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Preface

This handbook is intended to be a self-contained reference for the most fundamental methods
of differential and hyperbolic geometry, together with some applications to physics.

It must not be intended as an exhaustive treatise but as a (hopefully) clear exposition of
these topics. In particular, we have tried to reduce to the minimum one of the major problems
reported by students when learning for the first time differential geometry: notation! Formulae
in differential geometry can easily become notationally unbearable if a bad choice of notation
is performed. This implies that some reasonable shortcut must be implicitly assumed to avoid
this problem and keep equations as readable and meaningful as possible.

Coherently with our main concern, the major sources of inspiration for our handbook
(among others, that are duly quoted) are listed below.

• The extremely clear videos about differential geometry by Francesco Bottacin, professor
at the university of Padova, Italy. They are available online (in Italian) at the following
url: https://www.math.unipd.it/~bottacin/geomdiff.htm. A great deal of this
handbook can be thought as a free translation of his notes and videos. Professor
Bottacin is warmly acknowledged.

• J. Lee’s treatise: ‘Introduction to smooth manifolds’ [10], one of the clearest, most
complete, introductory books about differential geometry.

• C. Isham’s splendid big little book [8], for once, a book about mathematical concepts
written for physicists that does not treat them as ‘dummies’.

• J.G. Ratcliffe’s book: ‘Foundations of hyperbolic manifolds’ [15], to our knowledge, the
treatise on hyperbolic geometry hat fits best with the spirit of this handbook.

Of course, every mistake in this document must be referred to the authors of each chapter
and not to the books and material quoted above.

The authors.
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In many cases, proofs based on coordinate free
local representations in charts are clearer than
proofs which are repleate with the claws of a
rather unpleasant prying insect such as Γijkl.
S. Lang, ‘Differential and Riemannian
Manifolds’, 1995

Part I:

Introduction to differential
geometry
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Chapter 1

Differential manifolds: definitions
and basic properties (Edoardo Provenzi)

Determinations of measure require magnitude to
be independent of location, a state of things
which can occur in more than one way.

B. Riemann, 1854

In this first chapter we introduce the basic definitions and properties of differential manifolds.
The reader not used to Einstein’s convention for sum over repeated indices and differential
calculus in Rn is referred to the appendices.

1.1 Differential manifolds

The first mathematician to conceive the idea of what we call today a differential manifold was
Bernhard Riemann (1826´ 1866) who, in his groundbreaking 1854 habilitation defense [17],
introduced the concept of an abstract manifold not necessarily embedded in a Euclidean space,
as, instead, it was thought by his PhD advisor, the prince of mathematicians C.F. Gauss
(1777´ 1855).

Riemann’s ideas have been further refined until the modern definition of differential manifold
that we report in this document, first introduced in the literature by Charles Ehresmann
(1905´1979) [4] in 1943. In this definition a (finite dimensional) differential manifold is seen as
a topological space (with some suitable requests to make calculus easier) with the fundamental
requirement to be locally identifiable with a model space, which is a topological vector space.

The reason for considering topological vector spaces as local models lies in the fact that
one of the fundamental elements of calculus, the derivative, represents a local linearization of
a function, which explains the need of a linear structure on the model space that makes it a
vector space. Moreover, the computation of derivatives requires the concept of limit, which
implies that a topology coherent with the linear structure should be present. Finally, the fact
that derivatives are defined in a local neighborhoods of points will allow us transporting
the differential structure of topological vector spaces to more general topological
spaces that ‘resemble’ to them only locally.

This local resemblance is provided by means of homeomorphisms, i.e. bicontinuous
maps between topological spaces (continuous bijective functions with a continuous inverse).
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Depending on the particular choice of topological vector space that is considered as local
model, different differential manifolds can be defined. Classically, the local model is chosen
to be Rn, n ă `8, but of course it can be Cn or an infinite-dimensional Frechet, Banach or
Hilbert space and so on. Here, the local model will always be Rn.

Before going through the details of differential manifolds, let us spend just a few words on
topological manifolds.

Def. 1.1.1 (Topological manifold) The couple given by a connected topological space M
and a set of couples tpUα, ϕαquαPA (where A is an index set, Uα are open subsets of M),
satisfying:

• M “
Ť

αPA

Uα, i.e. the union of the sets Uα covers M

• ϕα : Uα Ñ Rn are homeomorphisms1,

is said to be a topological manifold of dimension n.

The definition of the dimension is well posed, in fact either there is a single homeomorphism
that covers M , and so n is univocally defined, or at least the domain of two homeomorphisms
has a non empty intersection. Suppose that these homeomorphisms are ϕα : Uα Ñ Rn and
ϕβ : Uβ Ñ Rm, with Uα X Uβ “ Uαβ ‰ H. Then ϕβ ˝ ϕ

´1
α : ϕαpUαβq Ď Rn Ñ ϕβpUαβq Ă Rm

is a homeomorphism (as composition of homeomorphisms), this implies that n “ m because
it cannot exist a homeomorphism between Rn and Rm if n ‰ m, see e.g. [10]. Thus, n is an
invariant in the definition of a topological manifold.

The fact that M is locally homeomorphic to an open set of Rn guarantees that, locally,
a topological manifold M defined as before has all the properties of Rn, e.g. M is
locally connected (and locally connected by paths) and M is locally compact, i.e. every
point p PM has a compact neighborhood, i.e., there exists an open set U ĂM and a compact
set K ĂM , such that x P U Ď K. Other properties, e.g. the Hausdorff and second countable
property, must be separately required.

Let us now move a step forward towards the concept of differential manifold.

Def. 1.1.2 A topological space M is a locally Euclidean space of dimension n P N,
n ă `8, if:

1. it is a Hausdorff space2: for every couple of elements p, q PM , there exist two open
neighborhoods Up and Uq such that Up X Uq “ H;

2. it is second countable3: there exists a countable collection U “ tUiu8i“1 of open subsets
of M such that any open subset of M can be written as a union of elements of some
subfamily of U ;

1i.e. bicontinuous functions: continuous invertible functions with continuous inverse, thus ϕαpUαq is open
in Rn because it is the anti-image of the open Uα via the continuous map ϕ´1

α .
2The Hausdorff property serves to assure that convergent sequences in M have a unique limit.
3The second countability is needed to assure the existence of a partition of unity, an essential tool to

extend local objects to global ones.
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3. it is locally homeomorphic to Rn: for every point p PM it exists an open neighborhood
U ĎM containing p and a homeomorphism:

ϕ : U ĎM
„
ÝÑ ϕpUq ” V Ď Rn

p ÞÝÑ ϕppq “ x “ px1, . . . , xnq.

The couple pU,ϕq is called a local chart in p, it is said to be centered in p if
ϕppq “ 0 P Rn. U is called chart domain and ϕ chart map.

1.1.1 Local coordinates of a point

We are going to show that it is always possible to represent the position of any point p in a
manifold M of dimension n with the coordinates of the local model Rn as long as we remain
inside a chart domain U of a local chart pU,ϕq in p.

The first step consists of course in applying the chart function ϕ to p to obtain the vector
x “ ϕppq which lives in an open subset of Rn and the second step consists simply in extracting
its components by using the functionals εj of the dual canonical basis of Rn. The composition
of these two steps gives rise to the following real-valued functions:

xj : U ĎM ÝÑ R
p ÞÝÑ xjppq “ pεj ˝ ϕqppq.

The xj ’s are nothing but the components functions of ϕ interpreted as a vector-valued function4,
thus we can write:

ϕ ” px1, . . . , xnq, or ϕ ” pxjqnj“1.

Def. 1.1.3 (Local coordinates) The locally-defined real-valued functions

xj ” εj ˝ ϕ : U Ñ R

are called local coordinate functions and the couple pU, pxjqq is said to be a local coordi-
nate system in p, j “ 1, . . . , n.

Notice the typical abuse of notation to write with xj both the components of the image
of p PM via the local chart ϕ w.r.t. the canonical basis of Rn, which are real numbers, and
the real-valued functions εj ˝ ϕ : U Ñ R.

On one side, this abuse of notation implies the weird formula xjppq “ xj , however, on
the other side, in general it is clear when xj refers to a function or a to real number and
this notational simplification improves enormously the readability of expressions involving
coordinates.

Following the idea of transporting the differential structure of Rn to a locally Euclidean
space M , we must assure two things: the first is that all the points of M are covered by
a local chart, the second is that two intersecting charts are compatible in the sense that
the differential structure that they induce on M is not in conflict. The formalization of
these ideas is given in the following definition.

