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Bibliography and motivation

@ Cohen, Monk, mass lumping for Maxwell’s equations (hexahedra)

@ S. Fauqueux, mixed spectral elements for wave and elastic
equations (hexahedra)

@ S. Pernet, Discontinuous Galerkin methods for Maxwell’s
equations (hexahedra)

@ M. Durufle, Numerical integration and high order finite element
method applied to time-harmonic Maxwell equations

@ Apply techniques of “mass lumping” and “mixed formulation”,
which are efficient in temporal domain

@ Efficient preconditioning technique to solve linear system
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Nedelec’s first family on hexahedra

Space of approximation

Vh = {[je H(Curl,Q) so that DFltﬁO/:/ € Qr71’r’r X Qr7r717r X Qrvr,rf‘]}
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Nedelec’s first family on hexahedra

Space of approximation
Vi, = {U€ H(url,Q) sothat DF/ Go F; € Qr—1rr X Qrr1r X Qrrr1}
Basis functions

Slix(%9,2) = PR UEHP) e e 1<i<r 1<jk<r+1

&2 k(%.9:2) GPHR) YD) Y- (2)ey 1<i<r 1<jk<r+1

Gri(%.9,2) = PER) PP YP(R)e; 1<i<r 1<jk<r+1
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Nedelec’s first family on hexahedra

Space of approximation
Vi = {l € H(curl,Q) sothat DF/ o F; € Q—1rr X Qrr1r X Qrrr1}
Basis functions

Pliu%.9.2) = PR IFP) PPN e 1<i<r 1<jk<r+1

&2 k(%.9:2) PR DR PH2) ey 1<i<r 1<jk<r+1

Sri%9.2) = S IPHI) I e 1<i<r 1<jk<r+1

¥&, v CL lagragian functions linked respectively with Gauss points and
Gauss-Lobatto points.

See. G. Cohen, P. Monk, Gauss points mass lumping

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell ¢ 23rd july 2007 3/18



Elementary matrices

Mass matrix :
(Mg = [ JDF "D - pua

Stiffness matrix :

1 A
(Kn)ij = / 7 DF} ;" DF;V x ;- V x ¢x dX
K Yi
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Elementary matrices

Mass matrix :
(Mg = [ JDF "D - pua

Stiffness matrix :

(Kn)ij = / — DF} i7" DF;V x ¢ -V x ¢y dX

@ Use of Gauss-Lobatto quadrature (wgt, ¢2h)
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Elementary matrices

Mass matrix :
(Mg = [ JDF "D - pua

Stiffness matrix :

(Kn)ij = / — DF} i7" DF;V x ¢ -V x ¢y dX

@ Use of Gauss-Lobatto quadrature (wk , § D)
@ Block-diagonal matrix
(An)kk = {Ji DF; ¢ DF,-H] (&8N wit

@ Block-diagonal matrix

1
(B = | 5 DFfu" DF| (4wt
1
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = ¢ Rij = Vx gt
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = ¢ Rij = Vx gt

Then, we have : M,
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = i) Rij = V xgfH(efh)
Then, we have: M, = CAhC* Ky = CR BhIA?*C*
@ Complexity of C U : 6 (r + 1)* operations in 3-D
@ Complexity of R U : 12(r + 1)* operations in 3-D

@ Complexity of A, U+ B, U : 30 (r + 1) operations
Complexity of standard matrix vector product 18r2 (r 4 1)3
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Fast matrix vector product

Let us introduce the two following matrices, independant of the
geometry :

Cij = i) Rij = V xgfH(efh)
Then, we have: M, = CAhC* Ky = CR BhIA?*C*
@ Complexity of C U : 6 (r + 1)* operations in 3-D
@ Complexity of R U : 12(r + 1)* operations in 3-D

@ Complexity of A, U+ B, U : 30 (r + 1) operations
Complexity of standard matrix vector product 18r2 (r 4 1)3

@ Matrix-vector product 67% slower by using exact integration
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Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in
hexahedra ‘
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Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra spilit in

hexahedra %
% .
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Spurious free method

Computation of eigenvalues in a cubic cavity, with tetrahedra split in
hexahedra

45
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Number eigenvalue

Number eigenvalue

Numerical eigenvalues if we use Gauss-Lobatto points at right, or

Gauss points for the stiffness matrix at left.

@ Gauss-Lobatto integration leads to a spurious-free method

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell ¢

23rd july 2007 6/18



Convergence of the method

Scattering by a perfectly conductor sphere E x n = 0
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Convergence of the method

Convergence of Nedelec’s first family on regular meshes

log ! 0(error)
L
o

2+

S — Q1
—2.5F o /// // - Q2
> 470 s —= Q3
-3 N —~— Q4
© -©- Q5

=332 -1.2 —1 —0.6

Iogm(h/r)

@ Optimal convergence O(h") in H(curl,©2) norm
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Convergence of the method

Convergence on tetrahedral meshes split in hexahedra

——Q1
_05 -e-Q2

e - Q3]

Iog1 0(c-:‘rror)
]
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Iogm(Number dof)

@ Loss of one order, convergence O(h"~") in H(curl,Q) norm
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Is the matrix-vector product fast ?

