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Introduction

Theorem (Lagrange). For any integer n ∈ N, there are (a, b, c, d) ∈ N4, such
that:

n = a2 + b2 + c2 + d2.

It has been conjectured by Waring that for any power k, there exists an
integer (denote g(k) is minimal one), such that all integers can be written as a
sum of g(k) k-th powers. This has been proved by Hilbert. Lagrange theorem
asserts that g(2) = 4, few values are known.

Conjecture (Goldbach). For any even integer greater or equal to 4, n ∈ 2.(N\
{0, 1}, there are two prime numbers (p, q) ∈ P2, such that:

n = p + q.

These two problems deal with sums whose terms are multiplicatively de-
fined. Additive number theory would consider any set of terms (forget about
the multiplicative definition of these particular problems) and try to prove that
if the set is large enough, then so will be the sets of sums, up to a point where it
can cover all the integers. Additive combinatorics would consider similar ques-
tions and developments on the integers, residues modulo a prime or any abelian
group.

The interested reader may appreciate the following references and the refer-
ences therein:

• “Additive Number Theory, Inverse problems and the Geometry of Sum-
sets”, M.B. Nathanson, GTM 165, Springer-Verlag (1996).

• “Additive Combinatorics”, T. Tao and V.H. Vu, Cambridge Studies in
advanced mathematics 105, Cambridge University Press.
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First Session

Let A and B be two non-empty finite subsets of Z, Z/pZ or any abelian group,
we define their sumset:

A + B = {a + b | a ∈ A, b ∈ B}.

Its cardinality is invariant by translation, indeed |t + X| = |X| whatever is
the set X, so that

|(t + A) + (s + B)| = |A + B|.

Theorem 1. Let A and B be two non-empty subsets of Z, then:

|A + B| ≥ |A|+ |B| − 1.

One has equality if and only if

• either min{|A|, |B|} = 1,

• or A and B are arithmetical progressions with same difference.

Proof. Denote A = {a1 < a2 < · · · < ad} and B = {b1 < b2 < · · · < b`} then in
the table:

a1 + b1 a2 + b1 . . . ad + b1

a1 + b2 a2 + b2 . . . ad + b2
...

...
...

a1 + b` a2 + b` . . . ad + b`

One has a increasing sequence of length d + `− 1 (d + `− 2 strict inequalities):

a1 + b1 < a2 + b1 < · · · < ad + b1 < ad + b2 < · · · < ad + b`.

So A + B has cardinality at least |A|+ |B| − 1.

In the case of equality, it suffices to consider the second line and one before
last column of this table to have another increasing sequence of length d+ `−1:

a1 + b1 < a2 + b1 < · · · < ad + b1 < ad + b2 < · · · < ad + b`−1 < ad + b`
a1 + b1 < a1 + b2 < · · · < ad−1 + b2 < ad−1 + b3 < · · · < ad−1 + b` < ad + b`
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So these sequences are termwise equal. The second to d-th equalities are:

ai − ai−1 = b2 − b1, i ∈ [2, d].

This proves that A is an arithmetical progressions with difference b2 − b1. And
the d-th to the one before the last equalities are:

ad − ad−1 = bj − bj−1, j ∈ [2, `].

This proves that B is an arithmetical progression with difference ak−ak−1. So,
A and B are arithmetical progressions with same difference.
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Another topic of interest in additive combinatorics is the restricted sumset
defined by:

A+̇B = {a + b | a ∈ A, b ∈ B, a 6= b}.

This can be generalized for sums of more than two terms in the following way:
For a given set A ⊂ Z, and h ∈ N, one consider the h-fold restricted sumset:

h∧A = {a1 + · · ·+ ah | ai ∈ A, ai 6= aj}.

Its cardinality is also invariant by translation, indeed h∧(t+A) = h.t+h∧A,
so that

|h∧(t + A)| = |h∧A|.

The sets h∧A and (|A|−h)∧A are symmetric, indeed (|A|−h)∧A =
(∑

a∈A a
)
−

h∧A, so
|(|A| − h)∧A| = |h∧A|.

Theorem 2. Let A be a non-empty subsets of Z, and h ∈ [0, |A|], then:

|h∧A| ≥ 1 + h(|A| − h).

