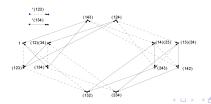
On vosperian and superconnected vertex-transitive graphs.

Susana-C. López

Universitat Politècnica de Catalunya

joint work Yahya Hamidoune and Anna Lladó.



ヨト イヨト

Outline

- 1 Introduction
 - Graph terminology
 - Superconnected. Vosperian
 - The problem. Antecedents
- 2 The isoperimetric method
 - Terminology
 - The intersection property
 - Vertex-transitive graphs

3 The results

- Vosperian vertex-transitive graphs:
- Twin reduction
- Superconnected vertex-transitive graphs
- Cayley graphs
- 4 Digraphs

Graph terminology Superconnected. Vosperian The problem. Antecedents

Characterize superconnected vertex-transitive graphs

Problem

Let **G** be a **d**-regular **vertex-transitive** graph with $d \ge 3$ and connectivity $\kappa(G) = d$. If **G** does not contain $K_4 \setminus e$ nor $K_{2,3}$ then every minimum cutset of **G** isolates a single vertex.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Graph terminology Superconnected. Vosperian The problem. Antecedents

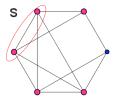
Finite graph

Let $\Gamma = (V, E)$ be a graph:

- \checkmark the elements of **V** are the **vertices**,
- ✓ the elements of **E**, pairs of **distinct** vertices, are **the edges**.

The **neighbors** of $\mathbf{x} \in \mathbf{V}$: $\mathbf{\Gamma}(\mathbf{x})$.

$$\label{eq:Given S} \begin{split} \text{Given } \boldsymbol{\mathsf{S}} &\subset \boldsymbol{\mathsf{V}}, \\ \checkmark \ \ \boldsymbol{\mathsf{\Gamma}}(\boldsymbol{\mathsf{S}}) = \bigcup_{\boldsymbol{\mathsf{x}} \in \boldsymbol{\mathsf{S}}} \boldsymbol{\mathsf{\Gamma}}(\boldsymbol{\mathsf{x}}). \end{split}$$



・ロト ・同ト ・ヨト ・ヨト

Graph terminology Superconnected. Vosperian The problem. Antecedents

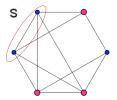
Finite graph

Let $\Gamma = (V, E)$ be a graph:

- \checkmark the elements of **V** are the **vertices**,
- ✓ the elements of **E**, pairs of **distinct** vertices, are **the edges**.

The **neighbors** of $\mathbf{x} \in \mathbf{V}$: $\mathbf{\Gamma}(\mathbf{x})$.

 $\begin{aligned} & \text{Given } \textbf{S} \subset \textbf{V}, \\ & \checkmark \ \ \textbf{\Gamma}(\textbf{S}) = \bigcup_{\textbf{x} \in \textbf{S}} \textbf{\Gamma}(\textbf{x}). \\ & \checkmark \ \ \partial(\textbf{S}) = \textbf{\Gamma}(\textbf{S}) \setminus \textbf{S}. \end{aligned}$



・ロト ・同ト ・ヨト ・ヨト

Graph terminology Superconnected. Vosperian The problem. Antecedents

Superconnected. Vosperian

Let $\Gamma = (V, E)$ be a connected d-regular graph $(|\Gamma(x)| = d, \forall x \in V),$ |V| > d + 4.

If we remove: $\Gamma(x)$ then $\{x\}$ becomes an **isolated** vertex.

Every $\bm{S} \subset \bm{V},$ such that $|\bm{S}| \leq \bm{d},$ whose removal destroys the connectedness of $\bm{\Gamma},$

 \checkmark is $\Gamma(x)$, Γ superconnected.

Graph terminology Superconnected. Vosperian The problem. Antecedents

Superconnected. Vosperian

Let $\Gamma = (V, E)$ be a connected d-regular graph $(|\Gamma(x)| = d, \forall x \in V),$ |V| > d + 4.

