Exercice 1.

(1) Les divisions donnent :

$$A(X) = XB(X) + X^3 - 3X^2 + 4,$$

$$B(X) = (X+3)(X^3 - 3X^2 + 4) + 5(X^2 - X - 2),$$

$$X^3 - 3X^2 + 4 = (X-2)(X^2 - X - 2)$$

donc $D(X) = X^2 - X - 2$ (dernier reste non nul, rendu unitaire).

(2) En effectuant directement les divisions de A(X) et B(X) par D(X) (ou en utilisant celles qui précèdent) on trouve :

$$A(X) = D(X)(X^3 + X^2 - 2)$$
 et $B(X) = D(X)(X^2 + X - 1)$.

(3) L'avant-dernière division de l'algorithme d'Euclide donne

$$D(X) = \frac{1}{5} \left[B(X) - (X+3)(X^3 - 3X^2 + 4) \right]$$

et la première donne $X^3 - 3X^2 + 4 = A(X) - XB(X)$, d'où

$$D(X) = \frac{1}{5} \left[B(X) - (X+3) \left(A(X) - XB(X) \right) \right] = -\frac{1}{5} \left(X+3 \right) A(X) + \frac{1}{5} \left(X^2 + 3X + 1 \right) B(X)$$

ce qui donne la solution particulière

$$U_0(X) = -\frac{1}{5}(X+3), \quad V_0(X) = \frac{1}{5}(X^2+3X+1).$$

La solution générale est :

$$U(X) = U_0(X) + S(X)B(X)/D(X) = -\frac{1}{5}(X+3) + S(X)(X^2 + X - 1),$$

$$V(X) = V_0(X) - S(X)A(X)/D(X) = \frac{1}{5}(X^2 + 3X + 1) - S(X)(X^3 + X^2 - 2)$$

où S(X) est un polynôme arbitraire de $\mathbb{R}[X]$.

Exercice 2.

(1) $\deg(F)=2-5<0$: il n'y a pas de partie entière. La décomposition sera de la forme :

$$F(X) = \frac{a}{(X-2)^3} + \frac{b}{(X-2)^2} + \frac{c}{X-2} + \frac{dX+e}{X^2+2}$$

avec

$$a = (X-2)^3 F(X) \bigg|_{X\to 2} = \frac{2X^2 + X - 1}{X^2 + 2} \bigg|_{X=2} = \frac{9}{6} = \frac{3}{2},$$

$$b = \left(\frac{2X^2 + X - 1}{X^2 + 2}\right)' \bigg|_{X=2} = \frac{(4X+1)(X^2 + 2) - (2X^2 + X - 1)2X}{(X^2 + 2)^2} \bigg|_{X=2} = \frac{-X^2 + 10X + 2}{(X^2 + 2)^2} \bigg|_{X=2} = \frac{1}{2},$$

$$c = \frac{1}{2} \left(\frac{-X^2 + 10X + 2}{(X^2 + 2)^2}\right)' \bigg|_{X=2} = \frac{(-2X+10)(X^2 + 2)^2 - (-X^2 + 10X + 2)(X^2 + 2)4X}{2(X^2 + 2)^4} \bigg|_{X=2} = -\frac{1}{4},$$

et enfin

$$di\sqrt{2} + e = \frac{2X^2 + X - 1}{(X - 2)^3}\bigg|_{X = i\sqrt{2}} = \frac{-5 + i\sqrt{2}}{(-2 + i\sqrt{2})^3} = \frac{(-5 + i\sqrt{2})(-2 - i\sqrt{2})^3}{6^3} = \frac{(-5 + i\sqrt{2})(4 - 10i\sqrt{2})}{6^3} = \frac{54i\sqrt{2}}{6^3} = \frac{i\sqrt{2}}{4}$$

d'où

$$d = \frac{1}{4}, \qquad e = 0.$$

Conclusion:

$$F(X) = \frac{3/2}{(X-2)^3} + \frac{1/2}{(X-2)^2} - \frac{1/4}{X-2} + \frac{X/4}{X^2+2}.$$

(2) Dans $\mathbb{C}(X)$,

$$\frac{X/4}{X^2+2} = \frac{\alpha}{X - i\sqrt{2}} + \frac{\overline{\alpha}}{X + i\sqrt{2}}$$

avec

$$\alpha = (X - i\sqrt{2}) \frac{X/4}{X^2 + 2} \bigg|_{X \to i\sqrt{2}} = \frac{X/4}{X + i\sqrt{2}} \bigg|_{X = i\sqrt{2}} = \frac{i\sqrt{2}/4}{2i\sqrt{2}} = \frac{1}{8}$$

et donc

$$F(X) = \frac{3/2}{(X-2)^3} + \frac{1/2}{(X-2)^2} - \frac{1/4}{X-2} + \frac{1/8}{X-i\sqrt{2}} + \frac{1/8}{X+i\sqrt{2}}.$$

Exercice 3.

