High Order Local Implicit Time Schemes for Wave Equation

Marc Duruflé¹ Mamadou N'Diaye¹

¹Project Magique-3D INRIA Bordeaux Sud-Ouest

July 5, 2018

Duruflé, N'Diaye (INRIA)

- ∢ ∃ ▶

Wave equation

$$\begin{cases} \rho \,\partial_t u - \operatorname{div} \vec{v} = 0, \quad \forall (x, t) \in \Omega \times \mathbb{R}^+ \\ \mu^{-1} \partial_t \vec{v} - \nabla u = 0, \quad \forall (x, t) \in \Omega \times \mathbb{R}^+ \\ + \operatorname{Dirichlet} \text{ or Absorbing condition} \end{cases}$$

discretized with HDG formulation leads to discrete system

$$\frac{d\mathbf{y}}{dt} = A\mathbf{y}(t) + F(t)$$

Explicit schemes too expensive because of restrictive CFL \Rightarrow Design efficient local implicit schemes for this ODE

PhD Thesis of Mamadou N'Diaye

- Optimized explicit schemes for HDG wave equation following the procedure proposed in Optimal stability polynomials for numerical integration of initial value problems, David. I. Ketcheson and Aron J. Ahmadia
- High-order implicit schemes compared in High-order Padé and singly diagonally Runge-Kutta schemes for linear ODEs, application to wave propagation problems, Hélène Barucq, Marc Duruflé and Mamadou N'Diaye
- Coupling of the two families of schemes following the procedure proposed in Runge-Kutta-based explicit local time-stepping methods for wave propagation, M. Mehlin, T. Mitkova and M. Grote

4)90

One-step schemes written in the form

$$\mathbf{y}_{n+1} = \mathbf{R}(\Delta t \, \mathbf{A}) \mathbf{y}_n + \widetilde{\phi}_n$$

R : a polynomial approximation of exponential $\widetilde{\phi}_n$ term due to the source **F** :

$$\phi_n = \sum_{r=1}^m A^{r-1} \Delta t^r \sum_{i=0}^{n_w-1} \omega_i^r F(t_n + \Delta t c_i)$$

 c_i are interpolation points, and ω_i^r weights

One-step schemes written in the form

$$\mathbf{y}_{n+1} = \mathbf{R}(\Delta t \, \mathbf{A})\mathbf{y}_n + \widetilde{\phi}_n$$

$$\boldsymbol{R}(\Delta t\boldsymbol{A}) = \sum_{j=0}^{m} \alpha_j (\Delta t\boldsymbol{A})^j$$

 $\alpha_j = \frac{1}{j!}$, for $j \le r$ to ensure a scheme of order r Others free coefficients α_j are tuned to optimize CFL (with Ketcheson's algorithm)

< 同 > < 三 > < 三 >

Explicit schemes

One-step schemes written in the form

$$\mathbf{y}_{n+1} = \mathbf{R}(\Delta t \, \mathbf{A}) \mathbf{y}_n + \widetilde{\phi}_n$$

Duruflé, N'Diaye (INRIA)

One-step schemes written in the form

$$\mathbf{y}_{n+1} = \mathbf{R}(\Delta t \mathbf{A})\mathbf{y}_n + \widetilde{\phi}_n$$

R : a rational approximation of exponential $\widetilde{\phi}_n$ term due to the source **F** :

$$\phi_n = \sum_{r=1}^m A^{r-1} \Delta t^r \sum_{i=0}^{n_w-1} \omega_i^r F(t_n + \Delta t c_i)$$

 c_i are interpolation points, and ω_i^r weights

One-step schemes written in the form

$$\mathbf{y}_{n+1} = \mathbf{R}(\Delta t \mathbf{A}) \mathbf{y}_n + \widetilde{\phi}_n$$

Padé schemes : R chosen as Padé approximant of exponential

• Linear SDIRK schemes : *R* chosen as $\frac{P(z)}{(1 - \gamma z)^m}$ providing the smallest error with the constraint of *A*-stability.