If we remove: $\Gamma(x)$ then $\{x\}$ becomes an **isolated** vertex.

Every $\bm{S} \subset \bm{V},$ such that $|\bm{S}| \leq \bm{d},$ whose removal destroys the connectedness of $\bm{\Gamma},$

 \checkmark is $\Gamma(\mathbf{x})$, Γ superconnected.

 ✓ creates exactly 2 connected components, one of size 1,
 ✓ vosperian.

Graph terminology Superconnected. Vosperian The problem. Antecedents

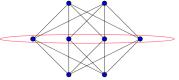
Superconnected. Vosperian

Let $\Gamma = (V, E)$ be a connected d-regular graph $(|\Gamma(x)| = d, \forall x \in V),$ |V| > d + 4.

If we remove: $\Gamma(x)$ then $\{x\}$ becomes an **isolated** vertex.

Every $\boldsymbol{S} \subset \boldsymbol{V},$ such that $|\boldsymbol{S}| \leq \boldsymbol{d},$ whose removal destroys the connectedness of $\boldsymbol{\Gamma},$

✓ is Γ(x), Γ superconnected.
 ↑ but
 ↓
 ✓ creates exactly 2 connected components, one of size 1,
 Γ vosperian.



Graph terminology Superconnected. Vosperian The problem. Antecedents

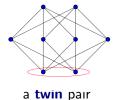
Superconnected. Vosperian

Let $\Gamma=(V,E)$ be a connected d-regular graph ($|\Gamma(x)|=d,$ $\forall x\in V),$ $|V|\geq d+4.$

If we remove: $\Gamma(x)$ then $\{x\}$ becomes an **isolated** vertex.

Every $\boldsymbol{S} \subset \boldsymbol{V},$ such that $|\boldsymbol{S}| \leq \boldsymbol{d},$ whose removal destroys the connectedness of $\boldsymbol{\Gamma},$

✓ is Γ(x), Γ superconnected.
 ↑ but
 ✓ creates exactly 2 connected components, one of size 1,
 Γ vosperian.



(日) (同) (日) (日) (日) (日)

Graph terminology Superconnected. Vosperian The problem. Antecedents

What we do in vertex-transitive graphs:

- ✓ We characterize vt graphs that remain connected after failure of a vertex and its neighbors.
 - ↓ vosperian vt graphs (in terms of the automorphism group)

同 ト イ ヨ ト イ ヨ ト

Graph terminology Superconnected. Vosperian The problem. Antecedents

What we do in vertex-transitive graphs:

 We characterize vt graphs that remain connected after failure of a vertex and its neighbors.

↓ vosperian vt graphs (in terms of the automorphism group)

✓ We prove that in a vt graph without twin pairs. If every small cutset consist of some vertex neighbor, then
 V \ ({x} ∪ Γ(x)) is connected.

U superconnected vt graphs (without twins) are vosperian

Graph terminology Superconnected. Vosperian The problem. Antecedents

What we do in vertex-transitive graphs:

 We characterize vt graphs that remain connected after failure of a vertex and its neighbors.

↓ vosperian vt graphs (in terms of the automorphism group)

✓ We prove that in a vt graph without twin pairs. If every small cutset consist of some vertex neighbor, then
 V \ ({x} ∪ Γ(x)) is connected.

 \Downarrow superconnected vt graphs (without twins) are vosperian

✓ We characterize Cayley graphs that remain connected after failure of a vertex and its neighbors.