One has equality if and only if

• either h ∈ {0, 1, |A− 1|, |A|},

• or h = 2, A = {a1 < a2 < a3 < a4} and its 4 elements satisfy a1 + a4 =
a2 + a3,

• or h ∈ [2, |A| − 2], |A| ≥ 5 and A is an arithmetical progression.

Proof. Denote A = {a1 < a2 < · · · < ad}.
Whenever h ∈ {0, 1, |A| − 1, |A|}, the inequality, and the equality is clear.

Notice that h∧A =
(∑

a∈A a
)
− (|A| − h)∧A.

Consider for a couple (i, j) ∈ ([1, d− h]× [0, h]) the sum:

si,j =

h∑
k=0

k 6=h−j

ai+k.

1 i 0j

a1 ai (ai+h−j)ai+h ad

One has

si,j+1 − si,j = ai+h−j − ai+h−(j+1) > 0, j ∈ [0, h− 1],
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and
si,h = si+1,0.

To summarize:

si,0 < si,1 < si,2 < · · · < si,h = si+1,0.

Therefore, one has at least (h + 1)︸ ︷︷ ︸
i=1

+h (d− h− 1)︸ ︷︷ ︸
i∈[2,d−h]

= 1 + h(d − h) elements

in h∧A.

From now on, we consider that the inequality is an equality, so h∧A is exactly
the set of the sums si,j .

Whenever h ∈ {0, 1, |A| − 1, |A|}, the equality is clear.
Suppose that |A| = 4 and h = 2, denote A = {a1, a2, a3, a4}, with a1 < a2 <

a3 < a4, one has

a1 + a2 < a1 + a3 <
a2 + a3
a1 + a4

< a2 + a4 < a3 + a4,

and 1 + 2(4− 2) = 5, so necessarily one has to have a2 + a3 = a1 + a4 and this
condition is also sufficient.

Otherwise |A| ≥ 5 and h ∈ [2, |A| − 2]. Consider the new sums defined for a
couple (i, j) ∈ ([1, d− h− 1]× [2, h]) the sum:

ui,j =

 h−1∑
k=0

k 6=h+1−j

ai+k

+ ai+h+1

=si,j−1 + ai+h+1 − ai+h.

1 i 2j

a1 ai

(
ai+h
+1−j

)
(ai+h) ad

One has:
si,1 < ui,2 < ui,3 < · · · < ui,h < si+1,1.

Since h∧A is composed by only the sums si,j previously defined, one has
si,j = ui,j , or equivalently:

ai+h−j+1 − ai+h−j = ai+h+1 − ai+h.

Or considering that j ∈ [2, h]:

ai+1 − ai = ai+2 − ai+1 = · · · = ai+h−1 − ai+h−2 =︸︷︷︸
(+2 !)

ai+h+1 − ai+h.
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1 i

a1 ai ai+h+1 ad

(1) (i) (i+ h) (d− 1)

=

The remaining case ai+h−ai+h−1 = ai+1−ai is an overlaping of the previous
ones, whenever h ∈ [3, k − 3]:

i ∈ [2, d− h− 1], ai+h − ai+h−1 i = 1, a1+h − ah

= a(i−1)+(h+1) − a(i−1)+h = a2+(h−1) − a2+(h−2)

= a(i−1)+(h−1) − a(i−1)+(h−2) = a2+(h−1) − a2+(h−2)

= ai+h−2 − ai+h−3 = a1+(h−1) − a1+(h−2)

= ai+1 − ai. = a2 − a1.

This proves that A is an arithmetical progression.
Whenever h = 2 (the case h = d − 2 is symmetric), these equalities do not

overlap, one only have ai+1 − ai = ai+3 − ai+1.
Since |A| ≥ 5, the six smallest elements are given by:

a1 + a2 < a1 + a3 <
a2 + a3 < a2 + a4 < a3 + a4
a1 + a4 < a1 + a5 < a2 + a5

< a3 + a5,

therefore a1 + a5 = a2 + a4, or a5 − a4 = a2 − a1 and A is also an arithmetical
progression.
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For a given set A ⊂ Z, one defines the set of subsums:

Σ(A) =

{∑
a∈A′

a | A′ ⊂ A

}
=
∑
a∈A
{0, a} =

|A|⋃
h=0

(h∧A).

