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Preface

This handbook is intended to be a self-contained reference for the most fundamental methods
of differential and hyperbolic geometry, together with some applications to physics.

It must not be intended as an exhaustive treatise but as a (hopefully) clear exposition of
these topics. In particular, we have tried to reduce to the minimum one of the major problems
reported by students when learning for the first time differential geometry: notation! Formulae
in differential geometry can easily become notationally unbearable if a bad choice of notation
is performed. This implies that some reasonable shortcut must be implicitly assumed to avoid
this problem and keep equations as readable and meaningful as possible.

Coherently with our main concern, the major sources of inspiration for our handbook
(among others, that are duly quoted) are listed below.

e The extremely clear videos about differential geometry by Francesco Bottacin, professor
at the university of Padova, Italy. They are available online (in Italian) at the following
url: https://www.math.unipd.it/~bottacin/geomdiff.htm. A great deal of this
handbook can be thought as a free translation of his notes and videos. Professor
Bottacin is warmly acknowledged.

o J. Lee’s treatise: ‘Introduction to smooth manifolds’ [10], one of the clearest, most
complete, introductory books about differential geometry.

e C. Isham’s splendid big little book [8], for once, a book about mathematical concepts
written for physicists that does not treat them as ‘dummies’.

e J.G. Ratcliffe’s book: ‘Foundations of hyperbolic manifolds’ [15], to our knowledge, the
treatise on hyperbolic geometry hat fits best with the spirit of this handbook.

Of course, every mistake in this document must be referred to the authors of each chapter
and not to the books and material quoted above.

The authors.


https://www.math.unipd.it/~bottacin/geomdiff.htm

PART I:

INTRODUCTION TO DIFFERENTIAL

GEOMETRY

In many cases, proofs based on coordinate free
local representations in charts are clearer than
proofs which are repleate with the claws of a
rather unpleasant prying insect such as F;kl.
S. LANG, ‘DIFFERENTIAL AND RIEMANNIAN

MANIFOLDS’, 1995



Chapter 1

Differential manifolds: definitions
all d baS].C propertles (Edoardo Provenzi)

Determinations of measure require magnitude to
be independent of location, a state of things
which can occur in more than one way.

B. RIEMANN, 1854

In this first chapter we introduce the basic definitions and properties of differential manifolds.
The reader not used to Einstein’s convention for sum over repeated indices and differential
calculus in R" is referred to the appendices.

1.1 Differential manifolds

The first mathematician to conceive the idea of what we call today a differential manifold was
Bernhard Riemann (1826 — 1866) who, in his groundbreaking 1854 habilitation defense [17],
introduced the concept of an abstract manifold not necessarily embedded in a Euclidean space,
as, instead, it was thought by his PhD advisor, the prince of mathematicians C.F. Gauss
(1777 — 1855).

Riemann’s ideas have been further refined until the modern definition of differential manifold
that we report in this document, first introduced in the literature by Charles Ehresmann
(1905 —1979) [4] in 1943. In this definition a (finite dimensional) differential manifold is seen as
a topological space (with some suitable requests to make calculus easier) with the fundamental
requirement to be locally identifiable with a model space, which is a topological vector space.

The reason for considering topological vector spaces as local models lies in the fact that
one of the fundamental elements of calculus, the derivative, represents a local linearization of
a function, which explains the need of a linear structure on the model space that makes it a
vector space. Moreover, the computation of derivatives requires the concept of limit, which
implies that a topology coherent with the linear structure should be present. Finally, the fact
that derivatives are defined in a local neighborhoods of points will allow us transporting
the differential structure of topological vector spaces to more general topological
spaces that ‘resemble’ to them only locally.

This local resemblance is provided by means of homeomorphisms, i.e. bicontinuous
maps between topological spaces (continuous bijective functions with a continuous inverse).



Depending on the particular choice of topological vector space that is considered as local
model, different differential manifolds can be defined. Classically, the local model is chosen
to be R™, n < +00, but of course it can be C" or an infinite-dimensional Frechet, Banach or
Hilbert space and so on. Here, the local model will always be R™.

Before going through the details of differential manifolds, let us spend just a few words on
topological manifolds.

Def. 1.1.1 (Topological manifold) The couple given by a connected topological space M
and a set of couples {(Uy, Pa)taca (where A is an index set, U, are open subsets of M),
satisfying:

o M = |J U,, i.e. the union of the sets Uy covers M

a€eA

e ¢, : Uy — R™ are homeomorphisms',

is said to be a topological manifold of dimension n.

The definition of the dimension is well posed, in fact either there is a single homeomorphism
that covers M, and so n is univocally defined, or at least the domain of two homeomorphisms
has a non empty intersection. Suppose that these homeomorphisms are ¢, : U, — R™ and
wg:Ug — R™, with Uy, nUg = Uyg # . Then pg O(pgl : (pa(Uag) cR” —» (pg(Uag) c R™
is a homeomorphism (as composition of homeomorphisms), this implies that n = m because
it cannot exist a homeomorphism between R™ and R™ if n # m, see e.g. [10]. Thus, n is an
invariant in the definition of a topological manifold.

The fact that M is locally homeomorphic to an open set of R” guarantees that, locally,
a topological manifold M defined as before has all the properties of R", e.g. M is
locally connected (and locally connected by paths) and M is locally compact, i.e. every
point p € M has a compact neighborhood, i.e., there exists an open set U < M and a compact
set K < M, such that x € U < K. Other properties, e.g. the Hausdorff and second countable
property, must be separately required.

Let us now move a step forward towards the concept of differential manifold.
Def. 1.1.2 A topological space M is a locally Euclidean space of dimension n € N,
n < 400, if:

1. it is a Hausdorff space’: for every couple of elements p,q € M, there exist two open
neighborhoods U, and U, such that U, n Uy, = J;

2. it is second countable’: there exists a countable collection U = {U;}, of open subsets
of M such that any open subset of M can be written as a union of elements of some
subfamily of U;

i.e. bicontinuous functions: continuous invertible functions with continuous inverse, thus ¢ (Us) is open
in R"™ because it is the anti-image of the open U, via the continuous map @ ".

2The Hausdorff property serves to assure that convergent sequences in M have a unique limit.

3The second countability is needed to assure the existence of a partition of unity, an essential tool to
extend local objects to global ones.



3. it is locally homeomorphic to R": for every point p € M it exists an open neighborhood
U S M containing p and a homeomorphism:

p: UcM — oU)=VcR"
P — go(p)zxz(xl,...,x").

The couple (U, p) is called a local chart in p, it is said to be centered in p if
o(p) =0eR™. U is called chart domain and ¢ chart map.

1.1.1 Local coordinates of a point

We are going to show that it is always possible to represent the position of any point p in a
manifold M of dimension n with the coordinates of the local model R™ as long as we remain
inside a chart domain U of a local chart (U, ) in p.

The first step consists of course in applying the chart function ¢ to p to obtain the vector
x = ¢(p) which lives in an open subset of R™ and the second step consists simply in extracting
its components by using the functionals €’ of the dual canonical basis of R”. The composition
of these two steps gives rise to the following real-valued functions:

. UcM — R
p — 2l(p)=(op)(p)

The 29’s are nothing but the components functions of ¢ interpreted as a vector-valued function®,

thus we can write:

SDE(xl?"'axn)’ or @= ('I])?:l

Def. 1.1.3 (Local coordinates) The locally-defined real-valued functions
=elop:U—-R

are called local coordinate functions and the couple (U, (27)) is said to be a local coordi-
nate system inp, j=1,....,n.

Notice the typical abuse of notation to write with 2/ both the components of the image
of p € M via the local chart ¢ w.r.t. the canonical basis of R", which are real numbers, and
the real-valued functions e/ o ¢ : U — R.

On one side, this abuse of notation implies the weird formula 27(p) = 27, however, on
the other side, in general it is clear when 27 refers to a function or a to real number and
this notational simplification improves enormously the readability of expressions involving
coordinates.

Following the idea of transporting the differential structure of R™ to a locally Euclidean
space M, we must assure two things: the first is that all the points of M are covered by
a local chart, the second is that two intersecting charts are compatible in the sense that
the differential structure that they induce on M is not in conflict. The formalization of
these ideas is given in the following definition.

Def. 1.1.4 (Atlas) Given a locally Euclidean space M of dimension n, an atlas for M is a
collection of charts {(Uy, ©a)}aca, satisfying:

4in fact some author denote them more correctly as ¢’ instead of z7.

10



1. Covering: {(Uy, va)}aca covers M, i.e.

M=UUa

acA
2. Compatibility: whenever Uyg = Uy N Ug # &, the function:
Mo =950 Ps" ¢ Pa(Uap) SR" — ¢p(Usp) € R”
x — &= nga(T) = pa(es (7)),
is smooth, i.e. it belongs to €* (0o (Uap))-

The function 7s, is called transition function from the local representation (Ua, ¢q) to
(Ug, pp). It is invertible, being a composition of invertible functions, and its inverse is

Mg = Tl = Pa 05"

In general, showing that the charts domains of an atlas cover M and the smoothness
of the chart maps is not a difficult task. What requires much work is to verify the
compatibility, i.e. that the transition functions are smooth.

If the transition function 7, is of class €7, then the compatibility will be called of class
%", but here we will always consider the smooth compatibility, unless otherwise stated.

By composing the transition functions with the elements of the canonical dual basis of R™
we obtain the functions that allow us transforming the local coordinates z7 of a point p € M
w.r.t. the chart (Us, ¢q) to the local coordinates #/ w.r.t. the chart (Ug, ¢p):

el onga:  alUas) SR? —> R A
z=(2',...,2") — 3 = (e ong,)(m).
Notice that 7 o1gq are nothing but the component functions of 73, interpreted as vector-valued
functions. Instead of denoting them as né o> it is usual (in particular in Physics books) to
write them simply with the symbol &7:
: pa(Upg) R — R
(z") — 2 (z") = (&7 omga) ('),

they are called the local coordinate transformation functions. The diagram below gives
a graphical visualization of the objects just defined.

Uap
wa”! &‘
R™ O Soa(Uaﬁ) 3L ------- N > T E SOB(UQB) Cc R"™
— — sz
I (x*) Te—al

It should be clear from the context when #’ represents a real number or a real-valued
function, in any case, the weird notation &7 = #’(z") must be interpreted as follows:
o = il (z%)

(real number) (function R»—R) (R" '

vector)

and similarly for the inverse local coordinate transformation x¢ = (7).

11



In general, a point in manifold M has always:

e a local representation, which lives in the local model R™, obtained by applying a local
chart map;

e a local coordinate representation, which lives in R and it is obtained by further
composing the local representation with the functionals of the canonical dual basis of
the local model R™.

We will see that this considerations can be extended also to other objects defined on M, e.g.
functions.
The compatibility between local charts can be equivalently stated in coordinates. To

understand why, let us first recall the classical inverse function theorem of ordinary calculus
in R™.

Theorem 1.1.1 (Inverse mapping theorem in R") Let:

o Q)  R"™ be an open set;
e f:Q R fedF(Q), k=>1;

o o€ Q such that:
det(J f(xp)) # 0.

Then there exist two neighborhoods U < Q of xg and V = R" of f(xo) such that f|,; : U -V
is a €*-diffeomorphism.

If we organize the partial derivatives of the local coordinate transformation functions

7/ : R® — R in the matrix of functions giz : R” — R defined by Jg = (aﬂ) ,
ij=1,..n

oxt
explicitly:
ozl ozl
ol T am
J = : s
aﬁ':"/ aﬁ':n
oxt T Ozn

then, if the determinant of the Jacobian matrix J(x) is not null for every = € po(Uqg), the
charts are compatible, i.e.

Compatibility condition between local charts in coordinates:

det J(l‘) #0 Vx e Soa(Ua,B)v

where J(z) € M(n,R), J(z) =evyoJ = (giﬁ (ZL')) R being the evaluation map of
1,7=1,...,n

0%’

ozt

the functions in z.

5The geometrical interpretation of this condition is the following: the fact that the Jacobian matrix of f in
po is non-singular guarantees that the total derivative D f(zo) € End(R") is invertible. Since the differential
map is the linear approximation of f in a neighborhood of xg, the result of the theorem says that this is enough
to guarantee that, if we consider a sufficiently small neighborhood of pg, f itself is invertible and its inverse
map has the same regularity as f.

12



Def. 1.1.5 (Equivalent atlases) Two atlases of a locally Fuclidean space are equivalent if
all the local charts of the first atlas are compatible with all those of the second atlas.

Many authors define two atlases of a locally Euclidean space equivalent if their union
is again an atlas for the same locally Euclidean space. Of course the two definitions are
equivalent because, if all the local charts of the first are compatible with those of the second,
then the covering and compatibility properties are satisfied and so we get an atlas; vice-versa,
if the union is an atlas, then, by definition the compatibility of charts must be satisfied.

The adjective equivalent is not used by chance, in fact it can be verified that being
equivalent is an actual equivalence relation in the set of atlases of locally Euclidean spaces.

This fact gives us the possibility to define the concept of differential manifold without
ambiguity.

Def. 1.1.6 (Differential (smooth) manifold) A differential (smooth) manifold of dimen-
sion n is a couple (M, A), where M is a locally Euclidean space of dimension n and A is an
equivalence class of smooth atlases of M. A (smooth) mazimal atlas, i.e. an atlas that is not
contained in any other atlases, is said to provide a (smooth) differential structure for M.

If the compatibility among local charts is only of class 4", then we will talk about a €"
differential manifold. If the compatibility is analytic, in symbols %, the manifold is called
real analytic.

Convention: in this document we will only consider smooth manifolds, so we will omit
to specify the adjective ‘smooth’ from now on, unless otherwise explicitly stated.

This choice is not so reductive after all, in fact, a celebrated theorem due to the great
geometer Hassler Whitney [20] states that every differential manifold of class ¢! can
always be endowed with a real-analytic maximal atlas and with 4" maximal at-
lases, for all » > 1, which make it either a real-analytic or a ¥” manifold (hence also a smooth
manifold). Moreover, all the ¢ differential structures are equivalent. Thus, for a manifold
the really important gap to pass is that from a ¢°-compatibility between local charts to a
¢-compatibility, the more regular compatibility being assured to exist thanks to Whitney’s
theorem.

If the local model is C™ and not R"™, then we will talk about a complex manifold of
dimension n, in this case the transition functions are required to be holomorphic.

1.2 Examples of manifolds

Let us discuss some example of manifold:

1. The trivial manifold. R" is a manifold with the canonical single chart atlas given
by (R", idgn).
To give an example of non-equivalent atlases, let us consider R and the atlas (R, ¢),
<0 . . . . .
where p : R - R, ¢(z) = {; * 0 This atlas is not compatible with the canonical
x x>

atlas, in fact the transition function n = ¢ o idﬂgl = p oidr = ( is continuous but not
derivable in x = 0.

13



2. Open submanifold. Any open subset U < R"” is a manifold with single chart atlas
given by (U, idy).

3. Product manifold. If M and N are manifolds of dimension m and n, respectively,
with atlases:

'Q{ = {(Uaﬂpa)}aeAa ‘@ = {(Vﬁ7¢ﬁ)}6637
respectively, then
A x B = {(Ua x Vﬁa@a X wﬁ)}(a,ﬁ)eAxB7

where ¢, X g is the Cartesian product maps®

Yo X Yg: Uy x Vg — R™xR"
(z,y)  — (0o x¥p)(@,y) = (palz), ¥5(y)),

is an atlas that makes the Cartesian product M x N a manifold, called the product
manifold of M and N. Since R"® x R™ ~ R™*" the dimension of the product
manifold is the sum of the factor manifolds: dim(M x N) =m + n.

4. Vector spaces of finite dimension as manifolds. Let V be a real vector space
of finite dimension n. Any norm on V determines a topology, which is known to be
independent of the choice of the norm. With this topology, V' is a topological manifold
of dimension n. A natural differential structure on V can be defined thanks to the
isomorphism between V' and its prototype R™. More precisely, if £ = (e1,...,e,) is any
basis of V, then I : V. — R", v = v'e; — (vi)?:l, is a linear isomorphism and also a
homeomorphism in the topology induced by the norm. It follows that (V,I) is a global
chart for V that can be used as a single-chart atlas.

Any other basis E = (é1,...,¢&,) will induce a new global chart for V given by (V,I),
where I : V — R", v = 0'¢; — (0")"_,. To find the transition functions between these
two charts, let us first recall that the change-of-basis matrix A = (a), defined by
e = ag €j, is invertible. From the equation

v = ﬁjéj = vie; = via‘zéj, Yo eV,

we deduce that 77/ = agvi, i.e. the coordinates of any v € V w.r.t. the two charts, are

related by an invertible linear transformation, which is obviously a diffeomorphism in
R™. As a consequence, V is a smooth manifold.

The differential structure defined in this way is called the standard differential structure
of the real vector space V.

5. The manifold of matrices. The group of m x n matrices with real entries M (m x n, R)
is known to be isomorphic with R™" via the lexicographic order of the matrix elements
(ordered by either rows or columns), thus it is a manifold of dimension mn. M (m x n,C)
is a 2mn dimensional real manifold.

5We have used the Cartesian product map , defined as follows: given f : D; — Ry and g : Dy — R,, D and
R are used for domain and range, the Cartesian product function between f and g is:

fxg: DfxDy —> RyxRy
(z,y) +— ([ xg)(z,y) = (f(2),9(=)).
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6. The manifold of invertible matrices. GL(n,R) = {A € M(n,R), det(A) # 0} is
not only a subset of M(n,R) = R™, but it is also open w.r.t. the topology of R™. In
fact, GL(n, R) = (det~1{0})¢, i.e. it is the complementary set of the inverse image of 0
via the determinant function, being {0} a closed set, det™'{0} is closed because det is
a continuous function, thus GL(n,R) is the complementary of a closed set, so it is an
open set. As open subset of M (n,R) ~ ]R”Q, GL(n,R) is manifold of dimension n?.

GL(n,C) is a 2n? dimensional real manifold.

7. The sphere as a manifold. Proving that a spherical surface in R"*!, briefly a sphere,
is a manifold is a classical and beautiful computation in differential geometry. Before
considering the most general case, we start with the easiest one, i.e. that of the 1-
dimensional sphere of radius 1, which has the advantage of showing us in a very clear
geometrical way how to build an atlas. We will then extend this same construction to
the n-dimensional case and to a generic radius R > 0.

Let S':= {x e R? : ||z| = 1}, where | | is the Euclidean norm, be the 1-dimensional
unit sphere in R?, i.e. with radius equal to 1. We start by considering the following
identification:

m:={reR? z=(2'0)} =R,

then we define the north pole N, south pole S and a generic point p of the 1-dimensional
sphere S! as follows:

N = (0,1) = eg (the second element of the canonical basis of R?)
S=(0,-1)=-N
p=("1r").

Let us now consider A := {(Uy, on), (Ua, ¢s)}, where Uy := SN\{N}, Us := S1\{S}, and

PN : Ur — 7 pgs Us — T
P, p?) — en®'p?) = =m P ', p?) — es'p?) = m "

The functions ¢; and @9 are called stereographic projections from the north and
the south pole, respectively. Their geometrical meaning is represented in figure 1.1.

The (unique) intersection between m =~ R and the straight line that connects N = (0,1)
with p = (p',p?) can be determined as follows: the Cartesian equation of this straight

line is of course y(p) =1+ é:gf (p—0),ie y(p)=1-— 1;{’21), so the only value of p* € 7
such that y(p*) = 0 is p* = 1_1p2p1 = pn(ph, p?), thus the stereographic projection from
the north pole is simply the point p*. Analogous considerations can be done for the

stereographic projection from the south pole, obtaining ¢s(p!, p?) = p.

We observe that the stereographic projection from N excludes from its domain N itself
and maps the south pole to the origin of 7 =~ R, in fact: pn(S) = ¢1(0,—1) = %O = 0.
The same considerations hold exchanging N with S and ¢y with pg. Of course
Uy u Uy = St so the covering property is verified by A, we must check the compatibility.
pn and @g are of course smooth and invertible on their respective domains, let us make

the transition functions between them explicit in order to check if they are smooth.
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Figure 1.1: The stereographic projection from the north pole in 2D.

We start with ¢py: its inverse function is gox,l cm— SN\{N}, 2 — gpj_vl(x) = p, with p
such that o (p) = z, i.e. ﬁlpz = 2. If we manage to write p?(x), i.e. p? as a function of
x, then, considering that

pt = (1-p*)a, (1.1)

we manage to express also p! as a function of z, thus making gpx,l explicit. In order to
do so, it is convenient to use the constraint that defines S, i.e. [p = (p',p?)]| =1 <=

|(*, p*)|? = 1, or:
P+ @) =1 <= @)V =1-p")=0-p)1+p%,

which, introduced in the square of eq. (1.1) gives:

2
AT +p%) = (1 pPVa? = 1+p2 =0 —a%p® — p’(a) = !

which, introduced in eq. (1.1) gives:

p1<x>=<1—p2<x>>:c=<1 ‘”2‘1>x: 2 .

22 +1
Hence, the explicit expression of gaj_vl is:

ey TR — SW{N}
r o @) = (PE)P) = (G 55

analogously, we obtain:

pgt: TR — SW\{S}

-1 _ 2 1—z2
r = o5 = (PR i)

We can now compute the transition functions explicitly to test if they are smooth: first
of all we notice that, since on(S) = ps(N) = 0, on the intersection Uy g := U; N Uz =
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Sl\{N, S} we have that SON(UI,2) = (ps(ULQ) = R\{O}, SONSN = (pSO(p]_VI : R\{O} — ULQ
and similarly for nyg. By direct computation we have, for all y € R\{0},

L+ Y%t 22y

)

p y2—1) Y 2 1

_ —1 _ _ _
nsn(y) = vs(ey (¥) = ¢s <y2 s i)

which is a smooth function on R\{0}, similarly:

1- L2y

P 1—y2> Y1
oyl

= _1 = = =
nns(y) = en(es (v) = ¢n <y2+1y, 1

again, a smooth function on R\{0}. Thus, the transition functions between the charts
defined by the stereographic projections are smooth, so A is an atlas for S', which
acquires the status of smooth manifold of dimension 1 with local model R.

Let us consider the general case. We call sphere of radius R > 0 the subset of R**!
given by

Sk ={zeR"™, |z = R}

(1.2)

where | || is the Euclidean norm. If R = 1 we simply write S™. The sphere S} is a
n-dimensional manifold for every R > 0. To prove it, let us build an atlas with two charts
and show that the transition functions are smooth. As before, we use the stereographic
projections of the generic point p € S% from the north N and the south .S pole:

N =(0,...,0,R) = Rens:
S =1(0,...,0,—R) = —N
p=@,....p""
onto the hyperplane
7= {reR" z= (... 2" 0)} =2 R"

The first chart is: (SE\{N}, ¢n), with

PN SEMN} — 7

1.3
p= (pl,... ,anrl) — (pN(p> = #(pl,...,pn). ( )

This time, to understand why the stereographic projection of p from the north pole N
has this analytic form, instead of the Cartesian equation of the straight line connecting
N to p, we consider (just to offer another possible view) its parametric equation, i.e.
r:R —> R ¢t 2(t) = N + t(p — N), notice that x(0) = N, z(1) = p. Since the
coordinates of N are all zero unless the last one which is equal to R, the coordinates of
x(t) are

z(t) = tp!
2*(t) = tp’
i
x(t) = tp”
L:z:”“(t) =R+t(p"™ - R).
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The point ¢y (p) € 7 is obtained by applying on the previous coordinates the constraint
that defines m, i.e. by imposing 2""1(t) =0, or 2" = R+ t(p""' —R) =0 < t =
FprTs SO
1

@N(p) = (:’U (t)7 ce )xn(t))|t:R/(R,pn+l) )
ie. eq. (1.3).
Notice that ¢x(N) is not defined” and that, if we take p = S = (0,...,0,—R), then
pi=0foralli=1,...,nand p"*! = —R, so ¢n(S) = (0,...,0), i.e. the stereographic
projection from the north pole of the south pole is the origin of R".
By the unicity of the intersection between the hyperplane 7 and the straight line passing
through N and p, we have that ¢ is bijective.

The inverse of o is defined as:

T SR
z=(z',...,2") — oy (z)=Dp,
where x = pn(p), ie. (z!,...,2") = ﬁ(pl, ...,p"), thus
R — pn+1
9 ey [ — g ey ) .
0" = () (1.4)
which shows also for this general case that we just need to compute p"*! as a function of
x, ie p"tl(xl, ... 2"), to express also p',..., p" as functions of (x!,...,2") and thus

finding the explicit expression of cp]_\,l.

As in the 1-dimensional case, we take advantage of the constraint that defines S%, i.e.
pe S%if and only if (p')2 + -+ + (p")? + (p"*1)? = R?, thus

P+ + (") = R = (") = (R—p" (R +p"). (1.5)
If we compute the sum of the square components of both sides of eq. (1.4) we get:

IV n2_(R—PnH)2 N2 o n)2 _ (R—p"*1)? o
B+t (0 = gy @ ek @) = Sl

9

but thanks to eq. (1.5),

" (R_anrl Z R+pn+1 |$|2
(B (Rt = B g s B2 I

which, solved w.r.t. p"*!, gives

_pleP-R

n+1
R T

p

By inserting this expression for p"*1(x) in eq. (1.4) we get:

|lz|* — R?* 2R*
— T 5l = 51,
|lz]* + Rr? |lz]* + R

P(r)=1

7=1,...,n,

“If o would be defined on the whole sphere, it would create a homeomorphism between a compact set and
a non compact one, R"™, which is impossible. This observation leads to the conclusion that it is not possible
to have a single chart atlas for the sphere, or any other compact manifold in R".
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thus

) 2 9 2 2 _ p2

—1 1 n n
R ) W (N U LR -3 i B
o) (|w|2+R2x’ NS R

The stereographic projection from the south pole is built in the same way, we simply
have to replace N with S, obtaining

Ps Sp\1S} —

with pg(N) = (0,...,0) and

#5 17T — S?E}{S} 1 2.1 2 2 2
r=(x,...,2") — @g () ZW(QR x, ..., 2R 2" R(R” — |z|%)).

Having at disposal the explicit expressions of g, pn and their inverses, we can check
the compatibility between them, i.e. that the transition functions are smooth on the
intersection SE\{NN,S}. Since pn(S) = ¢5(N) = 0, we have

en (SEMN, 51) = R0} = ps(SE\{N, 51)

S0 NsN = P50 Pt RM{0} — R™ {0}, y — nsn(y). We have:

R 1 2.1 2. n 132
nsn(y) = 573 2Ry ,...,2R*Y") <= nsn(y) = ¥,
lyll>— R 24+ R2 2
R+ R lyl* + Iyl

which is smooth because y # 0 in the domain of ngy. Moreover, since nyg = 775]{,, we

have nys(y) = ”Iy%—H;y: H{jﬁy, smooth as well. This shows that ((Un, ¢n), (Us, ¢s)) is

an atlas for S, called stereographic atlas and that S% is a smooth manifold of
dimension n with local model R".

8. An alternative (but compatible) atlas on the sphere. There are other atlases,
compatible with the stereographic atlas that can be built on the sphere. For the sake
of clarity, let us consider S* to show an alternative (very redundant) atlas that can be
proven by direct computation to be compatible with the stereographic atlas. This is the
atlas: B = {(Ui, i), i =1,...,4}, where:

Uy ={(p',p?) e St : p' >0}, @oa(ph,p?) :=p°

Uz ={(p',p*) €S : p* >0}, wn@,p?) =p'
Us={(p',p*) € S" : p' <0}, us(p’,p?) =1
Us={(p",p*) e S : p* <0}, wu@',p?) =p"

9. The n-torus. Thanks to example 3. we can build the product manifold:
T" =St x ... x St

which is a compact manifold.
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10. The real projective manifold. It is defined as follows:

RP" := R™*1\{0}/ ~

where
Vo,y e R"TI\{0}, 2 ~ y < INeR\{0} : y = Az,

i.e. with ~ we identify any two non-zero vectors in R"*! which are multiples
of each other by a non zero real coefficient: (2°,...,2") = (\20,... \z™).

So, the elements of the projective manifold will be equivalence classes of vectors in
R™*+1\ {0} that lie on the same straight line passing through the origin®.

Endowed with the quotient topology, RP™ is a topological manifold, we will prove that
RP™ is also a differential manifold of dimension n and this will provide a first example
of manifold that is not made up by a subset of points in R%, d > 1, as the elements of
RP" can be identified with straight lines in R”*! and not points of R™**1!

A typical notation used when dealing with the projective manifold is the following;:

(2: iz = (A2 oo A2 VA #0,

(20 :--.: 2") are called homogeneous coordinates of an element in RP".

Let us construct an atlas with compatible charts for RP" by considering the following
open domains: ‘
Up:={(2%: - :2") e RP" : 2" # 0},

i.e. the i-th homogeneous coordinate of the elements belonging to U; is non null (the

others can be null or not, but the i-th surely not). There are n + 1 such domains and
n

they trivially cover RP", i.e. RP" = | J Uj, in fact, having removed 0 from R™ !, at least
i=0

one homogeneous coordinate of an arbitrary element of RP™ must be different from 0,

but then it belongs to a suitable Uj.

The chart maps on U; are defined as follows:

~

0. . qn (20 s gy = (22 ANl z
(% rna™) e (a2 = (G e e )
analytically well defined because in U;, x; # 0. Notice that we only have n components
y y , y

in the image of (; because the i-th component gives i—: = 1, which is a fixed value that
we remove from the image. ¢; does not depend on the particular representative in the

equivalence class where (z% : ---: 2™) belongs, in fact:
; . (Ax? Azt~ Apttd Az"
UsMa: i xab oo a8 [ 2=, . 4 L ) =0
2t B (35 A A ) e ),
so that p; (A2 1 -+ Aa™) = (20 : - 1 2™) YA # 0.

8 Actually, since we have eliminated 0 from R™ !, the vectors belong to two opposite half lines with origin in
0, but, of course, these half lines identify in a unique way a straight lines passing through the origin of R™**.
This identification will be implicitly assumed in the main text.
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11.

12.

; is invertible, its inverse being the map that restores the value 1 after the i-th position
starting from the value 1 of the index:

ot R™ — U
(e y™) — eyl ) =ty Lyt g,
In fact,
(0] i—1 +1 n 0 i—1 +1 n
ga{l(goi(:coz-~:x“))=¢;l(i,...,L,L,...,‘L)=(i,...,L,1,L,...,‘L>,
Xt xt Xt xt xt xt Xt xt

where, since in the last expression we start from the index 0, the value 1 must be
restored after the (¢ — 1)-th position. By definition of homogeneous coordinates we have

0 i+1 n . . . _ .
(L... 1,2 ...L)z(xoz-~~:xl1:x’:x”l:...az"),sogoilogoizszi

v’ Vgt 0 gt 7 xt

and, by an analogous computation, we have ¢; o gp;l = idgn.

{(Us, i), i =0,...,n} is a (n + 1)-charts atlas for the projective manifold if we can
show that these charts are compatible on the intersections of their domains. For that,
notice that, when ¢ # j, the condition U; n U; # J implies, by definition of the sets
U; and Uj, that the i-th and the j-th homogeneous coordinates of the elements of RP"
belonging to U; n U; are both # 0. If ¢ < j, the transition functions can be written as
follows:

mij=@ioe; (YY) =iyt -yl Loyt oy
y! yiml it y' yj+1 Y
ERrEA )

if j < 4, we simply exchange i with j in the previous expression. Notice the gap between
the (i — 1)-th and the (i + 1)-th coordinate, which guarantees the correct number of
components. 7;; is evidently smooth because y* and y? are non null. Since Nji = (p]._l 04,
we get exactly the same functional expression with inverted indices, thus also 7;; is
smooth. So, RP” is a differential manifold of dimension n.

Grassmannian manifolds. We have seen that RP" can be identified with the set of
vector subspaces of order 1 (the straight lines passing through the origin) of R**1. More
generally, if V' is a real n-dimensional vector space, we define:

‘Grk(V) :={W : W is a vector subspace of dimension k of V'} ‘ :

It can be proven that Grg(V') is a differential manifold of dimension k(n — k), called the
Grassmannian manifold of order £ of V. It is clear that:

RP" = Gr; (R™*1)

RP" as a suitable quotient of the sphere S™. Consider a vector z € R**1\{0},
then x and ﬁ, H | being the Euclidean norm on R"*! define the same element of

RP"™. However, H 1 belongs to the sphere 5" = {z e R*L |x| = 1}, this very simple
observation shows that we can always see RP" as a subset of S™ and that the map
m:8" > RP", x = (20,...,2") — (2 : .- : 2") is surjective.
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Notice however that 7 is not injective, because w(x) = w(—z) for all 2 € S™, in fact —ﬁ
X

belongs to the same equivalence class as z and Tol in the projective manifold! x and —zx
are called antipodal points. To remove the lack of injectivity, it is sufficient to identify
the antipodal points on the sphere S™, i.e. to operate the quotient S™/ ~, x ~ —z for all
x € S™. It is not difficult to prove that S™/ ~ endowed with the quotient topology,

is isomorphic, as a differential manifold, to RP".

This example shows how much manifold can be modified by a quotient: in this
case, we pass from a spherical surface, to a set of straight lines passing through the
origin!

1.2.1 Manifolds from the level-set theorem in R**™

Noticeable examples of manifolds embedded in a Euclidean space of suitable dimension can be
built thanks to the so-called level-set theorem, which is a consequence of the inverse mapping
theorem.

Let us consider f: ) — R™, Q < R" open, f € €(Q).

Def. 1.2.1 z € Q c R" is a critical point of f if the total derivative D f(z) : R" — R™ is
not onto, i.e. if rank(Df(x)) < m. A critical value of f is the image via f of a critical
point x of f, so f(x) € R™. We denote with Crit(f) < Q the set of critical points of f. A
regular value of f is an element in f(Q) that is not critical for f.

It is easy to see that Crit(f) is a closed subset of Q. The following result gives a (not necessary)
sufficient condition for a set to be a manifold.

Theorem 1.2.1 (Level set theorem in R"™™) Let:

e () C R™™ open set
e QR fed™()

e ac f(Q).

Then, the set
M, = = (a)\Crit(f),

i.e. the a-level set of f without the critical points, is a smooth manifold of dimension n (the
difference between the dimension of the domain and the codomain of f), w.r.t. the differential
structure inherited by R™T™,

Of course, if f does not have critical points, then M, = f~(a).

Thanks to this theorem we can prove quite easily that the most important matrix groups
are differential manifolds.

e SL(n,R) as a manifold of dimension n? — 1. The function to be considered here is
the determinant of a n x n matrix with real entries:

det: M(n,R)=R"” — R
A —> det(A).
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If A = (a]) € M(n,R), then, by Laplace’s formula, det(A) = Zl(—l)“'Ja;- det(45),
Jj=

where A} € M(n — 1,R) is the submatrix of A obtained by eliminating the i-th row and

the j-th column. Being a polynomial function, det is smooth. Moreover,

Odet

A
6aj

(A) = (=1)""7 det(Aj),

which shows that the critical points of det are given by the matrices A € M (n,R) whose
sub-matrices A;- € M(n — 1,R) have 0 determinant. In fact, in that case, the total
derivative would not be onto: the partial derivatives are the entries of the Jacobian
matrix and, if they are null, this matrix lacks to be full rank. This situation can happen
only if A has rank strictly inferior to n — 1, so:

Crit(det) = {Ae M(n,R) : rank(4) <n —2}.

Any A e Crit(det) has null determinant, thus the only critical value for det is 0. Since
SL(n,R) = {Ae M(n,R) : det(A) =1} = det™*{1}, and 1 is a regular value for det, it
follows that SL(n,R) is a smooth manifold of dimension n? — 1.

As a consequence of this result, SL(n,C) is a (real) manifold of dimension 2n? — 2.

An alternative proof consists in observing that, thanks to equation (??), the matrices of
SL(n,R) are not critical point for the determinant.

With similar, but more sophisticated, techniques based on the rank theorem, it can be
proven that:

— O(n) and SO(n) are manifolds of dimension @;

— U(n) and SU(n) are (real) manifolds of dimension n?.
We will show how to prove that O(n) is a manifold through the rank theorem in section
2.9.2 after discussing the concept of differential of functions between manifolds.

We now show how easy it is to prove that the sphere S} = {z € R"™! : ||z? = R?}
is a manifold of dimension n thanks to the level set theorem in comparison to the
construction of the stereographic atlas. In fact, it is enough to consider the function
that associates to each vector of R"*! its squared Euclidean norm:

f: RV R
v f@) =2 = @)+ @

which is smooth and whose only critical value is 0, because afi () =22"i=1,...,n+1.

Thus, for all R > 0, the level set f~!(R?) = ST is a smooth manifold of dimension
(n+1)—1=n.
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1.3 Morphisms and diffeomorphims between manifolds

Manifolds are the arena of differential geometry, let us now analyze their morphisms, i.e. the
transformations between manifolds that respect their properties regarding the differential
structure. Smooth functions between manifolds are the morphisms of the category of smooth
manifolds, while diffeomorphisms are its isomorphisms.

As usual, smoothness is defined through the use of local charts and compatibility among
intersecting charts must be required.

Def. 1.3.1 Given two manifolds M and N of dimensions m and n, respectively, and a function

f: M — N
p — flp)=gq

two local charts (U, pa) in M and (Vg,g) in N are said to be f-related if f(Uy) < Vp.
Two atlases A and B of M and N, respectively, are f-related if every chart of one atlas is
f-related with at least one chart of the other atlas.

The following result shows that the continuity of f is sufficient to guarantee the existence
of related atlases.

Theorem 1.3.1 Given two manifolds M and N and a continuous function f: M — N, it
exists a couple of f-related atlases of M and N.

Proof. The proof is constructive. Given any two atlases A = {(Ua,(Pa)N}ael and B =
{(Vs,¥p)}pes of M and N, respectively, a direct way to build an atlas A equivalent to
A and f-related to B is to define A := {(Ung, $as) }acr, ges, With:

Uaﬁ =Uyn f_l(Vﬁ)
Pap = ‘Pa|0a5~

In fact, thanks to the continuity of f, f~1(Vj) is an open subset of M and so U, n f~1(Vj)
is an open subset included in (or coincident with) U,. The charts ¢,3 are compatible with
the charts ¢, because the operation of restriction preserves the smoothness of the transition
functions, thus the atlases A and A are equivalent.

Moreover, f(Uyn f~1(V5)) S f(Ua) N Vs S V3 thanks to well-known relationships between
functions and sets, which guarantees that the atlases A and B are f-related. O

We can now define the important concept of local representation (or expression) of a
function between manifolds.

Def. 1.3.2 (Local representation of a function between manifolds) The local repre-
sentation of f : M — N w.r.t. the f-related local charts (Uq, pa) and (V3,1g) is the function:

fsa =g 0 fly. opa

RTL

fﬂa : (Poz(Ua> g R™ — ¢ﬁ<f(Ua) )
(?/])?:1-

)
r=(2)", — fga(z) =1y

I 1n
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The following commutative diagram visualizes the local representation of a function.

M 21U, Tlva sy f(U) € N
4;00471 wﬂ
0a(Uqy) € R™ **"};};"” @Z’ﬁ(f(Ua)) cR”

f3a is a function between open subsets of finite-dimensional real Euclidean spaces, thus we
perfectly know what it means for such a function to be smooth. Its smoothness is used to
define that of the function f itself.

Def. 1.3.3 (Smooth function between manifolds) f : M — N is smooth if it exists
a couple of f-related charts, (Un,pa) of M and (Vz,vg) of N, such that fa., the local
representation of f w.r.t. these charts, is smooth.

Notation: the symbol (M, N) denotes the set of all smooth functions between M and N.
If N =R we simply write €% (M).
As in standard differential calculus, smoothness implies continuity.

Theorem 1.3.2 If f : M — N is smooth, then f is also continuous.

Proof. Almost immediate: if f: M — N is smooth in any point p € M then, by definition of
smoothness, it exists a couple of charts (Uy, ¢o) and (V3,1g) such that p e Uy, f(Ua) < V3
and fgo = g o f\Ua oyl : R™ — R" is smooth, and thus continuous, because it is a map
between real Euclidean spaces, where we know that smoothness implies continuity. But then,
since ¢, and g are homeomorphisms, w;l © fga © q is continuous too, as composition of
continuous maps, but:
7%7101%‘0 f’UaO%;lOSOa = f|Uaa

ie. f |Ua is continuous in an open neighborhood of any point p € M, hence it is continuous on
the whole manifold M that, we recall, is a topological manifold, so it intrinsically carries the
notion of continuity w.r.t. its topology. O

The definition of smoothness just given is intrinsic, i.e. it does not depend on the f-related
local charts considered: once it is true for one couple of f-related local charts, it holds for all
f-related local charts.

To check this, fix any local chart (Vg,13) of N and consider two f-related overlapping
local charts of M, (Uy, pa) and (Uy, @ar), ie. Us " Uy = Usy # & and f(Use) S V3. The
chart maps are related by smooth transition functions 74/ = pa 0 @51, thus o ! = cp;,l O Nedex-
Hence, the local representations fg, = 15 © f|Uaa, o, and f8ar =Yg o f’Uw, o 4,0;,1 satisfy:

fﬂa = wﬂ o f|Uaa, o 90;/1 O Na'a = fﬁo/ O Mol s

which implies, thanks to the smoothness of 74/, that fg, is smooth if and only if fg,s is. The
f-related couples of local charts considered, ((Ua, ¢a), (Va,¥)) and (Uy, vuor), (Vs,1¥3)), are
arbitrary, thus it is enough to check the smoothness of the local representation of f w.r.t. one
couple of local maps to guarantee the validity of this property w.r.t. every other couple.
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By composing fz, with the functionals e/ of the dual basis of R", we get the real-valued

functions: ' A
fra=¢€0fpa: paUa) cR™ — R

p=(a) o fly@) =y
which, as always, are nothing but the scalar components of the R"-valued function fg,.

The functions fé o J =1,...,n, represent the local coordinate transformation func-
tions between the local coordinates (') of a point p € M and the local coordinates
(%7) = (f},(a")) of the point ¢ = f(p) € N.

With the usual abuse of notation, we write fé o = y/, so that:

Y =l (), 1=1,...,m, 5=1,...,n.

The following diagram shows the action of the local coordinate transformation functions.

Us flos F(Ua)

%W ¥p
x € va(Uy) € R™ c

Since the functionals £/ are smooth, it follows that a function f : M — N is smooth if
and only if we can pass smoothly from a local coordinate description of a point
x € M to a local coordinate description of the transformed point y = f(z) € N.

A special case is provided by functions for which N = R"™, or an open subset of R" (thus, in
particular, for scalar functions on M when n = 1). In this case, the differential structure is
provided by the canonical global atlas (R™,idrn ), so the composition with 3 is not necessary
anymore and the local representation of f: M — R", is just f, = f|Ua 0,1, that will be
denote simply as

fa = fO(Pocil . (17)

The following commutative diagrams resume our considerations.

1l
Us e F(U.) € R” Up — 5 R?
b
) <~ //
Pa! idy(Ua) (simplified as) Pat // fa
Soa(Uoz) S R™ ----- JI a""’ f(Uoc) c R” R™
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In the intersection of two charts (Uq, ¢a), (Ugs, pg) it holds that:

fcx:fﬁonﬁm fB:faona,Bv

as shown by the following diagram for the first formula, the second being analogous.

U ﬂUg f
/ o o

Another special case is provided by functions for which M = R™ or an open subset of R™,
thus, in particular, for curves in N when m = 1, as recalled in the following definition.

Def. 1.3.4 (Path, or curve, in a manifold passing through a point) The smooth func-
tion? v : (—g,6) SR — M, ¢ > 0, is said to be a path, or curve, in M passing through the
point p € M if v(0) = p

In this case, the differential structure is provided by the canonical global atlas (R™, idgm ),
so the composition with ;! is not necessary anymore and the local representation of
f:U<R™— N, such that f(U) < Vg is just fg = 9g o f|;, that will be denote simply as

fa=1gof]. (1.8)
verr — v rycvse N v—1 N
idy ¥ (sim}ﬁd as) fﬁ\\\\\ ¥s
N
UcR™ —---- PR Ys(f(U)) = R" R"

To resume, the local representations of the previous special cases of functions between manifolds
are:

{fa fopsl Vf:M -R"

We are now ready to define the concept of diffeomorphism.

Def. 1.3.5 (Global and local diffeomorphism) f: M — N is a diffeomorphism if it is
a smooth bijective function with smooth inverse f~' : N — M, in this case M and N are said
to be diffeomorphic manifolds.

f:M — N is a local diffeomorphism if there exists an open subset U < M such that f(U)
is open in N and f|; : U — f(U) is a diffeomorphism.

9(—¢,¢) is to be considered as an open submanifold of R.
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The most basic example of local diffeomorphism is easily provided by any chart
map ¢, : Uy € M — ¢(U,) € R"™ of a manifold M of dimension n. By definition, ¢, is
bijective, thus, the only property that we must check to verify that ¢, is a local diffeomorphism
is its smoothness and that of its inverse o' : (U,) € R* — U, € M.

It is clear that, in both cases, we can use formulae (1.7) and (1.8) to compute the
local representations of ¢, and ¢!, respectively. As the diagram below shows, the local
representation of a chart map and its inverse is provided by the identity function
idy, (U.), Which is of course smooth.

-1
U, —2 va(Uq) va(Uq) S CN—y
o1 .

“ P i
v /,// Zd%’oz(Ua) Zd‘/’a(Ua) \\\\ h ’
> A
a(Ua) ¢a(Ua)

Thus, each local chart map allows us to diffeomorphically identify any open chart
domain of M with an open subset of R". Moreover, the transition functions 73, are
local diffeomorphisms, being composition of chart maps and their inverses.

We end this section by underlying the difference between identical and diffeomorphic

manifolds.

Def. 1.3.6 (Identical manifolds) Let M be a topological manifold and (M, Ay), (M, As)
two manifolds over M with their corresponding mazimal atlases. Then, (M, A1) and (M, .As)
are said to be identical, as manifolds, if idys : (M, A1) — (M, Az) is a diffeomorphism w.r.t.
the differential structures associated to A1 and As.

From the point of view of manifold classification, diffeomorphic manifolds are considered
as equivalent. However, as the following example shows, in the same diffeomorphic class of
manifolds, we can find manifolds that are not identical.

Example of diffeomorphic non-identical manifolds. We consider:
M, = (Ra Y= ZdR)
My = (R,%), ¥(x) = 23 Vo e R.

To check if idg is a diffeomorphism w.r.t. these two monochart atlases, we have to consider,
as always, the local representation:

R =% R

p=1idg P
i
While f:R—=R, f(z) = (¢ oidg oo~ b)(z) = ¥(x) = ° is smooth, its inverse f~!: R — R,

f () = (poidg oy~ Y)(y) = Yy is not, because (f~1)(y) = 1/(3{/y2), which is not
differentiable in y = 0.
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Thus, M7 and M> are not identical manifolds. However, they are diffeomorphic to each
other, a simple diffeomorphism being F' : My — My, x — F(z) = /z. To check it, let us
analyze again the local representation:

R—F R
p=1idgr P
R -3 R

F

Of course, F(z) = (¢/x)3 = x and (F)"'(y) = (¢/y)® = y, both smooth.
More generally,

e f:R—> R, z+— z" is not a diffeomorphism for all n > 1, so polynomial functions on R
are not diffeomorphisms because their inverse functions lack of smoothness.

e [:R—R, z— z'/"is a diffeomorphism for all n € N odd.
We list next some general interesting facts about differential structures:

e Any connected manifold M of dimension 1 is diffeomorphic to either S* or to R. In
particular, if M is compact (as a topological manifold), then it is diffeomorphic to S?,
otherwise it is diffeomorphic to R.

e Every topological manifold of dimension < 3 admits a unique differential structure up to
diffeomorphisms.

e For every topological manifold of dimension > 3 there exist compact topological manifolds
that does not admit differentiable atlases.

o R™ admits a unique differential structure up to diffeomorphisms for all n # 4.

e Donaldson-Freedman’s 1984 result: R* admits infinite non-countable non-diffeomorphic
smooth structures.

e S7 has exactly 28 non-diffeomorphic smooth structures that can be explicitly written.

1.3.1 Introduction to Lie groups

We now have all the information that we need to introduce the hugely important concept of
Lie group, that will be extensively treated later in this document.

We have seen that M = GL(n,R) is a smooth manifold of dimension n*, as open subset of
M(n,R%) =~ R™. We also know that M x M is a product manifold of dimension 2n2.

The matrix product function is:

2

fr MxM — M
(AvB) —_ f(A>B):C::A'Ba
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where C' = (c;'.)i,jzl,m,n, with cz. = a%b?. The components of f are polynomial functions, hence
they are smooth and so is f.

The inverse matrix function is:

g: M — M

_ A*
A — g(A)=A 1:det(A)’

where A* is the adjugate matriz of A, i.e. the transpose of its cofactor matrix, defined by

C(A) = ((—1)i+j det(A§)> , where A;- is, as we have already seen, the submatrix of A
7"'7n

obtained by eliminating the i-th row and the j-th column. All the operations contained in A*

are smooth, plus the division by the determinant of A is smooth, so ¢ is a smooth function.

Thus, the fundamental group operations, product and inversion, of M are smooth. Every
group which has these properties is called a Lie group, as defined below.

Def. 1.3.7 (Lie group) A topological group'® G endowed with a differential structure that
makes it a manifold and such that the product G x G — G, (a,b) — a - b and the inversion
G — G, g — g~ are smooth is called a Lie group. The dimension of a Lie group is its
dimension as manifold.

R?, considered as a group w.r.t. the operation of sum is a Lie group for all d > 1 and,
thus, so is M (n,R). Other examples of Lie groups are given by the so-called classical matrix
Lie groups, which are listed below.

Classical real matrix groups

e GL(n,R) ={ge M(n,R) : det(g) # 0} (general linear group)
e SL(n,R) = {g € GL(n,R) : det(g) = 1} (special linear group)

e O(n) ={ge GL(n,R) : Yo,y e R* {(gx,gy) = {(x,y)} = {ge GL(n,R) : ¢' = g~}
(orthogonal group!!, it is the group of all the isometries of R")

e SO(n) ={g€ O(n) : det(g) = 1} (special orthogonal group)

Classical complex matrix groups

GL(n,C) = {ge M(n,C) : det(g) # 0} (general linear complex group)

SL(n,C) = {g € GL(n,C) : det(g) = 1} (special linear complex group)

U(n) = {ge GL(n,C) : Va,ye C", {gz,gy) = (x,y)} = {ge GL(n,C) : ¢ =g~}
(unitary group!? it is the group of all the isometries of C")

e SU(n) ={geU(n) : det(g) = 1} (special unitary group)

10j e. a group G that is also a topological space such that the product and the inversion maps are continuous.

"1n this definition ( , ) is the Euclidean product of R™.
121n this definition ( , ) is the Euclidean product of C* and g’ = g* is the adjoint matrix of g.
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1.3.2 S', SO(2) and U(1) as isomorphic mono-dimensional Lie groups

We can easily show that the unit sphere S!, the groups SO(2) and U(1) are isomorphic Lie
groups by using the isomorphism between R? and C:

R? = C

(a,b) — z=a+1b. (1.9)

In fact,
St = {(a,b) eR? : a® +b* =1} c R?,

is the unit circle in R?, and U(1) = {z € C : Vz,y € C", {2z, zy) = {z,y)}, but thanks to
the sequilinearity of the complex scalar product, {zx, zy) = |z|*(x,y) = {(z,y) if and only if
|z|2 =1, i.e. |z| = 1, thus:

Ul)={zeC : |z| =1} cC,

can be identified with the multiplicative group of complex numbers with unit modulus: if
|z1| = |22] = 1, then |2122| = 1 and |27 !| = 1 whenever |z| = 1, thus the multiplicative group
structure of U(1) is evident. Since |z2| = 1 <= |z|? = a® + b? = 1, it is clear that if we
restrict the isomorphism (1.9) to S*, we obtain the following isomorphism:

RZ25 81 = Ul)ccC
(a,b) +—— z=a+ib.

Thanks to this identification, S* inherits the group structure from U(1) and, vice-versa, U(1)
inherits a manifold structure from S'. It can be proven that the manifold and group structures
are compatible, in the sense of definition 1.3.7, so S* and U(1) are Lie groups. Since the
dimension of S! is 1, S' and U(1) are mono-dimensional compact Lie groups.

We can push the isomorphism even further by considering the group SO(2). We recall
that the matrices of this group can be characterized very easily. In fact, given any 2 x 2 real
matrix with unit determinant A:

_fa b ¢ [a c 1 _(d —b
=) -G (D)

we have that A' = A7l «< a =d and ¢ = —b, i.e. we car rewrite SO(2) as follows:

S0(2) = {A: (“b 2) , det(A) = a? + b% = 1},

but then the correspondence

~

R? 58 = SO(2) < SL(2,R)

@y — (4 0).

is an isomorphism. Moreover, for all ¥ € [0, 27), if we set a = cos ¥ and b = sin?) or b = —sin ¥,
then a? + b? = 1, so we can explicitly characterize the matrices of SO(2) as follows:

SO(2)={<00“9 Sinﬁ) :296[0,2%)}={<COS?9 _Sinﬁ> :196[0,27r)}.

—sin?Y  cos? sin?d cosd
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As a consequence, we have three isomorphic mono-dimensional Lie groups, S!, U(1)
and SO(2) that can be explicitly characterized by one free parameter ¥ € [0, 27) as follows:

St = {(a,b) eR? : a =cos?, b=sind, Ve [0,2r)} c R

U(l) ={zeC : z=cos? +isind, Je€[0,2m)} = C

cos?v sind
—sind cosv

SO(2) = {Ae SL(2,R) : A= < > e [o,zﬁ)} c SL(2,R).

1.3.3 S3, H;, and SU(2) as isomorphic Lie groups of dimension 3

We pass from S! to S% without considering S2, in fact it can be proven that S? is not a Lie
group.

The isometries that we have discussed in the previous section follow from the natural iden-
tification between R? and C, those that we analyze here follow from the natural identification
between R* and the non-Abelian division algebra (thus also a group) of quaternions H:

R4 — H
(a,b,c,d) — z=a+ib+ jc+ kd, (1.10)
where 72 = j2 = k> = —1 and the multiplication of the quaternionic units i, j, k follows this

diagram:

S

if we multiply the quaternionic units in the sense of the arrows, we get as result the next
quaternionic unit multiplied by +1, if we multiply the quaternionic units following the opposite
sense w.r.t. the arrows, we obtain the next quaternionic unit multiplied by —1. For example,
ij =k, ji = —k, ik = —j, 7k = i, and so on.

The conjugate quaternion of z = a +ib + jc+ kd is Z := a — ib — jc — kd and its modulus
is the non negative real number |z| such that: |z|? := 2Z = a® + b% + ¢® + d°.

The set of quaternions with unit modulus is denoted by

Hy:={z=a+ib+jc+kdeH : |2|=1 «— > +b* +2+d*> =1} c H.
By recalling that the sphere S® is defined as:
S3 = {(a,b,c,d)eR* : a> +0? + 2 +d? =1} c RY,

it is clear that if we restrict the identification defined by (1.10) to S = R* we get a natural
identification between S and Hj:

R{foS83 5 HycH
(a,b,c,d) — z=a+ib+ jc+ kd.

Thanks to this isomorphism, S® inherits the group structure from H; and, vice-versa, H;
inherits a manifold structure from S®. As for the case of S! and U(1), it can be proven that
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the manifold and group structures are compatible, thus making S* and H; Lie groups. Since
the dimension of S3 is 3, S% and Hj are Lie groups of dimension 3.

As before, we can find a further isomorphism with a matrix group: SU(2). In order to
formalize this, we need to introduce the Pauli matrices:

o1 = <(1) é) oy = ((Z) _02> o3 = (é _01). (1.11)

For ¢ = 1,2, 3, the matrices o, are complex, Hermitian (;* = o) and unitary (7 = a[l),
so it also holds that o, = agl. Actually, the set (I2,01,092,03) is a basis for U(2), the real
vector space of 2 x 2 Hermitian matrices.

By direct computation, we get that:

2 2 2 . .
01 =05 =03 =1y, 0109 =103, 0201 = —103,...

These properties are reminiscent of those of the quaternionic units, they perfectly agree with
them if we multiply the Pauli matrices by 4, for in that case we get:

- . 0 4 - . 0 1 - . 1 0
g1 =101 = (Z O) , 02 =102 <_1 0) y 03 =103 = (0 —Z>

~2 ~2 ~2
Ul - 0'2 - 0'3 - _I27

and
0109 = —03, 0901 =03, 0203 = —01,...
By comparison with the quaternions, we can establish these correspondences:
1 o I
1« 03
J < 02
k < 5’1.
This allow us to represent the quaternions via matrices, in fact:

z=1-a+i-b+j-c+k-d < z=1I1a+d3b+ Gec+71d= <a—|—zb C+Zd> =:A,.

—c+1id a—1ib
Moreover, by direct computation, we have:

det(A,) = a> + > + 2 + d* = |2|*. (1.12)
We notice that A, is a matrix of the type:

a B
- (%5 2)

with det(M) = |a|? + |B]? and MM = det(M)I5, so:

+ b +id
sue) = {(% ) taprisp 1) = {( 450 STR) @are e o).

From eq. (1.12) we get the (group) isomorphism
Hl = SU(Q)

The matrices (61,02, d3) are anti-Hermitian, i.e. &7; = —dy, £ =1,2,3. We will show that
they constitute a basis for the Lie algebra of SU(2): su(2) =~ T, SU(2), the tangent space to
SU(2) at e, the unit element of the group. Since SU(2) has dimension 3 as a manifold, its
tangent space has dimension 3 as well and so does its Lie algebra.

33



1.4 Covering and universal covering

The concept of covering (or cover) is very important in differential geometry, in particular in
Lie group theory.

The definition of covering can be puzzling at first sight, thus we prefer to discuss a very
simple example that will serve as a motivation for the definition.

Consider S}% c R?, R > 0, and R, then the map

m: R — S}
t +—— m(t) = (Rcost, Rsint)

is smooth and surjective, i.e. via m we can cover smoothly the whole manifold S}z. However,
T is not injective, thus, if we consider any open subset U = S}, the counter-image 71 (U)
will be composed by infinitely many open subsets of R. For example, to fix the ideas, consider
the open arc A of the circle of radius R which goes from (R,0) to (0, R), then 7~1(A) is the
following union of disjoint open intervals in R:

7 HA) = U(2k‘7r,7r/2 + 2km).
keZ

For a fixed value k € Z, the interval I}, = (2km,7/2 + 2k7) is a connected set in R and the
restriction of w on Ij, is a diffeomorphism between I, and A.
These considerations motivate the definition of covering.

Def. 1.4.1 (Covering) Given the manifold M, a covering of M is the couple (M, ), where
M is a manifold and m: M — M wverifies the following properties:

1. 7 is smooth and surjective

2. for all p € M it exists an open connected neighborhood U < M of p such that the
restriction of w to all the connected components U < M of 7 Y(U) is a diffeomorphism
between U and U.

If M is simply connected'®, then we say that (M, ) is the universal covering'* of M.

The components of ~1(U) are called the sheets of the covering.

1.4.1 R and R™ as the universal covering of S}, and the torus T"

R is simply connected and we have seen that it is a covering of S}%, it follows that R is
the universal covering of S},. This is the 1-dimensional case of a more general covering
involving R™ and the torus T".

Fixed any lattice A < R”, we can define an equivalence relation ~, in R" by identifying
the elements of R™ that belong to the opposite edges, as depicted in Figure 1.2.

(R™, 7), where m := R" — T" := R"/ ~), © — 7(x) = [z], is the universal covering of the
n-dimensional torus T".

13j.e. M, as topological space, is such that any continuous loop contained in M is homotopic to a point.

141f it exists, the universal covering, can be proven to be unique up to homeomorphisms.
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Figure 1.2: The construction of the torus T2.

1.4.2 SU(2) as the two-sheets universal covering of SO(3)
The Lie group SU(2) is diffeomorphic to S2, which is simply connected, thus it is simply
connected itself. We prove that it is the universal covering of SO(3), the Lie group of proper
rotations in R3.

To this aim, the quaternions will help again. In fact, the first thing that we need to do is
to identify R® with the quaternions with null real part Hg := {ib + jc + kd, b,c,d € R} = H.

The map:
q: RB — HO
= (z,y,2) — q(x):=1ix+ jy+ kz,

is a natural isomorphism.
Next, fixed any quaternion with unit modulus z € Hj, |z| = 1, it can be verified with

straightforward computations that the map

Rz: HO I HO
q(z) — R:(q(z)) = 2q(x)z

is well-posed because zq(z)z~! has null real part. Moreover:

[R(g(2))] = |2a(2)27"] = |2] lg(2)] |7 = la(@)],
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i.e. R, is an isometry of Hy = R3. If we interpret R, as a linear map, then R, € O(3). By
direct computation, it can be verified that det(R,) = 1, so R, € SO(3), i.e. R, is a proper
rotation.

The matrix associated to R., z = a +ib + jec + kd, z € Hy, ie. a®> +b?> + 2 +d?> =1, wr.t.
the canonical basis of R? is:

a? + b -2 —d? 2bc — 2ad 2bd + 2ac
R, = 2bc + 2ad a? — b+ 2 — d? 2¢cd — 2ab ,
2bd — 2ac 2cd + 2ab a’? — b — 2+ d?

det(R,) = (a® + 0> + 2 +d?)3 = 1.

Actually, it can be proven that all matrix of SO(3) can be written as the matrix above, so
the map H; 3 z — R, € SO(3) is onto.

Finally, from the fact that each entry of the matrix R, is a polynomial of order two of the
coefficients of z, it follows with simple calculations that R, = R,y <= 2z =2 or 2z = —7/.
Thus, the correspondence H; 3 z — R, € SO(3) is 2:1.

To resume, we have proven that SU(2) is the universal covering!® of SO(3). We can say

more: the onto map z — R, is also a homomorphism of groups:

m: H; =2SU12) — SO(3)

Z = Az [— W(Z) = Rzu
with
ker(m) = {Iz, —I2}, I, : identity of M (2,C),
so that, by the homomorphism theorem, we have the isomorphism:
SU(2)/{Iz, —I2} = SO(3).
Thinking about SU(2) and SO(3) as Lie groups, 7 : SU(2) — SO(3) defines a two-sheets
covering (since the counter-image of R, by 7 is 77 1(R.,) = {z, —2}).

Finally, if we identify SU(2) with S3, the quotient SU(2)/{I2, —I>} becomes the quotient
of §% w.rt. the equivalence relation ~., given by antipodal points identification on the
3-sphere. However, as we have seen in section 1.2, this quotient procedure gives rise to the
real 3-dimensional projective space RP3, thus:

RP? =~ 3/ ~_ =~ SU(2)/{I2,—I,} = SO(3)

and, thanks to these identifications, even the 3-dimensional real projective space RP?
acquires a Lie group structure!

15In Physics, and in the formalism of Clifford algebras, the universal covering of SO(3) is called Spin(3).
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1.5 Partition of the unity

Partitions of the unity are very important in differential geometry, because they allows us to
extend the definition of objects from a local neighborhood of a point to the whole manifold.
This is used, just to give an idea, for connections and Riemannian metrics.

Let us start with the following useful function displayed in Figure 1.3:

h:R—R, h(t)=

0 ift<o0
e% ift>0

Figure 1.3: The h function.

The properties of h are listed below:

o h(t)e[0,1) Ve R and h(t) — O

t—+00

e h is increasing;
e he °(R).

With this smooth function h, we can cook up other one, depicted on the left hand side of

Figure 1.4:
h(1— [t?)

L= [t]2) + h(lt? - )

n:R—->R, n(t) = i
with the following characteristics:
o 7(t) >0 VteR,
o heE*(R);

because of the definition of h;

e n(t)=0fort>1ort<—1,in fact, in this case 1 — [t|?> > 0, so that h(1 — [t|?) = 0 by
definition in these intervals.

The extension to R™ is the following (for n = 2 the graph is depicted on the right hand side of
Figure 1.4):

h(1— |=]?)
1—|z]?) + h(jz|? - 3)

U:Rn_’R¢ 77(43) = h( ne(gw(Rn)’
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e n(t) = 0VteR;
e n(x) =1 (exactly 1) in W,%);
o n(x) =0 VYzre RM\B(0,1).

7 is called the bump function.

—10

-
[ [
| R
sy

04

Figure 1.4: From left to right, the bump function n function for n = 1 and n = 2.

We recall that, given a topological space X, the support of a function f: X — R is the
closed subset of X defined by supp(f) = {xr e X : f(x) # 0}.
The following result is central in the theory of partitions of unity.

Theorem 1.5.1 Let M be a smooth manifold and:
e K ¢ M a compact subset of M ;
e V. c M an open subset of M containing K: K c V.

Then, there exists a smooth function g : M — R such that

9lx =1
supp(g) c V = 9|M\V = 0.

Thus, g is a generalization of the bump function to M: g is identically 1 on K, identically 0
on M\V and it takes intermediate (unknown) values on V\K.

The proof is constructive.

Corollary 1.5.1 For every point p € M and every open neighborhood V.= M of p, it exist
fige €* (M) such that

flp) =0 g(p) =1

flany =1 7 9lany =0

Proof. 1t is enough to choose K = {p}, obviously compact, in the previous theorem: we obtain
a function g € €*°(M) such that g(p) = 1 and g[y, = 0. Then, by setting f(z) = 1 — g(z)
for all z € M, we obtain the thesis. O

Let us now introduce a handy symbol that will give a sort of generalization of smooth
functions for maps not necessarily defined on open sets.
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Def. 1.5.1 Let S € M be any subset of M. Then we denote with €*(S) the set of
continuous real-valued functions f : S — R that can be obtained by restriction of a smooth

function f:V —> R, V open and S <V, i.e. f= fs.

We use immediately this concept to show that any ¥* function defined on a compact
subset of a manifold M can be extended to a smooth function on the whole
M...with a sort of smooth padding with zeros!

Theorem 1.5.2 (Extension theorem for smooth functions) Let K < M be a com-
pact subset of the smooth manifold M and let f € €*(M). Let also K < W, W open in M.
Then, it exists f € € (M) such that:

. | =1

Il
e

o supp(f) c W, so that fM\W

Proof. By definition, f extends to f € ¢*(U), for some U open in M, K c U.
We set V= U n W and we consider g € (M) such that g|, = 1 and supp(g) < V,
which exists thanks to the previous result.

We define )
f: M — R

;v Je@fe) qeV
q — f(q)—{o e MV

f is smooth and f‘K = f because g(q) = 1 for all ¢ € K. Moreover, f(q) = f(q) for all ge K

and, finally, f ‘M\W = (, because either f is evaluated outside V, or, in any case, g is 0. O

The last concept that we need is that of cover.

Def. 1.5.2 (Cover) Let X be a topological space. A cover of X is a family of subsets
U = {Us}aer of X such that X = | J U,. The cover is said to be:

acA

e open, if all the sets U, are open;

e locally finite, if every p € X has a neighborhood U < X such that U n Uy # & only
for a finite number of indices .

Another covering V = {Vs}ges is a refining of U if V5 € J Ja € I such that Vg < U,, i.e. if
the subsets of V are smaller than those of U.

Def. 1.5.3 (Partition of unity) Let M be a smooth manifold. A partition of unity on M
is a family of functions {po : M — R}aer, I finite or infinite set, such that:

1. po € C€*(M);
2. pa(p) €[0,1] Ype M, Va e I;

3. {supp(pa)}acr s a locally finite covering of M;
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4. lea(p) =1VYpe M.

The partition of unity is subordinated to the open covering U = {Uqy}aer of M if supp(pa) < Uy
Yael.

The last property explains the name. The third property implies that )] p,(p) is always a

ael
finite sum of real numbers, and not a series.

The fundamental result about partitions of unity is the following. The proof relies on
the fact that the topological space underlying a smooth manifold is required to be second
countable.

Theorem 1.5.3 FEvery open covering of a smooth manifold admits a partition of unity subor-
dinated to it.

For the proof see [10].
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Chapter 2

Tangent vector and tangent space
tO A manlfOld at A pO].nt (Edoardo Provenzi)

Inspirational epithap wanted...

Disclaimer: the reader is invited to get acquainted with the notations and concepts
discussed in Appendix B about ordinary differential calculus in R™ before reading this chapter.

A firm understanding of the concept of tangent vector and tangent space to a point of a
manifold is the most important step towards the comprehension of more advanced concepts of
differential geometry.

There are at least five different, but (of course) equivalent! ways to define a tangent vector
to a point of a manifold. Each one has advantages and disadvantages, but all of them must be
known. A thorough analysis of the equivalence between these definitions is available in [9)].

1. Geometrical definition: tangent vectors as equivalent class of curves. It is an
intuitive definition, but not the easiest one to use in proofs or for its notation;

2. Algebraic definition # 1: tangent vectors as derivations of smooth scalar
functions. It is probably the most widely used in the literature, thanks to its notational
and conceptual simplicity. It is the one that we will use more commonly throughout
this document.

3. Algebraic definition f 2: tangent vectors as derivations of germs of smooth
functions. It is similar to the previous one, it has the advantage to make the local
nature of tangent vectors even clearer and of being extendable to real-analytic and
complex manifolds, but it has the disadvantages of being even more abstract and with a
less simple notation.

4. Physicists’ definition: tangent vectors as equivalence classes of n-tuples. It is
mainly used by physicists and engineers, it uses the fact that tangent vectors verify a
peculiar way of transforming under coordinate transformations.

LA perfect equivalence holds only for finite-dimensional manifolds. If the manifold dimension is infinite, the
situation is trickier.

41



5. Jets definition: it is a quite abstract definition, that we will not discuss here, but it
as a great importance in modern versions of calculus of variations, covariant geometric
field theory and general relativity.

2.1 Geometric definition of tangent vectors

We start introducing tangent vectors with the most geometrical way. Later, we will discuss
the algebraic and the physicists’ way and prove their equivalence.

Following [8], let us be guided by the very easy example of the unit spheres S' and S?
depicted in Fig. 2.1 (courtesy of Eric Shapiro) to understand how to define tangent vectors.

Figure 2.1: Intuitive depiction of tangent line to a circle (left) and tangent plane to a sphere
(right).

We see that, while S' and S? are manifolds of dimension 1 and 2, respectively, the tangent
line to a point of S! and the tangent plane to a point of S? live in R? and R?, respectively.
While this may not be a problem for manifolds naturally embedded in R**! as the sphere
S™, for a generic abstract manifold? M of dimension n it is desirable to have an intrinsic
definition of tangent vector and space, that does not make use of a larger structure.

It turns out that manifold-valued paths are exactly what we need to provide such an
intrinsic definition.

Given a path ~ passing through p € M, the tangent vector to = in p, i.e. the velocity at
which v passes through p, will be also tangent to M at p, since the image of v lies in M, as
shown in the picture below.

To make this intuition precise, we must first define what the tangent vector to a path in M
is. As always, since we know how to compute the tangent vector of a path in the local model
R™, we can consider any local chart (U, ¢) in p and build a path in R™ simply by composing -y
with ¢ y(—e.e)nu» that we will still denote with ¢ for simplicity:

povy: (—e,e) — R"
t — (o)),

?By Whitney’s embedding theorem [10], every n-dimensional manifold M can be embedded in R*"**,
however, the fact that this embedding exists, does not mean that it is convenient to think about M as an
embedded submanifold of R?"*1. For example, in general relativity, spacetime is a 4-dimensional manifold and
it meaningless to embed it into R? ...
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since (p 07)(0) = ¢(p) = z € R™, p o~y is a path in R™ passing through x = ¢(p).
Using the standard definition of calculus, the tangent vector to the curve p o at z is:

(o)) =(pon)(0) _ d
t dt|,_,

(po7)(0) := (poy)(t).

Of course, in general, there may be other curves passing through p with the property that
their local representations via ¢ have the same tangent vector as +.

The following basic lemma shows that, remarkably, if the local representations any two
curves passing through p have the same tangent vector in R™ w.r.t. a given local chart in p,
then this holds for any other local chart in p.

Lemma 2.1.1 Let (U, ¢a), (Ug, pg) be two overlapping charts in p and vy, o two paths passing
through p. Define:

Ya 3= a0, Yp = pp o and 0o 1= e 00, 05 =g o0

Then:
Ya(0) = 0a(0) < 73(0) = o5(0).

Proof. With the notations of the Lemma we have:
78(0) = (95 07)(0) = (95 © 5" ©pa ©7)(0) = (Nga © 7a) (0),

where 73, is the (smooth) transition function between charts. Thanks to eq. (B.7) we have:

78(0) = D(Npa ©7)(0)1 = Diga(7a(0))D7a(0)1 = Dijga(2)7a(0).  (2.1)

(chain rule)

Of course, the same holds for the path 7, i.e. 03(0) = Dngs(x)da(0). By the linearity of the
operator Drgq(x), it follows that:

78(0) — 05(0) = Dnga(x)(Ya(0) — 00(0)).
Now, 734 is a local diffeomorphism, thus Dng, () is a linear isomorphism (the Jacobian matrix

of g in = has non null determinant), thus v, (0) — 6 (0) = 0 if and only if y3(0) — o3(0) = 0,
which proves the theorem. O
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This lemma implies that the equality of the tangent vector in R™ for the local representation
of two curves in M passing through the same point is an intrinsic property of the manifold
M, meaning that it does not depend on the local chart chosen. This property allows us to
define an equivalence relationship in the set of curves and also the first, geometric, definition
of tangent vector to a manifold at a certain point.

Def. 2.1.1 (Tangentially equivalent, or tangent, curves) Let M be an n-dimensional
manifold and p € M fized. Two paths v,c in M passing through p are tangent, or tangentially
equivalent, if they identify the same tangent vector in R™ when composed with any local chart
@ inp, ie.

(9 07)(0) = (¢ 0)(0).

Being defined via an equality, the fact of being tangentially equivalent is easily seen to be
indeed an equivalence relationship in the set of curves in M passing through p.

Def. 2.1.2 (Geometric tangent vectors and tangent space to M at p) A (geometric)
tangent vector to M at p is a tangentially equivalence class of curves passing through p, denoted
with [y]. The (geometric) tangent space to M at p, denoted with T5™ M is the set of all
tangent vectors to M at p.

Remark: a slightly different definition of tangent vector can be obtained in a similar manner,
replacing the local charts with smooth scalar functions, in this case we define two paths « and
7 to be equivalent if, for all f € € (M), (fo~v)'(0) = (f oo)(0), where both fo~y and foo
are scalar functions of a real variable. In this case we say that v and 7 have a contact of
first order in p (a contact of order zero being simply the fact that the pass through the
same point, i.e. v(0) = n(0) = p).

The set of curves in M passing through p quotiented w.r.t. the tangential equivalence
turns out to be a copy of R", as stated in the following result.

Theorem 2.1.1 Fized a local chart (U, ) in p € M, the map

Ly: TE"M = R»
vl — L)) = (pov)(0),

which associates to a tangentially equivalence class of paths passing through p their common
tangent vector (¢ o)’ (0) in R™ w.r.t. the local chart @, is a bijection.

Proof. Injectivity is obvious: different tangential classes of curves are associated to different
tangent vectors in R".

To prove surjectivity, fixed any v € R™, we must prove that there exists [y] € T3*"" M such
that I, ,([7]) = (¢07)(0) = v. This can be done very simply by transporting to M via ¢! the
segment of straight line passing through x = ¢(p) and directed as v, i.e. TI7U|(—6,E) 'R — R7,
T20(t) := = + tv, where € > 0 is small enough so that 7, ,(—¢, ) is contained in p(U):

Y= (10_1 o T{L’,U‘(_g75) : (_575) — M, fY(t) = 90_1('77 + t’U) ) le (_575)‘ (22)
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7 is such that v(0) = ¢! o rm,\(_e o (0) = o~ Hz) = ¢ 1 (p(p)) = p, hence, to prove
surjectivity it remains only to check that the tangent vector in R" of the local representation
of v associated to ¢, i.e. (¢ o) (0), coincides with v:

Lpp([7]) = (2 07)(0) = (p o™ (z +tv))'(0) = (z + tv) (0) = v.

a

T5°°™M cannot be canonically identified with R™ because I, ,, depends both on the point
p and the local chart ¢: changing the point p on M and/or the local chart ¢ changes the
identification with R".

Since the elements of T "™ M are called tangent vectors, we expect T3 M to be a vector
space, this is actually the case. The linear structure of 75 "™ M is borrowed from that of R"
thanks to the bijection provided by I, ..

Linear structure of T5°°™ M:

[V + (0] := L . (Ipo([V]) + Lo ([0]),  [1],[0] € TE™M
kv o= Lo (kL o(7]), keR.

This definition of linear structure seems to depend on ¢, however it does not, it is intrinsic.
We prove this for the sum, an analogous proof holds for the product by a real coefficient.
Using the hypotheses and notations of Lemma 2.1.1, we have:

Ipos ([7]) = 98(0) = Dnga()7a(0) = (Dnga(x) © Ly, p)([7]),
since this holds for all [y] € T5*™ M, we have:

Ipos = Dnpa(z) 0 Iy, p = ijéﬂ = I(;a{p o (Dnga(x))_l, T = a(p). (2.3)

If we denote temporarily with +, and 4 the sum brought to T M by the local charts ¢,
and g, respectively, then:

V] +8 0] = I, g, (Tpios (10D + Tpiga([0])

o3 Lo © (Dnga(2)) ™ ((Dnga(x) © Loo p) (7)) + (D(13a (%)) © Log ) ([0]))

oy Ut (P5a(@) ™ 0 Do) U pl17)) + L p([01)

=I5 Tpap((]) + Lo p([0]))
=[] +alo].

The bijection I,,, becomes a linear isomorphism between T3 M and R" and thus it can
be used to transport a basis of R” to a basis of T3 M. The easiest one is of course the
canonical basis of R", thanks to the proof of the surjectivity of I, ,, we have that the basis of
geometric tangent vectors of T5°*™ M associated to the canonical basis of R" is:
ol o)) = ([t oM@t ten)] [t o7 @+ ten)])
(2.4)

(o™ o raeal el
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where ¢ is any local chart in p and 75, | ( : (—&,e) — R™ is the straight line segment passing

—€,€
through & = ¢(p), contained in ¢(U) and Iiarallel to the i-th coordinate axis, i = 1,...,n.

Finally, I, , can be used also to transport any norm of R” to T M. In this case, the
norm on 75" M depends on ¢, however, topologically speaking, this creates no problem at
all because it is well-known that all norms on finite-dimensional vector spaces are equivalent,
in particular, they are equivalent to the Euclidean norm.

To resume, TF°®™ M is a normed vector space isomorphic to a copy of R" but
not canonically.

Before passing to the algebraic definition of tangent vectors and tangent space, we introduce
the concept of differential of push forward of a geometric tangent vector.

Def. 2.1.3 (Differential (or push-forward, or tangent map) of a smooth function)
Given the smooth function f: M — N, the differential (or push forward, or tangent map) of
f at p is the map that transforms a tangentially equivalence class of paths passing through p
to a tangentially equivalence class of paths passing through f(p) simply by composition, i.e. :

dfp = fs: TﬁeomM — Tf(e;)mN
v — dfip(Y]) = f(]) = [f ol

With a quite technical computation that uses the definition of the linear structure of 75" M,
it can be proven that df, is a linear operator. The non manifestly linear nature of Ty > M and
of the differential of geometric tangent vectors is one of the main reasons why mathematicians
searched for an alternative definition, the algebraic one, which makes linearity manifest, as we
are going to discuss in the next section.

(2.5)

2.2 Algebraic definition of tangent vectors

The link between the geometric and algebraic definition of tangent vectors on a manifold
passes through the following considerations. An element of R™ can be interpreted either as a
point, say x € R”, and as a vector v € R™, once these ones are fixed, there is just one way to
define the directional derivative D, f(x) of a scalar valued function f : R” — R in x along the
direction defined by v, as discussed in Appendix B.

Directional derivatives are linear, they satisfy Leibniz’s rule when applied to the product of
two functions and they are null when a function is constant along the direction of derivation.

It turns out that these properties are necessary and sufficient to identify a tangent vector on
a manifold in an algebraic way. This alternative vision, as it will be proven, is fully equivalent
to the geometric one previously discussed.

This algebraic abstraction of a tangent vector is typical in modern mathematics and it can
be considered as the analogous of the algebraic abstraction that leads to the definition of scalar
product in an arbitrary vector space: in that case, the properties of bilinearity, symmetry and
positive-definiteness are necessary and sufficient to identify a form on a real vector space as a
scalar product. The advantages of this abstractions are known, e.g. the possibility to define
a scalar product for vector spaces of any dimension and whose elements are not necessarily
vectors in the Euclidean sense, but also polynomials, functions and so on.

The algebraic abstraction of the concept of tangent vector starts with the definition of
a derivation on the set of smooth real scalar functions from M to R, denoted with €* (M),
in a point p € M. ¥*(M) is a real algebra w.r.t. the point-wise linear operations and
multiplication.
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Def. 2.2.1 (Derivation on ¥*(M) in a point) Let f,g € € (M). Fizedp € M, a deriva-
tion on €* (M) in p € M is a linear functional v : € (M) — R that satisfies the following
Leibniz rule:

[0(f9) = f)v(g) + gP)o(f)] . Vf.ge € (M).

The set of derivations on €% (M) in p € M is easily proven to be a real vector space, w.r.t.
the point-wise linear operations, that we denote with Der,(M).
The Leibniz rule implies two basic properties of derivations.

Lemma 2.2.1 Let v € Der,(M) and f,g € €°(M). Then:
1. v sets to 0 constant functions: if k. = ¢, i.e. ke(q) = c€ R for all g € M, then v(k.) = 0;

2. If f, g take null values in the application point p, i.e. f(p) = g(p) =0, then v(fg) = 0.

Proof.
1.: let ky = 1, then:
v(ke) = v(kckr) = o(ckr) = cv(ki) = cvlky k1) = elki(p)o(kn) + ka(p)o(k))
= 2cu(ky) = 2v(ck) = 2v(ke),
i.e. v(ke) = 0.
2.: v(fg) = f(p)v(g) + g(p)v(f) = Ov(g) + Ov(f) = 0. O

The following property is of fundamental importance: it says that derivations act locally,
in the sense that only the values taken by a smooth function on an arbitrarily small open
neighborhood of the application point matter to define the action of the derivation.

Theorem 2.2.1 Let v € Der,(M) and f,g € €°(M). If there exists any open neighborhood
U < M of p such that f|; = gly, then v(f) = v(g).

Proof. By hypothesis, f — g is a smooth function on M that vanishes in U. Thanks to
proposition 1.5.1, we know that it exists a smooth function h € €* (M) such that h(p) = 1 and
h| MU = 0, then the product function (f — g)h is zero, thus, thanks to the Leibniz property:

0= o((f —g)h) = o(f — )bk + (F — D)@Io(h) = v(F) —vlg) + (F—g@)) v(h),

ie. v(f) =v(g). O
We are now ready to define the concept of algebraic tangent vector.

Def. 2.2.2 (Algebraic tangent vector and space) The vector space TE8M, called alge-
braic tangent space to the manifold M at the point p € M, is the vector space Derp(M) of
derivations on € (M) inpe M:

T8N := Dery(M) | .

An element of T;lgM, i.e. a derivation on €*(M) in p € M, will be called an algebraic
tangent vector to M in p.
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v is a linear functional, i.e. v € €*(M)*, the dual space of €*(M) (interpreted as a real
vector space). ¢ (M)* is an infinite-dimensional vector space, however, as we will show,
the Leibniz property is such a strong constraint to be satisfied that the linear functionals
that satisfy it, i.e. those composing the subspace Der,(M) c € (M)*, form a n-dimensional
vector space, n being the dimension of M.

When we have discussed the case of geometric tangent vectors, we have proven an analogous
dimensional reduction, in that case it was operated by the quotient w.r.t. the tangential
equivalence between paths on the set of paths in M passing through a point. This is a first
indication of the fact that geometric and algebraic tangent vectors are equivalent concepts.

