THE CACCETTA-HÄGGKVIST CONJECTURE

Adrian Bondy

Journée en hommage à Yahya Hamidoune UPMC, Paris, March 29, 2011

Yahya Hamidoune

CAGES

(d, g)-CAGE: \quad smallest d-regular graph of girth g

Lower bound on order of a (d, g)-cage:

$$
\begin{array}{ll}
\text { girth } g=2 r & \text { order } \frac{2(d-1)^{r}-2}{d-2} \\
\text { girth } g=2 r+1 & \text { order } \frac{d(d-1)^{r}-2}{d-2}
\end{array}
$$

Examples with equality:
Petersen, Heawood, Coxeter-Tutte, Hoffman-Singleton ...

Oriented Graph: no loops, parallel arcs or directed 2-cycles

We consider only oriented graphs.

DIRECTED CAGES

Directed (d, g)-CAGE:
smallest d-diregular digraph of directed girth g

Behzad-Chartrand-Wall Conjecture 1970

For all $d \geq 1$ and $g \geq 2$, the order of a directed (d, g)-cage is

$$
d(g-1)+1
$$

Example:

the d th power of a directed cycle of length $d(g-1)+1$

Conjectured directed $(4,4)$-CAGE

Conjectured directed $(4,4)$-CAGE

Conjectured directed $(4,4)$-CAGE

Conjectured directed $(4,4)$-CAGE

Conjectured directed $(4,4)$-CAGE

COMPOSITIONS

The Behzad-Chartrand-Wall Conjecture would imply that directed cages of girth g are closed under composition.

ExAmple: $g=4$

Conjectured directed (5, 4)-CAGE

Reformulation:

Behzad-Chartrand-Wall Conjecture 1970

Every d-diregular digraph on n vertices has a directed cycle of length at most $\lceil n / d\rceil$

VERTEX-TRANSITIVE GRAPHS

Hamidoune:

The Behzad-Chartrand-Wall Conjecture is true for vertextransitive digraphs.

VERTEX-TRANSITIVE GRAPHS

Hamidoune:

The Behzad-Chartrand-Wall Conjecture is true for vertextransitive digraphs.

Mader:

In a d-diregular vertex-transitive digraph, there are d directed cycles C_{1}, \ldots, C_{d} passing through a common vertex, any two meeting only in that vertex.

VERTEX-TRANSITIVE GRAPHS

So

$$
\sum_{i=1}^{d}\left|V\left(C_{i}\right)\right| \leq n+d-1
$$

One of the cycles C_{i} is therefore of length at most

$$
\frac{n+d-1}{d}=\left\lceil\frac{n}{d}\right\rceil
$$

Thus the Behzad-Chartrand-Wall Conjecture is true for vertextransitive graphs.

VERTEX-TRANSITIVE GRAPHS

Mader:

In a d-diregular vertex-transitive digraph, there are d directed cycles C_{1}, \ldots, C_{d} passing through a common vertex, any two meeting only in that vertex.

Hamidoune:

Short proof of Mader's theorem.

NEARLY DISJOINT DIRECTED CYCLES

Hoáng-Reed Conjecture 1987

In a d-diregular digraph, there are d directed cycles C_{1}, \ldots, C_{d} such that C_{j} meets $\cup_{i=1}^{j-1} C_{i}$ in at most one vertex, $1<j \leq d$

FOREST OF d DIRECTED CYCLES

As before, one of these cycles would be of length at most $\left\lceil\frac{n}{d}\right\rceil$.

Question: Is there a star of such cycles?
Mader: Not if $d \geq 8$

Question: Is there a linear forest of such cycles?
Mader: No
The composition $\overrightarrow{C_{d}}\left[\overrightarrow{C_{d-1}}\right]$ is d-regular (in fact, vertextransitive) but contains no path of d directed cycles, each cycle (but the first) meeting the preceding one in exactly one vertex.

$$
d=4
$$

NO PATH OF FOUR DIRECTED CYCLES

$$
d=4
$$

NO PATH OF FOUR DIRECTED CYCLES

$$
d=4
$$

NO PATH OF FOUR DIRECTED CYCLES

PRESCRIBED MINIMUM OUTDEGREE

Caccetta-Häggkvist Conjecture 1978

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most $\lceil n / d\rceil$

Caccetta and HÄGgkvist: $d=2$
Hamidoune: $d=3$
Hoáng and Reed: $d=4,5$
SHEN: $d \leq \sqrt{n / 2}$

Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most $2 n / d$.

