Optimized High Order Explicit Runge-Kutta-Nyström Schemes

Marc Duruflé ${ }^{1} \quad$ Mamadou N'Diaye ${ }^{1}$

${ }^{1}$ Project Magique-3D
INRIA Bordeaux Sud-Ouest

June 25, 2016

Bibliography and motivation

- Runge-Kutta-Nyström methods well adapted to solve $y^{\prime \prime}=f(t, y)$
- Proposed methods (by Hairer, Dormand Prince, etc) have been optimized for non-stiff problems
- Stability condition (CFL) optimized by Chawla and Sharma for order $3,4,5$
- Numerical optimization for orders 6, 7, 8 and 10
- Application to stiff problems (non-linear Maxwell's equations)

Bibliography and motivation

- Runge-Kutta-Nyström methods well adapted to solve $y^{\prime \prime}=f(t, y)$
- Proposed methods (by Hairer, Dormand Prince, etc) have been optimized for non-stiff problems
- Stability condition (CFL) optimized by Chawla and Sharma for order 3, 4, 5
- Numerical optimization for orders 6, 7, 8 and 10
- Application to stiff problems (non-linear Maxwell's equations)

Runge-Kutta Nyström schemes

- One-step schemes that solve $y^{\prime \prime}=f(t, y)$
- y_{n+1} and y_{n+1}^{\prime} are computed from y_{n} and y_{n}^{\prime}.
- Defined through coefficients $c_{i}, b_{i}, \bar{b}_{i}$ and $\bar{a}_{i, j}$, that must satisfy order conditions to obtain a scheme of order p
- If a Runge-Kutta scheme is known, a Runge-Kutta-Nyström (RKN) scheme can be obtained by setting $\bar{A}=A^{2}, \bar{b}=A^{T} b$

Runge-Kutta Nyström schemes

Initial conditions : y_{0}, y_{0}^{\prime}

$$
\left\{\begin{array}{l}
k_{i}=f\left(t_{n}+c_{i} \Delta t, \quad y_{n}+c_{i} \Delta t y_{n}^{\prime}+\Delta t^{2} \sum_{j} \bar{a}_{i, j} k_{j}\right) \\
y_{n+1}=y_{n}+\Delta t y_{n}^{\prime}+\Delta t^{2} \sum_{j} \bar{b}_{j} k_{j} \\
y_{n+1}^{\prime}=y_{n}^{\prime}+\Delta t \sum_{j} b_{j} k_{j}
\end{array}\right.
$$

Second-order scheme (p=2)

Order conditions to satisfy to obtain a second-order scheme:

$$
\sum_{i} b_{i}=1, \quad \sum_{i} b_{i} c_{i}=\frac{1}{2}, \quad \sum_{i} \bar{b}_{i}=\frac{1}{2}
$$

A one-stage scheme satisfies these conditions:

$$
\bar{A}=(0), \quad c=\left(\frac{1}{2}\right), \quad b=(1), \quad \bar{b}=\left(\frac{1}{2}\right)
$$

Second-order scheme ($\mathrm{p}=2$)

$$
\left\{\begin{array}{l}
k_{0}=f\left(t_{n}+\frac{\Delta t}{2}, y_{n}+\frac{\Delta t}{2} y_{n}^{\prime}\right) \\
y_{n+1}=y_{n}+\Delta t y_{n}^{\prime}+\frac{\Delta t^{2}}{2} k_{0} \\
y_{n+1}^{\prime}=y_{n}^{\prime}+\Delta t k_{0}
\end{array}\right.
$$

- Conservative scheme
- Stability condition : $\Delta t \leq \frac{2}{\sqrt{\|A\|_{2}}}$ (for f linear and replaced by a matrix A)

Second-order scheme ($p=2$)

Compared to the usual second-order two-step scheme:

$$
\frac{y_{n+1}-2 y_{n}+y_{n-1}}{\Delta t^{2}}=f\left(t_{n}, y_{n}\right)
$$

Similar properties:
\Rightarrow Conservative scheme
\Rightarrow Same stability condition : $\Delta t \leq \frac{2}{\sqrt{\|A\|_{2}}}$
\Rightarrow these two schemes are optimal with respect to this stability condition