Proving that the algebraic tangent space to a manifold at a point is a n-dimensional vector
space is more difficult than for its geometric counterpart. Multiple proofs are available in
the literature, the line of reasoning that we have chosen to follow in this document is not the
shortest, but it has the advantage that the intermediate steps are fairly easy to prove:

1. first of all, we prove the result in the trivial case of M = R";

2. then, we define the algebraic version of the differential (or push-forward) of a smooth
function and analyze its remarkable properties;

3. by fusing the previous steps, the proof that T} g7 s (not canonically) isomorphic to R™
will be almost immediate.

To prove that the algebraic tangent space to R™, or an open subset of R™, at a point zq is
isomorphic to a copy of R", we need the following intermediate result, which says that every
smooth function f on R” is associated to a n-tuple of smooth functions that coincide with the
partial derivatives of f in xp and, moreover, this n-tuple of smooth functions allows for a sort
of first order expansion of f in a sufficiently small open neighborhood of xg.

Lemma 2.2.2 Let xg = (zg,...,28) € R™ and f € €*(M), then there exist n smooth
functions g1, ...,gn € €*(V), where V is an open neighborhood V' of xo, such that:

and

F(@) = flwo) + Y (af — a3)g;(x),
forallxzeV.

Proof. V' can be considered as star-shaped, i.e. the straight line segment between xy and
x € V defined by z¢ + t(x — x¢) for all ¢ € [0, 1] is entirely included in V; if it is not, then we
can restrict it to a star-shaped open subset of R™ and work on this new neighborhood of x.
Thanks to this remark, the expression f(xg + t(z — z9)) is well-defined for all z € V' and we
can re-write the difference f(z) — f(zo) as follows:

1

@) = Flao) = oo + 1 — )i = [ ds(eo + 1o — o)),

0
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thanks to the fundamental theorem of integral calculus. On the other side we have

1 1 0
[, @+t =0 = | £ o + e o)

0

we can expand the derivative under the integral by using the chain rule:

(ft (zo+t(z—10)) = ; ji (zo+t(z— xo))é(azo i té:f —20)) _ > a7f~(onth(:L“—Io))(mj—xo)

so that

n

f(x) = f(xo) J Z P (xo+ t(z —x0))(x —:L“o = Z — X J 7 (xo + t(z — xp))dt.

Since f is smooth, the integral exists and it is finite, and (since integration increases of one
degree the regularity of the integrand) the functions g; defined as follows:

; = ' of t dt A 1%
gi(x) = . @(»"30Jr (z — x0))dt, eV,

are smooth on V. Each g; verifies both f(x) = f(zo) + Y, (27 — z0)g;(z) and
j=1

L of

oI

1
oyt = 2w [ at = ),

1 af
9(0) =J0 227 (%0 F teo —zo))dt = | 0w do 0w

thus proving the lemma. O

Theorem 2.2.2 Let V < R” be an open set and xg € V, then the following map is an
isomorphism of vector spaces:

~

L R" ng‘égv

v=() — uv)= ilvja_

vlzg

where the derivation Dyl, :€* (V) — R is nothing but the linear functional on € (V) that,
when applied to a smooth scalar function f on V, provides its directional derivative along v in
o~

. lev, - . .
In particular, T2V is a n-dimensional vector space.

Proof. The fact that ¢ is linear can be checked directly and it follows from the linearity of the
operations involved in its definition.

¢ is one-to-one: since ¢ is linear, to prove that it is injective we simply have to check that
ker(t) = {Ogn}. For that, it is sufficient to show that, if v = (v/) # Ogn, i.e. at least one
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component is non null, say, v* # 0, then the corresponding derivation ¢(v) is not the null
derivation, i.e. the derivation that sets all smooth scalar functions on V to 0.

To verify that, it is enough to consider the k-th canonical element of the dual basis of R™,
ie. e¥:V - R, ¥(z) := 2F. Of course e¥ € €* (V) because the projection on the k-th axis is
smooth, so we can apply ¢(v) to it, obtaining:

ky._ E
) ) o j:lvj aZL‘]

n

:Z é’xJ :Z axa:Z”j(s?:”k#O’

j=1

and so ¢ is one-to-one (note that xg is not a constant, but a variable, for this reason =% = = P)

L is onto: we must show that, for every D € Der,(V), it exists a vector v = (v7) € R" such that
n 4

D = (v) = > v 37 o’ To this aim, we use the previous lemma, expanding an arbitrary
=1

fe€® (V) as follows:
f(x)

_xo g9;()

||M:

in a neighborhood of x( inside V. This expression can be re-written as a functional equation,
namely:

f=kpao + ), — kxg)gj,

.
NagE

where kf,)(z) = f(wo) and k_; (z) = xé are constant functions, and /(z) = z7. Applying
0

0o & .
D on f we get, by linearity, D(f) = M + > D ((53 — l{mj)gj>, having used the fact
=1 0
that a derivation sets to 0 constant functions. Now, by using Leibniz’s rule:

i [ 2)9i(@0) + (£ =k} (o) ODQJ],

where the second term between square brackets vanishes because (e/ — k_;) () = &/ (x0) —
. . 0
k o (z0) = x} —x}, = 0. So, using again the linearity of D, the nullification of constant functions

and the fact that g;(zo) = 2 (20) (thanks to the previous lemma), we have:

oxJ
= 2 (P() = Dlb] Jaiao) = 3, Do) = 3, DX ) 5% o),
j=1 Jj=1 Jj=1
n . )
since f is arbitrary, we can write D = >} D(¢’) 55 2, thus, to obtain D = t(v) we simply

j=1
have to consider the vector v = (v’) € R™ whose components satisfy:

vl = D(e%) |, j=1,...,n. (2.6)
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Corollary 2.2.1 For any fized xo € R"™, the n derivations on €*(R™) given by
9
oxt

Proof. Almost immediate: since the linear isomorphism ¢ of the previous theorem maps
basis to basis, if we apply it to (ey,...,e,), the canonical basis of R", we obtain a basis of

7
s m

o

) - (D€1|x07""D6n|xo)
zo

form a basis of Txaég]R”.

Tg?égR”. Since the components of the canonical basis elements are all 0 except for only one,
the images of (e, ..., e,) are exactly the evaluation in z( of the directional derivatives along

each Cartesian axis, i.e. evy, 0 z%= = o i=1,...,n. O

oxd T 0z |z

2.2.1 The (algebraic) differential of a smooth function between manifolds

As we have already seen in the case of geometric tangent vectors, every smooth map f between
manifolds M and N can be ‘lifted’ to a linear map between the tangent spaces of M and N
called either differential, tangent map or (point-wise) push forward.

Here we provide the definition of differential when the tangent spaces are defined alge-
braically. Its properties will prove to be of fundamental importance.

Def. 2.2.3 (Differential of a smooth function — algebraic case) Let f: M — N be a
smooth function and p € M, the differential of f in p is the linear function defined in this way:

dfy: "M — T;ON
v —  dfp(v),

where df,(v) is the derivation at f(p) defined as follows:

dfyw): E*(N) — R
o [dp)6) = (o))

(2.7)

The composition between a scalar function with a map between manifolds appears often in
differential geometry, for this reason it bears a special name and symbol.

Def. 2.2.4 (Pull-back of scalar functions) Let f : M — N be a smooth function and
¢ : N — R a scalar function on N. Then, we can define a scalar function on M simply by
composition with f:

f*: €*°(N) — E* (M)
¢ — | ff(¢)=0dof|.
f* is called the pull-back via f because it pulls-back a scalar function on NV, the codomain of

f, to a scalar function on M, the domain of f. Of course, (idy;)*(¢) = ¢ for all p € € (M),
S0:

(idar)* (@) = idegen (- (2.8)
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Note that, if f € €*°(M,N), g€ €*(N,P) and ¢ € €*(P), then (go f)*(¢) :=po(go f),
but (f*0g*)(¢) = [*(¢*(9)) = [*(¢og) = po(go [), thus

[(gof)* =f*og’
When using the pull-back, the differential of a smooth map becomes:
dfp(v)(9) = (vo [N (@) <= dfp(v)(d) =v(f*(¢)),  VdeETT(N),
or, since the previous equation holds for every ¢ € €*(N),
dfp(v) =vo f* < dfy(v) =v(f7). (2.10)

If we use the push forward notation (in which the point p is omitted) to push a tangent vector
to M at p towards a tangent vector to N at f(p), then we get the evocative expression below:

. (2.9)

. alg N alg
fo: TMEM T7E N

fe(w) = o(f*) .

v >

The principal properties of the differential are listed in the following proposition.

Theorem 2.2.3 (Properties of the differential) For all p € M the following properties
hold.

1. d(ZdM)p = idT;)llgM;

2. Chain rule for differential: if f € €°(M,N) and g € € (N, P), then the differential
of the composed function go f : M — P is the linear map d(go f)p TpalgM — T;(l]gc(p))P
such that:

d(go f)p = dgf(p) o dfp.

3. If U € M is an open set containing p and v : U — M is the canonical inclusion in M,
then du, : T;lgU — T;lgM is a canonical linear isomorphism.

4. If f is a local diffeomorphism defined on an open subset U € M with values in f(U) € N,

then df, : TﬁlgM — T;(ZZ)N is a (globally defined) linear isomorphism and

(dfy) ™" =d(f ") p)- (2.11)

Proof.

1. By (2.10) we get d(idnr)p(v) = vo (idp)* for all v e T;lgM, moreover, thanks to (2.8) we

have (idps)* = idgoo(ar), thus d(ida)p(v) = v, ie. d(idy)p = idT;gM.

2. Let ve Ty 807, arbitrary, then:

dlgo fpl) = vo(go )" = volf eg”) = (o f) ey’

o0 dfp(v)og o0 dg(p) (dfp(v))

= (dgs@p) © dfp)(v)-
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3. We will prove injectivity and surjectivity of dt,.

Injectivity: we must show that the kernel of the linear map du), is reduced to the zero derivation.
For that, let us consider an arbitrary v € To#U and suppose that dip(v) = 0, we must show
that this implies v = 0. To this aim, let B be an open neighborhood of p such that B € U,
then the extension theorem for smooth function (th. 1.5.2) assures us that any f € €°(U)
can be extended to f € € (M) in such a way that f’ﬁ = f|g. This implies that f and f‘
are smooth functions on U that agree on B, which is an open neighborhood of p, but then
theorem 2.2.1 implies v(f) = v(f‘U) Now, f’U is nothing but f o, so

v(f) =v(four) (;) dup(v)(f) =0,

because, by hypothesis, d,(v) = 0, the null derivation. Since f € € (U) is arbitrary, v = 0
and so du, is injective.

Surjectivity: consider an arbitrary w € T &g , we must prove that it exists v € T 817 such
that w = du,(v). We define such derivation as follows: v(f) := w(f) where f in any smooth
function on M such that f == flg-

Thanks to theorem 2.2.1, this definition of v does not depend on the choice of f and it
is of course a derivation of € (U) at p, thanks to the fact that w is linear and verifies the

Leibniz rule. Finally, fixed any arbitrary function g € €* (M), we have that g, got and g5t
agree on B, thus:

Ay(v)(9) = (9o 1) = w(gFi) = w(o).

since ¢ is arbitrary, we have that w = di,(v) and so du), is also surjective.

4. It is an easy consequence of the previous points. In fact, if f is a local diffeomorphism
between U and f(U), then it exists f~! : f(U) — U, such that f~! o f = idy, thus:

d(idy)p = d(f o f)p 5 d(f 1) sy © dfy.

On the other side, thanks to 1., d(idy), = id e, and, thanks to 3., T;lgU ~ T;lgM, thus
p
d(idy)p = idpais, - So, equating the two expressions for d(idy ), that we have determined, we
P
-1 .
find d(f )f(p) o dfp = sz,‘,ﬂgM'

dfp o d(f_l)f(p) = id a1, thus proving 4. O
P

Exchanging f with f~! we get, with analogous considerations,

Property 3. allows us to identify in a canonical way the tangent space at a point to an
open neighborhood of p with the tangent space at the same point to the whole manifold: the
derivation dt,(v) is the same derivation as v in p acting on smooth scalar functions defined on
the whole manifold M instead of those defined on U.

This is not surprising at all, since, as proven in proposition 2.2.1, the action of a derivation
in a given point on a scalar function depends only on the values of the function in an arbitrarily
small neighborhood of that point. From now on, we will implicitly accept the following natural
identification:

THeU ~ T¥€M| U< M, U open.
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As previously stated, thanks to TM8R™ ~ R™ for all z € R™ and to the properties of
the differential, we can very easily prove the isomorphism between T28M and R™ just by
considering the differential of an arbitrary chart map.

Theorem 2.2.4 If M is a manifold of dimension n, then, fixed any p € M, it exists a
non-canonical linear isomorphism of vector spaces such that:

TAEM =~ R”

s0, in particular, dim(T;ﬂgM) =n.

Proof. If (U, o) is an arbitrary chart in p such that ¢(p) = z, then o : U € M — p(U) € R"
is a local diffeomorphism. By property 4. of the differential, dy, : algM TI8R™ is a
linear isomorphism of vector spaces. Since this isomorphism depends on the chart ¢, it is not
canonical. O

2.2.2 A basis for T;lgM

Since Tp '8/ is a n-dimensional vector space, it is natural to search for an explicit basis of
tangent vectors.

In proposition 2.2.1 we have seen that, in the identification between R" and T2'8R™, the
canonical basis of R” is identified with the basis of evaluations in z of the partial derivatives:

R"” AN T;lg R”

(e1,...,6n) «— (%z”&%‘x)

Now, once selected a point p € M and a local chart (U, ) in p such that ¢(p) = = € R,
we have just seen that the differential of ¢ in p is a linear isomorphism between T} 01 and
Tﬁlan ~ R", thus its inverse (dp,) ™! : T;Ian ~ R" — T;,ﬂgM is a linear isomorphism too
and, as such, it maps bases to bases.

As a consequence, we can use (alcpp)_1 to transport the canonical basis of R"
(or, equivalently, the basis of T; lepn given by the evaluations in z of the partial
derivatives) to a basis of TF'8)M.

So,forall j=1,...,n

~

(dpp)™': R™ = T8R" THEM
= ((%UJ ) (diop) ™" (a% m> ;

the explicit action of the derivation (dy,)~ (i

oz ’
f € €*(M) can be computed thanks to eq. (2.11), that in this case gives (dapp) =
d(goil)ap(p) = d(@il)x, so that:

Y=o (55

) on an arbitrary smooth scalar function

0

e (55 ‘

Y= a5
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but f o !: )< R® — R is nothing but the local expression of f w.r.t. the chart
(U, ) and the real numbers a(f#{l)(m), j=1,...,n, represent the value of the directional
derivatives of f o ¢~! in the point z € R” along the unit canonical basis vectors ej of R™.

The derivations (dip,) ! <%’w>::1 constitute a basis of Tp e pr and, to simplify the heavy
notation, they are usually written as follows:

0 1 ( 0 1 0
j|p=@p:(d<ﬁp) <axjx>:d(90 )x(axj

We resume what just discussed in the following theorem.

) , 2 =¢(p). (2.12)

Theorem 2.2.5 (Coordinate tangent vectors to M at p) Fizedp e M and a local chart
n

(U, @) in it such that ¢(p) = x, the derivations of TpalgM given by (0;,)j—y, or (i ) ,
=1

ozl lp)
defined by:
§j|p: ¢ (M) — R
O(fop ! 2.13
foo ol =2 ) (219
or,
aal, s €M) — R
0 _Afoe™) (2.14)
f — @pq)_T(@

form a basis of T;,ﬂgM. They are called coordinate tangent vectors to M at p.

Both notations are further simplified by writing:

O(fopt 0
ol (== 28wy e O
p

_Afoe™)
oxJ oxd

=

= oxd
ﬁxp

().

We remark again that the real value obtained by applying th j-th coordinate tangent
vector to M at p on a smooth function f on M is just the value of the partial
derivative of the local expression of f (and not of f itself!) along the j-th axis in
z = ¢(p).

This is the reason why the expression 21 must not not be intepreted as the partial

o0xJ
derivative of f in p in the usual sense, because f is defined on M, not on R"™! The
notation J; f |p may be used to avoid this misinterpretation, however, the notation % has

the advantage to make the chain rule ‘visually easier’ to handle, as we will see later.

The basis of coordinate tangent vectors will be the key to understand the link between
the algebraic definition of tangent vectors and the physicist’s one.

Remark: the derivations ((91|p yee s (9n|p) are defined by applying the linear isomorphism
(dpp)~! to the canonical basis of R™, so they cannot be considered as a canonical basis for
T;lgM (which does not exist), because they depend on the choice of the local chart ¢
in p! Different charts will produce, in general, different basis for T35 M.

Moreover, as p varies in M, the tangent spaces T}, in spite of being isomorphic to
R"™, are not canonically isomorphic to each other and they must be considered as different
copies of R" attached to each point p of the manifold M.
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2.2.3 Coordinate formula for the differential

Fixed a local chart (U, = (27)) in p € M such that ¢(p) = x, a tangent vector v € T;lgM
can be written uniquely as a linear combination of the basis of coordinate tangent vectors as
follows:

) 9
— ) o =7
v=1)0j|,=v pl
P
the real numbers v/, j = 1,...,n are called the components of v on the basis of coordinate

tangent vectors of Tj epr.

The following result establishes that the components of v characterize not only v as a
derivation belonging to T e pr , but also its expression in coordinates, furthermore, it gives a
simple rule to explicitly compute the components v/ once the action of v on scalar functions is
known.

Theorem 2.2.6 With the notations of this section, it hold that:

.0 .0
TY8M 5 v = o =il = dpy(v) = 0’ 57| € T28R™, (2.15)

P T

moreover, the components of v are obtained by applying the derivation v to the local coordinate
functions v/ = el op: U — R, i.e.

v =w()|. (2.16)

Proof.

D let v = d a%i|p e TE'®M, then the isomorphism dy, allows us to obtain the

tangent vector dyp(v) € THER™ | whose action on smooth scalar functions ¢ € € (R") is
dpp(v)(¢) = v(¢ o @), but, by definition of differential and by linearity, we have:

-1
dsop<vfaij><¢):va’aij jA@opo™)| | 06 @
p

~v L= | )
. ol oxl |,
since this holds for all ¢ € €“(R"), we have proven that v = v’ %|p € T;IgM implies
ol

doy(v) = v 25| € THER™,

(poyp) = v

(2.14) oI

p

: suppose that dp,(v) = v/ -&| e T2'8R™, then, applying the inverse linear isomor-

o0xd |z
).
x

phism (dyp) ™t = d(p 1), : TR T;lgM we get:
-1
;0(¢o 2 ) .0

@) = = v = (@),

(2?4) oxJ »

v = ) o) = o dle s (55

i.e. for all p € €*°(U),

0 1y
i (pop™) =w

T

0(6) = v (g™, <

) )=

since this holds for all ¢ € €*(U), we have proven that dy,(v) = v7 %{x € T2 R™ implies
v =1 L|p e TR M.
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Finally, since the coefficients v/ appear in two formulas, let us show (redundantly, by instruc-

tively) how to recover eq. (2.16) from both expressions. One strategy is to recall formula (2.6),

which says that the real coefficients v/ are computed by applying the derivation dip,(v) to the

elements of the dual canonical basis of R”, i.e. v/ = dip,(v)(g?) := v(e? 0 @) = v(a?).
Another strategy consists in the following brute force computation:

) J -1 J . )
k J (fx]):’uka(é— cCpoy )(x)zvkaizvk(%zvj.

v(al) =v oxk oxk ok

p

2.2.4 Differential of scalar functions and curves

Two special cases must be examined in relation with the differential: the first is when f is a
scalar function, so that its codomain is a subset of R, the other is when f is a path, so that
its domain is a subset of R.

Differential of a scalar function

Let us start with the case of a scalar function ¢ € €(M). Since ¢ is already a scalar function,
we do not need to resort to other auxiliary scalar functions as in definition 2.2.3 and we can
simply write:

do,: T8M — TBR~R
Sp: Tp o(p) (2.17)

v [doy(0) = v(@)].

Since T 25)R is a tangent space to R at a point and v(¢) is a real number, an explanation is

needed to justify the previous definition. Note that TR = span (%’ ¢(p)> and R = span(1),

o(p)
thus Tg%}g)) and R can be canonically identified via the following correspondence:
alg -~

1;¢(p)R R

a‘<Z>(p) — L
s0: J

al
T¢(§)R 3 v(¢) 7 ~v(p)l =v(p)eR

#(p)
It is custom to avoid specifying this canonical identification and to write the differential of a
scalar function simply as in eq. (2.17).

Differential of a curve
Let us now consider v : (—&,6) — M and ty € (—&,¢). This time, via the identification

R ~ T} R, we can identify ¢y with %’to’ so that

dyg s Tp*R=R — T8 M

_d d
to=gly, — d%o(%’to)v
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where the action of dry, ( % ! to) on smooth functions on M is the canonical one for the differential,
ie.
d
dio(],): €M) — R

N d%o(%h0(¢):2%%(¢07)E(¢07y@@'

It us common to simplify the quite heavy notation as follows:

B (jt m) = i(to)| (218)
so that, when it is applied to a scalar function ¢ € € (M) it verifies:
[3(t0)($) := (6 09) (t0) |-
Def. 2.2.5 (Velocity of a curve at a point) The tangent vector ¥(tg) € Tjng)M is called

velocity of v at tg.

As usual, if we want to find out the coordinate expression for §(tg) € Tj;
local chart (U, ¢ = (z%)) in p = v(tg) € M, such that v(—¢,¢) S U.
Then, since ¥(to) = dys, <%| to)’ the translation of the first equation of (2.15) and of eq.

t>@”i;

but 27 = &/ o p, so, by definition of differential:

d - d
mm(ﬁ >u0=dt
to

we notice that o~y : (—¢,e) — R is a curve in R” and e/ oo~y : (—¢,¢) — R are nothing but
its n component functions which are usually indicated with «7, thus, the coordinate expression
for the tangent vector of the curve « in tg is:

& M, we must fix a
to)

(2.16) into the present context gives:

)

¥(to)

(' opon),
to

dvy? 0

W(to) P , Y =éogpon. (2.19)

Y(to) =

7(to)

We finish this section by proving a result which shows that velocity vectors behave as expected
under composition with smooth maps.

Theorem 2.2.7 (Velocity vector of a composite curve) Let f : M — N be a smooth
map, v : (—e,e) —> M be a smooth curve in M and f o~y :(—e,e) — N the composite curve in
N. The velocity vector of f o~y at any ty € (—¢,¢) satisfies:

(f o7) (to) = dfyte) (7 (t0))-
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Proof. By definition of velocity vector and thanks to the chain rule for the differential we have:

d
= df ) 0 dvee | =
t()) ~(to) 0 <dt

(f o) (to) = d(f oY), (th ) = dfy(10)(Y(t0))-

to

a

This seemingly innocent result has a very useful consequence: from left to right, it tells
us how to compute the velocity vector of a composite curve via the differential. But, if read
the other way round, it allows us to compute the differential of a function in terms
of the velocity vector of a curve! Let us see under which condition this is true: given
a smooth function f: M — N and a point p € M, to compute df,(v), v € T;lgM with this
technique we need a curve v such that v(0) = p and §(0) = v.

If such v exists then, by using the previous result, the computation of the differential of f
in p can be performed in terms of velocity vector of the composite curve f o~y as follows:

dfp(v) = (f 27)'(0), v =4(0). (2.20)

Actually, we are going to prove that the condition that we have pointed out is always verified.
This result has a major importance also because it provides the bridge between the geometric
and the algebraic definition of tangent vectors in differential geometry.

2.2.5 Equivalence between geometric and algebraic tangent vectors

We can finally prove that the definition of geometric and algebraic tangent vectors to a
manifold at a point are completely equivalent.

Theorem 2.2.8 Let pe M and let vy be a curve in M passing through p, i.e. v(0) = p. Then,
the map
I: TE"M = THEM
[Vl — I[v]:=(0),

where ¥(0) = dy, <%|t0) is the velocity vector of any «y € [v], is an isomorphism of vector

spaces. Thus, all tangent vectors to a manifold at a point are the velocity vector
of a curve passing through that point.

Proof. First of all, let us prove that I is well-defined. Consider 7,72 € [y], we must verify
that 41(0) = 42(0). To this aim, consider a local chart (U, ¢ = (7)) in p = 7(0) and the local
coordinate expressions of 1 and 72 given by 7] := &/ o p o4 and = e/ 0 ¢ 0 ~y,. Then, by
using the coordinate expression of the velocity vector, eq. (2.19), we get:
. dy? 0 . dyl 0
0) = —1(0) =— d 0) = —2(0) =—
90 = GO 5| a0 = T 5

71 and 2 belong to the same tangentially equivalence class of curves (cfr. section 2.1), thus,

by definition, (¢ 0~1)(0) = (¢ ©¥2)(0), i.e. %(0) = %(O), for all j =1,...,n, since these
values are nothing but the components of (¢ 0v1)’(0) and (¢ o v2)(0), respectively. It follows
that 41(0) and 42(0) have the same decomposition on the coordinate tangent vector basis,
hence, by the uniqueness of this decomposition, 41 (0) = 42(0).
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This argument also shows that I is injective: if [y] # [o], 0(0) = p, then, by definition,
4(0) # &(0). The linearity of I can be verified by direct computation and follows easily from
the linearity of §(0).

The only property that remains to be checked in the surjectivity of I, i.e. that for every
v e THEM, v = o %Lﬂ it exists [y] € Ty°"" M such that I([y]) = v. We have already
proven that I is well-defined, thus we can concentrate just on searching a representative curve
v : (—&,e) > M such that y(0) = p and 4(0) = v, i.e. %(0) =vlforall j=1,...,n.

To solve this problem we take inspiration from eq. (2.2) and we define the curve

v: (—ee) — U
t o ) =9 Mzt 0), T =(p),
which satisfies 7(0) = p and, Vt € (—¢,¢), Vj =1,...,n:
A (t) = (67 o po)(t) = e (ple (z + t(vh, ..., ")) = e (z + t(v!,...,0") = 7 + t?.
Finally, thanks to eq. (2.19), we get:
0

_dlj 0 d(mj+tvj)(0 0
oxI

(0) = —

p

i Ve = W aw

= .
p

a

Starting from now, we will drop the specification ‘geom’ and ‘alg’ from the notation of
tangent space and we will write simply 7,M for the tangent space to M at p.

It will be clear from the context which kind of vector we are considering and, in any case,
we know how to pass from one to the other and vice-versa. In particular, we have made
the observations that led to eq. (2.20) rigorous and we can resume them in the following
proposition.

Theorem 2.2.9 Let f € €°(M,N) and pe M. Let also (U, = (27)) be a local chart in p
such that ¢(p) = x € R™. Ifve T,M has the following local coordinate expression v = v %’p
w.r.t. this local chart, then it holds that:

dfp(v) = (f27)(0)], (2.21)

with y(t) = ¢~ H(x + t(vh,...,v")), for all t € R such that y(t) e U.

In particular, the class of tangentially equivalent paths that are in one-to-one correspondence

with the coordinate tangent vectors ai]’ is:
«l Ip
2| o -1 J
] = [t (z+ted)], z = ¢(p),

p

where ¢/ is the j-th element of the canonical basis of R™. This result confirms what we have
already established in eq. (2.4) and underline once more that the tangent vectors % p are
locally defined, they depend on the choice of the coordinate system defined by the chart (U, ¢)
and they are associated to the vectors of the canonical basis of R".

In the particular case M = R" or of a real vector space V' we have global charts and we

can state the previous result as follows.
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Corollary 2.2.2 Let V,W be two finite dimensional real vector spaces, f € €*(V,W) and
x € V. Then it holds that:

dfz(v) flz+tv)|, YveT,V. (2.22)

2.2.6 Relationship between the differential and the total derivative on vec-
tor spaces

We are now going to show that the differential of a function f : Q € R™ — R,  open, coincides
with its total derivative in the sense defined in Appendix B.
Suppose z € Q, then, by proposition 2.2.1, we can write any v € T,,Q =~ T,R" as v = v’ %‘x
By definition of differential of a scalar function, i.e. (2.17), we get:
= n=viL
Zz xX

O

dfz(v) = v(f) = v (z) = Dy f (),
where D, f(z) is the directional derivative of f in the direction defined by v, identified with a
vector of R™ thanks to the canonical isomorphism T,R" =~ R".

However, in Appendix B it is proven that the D, f(z) is obtained by applying the total
derivative of f in z to the vector v: D f(x)(v) = D,f(x) and this holds for all v € R™.

As a consequence, we can canonically identify the differential of a scalar function
defined on an open (2 € R" at any point with its total derivative in the same point:

D). oo

The same identification holds for functions as f : € R — R™, ) open: as always, one
considers the component functions of f = (f!,..., f™), that are scalar functions to which one
can apply the result just proven.

We will use this result to compute some remarkable differentials in section 2.9.

2.3 Matrix expression of the differential in coordinates

dfp : TyM — Ty N is a linear operator between finite dimensional vector spaces, thus we
can represent it as a matrix. To understand how to do it, we first examine the trivial case of
M =R™ and N = R"™

Given f: U € R™ - V € R", U open and f smooth, once we fix any € U, we have just
seen that the differential operator df, : R™ — R™ coincides with the total derivative of f in
x, which is represented in matrix form by the Jacobian matrix of f in z. It is an instructive
exercise to explicitly verify that this is actually the case.

If we denote with (%)™, and (y’ )71 the coordinates in U and V respectively, then the

m 6
Jf) o A 2
respectively.

To find the matrix expression of df, w.r.t. these bases we know that we must apply df, to
the vectors of the first basis and the express the results as a linear combination of the vectors
of the second basis. The coefficients of this combination are the columns of the matrix that
represents df, w.r.t. the chosen bases.

0
oxt

n
coordinate tangent vectors < P )) form a basis of T,R™ and T’y(,)R",
z) /) j=1
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Note that df, ( 0

ozt

explicit, we have to fix an arbitrary smooth scalar function g € (V) and write:

m) € Tf(z)V, thus it is a derivation on €*(V), so, to make its action

¢ NG _ 99 ofi . ofi og
ik <5ml x> (g) T oxt x (g ° (Chai;rule) 8yﬂ' (f(x)) oxt (.73) ot (‘T) ay]’ (f(x))7
re-writing conveniently %(f (x)) = % o (9) to make the coordinate tangent vector basis

of Ty, R™ appear explicitly, we get:

0 of 0
@ f(z)
since g is arbitrary, we have:
0 of’ 0
dfz <&xi x> = o (x) o @l (2.23)

We have obtained what we wanted: the explicit expression of the coordinate tangent vector
basis of T, R™ transformed by df, and expressed as a linear combination of the coordinate
tangent vector basis of T, R".

The coefficients of the linear combination are the partial derivatives of the component
functions f7 of f in x, it follow that the matrix expression of df, is exactly the Jacobian
matrix of f in z:

Ur(z) ... 2o(x) Vfl(z)
Jf@) =1 + = :
i) ... (2 V()

Let us now consider the more general situation of a smooth function f : M — N between
manifolds of dimension m and n, respectively.

As always, the idea is to select a couple of f-related charts (U, ) in M containing p and
(V,4) in N containing f(p) and to consider the local representation of f, i.e. f=tofopl,

as in the following diagram:

M2U - ! VeN
1 AT
R™ 2 ¢(U) -----"---- s (V) < R™.

We write ¢(p) =z = (2') € p(U) and f(z) = ¢(f(p)) = ¢(f(¢~ ' (2)) =y = (1) € %(V).
Eq. (2.23) implies:
0 > N

dfs ( .
ox f)
Moreover, by definition of f we get: fog@™! = lo f, thus d(f o™ ') =d® " o f),, so, by
the chain rule:

=55 (@) 3 (2.24)

dfp o d(e™)a = d(¢_1)f(x) odf, (2.25)
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and, thanks to property 4. of the differential (cfr. theorem 2.2.3), d(wfl)f(x) = d(qu_l(f(x)))*l =
AW po-1w)) " = d(y)) 7 e

d(w_l)f(x) = d(¥s) (2.26)
SO:
0 _ -1 i _ -1 i
W (axi p> oan P <(d¢p) <0xﬂ' m)) (1 =aerr) T (d(w & (W ) >
0 ~ 0
= dfpodle™): <6:cj ) oy 1 iy 0 A (W q,->
_ -1y _ r i _ -1y _ af] i
= d(W™) (dfx <8xj )) a0 W s (axi (=) 5,7 f(x)>
. ﬁf] —1y _ i _ af] -1 i
(inemity) 327 D WV )f@ <ayf f(@) ey 2wt ) A1) (W fcr))
(a2 00 0|y
SO:
o\ _off . @

If we compare egs. (2.23) and (2.27), we see that the only difference is that the real coefficients
in the latter are given by the partial derivatives of the local expression f w.r.t. the charts
chosen. Thus, also in the general case of a smooth function between manifolds, the matrix
expression of the differential of f in p (relative to the coordinate tangent vectors)
is given by a Jacobian matrix, but, in this case, of the local expression of f
computed in = = ¢(p):

) L@ . L@\ (V@
@ =1 & =]
L@ .. Hw) V@

2.4 The inverse mapping and implicit function theorems for
manifolds

The result just obtained has a powerful consequence: all the properties of standard
differential calculus on R" that are based on hypotheses made on the Jacobian
matrix of a smooth function f : ) < R — R™, Q open, are also valid, locally, for
smooth functions between manifolds.

In this section we concentrate on two of the most important results of standard differential
calculus on R™: the inverse mapping and the implicit function theorems.

We have already quoted the first, its extension can be stated as follows.
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Theorem 2.4.1 (Inverse mapping theorem for manifolds) Let f : M — N be a smooth
Junction and p € M a point such that dfy : Ty,M — Ty, )N is an isomorphism. Then, there
exist two open neighborhoods U =< M and V = N of p and f(p), respectively, such that f|; is
a diffeomorphism.

Proof. First of all notice that df,, as a linear map, can be an isomorphism between vector
spaces if and only if they have the same dimension, which implies that dim(M) = dim(N).

Select two charts (U, ¢) and (V, 1) and consider the local representation f of f. Since the
Jacobian matrix of f is the local representation of dfp and df,, is an isomorphism, J f%,(p) is
invertible. Thanks to this, the standard inverse function theorem can be applied to f and so
fly is a diffeomorphism. O

Let us now pass to the implicit function theorem by first recalling its classical statement, which
tells us, in a very involved way, when we can locally solve an equation as ¢(z,y) = 2o € R and
express y as a function of x.

Theorem 2.4.2 (Implicit function theorem in R™) Hypotheses:
o U R"™ x R™: open set;

o (zb, ..., 2"yt ..., y™): coordinates in U;

o ¢: U — R™: differentiable function;

e (x0,Y0) € U such that the matriz (%(mo,y0)> s invertible.

z)-]

Thests:
e 1 two open neighborhoods Vo € R™ of xg and Wy € R™ of yo;

e 1 a differentiable function F : Vi — W,

such that, if ¢(xo,y0) = 20 € R, the level set ¢~ (z0) N (Vo x Wy) coincides with the graph of
F, ie.
V(z,y) € Vo x Wo = ¢(z,y) = 20 = y = F(z).

Theorem 2.4.3 (Implicit function theorem for manifolds) Hypotheses:
e M, N: smooth manifolds;
e ¢: M x N — N: smooth function;
o Vpe M, let

¢opp: N — N
qa — ¢p(q) =9, 9);
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o d(bpy)qo = Tgo — Try Y, where ro = ¢(po,qo), is an invertible linear map.

Thesis: it exists two open neighborhoods Vo = M of po and Wy < N of qo and a smooth
function F : Vo — Wy such that ¢~ (20) n (Vo 0 W) coincides with the graph of F, i.e.

V(p,q) € Vo x Wy = é(p,q) =10 < q= F(p).

Proof. As for the inverse function theorem, by using two charts we can transport the problem
to R™, where the standard hypotheses of the implicit function theorem hold. O

2.5 Alternative definitions of tangent vectors

In this section we complement the definition of geometric and algebraic tangent vector to a
manifold at a point with other two definitions: the first is used mainly by pure mathematicians,
the second mainly by physicists and engineers.

2.5.1 Tangent vectors as derivations on the algebra of germs of smooth
functions

The name ‘germ’ is derived from ‘cereal germ’, which is the reproductive part of the cereal
inside the seed. It is clearly used to indicate the ‘heart’ of a structure. It is a general concept
related to topological spaces, where locality can be defined. In this section we will consider only
the elements of the theory of germs that are strictly needed to give an alternative definition
of tangent vectors, but the theory of germs is much more profound and not just related to
differential geometry.

Def. 2.5.1 (Function element) A smooth function element on a manifold M is an ordered
pair (f,U), where U is an open subset of M and f: U — R is a smooth scalar function.

Fixed any point p € M, it is possible to define an equivalence relation on the set of all smooth
function elements whose domains contain p as follows: given f : U - R and g : V — R,
(f,U) ~ (g,V) if it exists an open neighborhood W of p such that:

WcUnV and  fly = glw,

i.e. if f and g coincide on some open neighborhood of p, however small, contained in the
intersection of their domains.

Def. 2.5.2 (Germ of f at p) The germ of f at p is the equivalence class of function elements
(f,U) w.r.t. the equivalence relation defined above. The set of all germs of smooth functions
at p is denoted by €,°(M).

The germ of a function element (f,U) at p is denoted simply by [f],: in fact, there is no need
to include the domain U in the notation because, by definition, the same germ is represented
by the restriction of f to any open neighborhood of p.

%poo is a real vector space and an associative algebra under the point-wise defined linear
operations and multiplication (of course, the sum and the multiplication are defined on the
function element that has the intersection of the two functions as second entry in the couple).

We can now define the key concept of derivation on the algebra of germs.
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Def. 2.5.3 (Derivation on the algebra of germs of smooth functions) A derivation v
on 6,°(M) is a linear functional v : €;°(M) — R satisfying the following Leibniz rule:

v([fglp) = ()v(lglp) + g()o([f]p)-

Derivations on 6,°(M) form naturally a vector space that is denoted by Z,(M). Some author
define the tangent space to M at p as the vector space Z,(M). The equivalence with the
definition of tangent space in terms of derivations on (M) is quite easy to prove thanks to
the locality of derivations expressed by theorem 2.2.1.

Theorem 2.5.1 The map

I: 2,(M) = TiM  I(v): €°(M) — R
v — I(v), £ = I)(f) = v([f]p),

is a natural linear isomorphism of vector spaces that allows us to identify algebraic tangent
vectors to M at p with derivations on €,°(M).

Proof. Linearity clearly follows from the linearity of the derivation v. The injectivity of I is
a consequence of the fact that, if I(v) = 0 (the identically null derivation on € (M)), then,
by definition, v([f],) = 0 for all f € €*(M), but this means that v is the null derivation on
©€,°(M), thus ker(I) is trivial.

Finally, to prove that I is surjective, we must verify that for any w € T} Y\ there exists
v € D,(M) such that w = I(v). Thanks to theorem 2.2.1, such a v € Z,(M) can simply be
defined as follows:

v([flp) = w(f),

in fact, by definition of germ of smooth functions, if f,g € [f],, then f and g are smooth
scalar functions that coincide when restricted on an arbitrary small open neighborhood of
p, so theorem 2.2.1 assures us that w(f) = w(g), which guarantees that the definition of v
is well-posed. Since w is a derivation on (M), v also acts as a derivation on €,°(M), i.e.
ve Dp(M). O

Recall that, in order to obtain theorem 2.2.1, we had to make use of the theory of partitions
of the unity and bump functions, thus, one immediate advantage of the use of germs to define
tangent vectors is that we can avoid resorting to that theory and prove the same propositions
with a less number of intermediate steps. We preferred to postpone until now the definition of
tangent vectors via the theory of germs to avoid working with equivalence classes and to keep
the notation as simple as possible.

2.5.2 Physicists’ definition of tangent vectors

We introduce here the oldest definition of tangent vector, which is still the most widely
used even today by the majority of physicists and engineers.

The construction is based on the decomposition of a tangent vector v € T,M on the
coordinates tangent vectors basis, which, as we have seen, is determined once we fix a local
chart. Suppose, however, that p belongs to the intersection of two local charts (U, ¢) and
(U, ), then we can decompose v w.r.t. the basis
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0

=2 p), where %

_ fop™™)
() = Mz

for all f € €*(U n U).

Since the tangent vector v in p remains the same, we must have:

0 0
oxt 0%J

v =10 = : (2.28)

p

p

where, due to the uniqueness of the decomposition of a vector over a basis, the components
v’ are uniquely associated to the coordinates on M defined by local chart (U, ) and the
components ¥/ are uniquely associated to those defined by (U, ©). It is natural to ask oneself
how the coefficients v’ and 7/ are related.

To answer this question, let us recall that the transition functions between these charts
are, respectively:

i =copopl: GUNU)SR* — R
T =¢(p) — 2'(Z) = £'(p(p)),
and ~
P=ogopt: UnU)cR* — R
z=p(p) — (@) =(ap)
1,7 =1,...,n.

The tool to obtain the explicit coordinate transformations v’ + %/ and ¢/ — v’ are the
following formulae:

0 o 0
5|, ~ o ") 5| (2.29)
and 2 o 2
a:.’L
- == T T n 2
o3 |, ~ 0w (®) 55 ) (2.30)

typically quoted to be the result of the application of the chain rule, without any further
comment.

It is an instructive computation to verify these formulae. We will do that for the first one,
the method to get the second one is identical. Consider the differential:

J W ogop™h 0
L) (223)

@ 2| = 0z’ 0
o or Y 0w

= ~ oxt (z) 0%J

dGop ). (

(2.31)

)
T

then, thanks to def. (2.12) of coordinate tangent vectors, we have:
0 0
=d(p! :

» (90 )-T <@m’

oxt
Ao d@op ), (

1

and the chain rule for differential imply)

077 0 07’ 0
_ =1y _ _ — .
x) (2.31) @)z (c%ci (z) 0xJ i,) (2.23) 0’ (=) 0xJ |,
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which confirms eq. (2.29).

If we insert the expressions (2.29) and (2.30) in (2.28), we get
;0 .0 077 0 O 0
i _ i _ ] ~
S|, |, T Ve () 3% . 77 ) g .

By the uniqueness of the decomposition of a vector on a basis, we have that

v =1 d —vi&%j :1:)i
S 0w, out 0wl
implies:
~7q aj}‘j i ~a ] ~ 7 ..
v = —(x)v — v = J/(z) o, i,j=1,...,n, (2.32)
oxt x

where Jij (z) is the n x n matriz of functions that contains the partial derivatives of the
function # = o™t : (U N U) S R® - G(U n U) € R™: each rows contains the gradient of
the function 77 = &’ o Z:

~1 ozt ozt
) vz ort . Oxm
J(m) . . ) )
J; (%) = : = : I E
=n 0z 0z"
Vi s SR

once evaluated in x, this becomes a matrix of real entries that represents the Jacobian matrix
J? (5:)‘ of the function Z in x. Since transition functions are invertible, J7(z)| € GL(n,R).
x X
On the other side, the equality

i o’ 0

=) ; (~) i
=
» o) oz’

p

implies:

i ozt i J (5
v = (z)v? = V= <Ji (7)

-1 .
)fﬂ, ii=1,....n, (2.33)

t, 1
where (JZ] (7) ) is the inverse and transposed (notice the position of the indices) of
x

the Jacobian matrix Jij (:i‘)‘ . The inversion is to be expected because the transition functions
T

pop ! and po @' are one the inverse of each other.

The rule (2.32) is called gradient or contravariant transformation and it is an
intrinsic property of tangent vectors (no additional properties of structures have been
used to obtain (2.32) other than those related to tangent vectors).

This motivates why tangent vectors can be alternatively defined as ordered n-tuples of real
scalars that undergo the contravariant transformation (2.32) under local coordinate changes.

Example: consider the polar coordinates (z',22?) = (r,0) € R x [0,27) on the plane R?, the
point p = (2,7/2) and the tangent vector v € T,R? expressed by:

0

0
fgg

v _ =z
, 00

p
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We want to find the expression of v w.r.t. Cartesian coordinates. The transition map between
polar and Cartesian coordinates in an open neighborhood of p € R? is

' =2z =rcosf
% =y = rsiné.
The vector v can be expressed as follows:
0 0 0 0
v=3—| — —| =9' —| +9* |,
or » 00 v ox v oy »
with v! = 3 and v? = —1. By means of eq. (2.32) we get:
0zt (r,0) 0t (r,0) 0(r cos 0) 0(r cos )
~1 ) 1 ) 2

= (3¢080)|(g 52 + (rsind)| g 9y = 3cos(m/2) + 2sin(m/2) = 2,

and
0% (r, 0) 0% (r, 0) 0(rsin 0) 0(rsin )
~92 ) 1 ) 2
= (3sinb)](y /o) — (rcosd)| o o) = 3,

thus:
0 0
Tlp Ylp

Remark: the notation aii » must not lead to think that the coordinate tangent vector aii ’

depends only on z’: in fact it depends on the entire coordinate system. The geometrical

reason underlying this is the fact that afci » is the derivation whose action on a smooth scalar

function is defined by taking the partial derivative of the local expression of this function w.r.t.

x', i.e. by letting x* vary and fixing all the other local coordinates z7, j # 4. So, if we change

the coordinates 7, they are not constant anymore and this, in general, affects a‘;

.
We illustrate this fact with the following concrete example: consider R? with the standard
Cartesian coordinates (z,y) and let p = (1,0) € R?, expressed w.r.t. the standard coordinates.

Now, perform the coordinate change defined by

I=x

g=y+ x>
Our aim is to show that

91,0

ox » 0T »

in spite of the fact that x = 7.

First of all notice that the coordinates (
of the coordinate change (z,y) — (& =z,
to eq. (2.29), we have:

0 ox 0

2 = 2201.0) =
83:10 637(’0)(%

7)) are smooth and global on R? since the inverse
y+a3)is (Z,9) — (x = T,y = § — ). Thanks

)

0
Ly +27)

p



thus 2

ox

p;’é 0%‘17'

From now on, any definition of tangent vector to a manifold at a point (geometric,
algebraic, via germs of smooth functions or the physicists’ one) will be considered as
equivalent.

2.6 Canonical identification between vector spaces and their
tangent spaces and differential of linear functions

We have proven that, for every p € M, T,,M is isomorphic to R", which can be considered the
(non canonical) prototype of any tangent space to a manifold of dimension n at a given point.

On the other side, R™ is also the (non canonical) prototype of another object: a real vector
space V of dimension n: once we fix a basis of V, the map that links a vector of V to the
vector of R™ given by its components w.r.t. the chosen basis is a linear isomorphism (non
canonical because it depends on the basis).

Thanks to the interplay between these two non canonical isomorphisms, we can obtain a
third (canonicall) one: we are going to prove that any finite-dimensional vector space V' over
R is canonically isomorphic to its tangent space at any point.

In order to prove this, we must play with the dual nature of V: it can be considered as
a vector space or as a smooth manifold w.r.t. its standard differential structure defined in
section 1.2.

Once we fix any vector u € V, we can consider a particularly natural derivation on C*(V):
the directional derivative of a smooth scalar function ¢ € C*(V):

e in z € V, where here u is considered as a point of the manifold V;

e w.r.t. to the direction defined by any v € V', where v is considered as a vector of the
vector space V.

By definition, we have:

D,|,: C*(V) — R
o Dl () = fil_o Sl + tv),
where the operation x + tv is guaranteed to be well-defined in V for all ¢ € R because of the

vector space structure of V.
D, |, plays a central role in the proof of the following result.

Theorem 2.6.1 Let V,W be any two real finite-dimensional vector spaces with their standard
smooth manifold structure. For each point x of V', the map

IL,:' 'V = T,V
v L) = Dyl,, Dol () = &|,_ 0z +1tv) YpeE™(V),

is a canonical linear isomorphism such that, for any linear map L : V. — W the following
diagram commutes:
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v L=, v

Ll lsz — dLyol, =1y, 0L.
W — Tr,.W
Lax

So, the explicitly formula for the differential of a linear function between vector spaces is:
dL:r(Dv|x) = DLv|Lx

or, by identifying D, |, with v,
de(?}) = DLU’L{L"

Proof. The linearity of I, is a direct consequence of the linearity of D,|,. Let us now prove
that I, is a bijection.

Injectivity: suppose vi,v2 € V are such that D, |, = D,,|,, then, thanks to the fact that
D,|, is linear w.r.t. v, we have that D( = 0, the 0 derivation. Then, for all ¢ € €*(V):

v1—V2) ’z

D(’Ul*’ug)‘x ((]5) ¢(x + t(vl - U?)) =0.

Now we note that the linear functionals ¢ : V' — R living in the dual V* of V are of course
smooth scalar functions on V, i.e. they belong to €*(V'), so we can consider the action of
D(m—vz) on f e V*:

0
d d
. (U(z) +tl(vy —v2)) = — — (x) + 7

d

0 B(x + t(vl — ’Ug)) = %

tﬁ(m — ’Ug),
t=0

~ dtl

i.e. (v —v9) = 0 for all £ € V*. However, thanks to the finite-dimensional Riesz representation
theorem, we know that V' =~ V* and that for all £ € V* it exists only one vector wy € V' such
that £(v) = {v,wy). Thus, the equation ¢(v; — v2) = 0 for all £ € V* can be reformulated as
(vy — v9,wpy = 0 for all wy € V', but the only vector orthogonal to all other vectors is the null
vector, so v1 — vg = 0, or v1 = v, thus implying the injectivity of I,.

Surjectivity: we can conveniently use the equivalence between T °"'V and Ty 18y and prove
surjectivity by considering geometric tangent vectors. The proof then simply consists in
observing that any tangentially equivalent class of curves passing through z with velocity
vector v clearly contains the curve t — x + tv.

Finally, suppose L : V. — W to be a linear map, then L is of course smooth because its
components w.r.t. any choice of basis (which also play the role of charts for vector spaces,
as seen in chapter 1) for V and W are linear functions of the coordinates. By definition of
differential and thanks to the linearity of L we get, for all ¢ € €€ (V):

d d
AL(Di])(0)i= D, (00 L) = | oL+ 1) = 5 o(La +¢Lv)

= DL’U|Lu (¢),

i.e. dLy(Dyl,) = Dpol,,. 0
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To fact that I, is a canonical isomorphism (i.e. independent of any choice of basis) justifies
why, in differential geometry, the tangent vector t to a vector space at any point v, which is a
vector, is identified with the vector v itself.

An immediate, and very important, consequence of this fact is that, if U is an open
submanifold of a real finite-dimensional vector space V, then T,,U =~ T,V =~ V, so we obtain a
canonical identification of each tangent space to U with V itself. As a noticeable example,
since GL(n,R) is an open submanifold of the vector space M (n,R), the following result holds.

Theorem 2.6.2 For all X € GL(n,R) it holds that:
Tx GL(n,R) = M(n,R),

i.e. the tangent space to the vector space of real invertible matrices of dimension n is the
vector space of all real square matrices of dimension n.

There is another natural, and very useful, identification for tangent spaces to a product
manifold, as stated in the following proposition.

Theorem 2.6.3 Let My, ..., My be smooth manifolds, and let wj : My x --- x My — Mj, be
the projection onto the j-th factor, for each j =1,...,N. For any point p = (p1,...,pN) €
My x --- x My the map

Tp(Mlx---xMN) = Tlel(_B'”C'BTpNMN
v — (d(m1)p(v); - - d(mn)p(v)),

is a canonical isomorphism.

For example, T, (M x N) can be identified with T, M @ T; N and T, M and T;N can be
treated as subspaces of T(, o)(M x N).

2.7 Immersion, submersion, embedding and the problem of
compatibility between differential structures

The substructures of a manifold show some subtleties that is important to underline.
First of all, let us define the rank of a smooth map in an analogous way as we did for a
smooth function between Euclidean spaces.

Def. 2.7.1 Let f : M — N be a smooth map between manifolds. The rank of f in pe M is
the rank of the linear function df, : TyM — Ty, N.

Equivalently, fized any local chart (U, ) in p, the rank of f is the rank of the Jacobian
matriz of the local expression f of f in x = o(p).

If the rank of f remains constant for every point p € M, then f is said to have constant
rank.

Def. 2.7.2 The smooth map f: M — N is a/an:

e Immersion: if df, is injective for all p € M;
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e Submersion: if dfy is surjective for all pe M;

e Embedding’: if it is an immersion and f: M — f(M) is a homeomorphism.
Examples:

1. The curve
a: R — R2
t — at) = (12,13,

is injective, but % = (2t2,3t?) is null for t = 0, so da|,_, is not injective;

2. The curve
B: R — R?
t s alt) = (3 — 4,12 — 4),

is not injective, e.g. B(—2) = B(2) = (0,0), but % = (3t — 4, 2t) is never null in both
coordinates, so § is an immersion, but not an embedding because it is not injective;

3. The curve
v: (=7/2,37/2) — R?
¢ —  a(t) = (sin(2t), cos(t)),

~ is injective and % = (2cos(2t), —sin(t)) # (0,0) Vt € (—n/2,37/2), thus it is an
immersion. However, the domain of «y is an open set in R and its codomain is a compact
subset of R?, thus v cannot be a homeomorphism between its domain and its codomain.

The curve ~, usually called lemniscate, or ‘the 8 for its shape, shows that even an injective
immersion can fail to be an embedding. However, the next theorem guarantees that every
immersion is, at least, local embedding.

Theorem 2.7.1 Let f: M — N be a smooth map between manifolds. If f is an immersion,
then, for all p € M, it exists an open neighborhood U = M of p such that f|,; : U — f(U) € N
is an embedding.

The most important consequence of the previous result is that, if f : M — N is an injective
immersion, it is always possible to endow f(M) with a differential structure induced by that of
M. In fact, let {(Ua,pa)}aca be a smooth atlas for M such that f[; is a homeomorphism
with its image f(Uy) € f(M), then, since ¢ : Uy € M — ¢(U) < R™ are homeomorphisms,
we get that {(f(Uy), ¢a © f_l‘f(Ua))}O‘EA is a smooth atlas for f(M).

Thus, on f(M) we have two differential structures, namely, the one naturally inherited as
a subset of N and the one induced by M in the way described above. It turns out that these
differential structures can lack of compatibility because the underlying topologies may fail
to be equivalent. This is clearly exemplified by the curve ~: the counter-image of an open
neighborhood of the central point of the 8, in R?, is the union of three open intervals in R,
while for the topology of R an open neighborhood is just an open interval.

In general, it can be difficult to establish if an injective immersion is an embedding, with
the exception of the compact case, as stated below.

3 An embedding is a sort of topologically coherent immersion. In French it is called plongement.
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Theorem 2.7.2 Let f: M — N be a smooth map between manifolds. If f is an injective
immersion and M is compact (as topological manifold), then f is an embedding.

The considerations above explain why we find two types of definitions for submanifolds in
differential geometry.

Def. 2.7.3 (Embedded submanifold) Let E, M be two smooth manifolds such that E < M.
If the canonical inclusion v : E — M 1is an embedding, then E is said to be an embedded
submanifold of M.

Def. 2.7.4 (Immersed submanifold) Let f: M — N be a smooth map between manifolds.
If f is an injective immersion, then f(M) < N, endowed with the differential structure induced
by M, is said to be a manifold immersed in N.

Convention: without any further specification, a submanifold has to be intended as an
embedded submanifold.

A classical example of an immersed submanifold of R? that is not an embedding is the
spire (coil) that envelops the torus with irrational step.

2.8 Characterization of the tangent space to a level set of a
smooth function

It is possible to give a very useful characterization of the tangent space at a point to a level
set of smooth functions thanks to the following result, whose proof can be found in [10], page
81 (th. 4.12).

Theorem 2.8.1 (The rank theorem) Let M and N be smooth manifolds with dimension
m and n, respectively. Let f : M — N be a smooth function with constant rank r. Then,
for every p e M there exist local charts (U, ) centered in p and (V,v) centered in f(p), with
f(U) € V, such that the local expression of f w.r.t. these charts is particularly simple, namely:

flt, o am a™) = (2. 2",0,...,0),

i.e. f acts as the identity on the first r entries and it is identically O in the last n — .
In particular, if f is a submersion, then r = n and so

The rank theorem justifies the following definition.

Def. 2.8.1 Let S € M be a submanifold of dimension k of M. A local chart (U, ) of M is
said to be adapted to S if either U n S = &, or o(U n Z) = o(U) n (RF x {0}), where this
notation means that the part of the submanifold S contained in U is mapped by ¢ to 0, i.e.
Pl = =" =0. An atlas of M is adapted to S is every chart of it is adapted to S.
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Theorem 2.8.2 Embedded submanifolds always admit adapted charts.

We can extend the definitions, given in chapter 1, of critical and regular point of a function
defined between Euclidean spaces to functions between abstract manifolds.

Theorem 2.8.3 Let M and N be smooth manifolds with dimension m and n, respectively.
Let f: M — N be a smooth function.

e pe M is a critical point of f if dfy : TyM — Ty, N is not surjective. The image, via
f, of a critical point of f is a critical value for f.

e A regular value of f is an element of f(M) that is not a critical value.

We denote with Crit(f) € M the set of critical points of f.
We need a last definition before stating and proving the main result of this section.

Def. 2.8.2 (Level set of a smooth function) A level set of f: M — N s a subset of M
of the type f~1(q) :={pe M : f(p) = q}, where g€ f(M).

Theorem 2.8.4 (Level set theorem for manifolds) Let M and N be smooth manifolds
with dimension n + k and n, respectively, k = 0. Let f : M — N be a smooth function.

1. For allae f(M), the set
M, = f~(a)\Crit(f) a — level set via f minus the critical points

is an embedded submanifold of dimension k of M. In particular, if a is a reqular value
for f, f~Y(a) is a k-dimensional embedded submanifold of M.

2. If p€ My, then the tangent space T, M, is the kernel of df, : TyM — T, N:

T, M, = ker(df,)| . (2.34)

3. 1If, in particular, N = R, then f € C*(M) and T, M, is given by the derivations D € T,M
that nullify smooth scalar functions: D(f) =0 for all f € C*(M).

Proof.

1. By using local charts, we can reduce the problem to the local representation of f, which is
a function defined on an open subset of R*** to R™. For such a function we can apply the
level set theorem 1.2.1 in Fuclidean spaces discussed in the first chapter.

2. Let ¢ : M, — M be the canonical inclusion of M, in M. By theorem 2.2.3 we know that
du, : Ty,M, — T,M is a canonical linear isomorphism, thus we can identify 7,,M, with T,,M
and so 2. is equivalent to du,(T,M,) = ker(df,).

Since p is a regular point, dim(M,) = k, so dim(7,M,) = k, moreover df, is surjective,
hence dim(Im(df,)) = n and the rank+nullity theorem implies

dim (T, M) = dim(ker(df,)) + dim(Im(df,)),

but dim(7,M) = dim(M) = n + k, so dim(ker(df,)) =n+k—n = k.
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Thanks to the fact that dim(ker(df,)) = dim(7,M,), to prove that T,,M, and ker(df,) are
isomorphic it is sufficient to show that one space is included in the other. We chose arbitrarily
to show that T, M, = du(T,M,) < ker(df,).

To do that, let us consider a derivation v € T),M,, then du, : TyM, — T,() M = T, M,
so dip(v) € TyM and we can apply df, : TpM — Ty, N to diy(v), obtaining an element of
TV, Le. dfp(dep) € Ty N. In order to understand its action, we need to apply it to a
smooth scalar function ¢ € € (N):

dfp(du(v))(@) = d(fou)p(v)(®):=wv(do fou),

(chain rule)

but fou: M, — N is nothing but f|,, , so

dfp(de(v))(9) = v(¢ o fly,) =0,

because f|,, is, by definition of M,, a constant function identically equal to a, and ¢ o f;,
is the constant function identically equal to ¢(a), so v(¢ o f|,, ) = 0 because derivations set
to 0 constant functions.

This is true for all ¢ € €*(N), so df,(diy(v)) =0, i.e. T, M, < ker(dfy).

3. Immediate consequence of 2. O

2.9 Explicit calculations of tangent spaces

In this section we are going to compute some remarkable differential and apply the result to
obtain the explicit characterization of tangent spaces. In order to do that, we will mix the
level set theorem with the results that we have discussed about the differential.

2.9.1 The tangent space to the sphere at a point

We are going to verify that the tangent space to a sphere at a point x is the hyperplane
orthogonal to the radius connecting the center to z, as intuitively expected from the depiction
in fig. 2.1.

We recall that the n-sphere of radius R > 0 is S% = {z € R**! : |z|? = R?}, thus it is
natural to consider the function f: R""! — R, z +— f(z) = |z|? to obtain S% as a level set:
Sno= f1(R?).

We know that in this case the differential of f coincides with its total derivative, i.e. for
all x e R", df, = Df(x), to compute it we simply observe that:

Fx+ty) = |z +tyl* = o+ ty,z + ty) = ||2]” + 26, y) + 2 [lyll* = f(2) + Df @)ty + oft),

so df(y) = Df(x)y = 2{x,y) for all y e R*+1.
By the level set theorem we get:

T, Sk = ker(dfy) = {y e R"™' = (,y) = 0},
which confirms that T,.S% is nothing but the hyperplane in R"*! passing through z and

orthogonal to the radius of the sphere connecting = to 0.
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2.9.2 The Lie group O(n) as an embedded submanifold of M(n,R) and its
Lie algebra o(n)

Here we prove that O(n) = {Ae M(n,R) : A'A = I,}, the orthogonal group, is a manifold
of dimension n(nT_l and we make its tangent space at any point explicit. The constraint that

defines orthogonal matrices leads us naturally to consider the following function:

f: M(n,R) — Sym(n,R)
P f?X):XtX, (2.35)

because we can easily identify O(n) as the f-level set of the the identity matrix I,,, in fact:
UL ={XeMn,R) : f(X)=X'X =1,} =0(n).

In order to apply the level set theorem, let us compute the differential of f. Both M(n,R)
and Sym(n,R) are vector spaces, thus we can canonically identify the tangent spaces to
M(n,R) and Sym(n,R) at any point (matrix) with the vector spaces themselves. With this
identification in mind, for all X € M (n,R), dfx : M(n,R) — Sym(n,R) and, thanks to eq.
(2.22), for all A e M(n,R) we have:

d d
dfx (A) = p f(X +tA) = 7 (X +tA) (X +tA))
t=0 t=0
_ 4 (X'X +t(X"A+ A'X) + 1*A'A)
dt
t=0
0
- d X X'A+ A'X) + (A ’
= g AN (XA ) (2t
= X'A+ A'X,

ie. dfx(A) = X'A + A'X, which is, as it should be, a symmetric matrix.

Remark: this result could have been obtained also by identifying the differential with the
total derivative and observing that:

FX +tA) = XX +t(XPA+ A'X) + 2ATA = f(X) + DF(X)tA + o(t),
so that dx f(A) = Df(X)A = X'A + A'X.

Now that the differential is explicit, let us analyze its surjectivity: for every B € Sym(n,R)
we must determine under what condition on X it exists at least one A € M (n,R) such that
B =dfx(A) = X'A + A'X.

To obtain this result first notice that B is symmetric, so we can write:

1 1 1 1
B=_B+_-B=_-B+-B
27 3 27 T3

that must be compared to

B=X'A+A'X = X"A + (X'AY,
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the two expressions are compatible if and only if X*A = %B , if X is invertible, then we can solve
this equation obtaining A = 1(X*)~!B. Thus dfx : TxGL(n,R) = M(n,R) — Sym(n,R) is
surjective for all X € GL(n,R), since every symmetric n x n real matrix B can be written as
dfx(3(X")~'B), where X € GL(n,R).

The identity I, is symmetric, an orthogonal matrix X is invertible and I,, = f(X),
thus I, is a regular value for f and the level set theorem can be applied to guarantee
that O(n) = f~1(I,) is an embedded submanifold of M (n,R) of dimension dim(O(n)) =
dim(M (n,R)) — dim(Sym(n, R)).

The dimension of Sym(n,R) can be recovered by observing that if we want to identify
a symmetric matrix of order n we must specify % real values: n? — n is the totality of
matrix elements minus those lying on the diagonal, if we divide this number by 2 we obtain

the matrix element above (or below) the diagonal, to these elements we must add back the
diagonal entries, thus arriving to @ +n = % Hence, Sym(n,R) is isomorphic to
R™"+1)/2 and so it has dimension "(RTH) as a manifold.

It follows that the dimension of O(n) as embedded submanifold of M (n,R) is:

dim(O(n)) = n? — n(n2—|— 1) _ n(n2— 1).

Finally, thanks to (2.34), we can compute the tangent space to O(n) as follows:
TxO(n) = ker(dfx) = {Ae M(n,R) : X'"A+ A'X =0}, VX eO(n),
i.e. matrices A € M(n,R) such that X!A is skew-symmetric, thus, in particular, if X = I,,,
T5,0(n) ={Ae M(n,R) : A+ A'=0 < A'=—-A},

i.e. the tangent space at the identity element of O(n) can be identified with the space of
skew-symmetric matrices.

We will see in the chapter dedicated to Lie groups that 77, O(n) can be identified with the
Lie algebra of the Lie group O(n), that will be denoted with the symbol o(n):

O(n) ={Ae M(n,R) : A'=A""}, o(n)={AeM(n,R) : A® = —A}.

Remark: if A were a positive real number a, then we could compute the logarithm of A1,
obtaining log A~! = —log A, which suggests that the elements of O(n) could be considered
as the exponential of the elements of 0(n). We will see that, indeed, it exists a fundamental
function, called again exponential, that relates Lie algebras and Lie groups.
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Chapter 3

Tangent, cotangent and vector
bundleS (Edoardo Provenzi)

Inspirational epithap wanted...

The simple act of taking the union of the tangent spaces to a manifold in all its points
generates another manifold, the tangent bundle, with double the dimension of the original
one, and with a surprisingly rich intrinsic structure that happens to be the prototype of the
so-called vector bundles.

3.1 The tangent bundle over a manifold

We have seen that the tangent spaces T, M and T; M to a smooth manifold M of dimension n
in two different points p and ¢ are not canonically isomorphic and so they cannot be identified,
in spite of the fact that they are both two copies of R™.

The union of the tangent spaces to M as we vary the point on M is then a disjoint one.
The canonical symbol to denote this disjoint union is:

T™ = | | T,M = {(p,v) : pe M, ve T,M}.
peM

This space comes equipped with a natural projection:

T: TM — M
(p,v) = w(p,v) =p.

Def. 3.1.1 T M is called the tangent bundle of the smooth manifold M. The fiber over
p € M is the set:
Y (p) = {(p,v) : veT,M} = T,M.

The most important geometrical characteristic of the tangent bundle is its local triviality,

i.e. the fact that, locally, it is diffeomorphic to the Cartesian product between a chart domain
and R"™, the local model of M.
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Local triviality is easily understood if we consider a local chart (U, ¢) in p € M and the
restriction of TM to U, defined by

TM|, = | | T,M.
peU

As we have seen in chapter 2, the act of fixing a local chart (U, ) in p € M induces the
non-canonical linear isomorphism dy, : T,M — R™ defined by dip,(di],) = e;, where e; is the
i-th element of the canonical basis of R™, i = 1,...,n, thus the extension on the whole tangent
space to M at p is given by the correspondence: T,M 5 v = v 0i|p — (v, e R™.

This holds for every point p € U, so we can extend this non-canonical identification to all

U as follows: R
idy xdpp: TM|;= || T,M — UxR"
peU

(p. (W ail,)iey) (0 (V)iy)-

Finally, each chart map sends U < M diffeomorphically to o(U) < R", thus we can further
identify U x R™ with an open subset ¢(U) x R™ of R?" as follows:

~

g xidgn: UxR' > o) x R”
(p, (W) — (z, (")), z=p(p).

By composition we obtain:

~

P = (¢ x idrn) o (idy x dpp) TM|U = o(U) xR < R2"
(p, (V" Gil,)imy) — (2, (V)iL), == (D),

which shows that the couple (T'M|; , ®) is a local chart for T M with local coordinates obtained
by replacing ¢ by its component functions ! = (g' 0 )|, i.e.

RZn

N

((x,...,2") x idgn) o (idy x dyp) TM|, — p(U)xR
(p, (V" Gilp)iy) +— (a'(p), V")

n
n
1=

~—

1

Def. 3.1.2 Given a local coordinate system (U, p = (z')) in p € M, the coordinates defined
by (z1(p),...,2"(p),v!,...,v"), such that v € T,M is written as v = vJ 53";07 are called the
natural local coordinates on the tangent bundle T M.

As we vary U in an atlas of M, we obtain a covering of TM and the charts can be proven
to be compatible, so that they constitute an atlas for T'M, see [10] proposition 3.18 page 66
for the technical proof. As a consequence, T'M is a 2n-dimensional smooth manifold.

As we will see later, the property of being diffeomorphic to the Cartesian product U x R"
that the tangent bundle T'M is so important to be one of the conditions included in the
definition of a general vector bundle. The map idy x dp, : TM|,; — U x R™ is called a
local trivialization of the vector bundle 7M.

The next remark will have a great importance for the general theory of vector bundles: let
us concentrate on the local trivialization T M| Ung = Uap X R", where Uyg = Uy n Ug is the
intersection of two chart domains for M with chart maps ¢, and ¢g, respectively. We know
that the compatibility between charts is equivalent to the request that the Jacobian matrix
Jnas () of g evaluated in any x € g(p), for all p € Uyp, is non singular, i.e. it belongs to
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GL(n,R). This means that each tangent bundle comes equipped with the following smooth

functions
Tap: UanUsz — GL(n,R)

b — Taﬂ(p) = ‘]77@,3 (l‘), T = 905(]9),

which can be easily seen to satisfy the following properties:

Taa(p) = Ina VP €Uy UB
Tocﬁ(p) = Tﬂa(p)_lv Vp € Ua M UB s
Tap(P) © T84 (P) = Tan(p), VP EUa nUp N U,

thanks to the corresponding features of the transition functions 7,3 between charts.

The functions 7,4 are called transition functions between the local trivializations
of TM given by TM|;; = U, x R" and TM’U@ ~ Ug x R™.

The importance of the transition functions between the local trivializations is that they
permit to construct the manifold structure of a collection of vector spaces attached to points
of a manifold in a sense that will be specified more rigorously later in this chapter.

Remark: notice that, in spite of bearing the same name and of being related as described
above, the transition functions 7,4 : (Usg) € R™ — 0o (Uag) < R™ between two charts of
M and the transition functions 7,5 : Uy N Ug — GL(n,R) between two local trivializations of
TM are very different objects and must not be confused.

Def. 3.1.3 (Global differential) If f : M — N is a smooth map between smooth manifolds
M and N, then the map df : TM — TN such that df]TpM = dfy is called the global
differential or global tangent to f.

Theorem 3.1.1 If f : M — N is a smooth map, then its global differential df : TM — TN
is a smooth map.

Proof. 1t is sufficient to recall eq. (2.27), which gives the local expression of the differential of
f in a point p € M in coordinates as:
ofi 0
= 5™ 5
P z Yy

0
y ( ot

where f7 are the component functions of the local expressions of f. Thus, the coordinate
representation of df in terms of the natural coordinates of TM and TN is:

i

f(p)

. . o fl 4 ofn .
df(zt, ... 2" vt ") = (fl(x),,f”(x), a‘ij(:z)vj,...,a‘ij(x)v]> ,

x = (x*,...,2"). The smoothness of f implies that of the coordinate representation. O

The properties of df listed below follow easily from those of the differential in a point.

Theorem 3.1.2 (Properties of the global differential) Given smooth maps f : M — N
and g : N — P the following properties hold.
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1. d(idyy) = idpy.

2. Chain rule for the global differential:
d(go f) =dgodf.
3. If f is a diffeomorphism, then df : TM — TN is a diffeomorphism and (df)~' = d(f~1).

Thanks to 3. it is not ambiguous to write simply df ~! for the inverse of the global differential
of a smooth function.

3.1.1 The tangent bundle as the configuration space of a classical mechan-
ical system

A state of a classical mechanical system is given by specifying a configuration, i.e. the position
and the speed of the system particles at a given time. These data are necessary and sufficient
to give the initial conditions to write the system of differential equations given by Newton’s
second law of motion (or its equivalent Lagrangian or Hamiltonian formulations).

If the configuration space is assumed to be a smooth manifold ), then the state space is
the tangent bundle 7'Q). Thanks to local triviality, if dim(Q) = n, a state at the time ¢y can
be locally described via these coordinates:

(ql(tO)a s 7qn(t0)7 ql(tO)? SRR qn(t0>) ’

where ¢' = 2' in physical notation, and ¢*(to) = dq;gt) (to).

3.2 Vector bundles

The tangent bundle is the prototype of a category of smooth bundles called vector bundles, to
which this section is dedicated.

Before introducing the formal definition, we stress that the main idea underlying a vector
bundle is to construct a family of vector spaces £, parameterized by points p of a
manifold M (or, as it is often said, attached to these points) in such a way that these
vector spaces fit together to form another manifold, which is called a vector bundle
over M. We can study with the techniques of differential geometry this new manifold, which
turns out to carry a richer and more interesting structure than the original one.

The next definition contains all the information needed to ‘glue together’ the copies of the
vector spaces attached to each point of M to form a vector bundle.

Def. 3.2.1 (Vector bundle) A (real) vector bundle of rank r over a smooth manifold M of
dimension n = r, called base space, is described by the triple (E, M, ), where E is a smooth
mamnifold, called the total space of the bundle, and w : E — M is a smooth surjective map,
such that:

1. for all pe M, the fiber E, := 7 '(p) is a real vector space of dimension r;
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2. every p € M admits an open neighborhood U € M and a diffeomorphism
x: Bl i=n1U) > UxR",

called local trivialization, such that the following diagram commutes:

T —>U><R’"

\ / — priox =m.

3. for all p e U, the function X‘p : By — {p} x R" = R" is a linear isomorphism.
Vector bundles of rank 1 are called line bundles.

In literature, to denote (or even to define) vector bundles it is common to use either the
notation (E, M, ) or m: E — M or simply E, depending on what has to be emphasized. We
will follow this tradition.

The simplest example of vector bundle is obtained when the family of vector spaces is
constant, i.e., when there is a canonical, fixed, vector space F such that F, = F for all pe M:
in this case there is just one copy of E for each p € M and these copies fit together to form
the vector bundle M x E over M. Due to the extreme simplicity of this construction, such a
vector bundle is called trivial.

The tangent bundle of a manifold M of dimension n is a vector bundle of rank
n. This fundamental example shows that, in general, vector bundles are only locally trivial.

Any non globally trivial bundle requires more than one local trivialization, thus it is natural
to ask oneself what happens in the overlap of any two local trivializations. The following result
shows that, thanks to the requests 2. and 3. in the definition of vector bundle, the composition
of two local trivializations on the overlap domain has a particularly simple expression.

Theorem 3.2.1 Let w : E — M be a vector bundle of rank r over M and suppose that
X1: 7 (Us) = Uy x R” and xo : 71 (Ug) — Ug x R” are two local trivializations of E with
non empty intersection Uy, N Ug # . Then, there exists a smooth map
Tap : Ua 0 Ug — GL(r,R)
such that the composition x10 x5 "' : (Ua nUg) x R — (Uy N Up) x R” can be written as
x10xz ' (p,v) = (P, Tap(p)V),

i.e. it acts as the identity on the first entry and linearly on the second entry, with the application
of the non-singular matriz 7(p) € GL(r,R) on the vector v e R".

Proof. Thanks to property 2. in the definition of vector bundle, the following diagram
commutes (we have not written the restriction of the local trivializations to 7 =1 (U, n Up) for
notational simplicity).
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Uy nUp) x R" «+—2—— 771U, nUg) —2— (U, nUpg) x R"
Ui pri . pri
R" Ua ) Ug

This implies that prq o (x1 o X2_1) = pry, i.e. x1 0 X2_1 acts as the identity of the first entry,
so that the only significant action of the composition x1 o x5 1'is on the second entry, which
belongs to R", we denote this action with the smooth map o : (Uy n Ug) x R” — R" so that

X10X5 (p,v) = (p,a(p,v)).

Property 3. in the definition of vector bundle implies that, for every fixed p € U, n Ug, the
map R" 3 v — o(p,v) € R" is a linear isomorphism, thus its action can be associated to a
non-singular matrix 7(p) € GL(r,R) such that o(p,v) = 7(p)v.

The smoothness of 7 is a technical matter left as an exercise. O

Def. 3.2.2 The smooth map 1o : Uy N Ug — GL(r,R) of the previous theorem is called
transition function between the local trivializations x1 and x2 of the vector bundle w: E — M.

As we have seen before, when E = T'M, the transition functions map every p in U, n Ug in
the Jacobian matrix evaluated in ¢g(p) of the transition function 7,3 between two charts
o and g of M. Moreover, as for the case of the tangent bundle, it is simple to verify that
the transition functions 7, satisfy the so-called cocycle relations (identical to those of the
tangent bundle, with the only difference of the dimension r < n for the matrix):

naa(p) =1,
Waﬁ(p) = nﬁa(p)_l s
Nas(P)18y(P) = Nary (D)

for all p e Uy n Up (the first two properties) and for all p € U, n Ug n U (the third one).

The importance of the transition functions can be fully understood by the following results,
which shows how to provide a vector bundle structure to a collection of vector spaces with
fixed dimension attached to the points of a manifold via the transition functions.

Theorem 3.2.2 Suppose we are given a manifold M and a collection of real vector spaces
E, of fizxed dimension r attached to each point p € M. Let then:

o £:= || Ep;
peM

e m: FE — M, such that 7T|Ep maps all elements of E, to p.
Suppose furthermore that we are given:

1. an open cover {Uy}aca of M;
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2. for each a € A, a bijective map Xo : T 1 (Uy) — Uy x R” such that XQ\EP s a linear
isomorphism between E, and {p} x R" = R";

3. for each o, B € A such that Uy nUg # &, a smooth map Taa : Uy nUg — GL(r,R) such
that xq © Xgl(p,v) = (p, Tap(p)v) for allpe Uy nUg and v e R".

Then there exists a unique topology and smooth structure on E that make it a smooth manifold
and a vector bundle of rank r over M, with projection m and smooth local trivializations

{(Uou Xa)}'

The proof is quite technical and we omit it, the interested reader can find it in [10], Lemma
10.6 page 253.

Without this results, in order to give a vector bundle structure on a collection of vector
spaces attached to points of a manifold, one should have to build a manifold topology and
a smooth structure on their disjoint union, then construct the local trivializations and show
that they satisfy all the properties of definition 3.2.1. This is, in general, a much longer and
complicated procedure than the one described in the theorem above.

3.2.1 Operations on vector bundles

The operations that can be done on vector spaces can be extended to vector bundles. The key
to do that is simply to perform these operations on the fibers, which are vector spaces.

Def. 3.2.3 (Whitney (direct) sum of vector bundles) Given a smooth manifold M and
two vector bundles my : By — M and ma : Eo — M of rank r1 and ro, respectively, the Whitney
sum of 1 and Es is the vector bundle over M of rank r1 + ro whose fiber at each point
p € M is the direct sum (Eq), @ (E2)p.

It can be proven that, with this definition, we get indeed a vector bundle with total space

E1 @ Ey = |_| ((E1)p @ (E2)p)-

peM

The transition functions for this bundle are 7,3 : Uy N Ug — GL(r; + r2,R), where, for each

(T1)ap(p) 0 >
0 (72)ap(p))

Def. 3.2.4 (Restriction of a vector bundle) Given a smooth manifold M, a smooth vec-
tor bundle m: E — M of rank r and an immersed or embedded subset S < M, the restriction

of E to S is the vector bundle with total space Eg = | | E, and projection g = 7T|ES.
peS

p € M, To8(p) is a block diagonal matrix of the form <

It can be proven that ng : Eg — M is a smooth vector bundle. As a particular case, the
restricted vector bundle T'M | ¢ is called the ambient vector bundle over M.

Def. 3.2.5 (Dual of a vector bundle) Let E be a vector bundle of rank r over the manifold
M. Then, its dual vector bundle is:

E*= | | B>
peM
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E,* = Hom(E,,R) is the dual vector space of E,,. The projection is again the map 7 : E* — M
such that its restriction to every E sends its elements to p. The rank of E* is 7. The transition
functions are given by 7: U — GL(r,R), 7*(p) = (7(p)~!)! for all pe U.

When we operate the dualization procedure to the tangent bundle of a manifold, we obtain
a very important object, that we discuss in the next section.

3.3 The cotangent bundle over a manifold

Before formalizing the concept of cotangent bundle, let us extend to generic finite-dimensional
real vector spaces what stated in Appendix B about the relationship between R™ equipped
with its canonical basis and its dual space (R™)* equipped with the canonical dual basis.

If V is an n-dimensional real vector space, then, by convention, we call its elements v € V'
vectors and we write them in matrix form as a n x 1 matrix, i.e. as column vectors.

Instead, the elements of its dual space V*, i.e. linear functionals w : V' — R, are called
covectors and they are indicated in matrix form as a 1 x n matrix, i.e. as row vectors.

We know that the dual basis (¢!,...,&") of (R")* is associated to the canonical basis
(e1,...,en) via '(ej) = (5;-, so that ’(v/e;) = v', the same holds for generic vector spaces and
bases.

More precisely, if (e1, ..., e,) is any basis of V', the corresponding dual basis of V*, denoted
again (g!,...,e"), is defined by:

g'ej) = 6;-,

which implies that, if v = v/ ej, then

g'(ve;) = Vel (ej) = vj5§- =,

So, also for generic vector spaces, the i-th element of the dual basis (¢!,...,e") acts simply as
the projection on the direction defined by the i-th vector e; of a fixed basis of V.
A generic covector w € V* will be written in terms of the basis (¢!,...,e") as w = w;e’,

with the components w; € R satisfying
w(e;) = szj(ei) = w;b! = w;,

i.e. the components of w are determined simply by applying it to all the elements of the basis
(e1,...,en). As a consequence, the action of w on a generic vector v = v/ e; is the following:
w(v) = (wie')(vej) = wiv’e’(ej) = wv’d; = w;v'. The fact that

w(v) = wivt (3.1)

explains the convention of writing w in matrix form as a row vector and v as a column vector.
Other useful facts that is worthwhile recalling are listed below:

e Transpose (or dual) map: if A:V — W is a linear operator between two finite
dimensional real vector spaces V and W, the the linear map

At W — VU Aw): V. — R
w — Al(w)”’ v o— Alw)(v) := w(Av),

is called the transpose (or dual) map of A.
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e The transpose map verifies (Ao B)! = Bt o At and (idy)! = idy*, with obvious meaning
of the symbols used.

e The bidual, or second dual space of V is V** := (V*)*. For finite-dimensional vector
spaces, V and its bidual V** are naturally isomorphic via the map:

E: VS U Ew): V¥ — R

v o ) W o )W) = w(), (32)

the isomorphism being natural because only the intrinsic elements of the spaces involved
have been used to define it and nothing else, in particular without the choice of a basis.

e Because of egs. (3.1) and (3.2), the real number can be interpreted either as the
application of the linear functional w € V* to the vector v € V| or as the application
of the linear functional {(v) € V** to the covector w € V*. Because of the natural
identification between V and V**, it is custom to omit £ and to write simply v, which,
with this omission, acquires the double role of vector of V' and linear functional over
V*. Due to this double role, the real number w(v) = £(v)(w) = v(w) is often written in
a more symmetric-looking way as follows:

(w,v) 1= w(v), (vw):=¢v)(w) =),

called pairing between v and w. The pairing (¢', e;) = 5; is called canonical pairing
between bases of V =~ V** and V*.

The definition of cotangent bundle over a smooth manifold M is identical to that of tangent
bundle, the only difference being that the tangent spaces are replaced by their duals.

Def. 3.3.1 TyM = Hom(T,M,R) is the dual of T,M, called the cotangent space to M at
p. An element w € T,y M s called cotangent vector to M in p, or covector, or differential
form.

Def. 3.3.2 (Cotangent bundle) The cotangent bundle over M, denoted with T*M is given
by the following disjoint union of cotangent spaces at different p e M :

T*M = | | M = {(pw) : pe M, we Ty M}, wlpep (W) = p.
peM

Analogously to what we did for the tangent bundle, we can prove that the cotangent
bundle is manifold of dimension 2n and a vector bundle of rank n.