Its cardinality is not invariant under translation, but it has a symmetry
property that allows to exchange a element by its opposite. If a ∈ A and
−a /∈ A, consider A′ = A \ {a} ∪ {−a}, since {0,−a} = −a + {0, a} one has
Σ(A′) = −a + Σ(A) and so:

|Σ(A′)| = |Σ(A)|.

Theorem 3. Let A be a non-empty subsets of Z, such that A∩ (−A) = ∅, then:

|Σ(A)| ≥ 1 +
|A|(|A|+ 1)

2
.

One has equality, if and only if

• either |A| ≤ 2,

• or |A| = 3 and its 3 elements satisfy a relation of the type ±a1±a2±a3 = 0,

• or |A| ≥ 4 and the absolute values of the elements of A form an arithmeti-
cal progression.

Proof. The property A∩(−A) = ∅ allows us to consider that A has only distinct
positive elements. Hence A = {a1, . . . , ad}, with 0 < a1 < a2 < · · · < ad.

If |A| = 1, the result is obvious. We will state the result by induction.

Consider that |Σ(a1, . . . , ad−1)| ≥ 1+d(d−1)
2 and denote m = max(Σ(a1, . . . , ad−1) =

a1 + · · ·+ ad−1. One has d new elements greater than m in Σ(A):

m < m+ad−ad−1 < m+ad−ad−2 < · · · < m+ad−a2 < m+ad−a1 < m+ad.

Therefore |Σ(A)| ≥
(

1 + (d−1)d
2

)
+ d = 1 + d(d+1)

2 . This concludes the proof of

the inequality.

From now on, we consider that the inequality is an equality.
Whenever d ≤ 2, the inequality is always an equality, because 0, a1, a2, a1+a2

are pairwise distinct.

Whenever d = 3, the equality is
∣∣∣∑3

i=1{0, ai}
∣∣∣ = 7. In particular, one has

the two sequences of inequalities:

0 < a1 < a2 < a1 + a2
< a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3.

Since a2 < a3, the only necessary and sufficient equality is a3 = a1 + a2.

Whenever d = 4, the equality is
∣∣∣∑4

i=1{0, ai}
∣∣∣ = 11. In particular, one has

the four sequences of inequalities:
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0 < a1 < a2 < a1 + a2

< a3 < a1 + a3 < a2 + a3 < a1 + a2 + a3

< a4 < a1 + a4 < a2 + a4 < a1 + a2 + a4

< a3+a4 < a1+a3+a4 < a2+a3+a4 < a1+a2+a3+a4

One needs the equalities:

a1 + a2 = a3
a1 + a3 = a4
a2 + a3 = a1 + a4.

They can be rewritten as 1 1 −1 0
1 0 1 −1
−1 1 1 −1




a1
a2
a3
a4

 =

 0
0
0

 .

This linear system (of rank 3) can be solved as:

a2 = 2a1
a3 = 3a1
a4 = 4a1.

Finally whenever d > 4, if we suppose that
∣∣∣∑d

i=1{0, ai}
∣∣∣ = 1+(d+(d−1)+

· · ·+1). The inequality
∣∣∣∑d

i=1{0, ai}
∣∣∣ ≥ ∣∣∣∑d−1

i=1 {0, ai}
∣∣∣+d has to be an equality

and necessarily
∣∣∣∑d−1

i=1 {0, ai}
∣∣∣ = 1 + ((d − 1) + · · · + 1). From the induction

hypothesis, one has ai = i.a1, and:

d−1∑
i=1

{0, ai} =

s
0,

d(d− 1)

2

{
.a1.

Therefore,

d∑
i=1

{0, ai} =

s
0,

d(d− 1)

2

{
.a1
⋃s

ad
a1

,
ad
a1

+
d(d− 1)

2

{
.a1.

