Quelques applications de la méthode isoperimétrique

Oriol Serra
Univ. Politècnica de Catalunya
Barcelona

Journée en Hommage à Yahya ould Hamidoune

The sumset problem

The estimation of cardinality of sumsets is a central tool in several problems. Yahya used this approach, among others, in

- Network reliability.
- Cacceta-Häggkvist conjecture.
- ZeroSum problems.
- Distinct sums.
- Complete sets.
- Frobenius problem.
- Sum-free sets.
- Additive basis.
- Diagonal forms.
- Dicks-Ivanov conjecture.
- Pollard theorem.
- and...Estimation of cardinality of sumsets.

A driving idea: the isoperimetric method

- $\Gamma \subset V \times V$ a relation (graph=directed graph=relation; undirected=symmetric; with loops=reflexive).
- $\Gamma(X)$: neighborhood of X.
- $\partial(X)=\Gamma(X) \backslash X$: boundary of X.

The isoperimetric problem: lower bounds of $|\partial X|$ in terms of $|X|$.

- $\kappa(X)=\min \{|\partial X|: X \subset V, \min \{|X|,|V \backslash \Gamma(X)|\}>0\}$.
- F fragment if $|\partial F|=\kappa(X)$.
- $\mu(\Gamma)$ cardinality of smallest fragment.
- Atom: fragment of minimal cardinality.

Theorem (Hamidoune, 1977)

Let Γ be a reflexive relation with a transitive automorphism group. Suppose that $\mu(\Gamma) \leq \mu\left(\Gamma^{-1}\right)$. Then the atoms form a set of blocks of imprimitivity. In particular, the atom of a Cayley graph containing the unity is a subgroup.

Early applications

Theorem (Olson, 1976)

Let G be a group and $A, B \subset G$. We have

$$
|A B| \geq \min \{|A K|,|A|+|B| / 2\},
$$

where $K=\left\langle B B^{-1}\right\rangle$.

- $|A B|=\Gamma(A)$ in $\Gamma=\operatorname{Cay}(G, B)$ (with $1 \in B)$.
- $|A B|-|A| \geq \kappa(\Gamma)$ unless $A B=A K$.
- U atom is a subgroup: $|A B|-|A| \geq|U B|-|U| \geq|U B| / 2 \geq|B| / 2$ (B is not contained in U.)
- The bound is tight and the extremal examples are given.
- Analogous argument shows that $\kappa(\Gamma) \geq r / 2$ for vertex transitive graphs with degree r.
- Applies to infinite vertex transitive graphs.

Early applications

Theorem

In a connected arc-transitive graph the edge-connectivity equals the degree.

- Suppose that an atom U has $|U|>1$.
- Г[U] has inner arcs.
- The automorphism sending an inner arc to a boundary arc contradicts atoms being blocks of imprimitivity.

Erdős -Heilbronn on subset sums

G abelian group with order n.

- Set of subset sums of $S \subset G: \Sigma(S)=\left\{\Sigma_{x \in T^{x}}: T \subset S\right\}$.
- $S=\left\{a_{1}, \ldots, a_{k}\right\}, \Sigma(S)=\left\{0, a_{1}\right\}+\cdots\left\{0, a_{t}\right\}$
- Olson constant $O I(G)=\min \left\{t: 0 \in \Sigma(S), \forall S \in\binom{G}{t}\right\}$.

Conjecture (Erdős-Heilbronn, 1964)

$O I(G) \leq c n^{1 / 2}$.

- If $G=\mathbb{Z} / p \mathbb{Z}$ a zero subsetsum free is $1,2, \ldots, \sqrt{2 p}$
- Szeméredi (1970): proves the conjecture. (Erdős: $c=\sqrt{2}$).
- Olson (1975): $O I(G) \leq 2 \sqrt{n}$.
- Hamidoune and Zémor (1996): $O(\mathbb{Z} / p \mathbb{Z}) \leq \sqrt{2 p}+\ln p$ (p prime) and $O I(G) \leq \sqrt{2 n}+O\left(n^{1 / 3} \ln n\right)$.
- Nguyen, Szeméredi, Vu (2008): $O I(G)=\sqrt{2 p}$ (for sufficiently large prime p.)
- Balandraud (2009): OI($\mathbb{Z} / p \mathbb{Z})=\max \{k: k(k+1) / 2<p\}$ (Selfridge conjecture)

Complete sets and Diderrich conjecture

G abelian group with order n.