In the case of tangent spaces, we have seen that the act of fixing a local coordinate system
(U, = (x',...,2™)) in p € M induces the basis (01l s, Onl,) of T,M. We are going to
prove that the dual basis of T7M can be built by taking the differential of the coordinate

functions 2 : U € M — R, 2%(p) = (' o p)(p) = '(x',...,2") = 2°. Being scalar functions,
we must apply eq. (2.17) to get
- 0 0 : ozt ot d(etopop™h ¢t oz’
d t ~ = v == n = - = - = — = ?
v |P <6m1 p> ol |, (z") (2.14) oxd (z) oxI (z) oxd (z) oxd 7’
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so, the linear functionals of T),M given by
do'|,: T,M — TuR=R
o, — dai] (3)],) =,

verify the pairing
{dz"

il =4
which means that they are the dual basis of the coordinate tangent vectors é’j|p. This justifies
the following definition.

Def. 3.3.3 (Coordinate cotangent vectors) The vectors (d$1|p sooo da”| ) are called co-

ordinate cotangent vectors and they form the standard basis of T; M dually associated to
the basis of coordinate tangent vectors (01, , ..., Onl,) of TpM.

Once established (dmi’p) as the standard basis of Ty M, we infer, from what recalled above
for a general vector space, that:

e every cotangent vector w € Ty M can be expressed as the following linear combination:

W= w; d:ni|p, w; = w(0il,) € R,

e the action of dxi| on the generic tangent vector v = vJ 8j|p € T,M is simply the
extraction of the i-th component w.r.t. the coordinate tangent vectors of T}, M:

dmi|p (v %l,) = v

Analogously as for the tangent bundle, we can define the local coordinates of the cotangent
bundle as follows.

Def. 3.3.4 Given a local coordinate system (U, p = (z')) in p € M, the coordinates defined
by (x1(p),...,2"(p), w1, .. ,wn), such that w € T M is written as w = w; dxi‘p, are called the
natural local coordinates on the cotangent bundle T* M.

We summarize below the results that we obtained so far about the local expressions of a
tangent and cotangent vectors.

e Given a local chart (U, ¢) of p € M with local coordinate functions z°,

ri=¢clop: USCM — R
p > &)

e The basis of T,,M induced by this chart is

(01l 0ul,)

<dm1

e The dual basis of T, ;‘M is

p,...,dw"|p>.
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e They verify the following pairing: (dz’, 9; ) = 6;

e A generic tangent vector v € T, M will be written as:

vzv]§j|p, veR, j=1,...,n.

e A generic cotangent vector (or covector, or differential form) w € T, M will be written as:
w=w¢dggi|p, wizw(6i|p)eR,i:1,...,n.
Many times, in the physical and engineering literature, the specification of the basis is
omitted and the position of the indices is used to qualify the object:
e tangent vector (v!,...,v") - components with indices above
e covector or differential form (wi,...,w,) - components with indices below.

In the trivial case of M = R™ we have at disposal the single chart atlas (R", ¢ = idgn)

which allows us to canonically identify <§1| P 5n]p) with the canonical basis (e, ..., ey,)

of R™ and (dml

5.

b dac”|p> with the dual canonical basis (g',...,e").

3.3.1 A noticeable example of cotangent vector: the differential of a scalar
function at a point

Let ¢ : M toR be a smooth scalar function and p € M. Since d¢, : T,M — Ty )R = R is
linear, we clearly have that d¢, € T; M, i.e. dpp is a cotangent vector to M at p.

Fixed a local chart (U, ¢ = (z")) in p such that ¢(p) = x, we can of course express d¢, as
a linear combination of the coordinate cotangent vectors:

dop = wi dxi|p,

and we know that:

_ o1)._ 29 Apop™) 29
Wi = d¢]’ (axl p) T 81:1 p(¢) - oxt ((P(p)) - 03:’( )7
where ¢ = ¢ o~ : p(U) = R” — R is the local representation of ¢.
Thus, the explicit expression of the cotangent vector d¢, is:
0 ;
dop = i (z) dz |p . (3.3)
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3.3.2 Transformation rule for the local coordinates of cotangent vectors

Here we analyze how the components of a cotangent vector change when we change the local
coordinates in a point. This is the analog for cotangent vectors of what we have already did
in section 2.5.2 for tangent vectors and thus it can be thought as a sort of physicist definition
of cotangent vectors.

Suppose that p € M belongs to the intersection of two local charts (U, = (2')) and
(U, % = (#7)), then we can decompose w € TyM w.r.t. the basis (dz .., dz|)) or wr.t.

the basis (di?

1‘p’.

b da?”|p) obtaining, respectively,
w = w; d:z:l’ = @ deJ’ )
P P

As we have just seen, the coefficients of the cotangent vectors can be obtained by applying w

on the coordinate tangent vectors:
Wi = w ( d ) and @w; =w < d )
P = - = = .
ox? v ox) »
B ox7 0

Recall now from eq. (2.29) that
~ P L
, Oz

j
aa:p

0
oxt

O o I WA B e
e\ e aa| ) T e YN da| ) T ea

Similarly, by using eq. (2.30) and repeating the calculations above on @; we obtain:

)

we get

5 ozt
Wi = -
I o

(z) w.

As we said in section 2.5.2, in the early days of differential geometry (and still nowadays in the
physicist and engineering setting), a tangent vector was interpreted as the assignment of an
n-tuple of real numbers associated to each coordinate system following precise transformation
rules when we change from one coordinate system to another. It is thus important to compare
the transformation rules of the components of a tangent and cotangent vector:

Tangent vectors:

. 0xd i . oxt
v = oy (x)v', o' = 27 (z)v?

Cotangent vectors:
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ox' o0x’ .
(v)wi, w;= 2y (x) @;.

Wi = -
T 0z

Since eq. (2.29) for the transformation of the coordinated tangent vectors is a direct
consequence of the chain rule, mathematicians considered it as a sort of ‘standard’ for the
transformation under change of coordinate system and called covariant, from the Latin prefix
co-, which means with, so that covariant means that an object ‘vary with’ the standard
transformation rule.

It can be seen that cotangent vectors follow the standard transformation rule, eq. (2.29),
while tangent vectors follow the opposite rule. For this reason, it is still customary to say that:

e cotangent vectors are covariant vectors;

e tangent vectors are contravariant vectors.

Despite the same nomenclature, this has nothing to do with covariant and contravariant
functors of category theory.

3.4 Local and global sections of a vector bundle

In Physics, when we talk about a vector field we mean a vector attached to each point of a
certain region in space. This concept can be made rigorous in differential geometry thanks
to the definition of sections of vector bundles. Being quite simple, we will first introduce the
abstract concept of section on a general vector bundle and then we will specialize it on the
tangent and cotangent bundles.

Let us consider a vector bundle 7 : E — M over the smooth manifold M and a neighborhood
U of a point p € M. The most natural vectors associated to p are those belonging to the fiber
over it, i.e. 7 1(p) = E,, because each v € F, projects on p via m. Thus, a function that
associates points of U to vectors belonging the fibers over them is also a natural object. Of
course, to be able to perform differential calculus over this object, we require it to be smooth,
i.e. we demand that the vector assignment is smooth when we pass from one point to another.

The definition of local section gives a mathematical formalization to what just said.

Def. 3.4.1 (Local section or local vector field) A local section (or a local vector field)
of E on an open set U < M is a smooth function o : U — E such that woo = iy, i.e. such
that the following diagram commutes:

E

U M
i.e. moo = iy, where ¢ is the canonical inclusion of U in M.

Notice that the definition contains exactly the information that we wanted to formalize, in
fact, thanks to the local triviality of E, o(p) = (p,v) € U x Ej, so

(mroo)(p) =7(p,v) =p=u(p)
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In this way, we do not attach to p any vector, but a vector v belonging to the fiber over p,
which is called the significant part of the section o, because it is the only information that
allows us to distinguish it from another section on U.

The set of all sections of F on U is denoted with the following symbol:

‘P(U,E)Z{O’IU—)E, 7TOO'=LU}‘.

I['(U, E) is an Abelian group w.r.t. the sum of sections on U defined as follows: if 01,09 €
(U, E), with o1(p) = (p, v1],) and o2(p) = (p, v2[,), then (o1 + 02)(p) = (p, v1l, + v2l,),
which makes perfect sense because both vy ]p and vy p belong to the same vector space 7 1(p),
so we can add them together meaningfully.

If it is possible to define ¢ on the entire manifold M, then we get the global sections.
Def. 3.4.2 (Global section or global vector field) A global section (or a global vector
field) of E on M is a smooth function o : M — E such that o o = idys, i.e. such that the

following diagram commutes.
E

M — M

idg

Convention: without further specification, a section on a vector bundle will be considered as
global.

The set of all sections of £ on M is denoted with the following symbol:

IT(E)={0: M — E, moo = idy}|.

Noticeable examples of sections, or vector fields, are obtained by considering £ = T'M and
E =T*M, the tangent and cotangent bundle of M, respectively.

3.4.1 Tangent vector fields

In this and in the next subsection we will omit the adjective local or global, since the definitions
and results hold for both situations, with evident adjustments.

Def. 3.4.3 A (tangent) vector field is a smooth assignment X : M — TM, to each point
p e M, of a tangent vector to M at p, i.e. mo X = idyy,
X: M — TM
p — X(p)=(p,Xp),
with X, € T,M, the significant part of the (tangent) vector field X .

Due to its importance, I'(T'M), the set of all sections of T'M, is denoted with a particular
symbol:

(X(M) = 7(M) = {o: M —TM, moo = idy} . (3.4)

It is custom to omit ‘tangent’ and write only vector field when it is clear that the vector
bundle that we are considering is T'M. We will use this convention.
The basic properties of X(M) are listed in the following result.
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Theorem 3.4.1 The following assertions hold.
e X(M) is a real vector space under point-wise addition and scalar multiplication, i.e.
(aX +0Y), := aX, + bY), X, YeX(M), a,beR.

The 0 element of X(M) is the null vector field, that attaches to any p € M the 0 tangent
vector of T, M.

o If fe € (M) and X € X(M), then fX : M — TM defined as:
(fX)p = f(p) X, Vpe M,

s a vector field.

e X(M) is a module over the ring €*(M).

Using the natural local coordinates of TM for every coordinate chart (U, (z?)) we can write,
for every pe M,

X, = (p, X" (p) 0il,);

where the coefficients X?(p) € R, in general, vary with p. This implies the existence of n
functions X*: U € M — R, called component functions of the vector field X € X(M) in
the chart (U, (z)) such that, for all p e M:

0

74' b
ﬁmp

Xp = Xl(p)

which is an equation involving tangent vectors of T, M. Using the fact that X(M) is a module
over the ring €* (M), this relationship can be written also as an equation involving vector
fields, i.e.

X,

where
L U — TM
‘ 2 2
27 (p) == (P, 557
is called the i-th coordinate tangent vector field.
It is clear that the restriction of a vector field to a chart domain U is smooth if and only if

the component functions w.r.t. that domain are smooth.

p+—>

p) = (pv ai’p)?

3.4.2 1-forms or cotangent vector fields

Sections of the cotangent bundle are a fundamental object in differential geometry and its
applications.

Def. 3.4.4 (1-form or cotangent vector field) A 1-form or cotangent vector field, is a
smooth assignment w : M — T*M, to each point pe M, of a cotangent vector to M at p, i.e.
mTow = idy,
w: M — T*M
p — w(p)=(pwp),
with wy € T M, the significant part of the 1-form w.
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The easiest example of 1-form is the differential of a smooth scalar function f € €*(M):

df : M — T*M
p > df(p) = (p,dfy).

The set of all sections of T*M is denoted which either

| X*(M) = A(M) = Q(M)]. (3.5)

As X(M), also A(M) is a real vector space w.r.t. point-wise operations and a module over
the ring €* (M) w.r.t. the operation

(fw)p:: f(p)wp) vfe(goo(M)a pEM-

Using the natural local coordinates of TM for every coordinate chart (U, (z')) we can write,
for every pe M,

wp = (pwi(p) da'] ),
where the coefficients w;(p) € R, in general, vary with p. This implies the existence of n

functions w; : U € M — R, called component functions of the 1-form w € A(M) in the
chart (U, = (2%)) such that, for all p € M:

wp = wi(p) dz'| ,
which is an equation involving cotangent vectors of T M. Using the fact that A(M) is a
module over the ring € (M), this relationship can be written also as an equation involving
1-forms, i.e. ‘ A

W= w; d:v’|p = w;dx’,
where ,

de': U — T*M
p — dz'(p) := (p, d:ﬂ’p),

is called the i-th coordinate 1-form.
It is clear that the restriction of a 1-form to a chart domain U is smooth if and only if the
component functions w.r.t. that domain are smooth. i

In the particular case where w = df, f € € (M), thanks to (3.3) it holds df,, = o (z) dwi’p,

oz
df = of dat
oxt

i.e. the component functions of the differential of a scalar function are the partial derivatives
of the local representation f = foo™1 of the scalar function itself w.r.t. the chart. If M = R",
we can use the single chart atlas (R",idgn) and f = f, thus the previous formula reduces to
the well-known formula for the total derivative of ordinary differential calculus in R™.
Thanks to what just discussed, we get a criterion to decide weather a smooth scalar
function on a manifold is constant or not, for the proof see [10] Proposition 11.22, page 282.

SO we can write

Theorem 3.4.2 (Criterion for constant scalar functions on a manifold) fe ¢ (M)
s constant on each connected components of M if and only if df = 0.
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This result suggests that we can interpret df as a ‘small’ change of f € € (M) generated
by small changes of its variables as in ordinary calculus in R™. This is the case, in fact,
since we are interested in small changes, we can fix any point p € M and a local chart
(U, = (2%)) in p, with * = ¢(p), so that we can associate f to its local representation
f=fopl:pU)<R"— R and consider Af := f(z +v) — f(z), where the norm of v € R"
is sufficiently small. By the smoothness of f we can apply a Taylor expansion in z for f and
write: .

of

Af ~ poe (z)0*

but we know that the coordinate cotangent vectors daci’p act as component extractors on

vectors, so v¢ = da;i’p (v) and thus

of
oxt

Af ~ (z) d:ci|p (v) = dfp(v).

From this computation, we infer that df encodes the first-order variation of f € €*(M) in an
intrinsic, coordinate-free way, on every manifold M.
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Chapter 4

Tensor calculus @aardo provenz)

It is well known that around the turn of the
century Riemann’s theory of metrical continua,
which had fallen so completely into oblivion, was
revivified and deepened by Ricci and Levi-Civita;
and that the work of these two decisively
advanced the formulation of general relativity.
ALBERT EINSTEIN, 1955

Tensor calculus, invented by G. Ricci-Curbastro and T. Levi-Civita in 1900 [16], is
omnipresent in differential geometry and its applications. In this chapter we give a very
basic introduction to this topic, first discussing the tensor product for vector spaces and then
specializing these concepts on the fibers of a vector bundle.

4.1 Tensor products of vector spaces and vectors

Let V, W be two real vector spaces of finite dimension m and n, respectively, V* = Hom(V,R),
W* = Hom(W,R) their dual spaces and let Bil(V x W) the vector space of bilinear forms
g:VxW —>RonV x W, ie. linear in one variable when the other is kept fixed.

The most natural way to build a bilinear form g : V x W — R is by considering the
product of two linear forms ¢ € V* and ¢ € W* ie. g(v,w) = p(v)(w), in fact, by definition
of bilinearity, if we fix one variable, say w, then 1)(w) becomes simply a real coefficient and
the linearity of ¢ in v guarantees the linear behavior of g w.r.t. v; of course the same holds if
we exchange the role of v and w thus guaranteeing the bilinearity of g.

The bilinear form arising in this way is called tensor product of ¢ and v and denoted
with ¢ ® -

eRyY: VW — R

(ww) — [p@Y(v,w) = p(v)(w)].

For example, if V = W = R?, ¢ = ¢! and ¢ = €2, where ¢’ is the i-th element of the
canonical basis of (R?)*, then, for any v,w € R? such that v = (v!,v?) and w = (w!, w?), we
have e! ® €2(v, w) = v'w?.

The naturalness of the bilinearity of the tensor product of linear forms raises the following
question: is it possible to express all bilinear forms on V' x W as tensor product of linear

(4.1)
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forms on V and W? The answer is affirmative (for the proof see [10], proposition 12.10 page
311). Thus, if we define the tensor product of V* and W* as the vector space (w.r.t. the
point-wise linear operations)

VXRW* = {p@¢ | pe V", pe W'}

I

we have the canonical identification

(VF@W* = Bil(V x W)|.

It is straightforward to verify the following formulae, valid for each @1, o € V*, 1)1, 99 € W™,
al,ag,bl,bz e R:

(a1p1 + a2p2) @Y = a1p1 ® Y + asps Y, ©® (b11 + batbe) = p ® bihr + baths.

More generally, if we consider the basis (!, ..., ™) of V* and (¢!,...,9") of W*, then
any ¢ € V* and any 1) € W* can be written as ¢ = a;¢’ and 1 = jq/)j, a;,bj € R for all
t1=1,....m,5=1,...,n,s0
PRY =aip @bjp! = abje’ @Y,
linearity

which implies that ‘ '
(0" @Y7 )izi,...m is a basis for V@ W*

AAAAA

Jj=1,..., n

and so dim(V* ®@ W*) = mn.
As a consequence, every g € V* @ W* x~ Bil(V x W) can be univocally written as

9=0ij9' @Y |,

gij€R,i=1,....m,j=1,...,n
The results just discussed can be extended to a finite set of vector spaces, obtaining the
following canonical identification:

V*

(]

lle

)
@~
i

p
Mul( X Vi),
i=1

P
where Mul( X V;) is the vector space of p-multilinear forms, i.e. linear in each one of the p
i=1
variables separately, when all the other p — 1 are kept fixed.

Up to now we have considered tensor products of linear forms and dual vector spaces, we
can define tensor product of vectors and vector spaces by considering the natural isomorphism
between a finite dimensional real vector space V' and its bidual V** = Hom(V*,R):

| VAR VA oay: Ve — R

9

vy, o () =e) =(v,p).

By exchanging the role of V, W and V* , WW* and thanks to the identification just recalled, we
can define the tensor product of two vectors v e V and w e W as follows:

v@Qw: VExW* — R
(p,0)  — v@w(p,¥) = (v, o)W, ¥),
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i.e. the tensor product of two vectors v,w € V is a bilinear form on V* x W*,

Thus, both the tensor product of two linear forms and two vectors lead to
bilinear forms, what changes is just their domain.

As before, if we define the tensor product of V and W as the vector space (w.r.t. the
point-wise linear operations)

VW= {(v@uw|veV, pe W},

we have the canonical identification

VeW = Bil(V* x W)

As before, if (v1,...,v,) and (w1, ..., wy) are basis of V and W, respectively, then

(Vi ® Wj)i-1.....m is & basis for VW,

.....

7j=1,..., n

so dim(V ® W) = mn and a generic element g € V® W =~ Bil(V* x W*) can be written as

gzgijvi@)wj ¢g7eR, i=1,....,m, j=1,...,n.

The formulae:

9=959'®Y  peV* peW*
are vastly used and the position of the indices reveal if we are dealing with the tensor product
of vectors or linear forms. The real coefficients g*/ and g;; can be organized in a m x n matrix,
for this reason the tensor product is often (erroneously) defined as a matrix.

Finally, as in the previous discussion, we can generalize these results to any finite number
of finite-dimensional vector spaces by obtaining:

{g:gijvi@)wj veV, weW

p p
QR Vi = Mul( X V).
i i=1

Useful canonical isomorphisms are listed below for finite-dimensional real vector spaces:
VRW=WRYV, symmetry of ®

MWV (Ve®Vs), associativity of ®
V)W = (VeW)® (Va®@W), distributivity of ® w.r.t. @,

more generally,

DVi e OW: = D View,
i=1 i=1 i=1,..., T
Jj=1,..., s

Of course we can consider the tensor product also of the dual of a vector space with another
vector space or vice-versa. The result in this case is particularly important and it is underlined
in the following result.
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Theorem 4.1.1 For any couple of finite-dimensional real vector spaces V- and W the following
natural identification holds:

[V*@W = Hom(V, W),

where the natural isomorphism between the two spaces is defined on the generic basis element!
Y@uw of VQW by:

F: VW — Hom(V,W) Fpw: V. — W

pOW o Flo®w) = Fyu, v o Fpv) = poyw. &Y

Proof. Let (v1,...,v,) be a basis of V, (v!,...,v™) the dual basis of V*, such that v'v; = 5;-,

and let (wy,. .., wy,) be a basis of W. These bases induce the basis (v* ®Wj)iz1,..n f VFQW.
j=1,....m

The theorem will be proven if we show that F' sends this basis to a basis of Hom(V, W).

To this aim, let us make the action of F explicit: if we apply F(v' @ w;) = Fyi, = sz €
Hom(V, W) to an element vy, of the basis of V fixed above, then, thanks to eq. (4.2) we get

,,,,,

Fj(o) = o' (vp)w; = Sw;. (4.3)

Thus, we have to prove that the linear maps (F!),_,

; . form a basis of Hom(V, W).

,,,,,

Jj=1,...,
For this, it is sufficient to consider an arbitrary L € Hom(V, W) and represent it as a
matrix A = (a]) w.r.t. the bases of V and W that we have fixed: by definition of matrix
associated to a linear map, the coefficients a] verify L(v;) = aJw; for every vector vy, of the
basis of V. The linear combination of the maps Fi ., with the coefficients al,ie. al F}, is an
element of Hom(V, W), let us apply this map on the generic vector v; of the basis of V' and
see what we get:
J i J i Jsi J
a; F7)(v = a;F: (v a;diw; = aw; = Lv
( )( k) linearity ]( k) eq. (4.3) iR k79 Gef. of L ( k),
we see that the action of the arbitrary linear map L € Hom(V, W) on the arbitrary vector vy

of the basis of V' is obtained by linear combination of the action of the linear maps F ]?, hence
they form a basis for Hom(V, W). O

Also this result permits to understand why tensors are often defined as matrices: after
fixing a basis of V' (and so, by duality, also of V*) and of W, a linear application belonging to
Hom(V, W) is a matrix.

4.2 Covariant and contravariant tensors. Tensor algebra of a
vector space

In the previous section, we have seen that, starting from a real vector space V of finite
dimension n, we can build many other spaces via tensor product. These spaces are given by
multilinear functions defined on copies of V. and V*.

Here we introduce a compact notation and terminology canonically used:

'and then, of course, extended by linearity to the whole space.
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e IN(V)=T%V)=TH(V) =R
e TH(V)=TY V)=V

e TP(V)=TP(V)=V®---QV — dimTE(V) = nP

p times

e TN(V)=Ty(V) =V*®---QV* — dimT}(V) =nP

q times

¢« TV(V) =TP(V)QT,(V) = V®---QVRV*®- - QV*

p times q times

e T(V)= @ TF(V), is called tensor algebra of V. .
p,q=0

Let us fix our attention on 77 (V).

Def. 4.2.1 An element t € TY (V) is called a p-contravariant and q-covariant tensor on
V.

t is nothing but a multilinear form of the type:

t: V.. . xV*xVx...xV — R.
~— ~—

p times q times
To understand its action, let us fix as usual a basis (vi,...,v,) of V and the dual basis
(vh,...,v") of V*, then:
® (vi, ®---®u;,) is a basis of V®---®V, with independent indices i1,...,i, =1,...,n;
-
p times
o (V'®---®uv’) is a basis of V*®---®V*, with independent indices ji, ... g =1,...,m;
N
q times

o (Ui, ®...v;, V' ®...0v7) 11’21’:1” is a basis of T¢ (V).
J15e-0dg= 1500
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Since we have p + ¢ vectors in the basis of 77 (V), each of which is parameterized by an index
whose variability is between 1 and n, we have n---n = nP"9 so

(p+q) times

dim(TP(V)) = n?*9].

The generic decomposition of the tensor of T4 (V') on the basis previously obtained is:

_ o Henip ) ) J1 Ja
t=a jhmdqul@...v@p@v ®...v'],

with ail’“"i‘;—l e € R, of course they depend on the particular choice of the basis. Physicists

omit the bases and use to write simply

— 1500l
t= <CL ]17"'7jq> ’

the presence of p contravariant and ¢ covariant indices of this sort of multi-dimensional matrix
is enough to specify what type of tensor ¢ is.
There is an obvious product between tensors. . .the tensor product:

TR (V) x TR(V) — T2V

(t1,t2) — 11 ®to,

It is possible to verify that, with this operation, T'(V') becomes an algebra.

4.3 Operations on tensors

Here we define the operations on tensors that can be found in differential geometry for different
purposes. Let us start by justifying why we call T'(V') the tensor algebra.

4.3.1 Contraction

of type (}): it is a linear function C7 : T{ (V) — T, 5:11(V) that reduces the covariance and
contravariance degree of a tensor. Moreover, it generalizes the concept of trace to
tensors. For simplicity of notation, we can define the contraction on the basis elements of
TP (V) (the definition is extended by linearity on the whole T7(V)):

Cl(vi, @+ ®vi, ®V @ ®v') 1= 0" (1, )0, @+ B Ly @+ B, @V @+ @ ¥ @ @V

explanation:

e we consider the i,-th element of the V basis and the js;-th element of the dual basis of
Vi

e we compute, in a linear way, the real number v’s (v; );

e we multiply this number to the tensor product basis of T¢ (V) taking out v; and
v7s. .. because they already served another purpose.

101



In coordinates, the contraction can be written as follows: if t € T4 (V), t = (ail""’i‘]’.l jq>,

vy (it 1Ky .dp
Cilt) = <a j1~~js—1kjs+1~~~jq> ’

the same index k replaces the index i, and j,, so that a sum over k is intended!

We are now going to prove that the operator C} : T} (V) =V V* - T(V) =R is
simply the trace. If (v1,...,v,) is a basis of V and (v!,...,v") is the dual basis, then
te VV* t =a;jv;®v/. By using the identification V ® V* =~ Hom(V,V) = End(V), we
can identify ¢ with the linear function associated to the matrix A = (aé-) w.r.t. the basis
(v1,...,v,). By definition, the action of C} is as follows:

CHt) = CHaiv; ®v7) = a;"Cll(vi ®v’) 1= aé-vj(vi)y{®7/f = aéﬁf = a! = Tr(A).

linearity

4.3.2 Symmetrization and antisymmetrization

W e know that some particular multilinear forms are associated with important geometric
concepts. For example, symmetric bilinear forms define real-valued scalar product, which
can be used to define the angle between vectors and the concept of orthogonality; alternating
forms define determinants, which are involved in the measure of areas and volumes.

Since tensors are multilinear forms, it makes sense to analyze the extension of these
properties to tensors, this will be essential to build important objects such as the p-forms.

We will develop our analysis on T?(V'), the one on T,(V') can be reproduced analogously.
t € TP(V) is such that:

t: V... xV* — R
—

p times o
(af,...,aP) — t(a',...,aP) =aral (vy) - aP(vy,).

We want to single out those multilinear forms ¢ which are symmetric, i.e.
t(@®M, .. 0Py = t(al, ... aP)
for every permutation of the set of indices {1,...,p}, and those which are alternating, i.e.
t(a®M, ... a”®) =sign(o)t(al,. .., o),

where sign(o) = (=1)V() € {1, 1}, where N (o) is the number of inversions performed by o,
where an inversion is a switch of ordinal position between two indices after the application of
o. This means that:

+1 if o performs an even number of inversions

sign(o) = {

—1 if o performs an odd number of inversions.

Some examples for T2(V): if v,w € V, then:
- to = v@w is, in general, not symmetric, nor alternating;

-t =v@w+ w®u is symmetric, in fact the change v < w leaves t; unaffected;
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-ty =vQ®w — w®u is alternating, in fact the change v « w transforms t5 to —ts.

Notation:
SP(V)| : subspace of T?(V) of symmetric tensors on V'

‘Ap (V)= AP(V) ‘ : subspace of TP(V) of alternating tensors on V'

It can be proven that, if dim(V') = n, then

n+p—1
p

(n+£—1) 0 <p <n

dim(T?(V)) = n?, dim(S*(V)) = ( 0 p>n

). dm(ae(v)) - {

The case of bilinear forms, i.e. p = 2 is special, let us see why:
(n+1)n n(n —1)
2 ’ 2 ’
so that dim(72(V)) = dim(S?(V)) + dim(A?(V)), this is a consequence of the fact that every

tensor t € T?(V) can be written as the sum of a symmetric and an alternating tensor in a
unique way as follows:

dm(T2(V)) = n?,  dim(S%(V)) = dim(A*(V)) =

VRW+wRv VRW—wRU
VW = ® 5 ® + ® 5 ® < to =11 + to,

thus:

T2(V) = SA(V)@ A*(V) |.

For n > 2 this is no longer true because of a dimensional argument: n? # ("+£ _1) + (Z)

The operations that transform a generic tensor to a symmetric and and alternating one
are called:

- Symmetrization: defined on the basis of T?(V') as follows

S - TP(V) — Sp(V)
Ul@"'@vp — S(Ul(@"'éavp):I%Z]Uo(l)®”'<>§/UC7'(17)7

and extended by linearity to the whole space;

- Antisymmetrization: defined on the basis of TP(V) as follows

A: TP (V) —  AP(V)
MO - Qu, S(v1®---®vp)=%Zsign(o)vg(l)®-~®va(p),

and extended by linearity to the whole space.

The normalization factor 1/p! comes from the fact that p! is the number of distinct permutations
of a set of p elements and it is introduced so that S and A reduce to the identity operator if
they act, respectively, on symmetric and alternating tensors. For example: if t = t; € S%(V),
then

1 1
S(t1) = SvRw+w®v) = Sw)+S(w®v) = §(v®w+w®v)+§(w®v+v®w) =1,

linearity

where, for each term, we have applied the only two permutations on a set of two elements:
the identity and the switch v < w.
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4.3.3 Symmetric product and external product

The symmetric product of tensors brings a couple of symmetric tensors to another symmetric
tensor, and the external product of tensors brings a couple of alternating tensors to another
alternating tensor. Let us start with the symmetric product:

©: SP(V)x 8IV) — SPHI(V)

(t1,2) = Oty i= (Zqu!)!S(h ®ta),

by construction, it holds t; ® t2 =t O t1, i.e. © is a commutative operation.
If we want © to be an internal operation, we have to make p and ¢ ‘disappear’, which can
be done by taking the direct sum:

S(V) = DS (V),

p=0

(S(V),®) is called symmetrical algebra of V.
Example: let v,w e SY(V) =V, then

v@weT*(V), S(vew) = %(v@w—i—w@v)

211
VOW=——(1@®uW+w®v) =@ W+ w v,
111! 2!
which shows the usefulness of the normalization coefficients.

Analogously, if v1,...,v. € V, then
VO OV = D V(1) ® @ V().
g
Let us now define the external product:

A AP X A(V) — APTYY)

(t1,t2) ot Ay = (qu‘{)’A(tl ®ts),

and

S(V) = @ S"(V),
p=0

we stop at n = dim(V') because, for p > n, AP(V') = {0}.
(A(V), A) is the external algebra of V.

Example: let v,w e AY(V) =V, then

vweT*V), Av@uw) = %(v@w—w@v)
211
VAW = ﬁi(v(@w—w@v):v@w—w@v.

Analogously, if v1,...,v,. € V, then

VI A AUy = ZSigH(O’)’UU(l) ®"'®UU(T)'
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4.4 Tensor bundles and tensor fields

All the previous constructions and operations on tensors have been defined for an arbitrary
real vector space V of finite dimension. Thus, they can be applied in the case of vector bundles,
where the fiber over each point of the base manifold is, by definition, a vector space.

If #: E — M is a vector bundle, then we have already seen that the dual bundle is
constructed by taking the union of the dual spaces Ej; of the fibers Ej, as p varies in M. This
permits to build in a natural way the tensor bundle.

Def. 4.4.1 (Tensor bundle) The tensor bundle T} (E) is the vector bundle whose fibers over
pe M are given by

Tff(Ep) = Tp(Ep) ® Tq(Ep) = EP®' ’ '®,Ep ® E;@ N ‘®,E;'
p times q times

Def. 4.4.2 (Tensor field) A (local or global) p-contravariant and q-covariant tensor field is
a (local or global) section of Ty (E).

Analogously, we can define the algebras T'(F), S(E), A(E).

The most important example is given by the tangent and cotangent bundle £ = T'M,
E = T*M of a manifold M and particularly important is the external algebra of the cotangent
bundle to a manifold M:

n
AT*M) = P AP(T*M),
p=0
called external algebra of M (omitting T'M).

Def. 4.4.3 (k-form) A k-form on a manifold M is a section of A¥(T*M), i.e. a smooth
assignment of an alternating tensor on T* M. The set of all k-forms on M is a vector space
w.r.t. the point-wise linear operations that is denoted either AF(M) or QF(M).

As always, let us look at these objects in the local coordinates of a point p € M induced
by a chart (U, = (z!,...,2")): we know that (1], -, Onl,) is a basis for T, M and this
holds for every p € U, thus it is possible to define the sections of T'M given by

61-: U — TM
p > 0i(p) = ail,, with 7(di|,) = p,

Def. 4.4.4 (Local frame for TM) The set (01,...,0y,) is called a local frame of TM on U.

Similarly, by considering the dual basis (d;z:1|p ey dw"|p) of T*M, we can define the
sections of T* M given by

de*: U — T*M
p — dai(p) = dq:i|p, with w(d$i|p) =p,

every dz' is a 1-form.
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Def. 4.4.5 (Local frame for T*M) The set (dz',...,dz™) is called a local frame of T* M
onU.

It is possible to verify that
(dz™* A - Ada™), 1<ij<---<ip<mn,

is a local frame of QF(T*M).

Notice that the condition 1 < ¢; < --- < 4 < n is imposed to guarantee that the
indices i1, . .., are different, otherwise the external product would be zero because of its anti-
symmetry, which can be easily show by taking just two external factors dz® A da® = —da" A dz"
which implies dz” = 0. Of course the name of the indices can always be permuted to fulfill
the ordering written above.

Every k-form w can be written, locally, as follows:

w = Z iy AT A - A da™

I<ip<--<ip<n

where a;,...;, : U — R are scalar functions on the local chart domain U.

Def. 4.4.6 (Closed and exact forms, potentials) A k-form w is closed if dw = 0, it is
exact if it exists a (k — 1)-form n, called potential form, such that w = dn.

Thus, an exact form is in the image of d, and a closed form belongs to the kernel of d.
For example, a 2-forms can be written as w = w;jdz* A dz’ and the matrix w;; containing
its coefficients its anti-symmetric.
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Chapter 5

All about vector fields: flux, Lie
derivative and bracket,
distributions and foliations ®aardo provens)

The scope of this chapter is to discuss some fundamental objects of differential geometry that
are related with vector fields. We will formalize the relationship between vector fields and
differential equations via the flux theorem, which will allow us to introduce the Lie bracket
and derivative. Then we will introduce the concept of distribution (totally unrelated to the
distributions of the analytical domain...) and foliation.

5.1 Vector fields and derivations

In (3.5), we have defined X(M), the space of tangent vector fields on a smooth manifold M as
the set of sections on the tangent bundle of M, ie. X(M)={c: M — TM, moo =idpy}.

We are now going to see an algebraic characterization of this space that is useful in many
situations, e.g. for the definition of the Lie bracket 5.3.

Recall that we have defined T, M, the space of tangent vectors on p to M, as Der, (M),
the space of derivations on M in p, i.e. linear Leibniz-like R-functionals defined on the vector
space €% (M) of smooth scalar functions on M, with the additional property that they set to
0 constant functions.

If we want to extend the connection between derivations in a point p and tangent vectors
to p to vector fields, we must get rid of the dependence of the derivation to the point p and
give a more general definition.

Def. 5.1.1 (Derivation of an algebra) Given a commutative algebra A on a field K, we
call derivation on A any linear function' D : A — A that satisfies the Leibniz rule, i.e.

D(ab) = D(a)b+ aD(b) Va,be A,
the juxtaposition of symbols means that we are multiplying by using the product of A.

The set of all derivations on A is written as Der(A) and it is a vector space w.r.t. linear
operations defined point-wise.

!'Notice that, in this definition, D € End(A), so D is not a functional but an endomorphism of A.
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In differential geometry, we have at disposal a commutative algebra: €* (M), thus the
vector space Der(¢*(M)) is perfectly defined and: D(fg) = D(f)g+ fD(g),Vf,g€ €F(M).

Remark 5.1.1 It is important to stress the difference between Der(¢*(M)) and Der,(M):

e the derivations belonging to Der(¢*(M)) are endomorphisms D of ¥* (M) which act
globally on smooth scalar functions on M: D : €% (M) — € (M)

e those belonging to Der,(M) are the tangent vectors to M at p, so they are linear
functionals v, acting locally, in an open neighborhood of p: v, : €*(U) — R.

In spite of being different objects, there is a clear correspondence between them: we can
define tangent vectors independently of a specified point to by considering a section of the
tangent bundle T'M, i.e. a vector field on M, as formalized in the following result.

Theorem 5.1.1 The vector space of vector fields on M and of derivations on €* (M) are
canonically isomorphic:

| X(M) = Der(¢(M))]|.

In the proof of this theorem we use the concepts and results that we have developed previously.
Here we simply show how to build the isomorphism: consider the vector field

X: M — TM
b X(p>EXp7

such that X, € T,M = Der,(M), i.e. X, is a derivation at p, and then define the function

X(f): M — R
p — X(f)p) = Xp(f),
but then
Dx: €*(M) — E*(M)
[ = Dx(f):=X(f),
is clearly a derivation on €*(M).
Vice-versa, starting from the derivation D : € (M) — € (M), we can univocally define

the vector field X : M — TM, p — X,,, X,, € T, M whose local expression in local coordinate
system (z!,...,2") of pe M is:

X, = D(’)(p) 3.

perfectly well-defined because 27 : M — R are smooth functions and so D(27) € €* (M), so
D(a9)(p) € R.
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5.2 Integral curves and flux of a vector field

In this section we point out the relationship between vector fields and differential equations.
In order to accomplish this task, we first need to recall a classical result of the theory of
differential equations in R™.

Theorem 5.2.1 (3 ! of the solution of a system of ordinary differential equations in R")
Let U € R™ an open set and let (x!,...,2™) : U — R be smooth functions. Then:

o : for all tg € R and xg € U there exists § > 0 and an open subset Uy < U, with
xo € Uy, such that, for all x € Uy, there exists a curve 7, : (t — do,t + do) — U which
solves the following Cauchy problem:

{dd“ =), j=1...n (5.1)
7(to) = zo-

e | Smooth dependence on initial data‘ : the function

CF (to—(s,to-i-(;)XUo — U
(t7x) i @(t,l’):’)/x@),

is smooth, i.e. vz(t) is smooth w.r.t. t € (to — d,tp + 0) and 7y, is smooth in x € Uy.

. m : two solutions of the Cauchy problem always coincide in the intersection of their
domains.

Since this result holds locally, we can imagine that it is possible to extend it to manifolds.
This is indeed the case and to prove it we must introduce a suitable terminology.

Def. 5.2.1 (Integral curve of a vector field) Given a smooth manifold M, let us con-
sider:

e X eX(M)
epeM
o [ < R open and such that 0 € I
e v: 1 — M smooth.
Then v is the integral curve of the vector field X passing through p if:
V() =X((®), Vel
{7(0) =p.

Geometrically, the fact that + is the integral curve of X means that the tangent vector v/(¢) to
M at each element of its support {y(t), t € I} € M coincides with the tangent vector assigned
by the vector field X in the point ().

We can transform locally the search for integral curves of a vector field in the situation
considered in theorem 5.2.1, as formalized in the following result.
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Theorem 5.2.2 (3! of the integral curves of a vector field on a manifold) Let X €
X(M), pe M and (U,p = (a:j)j:17,,,7n) a local chart in p. Then the assertions of theorem
5.2.1 holds if we replace the Cauchy problem (5.1) with the following:

d:yét(t) :X](’?(t))v .7 = 17"')”
F(to) = ¢(p) € R™,

(5.2)
where 7 : poy:(—g,e) > R" and X = Xjaj is the decomposition of X induced by the local
coordinates (z',... ™).

Proof. The proof consists in composing v with ¢ to get a curve 4 : po~y: (—e,e) > R"™ with ¢
small enough so that v(—¢,e) = U. If we write its components as (§!,...,35"), then

7)) = (7)) 9ilsqy »
where ajL?(t) € TyyR™" = R™.

It is now clear that v is an integral curve of X if and only if ¥ is a solution of the Cauchy
problem in R™ written in (5.2) and so the theorem 5.2.1 can be applied. O

Let us now use this result to prove a very powerful theorem, fundamental for differential
geometry of smooth manifolds.
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Theorem 5.2.3 (The flux theorem) Let M be a manifold. For every X € X(M) there
exists a unique open neighborhood U of {0} x M in R x M and a unique smooth function
O : U — M such that the following assertions hold.

1. For all fixed pe M, the set
U :={teR : (t,p)elUU} <R
1s an open interval containing 0.

2. For all fired pe M, the curve

P U — M
t — 9P(t) = O(t,p)

is the only mazimal integral curve of X passing through p (i.e. it cannot be extended to
a larger domain remaining an integral curve of X ).

3. For all fired t € R, the set
U :={peM : (t,p)eU} = M

is an open subset of M.

4. For all fixed t € R, the curve

’l9t2 Z/{t — M
p > U(t) = O(t,p)

1s a diffeomorphism such that 19;1 =19_;| and . Moreover, if p € U, then
p € Ui s if and only if ©(t,p) € Us and in this case it holds that

Os(We(p) = Vsa(p) |-

5. Forall fe € (M) and allpe M:

< foum)

= - X(H)w) .

t=0

6. For all (t,p) eU:

d(ﬂt)p(Xp) = Xﬁt(p)

Before going through the details of the proof, let us remark that, when we write 94(9:(p))
we are considering two different integral curves of X: from p, we first follow the integral
curve of X passing through p for a time ¢ and we stop when we arrive at the point J;(p) € M.
From here, we continue by following the integral curve of X passing through 9J(p) for a time
s and we stop when we arrive at the point 94(9:(p)) € M.
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This is the reason why the equality 94(9:(p)) = ¥s4+(p) is so strong: it says that, with
the procedure just described, we arrive exactly to the same point as if we followed just the
integral curve of X passing from p for a time s + ¢.

Proof.

1. Theorem 5.2.2 implies that, for all p € M, there exists always an integral curve of X passing
through it and that two integral curves of X passing through p coincide in the intersection of
their domains. This allows us to simply define P as the union of all the open intervals
I < R containing 0 on which an integral curve v : I — M of X passing through p is
defined. Being the union of open sets, UP is open.

2. The previous argument implies that it exists 9P : UP — M, integral curve of X passing
through p and defined on the whole UP. This is the maximal integral curve and it is unique
as a consequence of the unicity of the solution of the Cauchy problem (5.2). Moreover, this,
together with the fact that we know how to construct UP, allow us to build &/ and ©:

U:={(tp)eRx M : teUl}, ©:U— M, O(t,p):=9P(t).

Notice that this definition of U does not imply immediately that it is open, we will prove it
later.

3. To prove that U is open and that © is smooth a quite technical use of theorem 5.2.2 must
be performed, together with the result in 4. We skip these details and pass directly to the
more interesting proof of 4.

4. The proof of 3. will be simpler if we first deal with the point 4. By definition Uy = M and
Yo = idps. Let pe M and t € UP, we write ¢ = 9P(t), as represented in the figure below.

Integral curve of X in p

It is useful to perform a re-parameterization of ¥ as follows: let us define
UP —t:={seR : s+tel’}

then, the curve
c: U -t — M
s — o(s) =19P(s+1t)

is still an integral curve of X because

o'(s) = %(s +) = X(9P(s + 1)) = X(o(s))

and o passes through ¢, in fact o(0) = ¥P(t) = gq.
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We observe now that, by unicity of the integral curve, o(s) = ¥4(s), so it must be:
97O (s) = 9(s) = o(s) = IP(s + 1),
ie. O(s,0(t,p)) = O(s + t,p) or Vs14(p) = Fs(%(p)). Moreover, UP — t < U1.

Since 0 e UP, 0 —t = —t € U, but U? is the domain of 99, so the fact that —t € U? means
that ¥9(—t) = p. This formalizes the fact that, if we are placed in ¢, then we can turn back to
p by ‘reversing the time’ of the quantity ¢.

If we interchange the couple (—t, q) with (¢,p) we get that U9 + t < U9, thus it holds that
Ui —t =1 =Y°P), But then q = O(t,p) € U, if and only if p € Uy, ¢, which concludes the
proof of 4.

5. Since 9P(0) = p and (97)'(0) = X,, thanks to the definition of differential we have:

X(F)0) = dip(X) = (7 0 %(1)

t=0

6. Let (to,po) €U and f e € (M), then:
d(V1g) po (Xpo) (f) = Xpo (f 0 0¢y) (def. of differential)

= i(f o ¥y, 0 9P (t)) (by using 5.)
dt t=0
d d
_ e _ % rrgpo
Gl o] = G pm@ )|
= Xoro (o) (f) = Xy, (po) (f),
since the result hold for all f € €“(M), we have d(¥¢),(X,) = Xo,(p)- U

The function © contains the information about all the integral curves of X passing through
all the points of M. For this reason it deserves a special name and characterize certain special
vector fields.

Def. 5.2.2 (Flux) For every X € X(M), the function © : Ud € R x M — M s called the
local flux of the vector field X .

Def. 5.2.3 (Complete vector field) X € X(M) is called complete if U = Rx M — M, i.e.
if all the integral curves of X are defined for all t € R.

Def. 5.2.4 (X-invariant vector field) Let X,Y € X(M), and © the local flux of X. Y is
said to be X -invariant if, for all (t,p) belonging to the domain of the local flux of X, we have:

d(0)p(Yp) = Yo,0),  9e(p) = O(L, p).

Let us interpret this last definition: for all p € M we can evaluate Y in p, obtaining Y}, a

tangent vector to M. We then move along the integral curve of X for a time ¢, until arriving

to the point ¢ = J;(p). We can compare the tangent vector Yy, (p) With the one that we obtain

by applying the differential map to ¥;(p) calculated in Y, i.e. d(9;)y(Yp), which is a tangent

vector to M at ¢, so it belongs to the same tangent space as Yy, (,) and the comparison is

meaningful. If it happens that these two tangent vectors are the same, then Y is X-invariant?.
Thanks to the property 6. of the flux theorem, X is X-invariant.

2more synthetically: computing the tangent vector Y at 9, (p) is the same as sending the tangent vector Y,

to Yy, (p) via differential along the integral curve of X passing through p.
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5.3 The Lie bracket

As previously said, the concept of Lie bracket shows the usefulness of interpreting vector fields
as derivations on the ring of smooth scalar functions. In fact, if X,Y € X(M) are interpreted
as derivations, i.e. X,Y : €°(M) — € (M) are linear Leibniz-like operators, then they can
be composed to get two new linear operators on X(M), namely X oY and Y o X, this is a
privilege that we do not have if we interpret X, Y as sections of T'M. Linearity is obviously
preserved by composition, however the Leibniz-like behavior is not, in fact, by using first the
Leibniz behavior of Y and then of X we get:

(XoY)(fg) = X(Y(f9)) = X(fY(9)+Y (f)g) = fFX (Y (9)+X (/)Y (9)+X (9)Y (/)+X(Y(f))g,

this is different than fX (Y (g)) + X(Y(F))g, which is what we would expect from an hypo-
thetical Leibniz-like behavior of X o Y. In fact, if we consider the geometrical meaning of the
two intermediate terms of X oY, we see that they act as a second-order differential operators,
thus making, globally, X oY a second-order differential operator, instead of a first-order one,
as it should be, a vector field is associated to the first order Cauchy problem (5.2).
Nonetheless, the intermediate terms of X oY are symmetrical w.r.t. the exchange of X
with Y, thus, if we compute Y o X and we subtract it from X oY, we erase these spurious
terms and we remain with a derivation. These considerations justify the following definition.

Def. 5.3.1 (Lie bracket) Given X,Y € X(M), their Lie bracket is the vector field [X,Y] €
X(M) defined by:

[[X,Y]:=XoY-YoX|.

X,Y are said to commute if [X,Y] = 0, the null vector field.
The properties of the Lie bracket of vector fields are listed below.

Theorem 5.3.1 Let X,Y, Z € X(M), f,g € € (M) and a,b € R, then the following properties
hold.

1. [V, X] = —[X,Y].
2. [aX +bY, 2] = a[X, Z] + b[Y, Z] and [Z,aX + bY] = a[Z, X] + b[Z,Y].
3. [X,[V,Z]] + [2,[X.Y]] + [V, [Z,X]] = 0.

4. [fX,9Y] = fglX, Y]+ fX(9)Y —gY(f)X, in particular, of f =1, [X,gY] = g[X, Y]+
X(g9)Y, i.e.

is a derivation on X(M).

5. If X = X"0, and Y = Y*0), are the representations of X and Y in a local coordinate
system, then the local coordinate expression for the Lie bracket [X,Y] is the following:

[X,Y] = (X"0,Y* —Y"0,XF)0y|.

In particular, [0y, 0k] = 0, as a consequence of Schwarz’s theorem.
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Proof.
1. and 2. Direct computation.

3. We have:
(X, [V, Z]|=[X,YZ-2Y]|=XYZ-XZY -YZX + 7YX,
Y,[Z,X]|| =Y, ZX - XZ|=YZX -YXZ - ZXY + XZY,
[Z,[ X, Y]] =12, XY - YX|=ZXY -2YX -XYZ+YXZ

summing the left hand sides and the rightmost hand sides we get 0.

4. We have:

[fX,gY] = fX(gY) —gY(fX) = fX(9)Y + fgXY —gY (/)X —gfY X
= fg(XY =Y X) + fX(9)Y —gY (/)X = fg[X, Y]+ fX(9)Y — gY ()X

I

5. We have:
[X,Y] = [X"0p, V"0
(by linearity)
= X" 0n(Y*0) — YFor(X"0)
(applying the Leibniz rule for the action of the partial derivatives dj, and o)
= X" Y®VO, + XMY 0,0, — YE(OL X0, — YEX 010,
(by Schwarz’s theorem for second order partial derivatives)
= XM0n Yo + XI¥EOZ, — YEXEEZ, — VR0, X0y
= X" (0,Y*)0, — Y* (0, X0y
(by exchanging h with k in the second term)
= X"(0,Y*)o — Y (0, XF) o
— (X"opY* — Yho, x*) 0.
a

Thanks to the properties just proven, the vector space of all vector fields on M endowed

with the Lie bracket, i.e. (X(M),[, ]) is a Lie algebra, as it is clear from the definition that
follows.

Def. 5.3.2 (Lie algebra) A wector space a over a field K is a Lie algebra® if there exists a
binary operation [, | : a — a, called Lie bracket, that satisfies the following properties for all
a,be K and all x,y,z € a:

1. Anti-symmetry: [y, x] = —[z,y]

2. Bilinearity: [ax + by, z] = a[x, z] + bly, z] and [z, ax + by] = a|z, ] + bz, y]

3. Jacoby identify: [z, [y, z]] + [z, [z, y]] + [y, [z, z]] = 0.
By anti-symmetry it follows that [x,z] = 0 for all x € a.

3A lower case fraktur letter is usually used to denote a Lie algebra.
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5.4 The Lie derivative

The Lie derivative allows us to define the concept of derivative w.r.t. a vector field on
a manifold. As we will see in chapter 7, this is not exactly the perfect generalization of the
concept of directional derivative in R™ to abstract manifolds.

As always, let us first analyze the trivial case of M = R™. In this situation the tangent
spaces to each point of M are canonically identified with R", so a vector field X € X(R") is
simply a section of TR™ =~ R?" i.e. a smooth map X : U € R® — R", where U is an open
neighborhood of p € R™ and, as usual, we have made use of the identification T,R" =~ R".
Thus the derivative of another vector field Y € X(R") along an integral curve of X in p can be
simply reduced to the directional derivative of Y in p along the direction given by the tangent
vector X, € R".

However, it is immediate to understand that these considerations do not work anymore in
a non-trivial manifold M. Consider, in fact, the situation depicted in the figure 5.1.

Integral curve of X in p

Figure 5.1: Comparing tangent vectors at different points of an integral curve.

If we want to estimate the rate of change of the vector field Y when we pass from p = Jy(p)
to ¢ = U¢(p), where ¥4(p) = O(t,p), O being the local flux of X, then we should compute the
quantity:

Yo=0,0) — Yo=00(0)

t—0 t ’
but Y, € T, M and Y, € T}, M, thus the comparison Y, — Y, is ill-posed because the two vectors
live in different vector spaces!

The solution to this problem is to take back Y; to the vector space T),M along the integral

curve of X. Notice that

Y_4: M — M
g — U-(q) =p,
so, we clearly have to apply the differential to ©¥_; to move the tangent vectors to the integral
curve of X at ¢ to bring them back to tangent vectors to the integral curve of X at p, i.e.

d(W-t)g: T;M — Ty, (q—pM
Yo = d(0-1)q(Ye),

since Y 0 © is smooth, the function t +— d(¥_¢)y,(p) (Yy,(p)) is @ smooth curve in T), M that
depends smoothly on p. Notice that, in general, d(9¥_;)q(Y;) will be different than Y}, as
depicted in figure 5.2, thus the difference between these two tangent vectors will be different
than the null vector of T, M. We can now formalize the concept of Lie derivative as follows.
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Integral curve of X in p

Figure 5.2: Construction of the Lie derivative of a vector field.

Def. 5.4.1 (Lie derivative of a vector field) The Lie derivative of the vector field Y €
X(M) along the vector field X € X(M) is the linear operator:

£x: X(M) — xX(M)
Y o LyY,

where

d(v- Y, v
£xY(p) := lim (V—)o.p) Yor(p) — Yo

150 ¢ % (dO-)o, ) Vo)) | - (5.3)

t=0
which is called the Lie derivative of Y along X in the point p € M.

It is clear that, if Y is a X-invariant vector field, then £xY = 0, the null vector field.

Formula (5.3) is clearly not easy to handle, which is why mathematicians searched for a
simpler expression, the result is surprising: thanks to the properties of the flux of vector fields,
it can be proven that the Lie derivative is simply the Lie bracket!

Theorem 5.4.1 For all X, Y € X(M), it holds that

| £xY = [X,Y]].

The link between the Lie derivative and bracket shows that this latter hides a geometrical
meaning that we investigate in the following subsection.

It is possible to generalize the concept of Lie derivative also to arbitrary tensor fields.

Def. 5.4.2 (Lie derivatives of scalar functions) Given X € Der(¢®) =~ X(M), the Lie
derivative of a rank-0 tensors, i.e. a scalar fields ¢ € € (M) = T)(M), along X is the linear
operator:

£x: GO(M) — E2(M)
0 — | £xd=X(¢)|
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Let us now pass to 1-forms w € QY (M) = TY(M): given a vector field Y € X(M) = Tg (M),
we can build a scalar field simply by applying w to Y, in fact
w): M — R
p o w(Y)(p):=wp(¥p)
is perfectly defined because wy, € T M and Y, € T, M. In local coordinates, if w = widx’ and
Y =Y70;, with w; : M — R and Y7 : M — R smooth coefficient functions, then
w(Y) = ini,
in fact w(Y) = w;dz*(Y70;) = w;Y7dx'(0;) = wZ-Yjéj- = w; Y%
Let us impose that £x(Y") verifies the Leibniz rule:
L£xw)) = (£xw)Y +w(£xY),

s0 (£xw)Y = Lx(w(Y)) —w(£xY), but we already know how the Lie derivative is defined
for scalar and vector fields, i.e. £x(w(Y)) = X(w(Y)) and £xY = [X, Y], respectively, thus
we get:

(£xw)Y = X(w(Y)) = w([X,Y]).

This simple computation explains the definition of the Lie derivative of a 1-form as follows.

Def. 5.4.3 (Lie derivatives of a 1-form) The Lie derivative of a 1-form w € QY(M) =
Ta (M) along X is the linear operator:
Lx: QY(M) — QY(M)
w —  £xw,
£xw: TM — R
Y o [ Lxw(Y) = X(w(Y) —w([X,Y])].

The general case is given by a tensor field t € T4 (M): if Yi,...,Y, € T¢(M) = TM and
Wiy wp € TY(M) = QY (M), then t(Y1,..., Yy, wi,...,w,) € €°(M) and so:

Lx(t(Yr,....Ywi,...,wp)) = X({t(Y1,..., Y, wi,...,wp)),

thus, to define the Lie derivative of ¢, we must impose, as before, the Leibniz behavior and
solve for £ xt:

Lx(t(Y1,...,.Yywi,...,wp)) = (£xt)(Y1,.... Y, wi, ..., wp)+
+ ([ X, Y1],..., Y, w1, wp) + ..
+t(Y1,..., Y1, [ X, Yy, wi, ... wp)
+t(Y1,..., Yy, £xwi,wa, ..., wp) + ...
+t(Y1,...,. Yy wi, ... ,wp—1, £xwp),
i.e. the Lie derivative of the tensor field ¢ € T} (M) along X € X(M) is:
(£xt)(Y1,...,Yq,wi,...,wp) == X(t(Y1,..., Y, wi,...,wp))
—t([X.],..., Yy wi,...,wp) + ...
—t(Y1, ..., Y1, [X, Yy wi, oo wp)
—t(Y1,..., Yy, £xwi,wa, ..., wp) + ...
—t(

Yl,...,}/q,wl,.. . ,wp,l,.fxwp).

118



5.4.1 Geometrical features of the Lie bracket

Given two vector fields X,Y € X(M), figure 5.3 depicts the following path:

e we start from p € M and we follow the integral curve of X passing through p for an
amount of ‘time’ measured by the value h of the parameter ¢, arriving in ¢;

e we restart from ¢, but now we follow the integral curve of Y passing through ¢ for the
same amount of time h, arriving in 7;

e we restart from r, following the integral curve of X passing through r for an amount of
time —h, arriving in s;

e finally, from s, we follow the integral curve of Y passing through s for an amount of
time —h, arriving in the point 7' that we indicate as ~y(h).

The curve h — ~(h) is smooth and such that v(0) = p.
5 Y,

Figure 5.3: Geometrical interpretation of the Lie bracket.

In [18] we can find the proof of the following result.

Theorem 5.4.2 With the notations above, it holds that:
1. 4'(0) = 0, i.e. at first order, the quadrilateral depicted in figure 5.3 is closed;

2. 4"(0) = 2[X,Y], i.e. at second order, the obstruction to the closure of the quadrilateral
depicted in figure 5.3 is measured by the Lie bracket between X and Y.
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5.4.2 Pushforward of a vector field by a diffeomorphism

The concept of Lie bracket (and so of Lie derivative) can be related to an operation that
relates vector fields between manifolds: the pushforward.

To introduce this operation, consider a smooth map f : M — N and a vector field X
on M, then, for each p € M, df, : T,M — Ty, N, but X, € T, M, thus df,(X,) is a tangent
vector to N at g = f(p).

However, depending on the properties of f, this technique may fail to defines a vector field
Y on N. In fact, if f is not surjective, there is no rule to assign a tangent vector to N at
the points ¢ € N\ f(M). On the other hand, if f is not injective, then there are at least two
distinct points p1, p2 € M such that f(p1) = f(p2) = ¢ € N, in this case Y;}l = dfp, (Xp,) and
}/;)22 := dfp,(Xp,) would be two possibly different tangent vectors to N at the same point g,
thus creating an ambiguity in the assignment for the hypothetical vector field on N that we
would like to create via f and X.

These considerations motivate why we can push a vector field forward to another manifold
by means of a map if and only if the map is a diffeomorphism.

Def. 5.4.4 (Pushforward of a vector field) Let M, N be to manifolds, X € X(M) and
f: M — N a diffeomorphism. We call pushforward induced by f the linear map f, = df
defined as follows:
fe=df - X(M) — X(N)
X — fulX)=df,

where, for all ge N, f(X)(q) = fx(X)q, or df (X)(q) = df (X)g, is defined as follows:

f(X)g = dfp109)(Xp-1(g) or  df(X)q =dfp-1(9)(Xs-1())-

Again, we underline that the need of a diffeomorphism is clear from the definition: thanks to
this, we can bring back any point ¢ € N to a point p = f~!(¢) € M and use the vector field
X e X(M).

If f: M — N is only a smooth map and not a diffeomorphism, then it is impossible to

define the push-forward of vector fields, however, it is still possible to correlate them, in the
sens formalized below.

Def. 5.4.5 (f-related vector fields) Let f: M — N be a smooth function between mani-
folds, X e X(M) and Y € X(N). X andY are f-related if, for all pe M

Yf(p) = dfp(Xp),

i.e. if the tangent vectors determined by Y in the points of N belonging to the range of f
coincide with the tangent vectors determined by the differential map of f applied to the tangent
vectors determined by X in the points of M.

If f is a diffeomorphism, it is easy to see that Y = f,(X) is the only vector field on N f-related
to X, see [10] Proposition 8.19 page 183.

The properties of f-related vector fields are listed in the following result, for the proof
see [10] chapter 8.

Theorem 5.4.3 Let f : M — N be a smooth function between manifolds, X € X(M) and
Y e X(N).
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1. Y is f-related to X if and only if, for every ¢ € €*(N), it holds that
X(¢of)=Y(d)of.

2. If Y1 is f-related to X1 and Ys is f-correlated to Xo, then [Y1,Ya] is f-correlated to
[ X1, X2]. In other words, the Lie bracket is compatible with the f-correlation.

3. If f is a diffeomorphism, then

[f*(Xl)’ f*(X2)] = f*([X17 X2])7
i.e. the pushforward fy : X(M) — X(N) is compatible with the Lie bracket.

These properties are used to solve the following problem: suppose to have a local frame
X1,..., X, for TM, dim(M) = n, is there a set of conditions to guarantee that it exists a
local chart (U, ) of M such that X; =0d;,j=1,...,non U?

A necessary condition can be found very easily: since [0;,0;] = 0 Vi,j = 1,...,n, it is
necessary that [X;, X;] =0V, j =1,...,n. In theorem 5.4.6 we will see that this condition is

also sufficient, but to formulate it properly we have to define a new concept and to introduce
intermediate results.

Def. 5.4.6 (Regular and singular points of a vector field) Let X € X(M), a point p €
M is said to be a reqular point of the vector field X if X, # 0, i.e. if the tangent vector to M
assigned by X in p is not null, otherwise, if X, = 0, p is called a singular point for X.

Theorem 5.4.4 Let X € X(M) and p € M a reqular point for X. Then, it exists a local
chart (U, @) centered in p, i.e. p(p) =0¢€ R"™, such that:

Xy =0,
i.e. in an open neighborhood of p, the tangent vectors assigned by X are all parallel.

The following theorem says that if [ X, Y] = 0, then the quadrilateral depicted in figure 5.3
is closed, not only at the second order, but at every order, i.e. the obstruction to its closure is
totally contained in the Lie bracket.

Theorem 5.4.5 Let X, Y € X(M) with flur © : U :— M and ¥ : V :— M, respectively.
Then, the following assertions are equivalent:

1. [X,Y]=0
2.'Y s X-invariant
3. X is Y-invariant

4. Psod = 9014 as long as one of the two is defined, i.e. the fluzes of X andY commute.

We can now see that the condition of commuting is necessary and sufficient for linearly
independent vector fields X; in X(M) to be written locally as 0;
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Theorem 5.4.6 Let Xy,..., X € X(M) linearly independent vector fields in every point of
M, thus k <n = dim(M) (if k =1 then X, # 0 Vpe M). Then, the following properties are
equivalent:

1. for all p € M it exists a local chart (U, ) centered in p such that: X;|, = 0;, Vj =
...k

2. [Xi,Y;]=0Vi,j=1,....k

5.5 Foliation of a manifold: distributions and the Frobenius
theorem

TO BE WRITTEN...
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Chapter 6

Riemannian and . .
pseudo-Riemannian manifolds

Provenzi)

We start with the introduction of the fundamental concept of Riemannian and pseudo-
Riemannian metric.

6.1 Riemannian and pseudo-Riemannian metrics

A scalar product on a vector space allows us measuring the length of vectors and the angles
between them. In differential geometry, the typical vector spaces that we have to deal with
are the tangent spaces to each point p of a manifold M. If we assign a scalar product to each
tangent space T,,M, i.e.
gp: TryM xT,M — R
(o) o gylv,w)

smoothly w.r.t. changes of p € M, then we fix a so-called Riemannian metric on M.

Since the (real-valued) scalar product is bilinear, symmetric, i.e. g,(v,w) = g,(w,v) for
all v,w € T, M and positive-definite, i.e. g,(v,v) > 0 for all v e T,M, with g,(v,v) = 0 if and
only if v = 0, a Riemannian metric on M is nothing but a positive-definite symmetric tensor
field on T'M of type (0,2), i.e. 2-covariant, as formalized by the definition below.

Def. 6.1.1 (Riemannian metric and manifold) A Riemannian metric on a manifold M
is a positive-definite tensor field g € SY(M). A Riemannian manifold is a couple (M, g), where
g is a Riemannian metric on M.

The norm canonically induced by the scalar product g, on T, M will be denoted with | |,:
[0]? = gp(v,v)  Voe T,M.

More generally, as it is required in relativistic theories, we can reduce the requests on g by
dropping off the property of being positive, but keeping the fundamental property of non-
degeneracy, i.e. g,(v,w) =0 Yw € T, M implies v = 0, i.e. the only vector g,-orthogonal to
all the other vectors of T,,M is the 0 vector of T),M, in this case we get a pseudo-Riemannian
metric.
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Def. 6.1.2 (pseudo-Riemannian metric and manifold) A pseudo-Riemannian metric
on a manifold M is a non-degenerate tensor field g € SY(M). A pseudo-Riemannian manifold
is a couple (M, g), where g is a pseudo-Riemannian metric on M.

An important concept related with pseudo-Riemannian metrics is their signature.

Def. 6.1.3 (Signature) Given a pseudo-Riemannian metric g on a connected manifold M
of dimension n, we say that g has signature (r,s), r + s = n, if the mazimal dimension of a
subspace of T,M where g is:

e positive-definite is r;
e negative-definite is s.

The definition is well-posed for connected manifolds because, by an argument of continuity, it
can be proven that » and s do not depend on the point p € M.

A particularly important case, that of relativistic theories, is that of signature (1,n — 1)
or (n —1,1), in which case one says that g is a Lorentz metric, or that g has a Lorentz
signature.

In a local chart (U, = (z!,...,2")), the metric, being a symmetric tensor field of type
(0,2) can be written as:

g = guda! @ dz", guw € €°(U),

where the matrix of functions (g,,) is symmetric and positive-definite for a Riemannian
metric, and symmetric and of signature (r, s) for a pseudo-Riemannian metric.

Since real symmetric matrices can be diagonalized, g,, can always put in the diagonal
form g, = diag(A1,...,An), where ); is the i-th eigenvalue of g,,.

When M = R", the tangent and cotangent bundle are canonically isomorphic and the
canonical Euclidean metric induce by the Euclidean scalar product is such that g, = g"” = I,
i.e. the identity matrix of dimension n.

Remark about the notation: by symmetry, we could write g = g, dx* © dz”, where ©
is the symmetric product, or, as it is typically done by physicists, g = g, dx"dz”, which is
justified by the fact that the product is symmetric. Finally, many authors use the so-called
Gauss’ notation by writing ds? instead of g, so that we usually find the following notation for
the metric:

ds? = Guvdatdz” |

By definition, the matrix g, is invertible, since, in the Riemannian case, it is positive-definite
and, in the pseudo-Riemannian case, it is non-degenerated.! The inverse is usually denote as
gM¥, so that:

9" gy =0 gung” =4,
Apart from permitting the computation of the scalar product between tangent vectors,
a (pseudo)-Riemannian metric also allows us to canonically identify the tangent and the
cotangent bundle with the help of the following linear isomorphism:
by T,M — TyM p(v): TyM — R
v o by(v), w o hp(v)(w) = gp(v,w).

1To avoid specifying if we are discussing a Riemannian or pseudo-Riemannian metric, we will simply write
(pseudo-)Riemannian metric by meaning that we can refer to both cases.
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Being T'M the disjoint union of T, M when we vary the point p € M, we can define a linear
isomorphism b of bundles b : TM — T*M simply by requiring that b]Tp u =D0p forallpe M.
Let us search for a local expression of b: let g = g, dot @dz” and let X = X h oy, be a local
section of T'M, i.e. a local vector field, then the application of b to X must give a local section
of T*M, i.e. a local covector field, or a 1-form on M that will be written as b(X) = a;jdz? in
local coordinates.
By definition of b, we have:

b(X)(0k) = 9(X, 0k) = (guvda* @ dz")(X"0p, o),

but dz* ® dz¥ is a symmetric bilinear form, so we can move the coefficients X" outside and
write:

b(X) (k) = g X" (dx" ® dx¥) (O, O).

Now, by definition of tensor product of two linear forms (cfr. (4.1)), we have that (dz" ®
daz”)(0n, Ok) = dat(0p)da” (0%) = 6%,6",, so:

b(X)(Ok) = g X"0" 6% = g X"

However, we also have:

b(X)(0r) = ajda? () = ey, = ay,
thus ag, = gnr X", so, finally:

b(X"0p) = g Xda | .

Since the basis are the (fixed) standard basis of the tangent ant the cotangent bundle, it is
custom to omit them and write simply the components, i.e.

(XM = g X" = gen X",

by symmetry.
In conclusion, we can write:

b: TM = T*M
(XM — (X" = (ar) = gen X"

This formula explains why it is custom to say that b is the isomorphism which transforms the
components (X") of a local vector field to the components (az,) of a local 1-form by ‘lowering
the indices with the metric tensor’. The symbol b (‘flat’ or ‘bemolle’) is chosen because
in music it lowers in pitch by one semitone.

Analogously, the inverse isomorphism b=t = : T*M —> TM act like this:

booT*M s TM
(ar) — f#ar) = (X")g" ay.

It is custom to say that f is the isomorphism which transforms the components (ay) of a
local 1-form to the components (X") of a vector field by ‘raising the indices by using
the inverse metric tensor’, since (X}, = ¢"*ay). Again, the symbol # (‘sharp’ or ‘diesis’) is
because in music it highers in pitch by one semitone.

Summarizing, in the presence of a (pseudo-)Riemannian metric we can transform vec-
tor fields to 1-forms and vice-versa, simply by applying the metric tensor and its inverse,
respectively.
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6.1.1 Noticeable example 1: the gradient of a scalar function

Let us apply the isomorphism § : T*M — T'M to the differential of a smooth scalar function
¢ e € (M). We know that d¢ is a section of T*M, i.e. a 1-form, so, if we apply § to d¢, we
obtain a vector field, which turns out to be the generalization of the gradient to manifolds.

Def. 6.1.4 (Gradient of a scalar function) Given a scalar function ¢ € €* (M), its gra-
dient grad(¢) € X(M) is the vector field defined by:

grad(¢) := #(dg).

In local coordinates, if d¢ = (0;¢) dz?, then the action of f on the components is as follows:
8(0;0) = g (0;¢), so that . .
grad(¢) = g (0;¢) (0;x"),

coherently with the fact that grad(¢) is a tangent vector, so it must be a linear combination of
the 0;’s. This shows that, for generic manifolds, the presence of a (pseudo-)Riemannian
metric is fundamental in order to define the gradient of a scalar function.
This fact is hidden for the trivial case of M = R" because, as already remarked, in that
situation g% = g;; = I,, and so grad(¢) = (%, cey %).
6.1.2 Noticeable example 2: symplectic manifolds, the Hamiltonian iso-
morphism and the Poisson bracket

Riemannian, or pseudo-Riemannian, metrics and manifolds are built via symmetric positive-
definite, or non-degenerated, tensor fields of type (0,2). Another remarkable construction can
be obtained by considering anti-symmetric non-degenerated tensor fields of type (0, 2).

Def. 6.1.5 (Simplectic form and manifold) A closed non-degenerated 2-form w = w;jdz'dz’
is called a simplectic form on M and a couple (M,w) is said to be a simplectic manifold.

Also for simplectic manifold we can identify the tangent and the cotangent bundles with the
analogous of the isomorphism f that, in this setting, is called the Hamiltonian isomorphism:

H: T*M = TM
(oj) +— H(aj) = Xt Xt =wijaj.

We can repeat the same construction as before with f to obtain a vector field from the
differential of a scalar function ¢ € € (M) but, this time, by using H instead of §. What we
obtain is H(d¢) € X(M), which is called Hamiltonian vector field of the scalar function ¢.

Since a 2-form w takes as input two vector fields, it is interesting to see what happens
if we consider the differential of two scalar functions ¢, € € (M), the Hamiltonian vector
fields associated to them, i.e. H(d¢), H(dv), and then we apply w. The result is the so-called
Poisson bracket:

{00} = w(H(dg), H(dy))].

¢ (M) becomes a Lie algebra w.r.t. the Poisson bracket (just as the set of tangent vector
fields on M becomes a Lie algebra w.r.t. the Lie bracket).
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6.2 Existence of Riemannian metrics
We can now prove the existence of Riemannian metrics.
Theorem 6.2.1 FEvery smooth manifold M admits a Riemannian metric.

Proof. The idea is quite simple: we start with a local Riemannian metric and then we extend
it to the whole manifold thanks to a partition of the unity. Let us discuss the technical details.

Consider an atlas A = {(Uq, ¢a)} of M and a partition of the unity {p,} subordinated to
the covering {U,} (so that each p, is identically 0 outside U,).

On U, it is very easy to induce a metric from the Euclidean metric of R”. To see how,
consider a chart function ¢, : Uy — ¢a(Uy) € R”, if ¢ = (z!,...,2"), then we know that
the vector fields (01, ..., 0y) provide a local frame for T'M ‘Ua' Given p € U, and two tangent
vectors X, Y, e T,M, X, = Xi61-|p, Y, = Yj6j|p, we define a scalar product between 0;|, and
djl,, by means of the Euclidean product (, ) of R™ as follows:

9p (il s 0j1,) := {paldil,), paldjl,)) = (eirej) = bij,

recalling that é’i|p = d«p;1|p (e;), e; being the i-th element of the canonical basis of R™. The
extension to any couple X,,,Y), of tangent vectors in T),M is performed by linearity:

gy (X, V) i= XY g5 (ail,,, 05],) = X'V765; = Y XY
1=1

g, is then a positive-definite bilinear form for all p € M and for all a. Now we glue together
these scalar products to build a tensor field g € T9(M) by defining:

gp =Y. pa(p)gl,  VpeM.

The definition is well-posed because the sum is actually finite since, for all p € M, there is only
a finite number of p,(p) different from 0. Plus, p,(p) = 0 for all p € M and all «, thus the
coefficients pq(p) do not modify the positive-definiteness of the forms g, and then g results in
a positive-definite symmetric tensor field, i.e. a Riemannian metric on M. O

Remark: the proof just developed works only to prove the existence of positive-
definite (or negative-definite) Riemannian metrics on M. It does not work if we want
to build a pseudo-Riemannian metric on M with signature (r, s). In fact, even if the g% have
the same signature, the g resulting from the sum may not have the same signature and could
even be degenerated.

6.3 Riemannian metrics and changes of coordinates

If (U= (z',...,2") and (U, = (&',...,2")) are two local charts, then in U n U the
transition functions allow us to express Z as a function of z and vice-versa. We already know
that the differentials of & and that of x are related by the Jacobian matrix of the function
T =Z(x):

~h
O i (6.1)

di = == dx'.
v oxt
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If we write the Riemannian metric g in terms of the £ and x coordinates, we have:
g = ghkdih ®di* = gijdxi ® da?,

where the matrices (gnx) and (gi;) represent the metric in the local coordinate systems
#=(z',...,") and = = (z',...,2"), respectively.

By replacing (6.1) in the expression of g we obtain:

- v . [oxh . ok . oh ok . .
9=ghkd$h®dﬂ3k=ghk( x.d$7’>®< - d$]> = <£ﬂghk6z]> dz' ® da’,

oxt 0:171 bilinear_ity of ®

which, compared with g = gijd:ci ® da? gives:

ozh _ oxk

gij = ﬁghkz ﬁ

If we use the matrix notation we can re-write this relationship as follows:

)= (2) aw (2).
o

where ( ax) is the Jacobian matrix of the transition function Z(z). This is coherent with the
well-known linear algebra result which says that the matrices associated to symmetric bilinear
forms transform, after a change of basis, by multiplication with the change of basis matrix on
the right and its transposed (not its inverse) on the left.

This fact has an important consequence: the determinant of the matrices associated to the
metric ¢ in different coordinate systems are, in general, different, in fact:

det(gi;) = det(gnr) <det @))2

i.e. they are related by the square of determinant of the Jacobian matrix of the transition
function Z(x). The information that we can assure is that the sign of det(g;;) and det(gnx) is
the same.
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Chapter 7

Connections on vector bundles @ auao

Provenzi)

Connections on manifolds are also called, in particular in the Physics literature, covariant
derivatives. To motivate the exigence of introducing these objects let us start by showing
a problem related with the Lie derivative that can be underlined already in the trivial case
when the manifold M is an open set U in R"™.

7.1 Motivation

Consider two vector fields X,Y € X(U), then, since all the tangent spaces in every point p € U
can be canonically identified with R", i.e. T,U =~ T,R" =~ R", X and Y can be simply thought
as vector-valued functions defined on U: X,Y : U < R" — R"™.

Thanks to this identification, the derivative of Y along X in every point p € U can be
identified with the directional derivative of Y : U — R™ in the direction defined by the vector
X(p) = Xp, we write:

Y(p+eX|)-Y,

8XY|p = DXPY(p) = ;1_{% - y

having used definition (B.3).
Let us examine the properties of dx: for all X1, X5,Y7,Y5€ X(U), a,be R and f € €°(U),

we have
1. Ox(aY1 + bY3) = adxY1 + box Yo
2. dx(fY) =X(f)Y + foxY
3. Ouxi+bx,Y = adx, Y + bix,Y

4. 0pxY = fOxY.

Property 1. follows simply from the linearity of the directional derivative. To understand
property 2. notice that fY : U — R", p — f(p)Y) is the product of two functions, one
real-valued the other vector-valued, defined on U, thus the Leibnitz rule must be applied
and we get dx (fY)(p) = Dx, f(p)Yp + f(p)Dx,Y (p), but Dx,Y (p) = 0xY]|, and, regarding
the first term, we must recall that X € Der(¢™(U)), i.e. X can be interpreted also as a
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derivation whose action on the elements of ¥ (U) is exactly the directional derivative, i.e.
Xp(f) = Dx, f(p)- So, ox(fY)(p) = Xp(f)Yp + f(p) OxY|, for all pe U, i.e. property 2.

To resume: 1. & 2. = 0x(Y) is R-linear but not ¢*(U)-linear w.r.t. Y.

Property 3. is an immediate consequences of the linearity of the directional derivative
w.r.t. the directional vector, cfr. formula (B.10). To understand property 4. notice that
Irx(Y)l, = Dix)p)(Y)(p) = Dypyx, Y (p), but f(p) € R and X, € R, so the evaluation of
fX in p simply gives a scalar multiple of the vector X, and thus the property follows again
from formula (B.10).

To resume: 3. & 4. = 0x(Y) is both R-linear and ¢*(U)-linear w.r.t. X.

It is crucial to stress that the other operator that we have defined that implements the
derivative of a vector field w.r.t. another one, i.e. the Lie derivative £xY, does not possesses
property 4., i.e. it is not ¥*(U)-linear, in fact, thanks to anti-symmetry and Leibniz rule:

LixY = [fX,Y] = -[Y, fX] = £y fX = =Y (/)X — fLyX = =Y (/)X + fLxY,

thus .ffxy =-Y(/ )X + f£xY, ie. £ny # fL£xY.

This shows that the Lie derivative, in spite of being a fundamental object that allows
determining conditions to show the existence of integral submanifolds, cannot be considered
as the perfect analogue of the directional derivative of a function defined on an open
subset of R"™.

Another limitation related to the Lie derivative is that it allows to compute the rate of
variation of an object w.r.t. a vector field, only when this object is build from the tangent
bundle to a manifold: in fact, vector and covector fields and tensors on a manifold are always
built by starting from the tangent bundle. Thus, we cannot avoid the problem underlined
above also when we take the Lie derivative of general tensors on a manifold.

The aim of connections (actually the linear ones) is solve both problems at once, i.e. to define
a R and €% (U)- linear derivative along a vector field on M of the section of a general vector
bundle E on M, not only of the tangent bundle T'M.

7.2 Failed approach towards the generalization of the Lie deriva-
tive

It is highly instructive to discuss an approach that goes in the direction that we want, but
that fails for one reason that will be underlined. The information learned from this failure
will allow us understanding the correct path to follow.

Consider a generic vector bundle 7 : E — M of rank r on a manifold M, let M € X(M)
and s : U — E be a section of F¥ on an open set U < M. As stressed when we have defined
the Lie derivative, given the integral curve v of X passing through a given point p € U, it does
not make sense to compute the derivative of s along X in p as follows

L s(1) — s(5(0)
t—0 t

simply because s((t)) € E ) and s(7(0)) € E, (), which are two different vector spaces!
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In the trivial case M = R" all the fibers are canonically isomorphic to each other and the
can perform the difference of vectors belonging to different fibers, but this is not possible if M
is not trivial.

Vector bundles are not trivial, but they are always locally trivial, so a more refined idea
could be to use local triviality to try to extend our definition of derivative. Let us see how long
we can go by using this feature. We know that it exists an open cover {U;} with sets U; small
enough such that E;; is trivial, i.e. there are diffeomorphisms x; : El;, S U; x R™.If we
compose the section with the local trivializations x; as in the following commutative diagram

: U; x R"

E|Ui .
'\ 41‘03

UﬁUi

then the advantage is that we obtain 3;(p) = (p, 5}(p), ..., 3! (p)) ¥p € U, where each 3¥(p) :
U n U; — R is a simple smooth scalar function, for all k = 1,...,r, and so we can apply any
vector field X € X(M) (interpreted as a derivation of (U n Uj;)) to these functions.

This seems to suggest that we could define the derivative X(s) of the section s, on
a small open neighborhood U; of p, by deriving the functions éf’ as follows: X (s)\Ui x
(X(5}),...,X(87)), we use the symbol ~ because we will see that this definition is not entirely
correct. The problem with this definition is that, even if it is perfectly correct on U;, we must
assure its coherence when we consider another open cover {U;} and local trivializations x; on
the intersections U n (U; n U;) (that we will denote simply as U; n U; to avoid a cumbersome

notation). The following commutative diagram shows how the situation looks in this case.

X
(Ui A U;) x R”
J

"

The two Cartesian products (U; nU;) x R" written on the left and on the right are characterized
by different copies of R" that host different coordinates of §; and 5;. They are related by the
transition functions 7;; : U; n U; — GL(r,R) and, for all p € U; n U}, 1;;(p) is an invertible
matrix that represents the change of coordinates from the two copies of R", explicitly:

%
i

(UZ‘XU]‘)XRT< Y s

Uiﬁ.Uj

5H(p) 5(p)
Sip)=|p | = | pnij(p) | ,
5;(p) 8%(p)
Le. 8 =ny8y, k=1,...r.
The components (X (5}),..., X (7)) represent the local expressions of a section of X (s)
on E if, on U; n Uj, they are related by the transition functions 7;; like this:
X(3)) X(5)
: = 1ij : )
X(s7) X(53)
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ie. X(8F) = niX(3h), k=1,...,r.

Let us see if this is really what happens by applying X (thought as a derivation of
¢ (U; n U;)) on both sides of the equation §F = m-jéf. Thanks to the Leibniz-like behavior
of X we find:

X(3F) =ni X3 + X(mij)sk,  vek=1,....r,

this is different from the equation X (5¥) = 77in(§§) that we expected because of the spurious
term given by the derivatives of the transition functions X(nij)fé?.

This shows that the components X (Sf) define a section representing the derivative of the
section s along the vector field X if and only if X (1;;) = 0 for all ¢, j. However, this, in general,
is not true and so this approach defines an non-intrinsic object that depends on the local
trivialization used. The only situation in which this construction works it when the transition
functions 7;; are locally constant, so that their derivatives are null, in this case we talk about
a flat vector bundle.

7.3 Connections on vector bundles
In the previous we have shown that:

1. the naive definition of the derivative of the section of a vector bundle w.r.t. a vector field
as the limit of the incremental ratio makes no sense because we are comparing vectors
belonging to different vector spaces;

2. a finer use of the local trivialization of the vector bundle leads us to an object that
makes sense, but that cannot be considered as the derivative of a section because, in
general, it depends on the trivialization itself.

