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Bibliography and motivation

Wave equation 
ρ ∂tu − div~v = 0, ∀(x , t) ∈ Ω× R+

µ−1∂t~v −∇u = 0, ∀(x , t) ∈ Ω× R+

+ Dirichlet or Absorbing condition

discretized with HDG formulation leads to discrete system

dy
dt

= Ay(t) + F (t)

Explicit schemes too expensive because of restrictive CFL
⇒ Design efficient local implicit schemes for this ODE
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Bibliography and motivation

PhD Thesis of Mamadou N’Diaye

Optimized explicit schemes for HDG wave equation following the
procedure proposed in Optimal stability polynomials for numerical
integration of initial value problems, David. I. Ketcheson and Aron
J. Ahmadia

High-order implicit schemes compared in High-order Padé and
singly diagonally Runge-Kutta schemes for linear ODEs,
application to wave propagation problems, Hélène Barucq, Marc
Duruflé and Mamadou N’Diaye

Coupling of the two families of schemes following the procedure
proposed in Runge-Kutta-based explicit local time-stepping
methods for wave propagation, M. Mehlin, T. Mitkova and M. Grote
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Explicit schemes

One-step schemes written in the form

yn+1 = R(∆t A)yn + φ̃n

R : a polynomial approximation of exponential
φ̃n term due to the source F :

φn =
m∑

r=1

Ar−1∆t r
nw−1∑
i=0

ωr
i F (tn + ∆t ci)

ci are interpolation points, and ωr
i weights
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Explicit schemes

One-step schemes written in the form

yn+1 = R(∆t A)yn + φ̃n

R(∆tA) =
m∑

j=0

αj(∆tA)j

αj =
1
j!

, for j ≤ r to ensure a scheme of order r

Others free coefficients αj are tuned to optimize CFL (with Ketcheson’s
algorithm)
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Explicit schemes

One-step schemes written in the form

yn+1 = R(∆t A)yn + φ̃n

−25 −15 −5 0 5

−10

−5

0

5

10

15

Real(z)

Im
ag
(z
)
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Implicit schemes

One-step schemes written in the form

yn+1 = R(∆tA)yn + φ̃n

R : a rational approximation of exponential
φ̃n term due to the source F :

φn =
m∑

r=1

Ar−1∆t r
nw−1∑
i=0

ωr
i F (tn + ∆t ci)

ci are interpolation points, and ωr
i weights
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Implicit schemes

One-step schemes written in the form

yn+1 = R(∆tA)yn + φ̃n

Padé schemes : R chosen as Padé approximant of exponential

Linear SDIRK schemes : R chosen as
P(z)

(1− γz)m providing the

smallest error with the constraint of A-stability.
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Locally implicit algorithm

Based on paper of Grote and coworkers

y = (I − P)y + Py , (P : projection on fine region )

y(tn + ξ∆t) = y(tn) +

∫ tn+ξ∆t

tn
A(I − P)y(t)dt +

source term︷ ︸︸ ︷∫ tn+ξ∆t

tn
(I − P)F (t)dt︸ ︷︷ ︸

Coarse part

+

∫ tn+ξ∆t

tn
APy(t)dt +

source term︷ ︸︸ ︷∫ tn+ξ∆t

tn
PF (t)dt︸ ︷︷ ︸

Fine part
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Locally implicit algorithm

To coincide with explicit time schemes, we obtain

y(tn + ξ∆t) ≈ yn + A(I − P)
m∑

j=0

αj+1(ξ∆t)j+1w̃j

+ (I − P)
(

Q̂(tn + ξ∆t)− Q̂(tn)
)

+

∫ tn+ξ∆t

tn
APy(t) + PF (t)dt

where w̃j is the discrete approximation of y (j)(tn) by differentiating j − 1
times y ′ = Ay + F , and Q the polynomial approximation of F , Q̂ its
antiderivative
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Locally implicit algorithm

By introducing τ = ξ∆t , and differentiating with respect to τ , we get the
fine ODE :

dỹ(τ)

dτ
=

updated source term︷ ︸︸ ︷
A(I − P)

m∑
j=0

(j + 1)αj+1 τ
j w̃j + (I − P)Q(tn + τ) + PF (tn + τ)

+ APỹ(τ)

Fine ODE is solved implicitly with Padé schemes or Linear SDIRK
schemes. It involves only close degrees of freedom (non-null rows of
AP).
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How to split the mesh

Time step ∆ti computed with adjacent elements of Ki

We find λmax such that |R(λ∆tnominal)| is maximal

∆ti found by bisection such that |R(λ∆ti)| = 1

If ∆ti ≤ ∆tref ⇒, element Ki ∈ Ωfine
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Practical algorithm