Def. 1.1.4 (Atlas) Given a locally Euclidean space M of dimension n, an atlas for M is a
collection of charts tpUα, ϕαquαPA, satisfying:

4in fact some author denote them more correctly as ϕj instead of xj .
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1. Covering: tpUα, ϕαquαPA covers M , i.e.

M “
ď

αPA

Uα

2. Compatibility: whenever Uαβ ” Uα X Uβ ‰ H, the function:

ηβα :“ ϕβ ˝ ϕ
´1
α : ϕαpUαβq Ď Rn ÝÑ ϕβpUαβq Ď Rn

x ÞÝÑ x̃ :“ ηβαpxq “ ϕβpϕ
´1
α pxqq,

is smooth, i.e. it belongs to C8pϕαpUαβqq.

The function ηβα is called transition function from the local representation pUα, ϕαq to
pUβ, ϕβq. It is invertible, being a composition of invertible functions, and its inverse is

η´1
βα “ ηαβ “ ϕα ˝ ϕ

´1
β .

In general, showing that the charts domains of an atlas cover M and the smoothness
of the chart maps is not a difficult task. What requires much work is to verify the
compatibility, i.e. that the transition functions are smooth.

If the transition function ηβα is of class C r, then the compatibility will be called of class
C r, but here we will always consider the smooth compatibility, unless otherwise stated.

By composing the transition functions with the elements of the canonical dual basis of Rn
we obtain the functions that allow us transforming the local coordinates xj of a point p PM
w.r.t. the chart pUα, ϕαq to the local coordinates x̃j w.r.t. the chart pUβ, ϕβq:

εj ˝ ηβα : ϕαpUαβq Ď Rn ÝÑ R
x “ px1, . . . , xnq ÞÝÑ x̃j “ pεj ˝ ηβαqpxq.

Notice that εj ˝ηβα are nothing but the component functions of ηβα interpreted as vector-valued

functions. Instead of denoting them as ηjβα, it is usual (in particular in Physics books) to

write them simply with the symbol x̃j :

x̃j : ϕαpUαβq Ď Rn ÝÑ R
pxiq ÞÝÑ x̃jpxiq “ pεj ˝ ηβαqpx

iq,

they are called the local coordinate transformation functions. The diagram below gives
a graphical visualization of the objects just defined.

Uαβ

Rn Ě ϕαpUαβq Q x x̃ P ϕβpUαβq Ď Rn

x̃j P R

ϕβϕα´1

ηαβ

x̃jpxiq
εj

It should be clear from the context when x̃j represents a real number or a real-valued
function, in any case, the weird notation x̃j “ x̃jpxiq must be interpreted as follows:

x̃j
(real number)

“ x̃j
(function RnÑR)

pxiq
(Rn vector)

,

and similarly for the inverse local coordinate transformation xi “ xipx̃jq.
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In general, a point in manifold M has always:

• a local representation, which lives in the local model Rn, obtained by applying a local
chart map;

• a local coordinate representation, which lives in R and it is obtained by further
composing the local representation with the functionals of the canonical dual basis of
the local model Rn.

We will see that this considerations can be extended also to other objects defined on M , e.g.
functions.

The compatibility between local charts can be equivalently stated in coordinates. To
understand why, let us first recall the classical inverse function theorem of ordinary calculus
in Rn.

Theorem 1.1.1 (Inverse mapping theorem in Rn) Let:

• Ω Ă Rn be an open set;

• f : Ω Ñ Rn, f P C kpΩq, k ě 1;

• x0 P Ω such that5:
detpJfpx0qq ‰ 0.

Then there exist two neighborhoods U Ď Ω of x0 and V Ď Rn of fpx0q such that f |U : U Ñ V
is a C k-diffeomorphism.

If we organize the partial derivatives of the local coordinate transformation functions

x̃j : Rn Ñ R in the matrix of functions Bx̃j

Bxi
: Rn Ñ R defined by J ji :“

´

Bx̃j

Bxi

¯

i,j“1,...n
,

explicitly:

J :“

¨

˚

˝

Bx̃1

Bx1
¨ ¨ ¨ Bx̃1

Bxn
...

. . .
...

Bx̃n

Bx1
¨ ¨ ¨ Bx̃n

Bxn

˛

‹

‚

,

then, if the determinant of the Jacobian matrix Jpxq is not null for every x P ϕαpUαβq, the
charts are compatible, i.e.

Compatibility condition between local charts in coordinates:

det Jpxq ‰ 0 @x P ϕαpUαβq,

where Jpxq P Mpn,Rq, Jpxq “ evx ˝ J “
´

Bx̃j

Bxi
pxq

¯

i,j“1,...,n
, evx being the evaluation map of

the functions Bx̃j

Bxi
in x.

5The geometrical interpretation of this condition is the following: the fact that the Jacobian matrix of f in
p0 is non-singular guarantees that the total derivative Dfpx0q P EndpRnq is invertible. Since the differential
map is the linear approximation of f in a neighborhood of x0, the result of the theorem says that this is enough
to guarantee that, if we consider a sufficiently small neighborhood of p0, f itself is invertible and its inverse
map has the same regularity as f .
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Def. 1.1.5 (Equivalent atlases) Two atlases of a locally Euclidean space are equivalent if
all the local charts of the first atlas are compatible with all those of the second atlas.

Many authors define two atlases of a locally Euclidean space equivalent if their union
is again an atlas for the same locally Euclidean space. Of course the two definitions are
equivalent because, if all the local charts of the first are compatible with those of the second,
then the covering and compatibility properties are satisfied and so we get an atlas; vice-versa,
if the union is an atlas, then, by definition the compatibility of charts must be satisfied.

The adjective equivalent is not used by chance, in fact it can be verified that being
equivalent is an actual equivalence relation in the set of atlases of locally Euclidean spaces.

This fact gives us the possibility to define the concept of differential manifold without
ambiguity.

Def. 1.1.6 (Differential (smooth) manifold) A differential (smooth) manifold of dimen-
sion n is a couple pM,Aq, where M is a locally Euclidean space of dimension n and A is an
equivalence class of smooth atlases of M . A (smooth) maximal atlas, i.e. an atlas that is not
contained in any other atlases, is said to provide a (smooth) differential structure for M .

If the compatibility among local charts is only of class C r, then we will talk about a C r

differential manifold. If the compatibility is analytic, in symbols C ω, the manifold is called
real analytic.

Convention: in this document we will only consider smooth manifolds, so we will omit
to specify the adjective ‘smooth’ from now on, unless otherwise explicitly stated.

This choice is not so reductive after all, in fact, a celebrated theorem due to the great
geometer Hassler Whitney [20] states that every differential manifold of class C 1 can
always be endowed with a real-analytic maximal atlas and with C r maximal at-
lases, for all r ě 1, which make it either a real-analytic or a C r manifold (hence also a smooth
manifold). Moreover, all the C r differential structures are equivalent. Thus, for a manifold
the really important gap to pass is that from a C 0-compatibility between local charts to a
C 1-compatibility, the more regular compatibility being assured to exist thanks to Whitney’s
theorem.

If the local model is Cn and not Rn, then we will talk about a complex manifold of
dimension n, in this case the transition functions are required to be holomorphic.

1.2 Examples of manifolds

Let us discuss some example of manifold:

1. The trivial manifold. Rn is a manifold with the canonical single chart atlas given
by pRn, idRnq.
To give an example of non-equivalent atlases, let us consider R and the atlas pR, ϕq,

where ϕ : RÑ R, ϕpxq “

#

x x ď 0

2x x ą 0
. This atlas is not compatible with the canonical

atlas, in fact the transition function η “ ϕ ˝ id´1
R “ ϕ ˝ idR “ ϕ is continuous but not

derivable in x “ 0.
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2. Open submanifold. Any open subset U Ď Rn is a manifold with single chart atlas
given by pU, idU q.

3. Product manifold. If M and N are manifolds of dimension m and n, respectively,
with atlases:

A “ tpUα, ϕαquαPA, B “ tpVβ, ψβquβPB,

respectively, then
A ˆB :“ tpUα ˆ Vβ, ϕα ˆ ψβqupα,βqPAˆB,

where ϕα ˆ ψβ is the Cartesian product maps6

ϕα ˆ ψβ : Uα ˆ Vβ ÝÑ Rm ˆ Rn
px, yq ÞÝÑ pϕα ˆ ψβqpx, yq “ pϕαpxq, ψβpyqq,

is an atlas that makes the Cartesian product M ˆN a manifold, called the product
manifold of M and N . Since Rn ˆ Rm – Rm`n, the dimension of the product
manifold is the sum of the factor manifolds: dimpM ˆNq “ m` n.