↓ vosperian Cayley graphs (in terms of the generating set)
↓ superconnected Cayley graphs (an aperiodic generating set)

イロト イポト イラト イラト

Graph terminology Superconnected. Vosperian The problem. Antecedents

Antecedents

- ✓ 1991, Hamidoune-Lladó-Serra, characterization of vosperian and superconnected abelian Cayley digraphs (recursive).
- ✓ 1997, Hamidoune, characterization of vosperian and superconnected abelian Cayley digraphs (non-recursive).
- ✓ 2001, Wang-Meng, characterization of hyperconnected and superconnected vertex-transitive graphs of degree 3.
- ✓ 2000(2008), Tian-Meng, characterization of hyperconnected and superconnected vertex-transitive graphs of degree 4,5(6).
- ✓ 2003, Meng, characterization of hyperconnected and superconnected vertex and edge transitive graphs.

Graph terminology Superconnected. Vosperian The problem. Antecedents

Antecedents

- ✓ 1991, Hamidoune-Lladó-Serra, characterization of vosperian and superconnected abelian Cayley digraphs (recursive).
- ✓ 1997, Hamidoune, characterization of vosperian and superconnected abelian Cayley digraphs (non-recursive).
- ✓ 2001, Wang-Meng, characterization of hyperconnected and superconnected vertex-transitive graphs of degree 3.
- ✓ 2000(2008), Tian-Meng, characterization of hyperconnected and superconnected vertex-transitive graphs of degree 4,5(6).
- ✓ 2003, Meng, characterization of hyperconnected and superconnected vertex and edge transitive graphs.

isoperimetric method

くほし くほし くほし

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: terminology

- Let $\Gamma = (V, E)$ be a graph and $X \subset V$:
 - ✓ the boundary: $\partial_{\Gamma}(X) = \Gamma(X) \setminus X$,
 - ✓ the exterior: $\nabla_{\Gamma}(X) = V \setminus (X \cup \Gamma(X))$.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: terminology

- Let $\Gamma = (V, E)$ be a graph and $X \subset V$:
 - ✓ the **boundary**: $\partial_{\Gamma}(X) = \Gamma(X) \setminus X$,
 - $\checkmark \ \text{the exterior:} \ \nabla_{\Gamma}(X) = V \setminus (X \cup \Gamma(X)).$

If $\min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge k$, for some $\mathbf{X} \subset \mathbf{V}$: Γ is k-separable.

 $\kappa_{\mathbf{k}}(\mathbf{\Gamma}) = \min\{|\partial \mathbf{X}| : \mathbf{X} \subset \mathbf{V}, \min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge \mathbf{k}\}$

(人間) ト く ヨ ト く ヨ ト

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: terminology

- Let $\Gamma = (V, E)$ be a graph and $X \subset V$:
 - ✓ the **boundary**: $\partial_{\Gamma}(X) = \Gamma(X) \setminus X$,
 - $\checkmark \ \text{the exterior:} \ \nabla_{\Gamma}(X) = V \setminus (X \cup \Gamma(X)).$

If $\min\{|X|, |\nabla(X)|\} \ge k$, for some $X \subset V$: Γ is k-separable.

 $\kappa_{\mathbf{k}}(\mathbf{\Gamma}) = \min\{|\partial \mathbf{X}| : \mathbf{X} \subset \mathbf{V}, \min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge \mathbf{k}\}$

In particular,

- $\kappa_1(\Gamma) = \kappa$ is the connectivity - $\kappa_2(\Gamma) = \min\{|\partial(\mathbf{X})| : \mathbf{X} \subset \mathbf{V}, \min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge 2\}$ - $\kappa_1 \le \kappa_2 \le \dots$

イロト イポト イヨト イヨト 二日

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: terminology

- Let $\Gamma = (V, E)$ be a graph and $X \subset V$:
 - ✓ the **boundary**: $\partial_{\Gamma}(X) = \Gamma(X) \setminus X$,
 - $\checkmark \ \text{the exterior:} \ \nabla_{\Gamma}(X) = V \setminus (X \cup \Gamma(X)).$

If $\min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge \mathbf{k}$, for some $\mathbf{X} \subset \mathbf{V}$: Γ is k-separable.

