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Motivation of Morgane Bergot’s thesis

Automatic generation of high-quality hexahedral meshes is difficult

“Solution of split tetrahedra” is not interesting

Some mesh tools are able to produce meshes with a high ratio of
hexahedra and some remaining pyramids/tets/prisms.

Pyramids elements not as well known as other elements.
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Model equation

−ρω2 u − Div(µ∇u) = f ∈ Ω
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Model equation

−ρω2 u − Div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh
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Model equation

−ρω2 u − Div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh

Our aim is to develop an efficient iterative solver for an high order of
approximation r . Therefore, we need a fast matrix-vector product
(−ω2Dh + Kh) Uh
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−ρω2 u − Div(µ∇u) = f ∈ Ω

Use of finite element method leads to the following linear system :

(−ω2Dh + Kh) Uh = Fh

Our aim is to develop an efficient iterative solver for an high order of
approximation r . Therefore, we need a fast matrix-vector product
(−ω2Dh + Kh) Uh

u scalar⇒ Helmholtz equation
u vectorial⇒ time-harmonic elastodynamics
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Finite element on pyramids
K̂

Ŝ1 = (−1,−1, 0)

Ŝ2 = (1,−1, 0)

Ŝ5 = (0, 0, 1)

Ŝ4 = (−1, 1, 0)

Ŝ3 = (1, 1, 0)

F

ẑ

x̂

ŷ

K

S5

S1

S2

S3

S4

Simplest expression of Fi (Bedrosian) :

Fi(x̂ , ŷ , ẑ) = A + Bx̂ + Cŷ + Dẑ +
x̂ ŷ

4(1− ẑ)
(S1 + S3 − S2 − S4)
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Finite element on pyramids

Use of rational fractions to define Fi

Early work of Bedrosian with explicit first and second order basis
functions
Work of Sherwin, Karniadakis, Warburton : h-p Basis functions
obtained by considering a degenerated cube (coincidence with
Bedrosian functions for r = 1)
Recent work of Nigam, Phillips with a reference infinite pyramid
(same basis functions as Bedrosian for r = 1)

Use of piecewise polynomial to define Fi (polynomial on each
sub-tetrahedron)

Work of Wieners, with first and second order basis functions
Work of Knabner and Summ, with an analysis of this transformation
Work of Bluck and Walker, with a proposition of high order basis
functions
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Condition of optimality

We define the finite element space with real element Ki :

Vh = {u ∈ H1(Ω) such that u|Ki ∈ V r
F}

V r
F : finite element space for the real element

We define the finite element space with reference element K̂ :

Vh = {u ∈ H1(Ω) such that u|Ki ◦ Fi ∈ V̂ r}

V̂ r : finite element space for the reference element
Condition of optimality :

V r
F ⊃ Pr

For hexahedra, we can prove :

V r
F ⊃ Pr ⇔ V̂ r ⊃ Qr
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Optimal finite element space

Same approach than for hexahedra : We consider a monomial of Pr :

xm, m ≤ r

(a + bx̂ + cŷ + dẑ + α(
x̂ ŷ

1− ẑ
))m

∑
k

Ck
m (a + bx̂ + cŷ)k (dẑ)kαm−k (

x̂ ŷ
1− ẑ

)m−k

After some calculations, you can show that the optimal finite element
space is

V̂ r = Pr ⊕
r−1∑
k=0

(
x̂ ŷ

1− ẑ
)r−k Pk (x̂ , ŷ)
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Numerical comparison between different methods

We perform a dispersion analysis on the following hybrid mesh :

Optimal finite element space constructed in Morgane Bergot’s
thesis for edge elements , different from Nigam/Phillips and
Demkowicz/Zaglmayr
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Numerical comparison between different methods
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Numerical comparison between different methods

We obtained same finite element space as Demkowicz/Zaglmayr

We obtained a smaller finite element space than Nigam/Phillips

We proposed modifications of basis functions of
Sherwin/Karniadakis/Warburton so that they span the optimal
finite element space

Alternative approach using piecewise polynomial (by splitting
pyramid in two or four tets) is not consistent for non-affine
pyramids and order greater than 2

Optimal finite element space constructed in Morgane Bergot’s
thesis for edge elements , different from Nigam/Phillips and
Demkowicz/Zaglmayr
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Nodal Basis functions