4. Vector spaces of finite dimension as manifolds. Let V be a real vector space
of finite dimension n. Any norm on V determines a topology, which is known to be
independent of the choice of the norm. With this topology, V is a topological manifold
of dimension n. A natural differential structure on V can be defined thanks to the
isomorphism between V and its prototype Rn. More precisely, if E “ pe1, . . . , enq is any
basis of V , then I : V Ñ Rn, v “ viei ÞÑ pviqni“1, is a linear isomorphism and also a
homeomorphism in the topology induced by the norm. It follows that pV, Iq is a global
chart for V that can be used as a single-chart atlas.

Any other basis Ẽ “ pẽ1, . . . , ẽnq will induce a new global chart for V given by pV, Ĩq,
where Ĩ : V Ñ Rn, v “ ṽiẽi ÞÑ pṽiqni“1. To find the transition functions between these

two charts, let us first recall that the change-of-basis matrix A “ paji q, defined by

ei “ aji ẽj , is invertible. From the equation

v “ ṽj ẽj “ viei “ viaji ẽj , @v P V,

we deduce that ṽj “ ajiv
i, i.e. the coordinates of any v P V w.r.t. the two charts, are

related by an invertible linear transformation, which is obviously a diffeomorphism in
Rn. As a consequence, V is a smooth manifold.

The differential structure defined in this way is called the standard differential structure
of the real vector space V .

5. The manifold of matrices. The group of mˆn matrices with real entries Mpmˆn,Rq
is known to be isomorphic with Rmn via the lexicographic order of the matrix elements
(ordered by either rows or columns), thus it is a manifold of dimension mn. Mpmˆn,Cq
is a 2mn dimensional real manifold.

6We have used the Cartesian product map , defined as follows: given f : Df Ñ Rf and g : Dg Ñ Rg, D and
R are used for domain and range, the Cartesian product function between f and g is:

f ˆ g : Df ˆDg ÝÑ Rf ˆRg
px, yq ÞÝÑ pf ˆ gqpx, yq :“ pfpxq, gpxqq.
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6. The manifold of invertible matrices. GLpn,Rq “ tA P Mpn,Rq, detpAq ‰ 0u is
not only a subset of Mpn,Rq – Rn2

, but it is also open w.r.t. the topology of Rn2
. In

fact, GLpn,Rq “ pdet´1t0uqc, i.e. it is the complementary set of the inverse image of 0
via the determinant function, being t0u a closed set, det´1t0u is closed because det is
a continuous function, thus GLpn,Rq is the complementary of a closed set, so it is an
open set. As open subset of Mpn,Rq – Rn2

, GLpn,Rq is manifold of dimension n2.
GLpn,Cq is a 2n2 dimensional real manifold.

7. The sphere as a manifold. Proving that a spherical surface in Rn`1, briefly a sphere,
is a manifold is a classical and beautiful computation in differential geometry. Before
considering the most general case, we start with the easiest one, i.e. that of the 1-
dimensional sphere of radius 1, which has the advantage of showing us in a very clear
geometrical way how to build an atlas. We will then extend this same construction to
the n-dimensional case and to a generic radius R ą 0.

Let S1 :“ tx P R2 : }x} “ 1u, where } } is the Euclidean norm, be the 1-dimensional
unit sphere in R2, i.e. with radius equal to 1. We start by considering the following
identification:

π :“ tx P R2, x “ px1, 0qu – R,

then we define the north pole N , south pole S and a generic point p of the 1-dimensional
sphere S1 as follows:

$

’

&

’

%

N “ p0, 1q “ e2 pthe second element of the canonical basis of R2q

S “ p0,´1q “ ´N

p “ pp1, p2q.

Let us now consider A :“ tpU1, ϕN q, pU2, ϕSqu, where U1 :“ S1ztNu, U2 :“ S1ztSu, and

ϕN : U1 ÝÑ π
pp1, p2q ÞÝÑ ϕN pp

1, p2q :“ 1
1´p2

p1,
ϕS : U2 ÝÑ π

pp1, p2q ÞÝÑ ϕSpp
1, p2q :“ 1

1`p2
p1.

The functions ϕ1 and ϕ2 are called stereographic projections from the north and
the south pole, respectively. Their geometrical meaning is represented in figure 1.1.

The (unique) intersection between π – R and the straight line that connects N “ p0, 1q
with p “ pp1, p2q can be determined as follows: the Cartesian equation of this straight

line is of course yppq “ 1` 1´p2

0´p1
pp´ 0q, i.e. yppq “ 1´ 1´p2

p1
p, so the only value of p˚ P π

such that ypp˚q “ 0 is p˚ “ 1
1´p2

p1 “ ϕN pp
1, p2q, thus the stereographic projection from

the north pole is simply the point p˚. Analogous considerations can be done for the
stereographic projection from the south pole, obtaining ϕSpp

1, p2q “ p.

We observe that the stereographic projection from N excludes from its domain N itself
and maps the south pole to the origin of π – R, in fact: ϕN pSq “ ϕ1p0,´1q “ 1

2 0 “ 0.
The same considerations hold exchanging N with S and ϕN with ϕS . Of course
U1YU2 “ S1, so the covering property is verified by A, we must check the compatibility.
ϕN and ϕS are of course smooth and invertible on their respective domains, let us make
the transition functions between them explicit in order to check if they are smooth.
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Figure 1.1: The stereographic projection from the north pole in 2D.

We start with ϕN : its inverse function is ϕ´1
N : π Ñ S1ztNu, x ÞÑ ϕ´1

N pxq “ p, with p

such that ϕN ppq “ x, i.e. p1

1´p2
“ x. If we manage to write p2pxq, i.e. p2 as a function of

x, then, considering that
p1 “ p1´ p2qx, (1.1)

we manage to express also p1 as a function of x, thus making ϕ´1
N explicit. In order to

do so, it is convenient to use the constraint that defines S1, i.e. }p “ pp1, p2q} “ 1 ðñ

}pp1, p2q}2 “ 1, or:

pp1q2 ` pp2q2 “ 1 ðñ pp1q2 “ 1´ pp2q2 “ p1´ p2qp1` p2q,

which, introduced in the square of eq. (1.1) gives:

���
�

p1´ p2qp1` p2q “ p1´ p2q�2x2 ðñ 1` p2 “ x2 ´ x2p2 ðñ p2pxq “
x2 ´ 1

x2 ` 1
,

which, introduced in eq. (1.1) gives:

p1pxq “ p1´ p2pxqqx “

ˆ

1´
x2 ´ 1

x2 ` 1

˙

x “
2

x2 ` 1
x.

Hence, the explicit expression of ϕ´1
N is:

ϕ´1
N : π – R ÝÑ S1ztNu

x ÞÝÑ ϕ´1
N pxq “

`

p1pxq, p2pxq
˘

“

´

2
x2`1

x, x
2´1
x2`1

¯

,

analogously, we obtain:

ϕ´1
S : π – R ÝÑ S1ztSu

x ÞÝÑ ϕ´1
S pxq “

´

2
x2`1

x, 1´x2

x2`1

¯

.

We can now compute the transition functions explicitly to test if they are smooth: first
of all we notice that, since ϕN pSq “ ϕSpNq “ 0, on the intersection U1,2 :“ U1 X U2 “
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S1ztN,Su we have that ϕN pU1,2q “ ϕSpU1,2q “ Rzt0u, so ηSN :“ ϕS˝ϕ
´1
N : Rzt0u Ñ U1,2

and similarly for ηNS . By direct computation we have, for all y P Rzt0u,

ηSN pyq “ ϕSpϕ
´1
N pyqq “ ϕS

ˆ

2

y2 ` 1
y,
y2 ´ 1

y2 ` 1

˙

“

2
y2`1

y

1` y2´1
y2`1

“
2y

2y2
“

1

y
,

which is a smooth function on Rzt0u, similarly:

ηNSpyq “ ϕN pϕ
´1
S pyqq “ ϕN

ˆ

2

y2 ` 1
y,

1´ y2

y2 ` 1

˙

“

2
y2`1

y

1´ 1´y2

y2`1

“
1

y
,

again, a smooth function on Rzt0u. Thus, the transition functions between the charts
defined by the stereographic projections are smooth, so A is an atlas for S1, which
acquires the status of smooth manifold of dimension 1 with local model R.