If ad
a1

is not an integer or ad
a1

> d(d−1)
2 , these two sets are disjoint, one get∣∣∣∑d

i=1{0, ai}
∣∣∣ = d(d−1) + 2. So 1 + d(d+1)

2 = d(d−1) + 2 what implies d = 1 or

d = 2, contradiction. Otherwise ad
a1

is an integer strictly greater than d− 1 and

ad
a1
≤ d(d−1)

2 . But then, one has
∣∣∣∑d

i=1{0, ai}
∣∣∣ = d(d−1)

2 + ad
a1

+ 1. This yields

the equality: 1 + d(d+1)
2 = d(d−1)

2 + ad
a1

+ 1 what naturally implies ad
a1

= d.

Suppose that the hypothesis A ∪ (−A) = ∅ is not satisfied, consider the

example A = [−a, a], so |A| = 2a + 1. One has Σ(A) =
[
−a(a+1)

2 , a(a+1)
2

]
and

|Σ(A)| = a(a + 1) + 1 = |A|−1
2
|A|+1

2 + 1 = |A|2−1
4 + 1 < 1 + |A|(|A|+1)

2 and the
conclusion of the theorem does not hold.
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Second Session

As a sumset can be defined on any group, one can consider the same problems
in a larger group.

To work on a finite group, naturally the size of any sumset will be bounded
by the above by the size of the group, and no lower bound can exceed its
cardinality.

Lemma 1 (Prehistorical Lemma). Let (G,+) be a finite group (non necessarily
abelian), A and B be two non-empty subsets of G, if |A| + |B| > |G| then
A + B = G.

Proof. Let x ∈ G, then the two sets x − B and A have, by the pigeonhole
principle, a common element. So there are a ∈ A and b ∈ B such that x−b = a,
which gives x = a + b ∈ A + B. Since this holds for any x ∈ G, we have
G = A + B.

In any group, another kind of structure, the finite subgroups, will enable
very small sumsets. Indeed:

Exercise 1. Let A be a non-empty finite subset of any group (G,+) (non nec-
essarily abelian), one has

|A + A| = |A|

if and only if A is a coset of a finite subgroup of G.

In the groups Z/pZ, where p is a prime number, the additive results are very
similar, even if the group is finite. These groups share with Zd the property to
have no proper non-trivial finite subgroups.

Since there is no order relation compatible with the addition, one needs new
tools to produce addition results.

Definition of the Dyson e-transform: Consider two sets A and B of an abelian
group G, and e ∈ G, one considers:

A(e) =A ∪ (B + e)

B(e) =B ∩ (A− e).

One has A(e) + B(e) ⊂ A + B and |A(e)|+ |B(e)| = |A|+ |B|. Indeed:

|A|+ |B| =|A|+ |B + e|
=|A ∪ (B + e)|+ |A ∩ (B + e)|
=|A ∪ (B + e)|+ |(A− e) ∩B|
=|A(e)|+ |B(e)|.
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Moreover, if e ∈ A−B then B(e) 6= ∅.

Theorem 4 (Cauchy-Davenport). Let p be a prime number, A and B be two
non-empty subsets of Z/pZ, then:

|A + B| ≥ min{p, |A|+ |B| − 1}.

Proof. If |A|+ |B| > p, whatever x ∈ Z/pZ, the two sets (x−A) and B have by
the pigeonhole principle a common element and so x ∈ A+B and A+B = Z/pZ.

Otherwise |A| + |B| − 1 < p, so min{p, |A| + |B| − 1} = |A| + |B| − 1. The
result is clear whenever min{|A|, |B|} = 1. Consider a counter-example case
(A,B), with min{|A|, |B|} ≥ 2, and |B| minimal.

Consider b1 6= b2 both in B and a ∈ A such that a − b1 /∈ A − b2. (b1 − b2
has order p.) Consider e = a− b1, so b1 ∈ B(e) and b2 /∈ B(e), otherwise there
would be a′ ∈ A such that b2 = a′ − e what implies that a− b1 = a′ − b2.

Since,

|A(e) + B(e)| ≤ |A + B| < |A|+ |B| − 1 = |A(e)|+ |B(e)| − 1,

then (A(e), B(e)) is another counter-example with 0 < |B(e)| < |B| a contra-
diction.

Exercise 2. Prove the generalization, let i ∈ [1, n], Ai finite non-empty subset
of Z/pZ:

|A1 + · · ·+ An| ≥ min

{
p,

n∑
i=1

(|Ai| − 1) + 1

}
.

