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CAGES

(d, g)-Cage: smallest d-regular graph of girth g

Lower bound on order of a (d, g)-cage:

girth g = 2r order
2(d−1)r−2

d−2

girth g = 2r + 1 order
d(d−1)r−2

d−2

Examples with equality:

Petersen, Heawood, Coxeter-Tutte, Hoffman-Singleton . . .





Oriented Graph: no loops, parallel arcs or directed 2-cycles

We consider only oriented graphs.



DIRECTED CAGES

Directed (d, g)-cage:

smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

For all d ≥ 1 and g ≥ 2, the order of a directed (d, g)-cage is
d(g − 1) + 1

Example:

the dth power of a directed cycle of length d(g − 1) + 1



Conjectured directed (4, 4)-cage
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Conjectured directed (4, 4)-cage



Conjectured directed (4, 4)-cage



Conjectured directed (4, 4)-cage



COMPOSITIONS

The Behzad-Chartrand-Wall Conjecture would imply that directed
cages of girth g are closed under composition.

Example: g = 4

Conjectured directed (5, 4)-cage



Reformulation:

Behzad-Chartrand-Wall Conjecture 1970

Every d-diregular digraph on n vertices has a directed cycle of
length at most ⌈n/d⌉



VERTEX-TRANSITIVE GRAPHS

Hamidoune:

The Behzad-Chartrand-Wall Conjecture is true for vertex-
transitive digraphs.



VERTEX-TRANSITIVE GRAPHS

Hamidoune:

The Behzad-Chartrand-Wall Conjecture is true for vertex-
transitive digraphs.

Mader:

In a d-diregular vertex-transitive digraph, there are d directed
cycles C1, . . . , Cd passing through a common vertex, any two
meeting only in that vertex.



VERTEX-TRANSITIVE GRAPHS



So
d

∑

i=1

|V (Ci)| ≤ n + d − 1

One of the cycles Ci is therefore of length at most

n + d − 1

d
=

⌈n

d

⌉

Thus the Behzad-Chartrand-Wall Conjecture is true for vertex-
transitive graphs.



VERTEX-TRANSITIVE GRAPHS

Mader:

In a d-diregular vertex-transitive digraph, there are d directed
cycles C1, . . . , Cd passing through a common vertex, any two
meeting only in that vertex.

Hamidoune:

Short proof of Mader’s theorem.



NEARLY DISJOINT DIRECTED CYCLES

Hoáng-Reed Conjecture 1987

In a d-diregular digraph, there are d directed cycles C1, . . . , Cd

such that Cj meets ∪
j−1
i=1 Ci in at most one vertex, 1 < j ≤ d



forest of d directed cycles

As before, one of these cycles would be of length at most ⌈n
d⌉.



Question: Is there a star of such cycles?

Mader: Not if d ≥ 8

Question: Is there a linear forest of such cycles?

Mader: No

The composition
−→
Cd[

−−−→
Cd−1] is d-regular (in fact, vertex-

transitive) but contains no path of d directed cycles, each cycle
(but the first) meeting the preceding one in exactly one vertex.



d = 4

no path of four directed cycles



d = 4

no path of four directed cycles



d = 4

no path of four directed cycles



PRESCRIBED MINIMUM OUTDEGREE

Caccetta-Häggkvist Conjecture 1978

Every digraph on n vertices with minimum outdegree d has a
directed cycle of length at most ⌈n/d⌉

Caccetta and Häggkvist: d = 2

Hamidoune: d = 3

Hoáng and Reed: d = 4, 5

Shen: d ≤
√

n/2



Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree d has a
directed cycle of length at most 2n/d.



Proof by Induction on n:

v

d≥ d

N−(v) N+(v)



Proof by Induction on n:

v

d≥ d

N−(v) N+(v)N−−(v)



Proof by Induction on n:

v

d≥ d

N−(v) N+(v)N−−(v)
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Proof by Induction on n:

v

d≥ d

N−(v) N+(v)N−−(v)



Proof by Induction on n:

v

d≥ d

N−(v) N+(v)N−−(v)





Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree d has a
directed cycle of length at most (n/d) + 2500

Shen:

Every digraph on n vertices with minimum outdegree d has a
directed cycle of length at most (n/d) + 73

what does this say when d = ⌈n/3⌉?

Every digraph on n vertices with minimum outdegree ⌈n/3⌉ has
a directed cycle of length at most 76

but the bound in the Caccetta–Häggkvist Conjec-

ture is ⌈n/d⌉ = 3 !



Caccetta-Häggkvist Conjecture for triangles

Every digraph on n vertices with minimum outdegree ⌈n/3⌉
has a directed triangle



SECOND NEIGHBOURHOODS

Seymour’s Second Neighbourhood Conjecture 1990

Every digraph (without directed 2-cycles) has a vertex with at
least as many second outneighbours as first outneighbours



v

N+(v) N++(v)



The Second Neighbourhood Conjecture implies the triangle case

d =
⌈n

3

⌉

of the Behzad-Chartrand-Wall Conjecture



v

d d
≥ d

N−(v) N+(v) N++(v)

If there is no directed triangle:

n ≥ 3d + 1



Fisher:

The Second Neighbourhood Conjecture is true for tournaments.

Proof by Havet and Thomassé using median orders.

Median order: linear order v1, v2, . . . , vn maximizing

|{(vi, vj) : i < j}|



v1 vi vj vn



Property of median orders:

For any i < j, vertex vj is dominated by at least half of the
vertices vi, vi+1, . . . , vj−1.

v1 vi vj vn

If not, move vj before vi.

Claim: |N++(vn)| ≥ |N+(vn)|



vn

vn

vn



vi vj vn



Roland Häggkvist



Paul Seymour
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