(1) Pour n = 1 la relation de récurrence donne

$$T_2(X) = 2XT_1(X) - T_0(X) = 2X^2 - 1.$$

Et pour n=2 elle donne :

$$T_3(X) = 2XT_2(X) - T_1(X) = 2X(2X^2 - 1) - X = 4X^3 - 3X.$$

(2) Les exemples précédents suggèrent que

$$\deg T_n = n$$

donc que $T_n = c_n X^n$ + termes de degrés moindres, avec $c_n \neq 0$. Vérifions-le par récurrence (sur deux valeurs consécutives) : c'est vrai pour n=0 et n=1, et si c'est vrai pour n=1 et n=1 alors la relation de récurrence donne

$$T_{n+1}(X) = 2c_n X^{n+1} + \text{termes de degrés moindres}$$

d'où $\deg T_{n+1}=n+1$ et l'hypothèse est vraie encore pour n et n+1: elle est donc héréditaire. Cela montre, de plus, que la suite des coefficients dominants est donnée par $c_0=1$, $c_1=1$ puis, pour $n\geq 1$: $c_{n+1}=2c_n$ (la suite est géométrique à partir du rang 1); d'où :

$$c_0 = 1$$
 et $\forall n \ge 1 : c_n = 2^{n-1}$.

(3) $\deg T_j = j$ donc $(T_0,...,T_n)$ est bien une famille de $\mathbb{R}_n[X]$. Montrons que $(T_0,...,T_n)$ est libre : pour n=0 c'est évident $(T_0 \neq 0$ donc (T_0) est libre); pour $n \geq 1$, supposant $(T_0,...,T_{n-1})$ libre (hypothèse de récurrence), si $\lambda_0 T_0 + \cdots + \lambda_n T_n = 0$ (le polynôme nul), le membre de gauche s'écrit $\lambda_n 2^{n-1} X^n +$ termes de degrés moindres, donc $\lambda_n 2^{n-1} = 0$, d'où $\lambda_n = 0$ et l'hypothèse de récurrence montre alors que tous les autres λ_j sont nuls aussi. Ainsi, $(T_0,...,T_n)$ est une famille libre à n+1 éléments dans $\mathbb{R}_n[X]$; or $\dim \mathbb{R}_n[X] = n+1$, donc $(T_0,...,T_n)$ est une base de $\mathbb{R}_n[X]$.

(4) C'est vrai pour n=0 et n=1: $T_0(\cos x)=1=\cos(0x)$ et $T_1(\cos x)=\cos x$. Supposant que c'est vrai pour n-1 et n, on obtient par la relation de récurrence :

$$T_{n+1}(\cos x) = 2\cos x \cos(nx) - \cos((n-1)x).$$

Or, on sait que $2\cos x \cos(nx) = \cos((n+1)x) + \cos((n-1)x)$, donc $T_{n+1}(\cos x) = \cos((n+1)x)$ et l'hypothèse de récurrence est héréditaire (elle est vraie pour n et n+1).

(5) Il suffit de considérer le cas $n \ge 1$ (le cas de $T_0 = 1$ est trivial). Tout élément de [-1,1] s'écrit $\cos x$ avec $x \in [0,\pi]$. Or, pour $n \ge 1$:

$$T_n(\cos x) = 0 \Leftrightarrow \cos(nx) = 0 \Leftrightarrow \exists k \in \mathbb{Z}, \ nx = \frac{\pi}{2} + k\pi \Leftrightarrow \exists k \in \mathbb{Z}, \ x = \frac{2k+1}{2n}\pi.$$