A direct application of Cauchy-Davenport theorem give a first property in
the flavour of Waring’s conjecture:

Exercise 3. Let p be a prime number, and k a divisor of p− 1, prove that any
x ∈ Z/pZ is the sum of k k-th powers.

The proof of Cauchy-Davenport has been generalized to any cyclic groups
with an extra condition:

Theorem (Chowla). Let n ∈ N \ {0, 1}, A and B be two non-empty subsets of
Z/nZ, such that 0 ∈ B and B \ {0} ⊂ (Z/nZ)

∗
then:

|A + B| ≥ min{n, |A|+ |B| − 1}.
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The critical case of Cauchy-Davenport theorem does, as in the integers,
contain the obvious examples where |A| = 1 or |B| = 1, but also the example,
where |A + B| = p− 1, indeed: If A + B = Z/pZ \ {x}, then the set x−A and
B are disjoint, (it would contradict x /∈ A + B), and |A|+ |B| = |A + B|+ 1 =
(p− 1) + 1 = p, so necessarily B = Z/pZ \A. This holds whatever is the set A.

To establish the full caracterisation of the critical case, one needs the follow-
ing lemma on arithmetic progressions:

Lemma 2. Let p be a prime number, A and B be two subsets of Z/pZ such
that min{|A|, |B|, |Z/pZ r (A + B)|} ≥ 2, and

|A + B| = |A|+ |B| − 1,

if one of the sets A, B, or Z/pZ r (A + B) is an arithmetical progression then
the two others are also arithmetical progressions with the same difference.

Proof. Denote C = Z/pZ r (A + B), one has |C| = p − (|A| + |B| − 1) and
0 /∈ A + B + C. But Cauchy-Davenport Theorem implies that

|A+B+C| ≥ |A+B|+ |C|−1 = (|A|+ |B|−1)+(p−(|A|+ |B|−1))−1 = p−1.

So we have equality |A + B + C| = p− 1, and this implies that also |A + C| =
|A|+ |C| − 1 and |B + C| = |B|+ |C| − 1. The three sets A, B and C play the
same role.

Hence consider that A is an arithmetical progressions with difference r, A =
{a0, a0 + r, . . . , a0 + (a− 1).r}.

If |A| = 2, consider the minimal decomposition of B into arithmetical
progressions of difference r: B =

⋃n
i=1 Bi, one has (Bi ± r) ∩ Bj = ∅, and

|B + {0, r}| = |B|+ n. Since it has the cardinality of |A + B| = |A|+ |B| − 1 =
|B|+ 1, then n = 1 and B is an arithmetical progression of difference r.

If there is no element b in B such that (b + {r, . . . , (a− 1).r}) ∩B = ∅ then
naturally

A + B = a0 + ({0, r, . . . , (a− 1).r}+ B) = Z/pZ.
Otherwise, there is such an element b0 ∈ B, which we will call an end, and the
“final” element b0+a0+(a−1).r admits only one writing as a sum of an element
in A and a element in B. Indeed, if b0 + a0 + (a − 1).r = b′ + a0 + i.r, then
b′ = b0 + (a − 1 − i).r, what can be possible only if i = a − 1 because b0 is an
end, and so b′ = b.

Removing the last element of A: Denoting A′ = A \ {a0 + (a − 1).r}, one
has |A′| = |A| − 1 and

|A′|+ |B| − 1 ≤ |A′ + B| ≤ |A + B| − 1 = |A|+ |B| − 2 = |A′|+ |B| − 1.

In particular, |A′ + B| = |A′| + |B| − 1 and by induction, B is an arithmetical
progression of difference r.

Theorem 5 (Vosper). Let p be a prime number, A and B be two subsets of
Z/pZ such that min{|A|, |B|, |Z/pZ r (A + B)|} ≥ 2, if

|A + B| = |A|+ |B| − 1,

then A and B are arithmetical progressions with same difference.
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Proof. If one of these sets has cardinality 2, the result is easy. We will then
consider that min{|A|, |B|, |Z/pZ r (A + B)|} > 2.

