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Bibliography and motivation

Cohen, Monk, mass lumping for Maxwell’s equations (hexahedra)

S. Fauqueux, mixed spectral elements for wave and elastic
equations (hexahedra)

S. Pernet, Discontinuous Galerkin methods for Maxwell’s
equations (hexahedra)

M. Durufle, Numerical integration and high order finite element
method applied to time-harmonic Maxwell equations

Apply techniques of “mass lumping” and “mixed formulation”,
which are efficient in temporal domain

Efficient preconditioning technique to solve linear system
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Nedelec’s first family on hexahedra

Space of approximation

Vh = {~u ∈ H(curl,Ω) so that DF t
i ~u ◦ Fi ∈ Qr−1,r ,r × Qr ,r−1,r × Qr ,r ,r−1 }

Basis functions

~̂ϕ1
i,j,k (x̂ , ŷ , ẑ) = ψ̂G

i (x̂) ψ̂GL
j (ŷ) ψ̂GL

k (ẑ) ~ex 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

~̂ϕ2
j,i,k (x̂ , ŷ , ẑ) = ψ̂GL

j (x̂) ψ̂G
i (ŷ) ψ̂GL

k (ẑ) ~ey 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

~̂ϕ3
k,j,i(x̂ , ŷ , ẑ) = ψ̂GL

k (x̂) ψ̂GL
j (ŷ) ψ̂G

i (x̂) ~ez 1 ≤ i ≤ r 1 ≤ j , k ≤ r + 1

ψG
i , ψ

GL
i lagragian functions linked respectively with Gauss points and

Gauss-Lobatto points.
See. G. Cohen, P. Monk, Gauss points mass lumping
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i (ŷ) ψ̂GL
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Elementary matrices
Mass matrix :

(Mh)i,j =

∫
K̂

Ji DF−1
i εDF ∗−1

i ϕ̂i · ϕ̂k dx̂

Stiffness matrix :

(Kh)i,j =

∫
K̂

1
Ji

DF t
i µ

−1 DFi ∇̂ × ϕ̂i · ∇̂ × ϕ̂k dx̂

Use of Gauss-Lobatto quadrature (ωGL
k , ξGL

k )

Block-diagonal matrix

(Ah)k,k =
[
Ji DF−1

i εDF ∗−1
i

]
(ξGL

k )ωGL
k

Block-diagonal matrix

(Bh)k,k =
[ 1

Ji
DF t

i µ
−1 DFi

]
(ξGL

k )ωGL
k
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Ĉ i,j = ϕ̂i(ξ
GL
j ) R̂ i,j = ∇̂ × ϕ̂GL

i (ξGL
j )

Then, we have : Mh = Ĉ AhĈ∗ Kh = ĈR̂ BhR̂∗Ĉ∗

Complexity of Ĉ U : 6 (r + 1)4 operations in 3-D

Complexity of R̂ U : 12 (r + 1)4 operations in 3-D

Complexity of Ah U + Bh U : 30 (r + 1)3 operations
Complexity of standard matrix vector product 18r3 (r + 1)3

Matrix-vector product 67% slower by using exact integration
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Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in
hexahedra
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Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in
hexahedra
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Numerical eigenvalues if we use Gauss-Lobatto points at right, or
Gauss points for the stiffness matrix at left.

Gauss-Lobatto integration leads to a spurious-free method
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Convergence of the method

Scattering by a perfectly conductor sphere E × n = 0

Convergence on tetrahedral meshes split in hexahedra
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log10(Number dof)
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(e
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r)
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Q3

Loss of one order, convergence O(hr−1) in H(curl,Ω) norm
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Convergence of the method

Convergence of Nedelec’s first family on regular meshes
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Is the matrix-vector product fast ?

Comparison between standard formulation and discrete factorization

Order 1 2 3 4 5
Time, standard formulation 55s 127s 224s 380s 631
Time, discrete factorization 244s 128s 106s 97s 96s
Storage, standard formulation 18 Mo 50 Mo 105 Mo 187 Mo 308 Mo
Storage, discrete factorization 23 Mo 9.9 Mo 6.9 Mo 5.7 Mo 5.0 Mo

Comparison between tetrahedral and hexahedral elements
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At left, time computation for a thousand iterations of COCG
At right, storage for mesh and matrices
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Preconditioning used

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

ILUT threshold ≥ 0.05 in order to have a low storage

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

Multigrid iteration on the damped Maxwell equation
Use of the Hiptmair smoother
Low-storage algorithm even with high order

Without damping, both preconditioners does not lead to
convergence.

