(1—c1), bo=ba(1—c2)

(1 —4a)(1 — 2a)
8(6a(a— 1)+ 1)’

ap =

(1 —2a)(1 — 4a)
2

é270 = 204(1 - 204), 3271 =
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Order 4 (three stages)

« is a free parameter

1
2’
An optimal CFL of 3.939 is obtained for

Ch=a, C= c=1—«a

’
4 (14 cos(3))

o=
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Order 5 (four stages)

« and g are free parameters

=0 ¢c=a c=4,

CFL number vers
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Order 5 (four stages)

« and g are free parameters

12 —-15(a + B) + 20
15— 20(a + B) + 3003

=0 ¢ci=a =8 0o

An optimal CFL of 2.908 is obtained for
4

11— /1610 -39

16502 — 1950 + 50 + /5 (4504 + 9003 — 10502 + 360 — 4)
- 22502 — 2400 + 60

o =

5]
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Order 6 (5 stages)

¢y and ¢, are free parameters
CFL number vs these parameters:
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Order 6 (5 stages)

¢y and ¢, are free parameters

=0, c4=1

L (c +c)+1cc

an _ nn\U 2 1 U102
03:3? 20 112

%* 12(01 +Cz)+éC1CQ

An optimal CFL of 3.089 is obtained for

c1 ~ 0.22918326, ¢, ~ 0.5
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Order 7 (7 stages)

g, a1, o, g are four free parameters

=0, ct=ay, C=a1, C3=az, C=a3

o oS ol of
y+g-%+9-9
Cs = C c ey GCp=

An optimal CFL of 7.0875 is obtained for:
ap = 0.110451398065702, «1 = 0.173816271367107

ap = 0.459433163929695, a3 = 0.652002232653235
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Order 8 (8 stages)

g, a1, o, g are four free parameters

ag
co=0, ¢ 2 G=a, G=oy, CG=0 OC=o03
_ 14,9 _ 95 95 95 98
st 7 6 1t5 24713 _
Co = 1 o Jg (73" af{‘ ag’ Cr =
7T B3T3 o3 T2

An optimal CFL of 7.8525 is obtained for:

oo = 0.135294127286225, o4 = 0.24015308384744

ap = 0.453046953126355, a3 = 0.695039606659698
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Order 10 (11 stages)

There are four free parameters (by, bs, bs, r5) and a permutation. rs

defined as
s—1 i—1
S oY ayc=rs
i=1 j=1
Gauss-Lobatto nodes defined as:

_U [y )TV e
Mm=53 51 o =1-m

_1 1_ iﬁ —1_
’72—2 21 , V3= Y2

\
¢4, Cs, Cs, C7 to choose among these four Gauss-Lobatto nodes (24
permutations possible)
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Order 10 (11 stages)

There are four free parameters (b1, bs, bs, r5) and a permutation.
An optimal CFL of 4.7527 is obtained for

(047 Cs, Co, 07) = (74773’ M, 72) .
rs = 0.0021632268153138

and does not depend on b4, bs, by that can be chosen as:

by =0, by=-01, by=0
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Efficiency of the optimized schemes

s being the number of stages, the efficiency is given as:

- CFL number
Efficiency = s
Efficiency obtained for the different orders:
Order 2 3 4
Efficiency | 100 % | 62.5 % | 65.7 %
Order 5 6 7 8 10
Efficiency | 36.4 % | 30.9 % | 50.6 % | 49.1 % | 21.6 %
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Non-linear Maxwell's equations

(e PE 1 &2 2p
— = <;Pk>+curl(curlE)+26t<\E\ E) =0

18Pk

81‘2 + P, = akE

E(x,y,z,t=0) = %’f

| E(x,y,z=0,t) = Given impulsion

(x,y,z,t=0)=0

€00, C, 7Y, i, wi Physical constants (silica is chosen)
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Simulation parameters

@ 1-D finite elements Q19

@ Domain [0, 1.5 - 10~*] (more than 200 wavelengths) with 250 cells
@ Circular polarization, A\g = 1.053um

@ Optical period Ty =3.5-10"°s

@ Finaltime Tmax =5-10"""s

@ Gaussian impulsion of width 60 - 10~"°s
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Simulation parameters

Solution at t = 10~ '2s

1.01€2 ‘

-1.0 "
0.00016 0.00017 0. 00018 0. 00019 0. 00020 0. 00021 0.00022
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Simulation parameters

Solution at the final time t =5-10"''s

le8

6 " " " " "
0.00000 0.00001 0.00002 0.00003 0.00004 0.00005 0.00006
+1.02e-2
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Numerical results

Computation time needed to reach an error of 1 % :

Order 2 3 4 5 6 7 8 10
Time | 1240s 186s 41s 54s 63s 44s 47s 106s

For orders > 5, the error is below 10~°, the CFL is reached.
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@ Optimization with additional stages

@ Continuous interpolants

Thanks for your attention
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