Let us consider the general case. We call sphere of radius R ą 0 the subset of Rn`1

given by

SnR “ tx P Rn`1, }x} “ Ru , (1.2)

where } } is the Euclidean norm. If R “ 1 we simply write Sn. The sphere SnR is a
n-dimensional manifold for every R ą 0. To prove it, let us build an atlas with two charts
and show that the transition functions are smooth. As before, we use the stereographic
projections of the generic point p P SnR from the north N and the south S pole:

$

’

&

’

%

N “ p0, . . . , 0, Rq “ Ren`1

S “ p0, . . . , 0,´Rq “ ´N

p “ pp1, . . . , pn`1q

onto the hyperplane

π :“ tx P Rn`1, x “ px1, . . . , xn, 0qu – Rn.

The first chart is: pSnRztNu, ϕN q, with

ϕN : SnRztNu ÝÑ π

p “ pp1, . . . , pn`1q ÞÝÑ ϕN ppq “
R

R´pn`1 pp
1, . . . , pnq.

(1.3)

This time, to understand why the stereographic projection of p from the north pole N
has this analytic form, instead of the Cartesian equation of the straight line connecting
N to p, we consider (just to offer another possible view) its parametric equation, i.e.
x : R Ñ Rn`1, t ÞÑ xptq “ N ` tpp ´ Nq, notice that xp0q “ N , xp1q “ p. Since the
coordinates of N are all zero unless the last one which is equal to R, the coordinates of
xptq are

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

x1ptq “ tp1

x2ptq “ tp2

...

xnptq “ tpn

xn`1ptq “ R` tppn`1 ´Rq.
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The point ϕN ppq P π is obtained by applying on the previous coordinates the constraint
that defines π, i.e. by imposing xn`1ptq “ 0, or xn`1 “ R` tppn`1 ´Rq “ 0 ðñ t “

R
R´pn`1 , so

ϕN ppq “ px
1ptq, . . . , xnptqq

ˇ

ˇ

t“R{pR´pn`1q
,

i.e. eq. (1.3).

Notice that ϕN pNq is not defined7 and that, if we take p “ S “ p0, . . . , 0,´Rq, then
pi “ 0 for all i “ 1, . . . , n and pn`1 “ ´R, so ϕN pSq “ p0, . . . , 0q, i.e. the stereographic
projection from the north pole of the south pole is the origin of Rn.

By the unicity of the intersection between the hyperplane π and the straight line passing
through N and p, we have that ϕN is bijective.

The inverse of ϕN is defined as:

ϕ´1
N : π ÝÑ SnRztNu

x “ px1, . . . , xnq ÞÝÑ ϕ´1
N pxq “ p,

where x “ ϕN ppq, i.e. px1, . . . , xnq “ R
R´pn`1 pp

1, . . . , pnq, thus

pp1, . . . , pnq “
R´ pn`1

R
px1, . . . , xnq, (1.4)

which shows also for this general case that we just need to compute pn`1 as a function of
x, i.e. pn`1px1, . . . , xnq, to express also p1, . . . , pn as functions of px1, . . . , xnq and thus
finding the explicit expression of ϕ´1

N .

As in the 1-dimensional case, we take advantage of the constraint that defines SnR, i.e.
p P SnR if and only if pp1q2 ` ¨ ¨ ¨ ` ppnq2 ` ppn`1q2 “ R2, thus

pp1q2 ` ¨ ¨ ¨ ` ppnq2 “ R2 ´ ppn`1q2 “ pR´ pn`1qpR` pn`1q. (1.5)

If we compute the sum of the square components of both sides of eq. (1.4) we get:

pp1q2 ` ¨ ¨ ¨ ` ppnq2 “
pR´ pn`1q2

R2
px1q2 ` ¨ ¨ ¨ ` pxnq2 “

pxn`1“0!q

pR´ pn`1q2

R2
}x}2,

but thanks to eq. (1.5),

���
���pR´ pn`1qpR` pn`1q “

pR´ pn`1q�2

R2
}x}2 ðñ

R` pn`1

R´ pn`1
“
}x}2

R2
,

which, solved w.r.t. pn`1, gives

pn`1pxq “ R
}x}2 ´R2

}x}2 `R2
.

By inserting this expression for pn`1pxq in eq. (1.4) we get:

pjpxq “ 1´
}x}2 ´R2

}x}2 `R2
xj “

2R2

}x}2 `R2
xj , j “ 1, . . . , n,

7If ϕN would be defined on the whole sphere, it would create a homeomorphism between a compact set and
a non compact one, Rn, which is impossible. This observation leads to the conclusion that it is not possible
to have a single chart atlas for the sphere, or any other compact manifold in Rn.
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thus

ϕ´1
N px

1, . . . , xnq “

ˆ

2R2

}x}2 `R2
x1, . . . ,

2R2

}x}2 `R2
xn, R

}x}2 ´R2

}x}2 `R2

˙

. (1.6)

The stereographic projection from the south pole is built in the same way, we simply
have to replace N with S, obtaining

ϕS : SnRztSu ÝÑ π

p “ pp1, . . . , pn`1q ÞÝÑ ϕSppq “
R

R`pn`1 pp
1, . . . , pnq.

with ϕSpNq “ p0, . . . , 0q and

ϕ´1
S : π ÝÑ SnRztSu

x “ px1, . . . , xnq ÞÝÑ ϕ´1
S pxq “

1
}x}2`R2 p2R

2x1, . . . , 2R2xn, RpR2 ´ }x}2qq.

Having at disposal the explicit expressions of ϕS , ϕN and their inverses, we can check
the compatibility between them, i.e. that the transition functions are smooth on the
intersection SnRztN,Su. Since ϕN pSq “ ϕSpNq “ 0, we have

ϕN pS
n
RztN,Suq “ Rnzt0u “ ϕSpS

n
RztN,Suq

so ηSN :“ ϕS ˝ ϕ
´1
N : Rnzt0u Ñ Rnzt0u, y ÞÑ ηSN pyq. We have:

ηSN pyq “
R

R`R }y}
2´R2

}y}2`R2

1

}y}2 `R2
p2R2y1, . . . , 2R2ynq ðñ ηSN pyq “

R2

}y}2
y,

which is smooth because y ‰ 0 in the domain of ηSN . Moreover, since ηNS “ η´1
SN , we

have ηNSpyq “
}y}2

R2 y“
R2

}y}2
y, smooth as well. This shows that ppUN , ϕN q, pUS , ϕSqq is

an atlas for SnR, called stereographic atlas and that SnR is a smooth manifold of
dimension n with local model Rn.

8. An alternative (but compatible) atlas on the sphere. There are other atlases,
compatible with the stereographic atlas that can be built on the sphere. For the sake
of clarity, let us consider S1 to show an alternative (very redundant) atlas that can be
proven by direct computation to be compatible with the stereographic atlas. This is the
atlas: B “ tpUi, ϕiq, i “ 1, . . . , 4u, where:

$

’

’

’

’

&

’

’

’

’

%

U1 “ tpp
1, p2q P S1 : p1 ą 0u, ϕ1pp

1, p2q :“ p2

U2 “ tpp
1, p2q P S1 : p2 ą 0u, ϕ12pp

1, p2q :“ p1

U3 “ tpp
1, p2q P S1 : p1 ă 0u, ϕ13pp

1, p2q :“ p2

U4 “ tpp
1, p2q P S1 : p2 ă 0u, ϕ14pp

1, p2q :“ p1.

9. The n-torus. Thanks to example 3. we can build the product manifold:

Tn “ S1 ˆ ¨ ¨ ¨ ˆ S1

which is a compact manifold.
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10. The real projective manifold. It is defined as follows:

RPn :“ Rn`1zt0u{ „ ,

where
@x, y P Rn`1zt0u, x „ y ðñ Dλ P Rzt0u : y “ λx,

i.e. with „ we identify any two non-zero vectors in Rn`1 which are multiples
of each other by a non zero real coefficient: px0, . . . , xnq “ pλx0, . . . , λxnq.

So, the elements of the projective manifold will be equivalence classes of vectors in
Rn`1zt0u that lie on the same straight line passing through the origin8.

Endowed with the quotient topology, RPn is a topological manifold, we will prove that
RPn is also a differential manifold of dimension n and this will provide a first example
of manifold that is not made up by a subset of points in Rd, d ě 1, as the elements of
RPn can be identified with straight lines in Rn`1 and not points of Rn`1!