Stability condition

Linear case : $f(t, y)=A y$
\widehat{A} being the symbol of A (an eigenvalue), we have:

$$
\left[\begin{array}{l}
y_{n+1} \\
w_{n+1}
\end{array}\right]=D\left(\Delta t^{2} \widehat{A}\right)\left[\begin{array}{l}
y_{n} \\
w_{n}
\end{array}\right]
$$

Let us note

$$
z=\Delta t^{2} \widehat{A}
$$

$D(z)$ is a 2×2 matrix whose entries are polynomials in z, the coefficients of the polynomials depend on $b_{i}, c_{i}, \bar{b}_{i}$ and $\bar{a}_{i, j}$.

Stability condition

Matrix $D(z)$ for order 2

$$
D(z)=\left(\begin{array}{cc}
1+\frac{z}{2} & z+\frac{z^{2}}{4} \\
1 & 1+\frac{z}{2}
\end{array}\right)
$$

Stability condition

Matrix $\mathrm{D}(\mathrm{z})$ for order 3

$$
D(z)=\left(\begin{array}{cc}
1+\frac{z}{2}+\beta_{0} z^{2} & z+\frac{z^{2}}{6}+\beta_{1} z^{3} \\
1+\frac{z}{6} & 1+\frac{z}{2}+\beta_{2} z^{2}
\end{array}\right)
$$

Coefficients β_{i} depend on $b_{i}, c_{i}, \bar{b}_{i}$ and $\bar{a}_{i, j}$

Stability condition

Matrix $D(z)$ for order 4

$$
D(z)=\left(\begin{array}{cc}
1+\frac{z}{2}+\frac{z^{2}}{24}+\beta_{0} z^{3} & z+\frac{z^{2}}{6}+\beta_{1} z^{3}+\beta_{2} z^{4} \\
1+\frac{z}{6}+\beta_{3} z^{2} & 1+\frac{z}{2}+\frac{z^{2}}{24}+\beta_{4} z^{3}
\end{array}\right)
$$

Coefficients β_{i} depend on $b_{i}, c_{i}, \bar{b}_{i}$ and $\bar{a}_{i, j}$

Stability condition

Matrix $\mathrm{D}(z)$ for order 5
$D(z)=\left(\begin{array}{cc}1+\frac{z}{2}+\frac{z^{2}}{24}+\beta_{0} z^{3}+\beta_{1} z^{4} & z+\frac{z^{2}}{6}+\frac{z^{3}}{120}+\beta_{2} z^{4}+\beta_{3} z^{5} \\ 1+\frac{z}{6}+\frac{z^{2}}{120}+\beta_{4} z^{3} & 1+\frac{z}{2}+\frac{z^{2}}{24}+\beta_{5} z^{3}+\beta_{6} z^{4}\end{array}\right)$
\Rightarrow Taylor expansion of $\cos (\sqrt{-z})$ and $\sin (\sqrt{-z})$

Stability condition

Amplification factor

$$
G(z)=\text { Spectral radius of } D(z)
$$

CFL number is defined as the first time when $G(z)>1$:

$$
\text { CFL number }=\min _{z \leq 0}\{\sqrt{-z} \text { such that } G(z)>1\}
$$

Stability condition is then given as:

$$
\Delta t \leq \frac{\text { CFL number }}{\sqrt{\|A\|_{2}}}
$$

For $p=2$, we have obtained
CFL number $=2$

Numerical computation of the CFL

Amplification factor $G(z)$ versus $\sqrt{-z}$ for a 6-th order RKN scheme

Presence of a local maximum

Numerical computation of the CFL

Trajectory of the two eigenvalues of $D(z)$

The local maximum occurs when the two eigenvalues of $D(z)$ are real

Numerical computation of the CFL

Amplification factor $G(z)$ versus $\sqrt{-z}$ for a 7-th order RKN scheme

Numerical computation of the CFL

Amplification factor $G(z)$ versus $\sqrt{-z}$ for a 7 -th order RKN scheme

Numerical computation of the CFL

Main elements of the algorithm used to compute the CFL:

- Check that $G\left(-10^{-5}\right)<=1$
- Decrease z by a variable step size Δz_{k} to capture the intersection of eigenvalues
- Compute a local maximum if we find z such that $G(z)>\max \left(G\left(z-\Delta z_{k}\right), G\left(z+\Delta z_{k-1}\right)\right)$
- The final CFL number is found by bisection method when we have found z_{0} and z_{1} such that $G\left(z_{0}\right) \leq 1$ and $G\left(z_{1}\right)>1$

Optimization with a minimal number of stages

- For order $3,4,5,6,7,8$, we are optimizing the families proposed in Méthodes de Nyström pour l'équation différentielle $y^{\prime \prime}=f(x, y)$, E. Hairer
- For order 10 , we are optimizing the family proposed in A one-step method of order 10 for $y^{\prime \prime}=f(x, y)$, E. Hairer
- These families achieve the desired order with a minimal number of stages
- A large number of values for free parameters are tested, an optimization (the simplex method by Nelder and Mead) is performed for the best candidates

Order 3 (two stages)

$$
\begin{aligned}
& c_{0}=\alpha, \quad c_{1}=\frac{2-3 \alpha}{3-6 \alpha} \\
& b_{0}=\frac{\frac{c_{1}}{2}-\frac{1}{3}}{c_{0}\left(c_{1}-c_{0}\right)}, \quad b_{1}=1-b_{0} \\
& \bar{b}_{0}=\frac{\frac{c_{1}}{2}-\frac{1}{6}}{c_{1}-c_{0}}, \quad \bar{b}_{1}=\frac{1}{2}-\bar{b}_{0} \\
& \bar{a}_{1,0}=\frac{1}{6 b_{1}}
\end{aligned}
$$

Order 3 (two stages)

α is a free parameter

$$
c_{0}=\alpha, \quad c_{1}=\frac{2-3 \alpha}{3-6 \alpha}
$$

An optimal CFL of 2.498 is obtained for

$$
\alpha=\frac{3-\sqrt{3}}{6}
$$

Order 4 (three stages)

$$
\begin{aligned}
& c_{0}=\alpha, \quad c_{1}=\frac{1}{2}, \quad c_{2}=1-\alpha \\
& b_{0}=\frac{1}{6(1-2 \alpha)^{2}}, \quad b_{1}=1-2 b_{0}, \quad b_{2}=b_{0} \\
& \bar{b}_{0}=b_{0}\left(1-c_{0}\right), \quad \bar{b}_{1}=b_{1}\left(1-c_{1}\right), \quad \bar{b}_{2}=b_{2}\left(1-c_{2}\right) \\
& \bar{a}_{1,0}=\frac{(1-4 \alpha)(1-2 \alpha)}{8(6 \alpha(\alpha-1)+1)}, \\
& \bar{a}_{2,0}=2 \alpha(1-2 \alpha), \quad \bar{a}_{2,1}=\frac{(1-2 \alpha)(1-4 \alpha)}{2}
\end{aligned}
$$

Order 4 (three stages)

α is a free parameter

$$
c_{0}=\alpha, \quad c_{1}=\frac{1}{2}, \quad c_{2}=1-\alpha
$$

An optimal CFL of 3.939 is obtained for

$$
\alpha=\frac{1}{4\left(1+\cos \left(\frac{\pi}{9}\right)\right)}
$$

Order 5 (four stages)

α and β are free parameters

$$
c_{0}=0, \quad c_{1}=\alpha, \quad c_{3}=\beta, \quad c_{2}=\frac{12-15(\alpha+\beta)+20 \alpha \beta}{15-20(\alpha+\beta)+30 \alpha \beta}
$$

CFL number versus these two parameters:

Order 5 (four stages)

α and β are free parameters

$$
c_{0}=0, \quad c_{1}=\alpha, \quad c_{3}=\beta, \quad c_{2}=\frac{12-15(\alpha+\beta)+20 \alpha \beta}{15-20(\alpha+\beta)+30 \alpha \beta}
$$