The conclusion that we reach is that, unlike the Lie derivative, there is no intrinsic
way to define the derivative of the section of a vector bundle by using only the
elements already present in the vector bundle structure. We are forced to introduce
an external structure, which is provided by the connection, as we define below (we recall
that T'(E) is the set of all sections of the vector bundle 7 : E — M).

Def. 7.3.1 (Connection) A connection on a vector bundle m: E — M is a function

V: X(M)xT(E) — T(F)
(X,s) — V(X,s)=Vxs,

that transforms the couple given by a vector field X on M and a section s of the bundle (E, M, )
in another section Vxs of the same bundle, in such a way that, for all X, X1, X € X(M),
fif1, fa € €°(M), s,s1,82 € T'(E) and ki, ke € R, the following properties are satisfied:

1. €*(M)-linearity w.r.t. the vector field: ‘Vf1X1+f2X25 = fiVx, s+ f2VX25‘

2. R-linearity w.r.t. the section: ’VX(klsl + kas2) = k1Vxs) + kQVXSQ‘

3. Leibniz property: ‘Vx(fs) = fVxs+ X(f)s‘ .
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These properties are obviously inspired by those of the directional derivative of a function
defined on an open set of R™ that we have discussed in section 7.1 and are imposed by hand to
make Vxs the correct generalization of the directional derivative in the trivial case.

Def. 7.3.2 (Covariant derivative) The section Vxs is the covariant derivative of the sec-
tion s along the vector field X.

There is a special case that deserves a particular attention and a dedicated definition.

Def. 7.3.3 (Linear connection) A connection on the tangent bundle TM to a manifold M
is called a linear connection on M.

Having defined a connection does not guarantee that such an object exists. In the second
special case of a globally trivial vector bundle of rank r, i.e. F = M x R", a connection is
easily seen to exist. In fact, a section s € I'(M x R") can only have this form

s: M — MxR"
p — s(p) = (p,(s*(p),-...s" (D)),

where st € €°(M) for all i = 1,...,r. If X € X(M), then the canonical section define as

follows
Vxs: M — MxR"

p — s(p)=(p,(Xs")(p),...,(X5")(p))),

can be verified to be a covariant derivative of s along X (by direct verification of the defining
properties), so Vx : X(M) x T'(M x R") - T'(M x R"), (X, s) — Vxs is a connection on the
trivial bundle (M x R", M, 7).

The following results shows, via a constructive proof that makes use of the partition of

unity!, that at least a connection (actually infinite, as we will see later) exist for all vector
bundle.

Theorem 7.3.1 Fvery vector bundle m: E — M admits a connection.

Proof. We have just seen that, for a trivial bundle, a connection can be defined as above.
We can always find an open cover (U,) of M that corresponds to a local trivialization of the
bundle, i.e. such that the functions x,, F |Ua X2, U, x R”, are diffeomorphisms.

On U, x R" there is a canonical connection Vg( as previously defined. Then, the function
Xao allows us to define a connection V%, which depends on the local trivialization, on E| U

To define V* we must declare what is the covariant derivative of a section s of El; : the
first thing we need to do is to compose x, with s to obtain a section of the trivial bundle
U, x R", then we can apply Vg( to this section, obtaining another section of U, x R", by
applying x, ! we take this section back to FE)| v, - Thus:

Vs = xa (Vi(xa©9)),

We notice that this proof cannot be used to guarantee the existence of connections on complex or algebraic
manifolds because they do not possess a partition of unity. In fact, there is no alternative proof for those cases,
i.e. the theorem is not valid, in general, for vector bundles of complex or algebraic manifolds.
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the properties of a connection are easily proven to be satisfied by V& thanks to the fact that
Vg( is a connection.

The idea to extend the connection V% from the restriction of £ on U, to all E consists in
smoothly extend it to zero outside U, and then to smoothly glue together all the V§ as U,
varies in the cover. This can be achieved thanks to a partition of the unity (pg) subordlnated
to the cover (Uy). We recall that each p, is a smooth function defined on M whose support is
contained in Uy, i.e. po =0 on M\U,, and that the functions p, sum up to 1.

Thanks to this, for all (global) section s of E on M, we can define its covariant derivative
Vxs along X as follows:

Vxs =Y pa Vxly, (slp,),  with  pa Vx|y = paVi |-
«

It is customary to write the connection associated to the covariant derivative V xs simply as
Vx = Z ﬂavﬁ?-

o
By direct computation, it can be proven that Vx just defined verifies all the properties of
a connection. Here, we just verify the Leibniz property. For all f € € (M) we have that

f5) = 2, pa V%S slu,)
( a% is a connection)
= Y palf Vilsly,) + X (F) sly,)
(;, X(f): independents of «)
= Lo Visl) + XU X o sl

(pa S‘Ua = Pas)
= fVxs+X(f) D pas = fVxs+X(f)sD pa

(Zpa = 1)
= fVxs+ X(f)s.

Thus, the Leibniz property holds, the others are even simpler to check. O

As expected from the considerations at the beginning of this chapter, the Lie derivative

£ X(M)x X(M) — X(M)
(X,Y) —  £xY =[X.Y],

is not a connection on T'M. In fact, £;x # f£xY for f e €*(M). Thus, there is a sort
of trade-off between Lie derivative and connection w.r.t. their properties: the Lie derivative is
intrinsically defined on T'M but it fails to be % *-linear, while a connection is not intrinsically
defined on a vector bundle (neither on T'M) but it has that property. So, there remains a
degree of freedom in the choice of a connection. This ambiguity can be eliminated in special
cases, e.g. when the vector bundle has a Riemannian structure, as we will see later with the
concept of Levi-Civita connection.
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It is useful to single out two noticeable properties of a connection V x:

e for all section s of E on M and all point p € M, Vxs(p) depends on the behavior of the
section s in a neighborhood of p;

e instead, Vxs(p) depends only on the value of X in p, i.e. on X, € T,M, the other
tangent vectors in a neighborhood of p assigned by X are totally irrelevant.

Hence, the behavior of Vxs(p) is local w.r.t. s and point-wise w.r.t. X. These
features of Vx are rigorously stated in the following proposition.

Theorem 7.3.2 (Structural properties of Vxs) Let 7 : E — M be a vector bundle and
V a connection on E.

1. If X,X € X(M) are such that X, = Xp and there exists an open neighborhood U of p
such that 5,5 € T'(M) are coincident on U, i.e. s|; = 3|, then

Vxs(p) = V3(p).

2. For all open set U < M there exists only one connection on E|;
VU (M) xT'(U) — T(U)
(X,s) — VY(X,s),
such that, for allpe U, X € X(M) and s € T'(M), we have:
V&, () = Vxs(p).

3. If, for all X € X(M) and s,5 € T'(M) it exists a path y : (—&,e) — M such that v(0) = p,
7' (0) = X, and soy = 507, then Vxs(p) = Vx3(p).

The third property is a refinement of the first one: for two covariant derivatives to coincide in
a point is it enough that they coincide on a ‘small’ arc of path passing through that point and
having the vector X, as tangent vector in p.

Proof. TO BE WRITTEN...Lezione 17, 1h02m. O

7.3.1 Expression of a connection in local coordinates: the Christoffel sym-
bols

Let (U, ¢) be a local chart of M that trivializes F, i.e. such that E|; — U x R".
X

By applying the inverse of x to the couple given by a generic point p € U and an arbitrary
vector of the canonical basis of R”, i.e. (p,(0,...,0,1,0,...,0)), where the value 1 is in the
k-th position, k = 1,...,7, we determine a local basis for E|;, i.e. r local sections defined on
U, that we denote with (eq,...,e,) € T'(U) for simplicity,

p — X_l(p’(07"'?071707""0))7
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such that (e1(p),...,er(p)) is a basis of the fiber E,, for all pe U.

Moreover, we know that the local chart (U, ) determines a local basis of TM given by
(01y...,0n), n =dim(M).

Let us then consider 0;, j = 1,...,n, as the vector field w.r.t. we want to define a
connection and ep, h = 1,...,r, as the section of £ on which this connection acts. Then V. ey,
is again a section of E, by definition of connection. Hence, there must be suitable functions
I‘é?h € €*°(U) such that:

Voen=Ther|, j=1....n hk=1,.r (7.1)

notice that three indices are essential: k is the linear combination index and j, h take into
account that the connection is defined w.r.t. the vector field ¢; and it is applied on the basis
section ey,.

Def. 7.3.4 (Connection coefficients - Christoffel symbols) The function F;‘?h e¢*(U)
appearing in eq. (7.1) are called (local) connection coefficients. In the special case E = TM,
r =n and the connection coefficients are called Christoffel symbols.

Def. 7.3.5 (Flat connections) A connection is said to be flat if all its coefficients are
identically 0.

Let us verify that the connection coefficients determine completely the connection. For
any X € X(M) and s € I'(U) we have:

X =X99; and s=s"ep, X7, she € (U),
thus, by definition of connection and by using its properties,
Vxs = Vx(sheh) = X(sh)eh + s"Vxen,

Vxen = Vxigen = vaajeh = Xjfé?hek, thus, by renaming the summation index X (s")ej, =
X (sF)ey., we get

Vxs = X(s")ep + shXjF;?hek = (X(s") + thsth)ek.

In the literature sometimes we write simply s = (s*) avoiding the specification of the basis
sections e. In this case we get the much easier formula to remember:

Vx(sF) = X(s%) + F?hsth , (7.2)

in fact, it says that the covariant derivative is composed by two term:

e the first term is simply given by the action of X, interpreted as a derivation, applied on
sk (the equivalent of the directional derivative in R");

e the additional term, i.e. the correction w.r.t. the classical directional derivative, is
provided by a linear combination in which the connection coefficients appear. Thus, if
the connection is trivial (i.e. its coefficients are all 0), then the covariant derivative and
the directional derivative coincide.
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7.3.2 Parallel sections

We now want to discuss the very important concept of parallel sections. In order to examine
this, we need to discuss the properties of covariant derivatives in relation with curves. We
begin with a definition.

Def. 7.3.6 (Section along a curve) Let m : E — M be a vector bundle over M and let
v: ISR — M be a path in M. A section of E along v is a € function s : I — E such that
Vtel, S(t) € E’y(t)'

Such a section is said to be extendable to a local section s € I'(E,U) if there exist an open
neighborhood U of the image of v and a section s € T'(E,U) such that s(t) = §(y(t)) Vte I.

Notation: the set of sections of E along « forms a vector space, w.r.t. the point-wise linear
operations, that is denoted by I'(E, ).

Theorem 7.3.3 Let v: I — M be a path in M and V a connection on E. Then, it exists a
unique operator D : T'(E,~v) — I'(E,~) such that:

1. D is R-linear, i.e.

D(ays1 + s282) = a1 D(s1) + a2 D(s2), Vai,a2 €R, s1,s9 € T'(E, 7).

2. D satisfies the Leibniz rule:

D(fs) = f's+ fD(s), Vfee€™ ).

3. If se T'(E,~) is extendable and 5 is an extension of s to an open neighborhood of the
image of v, then we have:

See [1] for the proof.

Def. 7.3.7 (Covariant derivative along a path) The operator D : T'(E,~) — T'(E,~) is
called the covariant derivative along the path ~v. Ds is the covariant derivative of s along the
tangent vectors to the path ~y.

Now we have all the information to introduce the concept of parallel section.

Def. 7.3.8 (Parallel section) Let V be a connection on the vector bundle E over M and
let v: 1 — M be a path in M. A section s € T'(E,~) is said to be parallel (along v) if Ds = 0.

Instinctively, the request Ds = 0 could leads us to think that the section s remains ‘constant’
along v, but this is not the case and the word parallel is actually more adequate, let us see
why.

As t runs in I, the corresponding point in M over the image of the path v changes, thus
when we apply the section s to ¢ we obtain a sequence of vectors belonging to the fibers £, ),
tel.

Now, since D measures the rate of variation of the section s along -, the fact that Ds =0
is naturally interpreted as the fact that the vectors s(t) are as similar as possible as we move
to one point to another of the image of v in M.
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Since these vectors belong to different fibers and the fibers are not canonically isomorphic
vector spaces, being as similar as possible cannot be translated to being constant, i.e. the
same vector. It is thus more correct to use the word ‘parallel’ instead of constant.

Let us use eq. (7.2), i.e. Vx(s¥) = X(s*) + F;?hsth, to further analyze the consequences
of the condition Ds = 0. Thanks to property 3. of theorem 7.3.3, the action of X in ~(¢) is
simply the derivative of the path v in ¢, i.e. X ) =1/(t), thus:

k k yvih ds" k dry? h
X(S )+thX]S =0 — E(’y(f))—i—ljjhﬁ(t)s =0 sz 1,...,7",

where %(’y(t)) replaces X (s*) because this is the derivation of the function s* in the direction
given by X, but X is tangent to v in every point. But, thanks to the point 6. of the flux
theorem 5.2.3, computing the derivative of a s* in the tangent direction to 7 is the same as
evaluating s* on the points belonging to the curve v(¢) and then computing the derivative
w.r.t. the parameter t.

Thanks to these identifications, we have written explicitly eq. (7.2) as a system of ordinary
differential equations, that, as we recall in the next theorem, always admits a unique solution.

Theorem 7.3.4 (3! of solutions of a system of ODE) Let I < R be an interval, k > 1,
toel, zo,...,x_1 €R?, and A: I x (R")* - R™ a €% function, linear w.r.t. the variables
in (R™)*. Then, the Cauchy problem

s (1) = A(t,s(t), ..., L2 (1))

admits a unique €% solution s : I — R".

Thanks to this result, given any point p € M, we can extend any vector v € Ej, keeping it
‘parallel to itself’; along a curve passing through p, as depicted in figure 7.3.2.

M

Figure 7.1: A graphic representation of the concept of parallel transport of a vector along a
curve thanks to the presence of a connection.
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Theorem 7.3.5 Let m: E — M a vector bundle on M, V a connection on E and 7 : [a,b] —
M a path in M. If p = ~(a), then, for all v € E, there exists a unique parallel section
V el (E,v) such that V(a) = v.

Proof. The only slightly technical part of the proof consists in the fact that the curve, in general,
is not contained in a chart domain. This problem can be fixed by using the compactness of
k
the interval [a, b]: the fact that it exists a finite open covering of [a,b] = [ [s;,t;] implies
j=1

that there is a finite number of charts (Uy, 1), ..., (U, ¢k), chosen from a local trivialization
of F, that cover the image of 7.

Modulo a suitable choice of the covering, we can also suppose that v([s;,t;]) < v([a, b]) nUj,
forj=1,... k.

Then, the existence and uniqueness theorem for solutions of a system of ODE quoted
before implies that it exists a unique parallel section V; along 7|, ;1 such that Vi(a) = v.

Thanks again to compactness, we have the freedom to chose the covering of [a, b] as follows:
a=351 <8 <t] <83<ty<-<tp_1 <ty =>,ie. the sub-intervals that cover [a,b] are
partially overlapping (see the picture below).

v(b)

(a) =7(s1)

This trick serves our purposes because, when we solve the system of ODEs in the second open
neighborhood, we obtain a unique parallel section V3 along 7|, ;.1 such that Va(t1) = Vi(t1).

By uniqueness, V] and V5 must be equal on [se,t1], so, by gluing together V7 and V3, we
get a unique parallel section along 7|[517t2].

Following this procedure until ¢ = b, we obtain a unique parallel section V' along v such
that V(a) = v. O

This result allows us the possibility to define the extremely useful concept of parallel
transport.

Def. 7.3.9 (Parallel transport) Let m: E — M a vector bundle on M, V a connection on
E and v :[0,1] > M a path in M with v(0) = pg and v(1) = p;.

Given v € Ep,, the only section V € I'(E, ) parallel along v and such that V(0) = v € Ep,
is called the parallel extension of v along ~.

The parallel transport along v is the function:

vt Epy = Ep,

defined by Y(v) = V(1), V e I'(E, ) being the parallel extension of v € E.
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The picture above shows the action of the parallel transport.
The most important property of the parallel transport is expressed by the following result.

Theorem 7.3.6 The parallel transport along v is a linear isomorphism between the vector
spaces Ep, and E,, , the inverse of 4 being the parallel transport along vy—, where y—(t) := y(1—t)
is the path that describes that same curve as v, but traveled in reverse, so: 7~' = 7_.

Proof. We have seen that the condition Dv = 0, which characterizes parallel sections to a
curve, is locally equivalent to:

A

— +T5,(VIYsh =0 VE=1,....r

which is a linear system of ODEs. A classical results of the theory of ODEs guarantees that
linearity implies that the solution V' (¢) depends linearly on the initial conditions. This fact is
translated in the linearity of the function 7 : E,, — E,,.

Let us now prove that 37! = 7_. We denote with D~ the covariant derivative along ~_.
For all section V e T'(E,~), we set V—(t) := V(1 — t) in such a way that V~ e T'(E,~y-).

Since v (t) =+ (1 —1¢)- (1 —t) = —/(1 —t), a direct calculation gives D; V~ = —D;_,V.
Since the only difference between the two covariant derivatives is the sign, it follows that V'~
is parallel along v_ if and only if V' is parallel along «. But then, if V' is the parallel extension
of v € Ep, along ~, then V™ is the parallel extension of V(1) = §(v) € E,, along ~_.

This implies that 7_ = 7!, so 4 is an isomorphism. O

The parallel transport is defined also along piece-wise smooth paths: it is enough to compose

the parallel transport along the smooth pieces and use the final value of a piece as the initial
condition for the following piece.

140



7.4 Relationship between connections and differential forms

It is possible to give an alternative definition of a connection, which is more suitable to be
used than the previous definition in certain situations. This alternative formulation reveal a
strong link between connections and differential forms.

We recall from def. 4.4.3 that a k-form on a manifold M is a section of A¥(T*M), i.e. a
smooth assignment of an alternating tensor on T*M and that the vector space of all k-forms
on M is written either A¥(M) or QF(M).

Consider now a vector bundle 7 : E — M.

Def. 7.4.1 A k-form with values in E is a section of A*(T*M)® E. The vector space of all
k-forms with values in E is denoted with either A*(E) or QF(E).

In local coordinates, the general element of AF(E) can be written as

Zwi ®8i, (73)

where s; are sections of E, i.e. elements of A°(E) =T'(E, M), while w; € A*(M) are k-forms
on M.

With these definitions and notations, an alternative definition of connection on E can be
given as follows.

Def. 7.4.2 (Alternative definition of connection) A connection on E is a R-linear op-
erator
V:AYE)=T(E,M) - AY(E)

such that

(V(fs) = fVs+df@s| ¥fe® (M), VseT(E,M), (7.4)

The request expressed in (7.4) is the equivalent of the Leibniz rule in the present context.
The first term of (7.4), i.e. fVs is immediate to understand: it is the function f not derived
multiplied by the derivative of s, which is provided by V itself.

To comprehend the reason underlying the second term, i.e. df ® s, notice that we expect s
not derived ‘multiplied by a derivative of f’, and this derivative must provide a 1-form on M.
Thanks to (7.3) we see that the only intrinsic way to achieve this is by taking as multiplication
the tensor product and as ‘derivative’ of f : M — R its differential, which, as we know, is a
1-form on M.

At first glance, this definition of connection, apart the request of a Leibniz-like behavior
just discussed, seems quite unrelated to the original definition 7.3.1 because no vector field
enters into play here. To understand the link between the two definitions we must consider
the following pairing (which acts on E-values 1-forms and vector fields on M and gives back
sections of E):

oy ANE)xX(M) — AYE)=T(E,M)
(aEZwi®Si7X) — <047X>::Zwi(X)3i7

perfectly well-defined because w; and X are dual objects, one belongs to the tangent and the
other to the cotangent space to M, so that w;(X) e € (M).
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The relationship between Vx and V is then:
Vxs=(Vs, X). (7.5)

Once establish this, let us see how the novel definition of connection can be written in local
coordinates. Let (eq,...,e,) a local frame for E on an open U € M, i.e. a set of r sections of
E that, in every point p € U, form a basis of the fiber F),, then

k
Ve = wj Q ey, k=1,...,r

where wé-“ are 1-forms defined on the open U.

What just said is true for every open U, in the particular case when U is a chart domain
for M, we have at disposal a local coordinate system (U, ¢ = (z!,...,2")) and the 1-forms
dz',...,dz" are a local basis of T*M, hence we can represent the 1-forms w” as follows:

J
n
k _ k )
wy = ) Tijde
=1

for suitable functions Ffj € ¢ (U). They are denoted like this because, as we shall see in a
moment, they agree with the connection coefficients defined in 7.3.4. To verify this, we select
as vector field X = ¢; and we compute the covariant derivative of e; w.r.t. X by means of eq.
(7.5):

Vaej = (Vej, 0y = (W) @ ex, i)

= <(¢L)§€ ® €k, al>
definition of {, )

T r
k=1 k=1
=Ther, k=1,...,rij=1...n,

but then the functions Ffj satisfy eq. (7.1), i.e. the definition of connection coefficients. These
considerations justify the following definition.

Def. 7.4.3 (Connection 1-form) The matriz of 1-forms w = (wf), j=1,...,n, k =

1,...,r, where
k _ 1k i
w; = I'ydr
are 1-forms defined on the chart domain (U, (z!,...,2")), is called the connection 1-form
associated to the connection V w.r.t. the local frame selected.

As always, it is important to establish how the expression of w changes when we change the
local reference frame. Since a local frame is a basis of a vector space, if (€1,...,€é,) is another
local frame for E on the same chart domain U, there exists an invertible matrix A = (aﬁ) of
functions af € €*(U) such that:

éh = aﬁek,
where the afb are smooth functions of the point p € U because the dependence of the fiber £,
on p is smooth.
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Let @ = (@) the connection 1-form of V w.r.t. the local frame (€1, ..., &), then, by using
the multi-linearity of the tensor product, we have:

~ ~h ~ ~h k k~h
Ve = w; ®ép = w; Qaper, = apw; Q ey,
on the other side, thanks to Leibniz’s rule, we also have:

Vé; = V(dker) = afVey + daf @ e, = afwl ® ep + daf @ ey,

i
indices change :k < j, { — k
= agwf Qe + alai-€ ® ek
K k
= (ajwj + da;) @ey.

Since the vector basis (ey) of the two expressions of Vé; that we have determined are the
same, the coefficients must agree, this implies that:

k

G/h(.:)h

%

R B k _ -
= q;wj + da;, Ve=1,...,r,i=1,...,n.

We notice that afldj;‘ is nothing but the matrix product between A and @, while (notice the

indices position) agwf is the matrix product between w and A, so, in matrix notation, the

previous transformation law can be written as follows:
A = wA + dA,

or

O=A"1wA+ ANdA|, (7.6)

an expression that has a fundamental importance in gauge field theory.

Example of computation of covariant derivative: let us consider the simple case of
a vector bundle of rank 1, i.e. a line bundle (each fiber is a straight line). In this case, the
matrix w = (wé“) is a 1x1 matrix of 1-forms, i.e. simply a 1-form
w = w% = I’illdxi = T;dz'.
Hence, the connection 1-form in this case is simply a differential form, or covector:
W = (Fz) = (Fl,...,Fn).

If X = X70; € X(U) and s = s'e; € I'(E, M), where s' € €°(U) and e, is a local basis of E
in U, we have:
Vxs = (X(s") + F}lstl)el = (X(sh) +T;X7s ey,
since 1 is fixed, so the only running index for I' is indeed j.
If we avoid the specification of the basis element e; and we simplify the expression by
writing simply s instead of s!, we get:

Vxs=X(s)+T;Xs.
Finally, if we choose as particular vector field X = ¢;, then the covariant derivative takes the

following form:
Vo5 = 0is + I'ys,

which shows that, for line bundles, the covariant derivative is simply the partial derivative
plus an extra term proportional to the section itself by the (only) connection coefficient.
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7.5 Induced connection on tensor bundles

In the same way as we have extended the concept of Lie derivative from vector to tensor fields
by forcing the Leibniz rule to be satisfied, we can extend the concept of connection to tensor
bundles. The following proposition state this rigorously.

Theorem 7.5.1 Let M be a smooth manifold and V a connection on T M. Then, it exists a
unique way to define a connection V on T¥ M, Vp, q, that satisfies the following properties:

1. V coincides with the given connection on TM (i.e. it is an actual extension of V, this
is why we keep the same symbol)

2. on TOM = €* (M) the action of V is simply the usual derivation implemented by a
vector field, i.e. Vx(f) = X(f), VX € X(M)

3. iftje T:j (M), j=1,2, and X € X(M), the following Leibniz rule holds:
Vx(t1 ®t2) = (Vxt1) ®t2 + 1 @ (Vxtz)

4. YV commutes with contractions.
Moreover, if n e Ty(M) = AY(M) and X,Y € X(M), the following Leibniz rule holds®:
X)) = (Vxn)(Y) +n(VxY), (7.7)

which gives a formula to compute the covariant derivative of a 1-form:

(Vxn)(Y) = X(n(Y)) = n(VxY)]. (7.8)

Proof. Let us verify the uniqueness. Suppose that V satisfies the properties 1. — 4. Then,
given n € AY(M) and X,Y € X(M), we have that n(Y) is a function belonging to € (M),
thus, thanks to 2., Vx(n(Y)) = X(n(Y)).

Now, using the Leibniz rule satisfied by Vx, we get eq. (7.7). This shows that the
connection on T'M determines uniquely the connection on 7% M.

Property 3. determines uniquely the connection on all the tensor bundles TI?M :

(Vxt)(wh, ..., Y1, ) = X(twh, ..., Y, V)

h
...,VXwT,...,w ,Yl,...,Yk)

h
- Z t(wt,
r=1
k
— Z t(wl,...,wh,YI,...,VXK,...,Yk).
s=1
To show the existence, it is enough to define V on T*M and T,i‘M as above, the fact that it is

a connection is tautological because we have defined it by requiring the validity of the Leibniz
rule (the other properties are automatically satisfied). O

2The coupling 7(Y) must be thought as of product.
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7.5.1 Explicit formulae for covariant derivatives of tensors relatives to lin-
ear connections

Given a smooth manifold M of dimension n, let V be a linear connection on M, i.e. a connection
on TM, and let (U, = (x!,...,2™)) a local chart on M. We know that (01, ..., 0,) is a local
frame for T'M on the open set U and we can write

0; =T

On

Vs,

7

where F?j are the Christoffel symbols.
Our aim is to find explicit formulae to compute the covariant derivative of any tensor in
the case of a linear connection.

We have seen that, if Y € X(M) = Tg (M), Y = Y7d;, then, by Leibniz’s rule:
Vo, Y = V5,(Y10;) = (8;Y7)0; + YIV,0; = (0;Y")0p + YIT1L0, = (Y™ + YIT)) oy,

thus, the components of the covariant derivative of a vector field Y € X(M) can be
explicitly written as follows:

h h h~-Jj

i.e. the sum of the usual derivative, plus an extra term containing the components
of the vector field multiplied by the Christoffel symbols of the linear connection.

Let us now repeat the computation by considering 1-forms, i.e. the cotangent space. Let
(dz',...,dz™) be a local frame for T*M on U, then V,,dz’ = fghdxh, where f‘gh is another
set of Christoffel symbols. Notice that now the running index for the sum, h, is positioned
below, while before it was positioned above.

The Christoffel symbols fgh and I}, are of course related and to make their relation
explicit we just have to recall that (da?, d) = (52 which is a constant (either 0 or 1), thus
0i{dx?, 0,y = 0. Recalling that the action of Vj, on a smooth scalar function is the same as
the action of d;, we get 0 = 9;(dz?,p) = V,(dx?,dp), so, thanks to Leibniz’s rule and the
bilinearity of the pairing { , ) we have:

0= Vo (da?, ) = (Vo,da?, ) + (dat, Vo, 0n) = (Tfydar’, 0n) + (da? T, 00
= T (da’, 0n) + Tl (da?, 0y = TL0), + Th6% = T, + T,
which implies f{h = —th, i.e. the Christoffel symbols that appear in the covariant

derivative of the differential form dz’ are exactly the opposites of those appearing
in the covariant derivative of the vector field ¢;. This implies that:

Vo,da? = —TJ, dz"|.

As a consequence, if w = wjd:rj is a 1-form, we have:
Vao,w =V, (wjd:cj) = (&-wj)dacj + wjvaz.d:cj
Vo, (wj)=0i(wj)

— (Qjwp)da + wj(—l“ghdxh) = (Ojwp — thwj)da:h,
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thus, the components of the covariant derivative of a 1-form w € A'(M) can be
explicitly written as follows:

Vo, (wn) = diwn —T% w; |, (7.10)

i.e. the sum of the usual derivative, minus an extra term containing the compo-
nents of the 1-form multiplied by the Christoffel symbols of the linear connection.

Since a vector field is a tensor field X € Ty (M) and a 1-form is a tensor field w € TP (M),
by comparing eqs. (7.9) and (7.10) it is not difficult to imagine, by multilinearity of the
tensor, that the explicit formula for the components of the covariant derivative of a tensor field
t e TE(M) is just the usual derivative with two extra terms proportional to the tensor field,
with coefficients given by the Christoffel symbols of the connections with plus and minus sign.

To verify this guess, we write ¢ = tzah ® dx*, where the coefficient functions tZ are smooth
on U. Then we have:

Vot = Vo, (thon ® dz®) = (0it])0n, @ da® + 1(V5,0n) ® da® + 1o, ® (Vo,da”)
(thanks to (7.9), (7.10))
= (0ith o, @ da® + t0T%, 0, ® da® + tho), ® (—T5da*)
(exchanging k < ()
— (0t 0y, ® da* + TIt,0, @ da® — T4 th o), ® da®
= (Osth + Tigty, — Tt0)0n © da*

thus, in components:

Vo, (tg) = ity + Dty — Tipt)

(7.11)

which shows that the covariant derivative of a tensor field of type G) is the usual derivative plus
two extra terms involving linear combinations of the tensor components with the Christoffel
symbols, notice the difference of sign w.r.t. the position, above or below, of the running index
for the sum.

By repeating this same computations for a tensor field of type (2) we get the following
explicit formula for the covariant derivative of the components:

v, (th1h2 hp) _ oyhha-hy

kiks...kq kiks.. kq
h1 lha ho hllhj h,p hihs.. hp 1/
+ 1 tklkg gy T Uil iy k T ke,
hiha... hiha...hp hiha...hy
Flkl tﬁkz k Flet’ﬂZk:’, k Flkqtklkz kq 14"

To simplify the heavy notation, in literature we find also the symbol ¢ ; to denote 0;t and t,;
to denote Vy,t, so that, for example for a vector field Y = Y0, we find the formula:

h h hyj
Y;’i == Y,i + F’L]Yj

7.5.2 Covariant differential, hessian and divergence

Given a linear connection on M and a tensor field ¢ € TI?(M ), we define the covariant version
of the differential as follows.
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Def. 7.5.1 (Covariant differential) The covariant differential or total covariant deriva-

tive is the operator:
V: T} — T}

k+1
t — Vi,
(V) (w', . Y1, Y Vi) i= (Vv ) (@l 0™ Y, ) | (7.12)

i.e. the covariant derivative w.r.t. the last vector field. If Vt =0, t is said to be a parallel
tensor field.

Thanks to the covariant differential it is possible to define a parallel transport for tensors in
the exactly analogous way that we introduced before for vector fields.

Let us now see how it is possible to extend two important objects of calculus in R™: the
hessian and the divergence. In R™ the hessian is the square matrix that contains the second
order partial derivatives of a scalar function; in the case of a smooth scalar function f on a
manifold, its covariant derivative coincides with its differential, i.e. V f = df which is not a
function anymore, but a differential form, thus, if we want to differentiate a second time, we
must necessarily apply the covariant differential! These observations motivates the following
definition of hessian.

Def. 7.5.2 (Hessian of a smooth scalar function) Given f e €*(M) and a linear con-
nection on M, the tensor field of type (g) defined as:

V(V[) = V(df)
is called the hessian of f.

Let us provide a more explicit expression of the hessian. First of all, since V(V f) is a 2-times
covariant tensor, a bilinear form that must be applied to a couple of vector fields X,Y € X(M).
Then,

V(VAHX,Y) = Vy(V()(X),

having used the definition of covariant differential, eq. (7.12), Y playing the role of the last
vector field Yy11. Since V(f) = df, we can rewrite the previous formula as

VIVHX,Y) = (Vy (df)(X),

but the formula to compute the covariant derivative of a 1-form is provided by eq. (7.8), which
gives:

V(VHX,Y) = Y(df (X)) — df (Vy X),
but, by definition of differential, df (X) = X(f) and df (Vy X) = (VyX)(f), so:

V(VAHX,Y) = Y(X(f) = (VyX)()],

which shows that the hessian is not simply the composition of the directional derivative of f
w.r.t. to X and then w.r.t. Y, as provided by the first term, but there is also an extra term
where the covariant derivative w.r.t. Y appears.

The expression of this explicit formula in coordinates will show us the link with the classical

expression of the hessian. If (U, ¢ = (z!,...,2")) is a local coordinate system in M, then, if
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we fix the basis (01,...,0,) of TM|,, and take X = d; and Y = 0;, then we can associate to
V(V(f)) a matrix whose (i, 7) entry is given by:

V(V(£))(0i,05) = 0;(0if) — (Va,0:)(f),

l.e.

V(V(f»(au 81‘) = 5]2'if - P?iahf
which shows that, if M = R"™ with the classical flat connection V = d characterized by F?i =0,
we have that the hessian of f € €*(R") is the matrix (%) . Instead, for a non-trivial

1.

manifold with a non-flat connection, an extra term involving the Christoffel symbols appears.

Let us now pass to the divergence: if X is a vector field on M and V is a linear connection on
M, then VX € T} (M), thus it is perfectly well-defined to contract this tensor of type G) w.r.t.
its only covariant and contravariant index. What we obtain turns out to be the generalization
of the classical divergence of a vector field on R" to the case of a smooth manifold.

Def. 7.5.3 (Divergence of a vector field) Given X € X(M) and a linear connection on
M, the divergence of X 1is the smooth scalar function defined as follows:

div(X) = C}(VX),
where C' is the contraction operator.

As before, let us make this formula explicit by considering a vector field X = X*9j, then we
know that
Vo, X = (0, X% +ThH X",

from this it follows that the covariant differential can be written in every chart domain
(U, p = (x,...,2")) as:
VX = (dX" +T%,d2?) @ 0, € THU).

We get the divergence of X by contracting the upper and bottom index, i.e. k and j,
respectively, which can be done by renaming both of them as k& and considering the implicit
sum over k:

div(X) = CL(VX) = 0 X* + T, X" |

In the trivial case M = R™ with the flat connection, the Christoffel symbols are identically 0
and we obtain the classical formula of the divergence of a vector field, i.e.

i L oXFE
le(X) = Z W
k=1

7.6 Compatibility between a linear connection and a (pseudo)-
Riemannian metric

In this section we discuss the issue of compatibility between the definition of a linear connection
on a manifold M, i.e. a connection defined on the tangent bundle T'M of M and the Riemannian
metric defined on M itself. We first need to formalize this concept.
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Def. 7.6.1 Let (M,g) be a (pseudo)-Riemannian manifold. A linear connection on M is
compatible with the Riemannian metric g if, for all vector field X,Y,Z € X(M), it holds that:

Vxg(Y,Z) = g(VxY, Z) + g(Y,Vx Z). (7.13)

The compatibility equation (7.13) is simply the request that a Leibniz-like behavior holds
when Vx is applied to the scalar product of vector fields induced by the (pseudo)-Riemannian
metric g.

Notice also that, since g is a (bilinear) smooth function, Vxg(Y,Z) = X (¢(Y, Z2)).

The compatibility between a linear connection and a (pseudo)-Riemannian metric can be
characterized in six other ways, which are listed in the following result.

Theorem 7.6.1 (Characterizations of compatibility connection-metric) Let (M, g) be
a (pseudo)-Riemannian manifold of dimension n and V a linear connection on M. Then, the
following assertions are equivalent.

1. 'V is compatible with g.

2. Vg=0, i.e. g is parallel w.r.t. V.

3. In all local coordinate system (x',... ™) it holds that:

Ongij = 96 U1 + 9Ll - (7.14)
4. For every couple of vector fields V,W along the curve v in M, it holds that>:

%g(v, W) = g(DV,W) + g(V,DW) . (7.15)

5. For all couple of vector field V,W parallel along 7, g(V, W) is constant along ~.

6. The parallel transport defined by V along each curve is an isometry, i.e. it is not only
an isomorphism between all tangent spaces on the point traveled by the curve, but it also
preserved the norms of tangent vectors and the distances between them.

Proof. The strategy of the proof to demonstrate the equivalences is the following:

lL. <= 2. 2. <— 3. 1. —= 4. 4 = 5. 5. =— 6. 6. = 1.

l. = 2

A

!

a

3We recall that DV denoted the covariant derivative of V along the direction tangent to the curve -, and
analogously for DW.
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7.7 The Levi-Civita connection
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Chapter 8

Principal fiber bundles and
applications to field theory oy ruson

Inspirational epithap wanted...

Fibre bundles play a major role in modern theoretical physics, whereas it is in general
relativity or in the standard model of particle physics. This chapter will discuss largely fibre
bundles and connections. In the first part of this chapter, we will define the notion of fibre
bundle, beginning with the general fibre bundles and moving into the specific case of principal
bundle where the notions of Lie groups defined in the previous chapter will play a central
role. Then we will discuss the specific case (but important) of associated vector bundles. The
second part will treat the notion of connections and covariant derivatives that are necessaries
tools in gauge theories such as Yang-Mills theory.

8.1 Fibre Bundles

We already have encountered vector bundles, namely the tangent bundle 7'M and the cotangent
bundle T* M of a differential manifold M. For example, for the tangent space T'M there was a
natural projection 7 : T'M — M that associate to each vector the point p in M at which it is
tangent. The inverse image of any point p of M under 7 (called the fibre over p) was nothing
more that the tangent space T, M and vector fields could be defined as smooth cross-section
of TM. We will generalize these notions in this section, going from the general definition of
bundles to the specific case of vector bundles associated to principal bundles.

8.1.1 First definitions
First, let’s give the proper definition of a bundle.

Def. 8.1.1 (Bundle) A C*®-bundle is the data of a surjective projection w: E — M, where
E and M are smooth manifolds and 7 is a C®-map. E is called the total space, M the base
space and for every p € M, F, == w1({p}) is called the fibre over p.
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In the following, we will sometimes denote a bundle by a greek letter like £. In this case,
E (&) will be the total space of the bundle and M () will be its base space.

In the bundles we will treat, every fibre over p € M will be diffeomorphic to the same
space F', in which case, we will talk about fibre bundle and F' will be called the fibre of the
bundle. This motivates the more specific definition.

Def. 8.1.2 (Fibre bundle) Let F' be a smooth manifold. The bundle w: E — M is said to
be a fibre bundle if, for each p € M, there is an open neighborhood U < M and a diffeomorphism
h:UxF — E|y :=7"YU), called local trivialization of E such that we have the commutation

Ely ¢ UxF
lﬂ%
U

where pry is the projection on U, or say differently w(h(z,y)) = x, for allz € U and y € F'.

A collection {(U;, h;)}; of local trivialization such that the open {U;}; are covering M is
called an atlas of the bundle. We have that if U; n U; # J, then for p in this intersection and
f € F, we can defined diffeomorphisms 1;;(p) : F' — F, called the bundle transition functions,
such that h; o h;(p, f) = (p,ij(p)(f)). These maps satisfy

1. ¢“(p) = idp

2. 9i(p) = (ji(p) ™"

3. ¥ij(p) o Yk (p) = Yir(p) for all U;, Uj, Uy, such that U; n U; n Uy # .

We recognize what we had for T'M where, to each p € M, we had a local coordinate chart
(U, ¢) and we could define the map

TMly — ¢(U) x R™

v o— (2!, aPu(ah), -, u(2P))

The fact that the fibre of TM is R™, a vector space, tells us that we are in a special fibre
bundle : a vector bundle.

Def. 8.1.3 (Vector bundle) A vector bundle of rank k of base manifold M is a fibre bundle
where the fibre is R¥. More specifically, to each p e M, F, = 7=1({p}) is a vector space of size
k and there is an open neighborhood U < M of p on which we have the local trivialization h
that satisfies wo h = pry

mUefoka
=
U

We have in particular that, for each p € M, by the local trivialization, the map hy, : {p} x RF —
71 ({p}) is an isomorphism of vector spaces.
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Now let’s give some particular example of fibre bundle.

1. One of the most known fibre bundle is the Mobius strip where the base space is the
circle S', and the fibre can be seen as a closed interval of R. The total space can be
regarded as a rectangle where the edge must be identified but in identifying opposite
vertices. We can construct in the same spirit the Klein bottle.

PUT THE FIGURE HERE

2. These two examples are in the case that the total space is ”twisted” in some sense. A
more simpler example is just considering the total space as the product of the base space
with the fibre, and the projection map is just the projection on the base space, i.e. the
bundle pri : M x F — M.

3. If G is a Lie group and H is a Lie subgroup of G, then the bundle 7 : G — G/H, where,
Vg e G, we have m(g) := gH is a fibre bundle with fibre H.

It is sometimes useful to see a bundle as a subspace of a bundle of reference.

Def. 8.1.4 (Sub-bundle) We say that a bundle 7 : E - M isa sub-bundle of a bundle
m: E— M if we have E < E, M < M and if 7 is the restriction of w to F.

Now, as vector fields can be seen as cross-section of the tangent bundle T'M, let’s give the
proper definition of a cross-section :

Def. 8.1.5 (Cross-section) Let w: E — M be a bundle. A cross-section of the bundle is a
map o : M — E such that

FE
ol |r Too =1idy

M
i.e. that for each point p € M, its image o(p) is in the fibre F, = 7~ 1({p})

We can note that in the specific case to a product bundle 7 : M x FF — M, by construction
a cross-section o gives rise to a unique function 6 : M — F such that Vp e M, o(p) = (p,5(p)).

To end this part, let us give the definition of a bundle map :

Def. 8.1.6 (Bundle map) Let ng : E — M and 7 : E' — N two bundles. A homomor-
phism of bundle is a pair of smooth maps (u, f) withw: E — E' and f : M — N such that
we have the commutative diagram

<

E u
U

M

T

+— 3

—
E
_r

=
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i.e. that we have mgrou = fomg.

In the case of vector bundles, we require in addition that the restriction of u on the fibres
to be linear, i.e. that for each pe M, u, : 75" ({p}) — 75 ({f(p)}) is an homomorphism of
vector space.

We can remark that the commutation wg ou = f o wp tells us that for all p € M,
u(my ({p})) = 75 ({£(p)}) ie. that the bundle maps sends fibers into fibers.

Now that we have defined bundle maps, a question arise whether it is possible or not to
define the pull-back of a bundle. This is given by the following

Def. 8.1.7 (Pull-back) Let 7 : E — M be a fibre bundle that we will denote by 5 and let
f:M' — M be a map, where M’ is another manifold. We define the pull-back of 8 to be the
bundle ' : E' — M', denoted by f*(8), where

1. M’ is the base space
2. B ={(2',e)e M' x E/f(2') = 7(e)}
3. V(2 e)e B, (2 e) =2

This gives rise to a bundle map (f3, f) between the bundle f*(5) and 3, where, for all
(«',e) e E', fg(a',e) = e. We can note that each fibre of f*(3) is diffeomorphic to the fibre of
B so f*(B) is a fibre bundle of fibre F.

8.1.2 Principal bundles

There are special fibre bundles where the fibre is a Lie group G. These bundles have the
particularity that we can associate to them, in a way that is to define, general bundles. But
first, let’s define what is a G-bundle.

Def. 8.1.8 (G-bundle) Let G be a Lie group. We say that w : E — M is a G-bundle if G
has a right action on E and if 7 : E — M is isomorphic to the bundle p : E — E/G where
E/G is the space of the orbit given by the action of G on E and p is the canonical projection
on the space of orbits.

A principal bundle is thus a particular G-bundle in the following sense :

Def. 8.1.9 (Principal bundle) A principal G-bundle is a G-bundle where the action of G
on E is free.

For the rest of this chapter, to emphasize that we have a principal map, we will denote the
total space by P instead of FE.

Note that in a principal G-bundle 7 : P — M, we have a fibre bundle with fibre G. Indeed,

if z € M, and p e 7 1(z), 7~ 1(z) is the orbit of p under the action of G. By the freedom of
its action and by theorem ?7?, we get that 7—!(z) is isomorphic to G.

154



Now let’s give a simple example of principal bundle.

If we consider the product bundle pry : M x G — M, where the right action of G is simply
the right multiplication : Ype M and Vzo € G, (p,g0)g := (p, gog). This bundle is called the
trivial principal bundle.

We would like to define principal bundle map as bundle maps that would preserve the
group action. This is satisfied by requiring the map to be equivariant

Def. 8.1.10 (Principal bundle map) Let 7 : P — M and 7 : P — M be two principal
G-bundles and let (u, f) be a bundle map. Then (u, f) is said to be a principal bundle map if
u: P — P is G-equivariant as stated in definition 77, i.e. we have, for allpe P and g € G.

u(pg) = u(p)g (8.1)

As for equation (?7) we can generalize this in the case where m : P — M is a principal

G-bundle, 7 : P — M a principal G-bundle and p:G— Ga group homomorphism. Then the
bundle map (u, f) is a principal bundle map if we have, for allpe P and g€ G

u(pg) = u(p)p(g) (8.2)

There is a particular case where (u,idys) is a principal map between a pair of principal
G-bundle 7 : P — M and 7 : P — M. Then in this case, u is an isomorphism.

By these principal bundle map, we can define a trivial principal G-bundle.

Def. 8.1.11 (Trivial principal bundle) A principal G-bundle w : P — M s trivial if there
is a principal bundle map from w: P — M to the product bundle pri: M x G — M.

There is a special characterization of trivial principal G-bundle when looking at cross-
section. Mainly

Theorem 8.1.1 A principal G-bundle is trivial if, and only if, it possesses a continuous
cross-section.

Proof. To do... O

8.1.3 Associated vector bundles

In this last part of this section, we will see how to associate a general bundle to a principal
G-bundle by extended the action of the group on another manifold. First, we will define the
G-product.

Def. 8.1.12 (G-product) Let G be a Lie group and let X and Y two spaces on which G has
a right-action given respectively by

szXG_)X f: Y xG — Y
(2,9) +— plz,9) = pg(x) :=2g "’ (v,9) — 0(y:9) = 4(y) == yg.
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Then, we can define the right action of G on the product space X x'Y by the map

Oy XxY — XxY

(@,9) — Ogw1) = (pg(x), By(»)) = (wgrg) * "9 C

The G-product of X and Y is then the quotient of the product X x'Y on the space of orbits of
the action of ©, i.e. that two elements (x,y) and (z',y") belongs to the same equivalence class
if there exists g € G such that ¥’ = xg and y' = yg. We denote the G-product by X xgY and
the equivalence class of (z,y) € X x Y is written [z,y].

In the case one of the space is G itself, then it can be shown that there is an diffeomorphism
between G xg Y and Y.

Now we have the key ingredients to define associated bundles.

Def. 8.1.13 (Associated bundle) Let 7 : P — M a principal G-bundle and F a smooth
manifold on which G acts on the left. We define its associated bundle through the action of G
on F by the fibre bundle 7p : Pr — M with fibre F' where

e Pp:= P xg F where the right action on this space is defined by
(p,v)g = (pg, g~ "v) (8.3)

o 7 is defined by
mr([p,v]) = 7(p) (8.4)

We need to check that this bundle defined in this way is indeed a fibre bundle.

First, let’s notice that 7p is well defined. If we take another representent [p’,v'] of [p,v],

we have that there exists g € G such that (p’,v’) = (pg, g~ 'v) hence

mr([p,v']) = 7(p') = 7(pg) = n(p) = 7r([p,v])

because p and pg belongs to the same orbit hence to the same fibre.

To see that mp : Pr — M is indeed a fibre bundle. We need to find a local trivialization of
Pp. Let’s consider the atlas of the principal bundle 7 : P — M given by {(U;, h;});. Then, for
every € M, there exists an open U such that we have the diffeomorphism h : U x G — 7~ 1(U).
We have thus the identification U x G =~ 7~ (U). Now let’s consider 7' (U), we have :

R U) =1 U)xg F=(UxG)xgF=UxGxF)/G=Ux (G x¢gF)

But we have the further identification that G xg F' = F. Indeed, there is a diffeomorphism
between G x¢ F' and F' given by the map

L GXGF — F

[g,v] — wvg!

e this map is well defined since, given two different representative [g1,v1] = [g2, v2], then

there exists g € G such that g = g1g and vy = v1g. Therefore, vgggl =v19(g19)7 ' =
1,1 _ -1
v1i99 "91 = vi1g; -

156



e it is injective since, if ¢([g,v]) = ¢([¢’,v']) then vg~! = v'¢’~L. Tt follows that, applying
-1 r =1/

the element ¢g~'¢’ to g and v : [g,v] = [g97'¢",vg7 ¢'] = [¢/,v'¢' " ¢'] = [¢',v']. Hence
we get injectivity

e the map is clearly surjective since, for all v € F, we have ¢([e,v]) = v.

We finally get that ﬁ;l(U ) = U x F so the open covering of M defines also a local trivial-
ization of Pr and the fibre at x € M, ng(x), is diffeomorphic to F'. Hence 7p : Pp — M is a
fibre bundle.

As we did for fibre bundle in general and principal bundle, let’s define what is an associated
bundle map.

Def. 8.1.14 (Associated bundle map) Let 7 : P — M and @ : P — M two principal
G-bundle with associated bundle mp : P xg F — M and 7p : P xqg ' — M respectively and
let (u, f) be a principal bundle map. An associated bundle map (up, f) between the pair of
associated bundle is defined by

ur([p,v]) = [u(p), v] (8.5)
This is well-defined since

up([pg, g~ ")) = [ulpg), g~ "v] = [u(p)g, g~ "v] = [u(p),v] = up([p,v])

because u is equivariant as a principal bundle map. And it is a bundle map because we have,
for all [p,v] € P xg F

fomr(lp,v]) = fon(p)
Tr o up([p,v]) = Tr([u(p), v]) = 7 (u(p))

and fom(p) = 7(u(p)) since (u, f) is a bundle map.

Finally, we will get interest in the particular case of associated vector bundle where we
replace the space F' by a vector space V and requiring that the action of G on V is linear.
Hence we require that the action

0: G — GL(V)
g — 99

is a representation of G in V.

More formally, if # : P — M is a principal G-bundle and V is a vector of dimension n
on which G acts linearly, then the associated bundle 7y : P xg V. — M can be given the
structure of an n-dimensional real vector bundle. Indeed, if z € M, let p € 7= ({x}) and define
the homeomorphism

-1
w: V.o — my ({2}
8.6
v l0)= (bl 50

Then we define the operations
L tp(v1) + tp(v2) = tp(v1 +v2), Vui,v2€V

2. Aip(v) == 1p(M0), VAeR,VveV
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This is well defined thanks to the linearity of the action of G on V| since if we take another
element p’ € 71 ({z}) such that /(') = 1,(v), then we get

[plvvi] + [p,a Ué] = [p,7v/1 + Ué]

[pg, g o1 + g~ o]
= [pg, g~ (v1 + 12)]
[p, v1 + v2]

[p;v1] + [p, v2]

And let’s end this section with an important example of principal bundle associated to a
vector bundle : the bundle of frames.

Let 7 : E — M be a vector bundle of rank n. A frame at a point p € M is an ordered set
of basis vectors for the vector space F,. If we define by F, the set of all frames at the point p,
the bundle of frames F(E) is defined to be the disjoint union of all such spaces i.e. that a
point in F(F) is a pair (p,b) where p € M and b € F,, and the projection map 7z : F(E) — M
is the function that takes a frame into the point in M to which it is attached.

In fact, since for each p € M, there is an isomorphism between £, and R", a frame can be
seen as a linear isomorphism. Indeed, let B be the canonical basis for R", a frame b of E), is
uniquely determined by the image vectors of the vectors of B through a suitable isomorphism
A R" — B, which represents the base change.

We can define a natural free action of GL(n,R) on F(E). If A € F, represented by a
matrix A and if « is an automorphism of R” represented by a matrix A then we define the
right action of GL(n,R) on the fibres F, by

6: FpxGL(nR) — F,
(Ma) — Adoa=AA

This action is transitive by unicity of base change and can be extended to the bundle
F(E) by
©: F(E)xGL(n,R) — F(E)
(0, A),A) — (p,0(XA))

We can therefore see that 7 : F(E) — M is a GL(n,R)-principal bundle.

Indeed, the right action is free and the orbits coincide with the fibers. It remains to see
that we have a local trivialization. Let {(U;, ¢;)}; be a local trivialization for E where we have
the diffeomorphisms ¢; : E|y, — U; x R™ with restrictions on the fibers ¢; , : E, — {p} x R™.
Then we can define the maps :

wi : ‘F(E)|Uz = ﬁfl(Ui) — U; X GL(R,R)
(P, A) — (ppipoA)

These maps are invertible and differentiable with inverse differentiable so they are diffeomor-
phisms and {(U;,;);} is a local trivialization for F(E).
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Consider a point p of M and U its open neighborhood, and gan element of F(E)|y. We
can write ¢ = (p, A). Then we have ¢(q) = (p,¢p o A) = (7(q), h(q)) for a certain function
h:F — GL(n,R). It remains to see that this map is equivariant w.r.t. the right action of the

group :

h(©(g; A)) = h(O((p,A); A) = h(p,0(X, A)) = h(p, Ao @)

= (ppporoa) = (p,0(pp oA A)) = O((p,ppoA), A)
= O(h(p,A), A) = 6(h(q), A)

By local trivialization, we have that F/GL(n,R) = M and each fibre is diffeormorphic to
GL(n,R). Hence 7 : F(E) — M is a principal fibre of structure group GL(n,R).

A special bundle of frames is the tangent frame bundle (called also the frame bundle of
the manifold M) where the vector bundle in consideration is the tangent bundle. In this case,
a local section is called a smooth local frame. One important example is that given a local
coordinate chart (U, = (z!,...,2™)) around a point p € M, we have a basis of T,M given
by (01lp, - -, 0m|p) so we can define a local section of T'M by

0;i: U — TM
p > 0i(p) = dilp

The same can be done for the cotangent bundle.

8.2 Connection and parallel transport

The purpose of connections is to compare points belonging to different fibres in a way that is
independent of a local trivialization. Hence, we are looking for vector fields that go for one
fibre to another. In this section, we will define a connection in two ways, one as a collection of
tangent spaces, the other as a differential one-form. We will first give the definition for general
bundles then restrict ourselves to principal and associated bundle to conclude with parallel
transport and curvature.

8.2.1 Connection of Ehresmann

Connection in a general bundle

First, let give the definition of a vertical subspace.

Def. 8.2.1 (Vertical subspace) Let 7 : E — M be a bundle, and let e € E. The vertical
subspace Vo E of the tangent space T.E is defined to be the kernel of the push-forward of m at
e i.e.

VeE = ker(my) = {v € T E,m(v) = 0} (8.7)

The elements of V. E are called vertical. As e € E changes, these subspaces form a C*-subbundle
VE of the bundle TE.
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If F is an n-manifold and M a m-manifold, since 7 is a projective surjection, it is of
constant rank m (i.e. that for all e € E, my : TeE — Ty )M is of rank m), then we have
dimV.,E =n—m.

Remark that V. E can then be seen as the tangent space to the fiber 771 ({r(e)}).

Now, as mentioned above, we want to look at vector fields that points away to the fibres,
not tangent to it. This motivates the following definition :

Def. 8.2.2 (Ehresmann connection) A general connection (or Ehresmann connection) on
the bundle w : E — M is a smooth assignment to each point e € E of a vector subspace H.E
of T.E such that

T.£FE=V.E®HFE (8.8)

The subbundle HE of TE associated to it is called the horizontal subbundle of TE and elements
of H.E are called horizontal.

Hence, this definition means that each vector w € T.E can be written in a unique way
as w = v + h where v e V,FE and h € H.E. To emphasize this, we will sometimes write by
v = ver(w) and h = hor(w) for respectively the vertical and horizontal components of w.

Also, by the definition of the vertical subspace V. E of T, E, we get that the restriction of
T« to HeE is an isomorphism of vector space and we have dim HeE' = dim Ty (o) M = m.

We can give another definition of the connection in terms of a differential one-form. More
precisely, we define a connection 1-form on a bundle 7 : E — M as a linear map

. TE—->VE (8.9)
that satisfies
1. ® 0 ® = & (idempotent)
2. Im® = VE (surjectivity)

This definition means that we can see the connection one-form as a projection of T'E onto
VE. In particular, if e € F, then &, : T.E — V.FE is the projection of T, F into V. E. The
horizontal sub-bundle is thus defined by HE := ker ®. These two different definitions are in
fact equivalent and the decomposition (8.8) say that for all e € E, ®, is simply the projection
of T.E on V_.FE parallel to H.E.

We can remark that, using the notation of ver and hor, for all w € T.FE, we have
O (w) = ver(w).

Connection in a principal bundle

These definitions of vertical subspace and connection need to be slightly adapted in the
framework of principal bundle to guarantee the action of the Lie group.

Since a principal bundle is a bundle, we have the same definition for the vertical subspace :
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Def. 8.2.3 (Principal vectical subsapce) Let w: P — M be a principal bundle of struc-
ture group G. For each p € P, the vertical subspace V,P of T, P is defined to be the kernel of
the linear push-forward m, at p

VpP = kerm, = {1 € T,P/m,7 = 0}

The particularity here is that VP can be identified with the Lie algebra g of G. Let’s
introduced the necessary tools to show this.

Let A: P x G — P the usual right action of G on P given by A(p, g) = d4(p) = pg where
dg : P — P is the usual diffeomorphism define in the previous chapter. Then, taking & € g, we
can define a curve in G locally : t — exp(t§) € G, for t € R small enough, that passes though
e the neutral element of G at ¢t = 0 and tangent to £. Now letting this curve acts on p € P, we
obtain a curve on P given by ¢ — Jexp(¢)(p) = pexp(t€). This curve passes through p at ¢t = 0
and so it is tangent to a vector of T,,P. This thus associates to each vector of g a vector in
T, P by the map

u,: g — T,P
(8.10)

d
— = —pexpl(t
3 up(f) dtpe p( 5) o

By varying p € P, we can define a map that associate to each vector £ € g a vector field on
P denoted by X¢ whose value at p € P is given by Xg = up(§).

u: g — X(P)

£ s XE (8.11)
In other words, we associate to the vector fields on G, whose integral curve is o¢ : t — exp(t§),
the vector field on P whose integral curve is given by t — pexp(t§).

As g and X(P) are Lie algebras, we can notice that this u is a morphism of Lie algebras
since it satisfies, for all £, n e g

Xten = w([g, n]) = [u(€), u(n)] = [X*, X"]
We can thus show the identification mentioned above :

Theorem 8.2.1 Let w: P — M be a principal bundle of group structure G and let g be the
Lie algebra of G. Then the map u, defined above is an isomorphism between g and V,P.

Proof. First notice that u, is linear since for each £ € g, u,(§) is a derivative. Now let’s prove
injectivity and surjectivity.

e For injectivity, suppose that £ € ker(uy), £ # 0. Since the action of G on P is free, the
only element that fixes the point p is the neutral element e. Hence, for ¢t # 0, we will
have pexp(t§) # p so the curve on P induced by ¢t — exp(t£) is not constantly equal
to p and the vector u,(§) tangent to this curve in p at ¢t = 0 will be non-zero. This
contradicts the fact that & € ker(u,) so we get that £ = 0 and w,, is injective.
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e The surjectivity follows immediately. Indeed, by a local trivialization of the principal
bundle 7 : P — M, p € P will correspond to a point (x,g) € M x G, hence the fibre
7~ 1({z}) is diffeomorphic to G. By the dimension analysis seen for general bundle,
we get that dimV,P = dim P — dim M = dimG. Hence the restriction of u, to the
codomain V, P, since u, is linear, injective and dim V,P = dim G = dim g guarantees
that u, is surjective.

Now, let’s define the notion of a connection in the special case of a principal bundle.

Def. 8.2.4 (Connection in a principal bundle) Let 7 : P — M a principal bundle with
group structure G. A connection is a smooth assignment to each point p € P of the total space
of a subspace H,P of T,P such that

1. T,P =V,P@® H,P
2. the subspace H,P is invariant by the action of the group G i.e.

g« (HpP) = Hs, ()P, for allpe P and g € G. (8.12)

Another way of defining a connection is as a one-form

Def. 8.2.5 (Connection one-form) Let u;l : VpP — g being the inverse of the isomor-
phism between g and V,P. We defined the connection one-form w : TP — P x g of the
principal G-bundle w: P — M as a g valued one-form defined by, Vpe P :

wp: T,P — g

T o wp(7) =y (Dp(7))

(8.13)

where ®, : T,P — V,P 1is the projection of T,P on V,P parallel to H,P associated to the
differential one-form ® : TP — V P defined in the same way as in (8.9).

This one-form satisfies several properties of which

Proposition 8.2.1

1. If X¢ is the vector field induced by u on & then, for allp e P

wp(X5) =€ (8.14)

2. Forallge G, pe P and 7 € T,P, we have

(5;w)p(7') = Ady-1(wp(T)) (8.15)

3. h e HyP if, and only if, wy(h) = 0.

Proof.
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1. Since, for all p € P, Xg = up(&) € V,, P by theorem 8.2.1, we have that
wp(Xp) = uy, ! (ver(X5)) = u, (X5) = " (up(€)) = €.

2. First, let’s see the link between the action on V,P and the action on g. Let £ € g and let
g € G, we have

d
L &%(p exp(t€)) L

s 166D = 0 ((pexn(eo)

But we have

Sg(pexp(t€)) = pexp(t€)g = pg(g™" exp(t€)g)
= pg(Cy-1(exp(t€)) = pgexp(tAdy-1(§))

by equation (??). Hence

300 16(6) = FPIXDIAL, (€)= (A () (3.16)

Furthermore, we have, for all g€ G, pe P and 7 € T,P

(65W)p(T) = Ws, (p)(0gsT)
= u;gl © (I)pg((sg*T)

= iy © g, © Pp(7)

Because by (8.12) we have the commutation dg, o ®, = ®,4 0 dy,. Hence

(65w)p(T) = u;gl 0 0, O Up O u;l o Pp(T)

= u;gl 0 dg, 0 Up(wp(T))
= u:;gl 0 Upg(Ad g1 (wp(7)))

= Adg-1(wp(7))-

where in the penultima equality we use equation (8.16)

3. By definition, one of the implication is straightforward. The only if part is also direct
because since u,, is an isomorphism between V,P and g, if w,(h) = 0 then this means
that ®(h) = 0 hence h € H,P.
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8.2.2 Covariant derivative and parallel transport
An important tool to compare points in is the use of parallel transport, that is a way to
transport points from one fibre to another.

Parallel transport in a principal bundle

Let w: P — M be a principal G-bundle where G is a Lie group equipped with a connection
w. We have seen the basic definitions of vertical fields and horizontal fields. Vertical fields can
be easily constructed but there is also a way to generate more explicitly horizontal fields from
a given vector field : this is the operation of horizontal lifting. Indeed we have seen that for
each p € P, m, is an isomorphism from Hy,P to Ty, M. This yields to the following

Def. 8.2.6 (Horizontal lift) Let X be a vector field on M. Then there ezists a unique
vector field, called the horizontal lift of X and that we denote by X' such that, for allp e P

1 m(X)) = X ()

2. ®,(X})) =0

We can remark that since, for all p € P, X;T, € H,P, then we have that dg, (X;) = ng, ie.
the operation of horizontal lift is G-equivariant. In fact, this property and the point ii) of the
definition guarantee that a vector field on P is the horizontal lifting of a vector field defined
on M.

This operation of horizontal lifting satisfied several properties

LXT+YT=(X+Y)!

2. (fX)' = fonX" forall feC®(M)

3. [X, Y] =hor([XT,YT))

An analogue procedure of horizontal lifting can be applied to curves on the base manifold
M.

Def. 8.2.7 (Horizontal lift of a curve) Let o : [a,b] = M be a smooth curve. We define
the horizontal lifting of o by the curve o' : [a,b] — P satisfying

1. ®,([c"]) = 0 i.e that the curve is horizontal,
2. m(o(t)) = o(t) for all t € [a,b].

Here the last point is to satisfy the fact that applying the projection 7 to this curve on P
will give us back the curve on M.

As for vector fields, we have seen that to each vector field on M we could associate a
unique horizontal lift on P, we have also existence and uniqueness of horizontal lift of a curve

Theorem 8.2.2 Let o : [a,b] — M be a smooth curve on M. Then for all point p €
7 1({o(a)}) of the fibre over o(a) € M, there exists a unique horizontal lift of o such that

ol(a) =p
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Proof. To do... O

This theorem shows us the spirit of our goal : we want to compare a point p € P of one
fibre with another point ¢ € P of another fibre. If we call 7(p) = me M and 7(q) =ne M,
having a smooth curve on M, o : [a,b] — M such that o(a) = m and o(b) = n, then the
horizontal lift of this curve ! will allow us going from the fibre 7=!(m) to the fibre 7—1(n).

Def. 8.2.8 (Parallele translation) Let o : [a,b] — M be a smooth curve of M. We define
the parallel translation along o the map

7 7 ({o(a)}) — 7 {o(d)})
() (8.17)

where o' is the horizontal lift of o that passes through p at t = a.

Connection and covariant derivative in an associated vector bundle

These notions of connection and parallel transport can be extended in the case of associated
vector bundles. Let’s see how the definitions of vertical and horizontal subspace (hence of
connection) can be induced from the ones on a principal bundle.

Def. 8.2.9 Let m : P — M be a principal G-bundle equipped with a connection w and let
g : P — M be its associated bundle through the action of G on F. Let [p,v] € Pr = P xg F,
we define

1. the vertical subspace V. |(Pr) of the tangent space Tj, ,|(Pr) by

T[p,v]<PF) = ker TF, = {7’ € T[p’v] (PF)/TFF*T = 0} (818)

2. the horizontal subspace Hy, . (Pr) of the tangent space Ty, .1(Pr) by
Hip) (Pr) = ko, (HpP) (8.19)

where

kvi P — PXGF

p o [po] (8.20)

The horizontal subspace is well defined. Indeed, we can notice that, for all p € P, we have

kg—lv © 5g(p) = kg_lv<pg) = [pgagilv] = [pa 2}] = kv(p)

Hence ky-1, 0 0y = k,. Now if we choose [p’,v'] another representative of the class [p, v]
(i.e. that there exists g € G such that (p/,v’) = (pg, g~'v)) then, by the characterization of a
horizontal subspace in the principal bundle, we have

kvﬁk(Hp/P) = kg—lv*(Hng)
= ky—1y, (0g, (HpP))
= (kg*“u © 59)*(pr)
= kv, (HpP)
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Having a connection, we can also define the notions of lifting a curve and parallel trans-
porting.

Let o : [a,b] — M be a smooth curve on M and [p,v] a point in the fibre 7' ({¢(a)}). By
theorem 8.2.2 there is a unique horizontal lift of ¢ on P such that o'(a) = p. We then define
the horizontal lift of o on P x F that passes to [p,v] at t = a to be the curve

ol = [0, 0] (8.21)

Then the parallel translation along ¢ in the bundle P x g F' is simply the map
i @) — ) 622)
[p0] — oh(b) = [0 (b), ]

where o' is such that o'(a) = p.

In the case of a vector bundle, this parallel transport allows to define a derivative of a
cross-section in a way that is independent of any choice of a local trivialization : this is the
covariant derivative.

Def. 8.2.10 (Covariant derivative) Let m : P — M be a principal bundle with structure
group G and let V' be a vector space on which G acts. Consider a smooth curve o : [0,e] > M
in M such that o(0) = xo and let 7, be the parallel translation map going from the fibre
T ({o(t)}) to the fibre 7yt ({x0}). Then if : M — P xg V is a cross-section, we define the
covariant derivative of ¥ at xqg in the direction o by

vgw — lim <T€/¢(a(t)) - ¢($0)> (823)

t—0 t

Considering two curves o1 and o2 tangent at xp, we have that V, 19 = V,,1. Hence, we
can extend the definition of the covariant derivative to tangent vectors in T, M by defining
that if v € T),, M is a tangent vector and o is one of these representative curve, then

Vp = Vot
and going further, we define the covariant derivative along a vector field X on M by
(Vx9)(z0) = Vx, ¢
Vx is a linear operator. It also satisfies the following properties

L. Vx(fv) = fVxy+ X(f)
2. Vixqyh = fVx9¥ + Vyy

The covariant derivative of a cross-section gives a cross-section. By expressing it in local
coordinates, we will make appear the Christoffel symbols.
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Let 7 : E — M be a vector bundle of rank r and consider (U, = z!,...,2™) a local
coordinate chart such that there is a local trivialization h : U x R" — E|y. We can define a
local basis of r local section defined by

e,: U — E|y
p ~— h(p,(0,...,0,1,0,...,0))

Thus, for each pe U, (e1(p),...,e(p)) forms a basis for the fibre E,,.

Now we want to apply the covariant derivative to these sections along the vector fields
formed by the standard local frame of TM (¢4,...,0n) given by the local chart. The new
sections obtained can be expressed in the local basis (ex)r so we define

k
Vaj €p = thek

where I‘?h € C*(U). These functions are called the connection coefficients or, in the case of
the tangent bundle, they are known as the Christoffel symbols.

We can then express the covariant derivative in local coordinates : let s € I'(U) a local
section and X € X(M) a vector field. Then we have the decomposition X = X79; and s = s’ej,.
The covariant derivative of s along X is then

Vxs = VX(sheh) = X(sh)eh + Stheh
= X (s")ep + Sthjajeh
= X(sh)eh + shXjV@jeh
= X(sMep, + I‘?hshXjek
= X(s")er + I’?hshXjek
= (X(s%) + I’;’-‘hshXj)ek
Actually, there is another standard definition of these connections in terms of connection
one-forms that we can write in a matrix. The connection one-form defined in this way is a
matrix of one-forms w = [wk] where
wy = Tix’
1

are one-forms defined on the coordinate chart (U, (x',...,2")) which is associated to V w.r.t.
the local frame.

Curvature

Let m : P — M a principal G-bundle and let HP = {H,P/p € P} its connection. We
have already defined ® : TP — V P the vertical projection. In the same spirit, let’s define
h : TP — HP the horizontal projection, i.e. for all p e P, h, : T,P — H,P is the projection
on Hy,P parallel to V,,P. By this, we can define the exterior covariant derivative of a form.

Def. 8.2.11 (Exterior covariant derivative) Ifw is a k-form on P, we define the exterior
covariant derivative Dw to be horizontal (k + 1)-form defined by

Dw(Xl,...,Xk+1) =dw(hX1,...,th+1) (8.24)

where X1, ..., Xpy1 are vector fields on P.
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and the curvature

Def. 8.2.12 (Curvature) Let w be a connection one-form defined on the principal G-bundle
w: P — M. We define the curvature two-form € to be the exterior covariant derivative of the
connection, i.e.

Q= Dw (8.25)

We can give an explicit formula of this curvature two-form through the Cartan structure
equation :

Theorem 8.2.3 (Cartan structure equation) Let w be a connection one-form and let
Q = dw be its curvature two-form. If X and Y are vector fields on P, we have, for allpe P :

Qp(Xp, Yp) = dwp(Xp, Yp) + [wp(Xp), wp(¥p)] (8.26)

Proof. Since we have the direct sum T'P = VP ® HP, and since we have linear functions in
the equation, it suffices to show the equation in three simple case.

1. X and Y are horizontal. This case is the easiest because we have then that w(X) =0
and w(Y) = 0. For the remaining term, we have by definition :

Qp(Xpa Yp) = Dw(va ng) = dw<hp(Xp)v hp(Yp)) = dw(va Yp)
since X and Y are horizontal.

2. X and Y are vertical. By (8.11), there exist &,7 € g such that X = X and Y = Y.
Now by equation (?7) we have

dw(XE,YT) = XS (w(Y") = Y (w(X*)) — w([X*,Y7)

But the point iii) of proposition 8.2.1 guarantees that wp(Xg) = ¢ and wp(Y) = n so
they are constants and applying a vector fields annihilate them. For the second term,
we have that w([X¢,Y"]) = w(X[&M) = [¢, 1] and hence the right hand side of equation
(8.26) vanishes. On the other hand, the left hand side is automatically 0 since X and Y
are vertical.

3. X is horizontal and Y is vertical. Since X is horizontal, then w(X) = 0 so the commutator
vanishes and Q(X,Y’) = 0 because Y is vertical. It remains to show that dw(X,Y’) = 0.
Now, doing the same procedure as in the previous case, there exists 1 € g such that
Y = X" and we can write

dw(X, X7) = X(w(X")) = X"(w(X)) = w([X, X"]) = —w([X, X"])

because w(X") = n is constant and w(X) = 0 because X is horizontal.
(tn)x (X)-X

Jex
But we have the Lie derivative [X, X"] = —£x»X = }ir% =

t
X is horizontal, the right action on it gives also a horizontal vector field, and so the
difference by vector space structure. This proves that [X, X"] is horizontal and then
w([X, X)) =0

. Hence if
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To finish this chapter, let’s rewrite this formula in a local way.

If we denote by B = {v1,--- ,v,} a basis of the Lie algebra g. Then equation (8.26) can be

rewritten as :

1
0% = dw® + §cgcwb A we (8.27)

Indeed, let write in the basis B, w = w%v, and = Q%,. Hence, we have

dw(X,Y) = dw®(X,Y)v, (8.28)
And
w(X),w(Y)] = [ (X)vp, 0 (Y)ve] = w0’ (X)w (V) [vp, ve] = (X ) (Y )chva
But
G (XN (V) = 3 [ (XN (V) + elhot (X) (V)
= 2 [ (0w (v) — et (X))
= %cﬁcwb(X) Aw(Y)
Finally )
[w(X),w(Y)] = fcgcwb(X) A WY ), (8.29)

2
And adding (8.28) and (8.29) we get the result.
We also have the famous Bianchi identity
DQ =0.

An example : connection in a straight bundle

Let m: E — M a complex vector bundle of rank 1 (called a straight bundle where each
fiber is diffeomorphic at C) on a base manifold M and place a connection on E

V: X(M) x [(E) — T(E).

If U ¢ M is an open, any local section of E will be e; € I'(E) such that m o e; = idy; in
particular if e; it is not canceled out on U, then it constitutes a local frame for E: we have
that every other section s € I'(E) will be written in the form s = sle; with s! € C®(U) with
values in C. If we then identify U with the domain of a local chart (U, ) associated to the
local coordinates x',..., 2™ on M, then the local description of the connection will be

Voe1 = Lier, (8.30)
If we take X = X70; € X(U) and s = s'e; € I'(E) we find that
Vxs=Vx(sler) = X(s')er + Slejé\jel = X(s')e; + sl(XjVajel)
= X(sY)er + s XITje; = (X (s') + XI5 e
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and, without indicating the local frame, we get the simpler formula, Vxs' = X(s!) +
XIT;s!; if in addition X = ¢;, then

Vo s = 08t + Tyst. (8.31)

What is also interesting is how the connection change when we change the local frame.
If e1, €1 are two different local frame of F on the open U we can express one in terms of the
other as é; = he; with h € C*(U) with complex values, then we will have Vj,e; = I'je; and
V€1 = jeq; in particular the connection coefficients transform according to the following
law:

v(?iél = Vai(hel) = (&’ih)el + hljer = (é’zh + hl“z-)el
= (@h + hFi)h’lél = (Fl + h’lél-h)él,
whence it is obtained
T} =T; +h 0;h.

J

We also know that a connection one-form is a matrix w = [wf ] where w; are one-forms.

In this case w is a matrix of order 1, therefore it will be
w=w] =Iix’ =T’
And using Q = Dw, we can find the curvature 2-form Q = Q;;x* A x7 :

Q= (@Fixj) A )gi = (@Fi — (%-Fj)xj A Xi
= ((%Fj - @-Fi)xi A Xj,

from which we get

Fij = (%Fj — é’]Fl (832)

8.3 An application in Physics : the case of electromagnetism

In this section, we will treat a remarkable application of the fibre bundles and connections
theory in a physical context: gauge theories. We will see that the Lagrangian of a free
relativistic particle is invariant under the global action of group U;(C); by introducing a
principal bundle with this structural group on the R* manifold - spacetime - it will be possible
to introduce a covariant derivative (i.e. a connection) that safeguards its shape even for a
local type of action and subsequently defines a curvature. In this way it will be possible to
reinterpret the force exerted by the electromagnetic field as the physical manifestation of this
curvature.

8.3.1 Some recall on electromagnetism

Electromagnetism is the study of the electromagnetic force, an interaction between electrically
charged particles, one of the four fundamental interactions. Originally, the electricity and
magnetism were seen as two different forces but works done in particular by Maxwell and
Faraday show that these two forces can be seen as two faces of a same interaction : this yields
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to electromagnetism. One of its particularities is that it is compatible with special relativity.

In the following, we will place ourselves in the spacetime R?* seen as a (pseudo)Riemannian
manifold equipped with the Minkowski metric  with signature (4, —, —, —).

The spacetime components x € R* will be denoted z* with 2" = ¢t where ¢ is the speed
of light.We will boldly indicate the points of spacetime while we will mark the vectors in
ordinary three-dimensional space with arrows. The Greek indices (as in z#) will vary from 0
to 3, indicating the spacetime components and in particular the variable 20 = ¢t - denoting ¢
the speed of light.

The electric field and magnetic field will be indicating by E=E (t,7) = (E', E?, E3) and
B=L (t,7) = (B, B2, B?). As for the charge density and current density p = p(t, ) and

7 =7t %) = (5% 4% 7% can be put together in the quadrivector J = j* = (cp, 7) called
quadricurrent.

Now let us recall Maxwell’s equations in their classical differential form that show the link
between the magnetic field and electric field :

V. E=" (8.33a)
€0
V-B=0 (8.33b)
-~ - 0B
VxE+—=0 (8.33¢)
ot
> o 1 0E
VxB- "= 8.33d
8 c2 ot =HoJ ( )

Since we have the identities of the analysis v x (VF) —0and V- (V X F) = 0, then by
the last identity, equation (8.33b) suggests that we can introduce a vector field A= A(t T) =
(A, A%, A3) such that B=V x A called potential magnetic field vector; in this way we have

. [B BA® —03A%]
B=|B?| =|034' - 0,43 | =V x A. (8.34)
B3 01 A2 — 0y A

Now expressing the magnetic field in terms of this potential magnetic field vector in
equation (8.33¢) we obtain

(VxA)=V x (E—i—),
ot
and by the first identity, we can introduce a scalar field ¢ = ¢(t, ), called scalar potential

such that
E! —0t At — Oy -

=|E?| =|-0A2 - Osp | = —— — V. (8.35)
E3 —04 A3 — O3
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Now we can combine these two potentials into a single potential quadrivector of the
electromagnetic field :

A=AF= (A" A) = (%,Z).

This potential quadrivector is not univocally determined : indeed is we consider the
quadigradient of a scalar function A : R* — R there is an invariance (called gauge invariance)
under the following transformation:

— N — —
(2.2) (L) (2182 ).
c c c cot
The gauge consists in the choice of the A function. Two of the main choice of gauge is the
Coulomb’s gauge where we impose N
V-A=0
The other (the one that we will take here) is the Lorentz’s gauge where we choose a A such
that 0,A4% =0, i.e.
10¢ = -
————+V-A=0
2 ot

In this case, Maxwell’s equations become

1 0% ¢
C—QﬁE—Agb:ng:uocp:,quo
124 - o

where A indicates the Laplacian in the spatial components and O indicates the Dalembertian
operator. These two equations can be put together in the form

OA* = ;LoJu.

8.3.2 Elements of analytical mechanics

The dynamic of a physical quantity can be described by a physical quantity, called the action,
on which we do a variational principle.

B
Saop = J L(s)ds
A

where s represent the position of the system in phase space. The least action principle states
that, on all possible trajectories, the one taken effectively is the one making the action extremal.
Usually, for a material point, the phase space is constituted with the position Z and the speed
7 of the material point and the action is written

t1

SO = [ L(20.70)d,

to

where L : R3 x R3 — R is an appropriate Lagrangian function.
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In classical mechanics, the Lagrangian is given as the difference between kinetic energy
and potential energy:

. 1 .
L (z f) = SmlFP -V (@),

The Hamilton’s variational principle states that the evolution of a system minimizes the
action : this principle leads to Euler-Lagrange equations that describe the motion of the

System:
d oL oL

dt ozt Ozt

In the case of field theory, the notion of particle transforms to the concept of fields that
can be seen as functions on space time with complex value. A particle is then an expression of
an excited state of the physical field. In this case, we take into account the interaction of the

particle in the Lagrangian by terms of interaction with the fields. If the fields are denoted by
Y1, : R* = C, then we have

=0.

L(x,%) = L £ (), Buthe()) dx

where £(v(x), 0utPr(x)) is the Lagrangian density and (2 is a subset of spacetime.
As before, we can define the action by the integral of the Lagrangian between to instant
and doing Hamilton’s principle, we derive the Euler-Lagrange equations in this case

oL oL
Oy = —. (8.37)
Now, the importance of investigating the action is that we can deduce conservation laws
by looking at invariance of the action. This is the famous Noether’s theorem

Theorem 8.3.1 When the equations of motion (or, equivalently, the action S) are invariant
under a continuous symmetry, there is a conserved current when the equation of motions are
satisfied.

Note that we can have two types of symmetries : symmetries of the Lagrangian under
a transformation of the coordinates and internal symmetries of the Lagrangian that do not
correspond to transformations on spacetime coordinates but characteristic of a field. In the
following development, a field will be seen as a section of a bundle on R* and an internal symme-
try will be when the group action will be on the fiber points and not the point of the base space.

In our case of interest, we will look at the particles of the electromagnetic field : a photon 7.
To specify its state, we need its spacetime position on the manifold R* but also the polarization
of the wave. If you do a rotation on the direction of oscillation, then the photon will still be
at the same coordinates : an internal symmetry is then given by the action of the group of
rotation Uy (C) acting on the polarization plane.

8.3.3 U;(C) gauge theory

We now begin to introduce the Abelian gauge theory with gauge group U;(C) which describe
electromagnetism.
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We consider the Lagrangian density of a free relativistic particle which do not interact
with other fields or other particles. In this case, £ will depend only in the field of the particle
and its derivatives. If we call ¢ : R* — C the complex scalar field of the particle of mass m,
then the Lagrangian is given by

m2c?

_ 1 _ _
L(, 1, 0pth, 0p1p) = §>\ {77’“’%1/151/1/1 ~ T WJ] ; (8.38)

This Lagrangian has the particularity that it is invariant if we act on the field by an element
of the group U;(C). Indeed, let o € R and let do the transformations :

Y= =, =T, (8.39)

then the Lagrangian £ = L(¢', v, 0,4, 9,4) transforms as follows

L=

r 2.2
o O — w’w]

i m2c?

PO DAD) - T )|

[ | —lia, puv " m202 o
elae 7’]“ 5u¢au¢ — h2¢'¢:| = ,C

N~ NI~ N~

Now one of the problem in our model is that we have to take into account the locality
principle i.e. that distant objects cannot have instantaneous mutual influence. In this case,
we can ask how to compare physically the field in two distinct points ¥ (x), ¥(y).

Mathematical description of the problem

One way to solve this problem mathematically is to attach to each point x of spacetime a
copy of C to which belong the value of 1(x). To do so, we introduce a fibre bundle structure
of base manifold R? : in particular, we introduce a Uy (C)-principal bundle 7 : P — R to which
we associate a vector bundle 77, : L — R* where L = P Xy, (cy C which is a line bundle, on
which U;(C) acts with the classical multiplication.

In this case, the field 1) can be reinterpreted as a differential section of L. More precisely,
to each open U of R*, there is s = ¢ : U — L|y = 7~ }(U) such that 7, 0 s = idy and for all
x, Y(x) € Ly = n1({x}) = C.

As for the example made in the previous section, if we have a local frame e; € I'(L), the
section s will be written s = 1te;, with 1! € C®(U) with value in C. In all the following, we
will identify the section with the field.