A typical notation used when dealing with the projective manifold is the following:

px0 : ¨ ¨ ¨ : xnq :“ pλx0 : ¨ ¨ ¨ : λxnq @λ ‰ 0,

px0 : ¨ ¨ ¨ : xnq are called homogeneous coordinates of an element in RPn.

Let us construct an atlas with compatible charts for RPn by considering the following
open domains:

Ui :“ tpx0 : ¨ ¨ ¨ : xnq P RPn : xi ‰ 0u,

i.e. the i-th homogeneous coordinate of the elements belonging to Ui is non null (the
others can be null or not, but the i-th surely not). There are n` 1 such domains and

they trivially cover RPn, i.e. RPn “
n
Ť

i“0
Ui, in fact, having removed 0 from Rn`1, at least

one homogeneous coordinate of an arbitrary element of RPn must be different from 0,
but then it belongs to a suitable Ui.

The chart maps on Ui are defined as follows:

ϕi : Ui
„
ÝÑ Rn

px0 : ¨ ¨ ¨ : xnq ÞÝÑ ϕipx
0 : ¨ ¨ ¨ : xnq :“

´

x0

xi
, . . . , x

i´1

xi
, x

i`1

xi
, . . . , x

n

xi

¯

,

analytically well defined because in Ui, xi ‰ 0. Notice that we only have n components
in the image of ϕi because the i-th component gives xi

xi
“ 1, which is a fixed value that

we remove from the image. ϕi does not depend on the particular representative in the
equivalence class where px0 : ¨ ¨ ¨ : xnq belongs, in fact:

Ui Q pλx
0 : ¨ ¨ ¨ : λxi : ¨ ¨ ¨ : λxnq

ϕi
ÞÑ

ˆ

λx0

λxi
, . . . ,

λxi´1

λxi
,
λxi`1

λxi
, . . . ,

λxn

λxi

˙

“ ϕipx
0 : ¨ ¨ ¨ : xnq,

so that ϕipλx
0 : ¨ ¨ ¨ : λxnq “ ϕipx

0 : ¨ ¨ ¨ : xnq @λ ‰ 0.

8Actually, since we have eliminated 0 from Rn`1, the vectors belong to two opposite half lines with origin in
0, but, of course, these half lines identify in a unique way a straight lines passing through the origin of Rn`1.
This identification will be implicitly assumed in the main text.
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ϕi is invertible, its inverse being the map that restores the value 1 after the i-th position
starting from the value 1 of the index:

ϕ´1
i : Rn „

ÝÑ Ui
py1, . . . , ynq ÞÝÑ ϕipy

1, . . . , ynq “ py1 : ¨ ¨ ¨ : yi : 1 : yi`1 : ¨ ¨ ¨ : ynq.

In fact,

ϕ´1
i pϕipx

0 : ¨ ¨ ¨ : xnqq “ ϕ´1
i

ˆ

x0

xi
, . . . ,

xi´1

xi
,
xi`1

xi
, . . . ,

xn

xi

˙

“

ˆ

x0

xi
, . . . ,

xi´1

xi
, 1,

xi`1

xi
, . . . ,

xn

xi

˙

,

where, since in the last expression we start from the index 0, the value 1 must be
restored after the pi´ 1q-th position. By definition of homogeneous coordinates we have
´

x0

xi
, . . . , x

i´1

xi
, 1, x

i`1

xi
, . . . , x

n

xi

¯

“ px0 : ¨ ¨ ¨ : xi´1 : xi : xi`1 : . . . xnq, so ϕ´1
i ˝ ϕi “ idUi

and, by an analogous computation, we have ϕi ˝ ϕ
´1
i “ idRn .

tpUi, ϕiq, i “ 0, . . . , nu is a pn ` 1q-charts atlas for the projective manifold if we can
show that these charts are compatible on the intersections of their domains. For that,
notice that, when i ‰ j, the condition Ui X Uj ‰ H implies, by definition of the sets
Ui and Uj , that the i-th and the j-th homogeneous coordinates of the elements of RPn
belonging to Ui X Uj are both ‰ 0. If i ă j, the transition functions can be written as
follows:

ηij “ ϕi ˝ ϕ
´1
j py

1, . . . , ynq “ ϕipy
1 : ¨ ¨ ¨ : yj : 1 : yj`1 : ¨ ¨ ¨ : ynq

“

ˆ

y1

yi
, . . . ,

yi´1

yi
,
yi`1

yi
, . . . ,

yj

yi
,

1

yi
,
yj`1

yi
, . . . ,

yn

yi

˙

,

if j ă i, we simply exchange i with j in the previous expression. Notice the gap between
the pi ´ 1q-th and the pi ` 1q-th coordinate, which guarantees the correct number of
components. ηij is evidently smooth because yi and yj are non null. Since ηji “ ϕ´1

j ˝ϕi,
we get exactly the same functional expression with inverted indices, thus also ηji is
smooth. So, RPn is a differential manifold of dimension n.

11. Grassmannian manifolds. We have seen that RPn can be identified with the set of
vector subspaces of order 1 (the straight lines passing through the origin) of Rn`1. More
generally, if V is a real n-dimensional vector space, we define:

GrkpV q :“ tW : W is a vector subspace of dimension k of V u .

It can be proven that GrkpV q is a differential manifold of dimension kpn´ kq, called the
Grassmannian manifold of order k of V . It is clear that:

RPn “ Gr1pRn`1q .

12. RPn as a suitable quotient of the sphere Sn. Consider a vector x P Rn`1zt0u,
then x and x

}x} , } } being the Euclidean norm on Rn`1, define the same element of

RPn. However, x
}x} belongs to the sphere Sn “ tx P Rn`1, }x} “ 1u, this very simple

observation shows that we can always see RPn as a subset of Sn and that the map
π : Sn Ñ RPn, x “ px0, . . . , xnq ÞÑ px0 : ¨ ¨ ¨ : xnq is surjective.
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Notice however that π is not injective, because πpxq “ πp´xq for all x P Sn, in fact ´ x
}x}

belongs to the same equivalence class as x and x
}x} in the projective manifold! x and ´x

are called antipodal points. To remove the lack of injectivity, it is sufficient to identify
the antipodal points on the sphere Sn, i.e. to operate the quotient Sn{ „, x „ ´x for all
x P Sn. It is not difficult to prove that Sn{ „ endowed with the quotient topology,
is isomorphic, as a differential manifold, to RPn.

This example shows how much manifold can be modified by a quotient: in this
case, we pass from a spherical surface, to a set of straight lines passing through the
origin!

1.2.1 Manifolds from the level-set theorem in Rn`m

Noticeable examples of manifolds embedded in a Euclidean space of suitable dimension can be
built thanks to the so-called level-set theorem, which is a consequence of the inverse mapping
theorem.

Let us consider f : Ω Ñ Rm, Ω Ă Rn open, f P C 1pΩq.

Def. 1.2.1 x P Ω Ă Rn is a critical point of f if the total derivative Dfpxq : Rn Ñ Rm is
not onto, i.e. if rankpDfpxqq ă m. A critical value of f is the image via f of a critical
point x of f , so fpxq P Rm. We denote with Critpfq Ă Ω the set of critical points of f . A
regular value of f is an element in fpΩq that is not critical for f .

It is easy to see that Critpfq is a closed subset of Ω. The following result gives a (not necessary)
sufficient condition for a set to be a manifold.

Theorem 1.2.1 (Level set theorem in Rn`m) Let:

• Ω Ď Rn`m open set

• f : Ω Ñ Rm, f P C8pΩq

• a P fpΩq.

Then, the set
Ma “ f´1paqzCritpfq,

i.e. the a-level set of f without the critical points, is a smooth manifold of dimension n (the
difference between the dimension of the domain and the codomain of f), w.r.t. the differential
structure inherited by Rn`m.

Of course, if f does not have critical points, then Ma “ f´1paq.

Thanks to this theorem we can prove quite easily that the most important matrix groups
are differential manifolds.

• SLpn,Rq as a manifold of dimension n2 ´ 1. The function to be considered here is
the determinant of a nˆ n matrix with real entries:

det : Mpn,Rq – Rn2
ÝÑ R

A ÞÝÑ detpAq.
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If A “ paji q P Mpn,Rq, then, by Laplace’s formula, detpAq “
n
ř

j“1
p´1qi`jaij detpAijq,

where Aij PMpn´ 1,Rq is the submatrix of A obtained by eliminating the i-th row and
the j-th column. Being a polynomial function, det is smooth. Moreover,

B det

Baij
pAq “ p´1qi`j detpAijq,

which shows that the critical points of det are given by the matrices A PMpn,Rq whose
sub-matrices Aij P Mpn ´ 1,Rq have 0 determinant. In fact, in that case, the total
derivative would not be onto: the partial derivatives are the entries of the Jacobian
matrix and, if they are null, this matrix lacks to be full rank. This situation can happen
only if A has rank strictly inferior to n´ 1, so:

Critpdetq “ tA PMpn,Rq : rankpAq ď n´ 2u.