Based on paper of Grote and coworkers

y = (I - P)y + Py, (P: projection on fine region)

$$\mathbf{y}(t_{n} + \xi \Delta t) = \mathbf{y}(t_{n}) + \underbrace{\int_{t_{n}}^{t_{n} + \xi \Delta t} A(I - P)\mathbf{y}(t)dt}_{\text{Coarse part}} + \underbrace{\int_{t_{n}}^{t_{n} + \xi \Delta t} AP\mathbf{y}(t)dt}_{\text{Fine part}} + \underbrace{\int_{t_{n}}^{t_{n} + \xi \Delta t} AP\mathbf{y}(t)dt}_{\text{Fine part}}$$

◆□▶ ◆□▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ●

agurag tarm

To coincide with explicit time schemes, we obtain

$$\mathbf{y}(t_n + \xi \Delta t) \approx \mathbf{y}_n + \mathbf{A}(I - P) \sum_{j=0}^m \alpha_{j+1} (\xi \Delta t)^{j+1} \widetilde{w}_j$$
$$+ (I - P) \left(\hat{Q}(t_n + \xi \Delta t) - \hat{Q}(t_n) \right)$$
$$+ \int_{t_n}^{t_n + \xi \Delta t} \mathbf{A} P \mathbf{y}(t) + P F(t) dt$$

where \widetilde{w}_j is the discrete approximation of $y^{(j)}(t_n)$ by differentiating j - 1 times y' = Ay + F, and Q the polynomial approximation of F, \hat{Q} its antiderivative

ヘロト ヘヨト ヘヨト

By introducing $\tau = \xi \Delta t$, and differentiating with respect to τ , we get the fine ODE :

$$\frac{d\widetilde{y}(\tau)}{d\tau} = A(I-P)\sum_{j=0}^{m} (j+1)\alpha_{j+1} \tau^{j}\widetilde{w}_{j} + (I-P)Q(t_{n}+\tau) + PF(t_{n}+\tau) + AP\widetilde{y}(\tau)$$

Fine ODE is solved implicitly with Padé schemes or Linear SDIRK schemes. It involves only close degrees of freedom (non-null rows of AP).

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

How to split the mesh

Time step Δt_i computed with adjacent elements of K_i

- We find λ_{max} such that $|R(\lambda \Delta t_{nominal})|$ is maximal
- Δt_i found by bisection such that $|\mathbf{R}(\lambda \Delta t_i)| = 1$
- If $\Delta t_i \leq \Delta t_{ref} \Rightarrow$, element $K_i \in \Omega^{fine}$

Practical algorithm

Algorithm used to compute $\zeta_j = A(I - P)\alpha_{j+1} \widetilde{w}_j, F_j$

$$D_{i,\ell} = \frac{\tilde{\varphi}_i^{(\ell)}(0)}{(\Delta t)^{\ell}}$$

for $i = 1 \dots s$ do
compute $F_i = F(t_n + c_i \Delta t)$
end for
 $w = y_n$
for $j = 0 \dots m$ do
compute $z = A(I - P)$ w and $z_p = AP$ w
 $\zeta_j = \alpha_{j+1}z$
compute $Q^{(j)} = \sum_{i=1}^s D_{i,j}F_i$
 $w = z + z_p + Q^{(j)}$
end for

Computation of y_{n+1} :

- Compute vectors F_i and ζ_j with previous algorithm
- Task 1 : compute y_{n+1} for far degrees of freedom with explicit scheme
- Task 2 : compute y_{n+1} for close degrees of freedom by solving the fine ODE with an implicit scheme

Task 1 and 2 can be conducted independently (in parallel)

Fixed space discretization with \mathbb{Q}_{12} and given mesh:

Green zone : fine region, Red zone : coarse region

Duruflé, N'Diaye (INRIA)

Locally Implicit

イロト イ団ト イヨト イヨト

Gaussian source in space and Ricker in time ($f_0 = 1Hz$)

Duruflé, N'Diaye (INRIA)

Locally Implicit

July 5, 2018 8 / 12

Solution at t = 8

Gaussian source in space and Ricker in time ($f_0 = 1$)