From the previous lemma, it suffices to prove that Z/pZ r (A + B) is an
arithmetical progression. We will prove that a proper e-transform can be done
to (A,B), so that the complementary of A+B remains unchanged and the sets
B(e) satisfy 2 ≤ |B(e)| < |B|.

If we consider a e-transform of a critical pair (A,B), one has:

|A|+ |B| − 1 = |A(e)|+ |B(e)| − 1 ≤ |A(e) + B(e)| ≤ |A + B| = |A|+ |B| − 1,

therefore all these inequalities are equalities. In particular A+B = A(e)+B(e).
Let b0 ∈ B, define X = {e ∈ A − b0 | B(e) 6= B}, therefore b0 ∈ B(e) and

B(e) is not empty whenever e ∈ X, (and |B(e)| < |B|).
Suppose that e ∈ (A− b0) \X = Y , therefore B(e) = B and so B ⊂ A− e,

or e + B ⊂ A, then Y + B ⊂ A, and by Cauchy-Davenport:

|A| ≥ |Y + B|
≥ |Y |+ |B| − 1

= |A| − |X|+ |B| − 1

so

|X| ≥ |B| − 1 ≥ 2.

Now let us prove that for some e ∈ A− b0, one has |B(e)| ≥ 2. Suppose the
opposite: for all e ∈ A − b0, B(e) = B ∩ (A − e) = {b0}, therefore (X + (B \
{b0})) ∩A = ∅, so (X + (B \ {b0})) ⊂ (A + B) \A, and by Cauchy-Davenport,
one has:

|X|+ |B| − 2 = |X|+ (|B| − 1)− 1 ≤ |X + (B \ {b0})| ≤ |A+B| − |A| = |B| − 1,

what gives a contradiction to |X| ≥ 2.
After several applications of e-transforms, one would reach a situation where

|B̃| = 2 and |Ã+ B̃| = |Ã|+ |B̃|−1 < p−1, so Ã+ B̃ = A+B is an arithmetical
progression, and so are A and B by the previous lemma.

An interesting application of these two theorems is the following:
Proving that, whenever k | p− 1 and k 6= p−1

2 , the set of k-th powers is not
an arithmetic progression, Then its consecutive sumsets have to be even greater
than what Cauchy-Davenport asserts. So one can prove the following:

Theorem (Chowla-Mann-Straus). Let p be a prime number, if k < p−1
2 , then

every element of Z/pZ can be written as a sum of
⌈
k+1
2

⌉
k-th powers.

An application of this last theorem is:

Exercise 4. Let n be an odd integer, consider for some ` ∈ N∗, the sets of
sequences (a1, . . . , a`) ∈ (Z/nZ)

∗
. Prove that for any of these seqences, any

x ∈ Z/nZ admits a writing of the type:

x = ±a1 ± a2 · · · ± a`,

if and only if ` ≥ n− 1.
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Third Session

Today, we will consider a larger context, we will consider sumsets in any abelian
group. And we will use this larger scope to prove a deeper structural result on
the integers.

The eventual presence of finite subgroups have to be taken into account, we
will need the following notion:

For a given set X ⊂ G, one defines its period:

H(X) = {g ∈ G | g + X = X},

it is a simple exercise to show that, H(X) is a subgroup of G (finite if X is
finite).

Lemma 3. Let C = C1∪· · ·∪Cn be an union of n non empty sets of an abelian
group G, then:

min
i∈{1,...,n}

{|Ci|+ |H(Ci)|} ≤ |C|+ |H(C)|.

Proof. We prove this lemma by induction on n. Whenever n ≥ 3, the induction
step is obvious:

min
i∈{1,...,n}

{|Ci|+ |H(Ci)|}

= min{ min
i∈{1,...,n−1}

{|Ci|+ |H(Ci)|}, |Cn|+ |H(Cn)|}

≤min

{∣∣∣∣∣
n−1⋃
i=1

Ci

∣∣∣∣∣+

∣∣∣∣∣H
(
n−1⋃
i=1

Ci

)∣∣∣∣∣ , |Cn|+ |H(Cn)|

}
≤|C|+ |H(C)|.

It remains to prove the lemma for n = 2. If one of these sets is C itself, the
claim is obvious, otherwise one can consider that the sets C1 and C2 are proper
subsets of C. Denote Hi the period of Ci, for i ∈ {1, 2}, and hi = |Hi| and H
the period of C.