 $\kappa_{\mathbf{k}}(\mathbf{\Gamma}) = \min\{|\partial \mathbf{X}| : \mathbf{X} \subset \mathbf{V}, \min\{|\mathbf{X}|, |\nabla(\mathbf{X})|\} \ge \mathbf{k}\}$

$$\begin{split} \mathbf{F} \subset \mathbf{V} \text{ is a } \mathbf{k}\text{-}\mathbf{fragment} \text{ (of minimal cardinality is called } \mathbf{k}\text{-}\mathbf{atom}). \\ &- \min\{|\mathbf{F}|, |\nabla(\mathbf{F})|\} \geq \mathbf{k} \\ &- |\partial(\mathbf{X})| = \kappa_{\mathbf{k}}(\mathbf{\Gamma}) \end{split}$$

- 4 同 2 4 日 2 4 日 2 4

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: the intersection property

Theorem (Hamidoune, 1996)

Let $\Gamma = (V, E)$ be a finite k-separable graph. Let A be a k-atom and let F be a k-fragment.

(i) If $|A \cap F| \ge k$ then $A \subset F$. In particular,

(ii) two distinct **k**-atoms intersect in at most $\mathbf{k} - \mathbf{1}$ elements.

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: vertex-transitive graphs

Theorem (Hamidoune, 2000)

Let $\Gamma = (V, E)$ be a finite 2-separable vertex-transitive graph of degree d and let A be a 2-atom, with $|A| \ge 3$. Then one of the following holds:

(i) Any vertex of V is contained in at most two distinct 2-atoms.
(ii) |A| ≤ κ₂(Γ) − d + 2.

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: vertex-transitive graphs

Theorem (Hamidoune, 2000)

Let $\Gamma = (V, E)$ be a finite 2-separable vertex-transitive graph of degree d and let A be a 2-atom, with $|A| \ge 3$. Then one of the following holds:

(i) Any vertex of V is contained in at most two distinct 2-atoms.
(ii) |A| ≤ κ₂(Γ) − d + 2.

In particular,

if $\kappa_2(\Gamma) \leq d$, then, either $|\mathbf{A}| = 2$, or

any vertex of \mathbf{V} is contained in at most two distinct 2-atoms.

・ロト ・得ト ・ヨト ・ヨト

Terminology The intersection property Vertex-transitive graphs

The isoperimetric method: Vosperian and Superconnected

Lemma (folklore) A vosperian graph.

Let $\Gamma = (V, E)$ be a finite, d-regular graph, such that $|V| \neq d + 3$. The following conditions are equivalent:

- (i) Γ is **not 2**-separable or $\kappa_2(\Gamma) \ge d + 1$.
- (ii) A 1-fragment of Γ has the form $\{x\}$ or $V \setminus (\{x\} \cup \Gamma(x))$.
- (iii) A 1-fragment of Γ has size = 1 or = |V| d 1.
- (iv) Every minimum cutset isolates a vertex and,

 $V \setminus (\{x\} \cup \Gamma(x))$

is **connected** for every $\mathbf{x} \in \mathbf{V}$.

・ロト ・同ト ・ヨト ・ヨト

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Vosperian vertex-transitive graphs

Theorem

Let $\Gamma = (V, E)$ be a vt graph of degree d, $d \leq |V| - 4$. Let A be a subgroup of the automorphism group, which is transitive on V and let $v \in V$. Then Γ is **non-vosperian** if and only if one of the following conditions holds:

- (i) There exists a friend pair. \rightsquigarrow
- (ii) There exists a **twin** pair.

・ロト ・同ト ・ヨト ・ヨト

(iii) There are an $\alpha \in \mathcal{A}$ and a set M, with $|M| \ge 2$, $|M \cup \partial(M)| \le |V| - 2$ and $|\partial(M)| \le d$, such that $\mathcal{A}_{v,M} = \mathcal{A}_{M,M} \cup \mathcal{A}_{M,M} \alpha$.