A good choice of parameter is α = 1, β = 1

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell equations with high-order edge finite elements23rd july 2007 9 / 18



Preconditioning used

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

ILUT threshold ≥ 0.05 in order to have a low storage
Use of a Q1 subdivided mesh to compute matrix

=⇒

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

Multigrid iteration on the damped Maxwell equation
Use of the Hiptmair smoother
Low-storage algorithm even with high order

Without damping, both preconditioners does not lead to
convergence.

A good choice of parameter is α = 1, β = 1

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell equations with high-order edge finite elements23rd july 2007 9 / 18



Preconditioning used

Incomplete factorization with threshold on the damped Maxwell
equation :

−k2(α + iβ)εE − ∇× (
1
µ
∇× E) = 0

Multigrid iteration on the damped Maxwell equation
Use of the Hiptmair smoother
Low-storage algorithm even with high order

Without damping, both preconditioners does not lead to
convergence.

A good choice of parameter is α = 1, β = 1

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell equations with high-order edge finite elements23rd july 2007 9 / 18



Caracteristics of the incomplete factorization

Let us count the number of iterations and the memory used by the
preconditioner, for different values of (α, β)

Threshold 1e − 4 1e − 3 0.01 0.05 0.1

α = 1 β = 0 30/370 Mo ∞/350 Mo ∞/340 Mo ∞/326 Mo ∞/314 Mo

α = 1 β = 0.5 55/299 Mo 55/242 Mo 55/149 Mo 82/74 Mo 145/47Mo

α = 1 β = 1 97/244 Mo 97/197 Mo 99/108 Mo 110/53 Mo 155/34Mo
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Caracteristics of the incomplete factorization

The use of a Q1 subdivided mesh is very accurate for the scalar
Helmholtz equation, but has some difficulties for Maxwell equations.
Let us count the number of iterations depending the frequency. The

frequency 1 corresponds to the “normal” frequency.

Order F = 0.125 F = 0.25 F = 0.5 F = 1.0 F = 1.5

Q2(110 000ddl) NC 49 19 16 49

Q4(92 000ddl) NC NC 42 30 123

Q6(72 000ddl) NC NC 71 47 159
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Order F = 0.125 F = 0.25 F = 0.5 F = 1.0 F = 1.5

Q2(110 000ddl) NC 49 19 16 49

Q4(92 000ddl) NC NC 42 30 123

Q6(72 000ddl) NC NC 71 47 159

Problems in low-frequency case, because of the difference between
the discrete kernels (of Q1 and high order).
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E = ∇ϕ + u
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E = ∇ϕ + u

The potential ϕ is solution of the “Laplacian” variationnal formulation :∫
Ω
∇ϕ∇ψ − ik

∫
Σ
∇ϕ× n · ∇ψ × n =

∫
Ω

f · ∇ψ

Aφ finite element matrix associated to this formulation
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E = ∇ϕ + u

Let us introduce the operator P :

P : H1
0 (Ω) ↔ H(curl,Ω)

ϕ ↔ ∇ϕ

then Aφ = P∗ Ae P and the smoother can be written as :

Relaxation on edge finite element operator Ae x = b

Projection on nodal finite element bφ = P∗(b − Ae x)

Relaxation on nodal finite element operator Aφ xφ = bφ

Projection on edge finite element x = x + P xφ

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell equations with high-order edge finite elements23rd july 2007 11 / 18



Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E = ∇ϕ + u

Jacobi relaxation used, because it avoids us storing the matrices
(compared to a SSOR relaxation).

Prolongation operator is an interpolation from the coarse order to
the fine order. A matrix-free implementation of the prolongation
operator is used.