- $S \subset G, \Sigma(G)=\left\{\Sigma_{x \in T} x: T \subset S\right\}$.
- S is complete if $\Sigma(S)=G$.
- critical number $c(G)=\min \left\{t: \Sigma(S)=G, \forall S \in\binom{G}{t}\right\}$.

For p prime,

- Erdős-Heilbronn (1964) $c(G) \leq \sqrt{54 p}$.
- Dias da Silva, Hamidoune (1994): $c(G) \leq \sqrt{4 p-7}+1$ (tight).
- Diderrich (1975) If $n=p q, p \leq q, q+p-2 \leq c(G) \leq q+p-1$ (both tight).

Complete sets and Diderrich conjecture

G abelian group with order n.

- $S \subset G, \Sigma(G)=\left\{\Sigma_{x \in T} x: T \subset S\right\}$.
- S is complete if $\Sigma(S)=G$.
- critical number $c(G)=\min \left\{t: \Sigma(S)=G, \forall S \in\binom{G}{t}\right\}$.

Conjecture (Diderrich (1975))

If n / p is not a prime then $c(G)=(n / p)+p-2$. (p smallest divisor of n)

- Gao (1999): proof for large primes.
- Lipkin (1999): asymptotic proof.
- Hamidoune, Lladó, S. (1999): proof for $p=3$.
- Gao, Hamidoune (1999): proof of Diderrich conjecture.
- Gao, Hamidoune, Lladó, S. (2001): Characterization of extremal sets well beyond the critical value:
There are a subgroup H of order n / p and $y \notin H$ such that

$$
(H \backslash 0) \subset S \text { and } S \subset H \cup(y+H) \cup(-y+H)
$$

Complete sets and Diderrich conjecture

G abelian group with order n.

- $S \subset G, \Sigma(G)=\left\{\Sigma_{x \in T x}: T \subset S\right\}$.
- S is complete if $\Sigma(S)=G$.
- critical number $c(G)=\min \left\{t: \Sigma(S)=G, \forall S \in\binom{G}{t}\right\}$.
- Vu (2007): If $S \subset \mathbb{Z}_{n}^{*}$ then S is complete for $|S| \geq c \sqrt{n}$.
- Hamidoune, Lladó, S. (2008): If $S \subset \mathbb{Z}_{n}^{*}$ then S is complete for $|S| \geq 2 \sqrt{n-4}+1$.

Use Chowla's theorem: If $A \subset \mathbb{Z}_{n}$ and $(B \backslash\{0\}) \subset \mathbb{Z}_{n}^{*}$ then $|A+B| \geq \min \{n,|A|+|B|-1\}$ (and the Erdős average technique.)

A generalized Cauchy-Davenport inequality

M acyclic semigroup (associative law with identity): $x y=1$ implies $x=y=1$ and $x y=x$ implies $y=1$.
Examples: Subsets or sequences of nonnegative integers with addition: \mathcal{A}, B families of subsets,

$$
\mathcal{A}+\mathcal{B}=\{A+B: A \in \mathcal{A}, B \in \mathcal{B}\} .
$$

Theorem (Cilleruelo, Hamidoune, S. (2010))

Let \mathcal{A}, B be two families of subsets: the Cauchy-Davenport inequality

$$
|\mathcal{A}+\mathcal{B}| \geq|\mathcal{A}|+|\mathcal{B}|-1,
$$

holds if and only if one of the families is a chain in the poset $A<B$ iff $\min (A)<\min (B)$ or $\min (A)=\min (B)$ and $\max (A)<\max (B)$.

Uses the theory of atoms in the more abstract context of acyclic semigroups (and its graphs).

A theorem of Pollard

- G a group, $A, B \subset G$.
- $N_{i}(A, B)$ set of elements in $A B$ with at least i representations.