(where,
$$\mathcal{A}_{\mathbf{X},\mathbf{Y}} = \{\mathbf{f} \in \mathcal{A} : \mathbf{f}(\mathbf{X}) \subset \mathbf{Y}\}$$
)

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Twin reduction

Theorem

Let Γ be a **vt** with $\kappa(\Gamma) = \mathbf{d}$. Then,

 $\overline{\Gamma}$ is superconnected if and only if Γ is superconnected,

where $\overline{\Gamma} = \Gamma / \sim$ and $\mathbf{x} \sim \mathbf{y}$ if and only if $\Gamma(\mathbf{x}) = \Gamma(\mathbf{y})$.

イロト 不得 トイヨト イヨト 二日

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Superconnected vertex-transitive graphs

Theorem

Let Γ be a vt graph of degree d without a twin pair. If every small cutset (cardinality \leq d) consists of some vertex neighbors, then for every $x \in V$, $V \setminus (\{x\} \cup \Gamma(x))$ is connected. In particular,

r is **vosperian** if and only if it is **superconnected**.

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Superconnected vertex-transitive graphs

Theorem

Let Γ be a vt graph of degree d without a twin pair. If every small cutset (cardinality \leq d) consists of some vertex neighbors, then for every $\mathbf{x} \in \mathbf{V}$, $\mathbf{V} \setminus (\{\mathbf{x}\} \cup \Gamma(\mathbf{x}))$ is connected. In particular,

r is **vosperian** if and only if it is **superconnected**.

Corollary Let Γ be a vt graph of degree d, such that gcd(|V|, d) = 1. Then, Γ is vosperian if and only if it is superconnected.

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.

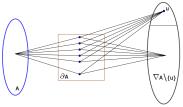
Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.



▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

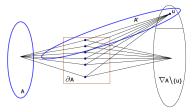
Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.

Let \mathbf{A}' be a 2-atom, $\mathbf{u} \in \mathbf{A}'$.



伺 と く ヨ と く ヨ と

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

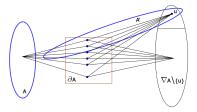
Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.

Let A' be a 2-atom, $u \in A'$. There exists u' such that $\partial(A') = \Gamma(u')$.



Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

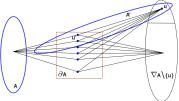
Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.

Let \mathbf{A}' be a 2-atom, $\mathbf{u} \in \mathbf{A}'$. There exists \mathbf{u}' such that $\partial(\mathbf{A}') = \Gamma(\mathbf{u}')$. Thus, $\mathbf{u}' \in \mathbf{A}'$!!!



Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

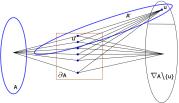
Superconnected vertex-transitive graphs

Lemma

Let Γ be a superconnected vt graph. If Γ is non-vosperian then the cardinality of a 2-atom is 2.

Assume $A| \ge 3$. In particular, A is connected. Let $u \in V$ such that $\partial(A) = \Gamma(u)$. Thus $u \in \nabla(A)$.

Let \mathbf{A}' be a 2-atom, $\mathbf{u} \in \mathbf{A}'$. There exists \mathbf{u}' such that $\partial(\mathbf{A}') = \mathbf{\Gamma}(\mathbf{u}')$. Thus, $\mathbf{u}' \in \mathbf{A}'$!!! (\dots)



・ロト ・得ト ・ヨト ・ヨト

A superconnected non-vosperian vt graph contains a twin pair!

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

2-atoms in non-vosperian Cayley graphs

Proposition

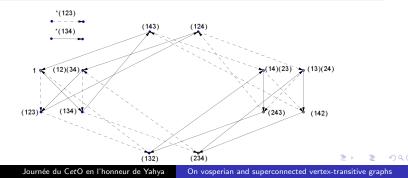
Let **S** be a generating subset of a finite group **G** with $1 \notin S$ and $S = S^{-1}$, such that Cay(G, S) is non-vosperian. Let **A** be a 2-atom of Cay(G, S) with $1 \in A$. Then there are a subgroup **H** and an $a \in G$ such that $A = H \cup Ha$.