An optimal CFL of 2.908 is obtained for

$$
\begin{gathered}
\alpha=\frac{4}{11-\sqrt{16 \sqrt{10}-39}}, \\
\beta=\frac{165 \alpha^{2}-195 \alpha+50+\sqrt{5\left(45 \alpha^{4}+90 \alpha^{3}-105 \alpha^{2}+36 \alpha-4\right)}}{225 \alpha^{2}-240 \alpha+60}
\end{gathered}
$$

Order 6 (5 stages)

c_{1} and c_{2} are free parameters
CFL number vs these parameters:

Order 6 (5 stages)

c_{1} and c_{2} are free parameters

$$
\begin{aligned}
& c_{0}=0, \quad c_{4}=1 \\
& c_{3}=\frac{\frac{1}{30}-\frac{1}{20}\left(c_{1}+c_{2}\right)+\frac{1}{12} c_{1} c_{2}}{\frac{1}{20}-\frac{1}{12}\left(c_{1}+c_{2}\right)+\frac{1}{6} c_{1} c_{2}}
\end{aligned}
$$

An optimal CFL of 3.089 is obtained for

$$
c_{1} \approx 0.22918326, \quad c_{2} \approx 0.5
$$

Order 7 (7 stages)

$\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are four free parameters

$$
\begin{gathered}
c_{0}=0, \quad c_{1}=\alpha_{0}, \quad c_{2}=\alpha_{1}, \quad c_{3}=\alpha_{2}, \quad c_{4}=\alpha_{3} \\
c_{5}=\frac{-\frac{1}{7}+\frac{\sigma_{1}^{c}}{6}-\frac{\sigma_{2}^{c}}{5}+\frac{\sigma_{3}^{c}}{4}-\frac{\sigma_{4}^{c}}{3}}{-\frac{1}{6}+\frac{\sigma_{1}^{c}}{5}-\frac{\sigma_{2}^{c}}{4}+\frac{\sigma_{3}^{c}}{3}-\frac{\sigma_{4}^{c}}{2}}, \quad c_{6}=1
\end{gathered}
$$

An optimal CFL of 7.0875 is obtained for:

$$
\begin{array}{ll}
\alpha_{0}=0.110451398065702, & \alpha_{1}=0.173816271367107 \\
\alpha_{2}=0.459433163929695, & \alpha_{3}=0.652002232653235
\end{array}
$$

Order 8 (8 stages)

$\alpha_{0}, \alpha_{1}, \alpha_{2}, \alpha_{3}$ are four free parameters

$$
\begin{gathered}
c_{0}=0, \quad c_{1}=\frac{\alpha_{0}}{2}, \quad c_{2}=\alpha_{0}, \quad c_{3}=\alpha_{1}, \quad c_{4}=\alpha_{2}, \quad c_{5}=\alpha_{3} \\
c_{6}=\frac{-\frac{1}{8}+\frac{\sigma_{1}^{c}}{7}-\frac{\sigma_{2}^{c}}{6}+\frac{\sigma_{3}^{c}}{5}-\frac{\sigma_{4}^{c}}{4}+\frac{\sigma_{5}^{c}}{3}}{-\frac{1}{7}+\frac{\sigma_{1}^{c}}{6}-\frac{\sigma_{2}^{c}}{5}+\frac{\sigma_{3}^{c}}{4}-\frac{\sigma_{4}^{c}}{3}+\frac{\sigma_{5}^{c}}{2}} \quad c_{7}=1
\end{gathered}
$$

An optimal CFL of 7.8525 is obtained for:

$$
\begin{array}{cc}
\alpha_{0}=0.135294127286225, & \alpha_{1}=0.24015308384744 \\
\alpha_{2}=0.453046953126355, & \alpha_{3}=0.695039606659698
\end{array}
$$

Order 10 (11 stages)

There are four free parameters $\left(b_{1}, b_{3}, b_{4}, r_{5}\right)$ and a permutation. r_{5} defined as

$$
\sum_{i=1}^{s-1} b_{i} c_{i}^{k} \sum_{j=1}^{i-1} \overline{\mathrm{a}}_{i, j} c_{j}^{5}=r_{5}
$$

