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Model problem

Time-harmonic Galbrun’s equations (pulsation ω) −ρ0 (−iω + σ + M · ∇)2 u −∇
(
ρ0 c2

0 div u
)

+(div u)∇p0 − (∇u)T∇p0 = f , in Ω

u: Lagrangian fluid displacement (unknown)

ρ0,p0, c0: background density, pressure and sound speed

M, σ: flow velocity and damping.

(∇u)T =

(
∂xux ∂xuy

∂yux ∂yuy

)
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Model problem

Time-harmonic Galbrun’s equations (pulsation ω) −ρ0 (−iω + σ + M · ∇)2 u −∇
(
ρ0 c2

0 div u
)

+(div u)∇p0 − (∇u)T∇p0 = f , in Ω

u: Lagrangian fluid displacement (unknown)

ρ0,p0, c0: background density, pressure and sound speed

M, σ: flow velocity and damping.

Assumptions:

Coefficients ρ0,p0, c0, σ,M smooth functions of x (at least
continuous).

The flow satisfies the condition div(ρ0M) = 0
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Discontinuous Galerkin Method

Linear equation:

A(x) u(x) − Div [C(x)∇u(x) + B(x) u(x)] + E(x)∇u(x) = f (x)

where A(x),C(x),B(x),E(x) are tensors.
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Discontinuous Galerkin Method

Discontinuous Galerkin formulation∑
K element

(∫
K

A u · ϕ+ (C∇u + B u) · ∇ϕ+ E ∇u · ϕdx
)

+
∑

F face

(∫
F
{C∇u ν}[ϕ] + [u]{C∇ϕν}+ {B u ν}[ϕ] + [u]{E∗ ϕν}

+
1
2

[P u] [ϕ] dx
)

+

∫
Γ

N u · ϕdx =
∑

K element

∫
K

f · ϕdx

where

{u} =
u+ + u−

2
, [u] = (u+ − u−)

ν : outward normale

P,N : penalty matrix and boundary condition matrix
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Symmetric Interior Penalty Galerkin

Discontinuous Galerkin applied directly⇒ SIPG −ρ0 (−iω + σ + M · ∇)2 u −∇
(
ρ0 c2

0 div u
)

+(div u)∇p0 − (∇u)T∇p0 = f , in Ω

Penalty matrix:

P = α
r(r + 1)

h2 ν νT

r : order of approximation
h: length of the edge
In practice, we took α = 10 and observed numerically a positive
stiffness matrix for a null flow.
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Local Discontinuous Galerkin

Equivalent first-order formulation:
ρ0 (−iω + σ + M · ∇) u − ρ0v = 0

ρ0 (−iω + σ + M · ∇) v −∇(ρ0 c2
0 p) + (divu)∇p0 − (∇u)T∇p0 = f

p − div u = 0

Upwind fluxes difficult to implement

Not adapted for explicit time-stepping
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Local Discontinuous Galerkin

Better equivalent first-order formulation⇒ LDG

ρ0 (−iω + σ + M · ∇) u −∇p − ρ0 q = 0

ρ0 (−iω + σ + M · ∇) q − (∇σ) p − (∇M)T∇p − M · ∇ρ0

ρ0
∇p

+(div u)∇p0 − (∇u)T∇p0 = f

ρ0 (−iω + σ + M · ∇) p − ρ2
0 c2

0 div u = 0

Well adapted for explicit time-stepping

Form close to an hyperbolic system

Juliette Chabassier, Marc Duruflé Galbrun’s equations 20th July 2015 6 / 1



Upwind fluxes

Considered equation

A(x) u(x) − Div [B(x) u(x)] + E(x)∇u(x) = f (x)

Matrix D(x) defined as:

D(x) = −B(x)ν + E(x)ν

A(x) decomposed as

A(x) = −iωM(x) + A0(x)

Λ, V eigenvalues and eigenvectors of M(x)−1D(x)
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Upwind fluxes

Λ, V eigenvalues and eigenvectors of M−1D

M−1D = V ΛV−1

Absolute value of D defined as:

|D| = M V |Λ|V−1

Upwind fluxes⇒ penalty matrix P:

P = |D|

Eigenvalues Λ real if the system is hyperbolic
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Upwind fluxes for Galbrun

Uniform flow:

M = ρ0I, D =


ρ0α 0 0 0 −νx
0 ρ0α 0 0 −νy
0 0 ρ0α 0 0
0 0 0 ρ0α 0

−(ρ0c0)2νx −(ρ0c0)2νy 0 0 ρ0α


where

α = M · ν
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Upwind fluxes for Galbrun

Uniform flow :

Λ =


α
α
α

α + c0
α− c0

 , |D| = ρ0

 |α|I + (s − |α|) ν νT 0 − d
ρ0c0

ν

0 |α|I 0
−ρ0c0 dνT 0 s


where

s =
1
2

(|α + c0|+ |α− c0|) , d =
1
2

(|α + c0| − |α− c0|)
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Upwind fluxes for Galbrun

Non-uniform flow :