Now, a difference about what was done before is that it is reasonable to assume that the
group action U;(C) depends on the point where it is applied. In fact, mathematically, this
dependence is to take into account that the value 1 (x) belong to the fibre Lx. Then the
problem of comparing to field at two distinct points can be overcome by defining a connection
on L and then do a parallel translation to identify the 2 fibers Ly and L.
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Hence here, we replace the multiplication ¢ by ¢'®X) where o : R* — R. The transforma-
tions of the field are then

b —> w/ _ eioz(x)w7 @ _ W — e*ia(x)a_ (840)

Now we need to see if the Lagrangian keeps its invariance if we apply this new transformation.
For the derivatives of the field, we have the following transformations :

0t = 0 () = i0,a(x)e 0y + 0,0,
0 = 0 (790G = —idua(x)e NP + ¢TI,
The invariance of the Lagrangian is lost !

In fact, the lost of the invariance can be understood as the fact that the standard directional
derivative is no longer well defined on the field 1 seen as a section. The solution is to introduce
a connection on the bundle L that will give us a covariant derivative V,, to replace d,,. This
will give a properly derivative of the field .

To do so, we introduce a field, called gauge field, which transforms in a way to preserve the
invariance of the Lagrangian. We denote A = A,, (in fact, we are looking at the coefficients of
the differential form corresponding to the field A* by A, = n,,A").

The transformation that we ask (and that we can retrieve, see below) is the following

1
Ay — A=A, — gﬁﬂa(x). (8.41)

where here ¢ is the charge of the particle!. Then the connection is V : X(R*) x I'(L) — I'(L)
which maps (0, s) — Vs, where the operator V,, is defined by the position
V= 0y +igA,.
Since we are in the case of a bundle of rank 1, we have the identification
'y, =iqA,
We can thus replace 0, in the Lagrangian by V,, to get
L, 0, 0uths Outp) — L, 0, Quth, Qutp, Ap) = L, 9, Vb, V).

We can remark that the action of U(1) on 1 induce in fact an action on the local frame
e1. Indeed, if e; and €; are two local bases of L, then any section s € I'(L) can be written
s = 1le; = ¥'é,. Hence, we have

Pleg = s = Pley = °Mye; = e = Mgy,

'Tn general, if o : U — P is a local section of a G-principal bundle P — M, and if we define A := ¢*(w) where
w is a connection of the principal bundle, then for every principal automorphism ¢, there exists some Q2 : U — G
such that for all z € U, o(x) = ¢ 0 o(z)Q(z). In the case, the transformation of the local representative A can

be written :
Ap(z) = Ux) A (2)27 (2) + Q(2) 0,27 ().
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i.e. that the e; transform with the action of U1 (C) as

io(x)

€] — él =e €1.

We can also note that U(1) also acts on the gauge potential, and this will allow us to get
the transformation given by (8.41). Indeed, if we have two local bases of L, e; and é; such
that & = e71*X) then we have T',, = igA,, and I, = igA),. Let’s see how I';, and T}, are related

F;Lél = V#él = Vu(e_ia(x)el) = aﬂ(e—ia(x))el + e_ia(x)vuel
= —iaﬂa(x)e_io‘(x)el + e_ia(x)f‘“el
= —i&ua(x)e_io‘(x)ei“(x)él + e_io‘(x)f‘ueio‘(x)él
= (I') —idua(x)) €1,
hence we have T, = ', — id,a(x).

Now, it remains to see if indeed the new Lagrangian is invariant by the action of Uy (C).

Since we have introduced a new field, we need to take it into account in the Lagrangian. We
need to add another term L£a that depends only on the gauge potential A and its derivatives
and we construct it so that it is invariant under the transformation of the gauge potential.
The new Lagrangian of electrodynamics is the following

£ED(¢7 %7 V;ﬂpv W7 A7 aMA) = 5(1/17 @7 V;ﬂ/’a W) + ﬁA(A—a auA)

Let’s see if the first term of the Lagrangian is now invariant by the action under the
transformations (8.40) and (8.41).

The new Lagrangian is written

m2c?

_ — 1[ . - _
E(d}’ wv vu¢7 V;Lw) = 5 [U“ Vu¢vu¢ - 7121/”7/}]
Let’s see how the terms V2 transforms by the action of the group :

Vi = (0, +1qA) )0 = (0, +iqA, — id,a(x)) (eia(x)¢>
iaﬂa(x)eia(x)Qﬁ + eia(X)auw + iqAHeia(x)w _ iauoz(x)eia(x)qb
— ola(x) (au + iun) W = eia(X)v/ﬂ/}

Similarly, the term V4 is transformed according to the law

Vit — Vi = e 20V,
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Finally, we have

L= L,V V)

[ m202 0
TIWV;LWVI,/W _ th/w/]

B 2.2

7 (#0) () < () ()

[ - m?? —
"N WV — hQWﬁ} =L,

N = DN = DN

Hence the new Lagrangian is now invariant by the action of the group U(1).
Curvature and electromagnetic field

Now that we have a connection, we can look at the corresponding curvature 2-form
Q= Qux* A x” given by the formula (8.32)

Q= 0,(1gA)) — 0, (1gA,) = iq(0uAy — 0L A,) = igF L,

where we have set F),, := 0,4, — QVAHQ. It is the coefficients of an antisymmetric 2-covariant
tensor. Hence F' = F),, dz* A dz" is a differential 2-form. It is also an exact form because it
can be written as the exterior derivative of the 1-form A = A,dpu

F=dA = (0,A,dz") A da
= (0,A, — 0,A))dx” A dat = Fjdat A da”.

We can remark that this tensor is invariant under the action (8.41) of the group U(1)
Fu — F, = 0,A, — 0,4,
1 1
=0y <Al, - 6ya(x)> — 0y (A# - @La(x))
q q
1 1
= 0,A, — gﬁuaya(x) —0,A, + gé’,,aua(x)
= 0,A, — 0,A, = Fpy.
In terms of matrix representation, F' = [FW], can be written in the form

Foo Fo1 Fo2 Fos
Fyg Fu1 Fio Fi3
Foo Fo1 Fay Fos
Fso F31 P32 F33

2In the case the group action is an non-abelian group, we would have additional terms with the commutator
on the field. Mainly, we would have

F,, =0.,A, —0,A, —ig[Au, AL]
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Now seeing the components A, as the components of the potential quadrivector of the
—
electromagnetic field A = A* = (¢/c, A), and remembering that we can identify oy = 10, this
matrix can be expressed in terms of the electric and magnetic fields. We have in particular

Fo1 = doA1 — 014¢ = —%@Al — <¢> 1

C C

1 1
Foo = 0gAz — 0240 = —EatA2 — 02 (i) = EEQ

1 1
Foz = 0pAs — 1 Ao = —Eat/ﬁ — 03 <i> = EEB

Fiog = 0149 — A1 = —61A2 + 52141 =-B3
F13 = 51A3 — 53A1 = —61A3 + 53141 = B2
Fyy = (92143 — 0349 = —(92143 + 63A2 = —Bl,
Finally we get the tensor
0 El'/Je E?/c E3/c
~E')e 0 —-B3 B?

~-E%*)c B* 0 -B!
—E3/c -B? B! 0

F =

which is the Faraday tensor. Hence the electromagnetic fields is the manifestation of the
curvature associated to the connection on the fibre bundle 7 : L — R*. 3

Maxwell’s equations
Finally, let’s go back to Lagrangian and see how we can retrieve Maxwell’s equations.
In the Lagrangian, we have still one unknown in the choice of the added term of the

Lagrangian £a. This term must be a scalar and should be invariant under the action of the
group U(1). A solution is to put

1
LA =3 FuwF", (8.42)

Finally, the total expression of the Lagrangian is

1 y — m2? — 1 y
Lep =L+ LA = B [77” VupVyth — hQWﬁ} - ZFMVF“
1 . . — m22 1 »
- 5 |7 @+ 04000, — 10T - | - (R
1, — L — — , . m*Z — 1 »
= S (0] + G0 el Aubd b — Ao — igAuAT] = T — JFu .

Now, the choice of Lo was made so that with this Lagrangian, we could retrieve Maxwell’s
equation. Indeed, let go in vacuum where there is no particle. In this case, the Lagrangian
reduce to the term L. First we get

3The curvature is physically expressed as the force of the electromagnetic field.
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1 1
Lop=La =~ FuwF" = =2 (@A, = 0,A,) (0" A" = & A"
1 14 v v v
=~ (0uA A — 0, A" A — 6, 4,0 A + 6,4,,0" AV)

1
= 5 (0u A" A — 2, 4,07 AP).

And the Euler-Lagrange equations associated with this Lagrangian are :

oL oL
0, A (8.43)
(0,A,) 04,
Since the Lagrangian does not dependent on the components of the gauge potential, the
second term vanishes. For the first term, we have

0LA 1 1 1
= ——(0"A¥ — O*AY) = ——F"H = _FH
0(0,A,) 2( ) 2 2
Hence, Euler-Lagrange equations are finally given by
o, F* = 0. (8.44)

This equation in fact is a covariant form of two of the Maxwell’s equations.

Indeed, take p = 0. In this case we obtain Maxwell-Gauss equation :
0=0,F% = g F® + o, F% = —%&Ei — V.E=0
Now taking u = 4, this will lead to Maxwell-Ampere equation :
For example, if i = 1, we find
0= 8, F = ayF'0 1 9, FY — C%atEl  Oy(—B%) + 0382,

which is equivalent to 0283 — 03B% — c%étEl = 0 and is the first component of the vector

equation R
- o 10F
VxB—-——=

c2 ot

The other components are obtained by taking i = 2, 3.

0;

It remains to find the two last equations. This will be done thanks to Bianchi’s identity.
From the curvature 2-form Q = igF),, dz" A dz¥, we have

0= DQ =dQ = (3,02,dz*) A da” A da”
= (008, — 000y + 0500 — 05Qay + 05 Qap — 05 Qpa)dz® A da’ A da?
= 2(0a8 + 0500 + 05 Qap)dz® A da? A da?,

Hence we get daf23, + 080ya + 0482ap = 0, and this leads ultimately to

Oalp, + 0gFyo + 0y Fop = 0. (8.45)

We can then derive the two last equations :
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e Maxwell-Flux is obtained by only looking at space variables i.e. taking a8y = ijk. We
get
0 = 01Fy3 + 02 F31 + 03F12 = 01(—B") + 02(—B?) + 05(—B?),

which is nothing less than

- —

V-B=0;

e For Maxwell-Faraday, we take a8y = 0ij. In this case, setting for example ¢ = 2 and
j = 3, we have

1 1 1
0 = 0gFo3 + 0230 + O3Fpe = E@(—Bl) + 262(—E3) + Eag(EQ),
i.e. 03F? — 023 + %(%B 1 which is the first component of the vector equation

-~ - 0B
EF+—=0.
Vx E+ o

and the two other components are obtained by taking afy =012 and afy =01 3.
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PART 11:

HOMOGENEOUS SPACES AND
HYPERBOLIC GEOMETRY

The ‘uproar of the Boeotians’.
(ATTRIBUTED TO) CARL FRIEDRICH GAUSS
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Chapter 9

Homogeﬂeous Spaces (Antoine Guennec and Edoardo

Provenzi)

A homogeneous space X is to be understood as a space that remains stable under a group of
transformations G' and such that its points are all ‘connected’ by the transformations of G. In
the theory of homogeneous spaces, the main attention is concentrated on the transformations
of G and not on the elements of X, the reason underlying this is is given by the stabilizer-orbit
theorem, which says that X can be reconstructed via a suitable quotient of G. This result will
allow us to exhibit extremely important examples of homogeneous spaces.

9.1 Preliminaries : group actions and linear transformation
groups
9.1.1 Group actions

In this section we shall consider G to be a group and X a non-empty set. 15 denotes the
neutral element of G.

Def. 9.1.1 The action of a group G on X is given by an operation

n: GxX — X
(g.x) — n(g,x):=g-x

which verifies, for all z € X and g,h € G:
1. 1g-x==x
2. g-(h-z)=(gh)- .

If we fix any element g € G, the group action 1 induces a bijective function on X by 7, : X — X,
x — ng(x) = n(g, ), its inverse being obviously 7,-1. This remark shows that, if G acts on X,
then it can be seen as a subgroup of Sym(X), the group of all bijective functions on X and
the action 7 can be equivalently characterized by the group homomorphism 7 : G — Sym(X),
g — 7(g) := ng. In fact, requiring 7 to be a group homomorphism we assure that 7(1g) = Idx,
hence 7j(1g)(x) = x Vo € X, and 7(gh) = 7(g) o (k) = ng o nn, so 7(gh)(x) = (gh) -z Vx € X.

Example 9.1.1 Some basic examples of group actions are listed below.
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1. The usual multiplication by a scalar belonging to the field K on which a vector space V'
is defined is a group action by interpreting K as G and V as X:

vl vl

A= |, AeK, v=(v!...,0") eV

2. The usual matrix multiplication of GL(n,R) on the vector space R™ is a group action.

3. X ={1,2,3}. Then, any subgroup of S3, the group of all permutations of X, for example
As ={Id, (123), (132)}, operates as a group action on X.

4. X = Dg(0,1) = {(z,y)! e R? : 22 + y? < 1}, the unit disk in R?, and

G:SO(2):{<COS0 sin19>’196[0727r)}’

—sind cosd

the group of rotations in R?. Then, G operates on Dg(0,1) by matrix multiplication.
5. X = D¢(0,1) = {z e C: |z] < 1}, the unit disk in C, and
G=U(1):={e?: 0e[0,2n)},
the group of rotations in C. Then, G operates on D¢(0,1) by matrix multiplication.

We now define the most important subspaces of X and G associated to the action of a
group: the orbit and the stabilizer, respectively.

Def. 9.1.2 Let the group G act on the set X and fix any x € X.

1. The G-orbit of x is the subset of X given by:
Orb(x) ={g-z:9ge G} c X,

i.e. all the elements y € X that can be connected to x by a transformation g€ G: y = g-x.

2. The stabilizer group of x (or isotropy subgroup, or little group of =) is given by:
Stab(z) =G, ={9eG:g-x =z} c G,
i.e. the set of transformations of G that act as the identity on x, leaving it unaltered.

The use of the word group for the stabilizer of x € X is not accidental, one can easily prove
that Stab(x) is a subgroup of G.

Def. 9.1.3 (G-homogeneous space) We say that X is a G-homogeneous space (or that G

operates transitively on X) if it exists at least one x € X such that X = Orb(x), i.e for all
y € X there exists an element g € G such that g - x = y.
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It is easy to see that the request of existence of at least one element x of X whose G-orbit
is the whole X is equivalent to the fact that the G-orbits of all the elements of X are the
whole X. In fact, consider two arbitrary elements y, T € X, then there exist g, g € G such that
g-x=yandg-z=2,ie =g ! -7 50 (g9 !) 2 =y thus also Orb(z) = X. Hence, a
G-homogeneous space has only one G-orbit: X itself!

Often, a G-homogeneous space X is defined by requiring that, for any couple z,y € X,
there exists at least an element g € G such that g - x = y. The two definitions are of course
equivalent.

Consequently, a homogeneous space is fully ‘connected’ by the group that operates upon
it: any point of X reaches any other point via a group transformation. This property is often
popularized by saying that, set-theoretically speaking, in a homogeneous space, no point is
more important than other, which explains the adjective ‘homogeneous’.

Example 9.1.2 Consider again the group U(1), the unit complex disk D¢(0,1) and its
contour dD¢(0,1) = {z € C: |z| = 1}. Then, dD¢(0,1) is trivially U(1)-homogeneous
because for any couple of points z, w on the unit circle in C separated by the angle 6, we have
that w = e'z.

However, D¢(0,1) is not U(1)-homogeneous, in fact for any z,w € D¢(0,1) and any
6 € [0,27), if we write w = ez then |w| = |z|, thus it is enough to consider two elements
inside the unit disk with different modulus, e.g. z = % and w = %z’, to exhibit a couple of
points of D¢(0,1) that cannot be connected by a transformation of U(1).

The same considerations can be repeated in the real case to prove that the contour of the
real unit disk, i.e. dDg(0,1) = {(z,y) € R? : 2 +y? = 1} =~ S1, is SO(2)-homogeneous, and,
of course, also O(2)-homogeneous, but the disk itself Dr(0,1) is not SO(2)-homogeneous.
In spite of the fact that Dg(0,1) is not homogeneous w.r.t. rotations, we will see that it is
homogeneous w.r.t. hyperbolic rotations.

Example 9.1.3 The subgroup H of a group G is always a G-homogeneous space. In fact, the
unit element 15 of G belongs to H and it is connected with all the other elements of H. To
see this, take any h € H, then h belongs also to G, so h = 1 - h, which shows the transitivity
of G on H.

We now come to the most important result of this section. To introduce it, we first recall
that, given a group G, a fixed element g € G and a subgroup H of G, the left coset of H in
G relative to g is the set:

gH :={gh : he H}.

For all fixed g € G, belonging to the g-left coset of H is an equivalence relationship on G,
thus, as g varies in G, we subdivide G into disjoint subsets, the cosets gH. The union of these
classes is the quotient space G/H:

G/H :={gH, ge G} ={{gh : he H}, ge G}.

G/H is a group if and only if H is a normal subgroup of G, where H is called normal if it
is stable under conjugation by elements of G, i.e. if YVh € H and Yg € G it holds ghg™! € H.

Clearly, the easiest case is represented by H = {15}, in this situation it is evident that
G / lg = G.
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To introduce the paramount important orbit-stabilizer theorem, we first notice that, for
every fixed z € X, the map
G — Orb(x)
g —> gz
is surjective by definition of orbit but, in general, is not injective. However, as the following
result says, if we quotient G on the stabilizer of z, then we remove all possible
redundancy and we remain with a bijection.

Theorem 9.1.1 (Orbit-stabilizer theorem) Let x,y € X and G a group acting on X.

1. The map R
G/Stab(m) - Orb(x>

gStab(z) +— g-xz (9.1)

1s bijective.

2. Orb(z) = Orb(y) = 3g € G such that gStab(x)g~' = Stab(y), i.e. if the orbits of
two elements of X coincide, then their stabilizers are conjugated by an element g of G,
and, as such, they are isomorphic to each other.

Proof.

1. First of all, let us check that the application (9.1) is well-defined, i.e. it does not depend
on the choice of the representative in the equivalence class g Stab(z). If h € g Stab(x), there
exists k € Stab(x) such that h = gk, then h-z =g - (k-z) =g -z

Injectivity of (9.1): let g, h € G such that g-x = h -z, we must prove that this implies
gStab(z) = hStab(z). To do this, notice that (h~'g) - = =z, so h~'g € Stab(z), i.e.
g € hStab(z). However, g belongs also to g Stab(z) because 1g € Stab(x), hence g belongs
to the intersection of the equivalence classes h Stab(x) and g Stab(x), which, however, are
disjoint. Thus, the only possibility that remains valid is that g Stab(xz) = h Stab(z).

Surjectivity of (9.1): any y € Orb(z) is written as g - x = y for some g € G, but then it is
the image of (9.1) because any element of g Stab(z) can be written as gk, with k € Stab(x),
so (gk) -z =g-(k-x)=g-z=y.

2. We assume Orb(z) = Orb(y), then thereisa ge G such as y = g-r <= g~ 'y = z. Now
suppose h € Stab(x) and observe that:

(ghg ™) y=(gh)- (g " y)=(gh)-x=g-(h-2)=g-z=y.

Consequently, g Stab(x)g~! € Stab(y), i.e. g Stab(x)g~! < Stab(y). By interchanging the roles
of z and y, we find the opposite inclusion Stab(y) < g Stab(z) g~ !, so g Stab(x) g~! = Stab(y).
O

If X is G-homogeneous, then Orb(z) = X for all z € X, thus the orbit-stabilizer theorem
implies the following, fundamental, result.
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Corollary 9.1.1 If X is a G-homogeneous space, then, for any fired x € X :

1. the map

G /Stab(z) - X (92)
gStab(z) +— g-z
1s bijective, i.e.
X=G /Stab(:r)7 (93)
so, every G-homogeneous space can be identified with a suitable set of trans-
formations.

2. the stabilizers of all elements of X are conjugated, and thus isomorphic, to each other.

In Figure 9.1.1 we provide a graphical interpretation of a homogeneous space.

X
// ‘ ‘ ~_
| N D g
o] ,“‘%As iy\
.““ s“ hy
:, ! s )
| /9 wd z
S
o<
y

Figure 9.1: Fixed =z € X, every other element in X can be viewed as a transformation acting
on x, i.e we identify y with all the transformations of G that allow us to pass from x to y
modulo the transformations of the stabilizer in z. In the picture gy = g1k, with k € Stab(x).

Example 9.1.4 The straight lines in R™ are R-homogeneous spaces.

Let L = {up + Av : A € R} be the straight line in R™ passing through ug with direction v,
up and v are fixed in R™. Then the group (R, +) operates transitively on the set L via the
action

N: RxL — L
Nu) — (N u) i=u+ Av.
Of course, the stabilizer at any point of L is {0} because any other A # 0 will modify the
vector u on L. The orbit-stabilizer theorem gives us the bijection L ~ R /(= R.

Remark 9.1.1 If X a G-homogeneous space, it is often interesting to search for a subgroup
H of G whose action on X is still transitive and whose stabilizer is reduced to the unit element
1¢. If such a subgroup exists, then all the equivalence classes that compose the quotient group
w.r.t. H are reduced to a single representative and so the orbit-stabilizer group implies that

H =~ X, H transitive on X with trivial stabilizer.
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9.2 Linear transformation groups and spheres

We remind the definitions of the real and complex linear transformation groups. The symbol
(, ) will denote the real or complex Euclidean scalar product, respectively.

Def. 9.2.1 (Real matrix groups)

GL(n,R) = {n x n real invertible matriz} (general linear group)

GL*(2,R) = {ge GL(2,R) : det(g) > 0}

SL(n,R) = {ge GL(n,R) :det(g) =1}  (special linear group)

O(n) = {ge GL(n,R) :Va,y e R", {gz,gy) ={x,y)} (orthogonal group)

SO(n) = {g € O(n) : det(g) = 1} (special orthogonal group).

Def. 9.2.2 (Complex matrix groups)
e U(n) ={g9e GL(n,C) :Vx,y e C", {gz,gy) ={x,y)} (unitary group)
e SU(n) ={geU(n):det(g) =1} (special unitary group).

We also remind that S~ = {z € R" : ||z|| = 1} = R™ is the (n — 1)-dimensional sphere in R"
and S?"71 = {z e C": |z| = 1} = C" is the (2n — 1)-dimensional real sphere in C".

Remark 9.2.1 In finite dimension, a n x n matrix (real or complex) corresponds to a linear
applications f : E — E with E = R" or C*. However even if C” ~ R?", one should not mix
up R-linear and C-linear maps. A classical counter example is provided by f: C — C, z — Z,
which is R-linear but not C-linear.

In the case of orthogonal and unitary group, we have the equivalent definitions :

geO(n,R) «— g'g=1Id,
geU(n) — g'g=1Id,,
where g' = @t is the adjoint of g. This is easily shown by noticing that
(g'gz,y) = {gz,gy) = (x,y) Va,yeR" = (g'gz—z,y)=0 Vz,yeR"
— glgr=x VYreR"
= g'g=1I,
and equivalently in the case of the unitary group.

We introduce next some non-Euclidean transformation groups based on the Lorentzian
product.

Def. 9.2.3 We define the Lorentzian (or Minkowski) scalar product on R"! and C"+!
as :

n
e = D@l — Tnpynir = G T — Totiynn T,y e R
im1

n

— —_— s~ n+1
DT = T 1Tt = & 9) — Tnsyny zy e CM
=1
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where T = (21, ..., 2n)", §= (Y1,---,yn)t and {, ) is the Euclidean product in R™ or C™.
The linear groups of signature (n,1), also called Lorentzian signature, are the following:

e O(n,1) ={ge GL(n+ 1,R) : Va,y e R", {gz,gy)r = {z,y)}
e SO(n,1) ={geO(n,1): det(g) =1}
e Un,1)={9eGL(n+1,C): Y,y e C", {gz,9y)r = (z,y)L}
e SU(n,1)={geU(n,1): det(g)=1}.

The Lorentzian scalar product can be defined by using the Euclidean scalar product by noticing
that it holds:

apn =Gy wih = (1), (9.4

Similarly, the orthogonal and unitary group of signature (n,1) can be re-defined through the
conditions below:

geM(n+1,R), geOn,1) <= g'ng=r1 (9.5)
ge M(n+1,C), geU(n,1) <« g'ng=n. (9.6)

Thanks to Binet’s theorem, for all matrices g € O(n), O(n, 1), U(n) or U(n,1), it holds that
[det(g)] = 1.

9.3 Homogeneity of spheres under the group of rotations

The simplest and most intuitive homogeneous spaces are represented by spheres. We have
already seen that the circle S! is homogeneous under the action of rotations, SO(2) in the real
case, U(1) in the complex one. In what follows, we shall see that this result can be extended
to higher dimensions.

Notation: in the whole section (e;);j—1,., will denote the canonical basis of R™ or C".
Clearly, each e; belongs to the sphere S™~1 since their Euclidean norm is 1.

9.3.1 Spheres in R”

Before starting, it is worth mentioning that the action of GL(n,R) and its subgroups on R"
will be the usual matrix multiplication in this section. This will not always be the case in
homogeneous spaces, as we will see later on.

Theorem 9.3.1 Letn > 2.
1. "1 is SO(n)-homogeneous

2. Stab(en) — { (’5 (1)) he SO — 1)} ~ SO(n — 1)

By the orbit-stabilizer theorem, we get:

S"1 ~ SO(n) / S0(n-1) = Sl ~ {{g (g (1)> :heSO(n— 1)} , g€ SO(n)} .
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Proof.

1. To prove that SO(n) operates transitively on S™ !, we have to show that it exists at least
one element of S”~! that can be connected to all the other elements of S”~! via transformations
of SO(n). We are going to show that this element is eq, i.e. that Yz € S"~! 3g € SO(n) such
that ge; = .

Fixed z € S~ ! < R", thanks to the Gram-Schmidt orthonormalization procedure, we can
find z2, 23, ...,2, € S"~! = R" such that (x,z2,...,2,) is an orthonormal basis for R™.

If we use the vectors (z,z2, ..., %,) as columns of a matrix A, then we know that A € O(n)
and that det(A) = +1. To guarantee a determinant equal to 1, we slightly modify A by
considering the matrix

. |

g=1lz 22 ... €xn|,
| |

with € = £1 chosen such that det(g) = 1, in this way g € SO(n). By direct computation we
get gey = x, but o was arbitrarily chosen in S"~!, so the action of SO(n) is transitive on
S™~1. Notice that the matrix g depends on z because the Gram-Schmidt orthonormalization
is initiated by z itself.

2. Let us search under which conditions it is possible to build a matrix such that

s (1 3) e som

with he M(n—1,R), be M((n—1) x 1,R), ce M(1 x (n—1),R) and d € R that satisfies
gen = en. The set of these matrices will give Stab(ey, ).

First of all we notice that g € SO(n) < g}
direct computation we have:

= ¢', thus ge, = e, = e, = ¢'e,. By

b1 b1 0
® ge, = : , SO ge, = e, < : _|: < b=0p(n-1)x1) and d =1
n—1 bnfl 0
d d 1
Cc1 0 C1
o gle, = : , S0 e, = gle, <= - : < c=0paxm-1) and d = 1.
Cn—1 0 Cn—1
d 1 d
. . h 0 : . :
Hence, the desired matrix is g = 0 1) which belongs to SO(n) if and only if h € SO(n—1),
i.e. det(h) = 1 and h'h = I,_1. This shows that Stab(e,) =~ SO(n—1) and, since all stabilizers
of a homogeneous space are isomorphic to each other, S"~! =~ SO(n)/SO(n — 1). O

9.3.2 Spheres in C"

The results and proofs are the nearly identical for spheres in C" as for those in R™. The only
difference is that we need take some precautions with the determinant of C-linear applications.
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Theorem 9.3.2 Letn = 2.

1. 8?71 s SU(n)-homogeneous

2. Stab(en) = {(g 2) heSUn— 1)} ~ SU(n —1).

By the orbit-stabilizer theorem, we get:

S ~ SU(n) / SU(n—1) == Sl ~ {{g (g (1)) :heSU(n— 1)}, gEe SU(n)}.

Proof.

1. Fix an arbitrary z € $?"~! < C" and apply again the Gram-Schmidt orthonormalization
procedure to find zs, ..., 2, € §2"~! = C" such that (z, 29,...,2,) is an orthonormal basis for
C™. Also, let gg € U(n),

g=12z 2 ... €%, ], 60€[0,2m).

Then we have again gge; = z, for all § € [0,27) and, thanks to the properties of the
determinant, det(gg) = €% det(go) € S, where det(gy) = ¢*¥. We finish by choosing § = —¢
so that det(gg) = e~*e¥ = 1, in order to have gg € SU(n).

2. Exactly the same proof as in the real case, we simply need to replace the transpose matrix
by the adjoint matrix and SO(n) by SU(n). |

Remark 9.3.1 Since all n-spheres of different radius are isomorphic, we have exactly the
same results for spheres of positive radius, S% = {z € R : |z| = R}. This fact will be useful
later.

9.4 Homogeneity of the open unit ball: relationship between
projective spaces and hyperbolic rotations

We have seen that the contour of the unit disk in R? and C is a homogeneous space under the
rotation group SO(2) and U(1), respectively, but that the unit disks Dg(0,1) and D¢(0, 1)
are not homogeneous under the action of these groups.

In this section we are going to show that Dr(0,1) and D¢(0,1) and, more generally, the
open unit ball in R™ and C”, are homogeneous spaces w.r.t. the groups SO(n,1) and SU(n, 1),
the Lorentzian analogues of SO(n) and SU(n), whose action is implemented by hyperbolic
rotations. In order to show this, it is useful to embed R™ and C™ in the real or complex
projective space, respectively. For this reason, we begin by discussing the action of the general
linear group on projective spaces.
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9.4.1 The action of group GL(n + 1,R) on RP"

We have already seen in chapter 1 the real projective space

RP" = R"™1\{0} /gx= A o, A#03, C | #£05,
Un+1 Un+1

its twin brother is the complex projective space:
CP" = C"*1\{0} ¢,

R* and C* being R and C without their 0 element. Here we are going analyze more thoroughly
the projective space, for the sake of a smoother reading, we will fix our attention only on the
real projective space, knowing that everything we will write in this subsection also holds true
for the complex projective space, simply by replacing R with C and R* with C*.

Notation: in this section, the equivalence class R* - u € RP", v € R"*1\{0}, will be
denoted by :

Un+1 Ay 41

Notice now that, for every u € R™\{0}, the following map? is clearly an injection of R™ into
RP":

R™ < RP"
u [1;] . (9.7)
U1
Since every element v € RP™ can be written as v = l : , we have either v, # 0, and so
Un
Un+1

v= [ﬂ’ with u € R", or vp41 = 0, and so v = [g], with u € R™\{0}. Thus, the injection
(9.7) becomes a bijection between R™ and the set { ﬁ] Tu€ ]R"}. As a consequence, we can

split the real projective space in the following disjoint union:

= (] ver]o{f o)

~ RruRPPL
(9.7

Of course, we can iterate the splitting on the second set, obtaining:

RP"~R*" R - R U RPY.

! Geometrically speaking, we have seen in chapter 1 that the projective spaces is isomorphic to the set of
straight lines passing through 0 in R".

2The choice of setting to 1 the last coordinate is an arbitrary, yet usual, choice. Changing the position of 1
leads to an isomorphic decomposition in the following.
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The description of RP? deserves a special discussion: RPY is the quotient space R\{0} /gx,
i.e.

RP? = {{\u, A # 0}, u # 0} = {[1]}

a set containing a single R*-equivalence class, canonically chosen to be [1]. In the projective
geometry literature, [1] is denoted with oo and called the point at the infinite. So, to
resume:

RP" = R" G R™ ! - R L {oo}. (9.8)
We can now start with the definition of the action of GL(n + 1,R) on RP™:

GL(n +1,R) x RP* —» RP"
(9, [u]) = g [u] := [gu],

which is well-defined because, thanks to the R-linearity of g, for all A € R* we have:
g - [Mu] = [g(AMuw)] = [Mgu)] = [gu] = g - [u],

so the choice of the representative u in a class in RP” does not impact the action.
However, we notice that this action is not stable when restricted on R"”, interpreted as a
subset of RP" via the injection (9.7). To see this, take

A b
g= <c d> e GL(n + 1,R)

with A € GL(n,R), ce M(1 xn,R), be M(n x 1,R) and d € R, then, by direct computation?:

u Au+b Autb Au+b
. = — | cutd ~ R™
)g [1] [cu—i—d] { 7 e cu—i—de < cu+d#0,

lle

U
g (9.7

however, not all the matrices of GL(n + 1,R) satisfy the constraint cu + d # 0, e.g. for all

A 0
u € R™\{0}, the matrix g = < ut 1) with A € GL(n,R) belongs to GL(n + 1,R) but:
Tl
u A 0 (u) Au {AU] 1
g-u = g- = ut = utu = e RP"™ #Rn
(9.7) H <u|2 -1 \1 Juz ~ 1 0

9.4.2 Homogeneity of the open unit ball in R"

Even if the action GL(n + 1,R) is not stable when operating on R", its subgroup SO(n, 1)
acts in a stable way on the unit ball

B:=Bg(0,1) = {zeR" : (z,z) = |z|* <1} c R™

Even more, the action of SO(n, 1) is transitive on B. To prove this result, it is useful to show
that we can find a copy of the unit ball in RP™.

3cu € R because it is the matrix product of ¢ € M(1 x n,R) and u interpreted as an element of M(n x 1,R),
so cu is nothing but the Euclidean scalar product {c, u) if we interpret both ¢ and u as column vectors of R".
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Theorem 9.4.1 The unit ball B in R™ can be characterized as follows:
B~ B :={[u] e RP" : (u,uy; <0} c RP".

Proof. We start by noting that the constraint that defines B’, i.e. (u,uy;, < 0, is well-defined
in RP", in fact, for each [u] € RP" and A € R*, (u,u);, <0 <= Qu, ) = \2(u,u)y < 0.

Now, let ve B c R", i.e. (v,v) <1, and let [11)] be its copy in RP"™, then

<[11]] ; [11}]>L = (v,v)y — 1 <0.

Conversely, let [u] = [uu ] € B', ie. {u,uy <0, with u € R”, then
n+1

<( u )( u )>L=<u,u>—ui+1<o, (9.9)

Un+1 Un+1

which implies that u,+; must be different than 0, given that (u, u) = ||u|| = 0. So,

- e
Un+1 1 ] (9.7 upt1
2

To verify that —“— € B we notice that (9.9) implies that |u|? < u2,,, i.e. |a] < |un+1| so

Un+1

Izl

_u | —
[tunt1]

Un+1

<1,thus#;leB. O

Theorem 9.4.1 implies that the unit ball in R"” can be identified with the (double)
cone in R"*! obtained as the set of straight lines passing through the origin of
R"*! and with slope strictly smaller than 1. Figure 9.2 gives a pictorial illustration of
this cone.

Figure 9.2: The double cone in R"*! in bijection with the unit ball in R".

Until the end of this section, the open unit ball B in R™ will be identified with its copy in
RP™ as defined by the previous theorem.
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The action of O(n,1) on B is:

O(n,1)x B — B
(9, [u]) = g [u] :=[gu],

well-defined because the action of O(n, 1) is stable on the elements of B since the matrices
belonging to O(n, 1) preserve the Lorentzian product, so, for all u € B and g € O(n, 1),

{gu, guyr, = {u,uyr, < 0.

It turns out that the subgroup SO(n, 1) is enough to guarantee a transitive action on B. A
couple of preliminary results will help us prove this result quite easily.

Lemma 9.4.1 Let a € SO(n), then (g 2) € SO(n,1).

Proof. From eq. (9.5) we know that, given 7 = (I(;L _01>, <8 (1)> € SO(n, 1) if and only if

its determinant is 1, which is true, and if

aOta()_(:)aotInO aO_ata() B
o 1) "o 1)7" o 1) \o —1/\o 1)" Vo —1)aar™

Therefore, <8 (1)> € SO(n,1). O
0 b a 0 b
Lemma 9.4.2 Let <c d> e SO(1,1), then |0 I,—1 0|€SO(n,1).
c 0 d
Proof. Let g = (CCL 2) € SO(1,1), then by eq. (9.5) it holds that
2 _ 2
¢ a®—c* ab—cd) (1 0
a 0 b
and so, if weset h = |0 I,—1 O |, then det(h) = det(g) = 1 and
c 0 d

a?— 2 0 ab — cd
hinh = 0 In_1 0 = < > ,
ab—cd 0 p2—q2)@0\0 —1

so h e SO(n,1). O
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Theorem 9.4.2 Letn = 2.
1. The action of SO(n,1) on B is transitive

2. Stab(0) = { <g deto(a)> Lae0m)}=0Mm).

Therefore, the stabilizer-orbit theorem implies:

a

B~ S50(n1) /opm — B= {{g <0 de&a)) ae O(n)}, ge SO(n,l)} .

Proof.

1. Let x € B arbitrary, x # 0. We wish to show that there is a g € SO(n, 1) such that g-x = 0.
We will do this following this path:

||

0
e we search for g1 € SO(n, 1) such that g; - = =

]
0
e we search for go € SO(n,1) such that go- | . | =0
0
e finally, we set g = gog1 to get the wanted result : g-x = 0.

Let r = |z|. Since SO(n) is transitive on the sphere S"~! there exists a € SO(n) such

r
0
that a -2 = | . |. We then define g; = <8 (1)>, which belongs to SO(n, 1) thanks to Lemma
0
9.4.1, then:
x ! r
1
0
oy a 0 : ] 0
SRR IURVA P e H A E
1 1 0

Next, it can be verified with straightforward computations that the matrix

g2 = \/11_773 (_1T T) € SO(1,1)
SRGER
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We now use Lemma 9.4.2 to extend g to SO(n, 1) with

1 0 -—r
! I 0
g2 = —— n-1 ;

vi—r o 0 1
r
0

with go having the desired property: g2 - | . | = 0. Finally, if g = g2g1, we get g -« = 0.

0

2. Let g = <13 Z) € SO(n, 1), with A a n x n matrix such that g -0 = 0. Thus,

A b\ |0 b b
g-0=0 < (c d) M:[d]zd:o — b=0,

d # 0 since this would go against the already established stability of SO(n, 1) on B.
Moreover, g € O(n, 1), thus:

¢ — AtA—cle =dd\ (I, O
— ¢=0, A'A=1, and d*=1,

therefore A € O(n). Finally, since g € SO(n, 1), det(g) = ddet(A) = 1, thus d = det(4)~! =
det(A™1) B g( : det(A?) = det(A). This concludes the proof since we have proven that:
ed(n

Stab(0) = { <6‘ detO(A)> - AcOm)}=0m).

9.4.3 Homogeneity of the open unit ball in C”

To extend the previous results to the open unit ball in C™ we just need replace O(n) by U(n),
the proofs are practically identical to the real case.

Once again, we can identify the complex open unit ball B < C™ with elements of [u] € CP"
such that (u,uy;, < 0 and the action of U(n,1) on B is stable.

Theorem 9.4.3 Letn = 2.

1. The action of SU(n, 1) is transitive on B < C™

2. Stab(0) = {(ﬁ detO(A)) , Ae U(n)} ~ U(n).

Therefore, by the stabilizer-orbit theorem:

B=SUMn1) /ym < B= {{g (‘3 det(zA)>, AeU(n)}, geSU(n,l)}.
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9.5 Homogeneity of the upper-half plane H

The upper half plane H is another very important example of homogeneous space. To prove
this result we first need to introduce and discuss the Mobius transformations. The most
general definition of Mdbius transformations in two dimensions is given in the context of
the action of GL(2,C) on CP!, that is convenient to write through the splitting

CP! = C u {0} = {[i] : ze(C} L {[g} : zeC\{O}} (9.11)
called the Riemann sphere. For all z,w € C, the action
GL(2,C) x Cu{ow} — Cu{oo}
a b z . (a b\ |~=
c d)’|w c d wl|’

is defined by considering two cases corresponding to w # 0 and w = 0, respectively.
In the first case, i.e. for all z € C and w # 0, we have:

az+b

cz+d if cz+d#0
ab'z_ a b az+b\| |az+b| 1
c d 1| [\e d)\ez+d/)| |ecz+d| [az—i—b

] if cz+d=0
0

cz+d

@b e C if cz+d#0
we{o} if cz+d=0"

In the second case, i.e. for all z € C and w # 0, we have:
a b\ [z] _fa b\ [1] _[fa b\ (1| _|a]_)c€C ifc#0
c d) 0] \ec a) [0o] |\c d/\0)] |e|] |owe{w} ifc=0
This very general definition of Mébius transformations is not needed to show that H is a

homogeneous space, in fact, we can restrict our attention to the much simpler action of the
group SL(2,R) on H to obtain this result, as we discuss in the next subsection.

9.5.1 Mobius transformations on the upper-half plane H

In this section, H = {z € C : Im(z) >0} = {(z +iy) € C : y > 0} will denote the upper half
plane in C. When we consider H, the Mobius transformations acquire a much simpler form as
it is stated in the following result.

Lemma 9.5.1 The Mobius action

M GL*2,R)xH — H

a b a b .__ az+b >
(G a)e) — (d)=-es

is an actual group action on H.
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b

Proof. First of all, we show that the operation is stable. Let g = (Z d

) € GLT(2,R), so that
det(g) = ad —bc > 0, and z = x + iy € H, so that y > 0. Then,

e cz2+d=0 < c(r+iy) = —d < cx = —d and y = 0, which cannot happen because
y > 0, thus the denominator of the Mébius transformations is always different than 0 in
the whole H.
~ ~ ~ — ~ . d—b

o Jm(g2) = Im (22) = LnTIm((az+b)(¢+d)) = b Im(iy(ad—be)) = Y —
ydet(g)

[cz+d|? > 0.

Hence, the Mobius transformation defined above is stable on H. We now need to verify the
properties of group action.

1L Ifg=1I,thena=d=1,b=c=0,s0 I, 2= =2

2. Letg = (Z b) € GL*(2,R)and h = <:L i) € GL*(2,R), then gh = <“k+bm “”b”>

d ck+dm cl+dn
and:
_ (ak+bm)z+(al+bn)
° (gh) E= (ck+dm)z+(cl+dn)
an'fé”n +b a(kz+1)+b(mz+n) (ak+bm)z+(al+bn)
9 (h ’ Z) ¢ k’z:l +d = clkz+D)+d(mz+n) _ (ck+dm)z+(cl+dn)"

mz+n

Hence, (gh)-z=g-(h-z) for all z € H. O

GL™(2,R) is the maximal stability group for the Mobius action on H, since SL(2,R) is a
subgroup of GLT(2,R), we get that also the Mdbius action on H restricted to the matrices of
SL(2,R) is an actual group action.

It turns out that the SL(2,R) Mé&bius action on H is enough to guarantee transitivity.
Compared to the proof of other homogeneous spaces that we have discussed so far, the
SL(2, R)-homogeneity of H is relatively easy to demonstrate.

Theorem 9.5.1 The following statements hold:
1. the upper-half plane H is SL(2,R)-homogeneous
2. Stab(i) = SO(2).
Thus, the stabilizer-orbit theorem implies:
H = SL(2,R) /s02) <= H ={{gh, he SO(2)}, ge SL(2,R)}.
Proof.

VY
0

1. Let z = x + iy € H arbitrary, so y > 0 and the matrix g = (

S-Sk

> belongs to SL(2,R).

Then,
Yt T/\Y

A W Y >_x+ly_z'

(e
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Thus, the action of SL(2,R) on H is transitive because the whole H can reached by i via a
Mobius transformations.

2. Given g = <Z Z) € SL(2,R), let us explicitly write the stabilization condition on i:
. ai+b . .
gri=1 < — =j <<= ai+b=di—c < a=dand b= —c.
c+d

Furthermore, if we fuse these equalities with the fact that det(g) = ad — bc = 1, we get the
. . N . b .
constraint a® + b> = 1. Consequently, every matrix of Stab(i) is written as <—ab a)’ with

a® +b% = 1, which is the parameterization of a generic SO(2, R) matrix, thus Stab(i) = SO(2).
]

Let [g] = gSO(2,R) for a generic equivalence classes in SL(2,R) /go(2r) and let

¢: SL(2,R) /soer — H
9] — g-i

be the bijection generated by the orbit-stabilizer theorem and %, : H — H, z — .# (g, z), for
all g € SL(2,R), then the following diagram

SL(2,R) /so@r) ——

L L

SL(2,R) /so@er) —— H
1s commutative.

9.5.2 The isomorphism H =~ Sym] (2,R)

A very useful characterization of the upper half plane H is represented by the set (which is
not a group) of matrices

Symj (2,R) = {g e SL(2,R) : g = ¢, g positive definite: u'gu > 0 Yu e R?}.

To show this fact, we first need to recall a handy representation of the elements in Sym; (2, R).
In the proof of the theorem, (e1,es) will denote the canonical basis of R.

Lemma 9.5.2 g = (g 5) € Sym{ (2,R) if and only if « > 0 and det(g) = 1.

Proof.

: we assume g € Symj (2,R). Then, det(g) = 1 by definition and, since g is positive-
definite, o = {geq,e1) > 0, the inequality is strict because, if a = 0, then det(g) = —3% <0,
which contradicts the fact that det(g) = 1.
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: NOwW we assume g = (g 5) such that o > 0 and det(g) = 1. First of all we notice
that det(g) =1 <= ay = 1+ 32, which also implies that v > 0.
If we write u = ze; + yeq = <§> € R?, then:

(gu,uy = {g(wer + yez),ve1 + ye2) = ax® + yy* + 2xyB
B .
— X24+VY?242XY—"— with X =zva,Y =y /.
A/ QY \F
We remark that -2 = —2

v Ry € (—1,1) for all 8 € R. Therefore, if XY >0,

X2+Y2+2XYL>X2+Y2—2XY=(X—Y)2>0

3

and in the other case, if XY <0,

X2+Y2+2XYL>X2+Y2+2XY=(X+Y)2>O
8l

Therefore, g is definite positive and g € Sym; (2, R) O

By writing the determinant of ¢ explicitly we get oy — % = 1, solving w.r.t. ¥ we obtain
2
%, so that the generic parameterization of a matrix in Symj (2, R) is:

Sym; (2,R) = {(g 1!;) , a>0, BGR}.

Theorem 9.5.2 The following assertions hold.

")/:

1. The function

F: H — Sym; (2,R)

o . 1 1 —x
smatiy — g, 2y e)

1s bijective with inverse given by:

w: Sym{(2,R) — H

(57) — ses+n

x: SL(2,R) x Sym; (2,R) —>
(m, 9) —

2. The map

18 a group action.
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Proof.

1. Both maps F' and w are well-defined thanks to the previous lemma. First we check that
w(F(z))=zforall z=x+iye H:

Fz) = ; (_136 x2_fy2> . W(F(2) =y (Zj + z> N

Now we check that F(w(g)) = g for all g € Sym{ (2,R). To this aim, let g = (g 5) €

Symj (2, R), then:

-5 1 12
w(g) = ?ﬁ +za = F(w(g) =« (5 1"‘0;52) B (g Hﬁﬁz) 1=det(9):=ow—ﬁ2 (g 5) '

« « «

2. The axioms of group actions follow from direct computations. Let g € Sym{ (2,R) and
m,n € SL(2,R).

e Idxg=1I1dgld=yg

o (mn)xg=((mn)"H)" g (mn)~! = (m~H(n"Hgn"Im™" =m* (n*g).

All that is left to prove is then the stability of the action on Sym;j (2,R), i.e. that m =g
has unitary determinant, is symmetric and positive-definite for all m € SL(2,R) and g €
Sym{ (2, R):

o det(m * g) = det((m~1)!)det(g)det(m) = det(m)det(g)det(m) = 1 = m=*g €
SL(2,R)

. ((m_l)tgm_l)t = (m~YHtgm™!, thus m % g is symmetric (which explains why we must
consider (m 1)) in the definition of the action * and not m—1!)

o for all u € R% (m * gu,u) = {(mYlgmlu,u) = (g(m~tu),(m 'u)) = 0 since
g € Sym{ (2,R).
Moreover, m~'u = 0 <= u = 0 because m is invertible. Therefore, m * g is positive-
definite. O

To resume, we have determined the following isomorphisms:

SL(2,R)/SO(2) ~ H =~ Symj (2,R) |.

As we will see later, these are three among the six prototypes of the hyperbolic plane
(also called hyperbolic models), the remaining three being the hyperboloid in R3, the Poincaré
and the Klein disks.
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9.5.3 The action of SL(2,R) on Sym; (2,R)

Finally, we show that the action of SL(2,R) on Sym; (2,R) is analogous to the action of
SL(2,R) on H by Mdbius transformations. The proof of this result needs a lemma.

Lemma 9.5.3 Let g = (g 5) € Symj (2,R). Then, w(g) = 1(—B+1i) is the unique solution

t
<i> g(i) =az’+2B8z+~=0.

Proof. The two complex solutions of the equation are:

T ING er To R PV e
N 2av B o ’

i H of the equation:

21,2

but 1 = det(g) = ay — 5%, s0 B2 —ay = —1, so

—B+1
21,2 = )
(6

the only solution in H is the one corresponding to +i, i.e. the only solution in H is:

(=B +i) =wlo)

Theorem 9.5.3 Let m € SL(2,R), g € Sym{ (2,R) and z € H. Then,
1. wm=*g) =m-w(g)
2. Flm-z) =m= F(2),

i.e. the following diagram

Symi (2,R) # H

mk m-

Sym}(2,R) &—— H
F

is commutative. Hence, the action of SL(2,R) on Sym] (2,R) is transitive.

Proof.
1. We start by fixing the notation:

o m = <a b) € SL(2,R), so that m~! = < d _b>

—C a
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e =m

L i=#(mt2)eH.

We note that:

() (40) - (57) - (1) -esra()

(9.12)
where —cZ + a # 0 because, if we write Z € H as Z = x + iy, then —cZ + a = 0 would be
equivalent to —cx + a — icy = 0, but, since y > 0, this would imply a = ¢ = 0, that cannot be
because m~! would have a null row and would not be invertible.

Thanks to Lemma 9.5.3, 2 = w(m * g) = w((m™') gm™1) verifies:

(oo (-

but

SO:

Therefore, thanks to Lemma 9.5.3, © = w(g) and so w(m * g) = m - w(g).

2. Having proven 1., i.e. m-w(g) = w(m * g), the proof of 2. is very easy. In fact, thanks to
theorem 9.5.2, z = w(g) so F(z) = F(w(g)) = g, thus:

F(m-2) = F(m-w(g)) = F@(mxg)) = msg = mx F(2).
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Chapter 10

Geometry of the Lorentz space and
Lorentz tranSfOrmathnS (Antoine Guennec and

Edoardo Provenzi)

The geometry of the Lorentz space and its related Lorentz transformations are two of the
three basic tools that will allow us to rigorously describe the different realizations (called
models) of hyperbolic geometry, the third tool being represented by Mobius transformations,
that will be analyzed in the following chapter.

10.1 A quick recap about the Euclidean scalar product

In this section, we recall very quickly just the basic facts of Euclidean geometry that will use
in the rest of this chapter.

Def. 10.1.1 The Euclidean scalar product on R™ is defined as:

{x,y) =211+ + TnYn,

its associated norm! is:

2l = 2l = v/, @) = (af + -+ 2)2,
and its associated metric is:
dp(z,y) = v —y|l = V{x —y,x —y).
Lemma 10.1.1 (Cauchy-Schwarz inequality) Let z,y € R™. Then,
[z, )| < =] |yl
and the equality holds if and only if x and y are linearly dependent.

Proof. Suppose = and y are linearly dependent. Then, it exists ¢t # 0 such that y = tz, so

(2,90 | = <z, tay| = [t e, @) | = [tl]a]? = |alltl]2] = |=[lyl.

'In this chapter, exceptionally, it is notationally more convenient to use the symbol | | for the Euclidean
norm and reserve | | to the Lorentzian norm.
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Conversely, assume x and y are linearly independent. Then for all t € R, tx — y # 0 and so
0 <[tz —y” = |2[#? — 2¢z,ypt + |y* = f(1),
which implies that the discriminant of f is negative, i.e. A = 4(z,y)* — 4|z|2|y|? < 0, hence
(w,y)* < |2Plyl? == <@y | < |zlyl-
O

We will denote by E™ = (R",dg) the Euclidean metric n-space considering it as an affine
space so that we can perform translations in E™.

Def. 10.1.2 (Isometries and similarities in E™) The isometries of E™ are transforma-
tions that preserve distances:

Z(E™) = {(;5 R > R" @ dp(o(x),d(y)) = dp(x,y) Y,y e R”}.
The similarities of E™ are transformations that preserve shapes:
S(E") ={¢:R">R" : 3k >0 : dg(é(z),9(y)) = kdg(z,y) Vz,y e R"}.

The sets of isometries and similarities form a group under composition.
The most important set of transformations in Euclidean geometry are the orthogonal ones,
which form the group O(n), defined as maps that preserve the scalar product:

(d(z),¢(y)) = (x,y) Yo,y eR™

The following lemma allows us to characterize the orthogonal transformations.

Lemma 10.1.2 ¢ : R™ — R"™ is an orthogonal transformation if and only if it is linear and,

given an orthonormal basis (uy,...,un) of R™, (¢(u1),...,d(un)) is an orthonormal basis of
R™.

Proof. Suppose ¢ is an orthogonal transformation and (u1,...,u,) is any orthonormal basis
of R™. Then,

(B(us), ¢(us)) = {wi, uj) = i,
hence (¢(uy), -+, ¢(uy)) is, by definition, an orthonormal basis of R™ and so, for all z € R”,

n

$(x) = Y (), $lui)) $(ui)

=1

Z (x,ui) p(uq),

(¢ orthogonal

n
but we also have x = Y. {(x,u;)u;, so, by writing x; = {(z,u;), we get:
i=1

¢(i$z‘ui) = ixiqﬁ(uz'), Vr e R" (10.1)
i=1 i=1
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n
Now, if we consider Az = > Az;u;, we have:
i=1

) = Zn:)\xid)(ui) = )\Zn]x@(ui) = \p(z), Vo e R™
i=1 i=1

n
Moreover, if we consider another vector y = > y;u; € R™, thanks to (10.1) we get
i=1

¢(Zyiui) = Zysz(uz‘),

thus
n n
P(z +y) Z%m*-Z%% Z Tk + Yr)uk) Z Tk + Yr)P(u)
k=1 ) k=1
n
= Y zid(us) + Zyié(ui)
i=1 i=1
= ¢(z) + o(y),
hence the linearity of ¢.
Conversely, suppose that ¢ is linear and that, for any orthonormal basis (uy,...,u,) of R",
(p(u1), ..., d(uy)) is again an orthonormal basis of R™. Then,

legb Uu;) Vo e R",

(¢ hnear i—

= ¢(Z$zuz
i=1

thus

(p(z),9(y)) = <Z$i¢(ui)» Zyjqﬁ(u] 22%% (P(ui); P(uj))
i—1 j=1 i—1j=
Zsz’yj(Si,j = Ziﬂiyz’
i=1

i=1j=1

= <£L',y>.

Def. 10.1.3 The function

¢: R" — R
o q(z):=(z,2) = |z}

is called the quadratic form associated to the Fuclidean scalar product.

The following result shows how an orthogonal transformation ¢ : R — R" can be
characterized via the quadratic form gq.
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Lemma 10.1.3 ¢ : R” — R" is an orthogonal transformation if and only if is preserves the
quadratic form q, i.e. q(¢(x)) = q(x) for all x € R™.

Proof. By direct computation we get

(z) +q(y) —q(z —y)

a(z—y) = () = 2a.9) +qly) = (wy)="* 5 . VayeR"
so, it also holds that
(D), b)) = q(o(z)) + Q(¢(y))2— q((x) — ¢>(y)), v,y € R

So, if q(¢(z)) = q(x) for all x € R™, then:

q(9(x)) + q(@(y)) — q(¢(x) — o(y) _ a(z) + q(y) — q(z — y)

<(f)($),¢(y)> = 2 = 2 = <:1:7y>7

i.e. ¢ is orthogonal.

Vice-versa, if ¢ is orthogonal, then g(¢(z)) +q(é(y)) —q(d(z) —d(y)) = q(z)+q(y) —q(z—y)
for all z,y € R™, but this equality holds true no matter how x and y are chose only when

q(¢(z)) = q(z) for all x € R™. 0O

Finally, we come to the complete characterization of Z(E™) and S(E™).

Theorem 10.1.1 Let f: R™ — R™.
1. feZ(E™) if and only if [ is of the form f(x) = a + ¢(x), with a € R™ and ¢ € O(n).
2. feS(E™) if and only if f is of the form f(z) = a + k¢(x), with a € R", k > 0 and
peO0(n).

Proof. First of all, notice that 1. is simply a special case of 2. with & = 1, thus we will
concentrate only on the proof of 2.

2 if f(x) = a + ¢(z), then, for all z,y e R”,

d(f(@), f(y)) = a+ k() = (a + ko(y)), a + ko (x) — (a+ ko(y))?
= (h(o() = By)), k(o () — B(y)))?
= k{(o(x—y)), ol —y))?

(¢ li;ear)
1
= kix—y,x—y)?
(¢ orthogonal) < Y y>
= kd(z,y).

: suppose f € S(E™) and let a = f(0) and ¢(z) = f(x) — a. Since f is a similarity
there is a k > 0 such that |f(z) — f(y)| = k|z — y| for all z,y € R™ and so

()| = 1f(x) = F(0)] = K|z — O] = Klz|.
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Consequently, by setting ¢ = %7,/} and using lemma 10.1.3, we have ¢ € O(n) and

f(x) =a+ ko(x).

Corollary 10.1.1 An affine function f : R" — R", f(x) = a + Az, with a,x € R" and
A € R\{0} is always a Fuclidean similarity and it is a Euclidean isometry if and only if A = 1.

Proof. The proof consists simply in remarking that A can be identified with a one-entry matrix,
which is orthogonal if and only if A = 1/A, i.e. A = 1. O

10.2 The geometry of the Lorentz n-space

The main reference throughout this section is Ratcliffe’s book [15].

Lorentzian geometry is founded on an alternative definition of the scalar product in R
w.r.t.the Euclidean one for n > 2, when n = 1 the two products agree. For this reason, in this
chapter we will always implicitly consider n > 2.

The Lorentz scalar product is actually a so-called pseudo-scalar product. The formal
algebraic theory that allowed the modern definition of such a concept has been developed by
E. Witt in [21]. Here we collect only the definitions and results that are needed to understand
Lorentz’s geometry, for a more thorough discussion see, e.g., [14].

Let V be a real vector space and z,y arbitrary vectors in V.

1. A bilinear form on V is an R-bilinear function b: V x V — R;

2. The quadratic form associated to b is the linear functional ¢, : V' — R defined by
qp(z) := b(z,x). It is often simpler to work with ¢, than with b and no information is
lost, since we can reconstruct b from ¢ via the well-known polarization identity:

1
b(z,y) = 5wz +y) — w(z) — o))
3. b is symmetric if b(z,y) = b(y, z) for all z,y. In what follows, b will always be implicitly
considered symmetric;
4. b is positive (negative) definite if x # 0 implies g,(x) > 0 (< 0);
5. b is positive (negative) semi-definite if x # 0 implies g5(x) = 0 (< 0);

6. Of course, if b is positive (negative) definite, then it is also positive (negative) semi-
definite;

7. If b is neither positive nor negative semi-definite, b is called indefinite;
8. b is nondegenerate if b(z,y) = 0 Yy implies z = 0;

9. A scalar product g on V is a positive-definite nondegenerate symmetric bilinear form
on V. (V,g) is called a scalar product space;
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10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

A pseudo-scalar product b on V is a nondegenerate symmetric bilinear form on
V. Thus, the big difference between a pseudo- and a scalar product is the lack of
definite-positiveness for the first. (V,b) is called a pseudo-scalar product space;

For any vector subspace W < V, we denote with b|;, and g}, the restriction of b to
W x W and of g, to W, respectively. If b is a symmetric bilinear form, so is b|y;

The index v of a symmetric bilinear form b on V is the largest integer that coincides
with the dimension of a subspace W < V on which by is negative definite. Thus
0 <v <dim(V), and v = 0 if and only if b is positive-semidefinite or positive-definite;

If (u1,...,uy) is a basis for V, the n x n matrix B = (b;;) = b(us,u;) is called the
matrlx of b relative to (u1,...,up). If bis symmetric, then B is a symmetric matrix.

Ifx= Z x;u; and y = Z yiu;, then, by bilinearity we have

=1 =
n n
b(a:,y) = b(zxzuu Zyzuz) = szzyj Uzvu] szzyj ij <«T7 By> = <Bx7y>7
=1 i=1 i=17=1 i=1j5=1
thus the action of b on the vectors of V' is completely determined by B;

A symmetric bilinear form b on V is nondegenerate if and only if its matrix B relative
to an arbitrary basis of V is invertible;

A vector u € (V,b) such that g,(u) = £1 is said to be a unit vector in (V,b). Two vectors
x,y € (V,b) are orthogonal if b(x,y) = 0;

A set of m < n mutually orthogonal unit vectors in (V,b) is said to be an orthonormal
family. If m = n, then we talk about an orthonormal basis of (V,b);

The matrix of b associated to an orthonormal basis (u1,...,u,) is diagonal, in fact its
entries are given by:
b(ui, uj) = 0,

the ordered sequence of —1 and +1, repeated for all the time they appear in the diagonal
of the matrix associated to b w.r.t.any orthonormal basis is called signature of b;

The signature appears in the orthonormal expansion of any x € (V,b) on an orthonormal
basis (u1,...,uy) as follows:

n
x = Zeib(x,ui)ui , (10.2)
where ¢; = ¢(u;) € {—1, +1};
The orthogonal projection m of any x € (V,b) onto a subspace W = span(ui, ..., up),
where (u1,...,uy) is an orthonormal family and m < n is the following:

m
= Z€ib(ﬂ?,ui)ui ;
-1
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20. The residual vector
m
yi=x—m7(r)=x— Eeib(x,ui)ui (10.3)
i=1

is orthogonal to all vectors of W: b(y,w) = 0 Yw € W

21. The number of negative signs in the signature of b is constant for any orthonormal basis
(ui,...,upm) of (V,b) and it coincides with the index v. For the proof see [14], lemma 26
page 51.

Let us specify all this in the case of the Lorentz pseudo-scalar product in R™.

Def. 10.2.1 (Lorentz’s pseudo-scalar product) Letz,y € R". The Lorentz (or Lorentzian)
pseudo-scalar product between x and y is defined as follows:

TOoyYy = —Tiy1 + Toy2 + -+ Tpyn

(R™,0), i.e. R™ interpreted as a vector space endowed with the Lorentzian pseudo-scalar
product, is denoted by RV ™! and called the Lorentzian n-space.

In literature, we find several other definitions of the Lorentzian scalar product. The first
alternative definition that we discuss is the following:

TOoY =T1Y1 + -+ Tn—1Yn—1 — TnYn

and R" endowed with this last Lorentzian scalar product is denoted by R"~1!. Results in
both cases are exactly the same and the choice of R*~11 or R1"~! depends on convenience or
taste.

Instead, the following alternative and perfectly valid choice:

TOY=21Y1 —* — Tn—-1Yn—1 — Tnln

corresponds to the opposed signature w.r.t.the previous one.

The case of n = 4 is of particular importance in Physics, as it is the geometric setting of
special relativity, with the coordinate x; = t playing the role of time and (x3, x3, z4) = (,y, 2)
the role of space coordinates. For this reason, it bears a special name.

Def. 10.2.2 The Lorentz space R3 is called Minkowski spacetime M.

The bilinearity and symmetry of the Lorentz pseudo-scalar product is immediate to see,
to prove its nondegeneracy it is enough to take as y all the vectors of the canonical basis
(e1,...,en) of R™:

rzoeyr=—x1-14+x22-0+---4+2,-0=—2
roe,=—x1-0+22-04+---4+z,-1 =2,
so,zoe; =0 foralli=1,...,n implies x = 0.

Def. 10.2.3 The quadratic form associated to the Lorentz pseudo-scalar product is:
qz):=zox=—at+a3+. - +22, q(x)eR,

and the Lorentz pseudo-norm is:

2 == /a(@) = y/~a? + 23+ -+ a2, o] €RT U {0} LR,
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Remark 10.2.1 The Lorentz pseudo-scalar product can be rewritten using the Euclidean
scalar product:

. -1 0 . -
xoy:<x,ny>:<n$,y>’ Wlthn:(o 1, 1>:dlag(_1’17'-')a 77t=77 1:773 7]2:In-
n—

It is clear that the Lorentz pseudo-scalar product is indefinite. This fact allows us to
separate the Lorentz n-space in three different subsets called time-like, light-like and space-like,
a terminology taken from special relativity (see chapter 13 for the physical motivation of these
names).

Def. 10.2.4 z € RY" 1 s said to be
e time-like if rox <0 < q(x) <0 <= its squared Lorentz pseudo-norm is negative;
e light-like if tox =0 <= q(x) =0 <= its squared Lorentz pseudo-norm is null;
e space-like if rox >0 < q(x) >0 <= its squared Lorentz pseudo-norm is positive;
e causal if it is not space-like.

One of the three options is called likeness of x.
Moreover, the orientation (or parity) of a time-like or light-like vector is:

e positive if x1 > 0;
e negative if x1 < 0.

Examples: if we consider the vectors (ej,...,e,) of the canonical basis of R", then
etoe; = —land ejoe; =1 forall 2<j <n, so:
e ¢ is a time-like vector;

e ¢;, for all 2 < j < n, are space-like vectors;

e 1 +e2=(1,1,0,...,0)" is a light-like vector.

In the Minkowski space, we have the identification (x1,x9, x3,24) = (¢, z,y, 2), where t is
the time coordinate and (z,y, z) are the spatial ones. The Lorentz pseudo-norm in this case is
called Minkowski pseudo-norm.

It is instructive to examine the geometric meaning of likeness in the case n = 2 for a

generic x € RV starting from the light-like case.

e u = (z,y) is light-like if and only if 22 = y?> <= || = |y|, i.e. light-like vectors lie on
the two m/4 degrees straight lines passing through the origin.

e The time-like case is characterized by 22 < y?> <= |z| < |y|, i.e. time-like vectors
belong to the interior of the upper and lower triangular regions in R? delimited by the
origin and the straight lines where light-like vectors live.

e The space-like case is obviously identified by the remaining areas. Figure 10.1 gives a
graphical representation of this simple analysis.
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Figure 10.1: A graphical depiction of likeness regions in 2 dimensions, together with the level
lines of the Lorentz pseudo-norm.

In the figure we can also see that the level lines of the quadratic form ¢(z), i.e. the vectors
with same Lorentz pseudo-norm are hyperbolas contained in either the time-like or
space-like regions with asymptotes given by the light-like straight lines. In fact, for all ¢ # 0,
q(r) = ¢ = —z? + 22 = ¢, which is the equation of a hyperbola. If ¢ < 0 the hyperbola
belongs to the time-like region, if ¢ > 0 to the space-like region.

More generally, the light-like equation zoxz = 0 <= ¢(z) =0 <= |z| = 0 defines
a hypercone C"~! in R”, called light cone. Time-like vectors belong to its interior, while
space-like vectors belong to the external region. Figure 10.2 depicts the case n = 3.

Time-like

’

'
—-_——— - -
N

4

Space-like

Figure 10.2: The Lorentz n-space is separated in three components: light-like vectors belong
to the surface of the light cone, time-like vectors lie inside and space-like vectors lie outside.

The name light cone is an extension of the case n = 4, where C" ! is the cone traveled

by rays of light in the Minkowski spacetime of special relativity. The positive and negative
time-like regions are called, respectively, future and past light cone.
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In E™, vectors with same Euclidean norm lie on spheres, while, in the n-Lorentz space,
vectors with same Lorentz pseudo-norm lie on hyperboloids contained in either the
time-like or space-like regions. This very simple consideration gives the first hint of why the
Euclidean scalar product is related to spherical geometry while the Lorentzian pseudo-scalar
product is related to hyperbolic geometry.

The following notational convention will simplify a lot future equations: whenever useful,
we will write z € R™ as

= (x1,20,...,2,)" = (x1,2), ie. T=(xo,m3,...,2,)"
With this notation:

e Lorentz scalar product and norm:
zoy =<{Z,y)— x1y1, H:t:||2 =|z|? — 27 ;

light-like: |Z| = |z1| (xeC™ 1)
o Rl 50 = Jtimelike:  |Z| < |z1| (z € int(C™1)) .

space-like: |Z| > |z1| (7 € ext(C"Y))
Just like in Euclidean geometry, orthogonality will play a major role.

Def. 10.2.5 z,y € R"" ! are called Lorentz-orthogonal if x oy = 0. They are Lorentz-
orthonormal if they are Lorentz-orthogonal and the modulus of their pseudo-Lorentz norm is
1, i.e. ||z| =i if x is time-like and |z| = 1 if x is space-like.

The Euclidean scalar product allows us to fully understand the Euclidean geometry, hence
it is not surprising that many information about the Lorentz n-space geometry can be gathered
by studying the Lorentz scalar product.

We start by first proving a very simple fact and then a result that will have important
consequences.

Lemma 10.2.1 For all z € R~ ! and all t > 0, the vector tx has the same likeness and
ortentation as x.

Proof. For all t > 0, ||tz|| =t ||x|| and (tz); = tz1, thus tx and x have the same likeness and
orientation. O

Theorem 10.2.1 If z,y € RV are non-zero, equioriented and causal, then x oy < 0 and
the equality holds if and only if x and y are linearly dependent light-like vectors.

Proof. The case of x and y being both negatively oriented can be derived from the positive
case by replacing z and y with —x and —y, respectively, thus we can assume that both =z and
y are positively oriented, i.e. 1 > 0 and y; > 0.

By hypothesis, = is time-like or light-like, so:

ror <0 «— |7|? <a2? — |Z| < 21,
xTr1>
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and, similarly, |g| < y1. These inequalities, together with the Cauchy-Schwartz inequality
10.1.1 applied on the Euclidean scalar product | |, imply

&) <@y | < |2y < 21y, (10.4)

hence we come to the conclusion that x oy = (Z,y) — z1y1 < 0.

Let us now examine when x oy = (Z,9) — 151 = 0, i.e. 151 = (Z,y), thus we can replace
x1y1 on the rightmost part of inequality (10.4) with (Z, y), this implies (Z,y) < |z||y| < {(Z,p),
i.e. {(z,y) = |Z||y|. Lemma 10.1.1 guarantees that this can happen if and only if Z and g are
linearly dependent, we can therefore set y = tZ, with ¢ # 0, and observe that

12 t|z|?
roy=0 < zy =t|7|* = yl:Tl7 (10.5)

which implies two things: firstly ¢ > 0 (21 and y; are both supposed to be positive), secondly,

21714
yoy =y —y? = t2|z|? — ti—ﬁ' Recalling that y is either time-like or light-like, we must
y=tT 1

have:

yoy<0 «— 27 <z]*> — 0< |7 -2} — O0<zoux.
If z is time-like, then x o z < 0 and the previous inequality is not verified, thus x must
be light-like (i.e. z ox = 0). Being light-like and positively oriented, x satisfies |Z| = x;
and so the central equation of formula (10.5) implies x1y; = t2?, i.e. y; = tz1. In conclu-
sion, § = tx and y; = tx; imply that y = tx and also that x and y are both light-like vectors. O

So, two light-like vectors are Lorentz-orthogonal if and only if they are scalar
multiple of each other. Instead, for time-like vectors it holds the following.

Corollary 10.2.1 If z,y € Rb"1 are equioriented time-like vectors, then x oy < 0.

A significant implication of this theorem is that, in the Lorentzian geometry of R1"~1,
two orthogonal vectors are no longer characterized by a relative angle of 7/2: if one
belongs to the interior and the other to the exterior of the light cone, they can be orthogonal
even if their relative angle is different than 7/2.

Corollary 10.2.2 Let x, y be two non-zero Lorentz-orthogonal vectors, i.e. xoy =yox =0,
then:
x time-like = y space-like.

Proof. We can assume that y has the same orientation of x, in the opposite case it is sufficient
to replace y with —y to obtain the proof. If z is time-like then, by theorem 10.2.1, if y is
time-like or light-like, we must have z oy < 0, where the inequality is strict because the equality
can happen only with two linearly dependent light-like vectors. Since x oy < 0 is incompat-
ible with the hypothesis x oy = 0, the only option that remains is that y must be space-like. O

Let us see an example using again the simple case of n =2: zoy =0 < z1y1 = T2y,
then of course e; = (1,0) and ey = (0,1) are Lorentz orthogonal, but, for example, also any
couple of vectors of the form x = (1,a) and y = (a, 1) is, Ya € R. Figure 10.3 depicts the case
O<e< 1.
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Figure 10.3: A graphical depiction of orthogonality in the 2 dimensional Lorentz space.

The relative position between the two vectors (1,a) and (a, 1) is not accidental, in fact, as
we are going to prove, a time-like = and a space-like y vectors in R are Lorentz-orthogonal if
and only if the angles o and § that they form w.r.t.the horizontal axis are complementary, i.e.
they sum to 7/2, modulo an integer multiple of m: o + 8 = 7/2 + km, k € Z. To prove this,
we just write down the polar coordinates x = (r cos , 7 sina)! and y = (R cos 3, Rsin 3)! of
and y, r, R > 0, «, B € [0, 27), then, the Lorentz-orthogonality condition can be rewritten as

rRcosacos S —rRsinasinf =0 < rR(cos(a+ ) =0 < cos(a + ) =0,

which implies o + 5 = 7/2 + k7.

Notice that the reverse statement of the theorem is not true: given two non-zero Lorentz-
orthogonal vectors x,y € RM1if x is space-like then y can be both space-like and time-like.
A simple example is given by the vectors es = (0,1,0)! and e3 = (0,0,1)* of the canonical
basis of RL2: |lea|? = |les|? = 1, so they are space-like, but eg o e = 0.

The following result tell us, among other information, that the sum of two equioriented
time-like vectors is still a time-like vector with the same orientation.

Corollary 10.2.3 If x and y are non-zero, equioriented, causal vectors, then x + y has the
same orientation as x and y. Moreover, x + y is light-like if and only if x and y are linearly
dependent light-like vectors, otherwise x + y is time-like.

Proof. For the same reason given in the proof of theorem 10.2.1, we consider only the positively
oriented case. In this case we have z1,y1 > 0, so (x + y); = 21 +y1 > 0 and so x + y is also
positively oriented. Additionally, by direct computation we have:

2 2 2
[z +yl” = [zl + 2(z o y) + [lylI”

which is < 0 as the sum of three terms < 0. So, z + y is either light-like or space-like. Finally,
thanks to the previous theorem,

lz +y|* =0 < |z = lylI* =z 0y =0

which is true if and only if z and y are light-like and linearly dependent. O
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To fix the ideas, let us consider only vectors oriented towards the future, then the previous
result can be re-written as follows:

e the sum of two linearly dependent light-like vectors will be a light-like vectors towards
the future;

e the sum of two non-linearly dependent light-like vectors will be a time-like vector towards
the future;

e the sum of two time-like vectors will be a time-like vector towards the future;

e the sum of a time-like vector and a light-like vector will be a time-like vector towards
the future.

Before stating the following corollary, we recall some definitions about cones taken from [5].

Def. 10.2.6 Let C be a subset of a vector space V, then:

e Cisaconeif, forallt >0, xeC = txe(;
e a cone C is convex if, for all t € [0,1] and all couple of vectors x,y € C, tx+ (1 —t)y € C;

e a cone C is proper (or regular) if C n —C = {0}, where 0 is the zero vector of V, C is
the topological closure of C and —C := {—x, x € C}.

Corollary 10.2.4 The set of all positively (respectively negatively) oriented time-like vectors
forms an open connected proper convex cone in RM1,

Proof. Theorem 10.2.1 implies that the set of all positive (respectively negative) oriented
time-like vectors forms a cone in RY”~!. This cone is either the upper or the bottom part of
the open set given by the interior of C"~!, thus it is connected, open and proper. Finally, let
x and y two positively (resp. negatively) oriented time-like vectors.

The convexity of the proper cone they form follows from the combination of theorem 10.2.1
with theorem 10.2.1: for all t € (0,1) set Z := tx and § := (1 — )y, then Z and 7 belong to
the same cone as x and y by theorem 10.2.1, thus their sum Z + § = tx + (1 — t)y belongs
to the same cone too for all t € (0,1) by theorem 10.2.1. Since z = (tz + (1 —t)y)|,_; and
y = (tr + (1 —t)y)|,_o, we have that the convex combination tz + (1 —t)y belongs to the
same cone as = and y for all ¢t € [0,1]. O

Def. 10.2.7 (Time-like cone) We call the cone of all positively (respectively, negatively)
oriented time-like vectors in RY"=1 the future (respectively, the past) time-like cone.

These results explain why the concept of orientation is defined only for causal vectors: the
future and the past light-cones and time-cones are the connected components of
two disjoint sets, thus orientation allows us to single out which connected component we
are dealing with.

Instead, for all n > 3 the space-like region is connected (but not convex because
antipodal points w.r.t.the origin cannot communicate via a straight line segment), so specifying
an orientation of a space-like vector does not single out any particular connected component
of the space-like region. The only exception is represented by the case n = 2, but in the
literature this special case is simply treated separately from the others without introducing a
particular nomenclature for space-like vectors even for this exception.
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10.2.1 Orthogonality and orthonormality in the Lorentz n-space

Motivated by the central importance of the concept of orthonormal basis in Euclidean geometry,
we give the equivalent definition in Lorentzian geometry in R1"~1,

As a preliminary remark, we notice that, since light-like vectors have null Lorentz pseudo-
norm, only time-like or space-like vectors can be unit vectors in Rb" 1.

Def. 10.2.8 (Orthonormality in RY"~1) A set of m < n mutually Lorentz-orthogonal unit
vectors in RV ™1 is said to be an orthonormal family. If m = n, then we have an orthonormal
basis of RM" 1,

We now note that the matrix of the Lorentz pseudo-scalar product relative to an orthonor-
mal basis uq, ..., u, coincides with the diagonal matrix n = diag(—1,+1, +1,...,+1).

Thus, the signature of the Lorentz pseudo-scalar product is (—, +, +, ..., +), so, thanks to
property 21 of the pseudo-scalar product previously quoted, its index v is 1.

However, it is clear that the index v of the Lorentz pseudo-scalar product is the
maximal number of linearly independent time-like vectors. In fact, such vectors
generate the subspace of R1"~! with highest dimension on which the Lorentz pseudo-scalar
product is, by definition of time-likeness, negative-definite.

The consequence of this line of reasoning is that in every Lorentz-orthonormal basis
of RM™~1 there is exactly one time-like vector and n — 1 space-like vectors. By
convention, the time-like vector is set to be the first basis vector. This justifies the following,
more explicit, definition of Lorentz-orthonormal basis of RU"~1,

Def. 10.2.9 A set of n vectors B = (u1,...,u,) i a Lorentz-orthonormal basis of RV"=1 if

1 i i=j=1
0 if i

Moreover, we say the basis is positive if ui is a positively oriented time-like vector.

By direct computation, it can be verified that the canonical basis (eq,...,¢e,) of R" is
a Lorentz-orthonormal basis of RV 1.
A Lorentz-orthonormal basis & = (u1,...,u,) of Rb™~1 is an actual basis of R, i.e. it

is a family of n linearly independent vectors. To verify this, consider an arbitrary linear
combination of the vectors of 4, i.e. the vector 4 = ajui + - -+ + anu,, with a; € R for all 4.
Then, by using Lorentz-orthonormaly in the direct computation of the Lorentz pseudo-scalar
products between % and each vector of %, we have:

—aq if i=1
«o; if 1>2

ﬂouizai(uioui)z{

~ —Q if i=1
UZO:OZOO’U,Z: . ) :}alz...:anzo'
o if 1>2

The existence of Lorentz-orthonormal bases is guaranteed by the following result.
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Theorem 10.2.2 (Gram-Schmidt Lorentz-orthonormalisation) Let # = (u1,...,un,)
be a vector basis of RV with uy a time-like vector. Then we can extract a basis HBy =
(w1, ,wy) from B such that:

1. Py, is a positive Lorentz-orthonormal basis.
2. span(wy,...,wy) = span(uy, - ,ug) for all ke {1,...,n}.

Proof. This proof follows a path very similar to the proof for the usual Gram-Schmidt process,
but with some minor tweaks. We start by setting

leillll if uy is positive
wp = 1

w1 . . . )
— - if wy 1is negative
e TN 1 &

and then we set

{112 = ug + (ug o wy)w

2= Yoo
and
k—1
Vg = U + (up owy )wy — UL O W )WE
( ) Zgz( ) for k= 3.
— Yk

Wk = T
With such a construction, &1, = {wy, - ,w,} is a positive Lorentz orthonormal basis that
verifies the wanted conditions. O
Remark 10.2.2
Similarly, we can apply a similar process when (uy, ..., u,,) is a set of linearly independent,
space-like vectors to extract a set of space-like vectors (w1, ..., wy,) such that

w;owj = d;; and span(wi,...,wy) = span(ui, ..., u),

for all ke {1,...,m}.

Def. 10.2.10 Let V be a vector subspace of R"™. The Lorentz-orthogonal complement of V is:
VE={zeR":z0y=0 VYyeV}.

The properties of the Lorentz-orthogonal complement are given in the next result, where we
use the symbol V* to denote the Euclidean orthogonal complement of V.

Lemma 10.2.2 Let V be a vector subspace of R" and write n(V*') := {nx, v € V*}, then:
1. VI =nvhy;

2. (VB =V, i.e. the Lorentz-orthogonalization is an involutive operation.
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Proof.

1. : it is a consequence of remark 10.2.1, i.e. x oy = (z,ny) = (nz,y) Y,y € R™, and of the
fact that n = diag(—1,1,...,1) verifies n? = I,,.

VEcpvh)|: let ze VL thenzoy=0VYyeV and so (nz,y) = 0Vy eV, ie nreV+:
but then z = n(nz) e n(V>y).

n(Vh) < VE|: let z € n(VY), then nz € n(n(V>)) = VL, so (nz,y) = 0 Yy € V, but then
roy=0VyeV, ie zeVE

2. : we have

ze(VHL «—= zoy=0 wyevl ((1=)> zonz=0 VYze Vi
which is equivalent to (x,n(nz)) = (x,2) =0Vze V't ie 2z (VHL =V, O

1. is clearly the consequence of the fact that x oy = (x,ny) = (nz,y), hence Lorentz-
orthogonality between two vectors x and y of RM~1 can be interpreted as the Euclidean
orthogonality between one vector and the Euclidean orthogonal reflection of the other along
its first coordinate.

We end this section with the classification of vector subspaces in R =1 in 3 categories.

Def. 10.2.11 Let V be a vector subspace of RV 1,
o V is time-like if it contains at least a time-like vector;
e V is space-like if every x € V\{0} is space-like;

o V is light-like otherwise.

R™, as improper subset of R1" 71 is a time-like vector subspace, because R” = span(ey, ..., e,)
and ej is time-like.

It might be a little surprising that a time-like vector subspace V of RM"~! is defined just
by requiring the existence of a time-like vector in V', while, on the contrary, we demand all
non-null vectors of a space-like vector subspace to be space-like. The difference is justified
by corollary 10.2.2 which imposes a strong constraint on the number of time-like vectors
that can appear in a Lorentz-orthonormal basis of a vector subspace: either one or zero!
Even if a basis of a vector subspace V of R1"~! is composed only by time-like vectors, after
orthonormalization, only one vector will remain time-like and the others will become space-like.
Moreover, as a consequence of corollary 10.2.3, only one light-like vector can appear
in a basis of a light-like vector subspace and all the other basis vectors must be
space-like.

Figure 10.4 gives a graphical depiction of vector subspaces of R (which are necessarily
either hyperplanes or straight lines passing through the origin).
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Figure 10.4: A graphical representation of vector subspaces in R%2.