Proof by Induction on n :

Chvátal and Szemerédi:

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most $(n / d)+2500$

Shen:

Every digraph on n vertices with minimum outdegree d has a directed cycle of length at most $(n / d)+73$

WHAT DOES THIS SAY WHEN $d=\lceil n / 3\rceil$?
Every digraph on n vertices with minimum outdegree $\lceil n / 3\rceil$ has a directed cycle of length at most 76
but the bound in the Caccetta-HÄgakvist ConjecTURE IS $\lceil n / d\rceil=3$!

Caccetta-Häggkvist Conjecture for triangles

Every digraph on n vertices with minimum outdegree $\lceil n / 3\rceil$ has a directed triangle

SECOND NEIGHBOURHOODS

Seymour's Second Neighbourhood Conjecture 1990

Every digraph (without directed 2-cycles) has a vertex with at least as many second outneighbours as first outneighbours

The Second Neighbourhood Conjecture implies the triangle case

$$
d=\left\lceil\frac{n}{3}\right\rceil
$$

of the Behzad-Chartrand-Wall Conjecture

If there is no directed triangle:

$$
n \geq 3 d+1
$$

Fisher:

The Second Neighbourhood Conjecture is true for tournaments.

Proof by Havet and Thomassé using median orders.
Median order: linear order $v_{1}, v_{2}, \ldots, v_{n}$ maximizing

$$
\left|\left\{\left(v_{i}, v_{j}\right): i<j\right\}\right|
$$

Property of median orders:
For any $i<j$, vertex v_{j} is dominated by at least half of the vertices $v_{i}, v_{i+1}, \ldots, v_{j-1}$.
v_{1}
v_{i}
v_{j}
v_{n}

If not, move v_{j} before v_{i}.

Claim: $\left|N^{++}\left(v_{n}\right)\right| \geq\left|N^{+}\left(v_{n}\right)\right|$

Roland HÄggkvist

Paul Seymour

Vašek Chvátal

Endre Szemerédi

Stephan Thomassé

Yahya Hamidoune

References

M. Behzad, G. Chartrand and C.E. Wall, On minimal regular digraphs with given girth, Fund. Math. 69 (1970), 227-231.
J.A. Bondy, Counting subgraphs: a new approach to the Caccetta-Häggkvist conjecture, Discrete Math. 165/166 (1997), 71-80.
L. Caccetta and R. Häggkvist, On minimal digraphs with given girth, Congressus Numerantium 21 (1978), 181-187.
V. Chvátal and E. Szemerédi, Short cycles in directed graphs, J. Combin. Theory Ser. B 35 (1983), 323-327.
D.C. Fisher, Squaring a tournament: a proof of Dean's conjecture. J. Graph Theory 23 (1996), 43-48.
Y.O. Hamidoune, Connectivity of transitive digraphs and a combinatorial property of finite groups, Combinatorics 79 (Proc. Colloq., Univ. Montréal, Montréal, Qué., 1979), Part I. Ann. Discrete Math. 8 (1980), 61-64.
Y.O. Hamidoune, Extensions of the Moser-Scherck-Kemperman-Wehn Theorem, http://arxiv.org/abs/0902.1680v2.
F. Havet and S. Thomassé. Median orders of tournaments: a tool for the second neighborhood problem and Sumner's conjecture. J. Graph Theory 35 (2000), 244-256.
C.T. Hoáng and B. Reed, A note on short cycles in digraphs, Discrete Math. 66 (1987) 103-107.
W. Mader, Existence of openly disjoint circuits through a vertex, J. Graph Theory 63 (2010), 93-105.
A.A. Razborov, On the minimal density of triangles in graphs.
P.D. Seymour, personal communication, 1990.
J. Shen, Directed triangles in digraphs, J. Combin. Theory Ser. B 74 (1998) 405-407.
B. Sullivan, A summary of results and problems related to the Caccetta-Häggkvist Conjecture, American Institute of Mathematics, Preprint 2006-13.