Any A P Critpdetq has null determinant, thus the only critical value for det is 0. Since
SLpn,Rq “ tA PMpn,Rq : detpAq “ 1u “ det´1t1u, and 1 is a regular value for det, it
follows that SLpn,Rq is a smooth manifold of dimension n2 ´ 1.

As a consequence of this result, SLpn,Cq is a (real) manifold of dimension 2n2 ´ 2.

An alternative proof consists in observing that, thanks to equation (??), the matrices of
SLpn,Rq are not critical point for the determinant.

• With similar, but more sophisticated, techniques based on the rank theorem, it can be
proven that:

– Opnq and SOpnq are manifolds of dimension npn´1q
2 ;

– Upnq and SUpnq are (real) manifolds of dimension n2.

We will show how to prove that Opnq is a manifold through the rank theorem in section
2.9.2 after discussing the concept of differential of functions between manifolds.

• We now show how easy it is to prove that the sphere SnR “ tx P Rn`1 : }x}2 “ R2u

is a manifold of dimension n thanks to the level set theorem in comparison to the
construction of the stereographic atlas. In fact, it is enough to consider the function
that associates to each vector of Rn`1 its squared Euclidean norm:

f : Rn`1 ÝÑ R
x ÞÝÑ fpxq “ }x}2 “ px1q2 ` ¨ ¨ ¨ ` pxn`1q2,

which is smooth and whose only critical value is 0, because Bf
Bxi
pxq “ 2xi, i “ 1, . . . , n`1.

Thus, for all R ą 0, the level set f´1pR2q “ SnR is a smooth manifold of dimension
pn` 1q ´ 1 “ n.
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1.3 Morphisms and diffeomorphims between manifolds

Manifolds are the arena of differential geometry, let us now analyze their morphisms, i.e. the
transformations between manifolds that respect their properties regarding the differential
structure. Smooth functions between manifolds are the morphisms of the category of smooth
manifolds, while diffeomorphisms are its isomorphisms.

As usual, smoothness is defined through the use of local charts and compatibility among
intersecting charts must be required.

Def. 1.3.1 Given two manifolds M and N of dimensions m and n, respectively, and a function

f : M ÝÑ N
p ÞÝÑ fppq “ q,

two local charts pUα, ϕαq in M and pVβ, ψβq in N are said to be f-related if fpUαq Ď Vβ.
Two atlases A and B of M and N , respectively, are f-related if every chart of one atlas is
f -related with at least one chart of the other atlas.

The following result shows that the continuity of f is sufficient to guarantee the existence
of related atlases.

Theorem 1.3.1 Given two manifolds M and N and a continuous function f : M Ñ N , it
exists a couple of f -related atlases of M and N .

Proof. The proof is constructive. Given any two atlases A “ tpUα, ϕαquαPI and B “

tpVβ, ψβquβPJ of M and N , respectively, a direct way to build an atlas Ã equivalent to
A and f -related to B is to define Ã :“ tpŨαβ, ϕ̃αβquαPI, βPJ , with:

#

Ũαβ :“ Uα X f
´1pVβq

ϕ̃αβ :“ ϕα|Ũαβ .

In fact, thanks to the continuity of f , f´1pVβq is an open subset of M and so Uα X f
´1pVβq

is an open subset included in (or coincident with) Uα. The charts ϕ̃αβ are compatible with
the charts ϕα because the operation of restriction preserves the smoothness of the transition
functions, thus the atlases A and Ã are equivalent.

Moreover, fpUαXf
´1pVβqq Ď fpUαqXVβ Ď Vβ thanks to well-known relationships between

functions and sets, which guarantees that the atlases Ã and B are f -related. 2

We can now define the important concept of local representation (or expression) of a
function between manifolds.

Def. 1.3.2 (Local representation of a function between manifolds) The local repre-
sentation of f : M Ñ N w.r.t. the f -related local charts pUα, ϕαq and pVβ, ψβq is the function:

fβα :“ ψβ ˝ f |Uα ˝ ϕ
´1
α ,

fβα : ϕαpUαq Ď Rm ÝÑ ψβpfpUαqq Ď Rn
x ” pxiqmi“1 ÞÝÑ fβαpxq “ y ” pyjqnj“1.
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The following commutative diagram visualizes the local representation of a function.

M Ě Uα fpUαq Ď N

ϕαpUαq Ď Rm ψβpfpUαqq Ď Rn

f |Uα

ψβ

fβα

ϕα´1

fβα is a function between open subsets of finite-dimensional real Euclidean spaces, thus we
perfectly know what it means for such a function to be smooth. Its smoothness is used to
define that of the function f itself.

Def. 1.3.3 (Smooth function between manifolds) f : M Ñ N is smooth if it exists
a couple of f-related charts, pUα, ϕαq of M and pVβ, ψβq of N , such that fβα, the local
representation of f w.r.t. these charts, is smooth.

Notation: the symbol C8pM,Nq denotes the set of all smooth functions between M and N .
If N ” R we simply write C8pMq.

As in standard differential calculus, smoothness implies continuity.

Theorem 1.3.2 If f : M Ñ N is smooth, then f is also continuous.

Proof. Almost immediate: if f : M Ñ N is smooth in any point p PM then, by definition of
smoothness, it exists a couple of charts pUα, ϕαq and pVβ, ψβq such that p P Uα, fpUαq Ď Vβ
and fβα “ ψβ ˝ f |Uα ˝ ϕ

´1
α : Rm Ñ Rn is smooth, and thus continuous, because it is a map

between real Euclidean spaces, where we know that smoothness implies continuity. But then,
since ϕα and ψβ are homeomorphisms, ψ´1

β ˝ fβα ˝ ϕα is continuous too, as composition of
continuous maps, but:

ψ´1
β ˝ ψβ ˝ f |Uα ˝ ϕ

´1
α ˝ ϕα “ f |Uα ,

i.e. f |Uα is continuous in an open neighborhood of any point p PM , hence it is continuous on
the whole manifold M that, we recall, is a topological manifold, so it intrinsically carries the
notion of continuity w.r.t. its topology. 2

The definition of smoothness just given is intrinsic, i.e. it does not depend on the f -related
local charts considered: once it is true for one couple of f -related local charts, it holds for all
f -related local charts.

To check this, fix any local chart pVβ, ψβq of N and consider two f -related overlapping
local charts of M , pUα, ϕαq and pUα1 , ϕα1q, i.e. Uα X Uα1 “ Uαα1 ‰ H and fpUαα1q Ď Vβ . The
chart maps are related by smooth transition functions ηα1α “ ϕα1 ˝ϕ

´1
α , thus ϕ´1

α “ ϕ´1
α1 ˝ ηα1α.

Hence, the local representations fβα “ ψβ ˝ f |Uαα1
˝ ϕ´1

α and fβα1 “ ψβ ˝ f |Uαα1
˝ ϕ´1

α1 satisfy:

fβα “ ψβ ˝ f |Uαα1
˝ ϕ´1

α1 ˝ ηα1α “ fβα1 ˝ ηα1α,

which implies, thanks to the smoothness of ηα1α, that fβα is smooth if and only if fβα1 is. The
f -related couples of local charts considered, ppUα, ϕαq, pVβ, ψβqq and ppUα1 , ϕα1q, pVβ, ψβqq, are
arbitrary, thus it is enough to check the smoothness of the local representation of f w.r.t. one
couple of local maps to guarantee the validity of this property w.r.t. every other couple.

25



By composing fβα with the functionals εj of the dual basis of Rn, we get the real-valued
functions:

f jβα ” εj ˝ fβα : ϕαpUαq Ď Rm ÝÑ R
x “ pxiq ÞÝÑ f jαβpxq “ yj ,

which, as always, are nothing but the scalar components of the Rn-valued function fβα.

The functions f jβα, j “ 1, . . . , n, represent the local coordinate transformation func-

tions between the local coordinates pxiq of a point p PM and the local coordinates
pyjq “ pf jβαpx

iqq of the point q “ fppq P N .

With the usual abuse of notation, we write f jβα ” yj , so that:

yj “ yjpxiq, i “ 1, . . . ,m, j “ 1, . . . , n.