We note that:

e space-like vector subspaces intersect the double light-cone only in the origin, either
perpendicularly w.r.t.the cone axis, or not, but without intersecting it in other points;

e time-like vector subspaces intersect the double light-cone not trivially;

e light-like vector subspaces are either straight lines defined by light-like vectors, or
hyperplanes generated by a light-like vector and a space-like vector such that the
hyperplane is tangent to the light-cone.

The relationship between time-like and space-like vector subspaces of R1"~! is established
by the following result.

Theorem 10.2.3 A vector subspace V< RY"~1 is time-like if and only if VL is space-like.

Proof.

: suppose V is time-like and z € V' a time-like vector. If y € V\{0} then, by corollary
10.2.2, y must be space-like since  and y are Lorentz-orthogonal. Thus, V¥ is space-like.

. we now assume V7’ to be space-like. Since (V)L =V, to prove that V is time-like it
is enough to exhibit a time-like vector y Lorentz-orthogonal to VZ. A good candidate for this
role is provided by the residual vector of the Lorentz-orthogonal projection on V% of a vector
x ¢ VI, as reported in eq. (10.3).

To this aim, we need to consider an orthonormal basis 2 = (u1,...,uy), m = dim(V’) < n,
of V¥, which we know to exist thanks to remark 10.2.2.
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Let « € R™ be a time-like vector, then = ¢ V¥ because V! is space-like, so, by definition,
all its vectors are space-like. The residual vector of the Lorentz-orthogonal projection of x on
VI is:

m
y=x— Z(ﬂf O U ) Ui,
i=1

notice that the coefficients ¢; appearing in eq. (10.3) quoted before are all +1 because V'’ is
space-like.

Eq. (10.3) assures us that y is Lorentz-orthogonal to every vector in V% (in particular, to
every u;) and so, to finish the proof, we just have to check if y is a time-like vector. By the
bilinearity of o we have:

m m
yoy - <x—2<xouz>ui>oy=xoy— (wous) (uoy) =woy
i=1 i=1
0
m m m
= aco(x—Z(:coui)ui)=xox—2(xoui)(xoui)=xox—2($oui)2
i=1 i=1 i=1
< rou,
but z is time-like, so z oz < 0 and so y oy < 0 and y is time-like. O

If we interchange the role of V with that of V¥ and we use the fact that (V1)L =V, we
get the following corollary.

Corollary 10.2.5 A vector subspace V. < RV~ is space-like if and only if VL is time-like.

Finally, if V < RM™~ 1 is a light-like vector subspace, since it cannot be neither time-like
nor space-like due to the previous results, we get the set of light-like vector subspaces is stable
w.r.t.Lorentz-orthogonalization.

Corollary 10.2.6 A vector subspace V< RY™ 1 is light-like if and only if V¥ is light-like.

10.3 Lorentz transformations

The analogue of orthogonal linear transformations of the group O(n) for the Euclidean n-space
are the Lorentz transformations for the Lorentz n-space.

Def. 10.3.1 A Lorentz transformation on RM 1 is a map ¢ : RV"~1 — RV that preserves
the Lorentz pseudo-scalar product, i.e.

(6(x)op(y) =zoy|  Vo,yeRVL

It is simple to prove that the set of Lorentz transformation on R~ form a group under
composition.

Def. 10.3.2 (The Lorentz group) The group of Lorentz transformation on R¥ 1 is called
the Lorentz group and it is denoted with the symbol O(1,n — 1) or Z.
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The following result is the equivalent of theorem 10.1.2 for the Lorentz n-space.

Theorem 10.3.1 ¢ : R~ — RV 45 ¢ Lorentz transformation if and only if it is linear
and, given a Lorentz-orthonormal basis (u1,...,u,) of RM™1 (é(uq),. .., ¢(uy)) is a Lorentz-
orthonormal basis.

Proof.

: we start by assuming that ¢ : Rb"~1 — RM~1 preserves the Lorentz pseudo-scalar
product. Then, for all Lorentz-orthonormal basis (u1, ..., uy,),

1 if i=j=1

0;; otherwise

P(ui) o p(ug) = u; ouj = {

so (¢(u1),- - ,é(uy)) is a Lorentz-orthonormal basis. Hence, for all x € RL"~1 thanks to eq.
(10.2) we have:

d(x) = > ei(p(z) 0 p(u;))p(u;) = : D eila o wi)d(ui),
' i=1

i—1 (¢ Lorentz transf.

n

with e1 = —1 and ¢; = +1 for all 2 <i < n. Eq. (10.2) implies also that z = >, &;(x o u;)u;,
i=1

so, by writing x; = &;(x o u;), we get:

gzb(Z:L‘zuz) = Z:Uiqﬁ(ui), Vo e RLL (10.6)
i=1 i=1

Following exactly the same line of reasoning used in the proof of theorem 10.1.2, we obtain
the linearity of the Lorentz transformation.

: conversely, suppose that ¢ is linear and that, for any Lorentz-orthonormal basis

(U1, ..., up) of RV (d(uy), ..., ¢(uy)) is again a-Lorentz orthonormal basis of R =1, Then,
o(x) = o) wiu; = z;O(u; Vo e RVL
@) = o) = Yo
thus

but ¢(u1) o ¢(u1) = —1 and ¢(u;) o p(u;) = 6;; otherwise, so

$(x) 0 dy) = Y wiyi — Ty = w oy,

i=1

i.e. ¢ is a Lorentz transformation. O

Being a linear transformation in R™, a Lorentz transformation ¢ can be written as a matrix,
usually denoted with A € M(n,R). More precisely, we have the following definition.
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Def. 10.3.3 (Lorentzian matrix) A matriz A € M(n,R) is called Lorentzian if the function
op : R™ — R™ defined by ¢p(x) := Az, for all x € R™, is a Lorentz transformation.

Remark 10.3.1 A can be interpreted as the matriz associated to ¢ w.r.t.the canonical basis
(e1,...,en) of R™.

As it happens for orthogonal transformations, Lorentzian matrices and Lorentz transforma-
tions can be identified, moreover, the algebraic properties of a Lorentzian matrix characterize
completely the associated Lorentz transformation, as stated in the following theorem.

Theorem 10.3.2 Let A be a n x n real matriz and n = diag(—1,1,...,1). The following
statements are equivalent.

1. A is a Lorentzian matriz
A is a Lorentzian matriz
The columns of A form a Lorentz-orthonormal basis of RV 1

The rows of A form a Lorentz-orthonormal basis of RM"~1

ARSI

A wverifies AlnA =1
6. A verifies AnAt =

7. A preserves the quadratic form q(z) = —a3 4+ 23 + -+ + 22 = ||z||* associated to the
Lorentz pseudo-scalar product, i.e. q(Az) = q(z) < ||Az|* = |z|>.

Proof.
: thanks to remark 10.3.1, A has on the columns the vectors (¢a(€1),...,oa(en))

of R™, which is a Lorentz-orthonormal basis of R 1. Lemma 10.3.1 can then be used to
guarantee the equivalence between 1. and 3.

1. <= 7.|: the proof is exactly the same as the one of lemma 10.1.3, the only difference
being that the Euclidean scalar product (, ) as to be replaced by the Lorentz pseudo-scalar
product o.

: by remark 10.2.1 we get
Az oAy = (Az,nAy) = (x,A'nAy),  Vr,yeR",

so, Y,y € R™ it holds that:

A Lorentzian <— AroAy=2xo0y
—  (x,A'mAy) = <x,ny)
— AlnA =17

which shows that 1. is equivalent to 5.

1. < 6.|: since n = n~!, property 5. can be restated by saying that A is Lorentzian if and

only if nAtnA = I,,, or that nA’n is the left inverse of A and so, by elementary linear algebra
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in R", A is invertible with inverse A=' = nA’y. Actually also A~! is a Lorentzian matrix, in
fact, if the associated transformation is ¢, ' (z) := A~z for all z € R”, then we have

zoy=((prdpr-1)z) o (padpr-1)y) = (da(dp-1(x)) 0 (pa(dr-1(y))  Vao,ye RHL

but ¢, is a Lorentz transformation, so

zoy=(pp-1(x)) o (Pa1(y))  Va,ye RV

hence A~! = nAln is Lorentzian and we can use property 5. on A~! to write

(mA'n)n(nAtn) =n <= nAn*Aln =n < 7 'nAnAlgn =0l = AnA' =1,

having used the fact that n? = I,, and n = nt = n~1.

: immediate consequence of the equivalence between 1. and 5. and 1. and 6. In
fact, by the first equivalence we have that A is Lorentizan if and only if A‘nA = 7, by the

latter this is equivalent to AnA? = 5, which is nothing by the first equivalence written for Af,
thus implying that A is Lorentzian if and only if A’ is.

: A is Lorentzian if and only if A! is, if and only if (by 1. <= 3.) A! has a

Lorentz-orthonormal basis of R"™~1 on its columns, which is equivalent to say that A has a
Lorentz-orthonormal basis of R 1 on its rows. O

Despite the extreme simplicity of its proof, this theorem has important consequences. The
first one is an immediate consequence of property 7.

Corollary 10.3.1 A Lorentz transformation preserves the likeness of a vector x € RV 1 j.e.
even if vectors can be modified by a Lorentz transformation,

e Lorentz-transformed time-like vectors still belong to the interior of the light-cone;
e Lorentz-transformed space-like vectors still belong to the exterior of the light-cone;
o Lorentz-transformed light-like vectors still belong to the light-cone.

Thus, as a whole, the light cone, the time-like and the space-like regions remain
unaltered after a Lorentz transformation.

The light cone is characterized by the equation g(x) = 0, i.e. is the O-level set of the quadratic
form ¢ associated to the Lorentz pseudo-scalar product. Of course, there is nothing special
about the value 0, as underlined by the next corollary.

Corollary 10.3.2 The level sets of the quadratic form q associated to the Lorentz pseudo-scalar
product are preserved by a Lorentz transformation, i.e. if x € R4~ belongs to the hyperboloid
defined by q(x) = ¢, then also its Lorentz transformed (which is, in general, another vector)
belongs to the same hyperboloid. In other words, as a whole, the hyperboloid q(z) = ¢,
ce R, remains unaltered after a Lorentz transformation.
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As we have seen in the proof, a Lorentzian matrix A is invertible with inverse A=! = nAly
which is a Lorentzian matrix too, thus, if we identify Lorentz transformations ¢ with their
Lorentzian matrices A, we can identify O(1,n — 1) with a subgroup of GL(n,R) as follows:

O(l,n — 1) = {¢ -R"® - R"™ - d)(x) O(b(y) =zoy, VZE,y c Rl,n—l}
={A e GL(n,R) : A'nA =n = ApA’, 5 =diag(—1,1,...,1)}.

Notice that if o is replaced by the Euclidean scalar product (, ) and n by I,, then
O(1,n — 1) becomes the group O(n):

O(n) = {¢:R" > R" : ($(x),9(y)) = {x,y), Vz,yeR"}
= {AeGL(n,R) : A'I,A=1, = ALLA"}.
By Binet’s theorem, det(n) = det(A‘nA) = det(A?) det(n) det(A), i.e. det(A?)det(A) =1,
but det(A!) = det(A), thus
det(A) = +1],
as it happens for an orthogonal matrix. As usual, we denote with
SO(1l,n—1)=2, :={AeO(1,n—1) : det(A) =1},

the special (or proper) Lorentz group.

Another important subgroup of O(1,n — 1) is defined below.

Def. 10.3.4 (Positive Lorentz transformations) A Lorentz transformation A € O(1,n —
1) is called positive (or positively oriented) if it preserves the orientation of the light cone, i.e.
if, for all x € RV & time-like,

z1 >0 = (Ax); > 0.
The subgroup of O(1,n — 1) given by positive Lorentz transformations is denote as follows:
PO(l,n—1)=2" = {AeO(1,n—1) : & time-like, z1 >0 = (Az); > 0},
and called either positive or orthochronous Lorentz group.

We stress that, if A € PO(1,n — 1) and € R"™~! is a time-like vector such that z; < 0, then
—z1 > 0 and —(Az); = (A(—x)); > 0, hence (Az); < 0. In other words, a positive Lorentz
transformation preserves the orientation of time-like vectors in the interior of both the upper
and the lower parts of the light-cone.

In relativistic theories, where the coordinate x; is identified with time ¢, the previous
remark is translated by saying that positive Lorentz transformations preserve the orientation
of time-like vectors both in the interior of both the future and the past light-cone.

The subgroup

SPO(1,n— 1) =SO*(1,n — 1) =.2] := SO(1,n — 1) n PO(1,n — 1),

is called special positive or proper orthochronous or restricted Lorentz group. It
can be proven to be the connected component to the identity of the Lorentz group.

More insights about the structure of the subgroups of the Lorentz group just defined are
provided by the next theorems. In particular, it is quite remarkable that the positivity of a
Lorentz transformation is fully encoded in the first entry of the Lorentzian matriz A.
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Theorem 10.3.3 Let A = (Ajj)1<ij<n € O(1,n —1).

1. Ae PO(1,n —1) if and only if A1 > 1.
2. Ae O(n) nPO(1,n — 1) if and only if Ay; = 1.

Proof.

1. : we start by showing that A is positive if and only if Aj; > 0. Since A has a Lorentz-
orthonormal basis on its rows and since the first vector of this basis is time-like, the entries of
the first row of A form a the time-like vector that we denote with v.

Fixed a generic positive time-like vector x € R™, A is positive if and only if Az is a positive
time-like vector, i.e. if the first entry of Ax is positive, but this is nothing but {(v1,x), so A is
positive if and only if (v;,z) > 0.

However (vi,z) = {vi,n?z) = {(v1,n(nx)) = vy o nx, thus A is positive if and only if
vy onz > 0. Notice that nz is a negative vector because x is positive, so 1 > 0, but n =
diag(—1,1,...,1), so (nz);1 < 0. By theorem 10.2.1, if v; is a negative vector too, then
v1 onz < 0, so the fact that v; o nz > 0 implies that v; must be positive, i.e. A;; > 0.

Moreover, since v; a unit norm time-like vector, we have ||lv1]|*> = —1, but [jv1* =
—A112 + |171|2, thus

A%l =1+ |1_}1‘2 =1,

which implies A1 = 1 since we have shown that Ai; is positive.

2. : first of all we remark that 1. implies the following equivalence A € PO(1,n — 1) <
A11 =1, in fact A? is a Lorentzian matrix too an it shares the first entry, A1y, with A.

Now, if Aj; = 1 then A2, = 1 + |91]? implies |71]> = 0, so v; = (1,0,...,0) = e;? (the
transposed of the first vector of the canonical basis of R", recalling that we always work under
the assumption that vectors in R™ are column vectors). It follows that the first column ¢; of
A is ¢; = v} = e1. Therefore, A has the form

1 0
=04

A€ GL(n — 1,R) and, by theorem 10.3.2,

P 1 0\ /-1 0Y\/1 0\ (-1 0 .
A"A_”(:’<0 a)lo 1) \o a)=\o 1,,) = A4y

but then A'A = I,, and so A € O(n).

It remains only to prove that if A € O(n) n PO(1,n — 1), then, necessarily, its first entry is
equal to 1. To this aim, notice that, in this case, every column of A is an orthonormal vector
w.r.t.both the Euclidean and the Lorentz scalar product, this implies that ¢y, the first column

of A, satisfies ||c1||* = —1 and |12 = 1, so [|e1||? + |e1]2 = 0. But, since the first element of ¢;
is actually Aj1, we also have |jc1]|* = —A11? + |é1|2 and |1 = A% + |12, so
0= H01H2 + ’01’2 = —A112 + |51|2 + A112 + |51‘2 = 2|51|2,

ie. ¢ = 0. Since ¢; = (A11,¢1), this implies ¢; = (A11,0,...,0) and the only what that
c1 has unit Euclidean norm is that A1y = +1, but A1; > 1 so only the option A;; = lisvalid. O
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During the proof of the last theorem, we have also proven this result, which says, geometri-
cally, that the only orthogonal transformations that preserve the light-cone are the orthogonal
transformations that leave the first axis invariant.

Corollary 10.3.3

O(n) nPO(1,n—1) = {
)

~

We end this section by showing that the group of Lorentz transformations acts transitively
on the vector subspace of R~ of different likeness, which become, then, homogeneous spaces
w.r.t.the action of .Z. In fact, we can prove an even stronger result: transitivity is guaranteed
already by the subgroup of positive Lorentz transformations.

Theorem 10.3.4 Let VI, V5 and VE be the set of m-dimensional time-like, space-like and
light-like vector subspace of RV~ respectively. Then, the action of PO(1,n — 1) is transitive
on each of them.

Proof.

Transitivity of PO(1,n — 1) on V1. We start by observing that V,, := span(ey, ..., ey,) = R™
is a time-like vector subspace of RM~1 because e; is time-like. We will prove the transitivity
of PO(1,n — 1) on VI by showing that for a given time-like m-dimensional vector subspace V
belonging to the set VY, there is a A € PO(1,n — 1) such that A(V;,) = V.

By theorem 10.2.2 we can guarantee the existence of a positive Lorentz-orthonormal basis
B = (wy,...,wpy) of V. We use the vectors of Z to define the matrix

A=w ... w,]|,

which, thanks to theorem 10.3.2, belongs to PO(1,n — 1) because its columns form a positive
Lorentz-orthonormal basis. By direct computation we have that A(e;) = w; Vi = 1,...,m, so,
by linearity, A(V,,) = V.

Transitivity of PO(1,n — 1) on V2. This time, we set W,, := span(es, ..., emn11) to be our
m-dimensional space-time vector subspace of reference (note that the dimension m of a space-
like vector subspace must be strictly less than n since it cannot contain any time-like vector by
definition). Let W € V;i and u € WL, where W is the Lorentz-orthogonal of W, a positive
time-like vector such that ||u/|* = —1. Then, V := span(u, W) is a time-like vector subspace
of R~ and so, by what we have just proven, it is connected to V,,41 by a positive Lorentz

transformation, that we indicate again with A € PO(1,n — 1) for simplicity. So: A(V) = V41
and A(u) = e; (the time-like vectors are connected by A). If we prove that A(W) = W,,,
then, being A invertible, we have A1 (W,,) = W, thus proving the transitivity. To this aim,

let we W < V. Then A(w) € span(e;)” because

A(w)oe; = Aw) o A(u) = wou =0,
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and so, since the Lorentz-orthogonal of span(ey) is span(es,...,e,) = Wy_1,
A(w) € span(er)” 2 AV) = Wt 0 Vst = W,

which allows us to conclude that A(W) ¢ W,,. Finally, if & = (wi,...,wy) is a Lorentz-
orthonormal basis of W, then w; o w; = d;; and so A(w;) o A(w;) = d0;;, which means that also
(A(w;))1<i<m is a basis of W,,. Hence, by linearity, we have A(W) = W,,.

We leave the transitivity of PO(1,n — 1) on VX as an exercise. O

The previous theorem has an important consequence: the transitivity of Lorentz trans-
formations on the hyperboloids in R}"~! defined as set-level surfaces of the quadratic form
associated to the Lorentz pseudo-scalar product. To understand how this is possible, it is
sufficient to consider the particular case of m = 1: the elements of VI and Vy are straight
lines passing through the origin and belonging to the interior or the exterior of the light-cone,
respectively.

Each one of these straight lines intersects the hyperboloid defined by the equation HxHZ = q,
a € R\{0}, in two antipodal points w.r.t.the origin and belonging to the two disconnected
hyperboloid sheets. Thus, the transitivity of positive Lorentz transformations on VlT and
Vig implies that every couple of vectors belonging to same sheet of the hyperboloid can be
connected by a positive Lorentz transformation.

The following result summarizes the previous arguments.

Corollary 10.3.4 Let a € R\{0}, fized. O(1,n — 1) acts transitively on the hyperboloid
HL = {w e BRI [z = a}.
Proof. We start by remarking that given z € H” ™!, we have
Ve nH2 = {x,—x}, where V, =span{z}.

Let 7,y € H2~!. Then by theorem 10.3.4, there is a transformation A € PO(1,n — 1) such
that A(V;) = V,. Because A preserves the Lorentz pseudo-scalar,

AVynHE Y =VynHE!

and so we have either
Alz)=y or A(z)=—y.

In the second case, it suffices to take —A € O(1,n — 1) as the transitive action from z to y. O
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Chapter 11

Mébius tranSfOrmatiOnS (Antoine Guennec,

Nicoletta Prencipe and Edoardo Provenzi)

Moébius transformations are the main toolbox for the conformal model of hyperbolic geometry.
Before discussing them rigorously, we give an intuitive introduction.

11.1 Introduction to Mobius transformations

The most natural setting for Mobius transformations is that of sphere, where a Mobius
transformation is defined as a finite composition of basic geometric transformations called
inversions, whose basic idea is depicted in Figure 11.1: by sliding continuously an elastic
band on a ball, we can transform it into the equator, thus transforming the surface of the ball
contained in the interior of the elastic band to half the surface of ball; in this situation the
ball surface contained in the elastic band and the remaining one are isomorphic.

Figure 11.1: Inversion on a sphere: as the radius of the circle increased until reaching the
diameter of the sphere, the ‘interior’ of the circle (in green) is diffeomorphic to the ‘outside’
(in pink).

Once written in mathematical terms, this continuous transformation that maps the spherical
surface contained in a circle to the one left outside is called inversion on a sphere. By noticing
that a circle can be obtained by cutting a sphere in R? with a plane, it should not be surprising
that, in the definition of inversion on a sphere of an arbitrary (finite) dimension n, a circle is
replaced by a hypersphere, i.e. the intersection between a n-hyperplane and a n-sphere.

The group of Mobius transformations on the sphere, denoted by M(S™) is the subgroup
of Aut(S™) = {f:S™ — S™, f bijective} generated by inversions w.r.t. hyperspheres.
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While it is true that handling M&bius transformations on the sphere is the most economical
way to do it in terms of transformations involved (i.e. inversions), it is also true that it is
more intuitive to analyze Mobius transformations in the Euclidean space. This can be done
thanks to the stereographic projection introduced in chapter 1, which allows us to set up a
bijection between the n-sphere minus the north pole and the hyperplane in R**! defined by
{r e R""! : 2,1 = 0}, which can be identified with R™. To obtain a complete bijection we
will need to introduce an artificial element, an abstract point denoted by co and called the
point at infinity.

Dealing with Mobius transformations in the Euclidean domain enlarged with the point
at infinity comes with a price: we will see (corollary 11.4.1) that we no longer need only
inversions to characterize them, but also other geometric operations, called reflections w.r.t.
hyperplanes.

The importance of reflections and inversions motivates why we start the formal analysis of
Mobius transformations by defining them in the next subsection.

11.2 Reflections and inversions

Consider a unit vector a € R", |a| = 1, then, by the orthogonal projection theorem, we have
R™ = span(a) @ span(a)* and so span(a)* := {x € R"® : (z,a) = 0} is a (n — 1)-dimensional
vector subspace of R", i.e. a hyperplane in R” passing through the origin. If we consider the
affine structure of R”, the vectors of span(a)’ can be rigidly translated away from 0 by a real
quantity ¢ via the transformation = — x — ta. This operation identifies an affine space of
dimension n — 1 whose algebraic expression can be obtained by replacing = with x — ta in

the equation (z,a) = 0, i.e. (x —ta,a) =0 <= {(x,a) —tla|*> =0 ‘<|:> (x,a)y =t.
a|=1

These considerations justify the following definition.

Def. 11.2.1 (Hyperplane in R") Given a € R", |a| =1, and t = 0, the hyperplane associ-
ated to a and t is the set
P(a,t) :={x e R", {x,a) = t}.

Thus:
e a is the normal vector to P(a,t)
e ¢ is the distance between P(a,t) and 0, which can be taken non-negative because its

possible negative sign can be incorporated in the vector a without changing its unit
norm by redefining ¢ and a as follows:

t— |t| = 0 and a — signum(¢) a.

Geometrically, the reflection w.r.t. P(a,t) is the map p that takes any point = € R™ at a
distance d from P(a,t) to a point p(x) which lies specularly on the other side of the hyperplane
at the same distance d. The 2D version of this operation is depicted in Figure 11.2.

To understand how to analytically define p(x) notice that, if we perform the sum z + Aa,
then we move z perpendicularly w.r.t. P(a,t) and by a magnitude \. Let A* be such that
x + A*a € P(a,t), then clearly p(x) = x + 2X\*a. To make A\* explicit we have to write

1

(z+Na,a) =t — (m,a)+ N af? —t «> M —t—(,a).
We formalize this concept in the following definition.
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Figure 11.2: 2D graphical representation of a reflection w.r.t. a hyperplane, which is a straight
line in two dimensions.

Def. 11.2.2 A reflection in R™ w.r.t. the hyperplane P(a,t) is the affine function:

pat: R* — R"

T pay(®) =1+ 2t — (z,a))a. (11.1)

Pat(x) is said to be the reflection of x w.r.t. to the hyperplane P(a,t).

If the dependence of p on the parameters a and ¢ of the hyperplane P(a,t) is not significant,
we will simplify the notation and write p instead of pq ;.

Figure 11.2 suggests some geometrical properties of p, ¢, e.g. the vectors belonging to
P(a,t) are unaffected by the action of pg¢, if we apply it two times we come back to the
original vector, so that the inverse of p,; is itself and the Euclidean distance between any two
reflected vectors is the same as the original distance.

These properties, and one more, are rigorously stated in the following theorem.

Theorem 11.2.1 p,; satisfies the following properties for all x,y € R":
1. poi(z) =z if and only if x € P(a,t)

2. p2.(x) =z, i.e. pagr is an involution, and so p?, = idpn, i.e. pas is a bijection with
pa,t ) P 5 ) pa,t ) P , ]
-1
Pait ~ = Payt

3. pat is a Euclidean isometry: |pa(x) — par(y)| = |z — y|

4. pgr € O(n) < t=0.
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Proof. The proofs can be obtained by direct computation.

1.
pat(z) =2 <— z=z+2(t—{x,a))a (a#0)
— {(zr,ay=t
<~ z€P(a,t).
2.

2o() = paipes(®) = pap(®) + 20t — (pas(e), ap)a
(letting s = 2(t — (x,a)))
= z+sa+2(t—{x+ sa,ay)a
x + sa+2(t—<{x,ay)a—2sa
T + sa + sa — 2sa

= .
3. : first of all, we note that

Pat(T) = pat(y) =2 —y —2{y —z,a)a,

SO
pat(2) = pai(W)]? = |(x—y)—2{y—=,a)al
= Je -y -4y —z,0) +4{y — x,0)°
= |lz—yl*.

4. : if t # 0, then p,+(0) = 2ta # 0 since a € S™, thus p,; is not linear and thus it cannot
belong to O(n). If t = 0 then, for all z,y € R™,

(Pa0(2); pai(y)) = (& =24, a)a,y — 2{y, ) a)

1
— ) — 2, a)a, y) — 2y, a) (z, a) + 4 (x, a) a, y) Jaf”
= <ac,y>

a

As a consequence of property 2., pq; is bijective, thus a reflection w.r.t. a hyperplane in
R™ maps bicontinuously any point in R™ that lies on one side of the hyperplane to a unique
point that lies on the other side.

The concept of inversion deals with the same problem, with one (major) difference: the
hypersurface w.r.t. the inversion is performed is not a hyperplane but a (hyper)sphere. While
a hyperplane extends towards the infinite, a sphere is bounded, this fact implies that it
is impossible to continuously fill the whole outer space to the spherical surface simply by
reflecting its interior points w.r.t. the tangent hyperplane to the sphere at a point, a different
geometrical operation is needed.
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As proven by G. Bellavitis in his 1836 paper [2], this operation consists in mapping any
point z inside the sphere to the unique point o(z) outside the sphere characterized by the
following two properties: firstly, o(z) lies on the same line joining z with the center of the
sphere; secondly, the norm of o(x) is inverted w.r.t. that of x.

The easiest way to formalize this idea is by first considering the unit sphere S”~! in R"
centered in 0: if z € R™ is such that |z| < 1, then og () := ﬁﬁ = ﬁx is the desired
inverted point outside S™~!.

If, instead of S™~!, we consider S?~! r > 0, then we can turn back to the previous case by
applying 0o,1 to 7 and then by restoring the correct radius via a multiplication by 7, denoted
with m,. Mathematically, this corresponds to the composed function oq, := m, o 0o 1 0my,,
hence, given any x € R" such that |z| <r <= |z/r| <1 we have

%M@ZOWO%JWMM@Fﬂm@m@ﬁ»=mw(ﬂx)=WMQ;ﬁ>=<r>3-

|2 ]

The most general case is that of Sg’;l, the (n — 1)-sphere centered in a € R with radius r > 0,
ie.

Sg;l ={zeR" : |z —a|=r}.

Following the same argument used above, the inversion o, , will be given by the composition
Tq © 00, O T_q, T being the translation operator. Thus, for all z € R™\{a} satisfying |z — a| <
r < |z —a|/r <1

awm=mwwu—M=m<<7’)7wa=a+ﬂ@—w

|z — al |z — al?

Def. 11.2.3 Let a € R" and r > 0, then the inversion in R" w.r.t. the sphere Sg‘;l is the
non-linear function

oar: RM{a} — R™"\{a}

2
x —  0gr(2) :=a+|mfia|2(x—a).
Oar(x) is said to be the inverse of x w.r.t. to the sphere Sit.

If the specification of the parameters a and r is not significant, we will simply write ¢ instead
of 4.

The following result shows that the conjugation that is needed to define a generic inversion
starting from the inversion w.r.t. to unit sphere can be operated by fusing into an affine
function the multiplication by r and the translation by a.

Lemma 11.2.1 Let:
e 00,1 the inversion w.r.t. S™=1 the unit sphere centered in 0 in R"
e 0, the inversion w.r.t. the sphere Sg;l, aceR" r>0

e for all z e R", ¢(x) = a + rx, with a and r as above.

Then,

Oar = ¢o 00,1 © ¢71 .
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Proof. For all z € R"™ we have, by definition, o4 ,(x) = a + ﬁ(m — a), but, if we replace x

|S":aa|)2 as argument of ¢ we get

by r

80 0q,r(2) = ¢ (Tﬁ:ﬁg). Since 001 (z) = 25,

r—a r—a r? T —a
o = =r
0.1 r r |z —al? |z —al|?’

hence o4 ,(x) = ¢poo0g 1 (%) for all z € R™.
Finally, by solving ¢(z) = a + rz w.r.t. z we obtain ¢~'(z) = =%, so that o, (z) =
poop1odt(x) for all z € R™. O

Remark 11.2.1 Both reflection w.r.t. a hyperplane and inversion w.r.t. a sphere are,
essentially, one-dimensional operations, in the sense that all the points belonging to the
same straight line orthogonal to the hyperplane involved in a reflection are left on this straight
line; in the same way, all the points belonging to the straight line passing through the origin
of the sphere involved in an inversion are left on that line.

Contrarily to a reflection w.r.t. a hyperplane, which is defined on the whole R", an
inversions w.r.t. a sphere Sg;l is defined on R" deprived of the sphere center a.
Notice also that o, ,(z) is the only point verifying

(0o (@) — allz —af =12, (11.2)

thus, the closer x is to the center of the sphere a, the further apart o, ,(z) is sent
on the straight line connecting x to a. Figure 11.3 gives a graphical representation of
this phenomenon in two dimensions.

\

Figure 11.3: 2D graphical representation of an w.r.t the circle S;yr.
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As it can be seen, as we approach the center of the circle, the inverted point goes farther
and farther. It is not difficult to imagine that, if we want to extend the concept of inversion to
contemplate also the center of the sphere a, then we have to associate it to a point at infinite,
that we will rigorously define later.

In the following theorem we prove the properties of inversions analogous to those of
reflections. We put the accent on the fact that, by its own definition, an inversion cannot be
an isometry, except for the points belonging to the sphere w.r.t. the inversion is performed.

Theorem 11.2.2 Let a € R", r > 0 and o be the inversion w.r.t. S;‘;l. Then, for all
2,y € R™\{a}:

1. 0q,(x) = x if and only if v € S]};l

2. 02, (x) =z, i.e. 0ay is an involution, and so a4, is invertible with oq, ' = 04,
b

2
3. |oar(r) —0our(y)| = m\ﬂc —yl.

Proof. Let z,y € R"\{a}.

1. : the relationship |0, (z) — a||z — a| = r? always holds for o,,, thus 0,,(z) = x if and

only if |z —al* = 7%, ie. x €SP,
2.
2 r?
Oor(T) = Oap(0ar(x)) =a+ m(aa,r(ﬂﬂ) —a)
N |z — al? r2 ( )
=a x—a)l| =z
r2 |z — al?
3. :
2 2
" - a2 YT a
’Ua,r(x) Ua,r(y)‘ = \x—a\Q(x a) |y_a‘2 (y a)' r ‘Z‘—CLP ‘y_a‘g
_,2/ %-a y-a z-a y-a 2
[z —al* |y—al’fz—al* |y—al?
1
ollz —al* {z—ay—a |y—af|?
=T —
[z —al* “lz—aPly—al |y—al*
of 1 {(r —a,y—ay 1|2
=r -2
[z —al>  lz—alPly—al*  |y—af?

1
2

o|ly—al? 2 —a,y—a) + |z —af

|z — al*ly —af?

o[z —a)—(y—a)(x—a)—(y—a)

[z —al’ly —af?

1
2

1
2 a2 lz—y

o| & —y,x—y)
|z — ally — al

[z —al’ly —af?
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Property 3. of theorem 11.2.2 states that, if  and y do not belong to the sphere Sg;l,
then their Euclidean distance after the application of o,, will be proportional to their original
Euclidean distance inside the sphere, with a non-linear proportionality coefficient that depends
on both x and y through the formula r%/|z — al|ly — al.

This property is crucial to understand the profound link between Md6bius transformations
and the so-called cross ratio.

The following theorems underline the importance of reflections and inversions, by relating
them to the Euclidean isometries and similarities.

Theorem 11.2.3 Every Fuclidean isometry of R™ is a composition of at most n+1 reflections.

Proof. As a preliminary observation, we recall that, by theorem 10.1.1, all Euclidean isometry
f:R™ - R"™ can be written as f(z) = a + ¢(x) with a € R” and ¢ € O(n), for all z € R™.
Hence, an isometry is an orthogonal transformation if and only is it leaves 0 fixed.

The proof is constructive and it is based on the following strategy:

e we start by building the first reflection pg such that ¢¢ := pg o f belongs to O(n);

e then we build by induction the other n reflections pi,...,p, such that, for all k €
{1,...,n}, the transformation ¢y := pr 0 px_1 0---0 pg o f belongs to O(n) and leaves
all the first k vectors of the canonical basis eq, ..., e, of R™ fixed;

e when we arrive to k = n we obtain an orthogonal (hence linear) transformation ¢,, =
pn 00 pgo f which leaves all the vectors of the canonical basis e1, ..., e, of R" fixed.
The matrix associated to ¢, w.r.t. the canonical basis of R™ is of course I,,, s0 ¢,, = idgn;

e finally, we observe that

bn=pno-0pyo f =idan <= (poo--0pn)o(pno 0 po)of = poo-opy

but the reflections p; are involutions, i.e. p? = idgn for all ¢ = 0,1,...,n, so that
f =poo---0py, which proves that we need at most n + 1 reflections to represent any
arbitrary isometry f.

Let us start by building the reflection pg such that ¢9 = pg o f € O(n). We write
zo := f(0) = a and we set
’ian if xTrog = 0
po = P =y lzgl Otherwise’

lzgl” 2

¢o is clearly an isometry as composition of two isometries, f and the reflection pg. Let us
verify if it leaves 0 fixed: by using definition (11.1) we have

idgn (0) = 0 if 2o = 0
xg) = ,
polo) p‘LO ZTD\(Z'()) =xq + 2('"":20| - <£L’0, \%\ >|ig =x9—x9=0 otherwise
zg|’

50 ¢0(0) = po(f(0)) = po(zo) = 0, hence ¢q is indeed an orthogonal transformation.
Let us pass to the construction of the remaining reflections p1, ..., p,. As we have previously
declared, we will use the induction technique, so we need to start by proving that there exists
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a reflection p; such that ¢ := p10¢g = p1opgo f is an orthogonal transformation that leaves
e; fixed. We set 1 := ¢g(e1) — e; and we define such a reflection as follows

{idR" if ¢o(e1) = e1
p1 =

pxz1, otherwise
lzq]?

9

¢1 is either ¢g, which is an orthogonal transformation, or the composition of ¢y with the
reflection p o0 which is orthogonal thanks to property 4. of theorem 11.2.1, in both cases
x|’
¢1 € O(TL)
We also observe that ¢1(e1) = p1(¢o(e1)), which is equal to idrn(e1) = e if ¢p(e1) = eq,
otherwise: .
1

p1(e1) = p1ogoler) = goler) — 2<do(e1), 71) ——

|lz1]?

but |go(er) — @1|* = |go(er)|* — 2{do(er), 1) + [z1]?, s0 —2{go(e1), 21) = |¢o(e1) — z1]* —
|po(e1)|?> — |x1|?, thus

¢1(e1) = ¢oler) + (|poler) — z1* —|do(er) —|331|2)ng
5,1_/ T ’{1;‘1|
= go(er) — |21 w1|2 = ¢o(e1) — 21

|21

= €1,

where we have used the fact that |¢pg(e1) — z1| = |e1| = 1 and |¢po(e1)| = 1 because ¢g € O(n)

and |e;| = 1. To resume, ¢; € O(n) and it leaves e; fixed, thus the first induction step is
fulfilled.
We now assume that, for all' k € {3,...,n} there exists ¢_; € O(n) that fixes e, ..., ex_1.

Let zy := ¢p_1(er) — ex and define

 fidrn i G (er) = e
Pk = PO otherwise ’

zE|’
By repeating exactly the same computations performed in the case of ¢1, it can be verified that
O := pr © ¢k—1 € O(n), and that ¢y, leaves ey fixed. To verify that ¢y leaves also eq,...,ex_1
fixed we write

Tk
or(ei) = pr(dr—1(es)) = pl%llzl,o(sbk—l(ez‘)) = dr—1(ei) — 2 xp, dr—1(e)) ek

but, for 1 <i<k<n-—1,

¢k,1(ei) = €; (11.3)

by hypothesis of induction and so

(T, dr—1(ei)) i) (Pr-1(ex) — ek, ei) = {Pr—1(ex), €i) — MO = (Pr-1(ex), €y

0
T (Pr—1(ex), pr—1(ei)) = Lexser)”

( ¢r_1€0(n)

=0,

notice that for k = 1,2 we have already built ¢o and ¢1, so we do not need to assume their existence.
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which implies that

Tk . .
dr(ei) = pp—1(ei) —2{xp, pp—1(ei)) T =€, Vi=1l<i<k<n-1
Guoile) =2 @ St 1
=e; =0
Hence, ¢ € O(n) and fixes ey, ..., e, which is what we had to verify in order to conclude the
proof. O

We can easily extend the previous result to Euclidean similarities.

Corollary 11.2.1 FEvery FEuclidean similarity is a composition of at most n + 3 reflections
and inversions.

Proof. First we treat the special case of the similarity g(z) = kx, k > 0. Let 01 := 091 and
o2 =0, - Then, by direct computation, we get

X

rroon(a) = o (2 ) = ke = ala).

More generally, a similarity f € S(R™), by theorem 10.1.1, can be written as f(z) = a + k¢(x)
with a € R", k> 0 and ¢ € O(n). As we have seen in the proof of the previous theorem, by
letting xo = f(0) = a and pg = p =, |z, We have

2

lzgl”

f(@) = poo f(z) = ko(x)

oo 001 0 ¢(x),

and, as seen in proof of the previous result, ¢ can be decomposed into n reflections and so the
corollary is proven. O
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11.3 The stereographic projection as an inversion and the one
point compactification of R”

In chapter 1 we have shown that the stereographic projection allows us to identify the n-sphere
without the north (or south) pole with the hyperplane in R**! defined by:

P(ens1,0) = {z e R"™ : (x,e,11) =0} = {(z1,...,20,0), z1,...,2, € R} = R"x {0} = R".

Figure 11.4 gives a schematic depiction of the stereographic projection in 3D.

Figure 11.4: Stereographic projection in 3D.

Geometrically, it is intuitive that the stereographic projection acts as an inver-
sion. In this section we are going to give a formalization of this fact.

In order to keep the analysis as simple as possible, we will implicitly identify R™ with the
hyperplane in R"*! passing through the origin and orthogonal to e, +1 whenever needed and
we will also reverse the roles of R™ and the n-sphere, as specified in the following definition.

Def. 11.3.1 The map
m: R* = S™\{et1}

x — 7T(-73) = < 221 22 |x2—1)’

1+]z|? P 14]z[?0 1+]z|?
is called the stereographic projection from R™ to S™\{en+1}-

7 coincides with the map 901}1 defined in eq. (1.6) with R = 1, i.e. the inverse stereographic
chart relative to the north pole of S™, that is a bijection between R"™ and S™\{e,+1}.
The following result gives an alternative geometric representation of .

Theorem 11.3.1 For all x = (x1,...,2,,0) € R", the stereographic projection 7(x) can be
written as follows:

R it 11.4

W(l’) —$+TW(€”+1—$). ( . )
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This means that the stereographically projected vector m(z) is obtained through the vector
sum of x with a modulated version of the difference e, .1 — x, where the modulation factor
|z[>~1
1+|x|?

s = # 1 is introduced to guarantee that m(x) lies on the unit sphere, i.e. that |w(z)| = 1.

Proof. Let us write w(z) = z + s(ep+1 —x) = (1 — $)x + sep41, then, by direct computation,

1
Im(z)] =1 < |21 —5)2+25(1—s)(x,ens1)+5°lemrils =1
——
=0
5, 1—s? 1+s |lz|? — 1
Aaand |JU\ = = = §=—-7F,
(1—s)2 1-3s 1+ |z|?
if we introduce this expression of s in 7(z) = (1 — s)x + sep+1 we get
jzf* — 1 jzf* — 1
=(1—+——= 0 ——(0,...,0,1
7['(33’) < 1+|.%"2 (xlv y Ly )+ 1+‘x’2( ) » Uy )
2 lz|2 — 1 2x1 2z, |z|?—1
—(— V@2 0) + 2 (0,...,0,1) = , ,
(1 + |x|2> (21 Zn:0) 1+ |x]2( ) 1+ |z|? 1+ |z|2" 1+ |z|?
which coincides with the definition of stereographic projection given in (11.3.1). O

Consider S:mh NGL the sphere with radius v/2 centered in e, 11, then the inversion o 13

Rn+1\{€n+1} - Rn+1\{en+1}7 Jenﬂ,ﬁ(l‘) =€nt1 t m
restrict this bijection to the hyperplane P(e,+1,0) =~ R™ we still get a bijection with its

(x — en+t1), is a bijection. If we

codomain. It turns out that the codomain of o, ﬁ‘R is S™\{en+1} and that its analytical

form coincides with the one of the stereographic projection.

Theorem 11.3.2 It holds that

T=0, .. 2 (11.5)

Re |

Proof. We simply have to apply o, /5 to (z,0), with z € R", to verify that we get m(z). To

0
this aim, we first remark that: |z — ep41| = |22 — 2z en71) +M1 =1+ |z/% so
2 2

06n+17\/§(x) = Cn1t m(x —€n+1) = €n41 + Tmz(ﬂ? — €n+t1)
= (0,...,0,1) + —— -1
( ) s Uy )+ 1+ |l“2(1"17 y Ly )
_ 211 2, |z[* -1
B L+ z27 71+ z2 1+ |z]?
= 7(z).

a

The so-called one point compactification of R™ is obtained by extending the stereographic
projection m : R" = S™\{e,+1} to a larger space, denoted with R™, in such a way that the
extended map 7 : R” — $" is a bijection that encompasses also e, 1. This is done by adding
one single abstract point to R™ that, however, gets a very concrete representation in R?*+!
thanks to .
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Def. 11.3.2 (Point at infinity) The abstract point denoted with 0o and defined by
7(0) = epy1 = 0 =7 (ens1) (11.6)
is called the point at infinity of R™.

The reason for this name is twofold: first, geometrically, the extension of the stereographic
projection to e,y1 cannot give a finite value of R™, second, analytically, if we have a sequence
(Zn)n=0 < R™ such that |z, -, T then 7 (z),) o, Gl = 7(00). Since S™ is compact,

n—+0o0 n——+ao0

the map 7 : R™ 55 S™ creates a bijection between R™ and a compact space, which motivates
the name ‘compactification’.

Def. 11.3.3 (One point compactification of R™) Let oo be an abstract point not belonging
to R™. The one point compactification of R™ is the set R™ = R™ u {00}, the extension of the
stereographic projection w to R™ is the bijection

: R* — §7

r — 7(x) :—{

w(x) ifx# 0

ent1 if x =00

The point at infinity of R™ can be identified, thanks to 7, with the north pole of the unit sphere
S™, which is a point that lives in the (n + 1)-dimensional space R"*!. To better understand
this fact, let us consider the cases n = 1, 2.

e The one-point compactification of R is

R=Ru{o} =S = RP!,
(9.8)

i.e. the unit circle in R? and the point at infinity of the real line, interpreted as a
hyperplane in R?, can be identified with e.

e The one-point compactification of R? is

R? =R? U {0} =~ §? = RP?,
(9.8)

i.e. the unit sphere in R? and the point at infinity of the real plane R?, interpreted as a
hyperplane in R3, can be identified with es.

The one-point compactification of C has a special name.

Def. 11.3.4 (Riemann sphere) The one-point compactification of the complex plane C is
called Riemann sphere

C:=Cu{w} = CP.
(9.11)
Thanks to the bijection provided by 7, it is possible to endow R™ with a metric.

Def. 11.3.5 (Chordal metric) The chordal metric de on R™ is:

dC(x?y) = ”f((.%') - ﬁ(?/)’a Vl‘,y € Rn

241



So, to compute the chordal metric, we stereographically project x,y € R™ on the sphere S™ and
then we compute the Euclidean norm of the difference between the two projections, interpreted
as points of R"*1. Of course, if z = y = o, dc(0,0) = |ent1 — ens1] = 0. The following
result shows what are the values taken by the chordal metric in all the other cases.

Theorem 11.3.3 Let x,y € R™. Then, for all x,y € R™

1. dc(x,OO) = \/1‘?‘T|2
2. dC(xay) = Zlo ]

V1212

Proof. First we remind that m = o vz and we observe that, for all z € R", we have

€n+1,
0 1
|z —ent1]? = 2 — 2{z ety + lemils =1+ [z’
1.
2
do(z,0) = |m(z) —m(0)| = |ensr + TW@? — €nt1) = EnsT
2 2 o1 2
- _ - - _ = \/1+ 2
e e e = T (I —ens1F)? = 3 eVt
2

1+ 22

2. Since here z,y € R", we can write dc(z,y) = [7(z) — 7(y)| = |o,, ., (@) =0, . W)
Using property 3. of theorem 11.2.2 we find

2|z -y

|z — ent1||ly — en+1]
2|z — y|

V1 221+ [y2

dC(xay) =

O
Property 1. says that the chordal distance between any point x € R™ with the point at infinity
is finite. Property 2. of this last theorem implies that the metrical intuition that we have in
FEuclidean spaces can be transferred to R™ for all the points different than co.

Corollary 11.3.1 f:R" — R" is continuous in a point zg € R" w.r.t. the chordal metric if
and only if f is continuous in xg w.r.t. the Euclidean metric.

The following definitions formalize the quite intuitive extension of reflections and inversions
to R™ (for simplicity we keep the same symbols). In particular, note that the center of a
sphere is mapped to the point at infinite by the corresponding inversion, and vice-versa.

Def. 11.3.6 Let p,; be a reflection and o4, an inversion in R™. The extension of paz in o0
and of 04, in 0 and a are defined as follows:

0q,r(0)

Pa,t(0) 1= 0 and { =
Oqr(a) := o0
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The properties listed in theorems 11.2.1 and 11.2.2 are valid also for their extended versions.
The great advantage of considering the point at infinity is that both reflections and
inversions become bijections on R™,

We also extend isometries and similarities to R” as follows.

Def. 11.3.7 The sets of isometries and similarities on R™ gre:
Z(R") := {¢ : R" - R", @|gn is an isometry and ¢(o0) = o0}
S(R") := {¢: R" - R", Glgn is a similarity and ¢(o0) = oo},

The request ¢(o0) = oo is fully justified by theorem 11.2.3 for isometries: they are compositions
of reflections, which fix co. Similarities instead are compositions of reflections and inversions,
so the request to fix o0 does not seems well-motivated. In fact, we will see soon, corollary
11.2.1 and theorem 11.4.2, that the action on o of the inversions involved in the creation of a
similarity cancel out, remaining with a map that fixes co also in the case of similarities.

The final information that we need before passing to the definition and analysis of M6bius
transformations is the concept of sphere in the one point compactification of R™.

In the same way as we can identify the hyperplane P(e;,4+1,0) = R™ united with {00} with
the sphere S™ by means of &, we can identify the union of a hyperplane with the point at the
infinity with a sphere. This consideration justifies the following definition.

Def. 11.3.8 A sphere X in R™ is either a Buclidean sphere Sg;l or the union of a hyperplane
with the point at infinity P(a,t) := P(a,t) U {0}.

11.4 Mobius transformations in the Euclidean space

Mobius transformations arise from the combinations of inversions and reflections of R”, one of
the main interest in combining them is that, when they are fused together, they form a group.
Notice that this is not a trivial statement because neither the set of reflections nor the set
inversions form a group: we do not have a identity element or any stability. However, theorem
11.2.3 tells us that by combining reflections and inversions we can obtain the identity function
and the group of similarities.

Def. 11.4.1 A Mébius transformation ¢ : R™ — R" is a finite composition of reflections
w.r.t. a hyperplane and inversions w.r.t. a sphere in R™. The group of Mdébius transformations
18:

M(R”) = {qﬁ = g0 0um meN, p; reflections or inversions of R™, i € {1,.. ,m}}

It can be verified that M(R") is a group under composition. We underline that, by definition,
a Mobius transformation is a bijection in R”.

We shall see that Mobius transformation can be equivalently characterized in three different
ways:

1. they are the only transformation that preserve the cross-ratio (see below)

2. they are the only transformations that map spheres of R" into other spheres of R™
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3. when n > 3 and we restrict them to R” they are the only transformations of R™ that
preserve angles, i.e they are the only conformal maps of R".

Let us start by analyzing the relationship between Mdbius transformations and the cross ratio.

Since every Euclidean isometry and similarity can be decomposed into a combination of
reflections and inversions thanks to theorem 11.2.3 and corollary 11.2.1, we have the following
chain of inclusions among groups:

Z(R™) c S(R™) ¢ M(R™).

11.4.1 Mbobius transformations and the cross ratio

The cross ratio is the fundamental invariant of Mobius transformations.

Def. 11.4.2 Let u,v,x,y € R™ such that u # y,v # x. The cross-ratio of (u,v,x,y) is the
(continuous) function:

[‘7'7')']: RnXRnXRnXRn — [0’+OO)

(U,U,Cl?,y) — [U,U,I‘,y] = M

de (uvy)dc (va) ’

In the special case that u, v, x,y belong to R™, then, thanks to property 2. of theorem 11.3.3,
we can re-write their cross ratio as follows:

_ Ju—aflv—yl

[u,v,z,y] (11.7)

u—yllv—a|
We remark that if one of the four points, say w, is 00, that point can simply be ‘dropped out’
of the computation, in the sense that the factor in which it appears can be simply set to 1.
The reason underlying this rule relies on theorem 11.3.3, in fact

2 2lv—y|
dc (0, 2)dc (v, y) _ V1P VIFRPVIHP v =y
de(, z)dc (v, 2lv—a] v—

2
A/ 1+[y2 A/1+]v[24/1+]z]2

and similarly if oo has any other place in the cross ratio. From now on, we will use the following
formulae as definitions of cross ratio when o0 is one of the points involved in its computation:

[007 v, T, y] =

[OO,’U,.’L’,y] - ;z:?‘
[u,00,2,y] = ||Z_$|
) PR ,y|

3 oy (11.8)
[’LL,'U,OO,y] = |u7y|
[, 0,2, 0] = {5

It must be stressed that there are several definitions of cross ratio in the literature, most
of the time with little consequences since we can switch w, v, x,y in the cross-ratio in many
different ways without changing the overall result. In particular, the definition that we gave is
different than the one given by Ratcliffe in [15]. We chose the definition above because it will
be the handier when we will deal with the conformal hyperbolic model.
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Theorem 11.4.1 A map ¢ : R" — R™ is a Mdbius transformation if and only if ¢ preserves
the cross ratio.

Proof.

: suppose ¢ is a Mobius transformation, then it is enough to show that any generic
inversion and reflection preserves the cross ratio since, by definition, every Mobius transfor-
mation is a combination of inversions and reflections and thus the composition of cross ratio
preserving functions will be overall cross ratio preserving.

First of all we suppose that the values taken by ¢ are finite, we will deal with the oo later.
In this case, we can use formula (11.7) to compute the cross ratio.

If ¢ is a reflection p, ¢, then the cross ratio is preserved by the fact that reflections are
Euclidean isometries.

This argument cannot be used if ¢ is an inversion o, -, because inversions are not isometries.
If we remove a form the possible values that the points u, v, z,y can take, then, by property 3.

of theorem 11.2.2, i.e.

2
_ riz—yl
70 (0) = 00r W= oy~

we have:
|Ua,7“ (u) — Oa,r (x)HUa,r (v) — Oa,r (y)|

|00 (u) = Tap(W)|oar (V) — o ()]

rlu—z[r?lv—y| |z —ally —allu—allv — a

[Ua,r (u)> Oa,r (U) yOa,r (l')a Oa,r (y)] =

r?lu—ylr?o — x| |z —ally — allu — allv - q
.

21
= [u,v,z,y].

Suppose now that? ¢(u) = co. By definition 11.3.6, if ¢ = Pa,t, this can happen only if © = oo
since pq(00) = 0, i.e. we must prove that

_ _ vy
[OO,pa,t(v),pa,t(x),pa,t(y)] - [OO,U,:L‘,y] (1;8) |’U — .Z'"

which is very simple:

[0, pa,t(v); Pat(2), part(y)] = pat(v) = pat)  _  lv—yl _

= = = [0, v, z,y].
(11.8) [Pa,t(V) — pa,t(X)| pa isometry |v — x| [ Y]

Instead, if ¢ = 04, then we know that ¢(u) = o0 only if u = a. So, we must prove that

[OO’ Oa,r (U)a Oa,r (l’), Oa,r (y)] = [aa v, T, y]a

on the left-hand side we have

2 |v—yl

|0a,r (V) — Tan(y)] " To=ally=al _ |v—yllx —q

0, v), z), = 7 7 = = )

[0, 00,0 (v), 72 (2), 0ar ()] (11.8) |0gr (V) — 0 r(T)] (3. of th. 11.2.2) ﬂ% ly — allv — x|
v—allr—a

2This argument can be extended verbatim to v, z,y, so we will consider only w.
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on the right-hand side we have

which verifies the preservation of the cross ratio also in this case. To resume, all Mobius
transformations preserve the cross ratio.

: conversely, we assume that ¢ preserves the cross ratio. We analyze first the case
when ¢ fixes 00, i.e. ¢(0) = 00, we will deal with the other option later. Let u,v,z,y € R”
such that u # y, v # = and (u,v) # (z,y). If u # z, then

i) [6(u). 0, 6(@), 6(v)] = [, 0,2,9] = ww—%m:m—m
o
1

lu —y|

i) [o{u) 6(0).0(0). o] = [ vvmce] e =L
)6

Similarly, if v # v,

) [0, 6(v), 6(2), 6(9)] = [0, 0,2, 9] o= |(v) —Z<x>| o —a
¢

i1) [p(u), p(v), 0, d(y)] = [u,v,0,y] (11(:.8)) (@) —z(y)| _ g
¢

Hence, by combining ¢) and 4i) in both cases we obtain that, for all u,v,z,y € R™ such that

u #y and v # x,
[9(u) —o(W)| _ |o(v) — o(2)]

-yl fo—a]

Y

if we set k = |p(v) — ¢(x)|/|v — x|, then k > 0 and it does not depend on u and y, which are
two generic distinct elements of R™, so that we can write |¢p(u) — ¢(y)| = k|u — y|, which shows
that ¢ is a Euclidean similarity and, hence a Mobius transformation.

Finally, if a # oo and ¢(o0) = a, then we can combine ¢ with any inversion of the type og,
r > 0, obtaining (o4, © ¢)(00) = 0. Using the result obtained above, we have that o, , o ¢ is
a Mobius transformations, and so ¢ is also Mobius transformation by definition. O

The following result gives important stuctural information about Mobius transformations.
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Theorem 11.4.2 Let ¢ € M(R™). Then:
1. ¢(0) = o0 if and only if ¢ is a similarity of R
2. if ¢p(0) # oo, then, there eist:

e a unique sphere ¥ in R™ on which ¢ acts as a Fuclidean isometry, i.e. for all
z,y €%, [¢(x) — o(y)| = |z —yl

e a unique inversion o w.r.t. X and a unique Fuclidean isometry ¢ € Z(R") such
that ¢ can be decomposed as follows ¢ =Y oo.

Proof.

1. : the previous theorem implies directly that if ¢(c0) = c0 and ¢ is a Mobius transforma-
tion, then ¢ is a similarity on R™. Vice-versa, a similarity on R™ is a Mobius transformation
on R™; now, thanks to the proof of corollary 11.2.1, every similarity is the composition of at
most n + 1 reflections and two inversions w.r.t. the same center. This implies that, the only
possible extension of ¢ to the point at infinity is the one that fixes o0, in fact, reflections fix oo
and also the composition of the two inversions will globally leave oo fixed. As previously said,
this argument provides a full justification of the definition given in 11.3.7.

2. : first we prove the existence of the decomposition ¢ = ¥ o ¢ and then its uniqueness.
Notice that this automatically implies that we also have to exhibit the sphere ¥ w.r.t. the
inversion o is defined.

Existence: since ¢ is a Mobius transformation that modifies the point at infinity, it is natural
to set the center of the sphere ¥ that we are looking for as a := ¢~!(c0). Regarding the ray of
the sphere, let us preliminarly set it to 1, i.e. let us consider the sphere SZIl and the inversion
o w.r.t. to it.

Clearly, ¢ o ¢ fixes o0 and so it is a Euclidean similarity thanks to point 1. Hence, it exists
k > 0 such that, for all z,y € R™, we have

[(¢poa)(x) = (¢oa)(y)| = klz —yl. (11.9)

Furthermore, & is an inversion and so it is also an involution, 62 = idgn, so

[6(x) = o(y)| = |(¢ 0 idrn)(2) — (¢ 0 idrn)(y)] = (¢ 0 5°)(2) — (¢ 0 %) (y)l
- [beD0E) ool 110)
_ _ r—y
(11.9) Klotw) =)l 3. of th11.22 |z —ally —a|’

Observe now that x,y € S”,., then |z — a| = |y — a| = r, so, if we set r := vk, then

a,r’

6(2) — oly)| = b Y gy

jz —ally —a

and so ¢ is a Euclidean isometry on ¥ := Sg;l if and only if = v/k is the radius of ¥, which
implies its uniqueness. Finally, we can conclude by setting o = 04, and 1 = ¢o. The following
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computations show that ¢ € Z(R"). Clearly 1)(0) = ¢(o(0)) = ¢(a) = ©. Moreover, if
x,y € R™, then the following chain of equalities holds

lo(z) = o(y)|

(ar10)  Jo(x) — allo(y) — a|

() = ¥(y)| = [¢(o(z)) — (o (y))]
P ]

_ [e—ally—a] _ 2 lr—yl 1
3.of th.11.2.2  |o(z) — al|o(y) — a |z —ally — a| |o(z) — allo(y) — al
_ 2 |x_y| |$—CLHy—CL|:| _y|
11.2) |z —ally — a k2 '

Uniqueness: suppose that we also have ¢ = g o o with ¥y a Euclidean isometry and oy an
inversion w.r.t. a sphere S;‘OT,}O. We start by proving that > and 3 share their center: the
decomposition ¢ = oo gives ¢(a) = o0, while the decomposition ¢ = 1900 gives ¢(ag) = o0,
so a = ¢ (o) = ap.

As proven above, ¢ is an isometry on both ¥ and Yy if and only if their radius has a
specific, fixed, value, thus not only ¥ and ¥y are concentric, but they also share their radius,
i.e. X = X¥y. This implies that also o and og coincide, which, in turn, implies that 1) = .

This shows that uniqueness of ¥ and of the decomposition of ¢.

Finally, let us ask if there exists another sphere S"~! on which ¢ acts isometrically. For
sure, this sphere S"~! must have a center different than a, otherwise, as we have just proven,
we fall back to the previous sphere 3. Thus, let us suppose that S"~! = SZS_I, with b € R™,
b # a, and s > 0. The idea to prove the uniqueness of X is to show that there exist two points
z,ye€ Sg’;;l such that |¢(Z) — ¢(7)| # |T — g|, and so ¢ does not act as an isometry on S ;.

To this aim, we observe that it exists a > 0, o # 1, such that Sg’;% and Sl’;fs_l intersect
in two points, that will constitute the two points Z and y that we are searching for, in fact,
recalling that 72 = k we have, by eq. (11.10) :

27 _ - 2
e L]

6(z) = ¢(9)]

|z —ally—dl
: -1

hence ¢ cannot be an isometry on Sl:f s - O

Remark that the same arguments used in the proof above can be used to assure it does

not exist any hyperplane P(a,t) on which ¢ acts as an isometry. Hence, ¥ is the not only the

unique sphere in R™ on which ¢ is isometric, but also on R™. For this reason, the following
definition is completely justified.

Def. 11.4.3 For any Mébius transformation ¢ € M(R™) such that ¢(o0) # oo, the unique
sphere 3 on which ¢ acts as an isometry is called the isometric sphere of ¢.

We now arrive to the analogous of corollary 11.2.1 for Mobius transformations.

Corollary 11.4.1 Every Mdébius transformation on R™ is at most the composition ofn+3
reflections or inversions.

Proof. Let ¢ € M(R”) If ¢(o0) = o then ¢ is a similarity and so it can be decomposed into
n + 3 reflections or inversions by corollary 11.2.1. Instead, if ¢(o0) # oo then, by theorem
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11.4.2, we have the following decomposition ¢ = ¢ o o with ) € Z(R™) and ¢ an inversion.
Since every isometry is the product of at most n + 1 reflections, ¢ is the composition of at
most (n + 2) reflections or inversions. O

The importance of the last corollary lies not in the actual number of reflections or inversions
that make up a Mobius transformation, but on the fact that there is a finite upper bound
limit: this was not evident from the original definition of M&bius transformations. While it is
still big, the Mobius group is still limited in size and it is only slightly bigger than the group
of Euclidean similarities S(R"™).

A very important consequence of what we have just proven is the possibility to connect the
Mobius transformations geometrically defined as compositions of reflections and inversions, with
the analytical formula used in R, R? or C that makes use of fractional linear transformations.

Corollary 11.4.2 The Mébius transformations on R, R? or H are fractional linear transfor-

mations, i.e.

ar +b
@) = orq °CF

e la formula per R? e C...vedi anche capitolo 8 sezione 8.5...

Proof.

11.4.2 The action of Mobius transformations on the set spheres in R™

In the previous subsection we have seen how Mobius transformations and spheres of R™ are
linked. We now show a very powerful result: Mobius transformations acts transitively on the
set of spheres of R™.

We start by proving the stability of the set of spheres in R"™ w.r.t. Mébius transformations.
We will do this by using several results that we underline in separated lemmas because of their
stand-alone interest.

Lemma 11.4.1 The following assertions hold:

1. isometries and similarities in R™ are stable on the set of hyperplanes and on the set of
FEuclidean spheres, i.e. they map hyperplanes into hyperplanes and Euclidean spheres
into Fuclidean spheres

2. the group of Euclidean isometries Z(R™) (and so that of Euclidean similarities) acts
transitively on the set of hyperplanes in R™ and the group of Fuclidean similarities S(R™)
acts transitively on the set of spheres in R™.

Proof.

1. : since isometries are similarities, we will prove this result directly on the set of similarities.
From theorem 10.1.1 we know that f € S(R™) if and only if it can be expressed in the form

f@)=b+ko(x) < oé(z) = f(xl){:_b, Vo e R", (11.11)
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with be R", k> 0and ¢ € O(n). If k =1, f e Z(R").

Hyperplanes: given a hyperplane P(a,t) = {x € R" : (z,a) = t}, with a € R" such that
la] =1 and t > 0, our aim is to show that f(P(a,t)) is a hyperplane.

We recall that, since ¢ belongs to O(n), it is linear, invertible and {(¢(x), p(y)) = {(z,y),
Vz,y € R™. Hence Yz € P(a,t) the following chain of equalities holds:

(p(x),$(a)) = (x,a) =t <= (kd(x),kd(a)) = k*t = (f(z) —b,kd(a)) = k*t

(11.11)
— (@), kola)) — b kola)) = K1
— (f(2),kg(a)) = Kt + (b, ko(a))
— . ko(a) 7k2t+<b,k¢(a)>
O @l = kool

note that we are allowed to divide by k|¢(a)| because k > 0 and a # 0, so |¢(a)| = |a| # 0.
Moreover |k¢(a)| = k|¢(a)| = k|a| = k, hence (f(x), p(a)) = kt + (b, ¢(a)) Yz € P(a,t).

This means that f(z) € P(¢(a),kt + (b, ¢(a))), which is well defined as a hyperplane
because |¢(a)| = 1. As noticed in the definition of hyperplane, the positivity of kt + (b, ¢(a))
is not an issue because its possible negative sign we can integrated in the vector ¢(a) without
changing its norm. To avoid a cumbersome notation, we consider this as implicitly performed.

This proves that

|f(Pa,t)) = P(¢(a),kt + b, d(a)y)| Ve SR, (11.12)

i.e. the image of a hyperplane orthogonal to a and distant ¢ from 0 is still a hyperplane
orthogonal to ¢(a) and distant (b, ¢(a)) from 0.

Euclidean spheres: Let S;',' = {z € R" : |z —a| = r}, with a € R” and r > 0. We want to
show that f(S7,!) is a sphere in R™. Let z be a point of S:!, then

a,r >

r? = z—af’ = {z—a,2—a) = (p(z—a), p(r—a)) = {(p(x) = ¢(a), p(x) —¢(a)) = |$(x)—d(a) *.
Multiplying both sides by k? and using eq. (11.11) we obtain:

kK2r? = ko (z) — ko(a)]* = |f(x) = b — kd(a)]* = [ f(z) — (b + ko(a))|* = |f(z) — f(a)]?,
so, if x € S L then |f(x) — f(a)| = kr, i.e.

a,r

FSert) =Sty m| Ve SE™), (11.13)

i.e. the image of a Euclidean sphere of center a and radius r is still a Euclidean sphere of
center f(a) and radius kr.

2. : we first prove the thesis for hyperplanes and then for spheres.

Hyperplanes: let us fix two hyperplanes P(a,t) and P(d’,t'), with a,a’ € R™ such that
la| = |a'| = 1 and ¢,#' = 0. Our aim is to prove that it always exists an isometry f e Z(R")
such that f(P(a,t)) = P(d’,t'). Thanks to eq. (11.12) with k£ = 1 because f is an isometry,
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we can rewrite the last equation as P(¢(a),t + (b, $(a))) = P(a’,t’') so that our problem is
equivalent to showing that there exist ¢ € O(n) and b € R™ such that the system

{¢<a> =d
t+ b, dla)) =

has at least one solution for all vectors a,a’ € R such that |a| = |d/| = 1, i.e. a,a’ € S
Thanks to the transitivity of O(n) on S"~!, it surely exists ¢ € O(n) such that a’ = ¢(a), if
we introduce this in the second equation we get ¢t + (b,a’) = t', or (b,a’y = t' — t, which is
satisfied by all vectors b € R™ such that b e P(a'signum(t’ —¢), [t' —t]).

Euclidean spheres: analogously to the previous case, once fixed any two spheres S;‘;l and

SZ,_T}, a,a’ € R™ and r,r’ > 0, we must prove that it exists a similarity f € S(R™) such that

f(Sg;l) = S’Z,;}. Thanks to eq. (11.13), we can rewrite the last equation as S}‘(Z;M = S’g,;},

or Sg:]j Sa) o = Sg,;}, and so our problem is equivalent to the existence of ¢ € O(n), k> 0
and b € R” such that the system

{b + kola) = d

kr=1r">0

has at least one solution for all a,a’ € R™ and 7,7’ > 0. We have immediately that k = r//r > 0,
which implies b + “¢(a) = a'. If we set ¢ = idgn € O(n), then we get lf—i— Ta = d/, which
leads to b = a’ — T-a. So, in conclusion, k = '/r, ¢ = idg» and b = a’ — Za solve the system
above, thus implying the transitivity of S(R™) on the set of Euclidean spheres in R™. O

Note that if we consider similarities in R”, since they fix oo, this lemma states that
similarities in R” map hyperplanes U {oo} into hyperplanes U {0} and Euclidean spheres
into Euclidean spheres. Hence, a weaker, but useful, reformulation of this assertion is that
isometries and similarities in R™ are stable on the set of spheres in R™.

As a consequence, reflections, which are particular types of isometries, are stable on the
set of spheres in R™,

Lemma 11.4.2 Let a € R" and o, 3 € R satisfying o < |a|?. Then, the set of points defined

by
Yapi={reR" : alz]* +2{x,a) + = 0} (11.14)

represents either a hyperplane or a sphere in R™.

Proof. First of all we note that if a = 0 we cannot hope to find the equation of a (n — 1)-
dimensional hyperplane in R™ simply because the orthogonal complement of the null vector of
R™ is R™ itself. However, it is clear that when a = 0, eq. (11.14) represents the equation of a
sphere centered in 0 and with radius r = 4/—f/a. So, for a = 0, eq. (11.14) represents all the
spheres centered in 0 and with arbitrary (strictly positive) radius provided that o # 0 and
af < 0.

Let us now consider the case a € R™\{0}. If a = 0, eq. (11.14) represents the hyperplane
P&, —5).

fal’ "~ 2fal
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If @ # 0, eq. (11.14) represents (under a constraint that we will determine below) the

sphere S”;l\/m. In fact, by dividing both sides of eq. (11.14) by —a we get
T [
2 2 2 a p
—|x] ——<:1; a>—— =0 < —|z +2<x ——>—— =0 < |z —2<:1:,—E>+E:O,

which coincides with the equation of a sphere of radius r and center ¢, i.e.
z—c?> =1 —= |z]? -2, )+ || =12 =0,

2
ﬂ—‘l 2,1.e.r2zﬂ—g,or

if and only if the center is ¢ = — % and the radius r satisfies v

=)

ool

radius centered in a # 0 is a8 < |a|?.
We can resume our analysis by saying that eq. (11.14) represents any sphere or hyperplane
in R™ provided that a8 < |a|? for all a € R", as it was to be proven. O

Thus, the constraint that allows eq. (11.14) to represent any sphere of arbitrary

The next lemma shows that also inversions are stable on the set of spheres in R™.
Lemma 11.4.3 Inversions are stable on the set of spheres in R™.

Proof. Thanks to lemma 11.2.1, we can write any inversion o = 04, as 0 = ¢ 00 1 © ¢~ 1, with
¢(x) = a + rx for all z € R™. Thanks to corollary 10.1.1, ¢ and ¢! are similarities, which are
stable on the set of spheres in R™ thanks to lemma 11.4.1. Hence we can reduce the proof to
the case of o = 01, i.e. from now on we will consider o(z) = #, x # 0, and what we have
to prove is that if we apply o to either a sphere or a hyperplane we get back another sphere
or hyperplane.

Since eq. (11.14) represents all possible hyperplane or sphere in R” provided that a3 < |a|?,
to finish the proof of the theorem it is enough to show that o preserves the structure of that
equation. This turns out to be very easy: let x satisfy eq. (11.14), i.e. alz|> +2{(z,a)+ 3 =0,
which is equivalent to

b
|z ?

alz)> +2{z,a)+ B =0 — a+2<|x’2,a>+|52=0 — a+2{c(z),a)+ =0,
T

z|

Ll = % ﬁ so % = Blo(x)|* and so we obtain that

IwP

but |o(x)|? =

alz? +2{z,a) + =0 <= Blo(x)]* +2(o(z),a) +a =0,

which shows that o(z) satisfies an equation of the same form as the one satisfied by = with
the same constraint a8 < |a|?. O

Theorem 11.4.3 The Mébius transformations on R™ are stable on the set of spheres in R™.

Proof. The proof will be just a sequence of considerations based on results that we have
already proven that will allow us to greatly simplify the rest of the proof.

First of all, if ¢ € M(R”) fixes o0, then, by theorem 11.4.2, ¢ is a similarity on R” and so
it is stable on the set of spheres in R™ by lemma 11.4.1.
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If ¢(c0) # o, then, again thanks to theorem 11.4.2, we can decompose ¢ € M(R™) as
¢ = 1 o o, where ¢ is a Euclidean isometry and o is an inversion w.r.t. a sphere. Again by
lemma 11.4.1, ¢ will be stable on the set of spheres in R", so what is left to prove is just
that an inversion o is stable on the set of spheres in R”, which is guaranteed by lemma 11.4.3. O

Thanks to this theorem, the natural action of the group of Mdbius transformations on the set
of spheres in R™ defined by

M(R”) x Spheres in R” —> Spheres in R”
(¢, %) — (%)

is well-defined.
Theorem 11.4.4 The action of M(R") on the set of spheres of R™ is transitive.

Proof. Property 2. of Lemma 11.4.1 says that the group of similarities S(R") ¢ M(R") acts
transitively on the set of hyperplanes united with {oo} of R" and on the set of Euclidean
spheres in the following sense: for every fixed couple of spheres in R", 31 and Xy (both
hyperplanes united with {00} or both Euclidean spheres), there exists a similarity ¢ € S (R”)
such that ¢ (2;) = 2.

However, the set of similarities of R” is not transitive on the whole set of generalized
spheres in R™. Indeed, it is not possible to map a hyperplane united with {oo} into a Euclidean
sphere, or vice-versa, through a similarity. A simple explanation of this fact is that, clearly, oo
belongs to the first category of sphere in R™ but not to the second. Moreover, property 1. of
theorem 11.4.2 says that similarities in R™ leave the point oo fixed, thus they cannot map an
object containing oo into an object not containing it, or vice-versa.

So, to conclude the proof, we must show that if we have two spheres 31, ¥ in R”, such
that X1 = P(a,t) u {0} and X9 = Sg;l, there exists a Mobius transformation ¢, necessarily

in M(R™)\S(R") for what we have just observed, such that ¢(3;) = Zo.

By a straightforward computation, it can be verified that g1 (P(e1,3) U {o0}) = SZ;II,
notice that oo 1(0) = 0 € S™'. By property 2. of Lemma 11.4.1, there exist 11,1, € S(R™)

e,l -

such that 11 (X1) = P(e1, 1) U {00} and ¢(Es) = "L Hence ¢ = 15 ' 00g1 011 is a Mobius

e1,l
transformation, because composition of two similarities and an inversion, moreover, clearly,

P(X1) = Xo.
O

Theorem 11.4.5 Let ¢ € M(R™) and let & be a sphere of R" such that ¢(z) = x Va € .
Then ¢ is either idy, or the reflection or inversion w.r.t. 3, depending on the fact that ¥ is a
hyperplane united with c© or a Euclidean sphere, respectively.

Proof. 3 is either a hyperplane U {00} or a (n— 1)-dimensional sphere in R™. Thus an inversion
w.r.t. ¥ can be either a reflection w.r.t. a hyperplane (that fixes 00) or an inversion w.r.t. a
Euclidean sphere.

We start by assuming that ¥ = P(e,, 0) u {0}, but

P(ep,0) = spaun(en)L = span(e,...,ep—1) = R,

hence ¥ = R"1, By the hypothesis that ¢ fixes all the points of ¥ we have, in particular:
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()=
€ O(n

o0 = ¢ is a Euclidean similarity by th. 11.4.2, i.e. ¢(z) = a + kAz, k > 0,
), for all x € R"

e p(0)=0 = ¢p=FA

® ¢(e1) =e1 = |p(e1) — #(0
to |kAe; — kAO| = k|Aeq|

= |le; — 0] = |e1| = 1, but since ¢ = kA this is equivalent

)=
Ao klei| = k, which 1mphes k=1,s0 Ae O(n)

e ¢(ej) =e€j, j=2,...,n— 1 implies that the matrix A € O(n) associated to ¢ w.r.t. the
canonical basis of R" is either

(I O\ . (1,1 O
A—( 0 1)—zan or A—( 0 _1>,

because these are the only possible options compatible with the fact that det(A) = +1.

So, either ¢ is the identity on R”, extended to the identity on R™ because ¢(00) = 00, or ¢ is
the reflection w.r.t ¥. Hence the thesis is proven when 3 = R~

We now assume that ¥ is an arbitrary sphere of R™ and that ¢ fixes 3. By the transitivity
of M(R") on the set of spheres of R", there exists a Mobius transformation ¢ € M(R") such
that (3) = R" L ie. ¢(s) = x e R"! for all s € ¥. It follows that, for all x € R*~!,

(Wogoy™)(z) =9(e(s)) = ¥(s) ==,

i.e. 1 fixes R"! g0, thanks to what proven above, 1) o ¢ o )=t = idg, or Yo pop~! = p, the
reflection w.r.t. R"~1. By composing on the left both members by 1~! and on the right by v,
we have that it is either ¢ = ¢t o) = idy, or ¢ =L opo.

We now want to understand what kind of transformation 1)~! o p o ¢ is. To this scope, let
us consider, instead of the generic ¢ € M(R"), a reflection or inversion o w.r.t. ¥, which is
not the identity. By repeating the argument above on o, we obtain that 1) o 0 0 )~ = p, the
reflection or inversion w.r.t. ¥, i.e. c =9 opot = ¢. O

This result will be fundamental to prove theorem 11.5.1.

We know that reflections and inversions fix the points of the hyperplane or sphere w.r.t. they
act, respectively. The theorem just proven tells us that this condition is sufficient to determine
if a Mébius transformation is a pure reflection or inversion, provided that we have excluded
the possibility that it is the identity on the whole R", which is particularly easy because it is
sufficient to consider any point not belonging to the hyperplane or the sphere.

The last property of Mobius transformations that we prove here refers to inverse points.

Def. 11.4.4 Let ¥ be a sphere of R"™ and o the reflection or inversion w.r.t. . Two points
x,y € R™ are said to be inverse points w.r.t. ¥ if y = o(x).

Theorem 11.4.6 Let ¢ € M(R") and let ¥ be a sphere of R™. If ¢ and y are inverse points
w.r.t. 3, then ¢(x) and ¢(y) are also inverse points w.r.t. ¥/ = ¢(2).
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Proof. The thesis of the theorem is trivially true if ¢ is the identity. So, let us assume that ¢ is
not the identity and that o is the reflection or inversion w.r.t. . Then, ¢ o o o ¢! fixes each
point of ¥ = ¢(X) and so po o 0 ¢! = pis the reflection or the inversion w.r.t. ¥'. Finally,
if z and y are inverse points w.r.t. ¥, i.e. y = o(x), then

p((x)) = (po¢)(x) = (poaod o g)(x) = (po0)(z) = ¢(0()) = (),

ie. y = o(x) implies ¢(y) = p(op(x)). O

11.4.3 The conformality of Mobius transformations

A conformal transformation is a map that maintains angles. In this section we show that
conformal and Mobius transformations are tightly interconnected to the point of being
confounded in a Euclidean vector space of dimension higher or equal to 3.

An intuitive idea behind this fact can be obtained by considering two intersecting spheres
of R", ¥ and Y: if ¢ is a Mobius transformation, then ¢(X;) and ¢(X3) are two other
intersecting spheres ¥} and X of IR™. It is natural to ask oneself how ¥ and X, are positioned
to one another when compared to ¥; and X5, since M6bius transformations are continuous
functions and contain Euclidean similarities, intuitively we imagine that they are positioned
more or less in the same way.

Furthermore, if this is the case, then the angle between the normal vectors ny of ¥; and
ng of X9 at an intersecting point x € 31 n X9 should not change.

The path that we will follow to make this argument rigorous starts with a definition.

Def. 11.4.5 Let U € R" open and ¢ : U — R", f € €1 (U), i.e. all the partial derivatives
0¢i

y exists and they are continuous functions on U. ¢ is said to be conformal if there is a
function k : U — RY, called the scale factor of ¢, such that

1
w(z)

Jy(x) being the Jacobian matriz of ¢ calculated in x.

Jo(x) € O(n) Ve U,

In other words, a conformal function is a continuously differentiable map whose Jacobian
matrix can be turned into an orthogonal one simply by re-scaling its coefficients with a positive
factor that is allowed to change in every point of the function domain.

Def. 11.4.6 Given x,y € R", z,y # 0, we denote with 6(x,y) the angle between them, i.e.
the only angle in [0, 7] that verifies this equation:

ALzy

cos(f(z,y)) = 2ol

(11.15)

f: R™ — R"™ preserves the angle between non-zero vectors if 0(f(x), f(y)) = 0(x,y) for all
x,y € R™.

It is clear that an orthogonal tranformation f € O(n) preserves the angle between non-zero
vectors because it preserves the scalar product between them and their norms. The next lemma
says that, among linear transformations, the orthogonal ones are the only angle preserving
maps modulo a scalar coefficient.
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Lemma 11.4.4 Let A an x n real matriz. Then, there is a k € RY such that k=1 A € O(n)
if and only if A preserves the angle between non-zero vectors.

Proof.

: we assume there is a k such that k~!A is an orthogonal matrix, then k=14 is
non-singular and so, for all z,y € R", x,y # 0, also Ax and Ay are non-zero vectors and we
can write:

(Az,Ay)y  (k7'Az, k' Ay)
|Az[|Ay[ |k~ Ax||k~1 Ay

{z,y)
= = cos(6(z,y)).
k—1AeO(mn) |z||y| (0(z,y))

cos(0(Ax, Ay)) =

: conversely, we suppose that A preserves the angle between non-zero vectors. Then,
in particular,

(9<A6i,z4€j) = 0(€i7€j) = g Vi, j € {1, R ,n}, 1 # ]

Hence, (Aey, ..., Ae,) is an orthogonal basis of R", so, if we normalize each vector and we set
it as a column of a matrix B, i.e.

_ Aeq - Aen_
B = | 14 TAen] |

then B belongs to O(n) and so does B~! because O(n) is a group.
By direct computation we get Be; = \f\ZI for all ¢ = 1,...,n, so, if we multiply both

members by |Ae;| and compose them with B~ we get B! Ae; = |Ae;|e; = cie;, with ¢; > 0,
foralli=1,...,n

Finally, notice that B~1 A preserves the angles between non-zero vectors because it is the
composition of two angle-preserving operators, so, using definition (11.15) and the injectivity
of the cosine function in [0, 7] we have that, for all 4,5 = 1,...,n, i # j,

<Ci€i + cj€éj5, Cj€j> _ <6i + ej, €j>

O(B~'A(e; +¢;), B Aej) = O(e; + ej,ej) <=

cjejllcies + ciejl — lei + ejllejl
6]2- 1
-
epfE+ 2 V2
6 _ 1
2+ V2
1 J
26]2«
— —1<=>2c§=c,2—|—02~

thanks to the strict positivity of the coefficients ¢;. Thus all the coefficients can be identified
with a constant k > 0, which implies B~ Ae; = ke;, Vi = 1,...,n, i.e., by direct computation,
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B7'A =kI,, or A = Be O(n). O

We recall that, given a differentiable curve v : (—&,¢) — R”™, the tangent vector to v at
~(0) is the vector of R™ defined by the formula:

, . () —~(0)
70 = iy T

Def. 11.4.7 Let o, : (—e,e) — R"™ be two differentiable curves with a(0) = [(0) and
a/(0), 8(0) # 0. The angle between o and B is defined as the angle between the vectors of R™
giwen by o' (0) and ('(0).

We can now give a characterization of conformality that it is often used as an alternative
definition of this property.

Theorem 11.4.7 Let U C R™ be open, ¢ : U — R", ¢p € €1 (U). Then, ¢ is conformal if and
only if ¢ preserves the angle between curves.

Proof.