M = ρ0I, D =


ρ0α 0 0 0 −νx
0 ρ0α 0 0 −νy
0 ρ0γ ρ0α 0 βx
−ρ0γ 0 0 ρ0α βy

−(ρ0c0)2νx −(ρ0c0)2νy 0 0 ρ0α


where

α = M · ν, ρ0γ = ∇p0 × ν

(βx , βy ) = (−∇M)T ν − M · ∇ρ0

ρ0
ν

Issue : D is not diagonalizable if γ, βx , βy 6= 0

Juliette Chabassier, Marc Duruflé Galbrun’s equations 20th July 2015 8 / 1



Upwind fluxes for Galbrun

Non-uniform flow :

M = ρ0I, D =


ρ0α 0 0 0 −νx
0 ρ0α 0 0 −νy
0 ρ0γ ρ0α1 0 βx
−ρ0γ 0 0 ρ0α1 βy

−(ρ0c0)2νx −(ρ0c0)2νy 0 0 ρ0α


D diagonalizable if α1 /∈ {α, α + c0, α− c0}
Penalty matrix:

P = lim
α1→α

|D|α1
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H1 formulation

Formulation proposed by Bonnet Ben Dhia et al (in 2-D):

ρ0 (−iω + σ + M · ∇)2 u −∇
(
ρ0c2

0 div u
)

+ curl
(
ρ0c2

0 (curl(u)− ψ)
)

+(div u)∇p0 − (∇u)T∇p0 = f

ρ0 (−iω + σ + M · ∇)2 ψ + 2ρ0 (−iω + σ + M · ∇)B(u) + ρ0 C(u)

= −curl(f ) +
1

ρ0c2
0

f ∧∇p0

B(u) =
2∑

j=1

∇Mj ∧
∂u
∂xj

C(u) =
∑2

j,k=1

(
∂Mk
∂xj
∇Mj ∧ ∂u

∂xk
−Mj∇∂Mk

∂xj
∧ ∂u
∂xk

)
+ 1
ρ0

∑2
j=1

(
1

ρ0c2
0

∂p0
∂xj
∇p0 −∇

(
∂p0
∂xj

))
∧∇uj
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H1 formulation

Formulation proposed by Bonnet Ben Dhia et al (in 2-D):

ρ0 (−iω + σ + M · ∇)2 u −∇
(
ρ0c2

0 div u
)

+ curl
(
ρ0c2

0 (curl(u)− ψ)
)

+(div u)∇p0 − (∇u)T∇p0 = f

ρ0 (−iω + σ + M · ∇)2 ψ + 2ρ0 (−iω + σ + M · ∇)B(u) + ρ0 C(u)

= −curl(f ) +
1

ρ0c2
0

f ∧∇p0

Continuous finite elements for u, ψ ⇒ H1

Discontinuous finite elements for u, ψ ⇒ H1(DG)
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Results for an uniform flow

Uniform coefficients:

M = (mx ,0), ρ0 = 2.5, c0 = 0.8, p0 = 1, ω = 0.78× 2π, σ = 0.1

Computational domain:
Ω = [−4,4]2

Gaussian source:

f = β0 exp(−α0(x2 + y2))ex

Periodic boundary conditions
h: mesh size, r : degree of polynomial space
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Results for an uniform flow

Figure: Real part of ux (left) and uy (right) for an uniform flow mx = 0.25
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Results for an uniform flow

Figure: Real part of ux (left) and uy (right) for an uniform flow mx = 0.75
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Results for an uniform flow

Figure: Real part of ux (left) and uy (right) for an uniform flow mx = 1.5
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Convergence for an uniform flow
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Figure: Relative L2 error vs h/r for LDG quadrilateral elements and an
uniform flow (mx = 0.25).
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Convergence for an uniform flow

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

h/r

R
e

la
ti
v
e

 L
2
 e

rr
o

r

 

 

SIPG

H
1

H
1
(DG)

LDG

Figure: Comparison of the different formulations for an uniform flow
(r = 5,mx = 0.25)
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Convergence for an uniform flow
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Figure: Convergence observed for any value mx .
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Numerical results for a non-uniform flow

Physical coefficients are chosen periodic :

ρ0 = 1.5 + 0.2 cos
(πx

4

)
sin
(πy

2

)
p0 = 1.44ρ0 + 0.08ρ2

0

c2
0 = 1.44 + 0.16ρ0

ω = 0.78× 2π, σ = 0.1

The flow M satisfies div(ρ0M) = 0:

mx = coeff

(
0.3 + 0.1 cos

(πy
4

)
ρ0

)

my = coeff

(
0.2 + 0.08 sin

(
πx
4

)
ρ0

)
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Numerical results for a non-uniform flow

Figure: Numerical solution obtained with H1 formulation, with N = 61 points
(left) and N = 81 points (right) and r = 10, coeff = 0.1.
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Numerical results for a non-uniform flow

Figure: Numerical solution obtained with H1 formulation with N = 41 points
(left) and N = 61 points (right) and r = 10, coeff = 0.2
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Numerical results for a non-uniform flow