The following diagram shows the action of the local coordinate transformation functions.

Uα fpUαq

x P ϕαpUαq Ď Rm ψβpfpUαqq Ď Rn

yj

f |Uα

ψβ

fβα

ϕα´1

yjpxiq
εj

Since the functionals εj are smooth, it follows that a function f : M Ñ N is smooth if
and only if we can pass smoothly from a local coordinate description of a point
x PM to a local coordinate description of the transformed point y “ fpxq P N .

A special case is provided by functions for which N “ Rn, or an open subset of Rn (thus, in
particular, for scalar functions on M when n “ 1). In this case, the differential structure is
provided by the canonical global atlas pRn, idRnq, so the composition with ψβ is not necessary
anymore and the local representation of f : M Ñ Rn, is just fα “ f |Uα ˝ϕ

´1
α , that will be

denote simply as

fα “ f ˝ ϕα
´1 . (1.7)

The following commutative diagrams resume our considerations.

Uα fpUαq Ď Rn Uα Rn

ðñ
(simplified as)

ϕαpUαq Ď Rm fpUαq Ď Rn Rm

f |Uα

idfpUαq

f

fα

ϕα´1 ϕα´1

fα
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In the intersection of two charts pUα, ϕαq, pUβ, ϕβq it holds that:

fα “ fβ ˝ ηβα, fβ “ fα ˝ ηαβ,

as shown by the following diagram for the first formula, the second being analogous.

Uα X Uβ

Rm Rm Rn
ϕβ

fϕα´1

ηβα

fα

fβ

ϕβ
´1

Another special case is provided by functions for which M “ Rm or an open subset of Rm,
thus, in particular, for curves in N when m “ 1, as recalled in the following definition.

Def. 1.3.4 (Path, or curve, in a manifold passing through a point) The smooth func-
tion9 γ : p´ε, εq Ď R Ñ M , ε ą 0, is said to be a path, or curve, in M passing through the
point p PM if γp0q “ p.

In this case, the differential structure is provided by the canonical global atlas pRm, idRmq,
so the composition with ϕ´1

α is not necessary anymore and the local representation of
f : U Ď Rm Ñ N , such that fpUq Ď Vβ is just fβ “ ψβ ˝ f |U , that will be denote simply as

fβ “ ψβ ˝ f . (1.8)

U Ď Rm fpUq Ď Vβ Ď N U N

ðñ
(simplified as)

U Ď Rm ψβpfpUqq Ď Rn Rn

f |U

ψβ

f

fβ
ψβidU

fβ

To resume, the local representations of the previous special cases of functions between manifolds
are:

#

fα “ f ˝ ϕ´1
α @f : M Ñ Rn

fβ “ ψβ ˝ f @f : Rm Ñ N.

We are now ready to define the concept of diffeomorphism.

Def. 1.3.5 (Global and local diffeomorphism) f : M Ñ N is a diffeomorphism if it is
a smooth bijective function with smooth inverse f´1 : N ÑM , in this case M and N are said
to be diffeomorphic manifolds.

f : M Ñ N is a local diffeomorphism if there exists an open subset U ĂM such that fpUq
is open in N and f |U : U Ñ fpUq is a diffeomorphism.

9
p´ε, εq is to be considered as an open submanifold of R.
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The most basic example of local diffeomorphism is easily provided by any chart
map ϕα : Uα Ď M Ñ ϕpUαq Ď Rn of a manifold M of dimension n. By definition, ϕα is
bijective, thus, the only property that we must check to verify that ϕα is a local diffeomorphism
is its smoothness and that of its inverse ϕ´1

α : ϕpUαq Ď Rn Ñ Uα ĎM .
It is clear that, in both cases, we can use formulae (1.7) and (1.8) to compute the

local representations of ϕα and ϕ´1
α , respectively. As the diagram below shows, the local

representation of a chart map and its inverse is provided by the identity function
idϕαpUαq, which is of course smooth.

Uα ϕαpUαq ϕαpUαq Uα

ϕαpUαq ϕαpUαq

ϕα ϕ´1
α

idϕαpUαq
ϕαϕ´1

α
idϕαpUαq

Thus, each local chart map allows us to diffeomorphically identify any open chart
domain of M with an open subset of Rn. Moreover, the transition functions ηβα are
local diffeomorphisms, being composition of chart maps and their inverses.

We end this section by underlying the difference between identical and diffeomorphic
manifolds.

Def. 1.3.6 (Identical manifolds) Let M be a topological manifold and pM,A1q, pM,A2q

two manifolds over M with their corresponding maximal atlases. Then, pM,A1q and pM,A2q

are said to be identical, as manifolds, if idM : pM,A1q Ñ pM,A2q is a diffeomorphism w.r.t.
the differential structures associated to A1 and A2.

From the point of view of manifold classification, diffeomorphic manifolds are considered
as equivalent. However, as the following example shows, in the same diffeomorphic class of
manifolds, we can find manifolds that are not identical.

Example of diffeomorphic non-identical manifolds. We consider:
#

M1 “ pR, ϕ “ idRq

M2 “ pR, ψq, ψpxq “ x3 @x P R.

To check if idR is a diffeomorphism w.r.t. these two monochart atlases, we have to consider,
as always, the local representation:

R R

R R

ϕ“idR

f“idR

ψ

f̃

While f̃ : RÑ R, f̃pxq “ pψ ˝ idR ˝ ϕ
´1qpxq “ ψpxq “ x3 is smooth, its inverse f̃´1 : RÑ R,

f̃´1pyq “ pϕ ˝ idR ˝ ψ
´1qpyq “ 3

?
y is not, because pf̃´1q1pyq “ 1{p3 3

a

y2q, which is not
differentiable in y “ 0.
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Thus, M1 and M2 are not identical manifolds. However, they are diffeomorphic to each
other, a simple diffeomorphism being F : M1 Ñ M2, x ÞÑ F pxq “ 3

?
x. To check it, let us

analyze again the local representation:

R R

R R

ϕ“idR

F

ψ

F̃

Of course, F̃ pxq “ p 3
?
xq3 “ x and pF̃ q´1pyq “ p 3

?
yq3 “ y, both smooth.

More generally,

• f : RÑ R, x ÞÑ xn is not a diffeomorphism for all n ě 1, so polynomial functions on R
are not diffeomorphisms because their inverse functions lack of smoothness.

• f : RÑ R, x ÞÑ x1{n is a diffeomorphism for all n P N odd.

We list next some general interesting facts about differential structures:

• Any connected manifold M of dimension 1 is diffeomorphic to either S1 or to R. In
particular, if M is compact (as a topological manifold), then it is diffeomorphic to S1,
otherwise it is diffeomorphic to R.

• Every topological manifold of dimension ď 3 admits a unique differential structure up to
diffeomorphisms.

• For every topological manifold of dimension ą 3 there exist compact topological manifolds
that does not admit differentiable atlases.

• Rn admits a unique differential structure up to diffeomorphisms for all n ‰ 4.

• Donaldson-Freedman’s 1984 result: R4 admits infinite non-countable non-diffeomorphic
smooth structures.

• S7 has exactly 28 non-diffeomorphic smooth structures that can be explicitly written.

1.3.1 Introduction to Lie groups

We now have all the information that we need to introduce the hugely important concept of
Lie group, that will be extensively treated later in this document.

We have seen that M “ GLpn,Rq is a smooth manifold of dimension n2, as open subset of
Mpn,R2q – Rn2

. We also know that M ˆM is a product manifold of dimension 2n2.
The matrix product function is:

f : M ˆM ÝÑ M
pA,Bq ÞÝÑ fpA,Bq “ C :“ A ¨B,
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where C “ pcijqi,j“1,...,n, with cij “ aihb
h
j . The components of f are polynomial functions, hence

they are smooth and so is f .
The inverse matrix function is:

g : M ÝÑ M

A ÞÝÑ gpAq “ A´1 “ A˚

detpAq ,

where A˚ is the adjugate matrix of A, i.e. the transpose of its cofactor matrix, defined by

CpAq “
´

p´1qi`j detpAijq
¯

j“1,...,n
, where Aij is, as we have already seen, the submatrix of A

obtained by eliminating the i-th row and the j-th column. All the operations contained in A˚

are smooth, plus the division by the determinant of A is smooth, so g is a smooth function.
Thus, the fundamental group operations, product and inversion, of M are smooth. Every

group which has these properties is called a Lie group, as defined below.