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

2-atoms in non-vosperian Cayley graphs

Proposition

Let **S** be a generating subset of a finite group **G** with $1 \notin S$ and $S = S^{-1}$, such that Cay(G, S) is non-vosperian. Let **A** be a 2-atom of Cay(G, S) with $1 \in A$. Then there are a subgroup **H** and an $a \in G$ such that $A = H \cup Ha$.



Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs Cayley graphs

Vosperian Cayley graphs

Theorem

Let S be a generating subset of a finite group G, with $1 \notin S$, $S = S^{-1}$, $|S| \le |G| - 4$ and $\tilde{S} = S \cup \{1\}$. Then $\Gamma = Cay(G, S)$ is vosperian if and only if for every $r \in G \setminus 1$, (i) $G \setminus \tilde{S}$ is not an r-progression and, (ii) for every subgroup H and every $a \in G$ with $|H| \ge 2$, $|(H \cup Ha)\tilde{S}| \ge \min(|G| - 1, |H \cup Ha| + |S| + 1)$.

・ロト ・四ト ・ヨト ・ヨト

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs **Cayley graphs**

Superconnected Cayley graphs

Corollary

Let S be an aperiodic generating subset of a finite group G, with $1 \notin S$, $S = S^{-1}$, $|S| \le |G| - 4$ and $\tilde{S} = S \cup \{1\}$. Then Cay(G, S) is superconnected if and only if $G \setminus \tilde{S}$ is not an r-progression, and for every subgroup H and every $a \in G$ with $|H| \ge 2$,

 $|(\mathsf{H}\cup\mathsf{Ha})\tilde{\mathsf{S}}|\geq \mathsf{min}(|\mathsf{G}|-1,|\mathsf{H}\cup\mathsf{Ha}|+|\mathsf{S}|+1).$

Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs **Cayley graphs**

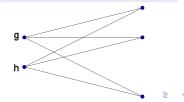
Superconnected Cayley graphs

Corollary

Let S be an aperiodic generating subset of a finite group G, with $1 \notin S$, $S = S^{-1}$, $|S| \le |G| - 4$ and $\tilde{S} = S \cup \{1\}$. Then Cay(G, S) is superconnected if and only if $G \setminus \tilde{S}$ is not an r-progression, and for every subgroup H and every $a \in G$ with $|H| \ge 2$,

 $|(\mathsf{H}\cup\mathsf{Ha})\tilde{\mathsf{S}}|\geq \mathsf{min}(|\mathsf{G}|-1,|\mathsf{H}\cup\mathsf{Ha}|+|\mathsf{S}|+1).$

Proof If a twin pair exists



Vosperian vertex-transitive graphs: Twin reduction Superconnected vertex-transitive graphs **Cayley graphs**

Superconnected Cayley graphs

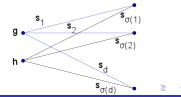
Corollary

Let S be an aperiodic generating subset of a finite group G, with $1 \notin S$, $S = S^{-1}$, $|S| \le |G| - 4$ and $\tilde{S} = S \cup \{1\}$. Then Cay(G, S) is superconnected if and only if $G \setminus \tilde{S}$ is not an r-progression, and for every subgroup H and every $a \in G$ with $|H| \ge 2$,

 $|(\mathsf{H}\cup\mathsf{Ha})\tilde{\mathsf{S}}|\geq \mathsf{min}(|\mathsf{G}|-1,|\mathsf{H}\cup\mathsf{Ha}|+|\mathsf{S}|+1).$

 $\begin{array}{l} \textbf{Proof If a twin pair exists} \\ \Rightarrow \exists \sigma \text{ a permutation on } \textbf{S}, \\ \text{defined by } \textbf{gs}_{\textbf{i}} = \textbf{hs}_{\sigma(\textbf{i})} \forall \textbf{i} = 1, \dots |\textbf{S}|. \\ \text{Hence,} \end{array}$

$$h^{-1}gS = S$$



Journée du CetO en l'honneur de Yahya On vosperian and superconnected vertex-transitive graphs

Superconnected and Vosperian digraphs

Let $\Gamma = (V, E)$ a strongly connected d-regular digraph $(d \le |V| - 4)$.