. if ¢ is conformal, then there is a scale factor x : U — R* such that k™! (x)Js(x) €
O(n) for all x € U. Let o, B : (—&,e) — U be two € curves such that a(0) = 3(0) and
a/(0),6'(0) # 0. Then, x(a(0))Js(a(0)) = k(8(0))J4(8(0)) is an orthogonal matrix and so,
by Lemma 11.4.4, J4((0)) = J4(B(0)) preserves angles between the non-zero (by hypothesis)
vectors o/(0) and 3'(0). Hence

0((¢0a)(0),(628)(0)) = 0(Js(c(0))a’(0), J4(5(0))5'(0))
= 0(’(0),5(0)),

which shows that the angle between o and  is the same as the one between ¢ o o and ¢ o 3,
i.e. ¢ preserves the angle between curves.

: conversely, by Lemma 11.4.4, if ¢ preserves angles, then Jy4(x) preserves angles be-
tween non-zero vectors for each fixed z € U. Hence, there exists a £ > 0 such that x(z) ™! Js(z)
is orthogonal for all z € U and so ¢ is conformal on U. O

Def. 11.4.8 Let U < R" open and let ¢ : U — R™ be a differentiable function. ¢ preserves
(resp. reverses) orientation at a point x € U if det Jy(x) > 0 (resp. det Jy(x) < 0).

¢ preserves (resp. reverses) orientation if ¢ preserves (resp. reverses) orientation at each
point of its domain.

Theorem 11.4.8 Every reflection and inversion in R™ is conformal and reverses orientation.

Proof.

Reflections. Let p be a reflection w.r.t. a hyperplane. The easiest way to prove that p is
conformal is by recalling that it is an isometry, hence there exist b € R” and B € O(n) such that
p(z) = b+ B(z) for all x € R", thus J,(x) = B and so p verifies the definition of conformality
with k(z) = 1 Vo € R™.

257



However, for later use in this proof, let us also verify the conformality of p by computing
directly the Jacobian of the original expression of the reflection, i.e. p(x) = z+2(t—<{a,x)a) =
idgn(x) + 2t — 2{a,x)a, |a| =1, t = 0. Thanks to eq. (B.11) we have

Jo(x) =1 —2A,

where A is the matrix A = (a;a;)1<i,j<n- Notice that J,(x) does not depend on the parameter ¢,
so we are allowed to set it to 0, but then p becomes an orthogonal (hence linear transformation),
ie. p(x) = Jy(x), Yo € R", hence, by property 4. of theorem 11.2.1 this implies that

Jo(x) =1—2A¢€ 0O(n) (11.16)

for all A = (aija;)1<ij<n With a € R, |a| = 1.

Let us now prove that p reverses orientation. By the transitivity of the action of SO(n) on
Sn=1 there is a v € SO(n) such that 1(a) = e; and so for any z € R™,

Wopod(@) = P(p'(2) =v('(@) +2(t - {a,¥'(x)))a)

., ot 2(t — ((a), z))(a)

= 242t —{e1,1))e,

,(Z}t

but {e1,x) = (21,0,...,0)!, so, by direct computation we get
x+2(t — ey, x))er = (—x1 + 2t,m9,...,7,)" = nz + 2tey,

with 1 = diag(—1,0,...,0), hence Jyopopt () = 1 and so det(Jyopoyt (z)) = —1 for all z € R™.
Furthermore, Jyopopt(Z) = Jyopoy—1(7) and the functions ) and p are linear and affine,
respectively, so their Jacobian matrices do not depend of the evaluation point, which can be
arbitrarily taken to be z. Thanks to these considerations and to the chain rule for Jacobian
matrices we have

J¢op01/)t(x> = Jw(.ﬁE)Jp(w)wal(.’IJ) = JTﬁ(w)Jp(w)Jlﬁ(fI;)_lv
and so, by Binet’s theorem:
1 = det(Jyopoy () = det(Ffa]] det(J,(w)) detlIntw)] " = det(J,(x))

for all x € R™, hence p reverses orientation.

Inversions. 2Let us start by considering an inversion w.r.t. a sphere centered in 0, i.e.
oor(x) = éﬁx, defined for = # 0, we will consider the generic case later. By theorem
B.0.4, the computation of the Jacobian matrix of o, gives:

’1”2 CCZ'SU]' 7”2
JUO,T('I) = W <I -2 |x|2> = W(I* 2AI) = K)(CL‘)BI,

. T
where A, = <xz .

[2] [T

) , By =1—2A, and k(z) = |T—22 € R* for all z # 0. Notice that the
1<i,j<n z|

entries of the matrix A, are the components of the normalized vector ﬁ, so, thanks to eq.
(11.16), B, = I — 2A, is orthogonal, for all x # 0. This proves that og, is conformal.
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Let us now prove that og, reverses orientation: the properties of the determinant imply

7,2n T.Qn T,2n

det(I — 2A4,) det(J,(z)) =

= — ——— <0.
|z [2n det(Jy(x)=—1 |z[>

det(Jo, . (x)) = W
Note that det(I — 2A4,) = det(I —2A) = det(J,(x)), because for every fixed x # 0 the matrix
JUO,T (ﬂf) = I - 2A$ = Jp(x)u Wlth p == pi 0-

N
Finally, let us consider the generic inversion o, (z) = a + ﬁ(w —a). Ury(x) =x+ais
the translation operator by a, then it is clear that o4, = 7, 009, 0 7, 1. So, since Jr(x) =1
for all x, the chain rule for the Jacobian gives:

Jo'a,'r (.’L‘) = JO'O,T (x - (l),

which allows us to conclude that also o, , is conformal and reverses orientation for all a € R™
thanks to the previous analysis of 0o ,. The procedure is totally analogous, paying attention
to impose the condition z # a instead of z # 0. O

Since Mobius transformations are finite compositions of reflections and inversions, they
are conformal too.

Corollary 11.4.3 FEvery Mobius transformation is conformal.

In 2 dimensions, all holomorphic? and anti-holomorphic? functions with a non-vanishing
Jacobian are conformal mappings.

However, as soon as we pass to the third dimensions, conformal mappings are completely
determined by Mobius transformations. This result has been first proven by Liouville [12]
in 1850 in the case of ¥ mappings in R3 and then it has been quickly extended to higher
dimensions. Nonetheless, it remained an open problem for over a century how to relax the
hypothesis of this theorem by considering only ¢! functions, until Hartman solved it [6], [19].

Theorem 11.4.9 (Liouville-Hartman theorem of conformal mappings) Let U < R”
open, n =3 and f : U — R™ a €' map. Then, f is conformal is and only if f is the restriction
of a Mobius transformation on U.

11.5 Mobius transformations in the upper half space /" and
the open unit ball B"

Up to now we have analyzed the set of M6bius transformations M(R”) on the whole space
R™. In this section we will focus our attention on subgroups of M(R”) given by Mdbius
transformations that preserve proper subsets of R™ and on the relationship between them.
The information that we will gather will prove to be of crucial importance in the analysis of
the hyperbolic models that we will discuss in chapter 12.

The proper subsets of R” that we will consider are

R =~ P(e,,0) U {0} = {z e R : {x,e,) = 0} U {0},

%A function f: C — C, f(2) = u(z) + iv(2), is said to be holomorphic if 2% = g—; and g—’y‘ =-2
4anti-holomorphic if i—” = —% and ‘;—“ = S—”
oz oy 0y T
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which separates R" into two disjoint, connected subsets of dimension n, the upper and the
lower half plane, together with the open connected subsets of R™ given by the unit ball and
the complementary of its closure. The explicit definitions are given below:

e the upper-half space: U" = {x e R" : x, > 0} = {x e R" : {x, e,,) > 0};

o the lower-half space: L™ = {z e R" : x,41 <0} ={xeR" : (z,e,) < 0};

e the open unit ball: B" = {z e R" : |z| < 1};

e the complementary in R of the closed unit ball: (B7)° = {z e R" : |z| > 1} U {o0}.

Clearly, X B
R™ = U™ L P(en,0) b {0} b L = B 1 S L (Br)e.

The mathematical analysis starts with the stereographic projection relative to the sphere
embedded in R", which is the isomorphism between R"~! =~ P(e,,0) u {oc} and S"~! given by

~

#: R = gnol

211 20,1 |x[?—1 .
. if x %% o0
T ﬁ'(l‘) — <1+|x|2’ P 14]z[?0 14]z|? 7

e, ifx=0w

For the aim of this section, it is fundamental to use theorem 11.3.2 which guarantees that we can

interpret 7 as the restriction of an inversion w.r.t. a sphere in R", precisely 7 = o, V3l o
n, Rn—

or R
-~ Snfl c R»

en+ﬁ(x—en) if v #
x — n
en ifx=o00

>
=
i
N
=
S

We have all the information we need in order to understand the action of both o en /2 and

7, which is depicted in Figure 11.5 in the two-dimensional: by the properties of an inversion

w.r.t. a sphere, o en /2 will leave the sphere S:_\l/i fixed and it will inverse the points in its

n,

interior to points in its exterior. In particular, its center, given by e,, will be sent to co and
the points on S"~! will be mapped on R"~!,
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Rn

u 1+\/§
n—1
enq\/i

1

€n
Rnfl 0
Snfl

Figure 11.5: Two-dimensional representation of the geometric objects involved in the stereo-
graphic projection in R™.

Let us now study the action of o, 5 on U",L", B", (B7)¢. The most important piece
of information that we need to understand this action consists in recalling that o, 5 is a

homeomorphism, so it maps connected subsets of R™ into connected subsets of R™.
In order to single out the image of each connected subset via o, 5 it is sufficient to think

about the fact that R"! splits R™ into U™ and L", and also to the fact that R™ it is mapped
to the spherical surface S”~1, thus:

e cither o, 5 maps U" to B" and L" to (Bn)©
e or,0, 5 mapsU" to (B™)¢ and L™ to B".

In order to choose between these two mutually exclusive options, it is enough to consider the
image via 0, 5 of a wisely chosen point, i.e. u = (1++/2)e,. In fact, u e S:n_\l/i AU™ n (B7)©
and u will remain fixed after the application of O N3 thanks to property 1. in 11.2.2, thus wu,
as all the other points belonging to the upper half space, will be mapped to (B")¢, i.e.

O—en,\/ﬁ(un) = glc and Uen,\/§<£n) = B".

We can say more, thanks to property 2. in 11.2.2, J;iﬁ =0, /35 SO also the opposite is true,
ie.

O'em\/ﬁ(ﬁc) :L{” and O'emﬁ([)m) = En

The result that we have obtained can be reached in an alternative way. To do that, we need
the following preliminary results, direct consequences of a straightforward computation:

[ if x # o

2= [e=enl? 11.17
g X s .
| en,\/i( )| {1 if ( )
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and

21 ity £ 0
Gprra(@)eny = {'H"P ' (11.18)

1 ifz =

Let z € L, i.e. x, = (z,en) < 0, then, using eq. (11.17) we obtain that |06n’\/5(33)|2 <1,
hence Jemﬁ(as) e B", i.e. L™ is mapped into B". Furthermore, for all x € B", i.e. such that
[z| <1, by using eq. (11.18) we get (o,  5(z),en) <0, ie. o, m(x)€ L, soalso B" is
mapped into £”. With analogous arguments it is possible to verify that 4™ is mapped into
B¢ and vice-versa.

Historically, the upper half space and the interior of the unit ball have been, arbitrarily,
privileged w.r.t. their counterparts. This explains why, in general, we prefer to identify U"
with B" instead of (B™)¢. This can be achieved very easily by swapping U™ with £ thanks to
the reflection w.r.t. R"~1, i.e. Pen0-

Clearly, o, /50 pe,,0 € M(R™) and so it is an isomorphism between R™ and itself. Thus,

the transformation o, 5o Pen0lym + U 5 B" is an isomorphism between the upper half
space and the interior of the unit ball.

Def. 11.5.1 The Mdbius transformation n =0, /50 pe,,0 € M(R™), whose restriction to U™
allows us to identify U™ and B™ is called standard transformation.

Def. 11.5.2 We call M(U"™) and M(B™), the set of Mébius transformations stable on the
upper-half space and the open unit ball, respectively, i.e.:

MU™) = {pe MR") : gU") =U"}; (11.19)
M(B) = {p e M(R™) : $(B") = B"}. (11.20)

It is possible to verify that both of them are subgroups of M(R”)

Since U™ and B" are identified through a Md&bius transformation, it is possible to define
in a natural way, via n, an isomorphism that permits to identify their Mobius subgroups as
shown in the following commutative diagram:

ur —— B
ﬂ | nogor !
U —— B
The function N
MUY > M(BY)
¢ up):=nodon!
is clearly an isomorphism of groups.
Let us now focus on the link between M(R™) and M(R™"!). In particular, the problem of

extending an element of M(R”fl) to the whole R™ is related to the concept defined as follows.

Def. 11.5.3 Lett > 0,7 >0, a€ R"! |a| = 1, and @ = (a,0) € R™. The Poincaré estension
¢ e M(R") of ¢ € M(R"1Y) is defined as follows:

o if = pas, then ¢ = pa;
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4 @f¢ = Oa,r, then (Z) = Oa,nr;

o ifp=c10 0y, then d:= d10...¢pm, where ¢; is a reflection on an inversion of
R Vie{l,...,m}.

The following intermediate result will prove to be useful in the sequel.

Lemma 11.5.1 Let ¢ € M(f@”jl), thenAits Poincaré extension ¢ is stable on the hyperplane
R = P(e,,0) U {0}, i.e. p(R*1) =RL,

Proof. By definition of Poincaré extension, to prove the statement it is sufficient to prove it
for the simple cases of ¢ = p,+ and ¢ = o4 .

o If ¢ = pay, then ¢ = psy, with @ = (a,0). Let us consider the hyperplane R-1 =
P(en,0) u {oo}. Clearly psi(o0) = 0. Let us consider x € P(ey,0), i.e. (z,e,) = 0. By
definition pg () = x + 2(t — {z, ay)a, since {a, e,y = 0, then

(pap(x), en) = (x + 2(t =2, @))a, en) = (x, ) + 2(t — (x,3)){@, en) = 0,
hence pg ¢(x) € P(en,0), so R" ! is globally fixed by ¢.
o If ¢ = 0,4, then ¢ = 0ar, With @ = (a,0) because {(a,e,) = 0. Let us consider the
hyperplane R"~' = P(e,,,0) U {c0}. Thence 04,(0) = @ € P(e,,0). Let us consider

2

x € P(ey,0), i.e. {x,ey) = 0. By definition 0 ,(x) = @ + = (x — a), since {a, e,) = 0,

[z—al
then
2 2
(oa.4(2), en) ={a+ m(:ﬂ —a),eny ={a, e,y + m«x, eny —<{a,eny) = 0.
hence 04, (2) € P(ey,0), so R"1 is globally fixed by ¢. O

The following theorem gives a further link between the two subgroups of M(R™), M(U™)
or its isomorphic group M (B"), and M(R"1), through the Poincaré extension.

Theorem 11.5.1 Let b € M(R") Then, ¢ € MU™) if and only if ¢ is the Poincaré
extension of ¢ € M(R"™1).

Proof.

. as we did in the previous lemma, it is sufficient to prove the statement for ¢ as the
Poincaré extension of a reflection ¢ = py ¢, i.e. ¢ = pa, or an inversion ¢ = o4, i.e. ¢ = 05,
with @ = (a,0). Let x e U", i.e. {(x,e,) > 0. Note that (a,e,) = 0.

e if ¢ = pay, then pas(z) = = + 2(t — (x,a))a, then
(pat(x),eny = (x,en) + 2(t — (&, a)){a, e,) = {x,en) >0,

thus pa () e U™,
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2

o if (Z) = Oa,r, then U[z,r(x) =a+ |zza|2 (:U - d)a then

7“2 7”2

(04, (2), €n) = (@, en) + m(@a en) — <@, en)) = m@a en) >0,

thus o4, (z) € U™.

Note that we could repeat an analogous procedure with £ instead of U™, with the opposite
inequality, obtaining that, if ¢ is the Poincaré extension of ¢ € M(R"~1), then it preserves
also the lower-half space.

: suppose ¥ € M(U™) © M(R™), we must prove that it exists ¢ € M(R"1) such that
55 = 1. As a natural candidate we consider ¢ = ¥|g,—1.

First of all, let us check that our candidate is suitable, i.e. that its domain and image are
R"=1. This is an immediate consequence of the fact that 1, as a Mdbius transformation, is an
homeomorphism, so it leaves oU" =~ R"! fixed.

Moreover ¢ = 1|z,—; is an homeomorphism on Rr1, Moreover, since 1 is a Mobius
transformation on R", 1) preserves the cross ratios in R", so its restriction ¢ must preserve
the cross ratios in R”~1, hence, by theorem 11.4.1 ¢ € M(R”_l).

The only thing that remains to be done is to prove that é, the Poincaré extension of ¢, is
1, or, analogously, that <;~So W~ =ids,, in fact, this implies that 1 is the right inverse of ¢~>,
which is invertible as an element of M(R”), so it coincides with the inverse ¢—!. In order to
obtain this result, we need two preliminary facts:

1. <;~50 1~ ! is stable on U™ as composition of functions that are stable on U™, indeed
Y=t e M(U™) by hypothesis and ¢ € M(U™) thanks to the first implication of this
theorem;

2. ¢otp! fixes R"! pointwise, i.e. ¢o Y (x) =2 forall v e R™=1, in fact, by definition

¢ S = ¢ = ¢|Rn—17 S0 ¢Ow_1 -1 = ¢Rn—1 © ¢_1|Rn—1 = ¢|Rn—l © ¢_1|Rn—1 =

IR
Zan,1 .

R~

The result 2. guarantees that we can apply theorem 11.4.5 with ¥ = R™~1. This implies that,
either p o=t = idg, or ¢ o Pl = Pe,,0- However, this second option is not possible because,
by 1. it is stable on U™ while pe,, o(U™) = L™, hence ¢ = 1. O

An immediate consequence of this last theorem is the following corollary:
Corollary 11.5.1 M(U™) and M(R"™Y) are isomorphic (as subgroups of M(R™)).

The isomorphism p between M(R”_l) and M(U™) is given by the Poincaré extension as
follows: .

P METY) S M@UY)

¢ — p(¢):=¢

Indeed by the definition of the Poincaré extension it is clear that for all ¢ 3! Poincaré extension
g?) and q~5 € M(U™) because of the first implication we proved in the previous theorem. Moreover,
thanks to the second implication of the theorem, for all ¢ € M(U™) !¢ € M(R”fl) such that
g?) = 7). By direct computation, it can be proven that p is also a group homomorphism.
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Now we are going to analyze the link between M (") and M(R" 1) from another per-
spective which involves angles. This is not surprising as we have already underlined the
conformality of between Mobius transformations in subsection 11.4.3.

To proceed gradually we need to introduce the concept of orthogonality between (general-
ized) spheres in R"™.

Def. 11.5.4 Two spheres 31 and Yo of R™ are said to be orthogonal if %1 N X9 € R™ and for
all x € X1 N Yo the two normal vectors at x to each sphere are orthogonal.

The condition ¥; n 35 € R™ is introduced to guarantee that >; and 39 actually intersect in
at least a point in R™. The normal vector to a hyperplane has already been defined, while,
here, we take as normal vector to a sphere in one of its points any vector that is normal to the
tangent space to the sphere in the given point.

Since a generalized sphere in R can be either a hyperplane u{o} or a Euclidean sphere,
there are three possible scenarios, depicted in Figure 11.6:

1. if ¥ = P(a,t) u {0} and X9 = P(b,s) u {00}, then they are orthogonal if and only if a
and b are orthogonal vectors;

2. if 31 = P(a,t) U {00} and Xy = S !, then they are orthogonal if and only if b € P(a, t);
3. it¥; = Sg,;l and X9 = Sgls_l, then they are orthogonal if and only if |a — b|* = r? + s2.

Note that, by symmetry, in cases 2. and 3. it is sufficient to check the orthogonality condition
of the normal vectors in just one of the two points of intersection between the spheres.

L
N

Figure 11.6: the three types of orthogonal spheres in R2.

Theorem 11.5.2 Let ¢ be a reflection or inversion with respect to a sphere ¥ in R”, then
¢ € M(U™) if and only if ¥ is orthogonal to R™"~1.

Proof. Let us recall that R"~! = P(e,,0) u {o0}. We will consider the cases of reflection and
inversion separately.
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1. Let ¢ = ps+ be the reflection with respect to ¥ = P(a,t) u {00}, then the following chain
of equivalent assertions holds:

pat € MU™) thll g1 3pat € M(R”fl) such that pg+ = pas and @ = (a,0)
{a,eny =0

—
<= a and e, are orthogonal vectors
— Y =P(at)u{o}and R" = P(e,,0) u {00} are orthogonal.

2. Let ¢ = 05, be the inversion with respect to ¥ = Sg;l, then the following chain of
equivalent assertions holds:

h.11.5.1
oar € MU™) Al

300, € M(R"Y) s.t. Goyp = 04, and a@ = (a,0)
— {(a,e,)=0
<= a€ Pley,0)

= Y= Sg;l and R"™1 = P(e,,0) U {0} are orthogonal.
a

Since every Mobius transformation can be written as the composition of reflections and
inversions, a direct consequence of the previous theorem is the following.

Corollary 11.5.2 Every Mébius transformation ¢ € M(U™) is the composition of reflections
and inversions with respect to spheres in R™ which are orthogonal to R"1.

For the following theorem we need to define the subgroup of Z (R”) stable on the upper
half space: A )
ZU™) ={Y e Z(R") : pU™) =U"} = Z(R") n MU™). (11.21)

Theorem 11.5.3 Let ¢ € M(U™) such that ¢p(0) # 0. Let 3 be the isometric sphere of ¢
and ¢ =1 o o its decomposition (see theorem 11.4.2), with o the reflection or inversion w.r.t.
Y and ¢ € Z(R™). Then X is orthogonal to R"~! and 1 € Z(U™).

Proof. From corollary 11.5.2, since ¢ € M(U") and ¢ = ¢ o o, ¥ is orthogonal to R"1.
What remains to be proven is that ¢ € Z(U™). o is the reflection or inversion with respect
to 3, which is orthogonal to R”~!. From theorem 11.5.2 this implies that o € M(U™). Since
ol =0, then ¢ = 0 0¢. Now 0 € M(U") and ¢ € M(U™), hence 1) € M(U™) as composition
of elements of M(U™). Moreover 1 € Z(R™), so we can conclude that 1) € Z(U™). O

Now we are going to analyze the properties of the last Mdbius subgroup: M(B").

As we already know it is possible to identify 4™ and B™ through the standard transformation
7 defined in 11.5.1 as n = 0, /5 © pe,,,0. Moreover, it permits to define the isomorphism of
subgroups ¢ as follows:

L MUY S M(BY)
6 — Up)=nopont.
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Up to now we have analyzed in detail the properties of M(U™). Because of the isomorphism
between M(U™) and M(B") it is reasonable to think that analogous properties should hold
for M(B™). This is actually the case and it order to prove it, we will make large use of the
isomorphism between the two subgroups.

As we have seen in corollary 11.5.1 the Poincaré extension induces the isomorphism p

between M (U") and M(R"1).

~

p: MR = MuU"
¢ p(e):

~—

¢.

Note that R = oU™, hence the Poincaré extension gives a correspondence between the
Mobius subgroup of U™ and the Mébius subgroup of its border 6l4™. Analogously we would
like to define a Poincaré extension which links the Md&bius subgroups associated to B™ and its
border 0B" = S"~!, respectively.

First of all we need to identify M(S™~!). For that, we need to search for an analogous
version of p for B™, to do that we will clearly make use of p, which connects M(U"™) with
M(R"1). Thence it is important to define M (5™ 1) as something related to M(R"1).

Before giving this definition let us recall that the extended stereographic projection
#: R"1 — §7=1 maps bijectively R*~! onto $71, #(R*"1) = §7~1 and #~1(S"~1) = R*~1,

Now we can define the Mdbius group of S”~! as follows:

M(S™ 1) = {¢: S™ — S™ such that 7' o po i e M(R" 1)}, (11.22)
the following commutative diagram visualizes the action of such Mobius transformations:

Sn—l 7 Rn—l
qbl ifr_loqﬁofr

Snfl — Rnfll
s

Clearly # allows us to define the group isomorphism g between M(R"1) and M (S"1)
as follows:

pe M@ S MR
¢ — @) =7 oo

The definition of the Poincaré extension p’ for the elements of M(S™"!) to elements of
M(B™) is given below.

Def. 11.5.5 Let g€ M(S" 1), let ¢y = 7L opoit = = (¢) € M(R™1) and let ) € M(U™)
be the Poincaré extension of ¢, 9 = p(¥). We define the Poincaré extension of ¢ as
¢=p(¢)=novont=ropout(¢)e M(B").

The following commutative diagram visualizes the action of p':

MR —Es M(Sm)

|
pi o
3

MUY ——— M(B).

267



Two immediate consequences of this definition are the analogous versions of theorem 11.5.1
and corollary 11.5.1, that can be proven analogously.

Theorem 11.5.4 ¢ € M(B"™) if and only if ¢ is the Poincaré extension of an element of
M(S™1).

Corollary 11.5.3 The Poincaré extension p' is an isomorphism between the Mobius groups

M(S™ ) and M(B").
We will now analyze the analogous version of theorem 11.5.2.

Theorem 11.5.5 Let ¢ be a reflection or inversion w.r.t. a sphere ¥ in R™, then ¢ € M(B™)
if and only if ¥ is orthogonal to S™ 1.

Proof. Since ¢ € M(B"), let us consider ¢ = 17(¢) = 7L opon e MU™). Let us call
¥ = n~1(¥), after a straightforward computation it is immediate to verify that 1 fixes ¥’
pointwise. Moreover ¢ # idy,,, indeed if ¢ = idg, = n~to¢on, then ¢ = idg,, which is false.
Theorem 11.4.5 allows us to conclude that 1) is the reflection or inversion w.r.t. X'.

Moreover, because of theorem 11.5.2, ¢» € M(U™) if and only if ¥ is orthogonal to
R"1. Note that if we apply 7 to both ¥’ and R"1 we obtain 7(¥') = ¥ and n(R*" 1) =
Oc /2 ° pemo(Rn_l) = O'emﬁ(Rn_l) = gn—1,

By corollary 11.4.3, n e M(R”) is conformal, thence it preserves angles, and so, in particu-
lar, it preserves orthogonality. Finally we can conclude that ¥/ is orthogonal to R™1 if and
only if ¥ is orthogonal to S™~!. O

The following corollary is the analogous version for B™ of 11.5.2.

Corollary 11.5.4 Every Mdobius transformation in M(B™) is the composition of reflections
and inversions w.r.t. spheres of R™ which are orthogonal to S™ 1.

We will now analyze a similar result to 11.5.3.
Theorem 11.5.6 Let ¢ € M(B"™), then:
1. if ¢(o0) = o, then ¢ € O(n) = Z(B");

2. if ¢p(0) # o0, let ¥ be its isometric sphere and let ¢ = 1 o o be its decomposition®,
with v € Z(R™) and o the inversion w.r.t. X, then ¥ is orthogonal to S™' and
Y e O(n) =Z(B").

Proof.

1. Let us consider the case ¢(o0) = o0. By point 1. of theorem 11.4.2, ¢ € S(R™) hence
it can be written as ¢(z) = b+ kAx, with £k > 0, A € O(n) and b € R™. Notice that,
since ¢ € M(B™), the vector b should belong to B™, hence |b| < 1. Indeed if |b| > 1, then
#(0) = b¢ B™, but 0 € B™ and this is contradictory with the hypothesis ¢ € M(B").

Let us suppose b # 0. Clearly 7! o ¢p o e M(U™). Theorem 11.5.1 and lemma 11.5.1
allow us to say that 71 o ¢ o7 is stable on R* ™1 ie. n71(¢(n(R"1))) = R*! hence

Sgiven by 2. in theorem 11.4.2.

268



p(n(R™1)) = n(R™ 1), but n(R*"1) = §7~1  this means that ¢(S" 1) = $"1 ie. ¢ is

stable on S™!. Since we have supposed b # 0, we can define b = Atl—z'. It is easy to
verify that |b| = 1, thus b e S™ 1.
Now since ¢ is stable on S"~! we must have that |¢(b)| = 1. Explicitly:

- b
lp(b)| = ’b+ k\b‘ =||b| +k|=b|+ k=1, (11.23)
which implies that £ = 1 — |b|, which is positive because b € B".

Clearly also —b e "1, ie. | —b| = 1 and |¢(—b)| = 1. Developing the computation and
using the fact that &k = 1 — |b| we obtain:

. b
6(~B)] = 'b— k| = 1= Kl = 1200 = 1] = 1. (11.24)
Hence |b] = 0 or |b| = 1 which is contradictory because we assumed that b # 0 and

|b] < 0.

This means that b = 0, thus ¢(z) = kAz. Since ¢ is stable on S"~!, let us consider
re S |z| =1 and |¢(x)] = 1, but 1 = |¢(z)| = k|Az| = k|z| = k, hence k = 1 and
¢ =AeO(n)=1I(S"1).

2. Let us consider the case ¢(o0) # 0. Let a = ¢~!(0) € R”, using the decomposition
given by point 2. in theorem 11.4.2 ¢ = 1) o 0 we have that ¢(a) = 1(o(a)) = ©, so
o(a) = ¢¥~1(0) = o0, hence o(a) = co. This implies that a is the center of the isometric
sphere ¥ = S;L;l and 0 = 04,. Moreover by corollary 11.5.4, since ¢ € M(B") the
spheres ¥ = S;l;l and S"~! are orthogonal, hence r is such that |a|?> = r? + 1. Now, by
theorem 11.5.5 we know that o € M(B"™), moreover ¢ € M(B™), hence 1 € M(B"), but
also ¢ € Z(R™), so 1 € M(B") n Z(R™) = Z(B") = O(n).

A direct consequence of the previous theorem is the following corollary.
Corollary 11.5.5 Let ¢ € M(B™), then ¢(0) = 0 if and only if ¢ € O(n).

Proof. If ¢(o0) = oo then ¢ € O(n) because of point 1. in the previous theorem.

Let us consider the case of ¢(o0) # 00. Because of the previous theorem we have the
decomposition ¢ = 1 o g, with ¢» € O(n) and o the inversion w.r.t. the sphere Sg;l, with
7?2 = |al? — 1. The condition ¢(0) = 0 corresponds to ¢(0) = ¥(c(0)) = 0, but, since ¥ € O(n),
1 (0) = 0, thence the previous condition is equivalent to o(0) = 0. Now, because of property
1. in theorem 11.2.2, this means that 0 € S7;!, hence |0 — a| = |a| = r, but 7% = [a]* — 1, so

la|? = |a|? — 1 which gives a contradiction. Hence, ¢ € O(n) if and only if ¢(0) = 0. O
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Chapter 12

The hyperbolic models (autoine cuennce)

Around 300 B.C, Euclid wrote his famous ‘Elements’ [7], a thirteen-volume work where he
presented the fundamentals of Greek geometry and number theory. In the first pages, he
exposes his five postulates of planar geometry:

1. ‘Let it have been postulated to draw a straight-line from any point to any point’
2. ‘And to produce a finite straight-line continuously in a straight-line’

3. ‘And to draw a circle with any center and radius’

4. ‘And that all right-angles are equal to one another’

5. ‘And that if a straight-line falling across two (other) straight-lines makes internal angles
on the same side (of itself whose sum is) less than two right-angles, then the two (other)
straight-lines, being produced to infinity, meet on that side (of the original straight-line)
that the (sum of the internal angles) is less than two right-angles (and do not meet on
the other side)’.

This last postulate is best known as the parallel postulate and it is equivalent to Playfair’s
axiom when combined with the first four axioms:

‘In a plane, given a line and a point not on it, at most one line parallel to the given line can
be drawn through the point’

For over two thousand years, mathematicians have tried to simplify Euclid’s axioms of
geometry, by proving the fifth axiom from the first four (known as the fifth postulate problem),
but without success. However, in the 19th century, things took a surprising turn when
mathematicians discovered that in fact the fifth axiom was independent from the first four
while trying to prove the fifth postulate problem by contradiction by denying the fifth axiom.
To the general astonishment of mathematicians at the time, geometries that refute the fifth
aziom (while keeping the first four), turned out to be highly consistent.

The geometries that reject some of Euclid’s postulates are fittingly designated as non-
FEuclidean geometries. Hyperbolic geometry is a non-Euclidean geometry where we keep the
first four postulates and we refute the fifth postulate by replacing it with the following:

‘In a plane, given a line and a point not on it, there are infinitely many lines parallel to the
given line that can be drawn through the point.’
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Funnily enough, while Gauss is thought to be the one of the first mathematicians to have
worked on hyperbolic geometry, he never published anything about it out of fear of the ‘uproar
of the Boeotians’ (1829, letter from Gauss to W. Bessel), to the extend that Gauss’ visionary
work on non-FEuclidean geometry was only found among his papers after his death in 1855.

While the first publications on hyperbolic geometry were independently given by Nikolai
Lobachevsky and Janos Bolyai in 1829 and 1832 respectively, it was only during the second
half of the 19th century that hyperbolic geometry was fully developed by mathematicians such
as Poincaré and Hilbert, with the culmination point being at the start of the 20th century with
Einstein’s groundbreaking use of hyperbolic geometry in his formulation of special relativity,
thus showing that hyperbolic geometry was not just meant to be left in the dark cupboards of
the mathematics department. More recently, hyperbolic geometry has made a come back with
its use in artificial intelligence and information processing, such as in [13]or [3] which make a
nice use of Poincaré’s and Klein’s disk embedding, respectively).

12.1 A brief overview on the four models of the hyperbolic
n-space

The hyperbolic space n-space The hyperbolic space of dimension n OR The hyperbolic n-space,
in contrast to S™ and R", can be described in various different ways. In what follows we will
by giving show the four main models that are prevalent in literature: H"™ the hyperboloid, B"
the conformal ball model (also known as Poincaré disk), U™ the conformal upper half plane,
and K", the projective model (also known as Klein disk). Up to an isomorphism, for every
n = 2, there exists a unique complete and simply connected hyperbolic manifold of dimension
n. Hence, every hyperbolic models that we shall present will be isomorphic to each other.
Hence all the hyperbolic models are isomorphic.

Once we have our geometric model embedded in R”, if we wish to refute Euclid’s fifth
postulate we have two choices: either straight lines are distorted (conformal model) or angles
are (projective model), but not both options together, otherwise we come back to the usual
Fuclidean space forse questa frase va tolta perché a questo punto non e giustificata. These
modifications affect the hyperbolic space in such a way that the quickest path between points
is often curved compared to Euclidean geometry. Questa frase forse la toglierei perché ad
esempio nel modello di Klein le geodetiche sono rette i.e. non sono distorte.

This section has the only purpose to give the reader a glimpse of the four models and
a general idea of the path that we will be taking after this introduction, represented in the
diagram below. Many tools will be needed to be introduced before we reach our objectives.

Poincaré disk ——— Upper-half space (Conformal model)
Hyperboloid

T
Cayley-Klein model (Projective model)
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12.1.1 The Hyperboloid H" in a nutshell

We start with what we will use as the basis of our hyperbolic n-spaces: the hyperboloid H"
represented in Figure 12.1. Embedded in the Lorentzian n-space R™!, the hyperboloid is
defined as upper sheet of the set of time-like vectors of Lorentz (bisogna dire quale norma)
norm —1:

H' = {zeR"™ af+. . +a2 —22, =12, >0}

/

Figure 12.1: The Hyperboloid model: the line between A and B is distorted compared with
the usual Euclidean straight lines. In fact, usual Euclidean lines (with the Euclidean metric)
are longer than hyperbolic lines. Toglierei questa frase perché qui e detta troppo velocemente
(le straight lines in che spazio sono?/le hyperbolic lines con che metrica le misuri per dire che
sono piu lunghe?) e il lettore a questo punto non ha abbastanza strumenti per capire questa
frase.

Clearly, the map

RY He R
X1
Tl
. —
Tp
T,

V1tzi+ a2

is a bijection and so H" is indeed n-dimensional space. The hyperbolic distance between two
points x,y € H" is then defined using the hyperbolic cosine:

cosh(dy(z,y)) = —x1y1 — - — Tn¥Yn + Tnt1Yn+1 = —T O Y.

Note that here we used the second definition given in 7?7 with the minus sign on the list
coordinate instead of the first one.

Geodesic lines (lines that minimize the distance and are of constant speed lines of constant
speed that minimize the distance) will be shown to be of the form:

~(t) = cosh(t)x + sinh(t)y,

where t is the path’s parameter and x,y is the initial condition.
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Moreover the isometry group Z(H") will be proven to be PO(n, 1), the positive Lorentz
group. Finally, for a curve v : [a,b] — H" the hyperbolic arc length along the hyperboloid is
will be shown to be:

b
1
I = f I (6)] = f (da? + -+ do? — da?,)b.
a ¥

12.1.2 The conformal models B" and 4" in a nutshell

What is important to remember here is the fact that conformal is equivalent to ‘angles are
maintained’. A conformal transformation maintains the angle between two curves in the
space (a rotation or translation for example rotations and translations are classic examples
of conformal transformations) and a conformal model is a hyperbolic geometry model that
maintains the same notion of Euclidean angles than the usual Euclidean geometry.

We will be presented with two analogous models: We are going to introduce now two
analogous models: the open unit ball B” (also said Poincaré disk in the 2-dimensional case
B?) and the upper-half space U".

B" ={xeR":|z| <1}, U" ={xeR":z, > 0}.

The two models are very similar, one is found from the other by an homeomorphic and
inversive transformation (which is also conformal!) through a Mébius transformation (which
are conformal as we have seen in corollary 11.4.3) as so:

B - 2 (L 0
n(@) =0, a(pe.0(x)) =en+ mul‘ —en),  where J = ( 0 _1> :

Hence the two models will be shown to have isomorphic isometric groups Z(B") ~ Z(U") ~
M(E"1), where M(E¥) is the set of Mobius transformation defined in on a k-dimension
Euclidean space. From section ?? of the previous chapter we already know that M(U") ~
M(B") =~ M(R" 1), here we will show that this isomorphism preserves also the metric
structure of the different models involved. The metric given to the hyperbolic conformal ball
model will be inherited from the Hyperboloid model by setting the projection ¢ from B™ to
H" (see figure 12.2) to be an isometry (in other words, we set dg(x,y) = dy({(z),((y)) and
thus the metric the hyperbolic metric on B is defined as: B™ inherits its metric from H"
through the projection ¢ from B" to H", as depicted in figure 12.2, i.e. we define the metric
dp on B™ in a way such that ¢ is an isometry, i.e. dg(x,y) = dy(((x),{(y)) hence:

2|z — y[?
(L= [z[2)(1 = y[*)

A questo punto il lettore non puo capire la formula, perché non conosce la funzione ¢ che non
e stata ancora definita analiticamente.

cosh(dg(x,y)) =1+
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Figure 12.2: Illustration of the isometry between H™ and B". Hyperbolic lines are transformed
into arcs of Euclidean circles othogonal to S™~! or diameter line of S"~!. Illustration of the
isometry between H"™ and B". Geodesics on H" are transformed into arcs of Euclidean circles

othogonal to S"~! or diameters of S*~ 1.

Moreover, hyperbolic lines geodesics in the a conformal model will be arcs of Euclidean
circles and lines orthogonal to the boundary of the model (S"! in the case of B" and
R ! ~ {x € R" : z,, = 0} in the case of U™). See figure 12.3 for a two-dimensional depiction.

Figure 12.3: The Poincaré disc (left) is just the 2 dimensional instance of the conformal ball
model. Here we see that lines that minimizes minimizing the distances are either diameters
of the circle or arc of circle, orthogonal to the border S*~!. In a similar way, in the two-
dimensional upper-half space U€, i.e. the upper-half plane (right) the lines that minimize
distance are either straight vertical lines or arcs of a half circle semicircle.
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12.1.3 The projective model K" in a nutshell

The projective model lies between the hyperbolic model and the conformal ball model: geo-
metrically, it is the unit ball, however, lines are not distorted when compared with the usual
Euclidean lines, but angles are. While the metric on the projective model is less easy to
work with, it has the advantage that its concept can be extended to any open convex sets via
its cross ratio formulation (Hilbert’s metric). In a 2-dimensional space, this model is often
referenced as the Beltrami-Cayley-Klein model (K actually stands for Klein).

Figure 12.4: The isomorphism of H" onto K™ versus the isomorphism of H" onto B"

When compared with the conformal ball model, the bijective projection of H"™ onto K"
(see figure 12.4) seems much more natural. In fact if we look back at theorem 9.4.1, the
correspondence between the unit ball and the lines passing through zero and with a time-like
orientation vector is exactly the isomorphism H" — K™ given by

H Kxn
T T

Tn+1 In

Lines joining x and y in the Hyperboloid are of the form
Ly, = span(z,y) n H".

It is easy to see that if & and g are the projection on K" of 2 and y then span(z, §) = span(z, y)
and so the line L, , once projected in K" is

Lz = span(z,y) n K" ~ span(z,y) N { (316) :x e R},

so it is a Euclidean line once extended. Hence lines in the projective model are the Euclidean
lines. Just like in the conformal model the metric is derived by requiring the bijection K™ — H"
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to be an isometry, i.e di(z,y) = dy(u(z), u(y)) and so the projective model metric can be
expressed using the hyperbolic cosine:

1— <xay>

VA= [2P)yI = [yl

cosh(dk(z,y)) =

12.2 The hyperboloid model and the hyperbolic metric

In this section we are going to define and analyze in detail the first model of hyperbolic
geometry: the hyperboloid. A quick recap about the concept of distance and angle in the
Euclidean setting will help us underlying similarities and differences between spherical and
hyperbolic geometry.

12.2.1 Memories of spherical geometry

The classical way of introducing the concept of angle and spherical distance is based on the
Cauchy-Schwarz inequality (lemma 10.1.1). In fact, as a direct consequence, we have that for
all z,y € R™, there is a number «a(z,y) € [—1,1] such that

() = oz, y) [lz] vl

which, for non-zero vectors, satisfies the following properties: a(z,y) = 0 if and only if z and y
are orthogonal and a(z,y) = +1 if and only is x and y are linearly dependent. Being cos|[077r]
a bijective function between [0, 7] and [—1, 1], with cos(0) = 1, cos(m/2) = 0 and cos(7) = —1,
we have the identification:

a(z,y) = cos(f(z,y)),

where 0(x,y) € [0,7] is defined to be the angle between x and y. (z,y) is related to the
so-called spherical distance between two vectors, that we recall next.

Def. 12.2.1 The spherical distance dg(z,y) between two vectors x,y € R™ is the angle between
the projections of x and y on the unit sphere S™ 1.

It follows that 6(z,y) and dg(z,y) are identical when ||z|| = |ly|| = 1, which implies the
equation
cos(ds(z,y)) =<z, y) < ds(z,y) = arccos((z,y)) (12.1)

and, since cos?(dg(z,y)) + sin?(ds(x,y)) = 1, sin(ds(x,y)) = 1/1 — (z,y)*, where only the
positive determination of the square root makes sens here because dg(z,y) has been defined
as the angle between z, y, which belongs to [0, 7], so sin(ds(z,y)) = 0.

The straight lines on the sphere through z,y € S™ ! is

lyy = span(z,y) N S"H
and the shortest (geodesic) arc between x,y € S"~! has the expression

sin(t)

1=y

~(t) = cos(t)x +

(v=c@mz),  teDast
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notice that v(0) = z and

A(ds(z, y)) = cos(ds(a, y))a + S2s(@:¥)) (y oy x)

1= y)?

1- <‘T’ y>2
={(r,yyr+ ——y—<{z,yzx
Yy f - <$’y>2 (y Yy )
=Y,
~(t) = cos(t)x + sin(t)y, te[0,ds(z,y)],

if x and y are orthogonal.
We also remark that sine and cosine are the only functions verifying

(=

E
st-{ (o) eme : very.

The hyperboloid model that we will analyze now will show analogous features, the major
difference being represented by the fact that the circular functions sine and cosine must be
replaced by the their hyperbolic counterparts:

1= cos(t)2 + sin(t)2 = '

and

T —x T _ ,—T
cosh(t) = %, sinh(t) = %,

H (COSh((t))> H2 = —cosh?(t) + sinh?(t) = —1.

sinh(¢

which, for all ¢ € R, satisfy

2
(Z?;EEQ) = COSh2(7f) — SinhQ(t) -1

E

and

12.2.2 The hyperboloid model and its metric

We have just seen how we can build a distance on the sphere from the scalar product and the
cosine function. Here we follow exactly the same path by replacing the unit sphere with the
unit hyperboloid, i.e. the one defined by ¢(x) = —1 and the cosine by the hyperbolic cosine.

Def. 12.2.2 The hyperboloid model of hyperbolic geometry is defined as the upper connected
part of the level set defined by q(z) = —1 in RY", explicitly,

H" = {zeRY™: ||z]|* = =1, 21 > 0}.
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The hyperboloid model can thus be described also as the set of all unit positive time-
like vectors in R1"™. The analysis of the hyperboloid model starts with a variation of the

Cauchy-Schwarz inequality specific for positive time-like vectors.

Theorem 12.2.1 Let x,y € RY™ be two positive time-like vectors. Then:

zoy < |lz] [yl
with equality if and only if x and y are linearly dependent.

Proof. Set t := ||z||| > 0 (J|z||*> = —2) and because z € span(z) is a one-dimensional
time-like vector subspace of R™, by theorem 10.3.4 there exists ¢ € PO(1,n) such that

z

¢(span(z)) = span(e;) and consequently we have ¢(x) = te;. Set z = ( 1) := ¢(y). Then,

A
lzl*yl? = le@)* le)lI* = —t3(=2F +|2]) = t?2F — t*|z]
< tP2] = (te102)” = (¢(x) 0 d(y))* = (woy)?,

thus ||z[|* ||ly]|* < (z o y)2. Notice that the equality ||z ||y||* = (z o y)? holds if and only if
z = 0, which implies ¢(y) € span(e;) and, since the action of PO(1,n) on time-like vector
subspaces is stable, y € span(x), i.e. x and y are linearly dependent.

Finally, theorem 10.2.1 guarantees that z oy < 0, hence (||| [lyl)2 = l|lz||* |y]|* < (z 0 y)?
is an inequality between two negative real numbers, which implies

zoy < |zl |yl

since the function ¢ — &2 is decreasing, and thus order-reversing, in (—co, 0]. O

If z,y € H", then |z]? = |y|?> = —1, so || = |y| = i and ||z||y| = —1, this leads directly
to the following corollary.

Corollary 12.2.1 Let x,y € H"™. Then:
roy < _17
with equality if and only if x = y.

Now, at this point the fundamental observations towards the construction of the hyperbolic
distance on H™ are that cosh(a) > 1 for all a € R and that cosh(—a) = cosh(«), thus we can
consider just positive entries a > 0 and formulate the following corollary.

Corollary 12.2.2 Let z,y € RY"™ be two positive time-like vectors, then there exists a unique
a(z,y) = 0 such that
z oy = cosh(a(z,y)) [lz]l [[y]| - (12.2)

In particular, if x,y € H", then |z|||y| = —1 and so it ezists only one a(z,y) = 0 such that
cosh(a(z,y)) = —zoy.

Following the lead given to us by spherical geometry, we introduce the hyperbolic distance
on H" as follows.
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Def. 12.2.3 (Hyperbolic distance on H") The hyperbolic distance between two elements
x,y of H" is dy(z,y) = a(zx,y), where a(x,y) = 0 is the only non-negative real number that
satisfies the equation:

cosh(dg(z,y)) = —x oy, (12.3)

or, equivalently,

‘dH(x,y) = arcosh(—(z o y)) ‘ : (12.4)

The non-negative real number a(x,y) is called the Lorentzian time-like angle between
x,y e H™.

A transformation T : H™ — H" is a hyperbolic isometry on H" if it verifies the following
condition:
d(T(2), T(y) = dlw,y),  Va,yeH" (12.5)

The set of hyperbolic isometries on H™ is denoted with Z(H™).

By (12.1), we have that the spherical distance is dg(x,y) = arccos({z,y)), thus, apart from
the minus sign in front of the Lorentz pseudo-scalar product, the only change that is required
to pass from the spherical to the hyperbolic distance on H™ is to replace the inverse circular
function arccos with the inverse hyperbolic function arcosh.

Clearly, dg is positive, symmetric and dg(x,y) = 0 if and only if 2 = y by corollary 12.2.1.
All that is left to prove to verify that dg is actually a distance is the triangular inequality,
which is far from being trivial.

The proof of the triangular inequality of df needs a result that is important by its own:
the possibility to identify the isometries of H™ with positive Lorentz transformations. The
proof of this result requires the following lemma, which is proven with a technical reasoning of
vast applicability that we will encounter again in this chapter.

Lemma 12.2.1 A generic transformation S : H™ — H™ that preserves the Lorentz pseudo-
scalar product can be extended to a positive Lorentz transformation ¢g € PO(1,n) if and only
if there exists a transformation T : H" — H"™ that preserves the Lorentz pseudo-scalar product
and that has an arbitrary fized point h € H", i.e. T(h) = h, which can be extended to a positive
Lorentz transformation ¢ € PO(1,n).

Proof. If a generic transformation S : H™ — H™ that preserves the Lorentz pseudo-scalar
product can be extended to a positive Lorentz transformation ¢g, then this property is also
shared by a map T of this kind that also has the additional property of having a fixed point
h € H™. So, the non-trivial part of the proof consists in showing that the opposite is true.
To this end, write S(h) = x € H™ and recall that PO(1,n) is transitive, in particular, on
the set of 1-dimensional time-like vector subspaces of R1™, so it surely exists Re PO(1,n)

such that R(l‘) = h. Since both z and h belong to H", we can consider R := R‘H and
compute (R o S)(h) = R(x) = h, which shows that h is a fixed point for T := R o S, which
surely preserves the Lorentz pseudo-scalar product since it is the composition of two functions

that share this property. }
Notice now that, since PO(1,n) is a group, it exists a transformation R~ € PO(1,n) such

that the restriction R~ := R™1 » satisfies the equation S = R~1oT.
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Finally, if T' can be extended to a positive Lorentz transformation, i.e. if there exists ¢ €
PO(1,n) such that T' = ¢y, then S = R™1oT = R~ an © ¢7lyn = (R0 ¢r) . hence
we recognize the extension of S to PO(1,n) to be ¢g := R~! o ¢p. O

Theorem 12.2.2 FEvery hyperbolic isometry on H" can be extended to be a positive Lorentz
transformation and every positive Lorentz transformation is a hyperbolic isometry on H™.
Thus, we have the identification:

PO(1,n) =~ Z(H").
Proof. If ¢ € PO(1,n — 1), then ¢ : H" — H™ and, by definition (12.3), we have:
cosh(dp (2,y)) = —z oy = —(é(x) © ¢(y)) = cosh(du(d(x), ¢(y))),  Va,yeH",

but cosh is injective on R, so dy(é(z), ¢(y)) = dy(z,y) for all z,y € H™.

Conversely, let T': H™ — H™ be a hyperbolic isometry, T'= (11, ..., Tp41), Tj : H" = R
being the j-th component function of T, i.e for j € {1,...,n + 1},

T: H* — H"

Tl(ﬂj‘)

To(x) | (Ti(z)
S : :(T@c))

Tn+1(l‘)

We must prove that there exists ¢ € PO(1,n) such that T' = ¢|,.. Since ¢ preserves the
Lorentz pseudo-scalar product on R'™, for this problem to be well-posed, we must first check
if T preserves the Lorentz pseudo-scalar product on H". In order to do that we use eq. (12.3)
and the fact that T" preserves the hyperbolic distance to write, for all z,y € H",

du(T(x), T(y)) = du(z,y) <= cosh(du(T(z),T(y))) = cosh(du(z,y))
«— T(x)oT(y)=x0y.

Having proven that a hyperbolic isometry T preserves the Lorentz pseudo-scalar product on
‘H"™ has another important consequence, i.e. the possibility to invoke lemma 12.2.1: if we solve
our problem w.r.t.just one hyperbolic isometry T : H" — H™ with a fixed point, then we
automatically solve it for all the other hyperbolic isometries of H™.

A particularly clever choice of such a fixed point is represented by ep, that clearly belongs
to H"™. The reason underlying this choice can be understood by recalling that the matrix

A= ((1) 2) . AeO(n), (12.6)

is a positive Lorentzian matrix thanks to corollary 10.3.3. Since a Lorentzian matrix is
associated to a Lorentz transformation w.r.t. the canonical basis (e, ..., e,), the fact that the
first column of A coincides is (1,0, ...,0)! means that e is a fixed point for the transformation.

As a consequence, the only thing that remains to do in order to prove the theorem is to
use the properties of T' to build a suitable orthogonal matrix such that expression in (12.6)
extends T from H" to the whole R},
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We start by observing that T'(e1) = ey implies, for all u € H":
Tu)oT(ey) =T(u)oey = -Ti(u) +0+...0 = =T (u),
on the other side, since the Lorentz pseudo-scalar product is preserved by 7', we have:
T(u)oT(e1) =uoe; =—u; +0+...0=—uy,

so T1(u) = uq for all u e H™.
Consider now x,y € H" and recall that x oy = —z1y1 + {(Z,9), T = (T2,...,Tn+1)’,
Y= (y27 s aynJrl)tv SO

zoy=T(z)oT(y) = —zayr +(z,5) = — TlaenP(yr) +(T(x), T(y)),

where the first terms in each member of the second equality above cancel out because, as we
have just proven, T (z) = 1 and T1(y) = y1. So,

zoy=T(x)oT(y) = (T,y)= <T(m),T(y)>,

notice that this property is not yet enough to say that T = (Ts, ..., T,.1)! is an orthogonal
transformation on R", that we could associated to the O(n) matrix that we are searching for,
because up to now we have shown that T preserves the Euclidean scalar product only when
we apply it to the vectors  and gy, which were obtained by extracting the last n components
of x,y € H". The extension to R can be achieved by considering the following bijection:

~

D H™ — R"
Ui
uz
U2
u = . p(u) = : 5
Un+1
Un+1

1

which allows us to build the function T := T o p~?, explicitly

T: R — R"
w o (B W) T (o~ (W)

T is an orthogonal transformation on R”, lemma 10.1.2 guarantees that 7" is linear and, by
denoting with A the associated matrix w.r.t. the canonical basis of R", we have that

o &)

is the Lorentzian matrix of a transformation ¢ € PO(1,n) such that ¢|,,, = T. O

We now start the proof of the triangular inequality for dy: a fundamental tool for this
proof is given by the so-called Lorentzian cross product, which is the hyperbolic variant of the
classical cross (or vector) product z x y between two vectors z,y in R3.

Recall that the x x y is a vector orthogonal to the plane that contains x and y, i.e.
(x,x xyy={y,z x yy =0 and defined as follows:

€1 €2 €3 T2Y3 — T3Y2
rxy:=det | x1 x2 x3 | = (xoyz—x3y2)e1—(x1y3—x3y1)ea+(T1y2—T2y1)es = | T3y1 — T1y3
Yy Y2 Y3 T1Y2 — T2Y1
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Def. 12.2.4 Let z,y € RY2. The Lorentzian cross-product is defined as

—T2Y3 + T3Y2
r@y:=n(r xy) = z3y1 — 1193
T1Y2 — X2Y1

Remark 12.2.1 The Lorentzian cross product of z and y in R is Lorentz-orthogonal to
both x and y:

zo(x®y) =xon(rxy)=_{(z,nnxxy))=_{(z,zxy) =0,
and analogously for y. Then, if x ory belong to H?, their Lorentzian cross product is space-like.
The proof of the following result can be obtained by direct computation.
Theorem 12.2.3 For all x,y,w, z € RY? we have:
1. 2Qy=—y®z, ‘antisymmetry’;

T1 T2 T3
2. (r®y)oz=det | y1 y2 wys |, ‘Lorentz mized product formula’ ;
Z1 Z2 %3

3. 1®(Y®z)=(roy)z— (ro2)y;

row xXxoz
yow yoz

4. (z®y)o(z®@w) = det ( ), ‘Lorentz version of Lagrange identity’ .

5. x@y = —n(z) x n(y) =n(y) x n(x).

Corollary 12.2.3 For all z,y € RY? we have:
2 2112
lz®@yl* = (xoy)® — [l ly]*.
Proof. By using property 4. of theorem 12.2.3 we get:

roy zxTOoT

2 _ —
le@l? = o) e (woy) - det (520 227

) — (wou)? — 2] Iyl

The three statements that follow are direct consequences of the previous corollary.
Corollary 12.2.4 If z,y € R"? are space-like, then
1. |zoy| < |lz| ||yl <= z®uy is time-like;

2. lxoy| = |lz| ly]] = x®y is light-like;
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3. lxoy|l > |z| |yl = x®uy is space-like.

Corollary 12.2.5 Let 2,y € RY? be two linearly independent, positively-oriented, time-like
vectors. Then, x ® y is space-like and

lz @yl = = [l [ly[| sinh(a(z, y)),

where a(x,y) is the Lorentzian time-like angle between x and y.
In particular, if z,y € H", then ||z ® y|| = sinh(a(z,y)).

Proof. Thanks to corollary 12.2.3 we have:

2 2 2 2 2 2 2
lz@yl* = (@oy)®— | |yl 122 (1 ly]I* cosh®(a(z, ) — [l|I* [lyll

= Jl2l* lyll* (cosh®(au(, ) — 1) = [|=]|* [ly[|* sinh®(au(, y)).

From remark 12.2.1, x®y is Lorentz-orthogonal to x which is time-like so z ® y must space-like
by corollary 10.2.2. The space-likeness of  ® y implies ||z ® y|| > 0, so:

lz @yl = — [l [lyl| sinh(e(z, y))-

a

We are now ready to prove the triangular inequality of the hyperbolic distance on H". As
we have said, we will have to use the properties of the Lorentz cross-product, however, since it
is defined only on R12, it seems not appropriate to use this operation to prove a property of
dy on H"™ for n different than 3.

In fact, as we will see in the proof below, the clever idea that will allow us to circumvent
this problem consists in the very simple observation that only three vectors are involved in
the triangular inequality so, proving the triangular inequality of dy in the 3-dimensional
vector subspace generated by those three vectors or with R%? will be enough to infer the same
property of dg on H™ thanks to the transitivity of PO(1,n) on time-like vector subspaces and
to the isometric nature of positive Lorentz transformations.

Theorem 12.2.4 The hyperbolic distance dgy is a metric on H™.

Proof. As previously said, only the triangular inequality for dy remains to be proven. Let
%,7,% € H™ distinct and V = span(z, g, Z). Thanks to theorem 10.3.4, it exists ¢ € PO(1,n)
such that ¢(V) = span(ey, e2, e3) = R1M2. We set z = ¢(&), y = #(7) and z = ¢(Z).

As proven in theorem 12.2.2, positive Lorentz transformations preserve the hyperbolic
distance, thus proving the triangular inequality for z,y, z € R? is equivalent to prove it for
the vectors ,y, Z. To this aim, let us use corollary 12.2.5 to write

|z ®yl = sinh(dp(z,y))  and  [ly® z|| = sinh(dm(y, 2)), (12.7)
then, by property 3. of theorem 12.2.3, we have

(Y ®(Y®z)=—-((z@y)oy)z— ((z®y)o2)y = —((z®y) ° 2)y, (12.8)
=0
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—((z®wy)oz)eR, thus (r®y) ® (y® z) and y are linearly dependent, so (z®y) ® (y ® 2) is
either time-like or it is the zero vector. Corollary 12.2.4 implies the following inequality

(z@y)o(y®@2)| <z @yl lly® = (12.9)

Finally, we recall the formula cosh(a + b) = coshacoshb + sinhasinhb for all a,b € R. We
have gathered all the information that we need to prove the triangular inequality for x, ¥, z:

cosh(dg(z,y) + dg(y,z)) = cosh(dg (x,y)) cosh(dgy (y, z)) + sinh(dgy (z,y)) sinh(dg (y, 2))

LY (VL R L PR

> (zoy)(yoz)+[(z®y)o(y®2)
(12.9)

= (zoy)(yoz) + (2®y)o (y®2)

> )WHSEM)@OM—M

(4. of th. 12.2.3

= (zo2)|y|* = —(zo2)
= h(d

13y, coshldin(z,2),

ie. cosh(dy(z,y) +du(y,z)) = cosh(du(x, z)), but cosh is a strictly increasing function on
R*, so it preserves the order and we can write dy(x,y) + dg(y, z) = dg(z, z), which is the
triangular inequality that we wanted to prove. O

Def. 12.2.5 The metric space (H",dg) is called the hyperbolic n-space.

In the geometry of the sphere, the geodesic lines are given by the intersection of the sphere
S™ with a 2-dimensional vector subspace of R"*! (and thus results in circles). Once again the
hyperboloid model has very similar features as those of spherical geometry.

Def. 12.2.6 A hyperbolic line in H" is the intersection of H™ with a 2-dimensional time-like
vector subspace of RbM™.

Since a 2-dimensional time-like vector subspace of R must pass through the origin, its
intersection with H™ will always be a hyperbola, so, in turn, a hyperbolic line in H" is
just a hyperbola.

Lemma 12.2.2 Two distinct elements x,y of the hyperboloid H" are linearly independent
and so they span a 2-dimensional time-like vector subspace of RL™.

Proof. By absurd, let z,y € H", x # y, be linearly dependent, then y = Az, A\ € R\{1}, then
|z|? = =1 = |y|? = |\z]|? = A?|z||?>, A = —1. However, A cannot be -1 because otherwise y
would not belong to H™ anymore since its first coordinate would be negative. O

Remark 12.2.2 Given two distinct x,y € H'™, we have
lyy = H" N span(z,y)

that is the unique hyperbolic line of H" that contains both = and .
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We will show that these hyperbolic lines are the ‘straight lines’ of the hyperbolic metric,
i.e. the curves that minimize the hyperbolic distance between two points.

Def. 12.2.7 Three points z,y and z of H™ are said to be hyperbolically collinear if there is a
hyperbolic line £ passing through x,y and z.

Lemma 12.2.3 If z,y,z € H" are such that
dH(fL’, Z) = dH(SU, y) + dH(y7 Z)7
then x,y and z are hyperbolically collinear.

Proof. As shown in the proof of the triangular inequality for dg, it is possible to consider the
Lorentzian cross product of vectors belonging to H™ by associating them to vectors belonging
to R2, in what follows this assumption will be implicitly assumed.

Let x,y,z € H™ verify the equality dy(z,2) = dg(x,y) + dg(y, z) and apply cosh to both
members, then, using the already quoted property cosh(a + b) = cosh a cosh b + sinh asinh b
for all a,b € R, we get:

cosh(dy(z,2)) = cosh(dg(x,y) + du(y, 2))
= cosh(dg(z,y)) cosh(dy(y, z)) + sinh(dg(z,y)) sinh(dg(y, 2))
=(—zoy)(—yoz) + [z @yllly®z|
=(@oy)(yoz) + z@ylllly® =,

but cosh(dy(z,2)) = —x oz, so
—zoz—(zoy)(yoz) =lz@yllly®=|.

We can interpret the left-hand side of the previous equality as the following determinant:

et(izz §§§>=<moz>uyu2@ow(yoz)zm(moyxyoz),

but, thanks to property 4. of theorem 12.2.3, we have

roz xTOoYy\ _
der (527 29) — wooy) o (y®2),
which implies

(zQy)o(y®z2) =lz@yllly®=|.
Thanks to remark 12.2.1, x ® y and y ® z are space-like vectors, thus their norm is positive, so
(z®y)o(y®z) =|[(z®y) o (y® z)| and we can write:

(z®y)o(y®2)| = llz@yl ly @zl

Property 2. of corollary 12.2.4 implies that (zx ® y) ® (y ® z) is light-like, moreover, thanks to
eq. (12.8),
(zQyY)®(Y®z) =—((zQy) o 2)y,
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but —((z®y)oz) € R and y is time-like, hence (z ® y) ® (y ® z) is a light-like vector collinear
with a time-like vector, which is possible if and only if (z®y)®(y®z) = 0, i.e. ((z®y)oz)y = 0,
but y € H", so the only possibility that remains is that (x® y) o z = 0.

Finally, by property 4. of theorem 12.2.3 we have:

r1 T2 X3
det [y1 v2 w3 |=((z®y)oz)=0
zZ1 k2 Z3

and so x,y, z are linearly dependent, so each vector belong to H" and to the span of the other
two vectors, thus, by definition, x,y, z are hyperbolically collinear. O

In order to prove that hyperbolic lines minimize the hyperbolic distance, we start with the
definition and analysis of hyperbolic geodesic arcs.

Def. 12.2.8 (Geodesic arc) A geodesic arc in a generic metric space (X,d) is a distance
preserving function 7y : [a,b] € R — X, with a < b.

Explicitly, this means that V¢, s € [a,b], s < t, we have: d(v(s),7y(t)) = d(s,t), but d(s,t) =
t — s, so the request for a geodesic arc can be explicitly restated as follows:

d(v(s),y(t)) =t —s, Vt,s € [a,b], s <t

Def. 12.2.9 (Hyperbolic geodesic arc) A geodesic arc in the metric space (H",dy) is
called a hyperbolic geodesic arc.

Theorem 12.2.5 Let v : [a,b] — H™ be a curve. The following statements are equivalent.
1. The curve vy is a hyperbolic geodesic arc.

2. There exist Lorentz-orthonormal vectors x,y € RM™ such that

v(t) = cosh(t — a)x + sinh(t — a)y. (12.10)
3. The curve satisfies the differential equation ~" —~ = 0.

Proof.

1 = 2|: we assume 7 to be a geodesic arc on (H",dg). Then for all ¢ € [a, b], we have

dp(y(a),y(b) =b—a=t—a+b—t
= du(v(a),¥(t)) + du(v(t),7(b)),

which, by lemma 12.2.3, shows that 7(¢),v(a) and ~(b) are hyperbolically collinear for all
t € [a,b], i.e v(t) € span(y(a), (b)), and so

(12.11)

Y([a,b]) < lyayyv)-

Since the image of v belongs to H", span((y(a), (b)) is a time-like vector subspace of R,
so, thanks to the transitivity of PO(1,7n) on the set of time-like vector subspaces of R1™, there
exists ¢ € PO(1,n) such that ¢(span(y(a),v(b))) = span(e1, e2) = RY! and ¢(y(a)) = e;.
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For all t € [a,b], let z; := ¢(7(¢t)). To obtain eq. (12.10), the decomposition of z; on the
RY! orthonormal basis (eq, €es), where € = +1, will prove very helpful. In fact, if we write

2zt = (z,e1yer + (2, ey e (12.12)

and we apply ¢! to both members we obtain

¢ (2) = (s e1) ¢ er) + (ar e2) ¢ (ea),

having used the linearity of Lorentz transformations. By definition, the last equation can be
re-written as follows:

() = Gz e y(a) + (ar e2) &7 ea),

notice now that = := v(a) € H" is a time-like vector and y := ¢ !(ey) is a space-like
vector because eg is space-like Lorentz transformations do not modify the likeness of vectors.
Thus, « and y are Lorentz-orthogonal, plus, since ¢! preserves the Lorentz norm, and
|| = |0~ (er)|| = llex]l = 1 and [jy|| = ||¢~ (e2)| = [le2]| = 1, hence = and y are Lorentz-
orthonormal vectors.

It follows that the only thing that remains to do is to prove that (z;,e1) = cosh(t — a) and
(zt,e9) = sinh(t — a). Let us start with the first coefficient:

Gre1) = =z 0e1 = —p(7(1)) 0 d(a)

(6ePO(1,1)) —(t) 0 y(a) = cosh(dru (v(t),v(a)))

= cosh(t — a).

Now, regarding the second coefficient, we remark that z; belongs to H", so, using the
decomposition in eq. (12.12), we must have

—<zt,el>2 + <Zt,€2>2 = -] —coshQ(t —a)+ <Zt,62>2 = -1,

which implies that (z;, e2) = +sinh(¢ — a). By choosing the positive determination, we get
precisely formula (12.10).

2 —> 1|: we assume 7 : [a,b] — H" is such that there is 2,y € R"", Lorentz-orthonormal,
that verify v(t) = cosh(t — a)z + sinh(t — a)y Vt € [a,b]. This means that v(¢) € span(z,y),
and so (z,y) is a Lorentz-orthonormal basis for this vector subspace. We recall that, by
definition of Lorentz-orthonormal basis, x is time-like and y is space-like.

Now, given s,t € [a,b], s < t, we have

cosh(du ((s), (1)) = —(s) o ¥(t)
= —(cosh(s — a)z + sinh(s — a)y) o (cosh(t — a)z + sinh(t — a)y)
(by Lorentz-orthogonality of = and y)

— —(cosh(t — a) cosh(s — a) ||z||* +sinh(t — a)sinh(s —a) [jy[|*)
——1 =1

cosh(t — a) cosh(s — a) — sinh(¢ — a) sinh(s — a)

cosh((t —a) — (s — a))

= cosh(t — s),
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thus, since cosh(§) is injective for £ = 0, dg(y(s),7(t)) =t — s and so + is a geodesic arc.

: if v(t) = cosh(t — a)x + sinh(t — a)y Vt € [a, b], then

cosh”(t — a) = cosh(t — a)

sinh”(t — a) = sinh(t — a,)} — 7"(t) —(t) =0, Vte[a,b].

3 = 2]: suppose 7" (t) —y(t) = 0 Vt € [a,b]. From ODE calculus, we know that the general
solution of the previous differential equation is:

v(t) = cosh(t — a)y(a) + sinh(t — a)y'(a). (12.13)

Thus, proving 2. comes down to proving that v(a) and +/(a) are Lorentz-orthonormal.

To this aim, we notice that, since y(t) € H" for all t € [a,b], v(t) o y(t) = —1 for all
t € [a,b], so yov:[a,b] > R is the constant function t — —1, thus (y o) (t) = 0. On the
other side, by applying the Leibniz rule on the Lorentz pseudo-scalar product we get

(o) (t) =~'(t) oy(t) +4(t) o' (t) = 27(t) oA (t)  Vte [a,b],

where, in the last step, we have used the symmetry of o. By mixing these results we find
~(t) ov'(t) = 0 for all ¢ € [a,b], hence, in particular, y(a) and +/(a) are Lorentz-orthogonal.
Moreover, using (12.13), for all ¢ € [a, b] we have,

Iy @)IF = =1 = 7(t) o 4(2)
= (cosh(t — a)y(a) + sinh(t — a)y'(a)) o (cosh(t — a)y(a) + sinh(t — a)v'(a))
— cosh?(t — a) ||[y(a)||* + sinh?(t — a) |+ (a H = —cosh?(t — a) + sinh?(t — a ) |7/ (@

—
=—1

()|l

I

where the terms proportional to v(a) o 4/(a) have not been written because of the Lorentz-
orthogonality between v(a) and 7/(a). We conclude that

— cosh?(t — a) + sinh?(t — a) H'y H -1 Vt € [a,b],

which implies ||7/(a)||* = 1, i.e. v(a) and +/(a) are Lorentz-orthonormal. O

Remark 12.2.3 In the theory of dynamical systems, the differential equation satisfied by
a hyperbolic geodesic arc, i.e. 7" —~ = 0, is that of the harmonic repulsor, whose phase
portrait is known to be given by hyperbolae. Instead, the differential equation satisfied by a
spherical geodesic arc, i.e. 7" + v = 0, is that of the harmonic oscillator, whose phase portrait
is represented by circles.

When we extend the arc parameterization interval [a, b] to the whole R, we say that a
geodesic arc v is a geodesic line.

Corollary 12.2.6 A function v : R — H"™ is a hyperbolic geodesic line if and only if there
are x,y € RU™ Lorentz-orthonormal such that

v(t) = cosh(t)x + sinh(t)y
= cosh(t)y(0) + sinh(¢)7/(0).
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Corollary 12.2.7 The hyperbolic geodesic lines of H" are its hyperbolic lines.

Proof. Let x,y e H", x # y, and £, ,, = H" n span(z, y) be a hyperbolic line passing trough x
and y, which defines, geometrically, a hyperbola connecting the points on the hyperboloid H"
identified by the vectors 2 and y. Thanks to the transitivity of PO(1,n) on VI the set of all
time-like m-dimensional vector subspaces of RY"™ m < n, there is a ¢ € PO(1,n) such that

¢(span(z,y)) = span(e, ez) ~ R",

Then, if we apply ¢ to £, we transform the hyperbola connecting z and y on H" to a
rectangular hyperbola on RY! relative to the canonical basis (e, e2). We use H! to denote
this object, which is well-known to be parameterized by the hyperbolic functions as follows:

d(ly, = {7(t) = cosh(t)e; + sinh(t)ez, t € R}
and so, thanks to the linearity of ¢, we get
lyy = { cosh(t)p™*(e1) + sinh(t)¢~'(e2), t € R}.

Since ¢ preserves the likeness, the orientation and the norm of vectors, we have that £, , is
written as in formula (12.10), thus it is a hyperbolic geodesic line. O

Def. 12.2.10 A metric space X is geodesically complete if each geodesic arc ~y : [a,b] — X
extends to a unique geodesic line A : R — X.

The previous results show us that each hyperbolic geodesic arc extends uniquely to a
hyperbolic geodesic line, i.e. it can be seen as a piece of an infinite hyperbola, thus H" is
geodesically complete.

The final result that we discuss is the equivalence between the hyperbolic topology on H"
generated by dy and the Euclidean topology on A" inherited by R"*! with the Euclidean
distance dg. In the proof of this result we will use the Taylor-MacLaurin series expansion for

cosh:
2 m
T

cosh()-l—i———i———k =

5 O(z*™*1) (12.14)

Theorem 12.2.6 The metric topology on H™ given by dy is equivalent to dg.

Proof. For all x € H"™ and r > 0, let us define the open neighborhoods of radius r around x
w.r.t. the Euclidean and the hyperbolic distance, respectively, as follows:

Bg(z,r) :={yeH" : dp(z,y) <r}, Bp(z,r):={yeH" : dy(z,y) <r}.

If we prove that Bg(z,r) € By(x,r) and that By (z,r) € Bg(x,r) for all x € H™ and r > 0,
then the theorem will be proven.

‘BE(x,r) c BH(x,r)‘: consider z,y € H™ distinct, then, since [r—y|? = (z—y)?+- -+ (z—y)2

and ||z —y||* = —(z —y)? + -+ (x — y)2, we have dg(x,y)* = |z —y[> > ||z — y||*, moreover,
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lz =yl = (z —y) o (& —y) = ||lz]|* =2z 0y + |ly|* = —2w 0y —2 = 2cosh(dp(,y)) — 2 =
2(cosh(dg(z,y)) — 1), i.e.

lz = yl* = 2(cosh(du (z,y)) — 1), (12.15)

SO

T 2
dg(z,y)? > 2(cosh(dg (z,y)) — 1) o <1 + dH(z’y) - 1) —dy(z,y)?,  (12.16)

so, by positivity, dg(z,y) > dg(z,y). Let now y € Bg(z,r), then dy(z,y) < dg(z,y) < r, so
y € By (x,r) too, thus Bg(z,r) € By (x,r) for all x € H™ and all r > 0.

‘BH(I', r) € Bg(z,r) ‘ : we start by noticing that, thanks to corollary 12.2.6, once we fix an

arbitrary x € H"™, all the hyperbolic lines passing through x are parameterized by a unit
space-like vector y Lorentz-orthogonal to z, i.e.

Ly = {ly. = span(z, z) n H", z € H™\{z}} = {y € span(z)F, |jy||* = 1} =: SL.
Again corollary 12.2.6 tells us that the hyperbolic geodesic line associated to y € S is
vy(t) = cosh(t)x + sinh(t)y teR.

7Yy is clearly continuous in the Euclidean topology on the whole R, in particular, the continuity
in t = 0 can be explicitly written as follows:

Ve >0 36,(e) > 0 : |t < d,(e) = dp(v,(0),7,(t) <e, (12.17)

having interpreted the images of 7, as points in (R"*!,dg). The key observation that let us
introduce the hyperbolic distance in our reasoning is that, by definition of hyperbolic geodesic,

di(z,vy(t) = du(y(0), v () = [t -0 =[t|  tekR,
so that expression (12.17) can be replaced by
Ve >0 30,(e) >0 : du(z,vy(t) < dyle) = dr(vy(0),7(t)) <e¢

or, equivalently,
du(z,z) < by(e) = dp(x,2) <e€ z € vy (R). (12.18)

Moreover, by the transitivity of PO(1,n) on time-like vector subspaces, there exists
¢ € PO(1,n) such that ¢(z) = e; and so we have

d(span(x)*) = d(span(er)”) = span(ea, ..., eni1) = R™.

Now recall that S is the set of space-like vectors y belonging to span(z)’ such that |jy||* = 1,

but the Lorentz norm of a space-like vector is positive, so also |ly|| = 1. Since ¢ preserves
the Lorentz norm, ¢(SL) is the set of vectors belonging to span(es, ..., en41) = R™ with unit
Lorentz norm, however, the Lorentz and the Euclidean norms coincide on span(es, ..., ep41),

so ¢(SE) = {yeR" : |y| = 1} = S, which is compact. By the continuity of ¢!, we get
that also SL = ¢~1(8"71) is compact. The compactness of S allows us to set

3(c) = inf, {6,(6)} > 0
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which allows us to get rid of the dependence on y in the implication (12.18) and to write
di(z,2) <d(e) = dg(x,z) <e Ve > 0,

i.e. for all radius € > 0, z € v,(R), it exists a radius 6(¢) > 0 such that By (z,d(¢)) < Br(z,¢)
which concludes the proof. O

12.2.3 The hyperbolic arc length

Let v : [a,b] — H"™ be a curve. In this section we shall discuss how the metric given by the
hyperbolic distance on H™ can be extended to compute the arc length. For that, we need to
recall that a partition P = {tg,...,tn} of [a,b] is an ordered finite set such that

a=tg<t; <-- <ty ="
We set a partial ordering on partitions
Q<P << PcqQ
and set

-----

|P| is the finest partition interval. Notice that |P| — 0 can be interpreted as ‘P converges to
[a,b]” and that if Q < P, then |Q| < |P].

Def. 12.2.11 Let 7 : [a,b] - H" be a curve and let P = {to,...,tm} be a partition of [a,b].
We define the hyperbolic P-inscribed length of v as:

Lu(v, P) = Y du(y(t:), ¥(ti-1)).
=1

Moreover, the curve v is rectifiable if there is a real number L(vy) such that for all € > 0,
there is a partition P. of [a,b] such that for any partition Q verifying Q < P:, then

IL(y) = Lu(v,Q) <e.

Lemma 12.2.4 If v is rectifiable, then for any partition P of [a,b],

Proof. Let P be a partition of [a,b]. First we note that if @) is a partition of [a, b] such that
@ < P, then
L(y,P) < L(7,Q) (12.19)
by the triangular inequality of dy. Since 7 is rectifiable, for any € there is a P. such that for
all Q < P,
IL(v) = Lu(v, Q)| <e.
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Moreover, Q. := P. u P is such that Q. < P. and ). < P. Finally, for all € > 0 we have

(12.19)
lim Ly (7,Q2) = L(7) = 0,

N

hence
L (v, P) < L(v).

Def. 12.2.12 Let x,y € H". We define the Lorentzian distance as
dr(z,y) = [z -yl
Lemma 12.2.5 The Lorentzian distance dj, verifies the following properties.

1. dp(z,y) = 0 with equality if and only if x =y

2. dL(fE,y) = dL(ya .’E)
Proof. Let x,y € H™. Then,
2 2 2
[z —yl” = [[=]]" = 2(z o y) + [yl
> —2=2|z||[lyl| =0,
(12.2.1) ———
=1

with equality if and only if they are linearly dependent, which implies = = y since x,y belong
to H". O

Remark 12.2.4 The Lorentzian distance is not a metric since it does not verify the triangular
inequality. In fact, if we take x,y, z € H™ hyperbolically collinear and such that y is between x
and z, then it can be proven that

dr(z,z) > dp(z,y) + dr(y, 2).

While the Lorentzian distance is not a metric, it will be useful because it can approximate
the hyperbolic metric locally. To show this, we use formula (12.15) to write

z,y)? 2
o= ol = 2fcostdne.)) ~ 1)~ 2 (1= PGP 1) < o

and so, by positivity,
dL('CL'a y) y::C dH(I', y)

Def. 12.2.13 Let 7 : [a,b] = H" be a curve and let P = {to,...,tm} be a partition of [a,b].
We define the Lorentzian P-inscribed length of v as:

Lp(v, P) = Z [v(t:) —y(ti—)ll -
i=1

Moreover, the curve v is Lorentz-rectifiable if there is a real number L(7) such that for all
e > 0, there is a partition P- of [a,b] such that for any partition Q verifying Q < P-, then

|IL(y) = Lp(7,Q)| <e.
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Since we do not have the triangular inequality for the Lorentzian distance, lemma 12.2.4 does
not hold in the case of Lorentz-rectifiable curves.

Lemma 12.2.6 If L(~) exists, then it is unique.

Proof. Assume + is Lorentz-rectifiable with £;(v) and La(vy). If £1(7y) # L£1(7), then there
exists a € > 0 such that [£1(y) — L2(7)| > €. Let P, @ be partitions of [a, b] such that

o |L1(7) = Loy, P')] <
o |L2(7) = Li(7, Q) <5,

for all partitions P’, Q" of [a,b] verifying P’ < P and @' < Q. The partition R := P u Q is
such that R < P and R < @, and we come to the following contradiction:

1£1(7) = Lo()] < [L1(7) = L7, B)| + [L2(y) = L(7, B)| <.

D™

Def. 12.2.14 Let v : [a,b] — H™ be a curve. We define the hyperbolic arc length as

9

L(Y) if 7V is recti
| o= { if 7 s rectifiable
otherwise

similarly, we define the Lorentzian length of v as

] = {'C(’Y) if 7V is Lorentz-rectifiable
otherwise
Theorem 12.2.7 Let 7y : [a,b] — H" be a curve. Then = is rectifiable in H™ if and only if v
Lorentz-rectifiable. Furthermore, the hyperbolic length is the same as the Lorentz length of 7,
i.e.
e = [l-

Proof. We need to collect some preliminary results. Let n > 0, using the Taylor-MacLaurin
series of cosh (12.14) we have

2 1
=2+ L cosh(n).
n°+ 15 €08 (n)
Consequently, if cosh(n) < 12,

2(cosh(n) — 1) < n*(1 +n?). (12.20)
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If we replace 1 in eq. (12.20) with dg(x,y) and we suppose that dg(x,y) < arcosh(12), then,
since dr (x,y)? = 2(cosh(dy (z,y)) — 1) by eq. (12.15), we get

dL(:L‘ay)Q < dH(:L‘ay)Q(l + dH(ﬂZ‘,y)2) = dL(l’,y) < dH(IL‘,y) v1+ dH(xay)Q'

On the other side, eq. (12.16) implies that dy(z,y)? < 2(cosh(dy(z,y)) — 1) = dr(z,y)?,
hence dy(z,y) < dp(z,y) for all x,y € H™ not necessarily distinct.
So, for all x,y € H™ such that dy(x,y) < arcosh(12), it holds that

dH(xay) < dL(xvy) < dH(x7y) 1+ (dH(.%',Z/))Q (1221)

We can now start with the proof of the equivalence.

: we start by assuming that + is rectifiable. Let ¢ > 0 and P a partition of [a, b] such
that for all Q < P we have by lemma 12.2.4

Y|z — Lu(y, P) <e
Let 6 > 0 and set

a<s<t<b

Note that since [a,b] is compact and 7 is continuous, 7 is uniformly continuous and so
(7, 9) o 0. Let 0 > 0 such that cosh(u(v,d)) < 12 and

—0
IV EAV 1+ (7, 60)? < |y|m + e,

and P’ a partition of [a,b] such that P’ < P and |P| < ¢. Then for all partitions Q =
{to,...,tm} of [a,b] such that Q < P’ we have:

Vlg —€e<Lp(v,Q) < Lp(v,Q)

on one side, and

Lp(v,Q) = 2”7(%)*7(%4)“
i1

m

ZdH('Y(ti)y’Y(ti—l))\/l + d3(v(ti), y(ti-1))
i—1

N

< Lp(v, Q)1+ pu(v,9)?
< |vlm +e

Hence, by combining both inequalities,

Vg —L(v,Q)] <e, VQ<P

and by the unicity of the Lorentzian arc length (lemma 12.2.6), v is Lorentz-rectifiable and
Ve = lI7ll-

: we now suppose 7 is Lorentz-rectifiable. Let € > 0 and P be a partition of [a,b] such
that if @ < P, ||v|| = LL(v,Q)| < e. Then,

La(v,Q) = Il < Lr(,Q) — [l <e
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for all @ < P, and so ~y is rectifiable. O

Before proving the theorem regarding the metric of the arc length, we first make the
following remark: for any C'-curve v : [a,b] — H", we have that 7(¢) is Lorentz-orthogonal to
~'(t) for all t € [a,b], i.e

Y(t) o' (t) =0,
in fact, by differentiating the Lorentz pseudo-scalar product and using the Leibniz property
together with the symmetry of o we get:

(Y@) o) (t) = 2(v(t) o~/ (t))
(t = [y(®)]*=—-1) =0.