Quand k croît de 0 à n-1, $\frac{2k+1}{2n}\pi$ croît de $\frac{1}{2n}\pi$ à $\frac{2n-1}{2n}\pi$ et prend donc n valeurs distinctes dans $[0,\pi]$. Les nombres $\cos\left(\frac{2n-1}{2n}\pi\right)$ pour $0 \le k \le n-1$ sont donc n racines distinctes de T_n dans [-1,1]. Comme T_n est de degré n, il n'a pas d'autres racines dans \mathbb{R} , ni dans \mathbb{C} : il n'a pas d'autres facteurs irréductibles que ceux correspondant à ces n racines. Sa décomposition en facteurs irréductibles est donc :

$$T_n(X) = 2^{n-1} \prod_{k=0}^{n-1} \left(X - \cos\left(\frac{2k+1}{2n}\pi\right) \right), \quad n \ge 1.$$

Exercice 4. (1) $\dim(V \times W) = \dim V + \dim W$ (cf. le cours).

(2) f est la somme des applications linéaires $(v,w)\mapsto v$ et $(v,w)\mapsto w$ (projections canoniques), donc elle est linéaire. Si on préfère, on peut aussi écrire $f(\lambda_1(v_1,w_1)+\lambda_2(v_2,w_2))=f(\lambda_1v_1+\lambda_2v_2,\lambda_1w_1+\lambda_2w_2)=\lambda_1v_1+\lambda_2v_2+\lambda_1w_1+\lambda_2w_2=\lambda_1(v_1+w_1)+\lambda_2(v_2+w_2)=\lambda_1f(v_1,w_1)+\lambda_2f(v_2,w_2).$

L'image de f est l'ensemble des vecteurs de la forme v+w avec $v\in V, w\in W$: donc c'est V+W.

Le noyau de f est l'ensemble des couples (v, w) de $V \times W$ tels que v + w = 0, i.e. tels que w = -v, donc c'est l'ensemble des couples (u, -u) avec $u \in V \cap W$.

Il en résulte que $\dim \operatorname{Ker} f = \dim(V \cap W)$. En effet, si $(u_j)_{j \in J}$ est une base de $V \cap W$, tout $u \in V \cap W$ s'écrit de manière unique $u = \sum_{j \in J} \lambda_j u_j$, donc (u, -u) s'écrit de manière unique $(u, -u) = \sum_{j \in J} \lambda_j (u_j, -u_j)$, et donc $((u_j, -u_j))_{j \in J}$ est une base de $\operatorname{Ker} f$. Autre argument possible : $u \mapsto (u, -u)$ est un isomorphisme de $V \cap W$ sur $\operatorname{Ker} f$, car c'est une application linéaire, évidemment injective, et surjective d'après ce qu'on vient de voir ; donc $\dim \operatorname{Ker} f = \dim(V \cap W)$.

Le théorème du rang dit que $\dim \operatorname{Ker} f + \dim \operatorname{Im} f = \dim(V \times W)$. Mais $\dim(V \times W) = \dim V + \dim W$, $\dim \operatorname{Ker} f = \dim(V \cap W)$ et $\dim \operatorname{Im} f = \dim(V + W)$: on obtient donc $\dim V + \dim W = \dim(V \cap W) + \dim(V + W)$, d'où le résultat.

Exercice 5.

- (1) Si on change de base, la matrice de f devient $P^{-1}AP$ (où P est la matrice de passage) et on sait que $Tr(P^{-1}AP) = Tr(APP^{-1}) = Tr(A)$.
- (2) Puisque f est un projecteur, on a $E = \operatorname{Ker}(f) \oplus \operatorname{Im}(f)$. soient $(e_1, ..., e_m)$ une base de $\operatorname{Ker}(f)$ et $(e_{m+1}, ..., e_n)$ une base de $\operatorname{Im}(f)$, où $m = n \operatorname{rg}(f)$: alors $(e_1, ..., e_m, e_{m+1}, ..., e_n)$ est une base de E et $f(e_1) = \cdots = f(e_m) = 0$, $f(e_{m+1}) = e_{m+1}$,..., $f(e_n) = e_n$; donc dans cette base la matrice de f est diagonale, avec sur la diagonale m zéros et n m valeurs égales à 1; et donc $\operatorname{Tr}(f) = n m = \operatorname{rg}(f)$.
- (3) Soit $(e_1,...,e_n)$ une base de E. Prenons par exemple $f(e_1)=e_1$, $f(e_2)=\alpha e_1+e_2$ avec $\alpha\neq 0$, et $f(e_j)=0$ pour j>2: dans cette base, la matrice de f est

$$A_{\alpha} = \begin{pmatrix} 1 & \alpha & 0 & \cdots & 0 \\ 0 & 1 & 0 & \cdots & 0 \\ 0 & 0 & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & \cdots & 0 \end{pmatrix}.$$