Comparison between standard formulation and discrete factorization

Order 1 2 3 4 5
Time, standard formulation 55s 127s 224s 380s 631
Time, discrete factorization 244s 128s 106s 97s 96s

Storage, standard formulation | 18Mo 50Mo  105Mo 187Mo 308 Mo
Storage, discrete factorization | 23Mo 9.9Mo 6.9Mo 5.7Mo 5.0Mo
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Is the matrix-vector product fast ?

Comparison between tetrahedral and hexahedral elements

250
450
400 / 200 ,
/ /
350 > & K
2 300 /! z
= . —+—Hexahedral elements| <
o ’ —e- =
E 250 o © -~ Tetrahedral elements §
[ . 5
200 o ! =
o’
150t/ -
100+
50, 0
1 3 4 5 6 7 8 1 3 4 5 7 8
Order of approximation Order of approximation

At left, time computation for a thousand iterations of COCG
At right, storage for mesh and matrices
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Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

:
k2o + i )5E—V><(/—V><E) =0
vi

o ILUT threshold > 0.05 in order to have a low storage
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Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

’
—K%(o + i )5E—V><(/—V><E) =0
b

o ILUT threshold > 0.05 in order to have a low storage
e Use of a @ subdivided mesh to compute matrix
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Preconditioning used

@ Incomplete factorization with threshold on the damped Maxwell
equation :

1
—k3(a + iB)eE — Vx(=VxE) =0
o

@ Multigrid iteration on the damped Maxwell equation

e Use of the Hiptmair smoother
e Low-storage algorithm even with high order

@ Without damping, both preconditioners does not lead to
convergence.

@ A good choice of parameteris o = 1, 7 = 1
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Caracteristics of the incomplete factorization

Let us count the number of iterations and the memory used by the
preconditioner, for different values of

[ Threshold | Te—-4 Te—-3 0.01 0.05 0.1

a=1F=0 [30/370Mo o0/350 Mo o00/340Mo o0/326 Mo oo/314 Mo
a=1p3=05]|55/299Mo 55/242Mo 55/149Mo 82/74Mo  145/47Mo

a=18=1 |97/244Mo 97/197 Mo 99/108 Mo 110/53 Mo 155/34Mo
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Caracteristics of the incomplete factorization

The use of a Q1 subdivided mesh is very accurate for the scalar
Helmholtz equation, but has some difficulties for Maxwell equations.
Let us count the number of iterations depending the frequency. The

frequency 1 corresponds to the “normal” frequency.

Order F=0125 F =02 F=05 F=10 F=15
Q,(110000ddI) NC 49 19 16 49
Q:(92000ddl) NC NC 42 30 123
Qs(72000ddl) NC NC 71 47 159
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Caracteristics of the incomplete factorization

The use of a Q1 subdivided mesh is very accurate for the scalar
Helmholtz equation, but has some difficulties for Maxwell equations.
Let us count the number of iterations depending the frequency. The

frequency 1 corresponds to the “normal” frequency.

Order F=0125 F =025 F=05 F=10 F =15
Q(170000ddI) NC 49 19 16 49
Q:(92000ddI) NC NC 42 30 123
Qs(72000ddl) NC NC 71 47 159

Problems in low-frequency case, because of the difference between
the discrete kernels (of Q1 and high order).
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E=Ve+u
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :
E=Vyp+u

The potential ¢ is solution of the “Laplacian” variationnal formulation :

/Qchvw—ik/ZV<pxn-V¢xn:/Qf-V¢

Ay finite element matrix associated to this formulation
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :
E=Ve+u
Let us introduce the operator P :

P:H(Q) « H(curl,Q)
77 < Vo

then A, = P* Ae P and the smoother can be written as :

@ Relaxation on edge finite element operator Ac x = b
@ Projection on nodal finite element by = P*(b — Ae X)
@ Relaxation on nodal finite element operator A, x, = b,

@ Projection on edge finite element x = x + P x,
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :

E=Ve+u

@ Jacobi relaxation used, because it avoids us storing the matrices
(compared to a SSOR relaxation).

@ Prolongation operator is an interpolation from the coarse order to
the fine order. A matrix-free implementation of the prolongation
operator is used.