Duruflé, N'Diaye (INRIA)

・ロト ・ 一 ト ・ ヨ ト ・ ヨ ト

Solution at t = 20

Gaussian source in space and Ricker in time ($f_0 = 1$)

Duruflé, N'Diaye	(INRIA)
------------------	---------

Convergence in time ($\Delta t \rightarrow 0$)

for ERK4-2 and Pade4 (or Linear SDIRK 4-1)

Duruflé, N'Diaye (INRIA)

-∃ >

Space-time convergence $\Delta t = \alpha \Delta x, \Delta x \rightarrow 0$

with fixed coefficient α (close to the CFL of the coarse region)

< D > < B > < E > < E</p>

Convergence with \mathbb{Q}_3 , ERK4-2 and Pade 4 (or Linear SDIRK 4-1)

< 17 ▶

- ∃ ▶

Convergence with \mathbb{Q}_5 , ERK6-2 and Pade 6 (or Linear SDIRK 6-2)

< 47 ▶

∢ ∃ ▶

Convergence with \mathbb{Q}_7 , ERK8-2 and Pade 8 (or Linear SDIRK 8-1)

Duruflé, N'Diaye (INRIA)

< 17 ▶

Scattering of a magnetron (diameter=140 λ)

16 small circular cavities, Space discretization : \mathbb{Q}_8

Duruflé, N'Diaye (INRIA)

Locally Implicit

July 5, 2018 10 / 12

Solution for t = 20

▲ 同 ▶ ▲ 三 ▶

Solution for t = 100

Image: A math a math

Solution for t = 200

-

イロト イヨト イヨト イ

Solution for t = 200 (zoom on two cavities)

Duruflé, N'Diaye (INRIA)

-

・ロット (日) ・ (日) ・ (

Splitting into coarse (red) and fine region (green)

• • • • • • • • • • • •

Efficiency with ERK 4-2 and LinearSdirk 4-1 (or Padé 4) on 16 cores (error 0.3%)

Method	Time step	Computational Time	Memory
Purely Explicit	$9.09 \cdot 10^{-4}$	8h52min	720 Mo
Local LSDIRK	0.025	54min15s	1.8 Go
LSDIRK implicit	0.04	1h12s	3.2 Go
Local Padé	0.025	39min11s	2.3 Go
Padé implicit	0.033	38min27s	4.8 Go

 \Rightarrow Locally implicit scheme is a compromise between computational time and memory usage

Efficiency with ERK 8-2 and LinearSdirk 8-1 (or Padé 8) on 16 cores

Method	Time step	CPU Time	Memory	Error
Local LSDIRK	0.033	1h23min	2.1Go	1.9 · 10 ⁻⁶
LSDIRK implicit	0.167	34min39s	3.2 Go	0.002
Local Padé	0.033	57min21s	3.1 Go	$2.32 \cdot 10^{-9}$
Padé implicit	0.25	11min7s	7.9 Go	0.00202

 \Rightarrow Better accuracy with eighth-order schemes

• • • • • • • • • • • •

Scattering of a network of small spheres

75 small spheres with $\rho = 0.1, \ \mu = 0.8$, Space discretization : \mathbb{Q}_4

Solution for t = 6

Solution for t = 12

▶ ৰ ≣ ▶ ≣ ৩৭৫ July 5, 2018 11/12

Splitting into coarse (red) and fine region (green)

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

Efficiency with ERK 4-0 and LinearSdirk 4-1 on 16 cores

Method	Time step	Computational Time	Memory
Local LSDIRK	0.01	2h23	62.8 Go
Purely Explicit	$2.22 \cdot 10^{-4}$	13h40	3.3 Go
LSDIRK implicit	0.05	57min	108 Go

 \Rightarrow Locally implicit scheme is a compromise between computational time and memory usage

• • • • • • • • •

- Improvement of parallelization
- Mix between local time-stepping and locally implicit

- Improvement of parallelization
- Mix between local time-stepping and locally implicit

Thanks for your attention