Theorem 12.2.8 Let 7 : [a,b] — H™ a C'-curve. Then ~ is rectifiable and the hyperbolic
length of v is given by

b
Il = j |l d.
a

Proof. Let F : [a,b]""! — R defined by

1

F<t17"‘ 7t’fl+1) = (_’yi(tl)z + +7;1+1(tn+1)2)§'

Since 7 is C! and +/(t) is space-like for all ¢ because it is Lorentz-orthogonal to v(t) € H", F'
is continuous on [a, b]"*! which is compact, thus F is uniformly continuous. The set

{|F(t) — F(s)|, t,s € [a, b]n+1}

is bounded since F' is continuous on a compact set.
For any fixed § > 0 we define

u(F,6) = sup  {|F(t) = F(s)|, [t; —si| <6, ie{l,...,n+1}}.

t,s€[a,b|"t1

As in the previous proof, F' is uniformly continuous so u(F,?) e 0 and if we set P =

{to,...,tm} such that |P| < §, we have by the mean-value theorem 3s;; € [t;_1,1;]
ilts) = vitj—1)| = vi(sig)(t; — tj-1)
and if we set s; = (s1,...,5n+1,j), then

= [ty) = n(ti—) + [2(ty) = v2(tj—0)? + - + [y () — 'Yn+1(tj—1)]2)%

(tj —tj-1)

lvi(ts) —viti-1)

[SIES

(= 71(s15)” + 71 (525) + -+ + Vg1 (Snr15)7)
F

(s )(t —tj-1)-

Additionally, we set

= > V&) G —ti-1)
j=1
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and we remind

As such, we have

|S(’Y7P) - LL(77P)|

< uF.5)0b-a) (x2)

and furthermore,

b
[ v sep)

N

DY @)ty = ty—1) = Fsy)(t; —
j=1

(S @l I = tan)

(F5)
< uF.5)0b-a) (2)

Finally, by combining (x;)and (*2) we obtain

b b
[ Iola-t0.p) < || O] da-se.p)+[s6.p

< 2u(F,9)

and since pu(F, (5) e 0 and |P| e 0

b
ol = | Il = Jim 1. P)

Def. 12.2.15 Let v : [a,b] —> H" curve. If dy = (dx1,,...,dxpt1), then

|da| = (—da? + dad + - + da?, )2

f [dz|| := [Iv]-
y
Additionally if v is a C'—curve,

b
Il = [ gzl = [ [y o)) ae.
Y a

and

5 ol =l o =l

- LL(’Ya P)|

The differential ||dx|| is called the element of hyperbolic arc length of H".
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12.2.4 The hyperboloid as a Riemannian manifold

In this short subsection we will prove that the hyperboloid H™ can be considered a Riemannian
manifold. To this aim, we recall that the Lorentz pseudo-scalar product is a bilinear, symmetric
non-degenerate form. Hence, if we set

f: R R
x +— (xoux),
then differential of f is
dfz(y) = 2(z 0 y).
In fact,

flz+y)=(r+y)o(x+y)=flx)+2(xoy)+ (yoy),
R

linear quadratic

since the differential represents the unique linear approximation of f, the result follows.
Theorem 12.2.9 The hyperboloid F* = f~1({—1}) is a Riemannian n-manifold.

Proof. The differential df,(y) = 2(x o y) is surjective and -1 is not a critical value of f, so, by
the level set theorem 1.2.1, the hyperboloid is a differential manifold of dimension n. Moreover,
thanks to eq. (2.34), for every x € F", the tangent space T, F" is given by

T, F" = ker df, = span(z)~.

Now, since x is time-like, span(x)L is a n-dimensional space-like vector subspace of R**!
and so, for all y € T, F™ we have y oy > 0. Hence, the Lorentz pseudo-scalar product is
positive-definite on the tangent spaces T, F™ and so F" is a Riemannian manifold. O

Finally, H™ can be defined as the biggest subset of F" that contains e; and that is simply
connected and so H™ is a complete, simply connected Riemannian manifold of dimension n
with metric tensor g, (u,v) = uowv.

12.3 The conformal model B"

The conformal model comes hand in hand with the previous section on Mobius transformation.
The conformal model of hyperbolic geometry lies in the open unit ball B™ or the the upper-half
space U™ and is a model that maintains up to a certain extent the notion of Euclidean
angles, hence it’s name. Additionally, to explain the naming further, the set of conformal
transformations that is stable on B™ (or U™ respectively) is the isometry group of the model
and by Liouville’s theorem of conformal transformations, is the set of Mobius transformations
stable on B™ (U™ respectively).

We begin by redefining the Lorentzian scalar product in R**1:

TOoyY =x1y1 + TaY2 + - - + Tp¥Yn — Tn+1Yn+1
z1
and we identify the open unit ball with it’s injection in R"*!, with the notation z =
In

BTL

{(zeR" |z] <1}
— {weRrR™! |z <1}
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. We wish to transfer the hyperbolic metric of the hyperboloid model H™ onto the the open
unit ball B”. This can be done via a stereographic projection ( by projecting z € B"
away from —e,41 until it meets H". Explicitly, for x € B",  is of the form

((z) =2+ s(x + ent1)

2
1+”xH2. Note that in
1|

the case of x € B", the Lorentzian norm and the Euclidean norm coincide. Hence,

such that [|¢(z)||* = —1. By developing the computations, we obtain s =

Figure 12.5: Illustration of the isometry between H" and B™.

1+ |z|?
((z) = =+ T |$|2(a: + ent1)
211 2z, 1+ |z

- (1—|x\2""’1—|m|2’1—\a:|2)

Lemma 12.3.1 ¢ : B" — H" is bijective with inverse
- Y1 Yn
g 1 y = AR
( ) (1 + Yn+1 I+ ynt1

Proof. Let y € H™. Since x € B",((x) € H" and —e, 11 are aligned and belong to the same
Euclidean line, we have similarly ¢(~!(y),y and —e, 1 that must also be aligned. Hence, ¢(~!
must be of the form

(T'y) =y + s(—ens1 — )
such that (~1(y) o epq1 = 0.

CHy)=0 <= (y(1—s) —sepi1)0eni1 =0 == —yns1(1 —5)+s=0(12.22)

! (12.23)

= s(1+ =] = §=—"—
( yn+1) 1+ Yoo
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Hence,

— Y1 Yn
C 1y =\ )
( ) (1 + Yn+1 1+ Ynt1

Injectivity : Suppose ((z) = ((y). Then,

1+ |z)? _ 1+ |y|?

= = |z| =y
T 1opr W

and
20 _ 2y lel=bl
= a2~ 1T—[yP? Y

for all i € {1,...,n}. Therefore, x =y
Surjectivity : Let y € H™. First, we have

-1 2 _ g ymi1i—l _ ynti—l
® HC (y)H = Ttyns1) (1:;;1)2 = 1%;“

e 1T I? = 1+y2n+1

. Thus, by combining the two computations,

Y1 1 Yn 1 1+ ¢ Hy)?

¢y = (2

= (ylv"'7ynayn+l)

12.3.1 The hyperbolic metric on the unit ball

2 :
L+ yni1 1= 1(y)]? Lt ypr1 1=y 1= [Ty

)

Through the bijection ¢ between H™ and B", we wish to extend the hyperbolic metric onto

B™. To do so, we force ¢ to be an isometry.

Def. 12.3.1 We define the hyperbolic metric on B™, also called Poincaré metric, as follows:

for x,y e B",
dB(xvy) = dH(C(37>,C(y))

The metric space (B"™,dp) is called the conformal ball model.

Once again, the hyperbolic cosine will give us an elegant formulation of the metric.

Theorem 12.3.1 The Poincaré metric dp is given by

2|z — y|?

cosh(dp(z,y)) =1+ (1= z2)(1 = |y[?)
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Proof.

cosh(dm (C(2),C(y))) = —C(x)oC(y)

_ ¥y Ay, L+ 2@ + |y
A=z —y?) Q= [z - y?)
4@,y + 1+ |2 + [yl + |2y
(1 —1[2*)(1 = [y[*)
(1—[z»)(1 = |y[*) + 2|z|* + 2ly|* — 4z, v)
(1 —[z[*)(1 = |y?)
2|z —yf?
(1 —|z[*)(1 = |y?)

1+

O
To interpret this metric, we can think of a 1 meter ruler with an infinite amount of graduations
and where graduations become smaller and smaller. In the figure 12.6 shown below, we can
see such a representation. The space is more and more compacted as we reach the border of

77 TN
&
N\

Figure 12.6: The Poincaré disc: between each radius, we go 1 unit of distance. we see that at
edges, the space is very heavily compacted

Theorem 12.3.2 The element of hyperbolic arc length of the conformal model of the unit
ball is given by

2|dzx|
d =—
H x”B 1+ |x|2
Proof. Let x € B" and y = ((z). Then, we have
2x; 4 1+ |z|?
;= an =—
Yi 1— |$‘2 Yn+1 1— |.’E|2
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Then, for h € B™ arbitrarily close to zero and i € {1,..,n} we have the following computation

2(x; + h; a:, + h;
( ’.’13| 2<1 ‘ |27h>+ 1— ‘x|2
L 2(w; + hy) 2<x,h> 9
= Topp Ui T O0RD)
_ Qmi I th n 4.1‘2' <.%', h>

h
R E R e PR R
and from this we are able to deduce

2dzx; dx; {x,dx)
L=l (1= [2[?)?*

dy; =

Similarly, for h € B™ arbitrarily close to zero we have

L+ |z+h2 | 1+2?+2,h)+|h? 2(x,h)
n h) = = 1
Grrl@th) = e 1= |af? T+
1+ |z 4{x, h) 2
- h
T el * T e +OURD)
and so 4o, di
X X
dynt1 = ————.
- [z?)?
From this we are able to obtain
2 dz;dz;{z,dx) 4x2<m dx>
o dy? = ey (daf + U + )
S Az y)?
* Ldy} = g (14l + yifee)
16w, dx)?
* W1 = TPy
, which when combined
x|z = |yl = Dldy? —dy?
B Az 2|dx|
T ONTR? T T2

O(|h[*))

a

As announced in the preface of this section, M6bius transformation plays the major role in
the conformal model. Here we have a first taste: Mobius transformation act isometrically on

the conformal ball model.

!we use the approximation = =1+ X + O(X?)
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Lemma 12.3.2 If ¢ is a Mébius transformation stable on B™ and x,y € B™, then

|6(z) — o(y)I” |z —yf?

(1 =lo@)P)A o)) (1= |=P)(1 = [yl?)

Proof. If ¢(0) = 0, then ¢ € O(n) and so ¢ is an isometry and the result is automatically
given to us. Suppose ¢(0) # 0. We then have the decomposition ¢ = ¥o with ¢ a Euclidean
isometry and o a inversion of a sphere S(a, ) of R”, orthogonal to S™~1. Hence, to prove this
lemma, all that is needed is to prove the result for o. First, we recall that since S(a,r) is
orthogonal to S"~!, 72 = |a|? — 1 and since o is a inversion,

4 2
1122 T ]w—y[
o(z) —o(y))? =7 ———"—.

|z — ally —

Furthermore,

r2

() = a+ m(x—a)
2r2{a,xy — 2r? + 14
2 2 ’
— @) = P+ T
r2(|lz —al?> + 2{a,z — a) + |a]®> — 1
|z — al?
(-1
|z — al?
Hence, we come to the conclusion
|8(x) — o(y)|* _ Y-y |z —al’|ly — af?
(1= lo(@)[*)(1 = |o(y)?) |z —al?ly —al? r*(1 —[=*)(1 - [y]?)
|z —y/?

(1= [=[%) (1 = [y[?)
g

As a direct of this lemma, we obtain our first result step to showing that the isometry group
of B™ is it’s M&bius group.

Theorem 12.3.3 If ¢ € M(B™), then ¢ acts as an isometry on B™:
dB(‘T’ y) = dB(QZ)(l'), ¢(y))a
for all x,y e B"

Corollary 12.3.1 For all x € B™ we have

1+ |z|
1 — ||

dp(0,z) = log( )

Proof. Let x € B. Then

2|x|? 1+ ||
T—|z? 1—lzf?

cosh(dp(0,z)) =1+
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and by recalling that arccosh(y) = log(y + 1/y?> — 1), we come to the computation

1+ |z? 1+ |x|?)2
SYEETEN TR
L—]z[2\ (1—[z[?)

1 1+|:c|2+ 2|z|
(0]
B\ T T Ja?
1+ |z
= 1
()

dp(0,x)

12.3.2 The isometry group of B”

We know at least that the isometry of B is as big as it’s Mdbius group. In fact, it cannot be
bigger. Just like the Lorentz group for the hyperboloid model, we will need transitivity of the
Mobius group on B™ in order to advance further.

Lemma 12.3.3 The action of M(B™) on B"™ is transitive.

Proof. Let a € B", a # 0 and set o, = a(ﬁ,r) such that r? = ‘a% — 1. Then o € M(B")

since o is a inversion of a sphere orthogonal to S~ ! and 0,(0) = a. )

Theorem 12.3.4 FEvery Mobius transformation of B™ restricts to an isometry on B™ and
every isometry of B extends to a Mdbius transformation

Proof. As seen just above, every Mobius transformation stable on B™ is an isometry, so all
that’s left to prove is that every isometry of B™ is a restriction of a M&bius transformation.
Let ¢ a isometric transformation on B". We start by setting

o op if p(0) # 0
¢ i $(0) =0

where o is the inversion such that o(¢(0)) = 0. Then, ¥(0) = 0 and ® is an isometry of 5.
We notice that for z,y € B, we have

_ @) e
0 om0 = TR T TP
= |¢Y(@)] = [z
and in the same way |1 (y)| = |y|. From this we deduce that 9 is a also Euclidean isometry on
B™:
¥ (z) — ¥ () |z —yf?
d ) = dp(x, — =
B(¥(x),¥(y)) B(z,y) 1— [(2)f) (1— |$|2)(1 _ |y|2)

( 2
=  [(z) =y = |z -y
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. Hence, v preserves Euclidean distances and it can extended to B" by setting

Y(x) = 2¢(3).

N R

Because ¢ preserves Euclidean distances and so the Euclidean inner product, wier),...,v(en)
n

JE— — _ n n
is a orthonormal basis and so for z € B", (x) = Y ¢;tb(e;) = > wie; with Y. ¢? < 1 and
i=1 i= i=1

(@), dle)y = (we) =
From this we deduce that @ is linear and ¢» = ¢ . Hence, v is the restriction of an
orthogononal transformation and so ¢ extends to a Mobius transformation.
Unicity : Suppose ¢1 and ¢o are two Mobius transformations that both extend ¢, ie ¢ =

1 = 02| on- en for any sphere mn , Oy 1 = and so theorem 11.4.5,
$1]n = b2|gn- Then f y sphere ¥ in B, ¢;' ¢1(¥) = ¥ and so by th 11.4.5
¢1 = ¢2. |

Corollary 12.3.2 Z(B™) and M(B") are isomorphic.

The conformal model is well known as having two ways to compute it’s metric: one direct
method that we have seen before, and another method by using the cross ratio. Weirdly
enough, in literature we often see either one or the other and not both at the same time. Even
less often, it’s rarely shown exactly how both are related. A possible explanation of this, is
that relating both metrics requires the use of many results from Mobius transformations:

1. The image of a sphere of R™ of a M6bius transformation is also a sphere.
2. Mobius transformations preserve angles.

3. Mobius transformations preserves the cross-product.
Theorem 12.3.5 Let x,y € B"™. Then,

m—mw-w)

dB(I',y) = log([$7y7u7 ’U]) = log (|x - UHy - u’

where u,v are the two points of intersection between a circle or line orthogonal to S™~!
containing = and y and S as in the figure below
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Proof. Let x,y € B™ distinct. We first suppose that y = 0. In this case, all that is needed to
be done is to rewrite corollary 12.3.1

1+ |z
Tl
|z — (|x\)||0 \x||
& (5 Ao~ =)

= tog ([0~ 1)

dp(z,0) = log(

. Hence, z,y,u = —ﬁ and z = % all belong to the line L, = {tz : t € R} which is a orthogonal
line to S"~ L. If y # 0, we set § = ﬁ and o = o(7,4/]9/? — 1). As such, .o(y) = 0 and so

dp(z,y) = dp(o(x),0(y)) = dp(o(x),0)
= [U(.%'),U(y),a,@]

where @ and © are the two pomts of intersection of the line L,(,) = {to(z) : t € R} and S"~ 1.
We set u = o~ (a) and v = 07 1(0). Since, Ly(y) is a Euchdean hne it become a circle Cy

under the transformation o by the preservation of spheres of R™ by the Mdobius group and the
fact that o(V (x,y)) = V(z,y). Furthermore, since o(z),0(y),o(u),o(v) all belong to Ly(,),
z,y,u,v all lie on Cy . Because 0 € M(B"), o is stable on S™"~1 so u and v both belong to

S"=1. Finally, o is conformal so L, () is orthogonal to 571 implies Cy.,y is also orthogonal to
gn—1 O

Remark 12.3.1 In the case that x and y do not lie on the same lines passing through 0,
the circle C orthogonal to S"~ ' and passing through x and y. A simple construction follows:
if a is the center of the circle and r it’s radius, then the orthogonality of the circle C' with
S"=L forces a to be on the vector subspace V(x,y) and lies on a line L < V(x,y) passing
through XY and orthogonal in V (z,y) to the line Ly, = {x + t(x —y) : t € R}. Moreover, the
condztzon r? = |a|]? — 1 forces a to be the unique point on the line L that verify this condition.
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A shorter proof but more profound proof, would be to remark that x’ = # and y' = # must
also lie this circle and since the circle can be defined from only three points, we are done.

From, this we get the intuition of the two geodesics of the conformal ball model: lines and
circles orthogonal to B". Naturally, the isometry group Z(B") = M(B) should transfer any
geodesic of (B™,dp) to other geodesics. In fact, we can generalise this to m-spheres or
m-planes orthogonal to S”~! defined as

e a m — plane orthogonal to S"~! is a vector subspace of R” of dimension m

e a m — sphere is the intersection between a sphere S(a,r) and a vector subspace of R"
of dimension m + 1

Theorem 12.3.6 M(B") is transitive on the set of combined set of m-spheres and m-planes
orthogonal to S™~', with me {1,...,n —1}.

Proof. For the stability of the action of M (B"™), the conformality of the Mébius transformations
combined with the fact that Mobius transformations is stable on the set of spheres of S™~!
suffices. Let m € {1,...,n — 1} and set V = span{ey, ..., en}. For any m-plane V orthogonal
to S"~1, we have a rotation ¢ € O(n) = M(B™) such that ¢(V) = V (by transitivity of O(n)
on vector subspaces of R™, a consequence of the Gramm-Schmidt decomposition). Furthermore,
we can use this same argument to reduce the case of two m-spheres ¥ = S(a,r) n'V,, and
¥ = S(b,s) n V/, orthogonal to S"~!, to the case where they belong to the same vector
subspace of dimension m + 1 (V;,, = V), with a and b to be on the same line, ie b = ka with

k| > \qu If we set @’ = V']'Tf‘ra and b/ = ‘b“asb then o’ and b are both in B" and are points of

Y and ¥’ respectively lying on the line L, = {\a : A € R}. Then, transferring a’ to b’ via

o= U(b—/ rp)o( « r) e M(B")
7 e

with 72 = ﬁ —1landr = ﬁ — 1, allows us to transfer X to X’. All that’s left is to show

we can transfer ¥ to a m-plane V' (any will do). We do so by reusing o, = a(#, r!,) which
transfers S(a,r) to a hyperplane P since we have o' € S(a,r) and o(a’) = 0, but 0 cannot
belong to a Euclidean sphere orthogonal to S"~ 1, so 0(X) = P(a,0) a hyperplane with normal
vector a. This is assured by the comformality of the transformation, if a is C'—curve on
S(a,r) such that «(0) = a’ and 8 a curve defined by S(t) = (la‘i + t)a, then o/(0) and 3'(0)

la
are orthogonal and so are their image by o,. Hence, if ¥ = S(a,r) nV, with V a m + 1 vector

subspace, we have
0 (8) =V =la)r AV

a m-plane orthogonal to S 1. O

Lemma 12.3.4 Let x,y € B™ be two linearly dependent distinct points. Then, z € B verifies
dB(l', y) = dB(:C? Z) + dB(Zv y)

if and only if z lies between x and y (ie z = tx + (1 —t)y).
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Proof. We start with the assumption that z = 0 is between x and y. With such a condition,

we have & = —Z and
|| yl

dB xr,y = lOg T, Y, =777 :lOg T, Y, 7 "7 7
|z + iy + &l
:1%< 2 g)
|z — WHZ/ - m|

|z + ] ly + ]
= log <|i| > +log< |Z‘
\x—m| |y—m|

dB(xv 0) + dB(0> y)

)

If we now consider x,y € B are any linearly dependent points and z a point between x and v,
then we can send z to 0 through the inversion o, (as in lemma 12.3.3 ) and because o, leaves
the line L, , invariant on B" and maintains the image of z between the images of x and y,

dg(z,y) = dp(o:(z),0:(y)) = dp(0:(2),0) + dp(0,0:(y))
= dp(x,2) +dp(z,y)

Conversely, suppose
dB(xa y) = dB(JJ, Z) + dB(Z7 y))

with 2z not linearly dependent with x and y.

(to be continued, proof in progress ...)

Corollary 12.3.3 The geodesics arcs of conformal ball model are the 1-planes and 1-spheres
orthogonal to S™ 1.

We could have shown the geodesic of the conformal model directly from the Hyperboloid
model, by how the geodesics are transferred. However, it is useful to note that even if we chose
to present the conformal model as a ”descendant” of the hyperboloid model, it is very much
a model of hyperbolic geometry that holds by itself. In fact quite often, the conformal ball
model is presented as the Poincaré disc (the 2-dimensional version) by it’s own and completely
separated from the hyperboloid model.

12.3.3 The upper-half plane "

Once the conformal model of the open unit ball B™ is done, the conformal model of the upper-
half plane U" is a walk in a park. Through the conformality of the M&bius transformation
n = mp (the bijection U™ — B"), with m = o(e,,v/2) and p = p(en,0), the upper-half plane
easily inherits all of the properties of the conformal model of the open ball B”. Naturally, we
define the hyperbolic metric on U™ by defining n as an hyperbolic isometry between B™ and
un

307



Def. 12.3.2 The hyperbolic metric on U™ is given by

du(z,y) = dp(n(z),n(y))
Similarly to the case of B, we have two ‘clean’ version of the hyperbolic metric on U™.

Theorem 12.3.7 Let x,y € U™ distinct. Then,

2
cosh(dy(z,y)) =1+ M
Proof.
cosh(dy(z,y)) = cosh(dp(n(z),n(y)))
_ 14 2|n(z) —n(y)|
(1= [n(@)*) (1 —n(y)?)
B Aln(x) = n(y)|? @) = enl? [n(y) — en)?
~ @ — e — el 4an 1y,
I et i
22,Yn

|

Since the transformation between B™ and U™ is a Mobius transformation, thus conformal, we
have the exactly the same results than on B™:

Theorem 12.3.8 We have the following:
e the Isometry group of U™ is isomorphic to it’s Mobius group M(U™)
e The geodesics of U™ are the lines and circles orthogonal to E™1

o If x and y are two distinct points of U™, then

dU($7 y) = 10g([$, Yy, u, U])

where u and v are the points of intersection between the geodesic vy that passes through
x andy and E"1

Theorem 12.3.9 The element of hyperbolic arc length on the upper-half plane is given by:

dz]
dzl|,, = —
Iz = £

n

Proof. Let z € U™ and y = n(x). Then, from

2
y=en+ m(ﬂ(fﬂ) — €n),
we have for 7 < n: ) 2 0
S d S Ny
Yi |z + en|? an Yn |z + en|?
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Figure 12.7: The two type of lines of the upper-half plane: half-circles and Euclidean lines

orthogonal to E"~!

Then for h arbitrarily close to 0 and i€ {1,...,n — 1} we find

ni(z + h)

N (x + h)

Hence we have,

2dz; 4 {dx,x + epn)

2(%‘2' + hz) _ 2(.%2' + h1>
lt+h+e,2 |z+en?
2(xi + hz)

|z + en|? +2<{h,x + en)y + |h|?

2 i hz h, n
it hi) (4 _pnrten) o)
|z + en|? |z + ep|?
2h; dz;i{h,x + ey) 9
i + — + O(|h
(@) + oy = RO o(jhl)
_ 2(zn t ha +1)
|z +h+ep,l?
B 2(zy, + 1) + 2k,
|7+ en)?2 +2¢h,x + en)y + |h]2
2y + 1) + 2h,, 2¢h, n
1_( (.le + )+2 ) 1— < x—"_62>—|—0(|h|2)
|z + en] |z + en]
2h, Axp + 1) hyx + en) 9
n h|?) .
@) + o e o)

2dx, Axp + 1) dz,x + €y)

dy; =
Yi |z + en|?

|z + e, |4

d dyp=—
o Un |z + en|? |z + ep|?

2we use the approximation H% =1—-2+0(z?
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which brings us to the following computation

n
dyl> = dyp + > dy}
=1

( 2dxy, N A(xp + 1) {dz,x + en>>2 N nz_:l< 2dx; dx; {dx,x + en>>2

B |z + en)? |z + en|* |z + en|? B |z + en|*

i=1
4 i — 4{dx, x + en)? LA enl|? (dz, z + ;)
|z + en|* |z + en|? |z + en|*

4]dx|?
|z + en|*

2|dx|
|z +enl?

= |dy| =

Furthermore, by reusing 7?7 we have

4z
1—|yl? = ——™
|yl Tt e

which allows us to conclude with
2|dy|
1—y|?
4ldz| |z + en|?
|z +en)?  dxy,
|da]

Tn

]l Iyl p =

O
On a final note: we can observe that the upper half plane when compared to the other models
is the ‘furthest’ away in the sense that it is the most different in it’s geometry. This allows us
to obtain a very different point of view (very useful in some occasions ) and it’s arc length
metric is the most practical of the four hyperbolic model.

12.4 The Projective model "

The projective model ™ as it’s name implies, is the embedding of the hyperboloid model H"
in the projective space RP™. Quite often, this model is presented in it’s 2—dimensional version
as the Klein disc (hence K for Klein). In fact we have actually seen this model previously in
9.4, without naming it as such. We start by reminding the projective group and space:

RP" = R"™! /p«  and PGL(n+1,R) =GL(n+1) /gx .

Moreover, we will use in what follows the notation for x € R"*! and A € R*
z-R* = [z] = [\z].
The embedding of R™ in RP" is given by

R":{[:ﬂ :xER”}CRP".
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/ light cone

Figure 12.8: The gnomonic projection between H" and K"

While the conformal model stands by itself in it’s own way it is less the case of the projective
model K™, as it’s geometry descends directly from the hyperboloid model.

HY —> RP" — K"cR”

v b= 2] G

Additionally, by the fact that every Euclidean line passing through 0 in the cone of time-like
vectors contains a unique element of H", our previous work in 9.4 and more specifically
theorem 9.4.1 allows us to deduce that this mapping is a bijection and the projective model is
given by

K" ={zeR": |z] < 1}.

Notice here that while the projective model of hyperbolic geometry is the same set than the
conformal ball model, their geometry as we shall see is very different: the conformal ball model
maintains the notion of Euclidean angles but has curved space whereas the projective space
will maintain Euclidean lines. Explicitly, if we define x as the mapping H"™ — K", then for
x e H" and y € k™ we have

1 Tn
k(z) = e
Tn+1 Tn+1
and
Iiil( ) _ Y+ entl
|y + entall|
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12.4.1 The hyperbolic metric on the projective model and it’s group of
isometry

Consistently with what we have done with the conformal model, we define the hyperbolic
metric on K" by setting x, the bijection between H"™ and K", as an hyperbolic isometry
between both spaces.

Def. 12.4.1 The hyperbolic metric on K™ for is defined as
dic(w,y) = du (v (), 57 (y))
for all x,y e K™.
Similarly to before, we have a simple hyperbolic cosine version of the metric:

Theorem 12.4.1 For all z,y e= K™, we have

cosh(dg(z,y)) = L—y)

V1 [Py [y?

Proof.

cosh(dg (z,y)) = cosh(dp (k" (x),x " (y)))
_ _( T+ entl )o( Y+ en+1
Hlz +enalll” *lly + ensall|
1— <‘Tay>

V1= 2Py = yl?

O
As one can see the metric isn’t as nice as the other metrics of the other models: the Euclidean
inner product {z,y) the metric not only depends on how far you are from the point (in a
Euclidean way), but the direction also distorts the space. This is the reason why projective
model is often said to be the model that doesn’t keep Euclidean angles. In fact, the hyperbolic
arc length isn’t any more welcoming. . .

Theorem 12.4.2 The element of hyperbolic arc length on the projective model K™ is given by

\/(1 — |2[?)|dz|? + (&, dz)?

1—|z|?

| =

We can also obtain the metric by using the cross-ratio in a similar way to the conformal ball
model.

Corollary 12.4.1 For all x € K™ we have

1
dK(Oax) = 710g(

1+|:E|) 1 x T
2

1_ |:1:| = 710g([$707_7 7])

2 x| ||
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Proof.

%W) = log <%\xl2 + \/(1%!9:\2)2 - 1)

o ( 1+ |z ) 11 (1+\x|)

dK(O, $)

arcosh(

1— [z 2 71—z
1 r x
= 710g([$,0,—7,7])
2 x| ||

a
The thing to notice here is that —é—| and ﬁ are the two points of intersection between the

Euclidean line that passes through 0 and = and S™~!. In fact, as we shall see later on, we can
extend this formulation of the metric for any points x,y € K.

Def. 12.4.2 The action of a projective transformation ¢ € PGL(n+ 1,R) on R™ is defined by
R"™ — R”

S KA

Note that projective transformation are not always well defined on all of R" since y,+1 =

<q§ (T) ,en+1> can be zero. We now search for the set of projective transformation that
leave K™ invariant.

Lemma 12.4.1 Let ¢ € GL(n + 1,R). Then ¢ leaves the light cone {z € R"! : |z|| < 1}
wvariant if and only if there is a scalar A > 0 such that \¢ is a Lorentz transformation.

Proof. Suppose we have ¢ € GL(n + 1,R) such that it leaves the light cone invariant. By
continuity of ¢, ¢ also leaves the inside of the light cone (ie the set time like vectors) invariant
and by the same argument it also leaves the set of light-like vectors invariant. Hence, ¢(ey+1)
is time like. Furthermore, by the transitivity of O(n, 1) on the 1—dimensional time-like vector
subspace, there is a Lorentz transformation A inO(n,1) such that

A(b(en-&-l) = /\en+17

with A > 0. All that’s left to show is that A='A¢ € O(n + 1) n PO(n, 1) (see 10.3.3). Let
z € R"! be linearly independent to e, and B, € O(n+1) nO(n, 1) such that ¢ = A"' B, A¢
leaves V' (z, e,41) invariant and fixes e,+1. Consequently, we may assume n = 1 and because
é leaves en+1 unchanged, it is of the form

()

Since ¢ is stable on the set of light-like vectors, we have

P o)

2
— a?—(b-12=da>—(b+1)?
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Hence, ¢ € O(n + 1) n O(n, 1) which implies A=*A¢ € O(n + 1) n O(n) and that A\~'¢ is a
Lorentz transformation. O

Lemma 12.4.2 A projective transformation [¢] € PGL(n + 1,R) leaves K™ invariant if and
only if any element of it’s class (ie A\¢ with |A\| > 0) leaves the light cone invariant.

Proof. This proof is a direct consequence of 9.4.1 O
Hence by combining both lemmas we come to the conclusion that every projective transforma-
tion that leaves K™ invariant is the class of a unique positive Lorentz transformation.

Theorem 12.4.3 Ewvery isometry of K™ extends to a unique projective transformation that
leaves K™ invariant and every projective transformation that leaves K™ invariant can be
restricted to an isometry.

Proof. The isometries of H" are it’s Lorentz transformation and via the isometry s : H" — K
correspond to the isometries of ™. Hence, by applying both lemmas we obtain the theorem.
O

Corollary 12.4.2 Z(K") = PO(n,1) /gx

Corollary 12.4.3 A isometry of K™ fizes 0 if and only if it is the restriction of a orthogonal
transformation of R™ on K™.

While the projective model does not maintain the Euclidean notion of angles, it offers a big
advantage compared to other models: the hyperbolic lines of the projective model are exactly
the Euclidean lines. This makes this model very useful for convexity arguments. It’s worth
mentioning that we cannot have a hyperbolic model that retains both the Euclidean lines and
the conform with the Euclidean angles since otherwise we return back to the Euclidean model
of geometry: in hyperbolic geometry we cannot have the cake and eat it !

Theorem 12.4.4 The hyperbolic lines of K™ are the Euclidean lines restricted to K™.

As announced previously, we can give a version of the hyperbolic metric on K™ using the
cross-ratio. In the literature, this is known as the Cayley-Klein metric. This formulation of
the hyperbolic metric can also be extended to bounded convex sets, in which case it is called
the Hilbert metric.

Theorem 12.4.5 The hyperbolic metric on K™ is given by:

1
dK(fL’,y) = 5 IOg ([ZE, Y, u,'l)]),

for all x,y € K™ distinct and u,v the two points of intersection of the Fulcidean line £,y and
S"=L such that |x — u| > |y —u| and |y —v| > |z — v].
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Figure 12.9: Example of the cross-ratio points in the case of Klein disc (2—dimensional case)

12.4.2 Birkhoff’s version of Hilbert’s metric on convex sets

In this section we will study a generalisation of the Cayley-Klein metric to any convex set:
the Hilbert metric. To do so, we will introduce a second metric Birkhoff metric that will allow
us to extend the easily prove that the Hilbert metric is well defined on any convex set. This
section is mainly based on [11].

Def. 12.4.3 Let Q) < R™ be a bounded open convex set, non-empty. We define the Hilbert
metric on §) as

log (|x,y, u,v ifx #y

0 ife=vy
for all x,y € Q and with u,v € 02 defined as the points of intersection of the Euclidean line
passing through x and y and the border of Q such that |z —u| > |y — u| and |y — v| > |z —v|.

v

Figure 12.10: Example of the Hilbert metric on a 2—dimensional convex set

315



To show that the Hilbert metric is well defined we will be using a path different from how the
Hilbert metric is usually introduced by introducing Birkhoff’s version of the Hilbert metric on
cones.

Def. 12.4.4 Let V be a vector space and C < V a subset. We say that C is a cone if C verifies
1. C is convex: Vx,ye C, Ae [0,1], \x + (1 =Ny eC
2. X< C, forall A\ > 0.
3. Cn (—=C) = {0}

Mathematical tradition dictates us to make the following remark: by combining 1. and 2. of
the definition of a cone we obtain that a cone is stable under addition. In what follows, we
shall consider V' to be a vector space and C < V a cone. In order to define Birkhoff’s metric,
we introduce a partial ordering on cone.

Def. 12.4.5 We define the partial ordering on the C for x,y € C as
r<,y <= y—xeC.
Furthermore, we say that y dominates x if there exists a, 5 € R such that
ay <c T <c By
and the equivalence relationship given by this partial ordering as
T ~c.y < 1y dominates x and x dominates y.

In the case that y dominates x, we note the following quantities:

Aug)::iﬁmeR:xéd@}
m(g) = sup{aeR:a. <, x}

Lemma 12.4.3 If x,y € C\{0}, then = ~. y if and only if there is 0 < o < 8 such that
ay <.z < Py.

Moreover, if x ~. y we have

wp=M(7)"

x 1
m(§)=sup{a>0.y<a

Def. 12.4.6 We define the Birkhoff metric on the cone C as

log <Z((g§))> ifx ~cy and y,x # 0
dz.9) =10 ifr=y=0

o's) otherwise

Theorem 12.4.6 Let z,y,z € C\{0} such that x ~.y ~. z. Then,
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Moreover, if V is a Banach space, then d(xz,y) = 0 if and only if x = Ay for some X\ = 0.

Proof. Let z,y,z € C\0 such that z ~. y ~. z.

1. We take note that if 0 < a <m(}) and 0 < M(}) < 3, we have ay <.z <. fy and
y < gy since

gy—yeC — fBy—ayel

— Py—x)+(zr—ay)elC)eCl.
eC (eC)

Hence, (g — 1)y € C and consequently g —1<0since C n (=C) = {0}. To conclude, if we note
)

(an)n=0 and (B, )n=0 two real sequences such that 0 < a,, < m(% ,0< M(i) < Bn,
lim a,, = m(x) and lim 8, = M(f),

then we obtain through the limit

S

<8

(

m(

)
— lim 2 > 1.

) n—w0 3,

<8

2. To prove the second point, we simply need to use m(3) = M(4)~1:

o) = tog (o 20) =1og (u(5)21 (%))
m(3) y

1)

= log (Wz)) =d(y,x) .

3. Let a,f3 as before, 0 < \ < m(%) and 0 < M(%) < . Then, we have ay <. x and Az <.y,

which when combined gives us aAz < z, thus

=

X
0 A —).
<a <m(y)

Similarly by combining x <. Sy and y <. puz, we obtain z <. Suz and so
x
M(Z) < Bu

and by pushing «,5,\ and p to their respective sup or inf limits, we obtain

m(g) and M(g)iM(g)M(%)

=
l<
=
| 8
A
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This allows us to directly conclude:

d(z,z) =

._.
o
o2

N
=
Y
S~—

< 3
—~
I AERIG

~ s SN
S
IS

~—

N—

N A
S )
]
S g\
—|— —~

o Sk

=
R4

4. Let A\, pp > 0. Then,

and so

Theorem 12.4.7 Let C < V a closed cone in a (n + 1)—dimensional vector space with a
o
non-empty interior (ie C # {¢} ) and H < V be a n-dimensional affine hyperplane such that
o

Q.= H nC is a open, bounded and convex set. Then, the restriction of the Birkhoff metric d
on Q. coincides with the Hilbert metric d.

Proof. Let z,y € Q. distinct, a = m(%) = M(%)_1 and 8 = M(%) We remark that because
C is closed, we have ay and x < fy. Weset u =x—ay € dC, v =y — %w € 0C, Ly, the
Euclidean line passing through x and y and 2/, %’ € 0Q. the two points of intersection between
Uy, and 09 such that |y — 2’| > |z — 2/| and |z — /| > |y — ¢/|.

Since 2’ and 3’ do not lie between x and y, we have A\, u > 1 such that

Y=y+MNz—y) and ¢ =z+ puly— ).

318



Now let ¢ € V* be a linear functional such that?
H={zeV:¢(z) =1}

and we remark that

y+/\(z—y)=fﬁ'=$=x1__0;y — aZ%
x+u(y—x)=y/=¢zjv)=y1__5_—lf — 52%
which leads us to —— \ 1 y -1
o= “Toa M) =)
and -y n z
Iy—y’lzl—ﬂzﬂ:M(Q).

Finally we may conclude:

M(3)

m(3)

() = 1og< ) — gl lle =y s

|z — 2’| |y — 3|

Corollary 12.4.4 The Hilbert metric § is well defined on any open bounded convex set.

Proof. If Q — R" is a convex, bounded and open set, then we embed it in R"*! as

Q’z{(f) cx e}, set C={dzv:xe =0} andﬂz{(:;) :x e R O

On a last word, this corollary is in fact the weak version to a much stronger result:
we can extend the Hilbert metric to any open, convex, possibly unbounded, subset of an
infinite-dimensional Banach space !

31f @ is a normal vector of H and t € R such that ta € H, then we have

H:{er:<x,a>:t}:{er:<%>,x:1}
—_—

=¢(z)
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PARrT I1I:

APPLICATIONS

The only simple notions whose specialisations
form a multiply extended manifoldness are the
positions of perceived objects and colors.

B. RIEMANN, 1854
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Chapter 13

The standard formulation of special
re].at ].V].ty (Valérie Garcin, Nicoletta Prencipe and Edoardo Provenzi)

The concept of an absolute space has been abandoned since Galilean relativity, in which
‘space-time’ is interpreted as the metric space (R* = R x R?, dt? ® d¢?), where dt and df are
the Euclidean metric on R and R3, respectively. Special relativity is known to be an extension
of Galilean relativity in which, along with the motion of objects with mass, also the peculiar
behavior of electromagnetic signals propagation is taken into account. As we will recap soon,
considering also this kind of signals impose to give up the concept of an absolute time and to
build a ‘spacetime’ where both space and time are relative to an observer and not absolute.
Formally, Galilean relativity is based on the following two postulates:
1. the space is homogeneous and isotropic and the time is homogeneous';
2. laws of physics? have the same form in all inertial (i.e. not accelerated) reference frames,
i.e. no inertial reference frame is privileged.

In special relativity Einstein added the following, fundamental, postulate:

3. the speed of light in vacuum has a constant value ¢ when measured in all inertial reference
frames.

These postulates constitute the minimal set of axioms able to determine in a unique way
the metric of spacetime and the analytic form of the coordinate changes from one inertial
frame to another.

We will start with the metric issue. Using a standard nomenclature, we call event e a
point in R* written in coordinates as® z# = (ct,x), where t and x = (2%), i = 1,2,3, are,
respectively, the time instant and the spatial position of the event as measured by an inertial
observer with respect to her/his inertial reference frame Z. Let us consider, in particular, the
following two events: the first, e; = (ct1, %), consists in a light signal emanating at the time
t1 from the spatial position (xﬁ), the second, ey = (cta, xé), consists in the same light signal
arriving at the time ¢ in the spatial position (z3). Since the signal propagates with constant

'In this context, isotropy means invariance under rotations, while homogeneity means invariance under
multiplication by a real constant.

2In Galileian relativity, the laws of physics refer only to mechanics, while in Einstein’s special theory of
relativity one considers also electromagnetism.

3Using ct instead of t is customary in special relativity: physically, this amounts at replacing the time ¢
with the corresponding space ct traveled by a ray of light during ¢.
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speed ¢, the distance that is traveled is c(to — t1), however, since we have endowed R? with
3 ' 1/2
the Euclidean metric, this same distance equals <Z (24 — 21)? , so the coordinates of the

=1
events e; and es in the fixed inertial frame & are related by the equation:

3
Aty —t1) = D (ah—2)? =0 «= Ata—t1)> — |x2 —x1[* = 0, (13.1)
=1

|2 — 1 |? being the Euclidean distance in R3 between x1 and x. Of course, eq. (13.1) remains
valid for all spacetime differences, also infinitesimal ones, thus we can write the differential
version of eq. (13.1) as c?dt? — |dx|? = 0. In special relativity, the quantity

ds® = Adt* — ||dx|?, (13.2)

is called spacetime interval. From eq. (13.1) it follows that the spacetime interval between two
events connected by a signal traveling at the speed of light is null. Since the speed of light is
an upper limit for velocity, this amounts at promoting it as a reference and at normalizing to 0
the spacetime distance between any two events, no matter how far in space or time, connected
by a light-speed signal.

Let us underline a key invariance property of ds? that will be used to single out the
analytical form of the coordinate change between inertial observers. Postulates 1 and 3 imply
that the spacetime interval ds® between two events described in the inertial reference frame
2 and the spacetime interval ds’> between the same couple of events described in any other
inertial reference frame %’ is exactly the same: ds?> = ds?, see e.g. [?], page 7 or [?], page 117,
for a rigorous proof.

If we write a generic event e € R* as a column vector (20 = ct, !, 22, 23)! = (z)! and the
infinitesimal difference between any two events as dr = (dz*)!, then the spacetime interval
can be written as the (non positive-definite) quadratic form ds® = (dz*)'n,, (dz"), where
n = (Nu) is the matrix diag(n,) = (1,—1,—1,—1). The metric space M = (R%,7) is called
Minkowski spacetime and 7 is the matrix associated to the Minkowski metric tensor such that
n = nudz* @ dz”. The associated pseudo-norm, ie. [ul%, = (u®)? — [(u')? + (u?)? + (u?)?]
is called Minkowski norm of u e M.

Noticeable subsets of M are the lightcone and the world-lines. The lightcone is the subset
of M given by £ = {(ct,z,y,2) e R? : ds? =0 < *? — 22 — y? — 22 = 0}. The volume
surrounded by L together with L itself will be denoted with L. A world-line in M is any
connected set of events between an initial and a final one. World-lines of inertial motions are
easily seen to be segments of straight lines in M.

We have the following categorization of events in terms of the spacetime interval:

e ds? = 0, the events ey, es are connected by a signal traveling at the speed of light, they
belong to the lightcone L;

e ds? > 0, or ||dx|? < c?dt?, i.e. the spatial separation between the events ey, e is less
that the distance traveled by a light ray, which implies that they are connected by a
world-line with speed inferior than ¢, they lie in the interior of the lightcone, the so-called
time-like zone of the Minkowski space. It is also called causality region, because changes
in tohe event e; cause changes in the event ey. It is clear that these events are contained
in L;
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e ds? <0, or |dx|? < c2dt?, i.e. the spatial separation between the events eq, ey is greater
that the distance traveled by a light ray, i.e. the events ey, es cannot be physically
connected, they lie outside the lightcone, the so-called space-like zone of the Minkowski
space, also said non-causal region.

We are now ready to discuss the problem to relate the coordinates of two inertial frames.
First of all, it is simple to deduce from postulate 1 that the coordinate transformation
w: RY - RY 2t 2 = w(zH) from Z to #' of an event must be linear (under the
reasonable hypothesis to be differentiable).

In fact, by postulate 1, there are no special instants and positions in R?, so, the Euclidean
distance between two events remains the same when these are translated by a fixed vector
b e R*. This is true independently on the coordinate system used to write the events in two
arbitrary inertial reference frames #Z and #’'. Let x = z* and y = y* be the coordinates of
the two events in # and wH(z) and w#(y) the coordinates of the same events in #’. Since
(xH 4+ b*) — (y* + b*) = ¥ — y*, we must have w’(z + b) — wh(y + b) = wh(x) — wH(y). If
we derive the two sides of the last equation with respect to z¥, v = 0,1,2,3, we obtain
g‘;f (x +b) = ‘;‘;5 (), for all b e R*, since y does not depend on z.

Thanks to the fact that b is arbitrary, « + b represents any vector in R, so the function
Wl (g) = A% eR for all z € RY, v =0,1,2,3, ie.

h
oxv

g“;f is constant, which implies that

't =wh(x) = AL a¥ + at. (13.3)

The fact that the coordinate transformation between inertial reference frames must be
linear does not imply that any linear function w* implements such a transformation. In fact,
the invariance of the spacetime interval imposes strong constraints on the matrix A = (A%)).
To see this, let us write the difference vector dz* in the inertial reference frame %’ by using
eq. (13.3): da'™ = y'" — ' = Ayy” + o — (ALa” + a) = A, dz”. Thus, on one side,

ds"? = Nuwdz™dy” = nMVA“aAVBda;O‘dyB, (13.4)

and, on the other side,
ds? = napda®dy”, (13.5)

so, the equality ds’? = ds? implies the following constraint on A:
Nuw NN = Nap = AlnA = 1. (13.6)

The set of all these matrices forms a group, called the Lorentz group and denoted by the
symbol O(1,3) = {A € GL(4,R) : A'nA = n}, or .£. Of course, every matrix A € O(1,3) is
invertible, in fact, by computing the determinant of both sides of AnA = 7 and using Binet’s
theorem we get det(A) = +1.

What we have shown so far is that postulate 1 and the constancy of the speed of light in
inertial reference frames imply that the coordinates used to describe the same even in two
generic inertial reference frames are related by a nonhomogeneous linear transformation of the
type 2’ = Az +a, A e O(1,3), a € R,

The set of these transformations forms the so-called the Poincaré group defined by &2 =
{(A,a) : AeO(1,3), aeR*}, endowed with composition law given by (A1, a1) - (Ag,as) =
(AlAg, a1 + A1a2).
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The Poincaré group contains the Lorentz group and the group of translations as subgroups:
O(1, 3) is isomorphic to the subgroup of & given by the elements (A, 0), while the elements of
2 of the form (1, a) are translations by the constant vector a € R?.

The coordinate transformations 2’ = Ax + a are called Poincaré transformations, and
those corresponding to a = 0, i.e. ' = Az are called Lorentz transformations.

Since we have not put any further restrictions on these maps, we have managed to show
that the coordinate transformation between two inertial reference frames coincide with the
Poincaré transformation. The translation part of these maps is trivial, in the following section
we will analyze the structure of the Lorentz group in order to better understand the geometrical
action of the Lorentz transformations on the inertial reference frames.
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Appendix A

Einstein’s convention (sasardo provens

In differential geometry, we often deal with expressions with many indices and sums. To
simplify the notation, it is common to use Einstein’s convention and implicitly assume a
sum over repeated indices above and below in an algebraic expression, the sum being of course
performed over the range of index variability, e.g. if ¢ = 1,...,n, then

n
a’bi = Z azbz
i=1

This notation is consistent as long as we agree to write the indices below for the basis vectors
of R™ and above for the components w.r.t. them. The convention for the dual space (R™)*
is inverted. Coherently with that, the canonical basis of R™ will be denoted with (e;)" 4,
while its dual basis will be written as (sj)?zl, e) € Hom(R",R) = (R")*, the two bases are
linked via the pairing: A
l(e;) =67, i,j=1,...,n.

Given the vector z = z'e; € R”, 2' € R, for all i = 1, ..., n, the action of the linear functional
el on x is:

el(x) = & (xle;) = x'e () = xléf = a7,
i.e. ¢/ simply extracts the j-th component of the vector z € R” w.r.t. the canonical
basis (e;)" ;.

Vectors in R"™, or any other vector space V', will always be considered as column vectors,
while their duals, belonging to (R™)*, or V*, will be considered as row vectors.

It is very important to make explicit the use of the Einstein convention when we deal with
matrices associated with linear maps between vector spaces and with bilinear forms on a vector
space. Let f:V — W be a linear function between the vector spaces V and W of dimension n
and m, respectively, then, if we denote the matrix associated to f with A = (aé), i1=1,...,m,
7 =1,...,n,ie. we write the row index above and the column index below, the Einstein
convention can be coherently applied to compute the product of A with a column vector
v=(vl...,o")! of V, in fact:

al at\ (vl atvl + -+ +alo”
Av = : : N : = (ajvj)7
ai’ apt ) \v" afol + -+ am"

which is a column vector with m rows belonging to W. Notice that, if the matrix is square,
then the trace of A is Tr(A) = a.
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Now we examine the case of a bilinear form. Let g : V x V' — R be an R-bilinear form over
the vector space V of dimension n, then, by fixing a basis (u1,...,u,) of V we can associate
to g the matrix G' = (g;;), where the matrix elements are defined by the formula:

g(“%a“’]) = Gij,

so that G = (¢ij)i,j=1,..n. Notice that now the matrix elements of G are written with two
indices below, this is the only way of being coherent with Einstein’s notation, in fact, if
v,weV,v=(v) and w = (w’) where v* and w’, 7,5 = 1,...,n, are the components of v and
w w.r.t. the basis (u;) of V, then

n n
g(v,w) = giv'w’ = Z Z 9ijViws,
i=1j=1

will be a real scalar, as correctly expected.
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Appendix B

Recap of ordinary calculus in R"

(Edoardo Provenzi)

We collect here some basic results and definitions of ordinary calculus in R™. We assume that
the reader is already familiar with this topic, the aim of this appendix is just to recap the
most important concepts of standard calculus.

In particular, we stress some concepts, as e.g. the spaces between which partial derivatives
act or the role of the dual basis of R™ or that of the evaluation map, that are sometimes hidden
when presenting ordinary calculus but that are essential for the development of differential
calculus on manifolds.

It is convenient to fix the notation that will be used, unless otherwise specified, in this
appendix:

e 29 < R Q open set

o f:OQCR" - R™
o L(R™ RR™) is the vector space of linear operators from R" to R™
e U(0) is an open neighborhood of the null vector 0 € R™

e U(xg) is the open neighborhood of z( obtained by translation of U(0) by the vector z(:
U(xzo) ={xo+ h, heU(0)}

e a curve, or path, in R%, d > 1, is a continuous function v : I € R — R%, where I is an
open real interval.

e Modulo a translation and a rescaling, it is always possible to consider I to be (—¢,¢) for
a suitable € > 0.

e We say that v passes through zg € R? if v(0) = x.

The main idea behind differential calculus in R™ is the concept of local linearization, which
leads directly to the definition of derivative. For functions of only one real variable there is
only one derivative, but for functions of more than one real variable two different (and not
equivalent) derivatives can be considered: the total and the directional derivative along a
vector. We start recalling the definition of the total derivative, which has been formalized as
follows by Fréchet.
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Def. B.0.1 f is said to be Fréchet-differentiable (or simply differentiable) in xg € Q if there
exist:

e an open neighborhood U(xg) <
e a linear operator* D f(zo) € L(R™,R™), that, in general, depends on g

e a rest function pg, : U(0) < R™ — R™,
such that:
L. f(zo +h) = f(zo) + Df(x0)h + pay(h), Vh e U(0)

2. pz(0) =0
lpeg M
IR Jn—o

f s differentiable on Q if it is differentiable in every point of 2.

This definition is the precise formalization of the intuitive statement that it is possible to
approximate the action of f on nearby points z = xzy + h around xy by a linear function
and that the error in doing this tends to zero faster than the distance between x and xg, i.e.
|l =z = zol.

Def. B.0.2 Df(xg) is called the total derivative, the Fréchet derivative, or simply the
derivative of f in xg.

Condition 1. and 3. imply an important equation, to find its expression let us rewrite 1. as

f(@o + h) = f(xo) — Df(xo)h = puy(h), so that | f(zo + h) = f(zo) — Df(xo)h] = [pzy(h)]
thus, dividing by |h| and taking the limit ||| — 0, thanks to 3. we obtain:

i M @o +h) = f(zo) = Df(wo)h] _
| -0 IR

0. (B.1)

Theorem B.0.1 (Uniqueness of the total derivative) If Df(xg) exists, then it is unique.

Proof. We must proof that if Dy f(z¢) and D f(zg) are two total derivatives of f in xq, then
they must agree as linear operators belonging to L(R™, R™).

To this aim, observe that (B.1) implies, in particular, that the numerator tends to 0 as
|h| — 0, i.e. Ye > 035, > 0 such that |h| < d. implies both

€ €
|f(zo+h) = f(zo) = D1 f(zo)hl < S[hl and |f(zo+h)— f(wo) = D2f(wo)h| < S[h, (B.2)
having used the arbitrariness of e. Now, thanks to the triangular inequality, we have:

| D1f(zo)h — Daf(xo)h| = |f(zo + h) — f(zo) — Daf(xo)h — (f(zo + h) — f(w0) — D1f(x0)h)|
<[ f(zo + h) = f(wo) = Daf (wo)hl + || f (2o + h) = f(x0) = D1f(xo)h]

< ¢|h].
(B2)

'Sometimes D f(xo) is written as f' (o).
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Noticing that Dj f(xo)h — Daf(x0)h = D1 f(x0) — Daf (x0))h, we can write

|(D1f(x0) — D2 f(w0))h|
|7

<e V||A] < Oe.

When h = 0, it is clear that D; f(xg)h = Daf(xo)h = 0 because the total derivative is linear,
S0, let us consider h # 0, then, from the previous expression we get:
|(D1f(z0) — Daf(wo))h|

| D1f(z0) — Daf (xo)] := sup <e V[n|<é,
h#0 I

which implies that D; f(xg) = Daf(xo). O
Because of the uniqueness of the total derivative, many authors say that D f(z¢) provides
the best linear approximation of f in a neighborhood of zg.

Remark: if we replace R” and R™ by any two finite-dimensional normed spaces, then the
definitions and results above remain valid.

The reason why D f(z) is called the total derivative is that it contains, as special cases,
all the derivatives of f in xy along any possible directions, as we are going to formalize.

Def. B.0.3 The straight line passing through ro and directed as the vector v e R"
is the curve in R™ defined as follows:

Tzow: R — R"

t — rg0(t) =20 + to.

In order to define the concept of directional derivative, we just need to observe that the
composed function f org, , : R — R™ is a curve in R™ passing through f(zo) = f(rzy.+(0)).

Def. B.0.4 Given f: QS R" — R™ and xg € Q, if the following limit (in R™) erists®

R - s e

= (fore0)(0),  (B3)

then we call it the directional derivative of the function in xy along the vector v.

We say that f is Gateaux differentiable in x if the directional derivatives of f in xg
exists for every direction v. [ is Gateaux differentiable on Q) if it is Gateaux differentiable in
every point of €.

As a particular vector v we can choose ¢;, the i-th element of the canonical basis of R,
in this case the directional derivative of f in xg is called partial derivative of f in x¢ and

denoted with of
oL <$0) = Deif(xO)'

Each function
f: QccR* — R™

T —  f(z) = (y1,---,Ym),

2Notice that D, f(xo) is a vector in R™ and not a linear operator.
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is uniquely associated to an ordered collection of m real-valued functions, the so-called

component functions f', ..., f™:Q — R, defined as follows:
VeeQ,  f(x) = (Y1, sym) = (1 (@), ., (@)
ofi

The partial derivatives 5= (x9),i=1,...,n,j=1,...,m, of the component functions can be
organized in a m x n matrix with real entries called Jacobian matrix of f in xy and denoted
with Jf(z9) € M(m x n,R):

o ofd Ur@wo) ... La(xo)
(Jf(x0))] = pa (rg) = Jf(xo) = : : ‘ (B.A)
W) .. YL (o)

Let us now prove that the vector D, f(z¢) € R™ can be recovered by D f(xg) € L(R™,R™)
simply by applying this linear operator to the vector v, it is in this sense that the total
derivative contains all the information on the directional derivatives.

The easiest and more profound way to prove this relationship is by first examining the
special case n = 1, i.e. curves v: (—¢,e) » R™.

In standard differential calculus we prove that a function of one real variable, as =, is
differentiable in xy € (—¢, ) if and only if the limit

(o) = lim v(zo + ti V(@) _ CC%(%) c R
exists and it is finite. In this case, ¥(x¢) is called the value of the derivative of 7 in xg.

The fact that, in this special case, the existence of the total derivative of v in zg, i.e. the
linear operator Dvy(xg) € L(R,R™), is equivalent to the existence of its derivative ¥(xq) in g
should not be surprising if we think about the canonical identification of the vector space
L(R,R™) with R™ via the linear isomorphism given by

L(R,R™) =, Rm

ph L (B.5)

i.e. the application of any linear operator 7' € L(R,R™) to the only element of the canonical
basis of R, i.e. 1.

Let us use again the special element 1 of R to define the directional derivative of v in xg
and examine its relationship with the total derivative. 1 identifies the only possible direction
in R, so the straight line in R passing through xy € R and directed as the vector 1 € R is:

Tzo1: R — R
t o rea(t) =z + L.

The curve v : (—¢,e) — R"™ admits a directional derivative in zy € (—¢,¢) towards the only
possible direction defined by 1 € R if it exists and it is finite the vector of R™ defined by the
limit:

Dirfe) = fiy (1T gy TR0 EE ) =
- Diy(ao) — H(ao) = 0 = Jim 1Z0HD = 7(@0) =3 (@)t _ (B.6)

t—0 t
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but the limit above is nothing but the 1-dimensional version of eq. (B.1). In eq. (B.1) the role
of 4(xo) is played by the total derivative D f(xz() which is an operator belonging to L(R™, R"™),
this apparent mismatch can be corrected thanks to the canonical isomorphism (B.5), which
allows us identifying 4(xo) with the linear operator Dvy(z¢)1.

So, eq. (B.6) becomes

Divy(wo) = 4(w0) = 0 <= A(w0) = Dy(x0)1,

and we come to the conclusion that the directional derivative of v in xg along the direction
1 € R exists if and only if the total derivative Dvy(z¢) exists and, moreover, D;7y(xg) is nothing
but the application of the total derivative Dv(zy) to 1, as represented by the suggestive
equation:

[5(20) = D1y(0) = D(z0)1], (B.7)

in which 1 plays two different roles: in the expression Dj7(z¢) it must be interpreted as a
vector defining the only possible direction of derivation in R, while in the expression D~(xg)1
it must be though as the only canonical basis element of the vector space R.

The extension of this result to a function f: Q) € R™ — R™ is almost straightforward if
we build, analogously to what we have done before, the curve f org,, in R passing through
f(zo) by composing f with the straight line r, ,(t) = xo + tv, 2o € 2, v € R".

Supposing that the curve f o7y, , is differentiable in 0, we have?:

(foregw)(0) = D(fory)(0)1

(B.7)
= Df(rzvo,v(O»Drmo,v(O)l

(chain rule)

(;7) Df(xo)fxo,v (0)

= D f(ag) T2 )

= Df(iﬁo)’(),
but (f o ryy.v)(0) is precisely D, f(zo) thanks to eq. (B.3), so we have proven that, if f is

Fréchet differentiable in xg, then f is also Gateaux differentiable in x¢ and the directional
derivative can be simply obtained by applying the total derivative to the vector v:

| Duf(20) = Df (oo (B.8)

Counter-examples show that the reverse is not true: even if a function has directional derivatives
in every direction in a point, it can be not differentiable. Thus, the Fréchet differentiability of
a function of multiple real variables is stronger than the Gateaux derivability, whereas for one
variable the two concepts collapse due to the canonical isomorphism L(R,R™) ~ R™.

Remark: this way of proving the relationship between directional and total derivative for
functions of several real variables is neither the easiest, nor the standard one. However, we
chose to present it because this way of reasoning is the closest to the one used in differential
geometry, as the reader can appreciate starting from chapter 2.

3we omit the composition sign between linear operators, as conventional.
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There is a last special case to consider, that of a scalar function f : ) € R®™ — R. In this
case, the linear operator D f(zp) is an element of L(R",R) = (R™)*, the dual space of R",
i.e. Df(xo) is a linear functional on R™. R™ and its dual are canonically isomorphic via the
correspondence

~

(€1,...,en) +— (el . &),
where £7(e;) = 5{ , 4,7 =1,...,n, is the dual canonical basis of R". This isomorphism

allows us to identify D f(xg) € (R™)* with a vector of R™ called the gradient of f in zy and
denoted with V f(zo).

The representation of V f(xg) in components, with respect to the canonical basis of R", is
given by the column vector:

Vi) = (S0 2tan) |

i.e. the Jacobian matrix in xq of a real-valued function of n real variables collapses to a vector
whose components are the partial derivatives of f calculated in xg.

The directional derivative of f along a vector v € R™ can be obtained via the general
formula (B.8). In this case, since the Jacobian matrix is simply a row, its action on v reduces
to the scalar product of V f(zg) with v:

va($0) = <Vf(x0), U>, (Bg)

which can be also seen as a particular instance of the finite-dimensional version of the Riesz
isomorphism theorem: the action of the linear functional D f(x¢) € (R™)* of v € R™ is the
scalar product of the vector of R™ uniquely associated to D f(x¢), i.e. V f(x0), and v.

Thanks to the linearity of the limit, D, f is linear w.r.t f, but we can say more: if we
express the vector v as the linear combination kjv1 + kove, v1,ve € R™, k1, ko € R\{0}, then,
by the bilinearity of the real scalar product, we get:

Dy f(wo) = {V f(20), k1vi+kava) = k1{V f(20), v1)+ka(V f(20),v2) = k1 Dy, f(20)+ka Dy, f (0),

l.e.

‘Dk1v1+k21)2f(‘7:0) = levlf(xO) + kQDvgf(xo) ‘ , (BlO)

so the directional derivative D, f is linear w.r.t both f and v. This property is crucial in
chapter 7.

B.0.1 Noticeable examples of gradients and total derivatives
We show here how to compute the gradients and total derivatives of particularly important
functions.
Directional derivatives of the squared Euclidean norm and of the Euclidean scalar
product
In the proofs that will follow we will often use the equality

la+bl* = Jlaf® + [b]* + 2(a, b),

which holds for all a,b e R™.
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Theorem B.0.2 Let z,a € R, f(x) = ||z|? and g.(x) = ||x — a|?, then Yo € R™ it holds that:
o Vf($) =2z
e Vgo(r)=2(x—a).

This theorem has a clear interpretation: the computation of the gradient of the square
Euclidean norm and of its translations is formally identical to that of the first derivative of
the square function in R and its translations.

Proof. By direct computation:

[z + el — ||

[z +ev) = f(z)

:lim|

Dyf(a) = lim 8 lim -
el Leol? + 2,0y — faf?
e—0 S
_ lim e2|v|? + 2e{x, v)
e—0 IS

= lim (€||UH2 + Az, v)) = Az, v).
e—0

By (B.9), Duf(x) = (Vf(x),0) = 2,0}, ice. {Vf(2),0) = (2, 0), or (Vf(x) — 2,0) = 0
for all directions v, but this is possible if and only if V f(z) — 2z = 0, i.e. Vf(z) = 2.

Analogously,

|z +ev—al® - |z — af®

Duga() = ilir(l) €

[(z—a) +ev|? = |z — af?

=l
e—0 e
i |z —a|® + [ev]* + 2{z — a,ev) — |z — a|?
e—0 e
2 2 _
i S0P+ 2@ = a).0)
e—0 )

— lim (o] + 2@ — ), ) = (e - a), 0.
E—
The same argument used above leads to the equation (Vg,(z) — 2(z — a),v) = 0 for all
directions v, hence Vgq(z) = 2(z — a). ]
Theorem B.0.3 Let x,a € R", f,(z) = {a,z), then Vf,(z) = a.

Interpretation: the computation of the gradient of the Euclidean scalar product function
between two vectors in R” is formally identical to that of the first derivative of the function in
R given by the product between a a scalar coefficient and a real variable.

Proof. By direct computation:
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{a, x+€v>—<a x)

Dufala) = Iy
<a z) + €<a vy —<{a,x)
s—»O €
5<a v)
s—»O
= {(a, v>.
So (Vf(x) —a,v)y =0 for all directions v, i.e. Vf(z) = a. O

Corollary B.0.1 Let x,a € R", f, : R > R" given by fo(x) = {a,x)a, then

aiar aa1 ... Qpaq

ajaz asaz ... Gpa2
Jfalz) = | . | = legghissn (B.11)

a1y agn e Apn Ay,
Proof. It is enough to consider the component functions (f,);(x) = {(a,x)a;, j =1,...,n and
then apply to the previous theorem, obtaining V(f,);(z) = aa;. Since the rows of J f,(x) are
V(fa)j(x), we get the result. O

Theorem B.0.4 Let z,a € R", f: R" — R defined as f(z) = HxHQ and g : R™ — R™ given by
g(x) = qug, then Vx € R™ it holds that:

* Vi@) = -1

o Jy(z) = W ([n - QM)

[

where (x;xj)1<i j<n S the matriz given by

r1ry I2x1 ... ITndi

12 T2 ... o)
(Tizj)1<ij<n =

T1Tp X2Tp ... Tpdnp

So, even when |x|? appears at the denominator of a fraction we can compute the gradient
or the Jacobian matrix by considering |z||* as a real variable and using the derivation rules.

Proof. By direct computation:

Duf(m)zliml{‘ LI ]:hml{‘ L _ 1]

e—0e ||z +ev]2  |zf? e—0¢e | |z]|2 + 2e {z,v) + 2|v]?  |z|?

11 1
= ToE im g BE
|z|? e—0 € 1+5<Hfﬁ,v>+€2‘ .

||
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1+€

2 v 2z v|?
1 e - S )l
1+e( 2,0 >+52 v e=0 |l (£3) ||| |l

so that
1.1 27 Jv]|? 27
D f(:v)zhm[—s ,v>—52 ={(—-—"" v
’ |z]? =0 & el (Edls J]*

By the same argument used in the proof of the previous theorems we get V f(z) =

recalling the Taylor expansion o 1 — &+ O(£?) we have that

_ 2z
[l]|* -

The formula for Jy(x) follows immediately from that of V f(x) and the Leibnitz property
of the directional derivative applied to the component functions g;(x) = ij’ 7=1,...,n,

of g(x). 0

Theorem B.0.5 Let z € R", b e R™, A e M(m x n,R) and fay(z) = 1Az — b|?, then
Vfap(x) = At(Az —b).

Proof. Let us compute fa(z + €v):

1 1
fap(z +ev) = §]|A(x +ev) — bH2 = §H(A:r —b) + €A11H2

1
= 5 (142 = b]* + €| Av|* + 2:(Ax — b, Av)) .

Then:
_pl2 o 2 2 B B e
Dy fay(c) = lim 142 = WP + [ Av]* + 26(Az — b, Av) — | Az — b

7 &0 2e

— lim 2| Av|? + 2e(Ax — b, Av)
e—0 2e
2
- lin(l) (5||AQU| + (Azxz — b, Av>> — (Az — b, Av)
= (A"(Az —b),v).
So {V fap(x) — A (Ax — b),v) = 0 for all directions u, i.e. Vfap(z) = A(Az —b). -

The total derivative of the determinant

Finally, we show how to compute the total derivative of the determinant in some special
cases. First of all we notice that det : M(n,R) — R, so for all M € M(n,R), Ddet(M) €
L(M(n,R),R) = (M(n,R))* = (R"*)*, i.e. Ddet(M) is a linear functional on M(n,R), so,
when it is applied to a matrix of M (n,R), it gives back a real number.

First of all, let us compute D det(I,,), I, being the identity matrix n x n. For all h € R,
h — 0 and for all matrix M € M (n,R), I,, + hA is a infinitesimal perturbation of I,,, thus, by
definition of total derivative it holds that:

det(I, + hM) = det(I,,) + D det(I,)hM + pr, (hM), (B.12)
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where p;. : M(n,R) — R is such that M e 0, i.e. pr,(hM) = o(h). In order to make

eq. (B.12) explicit, we recall that the coefficient of the higher order term of the characteristic
polynomial p(t) = det(M — tI,,), t € R, of a generic matrix M € M(n,R) is (—1)". Thus,
thanks to the fundamental theorem of algebra we can write:

det(M —tL,) = (-1)" [ J(t—=X),  NieC,
=1

where \; are the complex eigenvalues of M. If we multiply both members of the previous
equation by (—1)" we get

n

(—1)™ det(M — tI,) = [ [(t = M),

=1

which, taking into account the property det(cM) = ¢ det(M) for all c € R and for all n x n
matrix M, can be re-written as:

det(—M + t1,,) = ﬁ(t — ).
i=1

Let us now operate the change of variable defined by ¢t = —%, h # 0. As a consequence, the
previous equation can be written in terms of h as follows:

1 “ro 1 o1 "1
det(—M — o I,) = H(—h —\) = H_E(l +h\) = (—h) []@+ ),
i.e., since (—%)n = 7n
1 n
—1)"h"det(—M — —1I,) = 14+ hA;),
(W det (M =t = [ [+ 0)
using again the property det(cM) = ¢" det(M) we get:

det(I, + hM) = [ J(1 + o).
=1

By direct computation, we can expand the right-hand side of the previous equation as follows:

ﬁ(l +h\)=1+h i Ai + o(h) = det(I,) + hTr(M) + o(h),
=1 i=1

thus
det(I, + hM) = det(I,,) + hTr(M) + o(h), (B.13)

which, by comparison with eq. (B.12), gives

| Ddet(I,)M = Tr(M)|, VM e M(n,R),
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i.e. Ddet([,) is the linear functional that, when applied to any M € M (n,R), gives back its
trace, i.e.

| Ddet(I,) = Tr|.

Thanks to this result, we can compute Ddet(A), for a generic A € GL(n,R). Let
M € M(n,R), then, since A is invertible, we can write, for all h € R, h — 0:
det(A + hM) = det(A(I, + A~ hM))
= det(A) det(I,, + A~1hM)
by using (B.13) we get:
= det(A)(1 + hTr(A~ M) + o(h))
= det(A) 4+ hTr(det(A)A™IM) + o(h),

thus, by comparison with (B.12), we find:

Ddet(A)M = det(A)Tr(A™'M)|, VYAeGL(n,R), M e M(n,R),

and so, in particular,

Ddet(A)M = Tr(A™'M)|, VAeSL(n,R), M e M(n,R).

Since Tr(A~'A) = Tr(I,,) = n, if we apply the total derivative to the matrix A itself we get:
D det(A)A = ndet(A), VA e GL(n,R),

and
Ddet(A)A = n, VAe SL(n,R).

B.1 The classes of functions ¢!,...,¢%, ..., €*

A function f: Q < R® — R™ belongs to the class €°(Q) if is it continuous in every point of Q.
The notion of continuous differentiability is more complicated than in the case of functions
of only one variable. Let us start with the continuous differentiability.

Def. B.1.1 (¢!-differentiability) A function f : Q c R® — R™ is said to belong to the
class €1(Q2) if it is Fréchet differentiable for any point o € 0 and if the Fréchet derivative
function, i.e. the map that associates to each point of ) the Fréchet derivative of f in it:
Df: Q< R* — L(R"R™)=R"
Zo > Df(l’o),

1 continuous.

Suppose f € €1(Q2), then it is possible to introduce the following continuous linear
functional on () that has a great importance in differential geometry:

0

i
ox .

e €10, (B.14)
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where evy, is the evaluation map in xg, so:

() — R
foo— 4

ox®

0

ox?

xo

zo (f) = (evmo © aiz) (f) = aag{z (.730),

so, first we compute the partial derivative of f w.r.t 2' and then we evaluate the resulting
function in zy.

Suppose that f € €'(Q), then we can ask ourselves if the Fréchet derivative function is
Fréchet differentiable in a point g € 2. If this is the case, then we say that f is two-times
Fréchet differentiable in xg and we denote its second Fréchet derivative in z¢ as D?f(xo).

Of course D? f(z¢) will still be a linear operator, but this time it will belong to the vector
space L(R™, L(R™, R™)) because the domain of Df is still 2 € R™, but its range is the vector
space of linear operators from R™ to R™, i.e. L(R™,R™).

A useful result of linear algebra allows us to naturally identify L(R", L(R™ R™)) =~ R"*m
with the vector space Bil(R" x R™ R™) of bilinear maps from R” x R" to R™:

¢: L(R"L(R"R™) —> Bil(R" x R",R™)
T — ¢T’ ¢T(xa y) = (Tﬂ?)y, vay € Rna

perfectly well-defined: T € L(R"™, L(R™,R™)), so T acts linearly on 2z € R" to get Tz €
L(R™ R™), which acts linerly on y to get (T'z)y € R™. The naturalness of the isomorphism
comes from the fact that no other structure than the very nature of the elements of the spaces
involved in the definition is used.

These considerations justify the following definition.

Def. B.1.2 (¢?-differentiability) If D?f(xzg) exists for every zg € Q, then

D2f: QcR® —» Bil(R" x R",R™)
xo  — D*f(xo),

is called second total derivative function of f.
f is said to belong to the class €%(Q) if the function D[ exists and it is continuous in
every point of €).

Theorem B.1.1 (Schwarz’s theorem) If f € €2(f2), then D?f(xq) € Bilg(R" x R", R™)
for all xg € Q, where Bilg stays for symmetric bilinear functions.

Of course, we can iterate the procedure and consider D¥ f(xg), the k-th total derivative of
f in xg, which will be an element of the multilinear maps from & copies of R” to R™:

DFf(20) € Mul*(R™ x ... x R",R™) =~ R""™,

i.e. D*f transforms linearly each variable of the Cartesian product R™ x --- x R (k times),
taken separately, to an element of R™.

Def. B.1.3 (¢*-differentiability) If D*f(xq) exists for every xo € 2, then

DFf: QcR* — Mul(R" x --- x R*,R™)
o I Dkf('TO)v

1s called the k-th total derivative function of f.
f is said to belong to the class €*(Q) if the function D¥f is continuous on .
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Schwarz’s theorem implies that, if f € €%(Q), then DFf(xo) € Mul&(R" x --- x R", R™) for
all zg € Q, where Mullg stays for symmetric multilinear functions.

Def. B.1.4 (¥*-differentiability or smoothness) f is said to belong to the class € (),
or simply to be smooth on Q, if D*f exists and it is continuous on Q0 for all k € N.

The continuous linear functional a’;i

differential geometry.

€ €°(2)* plays a crucial role in

0
= €Uz © 57

zo
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Appendix C

Recap of projective geometry wicoeia

Prencipe and Edoardo Provenzi)
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2!, 225
2y, 225

d;, 55

Payt, 231
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Crit(f), 22
GL(n,C), 30
GL(n,R), 30
0(1,n), 221
O(n), 30

PO(1,n—1)=0"(1,n—1), 225

SL(n, C), 30
SL(n,R), 30
SO(1,n — 1), 225
SO(n), 30
SU(n), 30
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U(n), 30
e’, 333
dfp, 51
k-form, 105
closed, 106
exact, 106
¢-differentiability of function of real
variables, 338
E* (M), 25
€ (M,N), 25
1-form, 93, 94

Atlas, 10
Equivalence of, 13

Base space, 82

Bump function, 38

Bundle, 151
Associated, 156
associated map, 157
cross-section, 153
fibre, 152
map, 153
Pull-back, 154
sub, 153
vector, 152

Cartesian product function, 14
Causal vector, 211

Chordal metric, 241
Christoffel symbols, 136
Cocycle relations, 84

Compeatibility between a linear connection

and a Riemannian metric, 149
Component functions, 331
Components of a tangent vector, 56
Conformal map, 255
Connection



1-form, 142
coeflicients, 136
Ehresmann, 160
flat, 136
linear, 133
on a vector bundle, 132
one-form, 162
Principal bundle, 162
Constant rank functions, 72
Contact
of first order between paths, 44
of order zero between paths, 44
Contraction of tensors, 101
Contravariant transformation, 68
Coordinate
1-form, 94
tangent vector field, 93
Coordinate cotangent vectors, 88
Cotangent bundle, 87
Cotangent space, 87
Cotangent vector, 87
Covariant
differential, 146
divergence, 146
hessian, 146
Covariant derivative, 133, 166
along a path, 137
exterior, 167
Covector, 87
Cover, 39
Covering, 34
universal, 34
Critical
point, 22
value, 22
Critical point, 75
Critical value, 75
Curvature, 168
Curve passing through a point in a
manifold, 27
Curve in R?, 328

Derivation
of € (M), 108
of a commutative algebra, 107
on €*(M) in a point, 47
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on the algebra of germs of smooth
functions, 66
Derivative
Partial, 330
Total or Fréchet, 329
Diffeomorphic manifolds, 27
Diffeomorphism, 27
Differentiable function
Fréchet, 329
Gateaux, 330
Differential
of a scalar function (algebraic case), 51
of a scalar function (geometric case),
46
Differential form, 87
Differential structure, 13
Direct (Whitney) sum of vector bundles, 85
Directional derivative, 330
Dual canonical basis of R”, 333
Dual map, 86
Dual of a vector bundle, 85

Embedding, 72
External algebra, 104
External product, 104

Fiber, 79
Flux of a vector field, 113

Geodesic

arc, 286
Germ of smooth functions, 65
Global differential, 81
Gradient, 333
Gradient of a scalar function, 126
Gradient transformation, 68
Grassmannian manifold, 21
Group

action, 182

stabilizer, 183

Homogeneous space, 183
Horizontal lift, 164
curve, 164
Hyperbolic
n-space, 284
distance on ‘H", 279
geodesic arc, 286



isometry on ‘H", 279
Hyperboloid model, 277
Hyperplane, 230

Identical manifolds, 28

Immersion, 72

Integral curve of a vector field, 109
Inverse mapping theorem in R™, 12
Inversion, 233

Jacobian matrix, 331

Leibniz rule, 47

Lemniscate, 73

Level set of a smooth function, 75

Lie
algebra, 115
braket, 114

Lie derivative
of a 1-form, 118
of a scalar field, 117
of a vector field, 117

Lie group, 30

Light cone, 212

Light-like vector, 211

Line bundle, 83

Local
coordinate functions, 10
coordinate system, 10
coordinate transformation function, 11
frame of T*M, 106
frame of T'M, 105
linearization, 328
representation of a function between

manifolds, 24

Lorentz
group, 221
metric, 124

orthochronous group, 225
proper group, 225
proper orthochronous group, 225
restricted group, 225
signature, 124
Lorentz transformation
positive, 225
Lorentz’s pseudo-scalar product, 210
Lorentzian n-space, 210
Lorentzian cross-product, 282
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Lorentzian matrix, 223
Lorentzian scalar product, 187
Lorentzian time-like angle, 279
Lowering the indices, 125

Mobius transformations, 197
Manifold
differential (smooth), 13
topological, 9
Matrix expression of the differential, 63
Minkowski pseudo-norm, 211
Minkowski spacetime, 210

Non-degeneracy, 123

One point compactification of R™, 241
Orbit, 183

Pairing, 87
Parallel

tensor field, 147
Parallel section, 137
Parallel transport, 139
Parallele translation, 165
Partition of unity, 39
Path in R%, 328
Path passing through a point in a

manifold, 27

Pauli matrices, 33
Point at infinity of R", 241
Poisson bracket, 126
Potential, 106
Principal bundle, 154

map, 155

Trivial, 155
Product manifold, 14
Projective manifold, 20
pseudo-Riemannian

manifold, 124

metric, 124
Pseudo-scalar product, 209
Pull-back of scalar functions, 51
Pushforward of a vector field, 120

Quaternions, 32

Raising the indices, 125
Rank



of a smooth map between manifolds,
72

Reflection, 231
Regular point of a vector field, 121
Regular value, 22, 75
Related

atlases, 24

charts, 24
Related vector fields, 120
Restriction of a vector bundle, 85
Riemann sphere, 197, 241
Riemannian

manifold, 123

metric, 123

Scale factor, 255
Section
along a curve, 137
global, 92
local, 91
Sheets of a covering, 34
Signature of a pseudo-Riemannian metric,
124
Simplectic
form, 126
manifold, 126
Singular point of a vector field, 121
Smooth
function between manifolds, 25
Smoothness of a function of real variables,
340
Space
Hausdorff, 9
locally Euclidean topological, 9
second countable, 9
Space-like vector, 211
Sphere, 17
Spherical distance, 276
Stereographic projection, 15, 17
Straight line passing through a point with
a given direction, 330
Submanifold
Embedded, 74
Immersed, 74
Submersion, 72
Support of a function, 38
Symmetric

algebra, 104
product, 104

Tangent
curves (or tangentially equivalent), 44
Tangent bundle, 79
Tangent space
(algebraic) to a manifold at a point, 47
(geometric) to a manifold at a point,
44
Tangent vector
(algebraic) to a manifold at a point, 47
(geometric) to a manifold at a point,
44
Tangent vector field, 92
Tensor
algebra of a vector space, 100
alternating, 102
antisymmetrization, 103
bundle, 105
contraction, 101
contravariant and covariant on a
vector space, 100
external product, 104
field, 105
symmetric, 102
symmetric product, 104
symmetrization, 103
Tensor product
of dual vector spaces, 97
of linear forms, 96
of vector spaces, 98
of vectors, 97
Theorem
Existence and unicity of the integral
curves of a vector field on a
manifold, 110
Flux, 111
Implicit function for manifolds, 64
implicit function in R", 64
Inverse mapping for manifolds, 64
Level set in R", 22
orbit-stabilizer, 185
Rank, 74
Time-like vector, 211
Total space, 82
Transition function, 11



Transpose map, 86

Vector bundle, 82
flat, 132

Vector field
complete, 113
global, 92
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invariant w.r.t. another one, 113
local, 91
Velocity of a curve at a point, 58
Vertical subspace, 159
principal, 161

Whitney’s embedding theorem, 42
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