Gauss-Lobatto nodes defined as:

$$
\begin{cases}\gamma_{1}=\frac{1}{2}\left(1-\sqrt{\frac{7+2 \sqrt{7}}{21}}\right), & \gamma_{4}=1-\gamma_{1} \\ \gamma_{2}=\frac{1}{2}\left(1-\sqrt{\frac{7-2 \sqrt{7}}{21}}\right), & \gamma_{3}=1-\gamma_{2}\end{cases}
$$

$c_{4}, c_{5}, c_{6}, c_{7}$ to choose among these four Gauss-Lobatto nodes (24 permutations possible)

Order 10 (11 stages)

There are four free parameters $\left(b_{1}, b_{3}, b_{4}, r_{5}\right)$ and a permutation. An optimal CFL of 4.7527 is obtained for

$$
\begin{gathered}
\left(c_{4}, c_{5}, c_{6}, c_{7}\right)=\left(\gamma_{4}, \gamma_{3}, \gamma_{1}, \gamma_{2}\right) . \\
r_{5}=0.0021632268153138
\end{gathered}
$$

and does not depend on b_{1}, b_{3}, b_{4} that can be chosen as:

$$
b_{1}=0, \quad b_{3}=-0.1, \quad b_{4}=0
$$

Efficiency of the optimized schemes

s being the number of stages, the efficiency is given as:

$$
\text { Efficiency }=\frac{\text { CFL number }}{2 s}
$$

Efficiency obtained for the different orders:

Order	2	3	4		
Efficiency	100%	62.5%	65.7%		
Order	5	6	7	8	10
Efficiency	36.4%	30.9%	50.6%	49.1%	21.6%

Non-linear Maxwell's equations

$$
\left\{\begin{array}{l}
\frac{\varepsilon_{\infty}}{c^{2}} \frac{\partial^{2} E}{\partial t^{2}}+\frac{1}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(\sum_{k} P_{k}\right)+\operatorname{curl}(\operatorname{curl} E)+\frac{\gamma}{c^{2}} \frac{\partial^{2}}{\partial t^{2}}\left(|E|^{2} E\right)=0 \\
\frac{1}{\omega_{k}^{2}} \frac{\partial^{2} P_{k}}{\partial t^{2}}+P_{k}=\alpha_{k} E \\
E(x, y, z, t=0)=\frac{\partial E}{\partial t}(x, y, z, t=0)=0 \\
E(x, y, z=0, t)=\text { Given impulsion }
\end{array}\right.
$$

$\varepsilon_{\infty}, c, \gamma, \alpha_{k}, \omega_{k}$ physical constants (silica is chosen)

Simulation parameters

- 1-D finite elements \mathbb{Q}_{10}
- Domain $\left[0,1.5 \cdot 10^{-4}\right]$ (more than 200 wavelengths) with 250 cells
- Circular polarization, $\lambda_{0}=1.053 \mu m$
- Optical period $T_{0}=3.5 \cdot 10^{-15} s$
- Final time $T_{\max }=5 \cdot 10^{-11} \mathrm{~s}$
- Gaussian impulsion of width $60 \cdot 10^{-15} s$

Simulation parameters

Solution at $t=10^{-12} s$

Simulation parameters

Solution at the final time $t=5 \cdot 10^{-11} \mathrm{~s}$

Numerical results

Computation time needed to reach an error of 1% :

Order	2	3	4	5	6	7	8	10
Time	1240 s	186 s	41 s	54 s	63 s	44 s	47 s	106 s

For orders ≥ 5, the error is below 10^{-5}, the CFL is reached.

Numerical results

Computation time needed to reach an error of 10^{-4} :

Order	2	3	4	5	6	7	8	10
Time	14164 s	647 s	129 s	54 s	63 s	44 s	47 s	106 s

For orders ≥ 5, the error is below 10^{-5}, the CFL is reached.

Prospects

- Optimization with additional stages
- Continuous interpolants

Thanks for your attention