We may assume that H1 ∩ H2 = {0}, since otherwise one can reduce the
problem modulo the subgroup H1 ∩H2. We denote H = H1 + H2, |H| = h1h2.

We want to prove that for some i ∈ {1, 2}.

|C \ Ci| ≥ hi − |H|.

Let us consider a non-empty intersection of C with a H-coset, x + H. It
intersects C1 on k1 H1-cosets, so 0 ≤ k1 ≤ h2, and C2 on k2 H2-cosets, so
0 ≤ k2 ≤ h1.
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Since Ci is Hi-periodic and that each pair of a H1-coset and a H2-coset
intersect in one element, one has:

|(C \ C2) ∩ (x + H)| = k1(h1 − k2),

|(C \ C1) ∩ (x + H)| = k2(h2 − k1).

• If there is a coset such that 0 < k1 < h2 and 0 < k2 < h1, then one has:

|C \ C2||C \ C1| ≥ k1k2(h1 − k2)(h2 − k1) ≥ (h1 − 1)(h2 − 1).

And so one of the two |C \ Ci| has to be greater than hi − 1.

• Otherwise, consider that there is a coset such that k1 = 0 and k2 > 0 and
another one such that k2 = 0 and k1 > 0. One has:

|C \ C2| ≥ h1,

|C \ C1| ≥ h2.

So
|C \ C2||C \ C1| ≥ h1h2,

what is even stronger the previously.

• Finally in the last case, whenever there is no H-coset with k1 = 0 (or
symmetrically k2 = 0). The set C intersect an H-coset in either the whole
coset, or k1 < h1 and k2 < h2, what implies that k2 = 0, therefore C is an
union of H1-cosets. Thus H1 < H and h1 − |H| ≤ 0, which proves that

|C \ C1| ≥ h1 − |H|.

Theorem 6 (Kneser). Let A and B be two non-empty finite subsets of an
abelian group (G,+), one has:

|A + B| ≥ |A + H|+ |B + H| − |H|,

where H = H(A + B) is the period of A + B.

Proof. Let us now prove the theorem, let us consider for any b ∈ B, the set of
pairs of (A′, B′) such that:

A ⊂ A′, b ∈ B′

A′ + B′ ⊂ A + B

|A′|+ |B′| = |A + H|+ |B + H|.

The pair (A + H,B + H) does satisfy these conditions, so the set is not empty.
Among all these pairs, let us consider a pair (Ab, Bb) with |Ab| maximal

(and so |Bb| minimal), a ∈ Ab and define e = a− b. We apply the e-transform
to (Ab, Bb) to obtain (Ab(e), Bb(e)). The properties of the e-transform imply
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that (Ab(e), Bb(e)) still satisfy the above conditions. Necessarily, since |Ab| is
maximal, one has Ab(e) = Ab. This means that e + Bb = a − b + Bb ⊂ Ab for
any a ∈ Ab, therefore

Ab ⊂ Ab + Bb − b ⊂ Ab.

We then have Bb − b ⊂ H(Ab) = H(Ab + Bb) and |Ab| ≤ |Ab + Bb|, so:

|A + H|+ |B + H| = |Ab|+ |Bb| ≤ |Ab + Bb|+ |H(Ab + Bb)|.

Since this inequality is valid whatever the element b ∈ B, and that the sets
Ab + Bb have union A + B, one has from the previous lemmas:

|A + H|+ |B + H| ≤ min
b∈B
{|Ab + Bb|+ |H(Ab + Bb)|} ≤ |A + B|+ |H|.

Exercise 5. Proof the equivalence with this second formulation of Kneser’s
theorem:

Theorem 7 (Kneser). Let A and B be two non-empty finite subsets of an
abelian group (G,+), if |A + B| < |A|+ |B| − 1 then:

|A + B| = |A + H|+ |B + H| − |H|,

where H = H(A + B) is the period of A + B.
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From this result, that holds in the general context of any abelian group,
one can go back in the integers and extend the first theorem of this course (the
critical case of Theorem 1).