$\Gamma = (V, E)$ is superconnected

Any **d**-subset of **V** whose removal destroys the strong connectedness of Γ is either $\Gamma(x)$ or $\Gamma^{-}(x)$ for some **x**.

$\Gamma = (V, E)$ is vosperian

Any **d**-subset of **V** whose removal destroys the strong connectedness of Γ creates **exactly** two strongly connected components one of size **1**.

・ロン ・回 と ・ ヨ と … ヨ

Superconnected and Vosperian digraphs

Let $\Gamma = (V, E)$ a strongly connected d-regular digraph $(d \le |V| - 4)$.

$\Gamma = (V, E)$ is superconnected

Any **d**-subset of **V** whose removal destroys the strong connectedness of Γ is either $\Gamma(x)$ or $\Gamma^{-}(x)$ for some **x**.

$\Gamma = (V, E)$ is vosperian

Any **d**-subset of **V** whose removal destroys the strong connectedness of Γ creates **exactly** two strongly connected components one of size **1**.

Vosperian \Rightarrow Superconnected Superconnected \Rightarrow Vosperian

・ロト ・同ト ・ヨト ・ヨト

Vosperian Cayley digraphs

Theorem

Let S be a generating subset of a finite group G, with $1 \notin S$, $|S| \leq |G| - 4$ and $\tilde{S} = S \cup \{1\}$. Then $\Gamma = Cay(G, S)$ is vosperian if and only if for every $r \in G \setminus 1$, (i) $G \setminus \tilde{S}$ is not an r-progression and, (ii) for every subgroup H and $a \in G$ with $|H| \geq 2$, $min(|(H \cup Ha)\tilde{S}|, |\tilde{S}(H \cup aH)|) \geq min(|G|-1, |H \cup Ha|+|S|+1)$.

Superconnected Cayley digraphs

Theorem

Let S be an aperiodic generating subset of a finite group G, with $1\notin S, \, |S|\leq |G|-4$ and $\tilde{S}=S\cup\{1\}.$ Then $\Gamma=\mathsf{Cay}(G,S)$ is superconnected if and only if one of the following conditions holds:

(i) $G \setminus \tilde{S}$ is not a right r-progression, for every $r \in G \setminus 1$, and moreover for every $a \in G$ and every subgroup H with $|H| \ge 2$,

 $\mathsf{min}(|(\mathsf{H} \cup \mathsf{Ha})\tilde{\mathsf{S}}|, |\tilde{\mathsf{S}}(\mathsf{H} \cup \mathsf{a}\mathsf{H})|) \geq \mathsf{min}(|\mathsf{G}| - 1, |\mathsf{H} \cup \mathsf{Ha}| + |\mathsf{S}| + 1.)$

(ii) $\mathbf{G} \setminus \mathbf{\tilde{S}}$ is a right r-progression with $\mathbf{r} \notin \mathbf{S}$ or $\mathbf{r}^{-1} \notin \mathbf{S}$.

Superconnected Cayley digraphs

Corollary

Let **S** be an **aperiodic** generating subset of a finite group **G**, with $1 \notin S$, and $|S| \leq |G|/2$. Then $\Gamma = Cay(G, S)$ is **superconnected** if and only if

```
(i) either r is vosperian or
```

(ii) there is a $r \in G$ such that G = < r > and $S = \{r, r^2, \ldots, r^{|S|}\}.$