Theorem (Pollard (1974))

Let $A, B \subset \mathbb{Z}_{p}$. If $t \leq \min \{|A|,|B|\}$ then

$$
\sum_{i \leq t}\left|N_{i}(A, B)\right| \geq t \min \{p,|A|+|B|-t\} .
$$

In connection with the Hanna Neuman conjecture, the following was proved:

Theorem (Dicks, Ivanov (2008))

Let A, B subsets of a group $G, \min \{|A|,|B|\} \geq 2$. Let $h \geq 3$ the smallest size of a subgroup of G.

$$
\left|N_{1}(A, B)\right|+\left|N_{2}(A, B)\right| \geq 2 \min \{h,|A|+|B|-2\} .
$$

A theorem of Pollard

- G a group, $A, B \subset G$.
- $N_{i}(A, B)$ set of elements in $A B$ with at least i representations.

Conjecture (Dicks, Ivanov (2008))

One of the following conditions holds:
(i) $\left|N_{1}(A, B)\right|+\left|N_{2}(A, B)\right| \geq 2(|A|+|B|-2)$,
(ii) $N_{2}(A, B)$ contains a left coset with cardinality ≥ 3.

- Grynkiewicz (2010): Proof for the abelian case (with stronger conclussion).
- Hamidoune, S. (unpublished): Proof for the abelian case, extension to $N_{t}(A, B)$ and proof of the conjecture if $1 \neq A \cap B$ and $A \neq A B \neq B$.

A question of Tao

- G (nonabelian) group.
- $X \subset G$ finite subset.

Proposition (Weak Kneser theorem (Freiman, 1973; Tao, 2009))

 If $\left|X^{-1} X\right|,\left|X X^{-1}\right| \leq c|X|$ and $1 \leq c \leq(1+\sqrt{5}) / 2$ then X is contained in a (small) number $\alpha(c)$ of cosets of some finite subgroup.'It looks like one should be able to get a bit more structural information on than is given by the above conclusion, and I doubt the golden ratio is sharp either (the correct threshold should be 2, in analogy with the commutative Kneser theorem' (Terence Tao)

A question of Tao

- G (nonabelian) group.
- $X \subset G$ finite subset.

Theorem (Hamidoune (2010))

- If

$$
\left|S^{-1} S\right| \leq 2|S|-2
$$

then $S^{-1} S$ contains all but at most one right H -cosets it intersects.

- If

$$
\left|S^{2}\right| \leq(2-(1 / k))|S|,
$$

where $k \leq|S|$, then S can be covered by at most $(k-1)$ cosets of some subgroup H and $|S|>(k-2)|H|$.

- If

$$
\left|S^{-1} S\right| \leq \min \{G, 5 / 3|S|\},
$$

then there is a normal subgroup K such that $S^{-1} S$ is K-periodic and contained in at most six K-cosets.

Updates on my research and expository papers, discussion of open problems, and other mathsrelated topics. By Terence Tao

Tag Archive

You are currently browsing the tag archive for the 'Yahya Ould Hamidoune' tag.

Hamidoune's Freiman-Kneser theorem for nonabelian groups

12 March, 2011 in expository, math.CO, obituary | Tags: additive combinatorics, Freiman's theorem, Kneser's theorem, tom sanders, Yahya Ould Hamidoune | by Terence Tao | 9 comments

A few days ago, I received the sad news that Yahya Ould Hamidoune had recently died. Hamidoune worked in additive combinatorics, and had recently solved a question on noncommutative Freiman-Kneser theorems posed by myself on this blog last year. Namely, Hamidoune showed

Theorem 1 (Noncommutative Freiman-Kneser theorem for small doubling) Let $0<\epsilon \leq 1$, and let $S \subset G$ be a finite non-empty subset of a multiplicative group G such that $|A \cdot S| \leq(2-\epsilon)|S|$ for some finite set A of cardinality $|A|$ at least $|S|$, where $A \cdot S:=\{a s: a \in A, s \in S\}$ is the product set of A and S. Then there exists a finite subgroup H of G with cardinality $|H| \leq C(\epsilon)|S|$, such that S is covered by at most $C^{\prime}(\epsilon)$ right-cosets $H \cdot x$ of H, where $c(\epsilon), C(\epsilon)>0$ depend only on ϵ.

Ongoing projects

- Dicks-Ivanov conjecture.
- Freiman $3 k-4$ for nonabelian torsion-free.
- Sums of dilates: the nonprime case.
- Beyond Kemperman.
- ...
- and the Mauritania school.

Ceux qui aiment les maths ne sont jamais seuls.