Orthogonal basis of pyramidal finite element space

ψi,j,k = P0,0
i (

x̂
1− ẑ

)P0,0
j (

ŷ
1− ẑ

)P2 max(i,j)+2,0
k (2ẑ − 1)(1− z)max(i,j)

where Pα,β
i are Jacobi polynomials orthogonal with respect to

(1− x)α(1 + x)β

Mi : interpolation points on the reference pyramid
Vandermonde matrix :

VDMi,j = ψi(Mj)

Nodal basis functions :

ϕi =
∑

j

(VDM−1)i,j ψj
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Nodal Basis functions
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Hierarchical Basis functions

Same basis functions as Sherwin, Karniadakis, Warburton for
hexahedra, prisms, tetrahedra, but different ones for pyramids
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Hierarchical Basis functions

Same basis functions as Sherwin, Karniadakis, Warburton for
hexahedra, prisms, tetrahedra, but different ones for pyramids

Vertex :

N1 =
(1− x̂ − ẑ)(1− ŷ − ẑ)

4 (1− ẑ)

Apex : ẑ
Horizontal edge :

N1
(1 + x̂ − ẑ)

2
(1− ẑ)i−1 P1,1

i−1(
x̂

1− ẑ
)

Vertical edge :

N1 ẑ P1,1
i−1(ẑ +

x̂ + ŷ
2

)

Triangular face :

N1
(1 + x̂ − ẑ)

2
ẑ (1− ẑ)i−1 P1,1

i−1(
x̂

1− ẑ
) P2i+1,1

j−1 (2ẑ − 1)
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Hierarchical Basis functions

(Differences with Sherwin, Karniadakis, Warburton denoted in red)
Base :

N1 N3 (1− ẑ)max(i,j)−1 P1,1
i−1(

x̂
1− ẑ

) P1,1
j−1(

ŷ
1− ẑ

)

Interior :

N1 N3 ẑ (1− ẑ)max(i,j)−1 P1,1
i−1(

x̂
1− ẑ

) P1,1
j−1(

ŷ
1− ẑ

) P2 max(i,j)+2,1
k−1 (2ẑ − 1)
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Fast matrix-vector product

Semi-tensorization of basis functions⇒ fast matrix-vector product

ϕj = ϕj1(x̂)ϕj1
j2

(ŷ)ϕj1,j2
j3

(ẑ)

(Dh)i,j =

∫
K̂
ρJi ϕ̂i ϕ̂j dx̂

Use of quadrature formulas (ωm, ξm) on the reference element

(Dh)i,j =
∑

m

ωm ρJi ϕ̂i(ξm) ϕ̂j(ξm)
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Fast matrix-vector product
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Fast matrix-vector product

(Dh)i,j =

∫
K̂
ρJi ϕ̂i ϕ̂j dx̂

Use of quadrature formulas (ωm, ξm) on the reference element

(Dh)i,j =
∑

m

ωm ρJi ϕ̂i(ξm) ϕ̂j(ξm)

Matrix-vector product DhU can be split into three steps :

vm =
∑

j

ϕ̂j(ξm)uj

wm = ωmρJi(ξm)vm

yi =
∑

m

ϕ̂i(ξm)wm
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Fast matrix-vector product

(Dh)i,j =

∫
K̂
ρJi ϕ̂i ϕ̂j dx̂

Use of quadrature formulas (ωm, ξm) on the reference element

(Dh)i,j =
∑

m

ωm ρJi ϕ̂i(ξm) ϕ̂j(ξm)

Underlying factorization
Ĉ i,j = ϕ̂i(ξj)

(Ah)m = ωmρJi(ξm)

Dh = ĈAhĈ∗

⇒ only storage of ωmρJi(ξm)
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Fast matrix-vector product

(Dh)i,j =

∫
K̂
ρJi ϕ̂i ϕ̂j dx̂

Use of quadrature formulas (ωm, ξm) on the reference element

(Dh)i,j =
∑

m

ωm ρJi ϕ̂i(ξm) ϕ̂j(ξm)

Product Y = ĈU is split into three steps :

vj1,j2,i3 =
∑

j3

ϕ̂j1,j2
j3

(ξi3)uj1,j2,j3

wj1,i2,i3 =
∑

j2

ϕ̂j1
j2

(ξi2)vj1,j2,i3

yi1,i2,i3 =
∑

j1

ϕ̂j1(ξi1)wj1,i2,i3
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Stiffness terms

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂j · ∇̂ϕ̂i dx̂
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Stiffness terms