@ Incomplete factorization for the resolution of the coarsest order

@ Use of a W-cycle, and one step of pre and post-smoothing (in
order to get the symmetry of the preconditioning)
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Caracteristics of the multigrid iteration

The smoother of Hiptmair is based on the Helmholtz decomposition :
E=Vyp+u

The use of a multigrid iteration on the Q1 subdivided mesh is not
optimal

@ Fail of a good preconditioning in low-frequency case, because the
“Q1” discrete kernel is different from the high order discrete kernel

@ Overcost in storage, because we store all the needed Q1 matrices
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Scattering by a dielectric sphere

il
it

T T

@ Sphere of radius 2 withe = 3.5, = 1

@ Outside boundary on a sphere of radius 3.
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Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

Analytical RCS
Numerical RCS

5

~2350 —300 —250 —200 —-150 —100 -50 o
6 (in degrees)
Finite Element Q. Q4 Qs
Nb dofs 940000 88000 230000
No preconditioning | 19486 s 894s  4401s
ILUT(0.05) - 189s 1035s
Two-grid 5814s 280 s 1379s
Multi-grid 5814s 499 s 2515s
Q1 Two-grid 44344s 488 s 1095s
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Scattering by a dielectric sphere

How many dofs/time to reach an error less than 0.5 dB

Analytical RCS
35 Numerical RCS
30
. 251
Ng 20+
% 18]
= 10
sl
ol
_5350 —300 -250 -200 -150 -100 -50 o
6 (in degrees)
Finite Element Q; Qs Qs
No preconditioning | 177TMo 10Mo 24 Mo
ILUT(0.05) - 99Mo 271 Mo
Two-grid 402Mo  34Mo 132Mo
Multi-grid 402Mo 12Mo 28Mo
Q1 Two-grid 947Mo 67Mo 180Mo
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Scattering by a cobra cavity
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@ Cobra cavity of length 10, and depth 2

@ Outside boundary at a distance of 1
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Scattering by a cobra cavity

How many dofs/time to reach an error less than 0.5 dB

60

50 “/’\‘\\
,‘40 ﬁ M
e L
Seo
= 20 : \\\/“/V/ \ W i
‘\\ “H\““
10} HW\W‘ |
—250 —400 —350 —300 6_250 —200 —150 —100
Finite Element Q4 Qs
Nb dofs 412000 187000
No preconditioning | 14039 s (47Mo) 12096s (22 Mo)
ILUT(0.05) 2247s (391 Mo) 846s (161 Mo)
Two-grid 23555 (91 Mo) 2319s (65 Mo)
Multigrid 4519s (59 Mo) =
Q1 Two-grid 9294s (260Mo) 10500s (130 Mo)
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Local refinement for the Fichera corner

%E ,,,,,,
254 '
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Local refinement for the Fichera corner

‘
)
,
‘
i o —
‘

@ Q4 approximation on a local refined mesh

@ Incomplete factorization fails on this case
@ Multigrid preconditioning needs SSOR smoother to be efficient

@ 480 000 dofs and cells 256 times smaller than other ones
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Local refinement for the Fichera corner

) ‘
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i o il
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o
os

o —
Algorithm Iterations  Time Memory
No preconditioning > 1000000 oo 33 Mo

Multigrid with Jacobi smoother 30560 35h  63Mo

Multigrid with SSOR smoother 579 ith 790 Mo
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Eigenmodes with the second family

The second family uses QP instead of Q; 1. x Qrr_1.r X Qrrr_1
Mesh used for the simulations (Q3)
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Eigenmodes with the second family

The second family uses Q° instead of Qr—1rrx Qrr1rx Qrrr1
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Eigenmodes with the second family

The second family uses Q° instead of Qr—1rrx Qrr1rx Qrrr1
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Two types of penalization

/
Q

—w/QE~<p+/Hrot — i Y /[E e - n|
0

face

—w/H go+/rot(E) o—is ez /[Hxn] o x 11

e face’'

Approximation space for H

Wy, = {idel?Q)sothat DF o F; € (@)%}
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Two types of penalization

/ 90
Q

fw/E~<p+/H~rot(<p)fia >
Q Q
0

[ (E-nllg-n
e face”’’
—w/QH~gp+/Qrot(E)-<p—i6 > /e[Hxn]~[<p><n]

.
e face

Approximation space for H

Wy, = {idel?Q)sothat DF o F; € (@)%}

@ Equivalence with second-order formulation (o« = § = 0)
@ Dissipative terms of penalization

@ Penalization in o does not need of a mixed formulation
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Effects of penalization
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real(m)

real(w)

@ Case of the cubic cavity meshed with split tetrahedrals
@ Atlefta = 0.1, atright« = 0.5
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Effects of penalization
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Four modes of the Fichera corner

i
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Effects of penalization

0.1 0.1
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o Analytical eigenvalues
- Numerical eigenvalues|
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@ Case of the Fichera corner
@ Atlefta = 0.5, atrighté = 0.5

@ Both penalizations efficient for regular domains

@ Delta-penalization more robust for singular domains
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Why choosing first family compared to second family

or DG method ?

@ All the methods are spectrally correct

@ All the methods have a fast MV product

M. Durufle, G Cohen (INRIA, project POEMS)Efficient resolution of time-harmonic Maxwell ¢ 23rd july 2007 18/18



Why choosing first family compared to second family

or DG method ?

@ All the methods are spectrally correct

@ All the methods have a fast MV product

@ DG and second family need more dof
@ Helmholtz decomposition more natural for the first family

@ Because of spurious modes, DG and second family need specific
preconditioning
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