Algorithm used to compute ζj = A(I − P)αj+1w̃j ,Fj

Di,` =
ϕ̃

(`)
i (0)

(∆t)`
for i = 1 . . . s do

compute Fi = F (tn + ci∆t)
end for
w = yn
for j = 0 . . .m do

compute z = A (I − P) w and zp = A P w
ζj = αj+1z

compute Q(j) =
s∑

i=1

Di,jFi

w = z + zp + Q(j)

end for
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Practical algorithm

Computation of yn+1:

Compute vectors Fi and ζj with previous algorithm

Task 1 : compute yn+1 for far degrees of freedom with explicit
scheme

Task 2 : compute yn+1 for close degrees of freedom by solving the
fine ODE with an implicit scheme

Task 1 and 2 can be conducted independently (in parallel)
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Time convergence

Fixed space discretization with Q12 and given mesh:

Green zone : fine region, Red zone : coarse region
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Time convergence

Ω = [−5,5]2, c = 1, Solution at t = 4

Gaussian source in space and Ricker in time (f0 = 1Hz)
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Time convergence

Solution at t = 8

Gaussian source in space and Ricker in time (f0 = 1)
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Time convergence

Solution at t = 20

Gaussian source in space and Ricker in time (f0 = 1)
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Time convergence

Convergence in time (∆t → 0)
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Space-time convergence

Space-time convergence ∆t = α∆x , ∆x → 0

with fixed coefficient α (close to the CFL of the coarse region)

Duruflé, N’Diaye (INRIA) Locally Implicit July 5, 2018 9 / 12



Space-time convergence

Convergence with Q3, ERK4-2 and Pade 4 (or Linear SDIRK 4-1)
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Space-time convergence

Convergence with Q5, ERK6-2 and Pade 6 (or Linear SDIRK 6-2)
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Space-time convergence

Convergence with Q7, ERK8-2 and Pade 8 (or Linear SDIRK 8-1)
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2-D numerical results

Scattering of a magnetron (diameter=140λ)

16 small circular cavities, Space discretization : Q8
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2-D numerical results

Solution for t = 20
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2-D numerical results

Solution for t = 100
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2-D numerical results

Solution for t = 200

Duruflé, N’Diaye (INRIA) Locally Implicit July 5, 2018 10 / 12



2-D numerical results

Solution for t = 200 (zoom on two cavities)
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2-D numerical results

Splitting into coarse (red) and fine region (green)
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2-D numerical results

Efficiency with ERK 4-2 and LinearSdirk 4-1 (or Padé 4) on 16 cores
(error 0.3%)

Method Time step Computational Time Memory
Purely Explicit 9.09 · 10−4 8h52min 720 Mo
Local LSDIRK 0.025 54min15s 1.8 Go

LSDIRK implicit 0.04 1h12s 3.2 Go
Local Padé 0.025 39min11s 2.3 Go

Padé implicit 0.033 38min27s 4.8 Go

⇒ Locally implicit scheme is a compromise between computational
time and memory usage

Duruflé, N’Diaye (INRIA) Locally Implicit July 5, 2018 10 / 12



2-D numerical results

Efficiency with ERK 8-2 and LinearSdirk 8-1 (or Padé 8) on 16 cores

Method Time step CPU Time Memory Error
Local LSDIRK 0.033 1h23min 2.1Go 1.9 · 10−6

LSDIRK implicit 0.167 34min39s 3.2 Go 0.002
Local Padé 0.033 57min21s 3.1 Go 2.32 · 10−9

Padé implicit 0.25 11min7s 7.9 Go 0.00202

⇒ Better accuracy with eighth-order schemes
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3-D numerical results

Scattering of a network of small spheres

75 small spheres with ρ = 0.1, µ = 0.8, Space discretization : Q4
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3-D numerical results

Solution for t = 6
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3-D numerical results

Solution for t = 12
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3-D numerical results

Splitting into coarse (red) and fine region (green)
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3-D numerical results

Efficiency with ERK 4-0 and LinearSdirk 4-1 on 16 cores

Method Time step Computational Time Memory
Local LSDIRK 0.01 2h23 62.8 Go
Purely Explicit 2.22 · 10−4 13h40 3.3 Go

LSDIRK implicit 0.05 57min 108 Go

⇒ Locally implicit scheme is a compromise between computational
time and memory usage
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Prospects

Improvement of parallelization

Mix between local time-stepping and locally implicit

Duruflé, N’Diaye (INRIA) Locally Implicit July 5, 2018 12 / 12



Prospects

Improvement of parallelization

Mix between local time-stepping and locally implicit

Thanks for your attention
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