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂j · ∇̂ϕ̂i dx̂

Matrix-vector product KhU can be split into three steps

vm =
∑

j

∇̂ϕ̂j(ξm)uj

wm = ωmJi DF−1
i µDF ∗−1

i vm

yi =
∑

q

∇̂ϕ̂i(ξm)wm
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Stiffness terms

(Kh)i,j =

∫
K̂

Ji DF−1
i µDF ∗−1

i (ξm) ∇̂ϕ̂j · ∇̂ϕ̂i dx̂

Underlying factorization

Ŝi,j = ∇̂ϕ̂i(ξj)

(Bh)m = ωmJi DF−1
i µDF ∗−1

i

Kh = ŜBhŜ∗

⇒ only storage of Ji DF−1
i µDF ∗−1

i for Helmholtz equation, and only Ji

and DF−1
i for elastodynamics
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Stiffness terms

By using the matrices
Ĉ i,j = ϕ̂i(ξj)

Ŝi,j = ∇̂ϕ̂i(ξj)

R̂ i,j = ∇̂ψ̂i(ξj)

where ψ are basis functions associated with quadrature points, we
have Ŝ = R̂Ĉ
final matrix : Ĉ(−ω2Ah + R̂BhR̂∗)Ĉ∗
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Comparison Nodal/Hp

Computational time for 100 iterations of COCG on a mesh containing
one million dofs. Pyramids, Helmholtz equation

Order r = 2 r = 4 r = 6 r = 8 r = 10
Nodal 327s 499s 1021s 1918s 4345s

Hierarchic 285.6s 183s 183.7s 194s 238s
Stored matrix 26s 55s 113s 234s 359s

0.27 Go 0.78 Go 1.68 Go 3.09 Go 5.13 Go

Hexahedra, Helmholtz equation
Order r = 2 r = 4 r = 6 r = 8 r = 10
Nodal 77s 49s 45s 42s 46s

Hierarchic 99s 64s 62s 77s 68s
Stored matrix 22s 45s 79s 120s 171s

0.27 Go 0.64 Go 1.170 Go 1.85 Go 2.72 Go
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Comparison Nodal/Hp, Elastodynamics

Pyramids, Elastodynamics
Order r = 2 r = 4 r = 6 r = 8 r = 10
Nodal 675s 630s 999s 1 553s 3 418s

Hierarchic 723s 468s 482s 517s 670 s
Stored matrix 205s 498s 1 935s 4 163s 5 351s

2.56 Go 7.36 Go 16.5 Go 30.3 Go 50.8 Go

Hexahedra, Elastodynamics
Order r = 2 r = 4 r = 6 r = 8 r = 10
Nodal 197s 120s 114s 107s 123s

Hierarchic 259s 179s 165s 178s 184s
Stored matrix 216s 410s 814s 3 029s 3 105s

2.52 Go 5.69 Go 11.4 Go 18.3 Go 24.3 Go
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Comparison Nodal/Hp, Condition number
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Preconditioning techniques

p-multigrid iteration on damped equation

−ω2(α + iβ)u − Div(µ∇u) = 0

Jacobi smoother for hexahedral meshes
Gauss-Seidel smoother for hybrid meshes

subdomain-preconditioning (additive Schwarz-like) :

M =
∑

PiA−1
i Pi

where Ai is the finite element matrix on subdomain Ωi with
absorbing boundary conditions
one processor = one domain
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Scattering of an airplane
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Scattering of an airplane

Hybrid mesh used :

M. Duruflé (IMB, Bacchus) Efficient high-order finite elements for Helmholtz equation and time-harmonic elastodynamics on hybrid meshes13th December 2010 18 / 21



Scattering of an airplane
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Statistics for airplane

Without preconditioning :
Mesh Hybrid Split tetrahedra Tetrahedra
Dofs 6.08 millions 13.2 millions 5.39 millions

L2 error 1.05 % 0.89 % 1.14 %
Iterations 13 113 94 500 24 325

Time 24 253s 981 139s 80 274s

Multigrid preconditioning :
Iterations 193 781 268

Time 2 870s 68 354s 9 177s

Subdomain preconditioning (128 domains) :
Iterations 545 579 481

Time 26 121s 39 500s 10 684s
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Two-layer problem
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Two-layer problem
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Statistics of two-layer problem

Without preconditioning :
Hexahedra Hybrid

Dofs 274 625 189 669
Iterations 2808 10 530

Time 2 285s 7 788s

Subdomain preconditioning (32 subdomains) :
Iterations 263 505

Time 3 838s 19 644s

Two-grid preconditioning :
Iterations 59 117

Time 307s 346s
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