Il est clair que f est de rang 2 et que $\mathrm{Tr}(f)=2$; mais $f\circ f(e_2)=\alpha f(e_1)+f(e_2)=2\alpha e_1+e_2\neq f(e_1)$ puisque $\alpha\neq 0$, donc f n'est pas un projecteur (on peut aussi calculer sur la matrice : $A_\alpha^2=A_{2\alpha}\neq A_\alpha$).

- (4) Soit $(e_1,...,e_{n-1})$ une base de $\mathrm{Ker}(f)$: complétons-la en une base $(e_1,...,e_{n-1},e_n)$ de E. Dans cette base, la matrice de de A a ses n-1 premières colonnes nulles et la dernière est formée des nombres a_i tels que $f(e_n) = \sum_{i=1}^n a_i e_i$: on a $a_n = \mathrm{rg}(f) = 1$. Donc $f \circ f(e_n) = \sum_{i=1}^n a_i f(e_i) = a_n f(e_n) = f(e_n)$ (et tous les autres $f \circ f(e_i)$ sont nuls) et donc $f \circ f = f$, ce qui montre que f est un projecteur.
- (5) Soit f l'endomorphisme de \mathbb{R}^3 dont la matrice dans la base canonique est f: on a Tr(f) = rg(f) = 1, donc f est un projecteur. Son image est $\mathbb{R}(1,1,1)$ (voir la première colonne) et son noyau est le plan d'équation x+y-z=0: une base est ((1,-1,0),(1,0,1) (deux vecteurs non colinéaires de Ker(f)).

Exercice 6.

(1)

$$\begin{pmatrix} 0 & \frac{3}{4} & 0 \\ \frac{3}{4} & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} = -\frac{3}{4} \begin{pmatrix} x_1 \\ y_1 \\ z_1 \end{pmatrix} \Leftrightarrow \begin{cases} \frac{3}{4}y_1 = -\frac{3}{4}x_1 \\ \frac{3}{4}x_1 + z_1 = -\frac{3}{4}y_1 \\ \frac{1}{4}x_1 + \frac{1}{4}y_1 = -\frac{3}{4}z_1 \end{cases} \Leftrightarrow \begin{cases} y_1 = -x_1 \\ z_1 = 0 \end{cases}$$

et on peut prendre $V_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$

(2)

$$\begin{pmatrix} 0 & \frac{3}{4} & 0 \\ \frac{3}{4} & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} = -\frac{1}{4} \begin{pmatrix} x_2 \\ y_2 \\ z_2 \end{pmatrix} \Leftrightarrow \begin{cases} \frac{3}{4}y_2 = -\frac{1}{4}x_2 \\ \frac{3}{4}x_2 + z_2 = -\frac{1}{4}y_2 \\ \frac{1}{4}x_2 + \frac{1}{4}y_2 = -\frac{1}{4}z_2 \end{cases} \Leftrightarrow \begin{cases} 3y_2 = -x_2 \\ z_2 = 2y_2 \end{cases}$$

et on peut prendre
$$V_2 = \begin{pmatrix} 3 \\ -1 \\ -2 \end{pmatrix}$$

$$\begin{pmatrix} 0 & \frac{3}{4} & 0 \\ \frac{3}{4} & 0 & 1 \\ \frac{1}{4} & \frac{1}{4} & 0 \end{pmatrix} \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} = \begin{pmatrix} x_3 \\ y_3 \\ z_3 \end{pmatrix} \Leftrightarrow \begin{cases} \frac{3}{4}y_3 = x_3 \\ \frac{3}{4}x_3 + z_3 = y_3 \\ \frac{1}{4}x_3 + \frac{1}{4}y_3 = z_3 \end{cases} \Leftrightarrow \begin{cases} 3y_3 = 4x_3 \\ 12z_3 = 7x_3 \end{cases}$$