Incomplete factorization for the resolution of the coarsest order

Use of a W-cycle, and one step of pre and post-smoothing (in
order to get the symmetry of the preconditioning)
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E = ∇ϕ + u

The use of a multigrid iteration on the Q1 subdivided mesh is not
optimal

Fail of a good preconditioning in low-frequency case, because the
“Q1” discrete kernel is different from the high order discrete kernel

Overcost in storage, because we store all the needed Q1 matrices
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Scattering by a dielectric sphere

Sphere of radius 2 with ε = 3.5 µ = 1

Outside boundary on a sphere of radius 3.

How many dofs/time to reach an error less than 0.5 dB
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−5

0
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θ (in degrees)

Rc
s (

dB
 m

2 )

Analytical RCS
Numerical RCS

Finite Element Q2 Q4 Q6
No preconditioning 171 Mo 10 Mo 24 Mo
ILUT(0.05) - 99 Mo 271 Mo
Two-grid 402 Mo 34 Mo 132 Mo
Multi-grid 402 Mo 12 Mo 28 Mo
Q1 Two-grid 947 Mo 67 Mo 180 Mo
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Scattering by a cobra cavity

Cobra cavity of length 10, and depth 2

Outside boundary at a distance of 1

How many dofs/time to reach an error less than 0.5 dB

−450 −400 −350 −300 −250 −200 −150 −100
0
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θ

Rc
s (

dB
 m

2 )

Finite Element Q4 Q6
Nb dofs 412 000 187 000
No preconditioning 14 039 s (47 Mo) 12 096 s (22 Mo)
ILUT(0.05) 2 247 s (391 Mo) 846 s (161 Mo)
Two-grid 2 355 s (91 Mo) 2 319 s (65 Mo)
Multigrid 4 519 s (59 Mo) -
Q1 Two-grid 9 294 s (260 Mo) 10 500 s (130 Mo)
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Scattering by a cobra cavity

How many dofs/time to reach an error less than 0.5 dB
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Finite Element Q4 Q6
Nb dofs 412 000 187 000
No preconditioning 14 039 s (47 Mo) 12 096 s (22 Mo)
ILUT(0.05) 2 247 s (391 Mo) 846 s (161 Mo)
Two-grid 2 355 s (91 Mo) 2 319 s (65 Mo)
Multigrid 4 519 s (59 Mo) -
Q1 Two-grid 9 294 s (260 Mo) 10 500 s (130 Mo)
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Local refinement for the Fichera corner
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Local refinement for the Fichera corner

Q4 approximation on a local refined mesh

Incomplete factorization fails on this case

Multigrid preconditioning needs SSOR smoother to be efficient

480 000 dofs and cells 256 times smaller than other ones
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Local refinement for the Fichera corner

Algorithm Iterations Time Memory

No preconditioning > 1 000 000 ∞ 33 Mo

Multigrid with Jacobi smoother 30 560 35h 63 Mo

Multigrid with SSOR smoother 579 1h 790 Mo
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Eigenmodes with the second family

The second family uses Q3
r instead of Qr−1,r ,r ×Qr ,r−1,r ×Qr ,r ,r−1

Mesh used for the simulations (Q3)
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Two types of penalization

Mixed formulation of Maxwell equations

−ω
∫

Ω

E · ϕ +

∫
Ω

H · rot(ϕ) − iα
∑

e face

∫
Γe

[E · n][ϕ · n] =

∫
Ω

f · ϕ

−ω
∫

Ω

H · ϕ +

∫
Ω

rot(E) · ϕ− iδ
∑

e face

∫
Γe

[H × n] · [ϕ× n] = 0

Approximation space for H

Wh = {~u ∈ L2(Ω) so that DF ∗
i ~u ◦ Fi ∈ (Qr )

3 }

Equivalence with second-order formulation (α = δ = 0)

Dissipative terms of penalization

Penalization in α does not need of a mixed formulation
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Effects of penalization
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Case of the cubic cavity meshed with split tetrahedrals

At left α = 0.1, at right α = 0.5
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Case of the Fichera corner

At left α = 0.5, at right δ = 0.5

Both penalizations efficient for regular domains

Delta-penalization more robust for singular domains
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Effects of penalization

Four modes of the Fichera corner
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Why choosing first family compared to second family
or DG method ?

All the methods are spectrally correct

All the methods have a fast MV product

DG and second family need more dof

Helmholtz decomposition more natural for the first family

Because of spurious modes, DG and second family need specific
preconditioning
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