Theorem 8 ((3k − 4)-Freiman). Let A be a finite non-empty subset of Z, if

|A + A| ≤ 3|A| − 4

then A is contained in an arithmetical progression of length at most |A + A| −
|A|+ 1.

Proof. Up to dilatation and translation, one can consider that gcd(A) = 1,
min(A) = 0. Denote m = max(A).

One considers A ⊂ Z/mZ, its cardinality is |A| = |A| − 1.
The sumset A + A is the image of A + A. Since 0, m and m + m are equal

modulo m, and 0 + a and m + a are equal modulo m for a ∈ A r {0,m}, one
has: |A + A| ≤ |A + A| − ((|A| − 2) + 2) = |A + A| − |A| ≤ 2|A| − 4 = 2|A| − 2.

From Kneser’s theorem, one deduce that A + A is periodic, with an non-
trivial period H = dZ/mZ < Z/mZ, with d | m. and that:

|A + A| = 2|A + H| − |H|.

• If A + A = Z/mZ, then m ≤ |A + A| − |A|, what implies that m + 1 ≤
|A+A|− |A|+1. And A is included in the arithmetical progression [0,m].

• If A + A 6= Z/mZ, denote d, the divisor of m such that H = d (Z/mZ) is
the period of A+A. In this case, one have d |

6=
m and therefore, A intersects

H and at least another classe modulo H since otherwise all the elements
of A would be multiples of m

d , which is impossible because gcd(A) = 1.

Consider that A intersect 1 + u classes modulo H, with u ≥ 1. Denote
A0 = A∩H, and A1, . . . , Au the other classes, with |Au| minimal. These
classes are almost full, indeed 2|A+H|−|H| < 2|A|−1, therefore |A+H|−
|A| < 1

2 (|H| − 1) and whatever is the class Ai, one has |Ai + H| − |Ai| <
1
2 (|H| − 1). Consider now the sets of integers Ai of all the elements in A

whose images are in Ai. The only cardinal difference is |A0| = |A0| + 1.
Since |A + A| = |A + H| − |H| = 2(u + 1)|H| − |H| = (2u + 1)|H| counts
at least 2u + 1 classes, lets us denote Aα(i) + Aβ(i) for i ∈ [1, u], u classes

in (A + A) \A.

Since the classes are disjoint, the above sets are disjoint and we have:
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|A + A| ≥
u∑
i=0

|A0 + Ai|+
u∑
i=1

|Aα(i) + Aβ(i)|

One isolate the first term of the first sum and the u-th term of both sums:

≥|A0 + A0|+

(
u−1∑
i=1

|A0 + Ai|

)
+ |A0 + Au|

+

(
u−1∑
i=1

|Aα(i) + Aβ(i)|

)
+ |Aα(u) + Aβ(u)|

≥(2|A0| − 1) +

(
u−1∑
i=1

|(0 + Ai) ∪ (m + Ai)|

)
+ (|A0|+ |Au| − 1)

+

(
u−1∑
i=1

|Aα(i) + Aβ(i)|

)
+ (|Aα(u)|+ |Aβ(u)| − 1)

Since the classes are full |Aα(i) + Aβ(i)| ≥ |H| and since |Au| is minimal,
|Aα(u)| ≥ |Au| and |Aβ(u)| ≥ |Au|:

≥(2|A0| − 1) +

(
2

u−1∑
i=1

|Ai|

)
+ (|A0|+ |Au| − 1) + (u− 1)|H|+ (2|Au| − 1)

≥2|A| − 3 + (|A0|+ |Au|+ (u− 1)|H|)

And finally since |A| = |A0|+
(∑u−1

i=1 |Ai|
)

+|Au| ≤ |A0|+(u−1)|H|)+|Au|:

≥3|A| − 3.

One reaches a contradiction and the end of the proof.

This result is optimal in the sense that the set

Ax = [0, a− 1] ∪ [x, x + b− 1]

with x > a− 2 + max{a, b}, it has cardinality a + b and sumset:

Ax + Ax = [0, 2a− 2] ∪ [x, x + a + b− 2] ∪ [2x, 2x + 2b− 2]

of cardinality (2a− 1) + (a + b− 1) + (2b− 1) = 3(a + b)− 3, and it cannot be
included in any small arithmetical progression since x can be as large as desired.
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