et on peut prendre $V_3 = \begin{pmatrix} 12\\16\\7 \end{pmatrix}$

(4) Supposons que $\lambda_1 V_1 + \lambda_2 V_2 + \lambda_3 V_3 = 0$. Appliquant k fois la matrice A on obtient : $(-3/4)^k \lambda_1 V_1 + (-1/4)^k \lambda_2 V_2 + \lambda_3 V_3 = 0$ d'où (en faisant $k \to +\infty$) $\lambda_3 = 0$; et comme il est clair que V_1, V_2 ne sont pas colinéaires, on a aussi $\lambda_1 = \lambda_2 = 0$. Donc (V_1, V_2, V_3) est libre et c'est donc une base de \mathbb{R}^3 . La matrice de passage P de la base canonique à la base (V_1, V_2, V_3) est :

$$P = \begin{pmatrix} 1 & 3 & 12 \\ -1 & -1 & 16 \\ 0 & -2 & 7 \end{pmatrix}.$$

(5) On écrit:

$$\begin{pmatrix} 1 & 3 & 12 & | & 1 & 0 & 0 \\ -1 & -1 & 16 & | & 0 & 1 & 0 \\ 0 & -2 & 7 & | & 0 & 0 & 1 \end{pmatrix}$$

et on opère sur les lignes L_1, L_2, L_3 . On peut commencer par faire $L'_2 = L_1 + L_2$:

$$\begin{pmatrix} 1 & 3 & 12 & | & 1 & 0 & 0 \\ 0 & 2 & 28 & | & 1 & 1 & 0 \\ 0 & -2 & 7 & | & 0 & 0 & 1 \end{pmatrix}$$

puis $L_3' = (L_2' + L_3)/35$:

$$\begin{pmatrix} 1 & 3 & 12 & | & 1 & 0 & 0 \\ 0 & 2 & 28 & | & 1 & 1 & 0 \\ 0 & 0 & 1 & | & 1/35 & 1/35 & 1/35 \end{pmatrix}$$

puis $L'_1 = L_1 - 12L'_3$ et $L''_2 = (L'_2 - 28L'_3)/2$:

$$\begin{pmatrix} 1 & 3 & 0 & | & 23/35 & -12/35 & -12/35 \\ 0 & 1 & 0 & | & 7/35 & 7/35 & -28/35 \\ 0 & 0 & 1 & | & 1/35 & 1/35 & 1/35 \end{pmatrix}$$

et enfin $L_1^{\prime\prime}=L_1^{\prime}-3L_2^{\prime\prime}$:

$$\begin{pmatrix} 1 & 0 & 0 & | & 25/70 & -45/70 & 60/70 \\ 0 & 1 & 0 & | & 7/70 & 7/70 & -28/70 \\ 0 & 0 & 1 & | & 2/70 & 2/70 & 2/70 \end{pmatrix}$$

et donc:

$$P^{-1} = \frac{1}{70} \begin{pmatrix} 25 & -45 & 60 \\ 7 & 7 & -28 \\ 2 & 2 & 2 \end{pmatrix}.$$

(6) Vu le choix de $V_1, V_2, V_3: A' = \begin{pmatrix} -\frac{3}{4} & 0 & 0 \\ 0 & -\frac{1}{4} & 0 \\ 0 & 0 & 1 \end{pmatrix}$. C'est une matrice diagonale donc $A'^k = \begin{pmatrix} (-\frac{3}{4})^k & 0 & 0 \\ 0 & (-\frac{1}{4})^k & 0 \\ 0 & 0 & 1 \end{pmatrix}$.

(7)
$$\begin{pmatrix} a_k \\ b_k \\ c_k \end{pmatrix} = A^k \begin{pmatrix} a_0 \\ b_0 \\ c_0 \end{pmatrix} = PA'^k P^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$$
. Le passage à la limite $k \to +\infty$ montre que $a_k \to a$, $b_k \to b$, $c_k \to c$ où

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} = P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix} P^{-1} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{35} P \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{35} \begin{pmatrix} 12 & 12 & 12 \\ 16 & 16 & 16 \\ 7 & 7 & 7 \end{pmatrix} \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix} = \frac{1}{35} \begin{pmatrix} 12 \\ 16 \\ 7 \end{pmatrix}.$$