Figure: Numerical solution obtained with H1 formulation with N = 41 points
(left) and N = 61 points (right) and r = 10, coeff = 1.5
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Convergence for a non-uniform flow
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Figure: Convergence for non-uniform flow coeff = 0.1, r = 5, ||M||∞ ≈ 0.033.
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Convergence for a non-uniform flow

10
−1

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

h/r

R
e
la

ti
v
e
 L

2
 e

rr
o
r

 

 

SIPG

H
1

H
1
(DG)

LDG

Figure: Convergence for non-uniform flow coeff = 0.2, r = 5, ||M||∞ ≈ 0.067.
Juliette Chabassier, Marc Duruflé Galbrun’s equations 20th July 2015 13 / 1



Convergence for a non-uniform flow
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Figure: Convergence for non-uniform flow coeff = 0.5, r = 5, ||M||∞ ≈ 0.15.
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Convergence for a non-uniform flow
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Figure: Convergence for non-uniform flow coeff = 1.5, r = 5, ||M||∞ ≈ 0.5.
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Convergence for a non-uniform flow
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Figure: Consistency error for LDG formulation (r = 10), upwind fluxes.
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Convergence for a non-uniform flow
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Figure: Consistency error for H1 formulation (r = 10).
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Linearized Euler Equations


(−iω + σ + M · ∇)p + div(c2

0 u) + γ(divM) p − (γ − 1)

ρ0
u · ∇p0 = 0

(−iω + σ + M · ∇)ρ+ ρdiv M + div u = 0

(−iω + σ + M · ∇)u + (divM)u +∇p +∇M(u + ρM) =
g
ρ0

ρ,p,u perburbations (ρ′, ρ0u′,p′)

γ defined by c2
0 =

γp0

ρ0

Equivalence with Galbrun’s equations for uniform flow if:

f = (−iω + σ + M · ∇)g
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Numerical results for LEE

Figure: Solution obtained with Galbrun’s equation (left) and LEE (right)
(coeff = 0.1, real part of ux ).
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Numerical results for LEE

Figure: Solution obtained with Galbrun’s equation (left) and LEE (right)
(coeff = 0.2, real part of ux ).
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Numerical results for LEE

Figure: Solution obtained with Galbrun’s equation (left) and LEE (right)
(coeff = 0.5, real part of ux ).
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Numerical results for LEE

Figure: Comparison for coeff=1.5.
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Convergence for LEE
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Figure: Convergence for non-uniform flow and LEE (r = 10).
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Stabilization of Galbrun’s equations

Convective stabilization :

ρ0 (−iω + σ + M · ∇) u −∇p − ρ0 q = 0

ρ0 (−iω + σ) q − (∇σ) p − (∇M)T∇p − M · ∇ρ0

ρ0
∇p

+(div u)∇p0 − (∇u)T∇p0 = f

ρ0 (−iω + σ + M · ∇) p − ρ2
0 c2

0 div u = 0
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Stabilization of Galbrun’s equations

Non-uniform stabilization:
ρ0 (−iω + σ + M · ∇) u −∇p − ρ0 q = 0

ρ0 (−iω + σ + M · ∇) q = f

ρ0 (−iω + σ + M · ∇) p − ρ2
0 c2

0 div u = 0
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Stabilization of Galbrun’s equations

Figure: Real part of ux for a non-uniform flow (coeff=1.5) and stabilized
Galbrun’s equations (on left, convective stabilization, on right non-uniform
stabilization)
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Simplified Galbrun’s equations

Equivalent to Galbrun’s equations when M = 0
ρ0(−iω + σ + M · ∇) p + ρ2

0 c2
0 div u = 0

ρ0(−iω + σ + M · ∇) u +∇p

+
1

−iω + σ

(
(div u)∇p0 − (∇u)T∇p0

)
= g
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Simplified Galbrun’s equations
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Figure: Convergence for non-uniform flow and simplified Galbrun (r = 10)
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Computation of Green’s function

g = δ ey ,M = (0,0.3)

Figure: Imaginary part of uy and associated mesh.
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Computation of Green’s function

g = δ ey ,M = (0,0.3)

Figure: Imaginary part of uy and associated mesh.
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Computation of Green’s function

Non-uniform flow and mesh only refined at the center

Figure: Imaginary part of ux for non-uniform flow

⇒ necessity of a refinement in the flow area
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Application to the sun

Profile of the sound speed c0 for the sun in log-scale:
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Application to the sun

Profile of the backgroound density ρ0 for the sun in log-scale:
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Application to the sun

Profile of the background pressure p0 for the sun in log-scale:
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Application to the sun

Example of mesh used for 2-D experiments
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Numerical results for the sun

Source g gaussian centered around (0.5,0.5) and f given as:

f = (−iω + σ + M · ∇)g

Rotating flow:

M =
Coeff

R
c0(r)

[
−y
x

]
Uniform damping:

σ =
ω

100
Frequency:

freq = 3mHz, ω = 2π × freq
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Numerical results for the sun

Figure: Real part of ux for the sun (Coeff = 0, Galbrun).
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Numerical results for the sun

Figure: Real part of ux for the sun (Coeff = 1, Galbrun).
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Numerical results for the sun

Figure: Real part of ux for the sun (Coeff = 1, simplified Galbrun).
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