Def. 1.3.7 (Lie group) A topological group10 G endowed with a differential structure that
makes it a manifold and such that the product GˆG Ñ G, pa, bq ÞÑ a ¨ b and the inversion
G Ñ G, g ÞÑ g´1 are smooth is called a Lie group. The dimension of a Lie group is its
dimension as manifold.

Rd, considered as a group w.r.t. the operation of sum is a Lie group for all d ě 1 and,
thus, so is Mpn,Rq. Other examples of Lie groups are given by the so-called classical matrix
Lie groups, which are listed below.

Classical real matrix groups

• GLpn,Rq “ tg PMpn,Rq : detpgq ‰ 0u (general linear group)

• SLpn,Rq “ tg P GLpn,Rq : detpgq “ 1u (special linear group)

• Opnq “ tg P GLpn,Rq : @x, y P Rn, xgx, gyy “ xx, yyu “ tg P GLpn,Rq : gt “ g´1u

(orthogonal group11, it is the group of all the isometries of Rn)

• SOpnq “ tg P Opnq : detpgq “ 1u (special orthogonal group)

Classical complex matrix groups

• GLpn,Cq “ tg PMpn,Cq : detpgq ‰ 0u (general linear complex group)

• SLpn,Cq “ tg P GLpn,Cq : detpgq “ 1u (special linear complex group)

• Upnq “ tg P GLpn,Cq : @x, y P Cn, xgx, gyy “ xx, yyu “ tg P GLpn,Cq : g: “ g´1u

(unitary group12 it is the group of all the isometries of Cn)

• SUpnq “ tg P Upnq : detpgq “ 1u (special unitary group)
10i.e. a group G that is also a topological space such that the product and the inversion maps are continuous.
11In this definition x , y is the Euclidean product of Rn.
12In this definition x , y is the Euclidean product of Cn and g: “ gt is the adjoint matrix of g.
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1.3.2 S1, SOp2q and Up1q as isomorphic mono-dimensional Lie groups

We can easily show that the unit sphere S1, the groups SOp2q and Up1q are isomorphic Lie
groups by using the isomorphism between R2 and C:

R2 „
ÝÑ C

pa, bq ÞÝÑ z “ a` ib.
(1.9)

In fact,
S1 “ tpa, bq P R2 : a2 ` b2 “ 1u Ă R2,

is the unit circle in R2, and Up1q “ tz P C : @x, y P Cn, xzx, zyy “ xx, yyu, but thanks to
the sequilinearity of the complex scalar product, xzx, zyy “ |z|2xx, yy “ xx, yy if and only if
|z|2 “ 1, i.e. |z| “ 1, thus:

Up1q “ tz P C : |z| “ 1u Ă C,

can be identified with the multiplicative group of complex numbers with unit modulus: if
|z1| “ |z2| “ 1, then |z1z2| “ 1 and |z´1| “ 1 whenever |z| “ 1, thus the multiplicative group
structure of Up1q is evident. Since |z| “ 1 ðñ |z|2 “ a2 ` b2 “ 1, it is clear that if we
restrict the isomorphism (1.9) to S1, we obtain the following isomorphism:

R2 Ą S1 „
ÝÑ Up1q Ă C

pa, bq ÞÝÑ z “ a` ib.

Thanks to this identification, S1 inherits the group structure from Up1q and, vice-versa, Up1q
inherits a manifold structure from S1. It can be proven that the manifold and group structures
are compatible, in the sense of definition 1.3.7, so S1 and Up1q are Lie groups. Since the
dimension of S1 is 1, S1 and Up1q are mono-dimensional compact Lie groups.

We can push the isomorphism even further by considering the group SOp2q. We recall
that the matrices of this group can be characterized very easily. In fact, given any 2ˆ 2 real
matrix with unit determinant A:

A “

ˆ

a b
c d

˙

, At “

ˆ

a c
b d

˙

, A´1 “

ˆ

d ´b
´c a

˙

,

we have that At “ A´1 ðñ a “ d and c “ ´b, i.e. we car rewrite SOp2q as follows:

SOp2q “

"

A “

ˆ

a b
´b a

˙

, detpAq “ a2 ` b2 “ 1

*

,

but then the correspondence

R2 Ą S1 „
ÝÑ SOp2q Ă SLp2,Rq

pa, bq ÞÝÑ

ˆ

a b
´b a

˙

,

is an isomorphism. Moreover, for all ϑ P r0, 2πq, if we set a “ cosϑ and b “ sinϑ or b “ ´ sinϑ,
then a2 ` b2 “ 1, so we can explicitly characterize the matrices of SOp2q as follows:

SOp2q “

"ˆ

cosϑ sinϑ
´ sinϑ cosϑ

˙

: ϑ P r0, 2πq

*

“

"ˆ

cosϑ ´ sinϑ
sinϑ cosϑ

˙

: ϑ P r0, 2πq

*

.
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As a consequence, we have three isomorphic mono-dimensional Lie groups, S1, Up1q
and SOp2q that can be explicitly characterized by one free parameter ϑ P r0, 2πq as follows:

S1 “ tpa, bq P R2 : a “ cosϑ, b “ sinϑ, ϑ P r0, 2πqu Ă R2

Up1q “ tz P C : z “ cosϑ` i sinϑ, ϑ P r0, 2πqu Ă C

SOp2q “

"

A P SLp2,Rq : A “

ˆ

cosϑ sinϑ
´ sinϑ cosϑ

˙

, ϑ P r0, 2πq

*

Ă SLp2,Rq.

1.3.3 S3, H1 and SUp2q as isomorphic Lie groups of dimension 3

We pass from S1 to S3 without considering S2, in fact it can be proven that S2 is not a Lie
group.

The isometries that we have discussed in the previous section follow from the natural iden-
tification between R2 and C, those that we analyze here follow from the natural identification
between R4 and the non-Abelian division algebra (thus also a group) of quaternions H:

R4 „
ÝÑ H

pa, b, c, dq ÞÝÑ z “ a` ib` jc` kd,
(1.10)

where i2 “ j2 “ k2 “ ´1 and the multiplication of the quaternionic units i, j, k follows this
diagram:

i

k j

if we multiply the quaternionic units in the sense of the arrows, we get as result the next
quaternionic unit multiplied by `1, if we multiply the quaternionic units following the opposite
sense w.r.t. the arrows, we obtain the next quaternionic unit multiplied by ´1. For example,
ij “ k, ji “ ´k, ik “ ´j, jk “ i, and so on.

The conjugate quaternion of z “ a` ib` jc` kd is z :“ a´ ib´ jc´ kd and its modulus
is the non negative real number |z| such that: |z|2 :“ zz “ a2 ` b2 ` c2 ` d2.

The set of quaternions with unit modulus is denoted by

H1 :“ tz “ a` ib` jc` kd P H : |z| “ 1 ðñ a2 ` b2 ` c2 ` d2 “ 1u Ă H.

By recalling that the sphere S3 is defined as:

S3 “ tpa, b, c, dq P R4 : a2 ` b2 ` c2 ` d2 “ 1u Ă R4,

it is clear that if we restrict the identification defined by (1.10) to S3 Ă R4 we get a natural
identification between S3 and H1:

R4 Ą S3 „
ÝÑ H1 Ă H

pa, b, c, dq ÞÝÑ z “ a` ib` jc` kd.

Thanks to this isomorphism, S3 inherits the group structure from H1 and, vice-versa, H1

inherits a manifold structure from S3. As for the case of S1 and Up1q, it can be proven that
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the manifold and group structures are compatible, thus making S3 and H1 Lie groups. Since
the dimension of S3 is 3, S3 and H1 are Lie groups of dimension 3.

As before, we can find a further isomorphism with a matrix group: SUp2q. In order to
formalize this, we need to introduce the Pauli matrices:

σ1 “

ˆ

0 1
1 0

˙

, σ2 “

ˆ

0 ´i
i 0

˙

, σ3 “

ˆ

1 0
0 ´1

˙

. (1.11)

For ` “ 1, 2, 3, the matrices σ` are complex, Hermitian (σ`
t “ σ`) and unitary (σ`

t “ σ´1
` ),

so it also holds that σ` “ σ´1
` . Actually, the set pI2, σ1, σ2, σ3q is a basis for Up2q, the real

vector space of 2ˆ 2 Hermitian matrices.
By direct computation, we get that:

σ2
1 “ σ2

2 “ σ2
3 “ I2, σ1σ2 “ iσ3, σ2σ1 “ ´iσ3, . . .

These properties are reminiscent of those of the quaternionic units, they perfectly agree with
them if we multiply the Pauli matrices by i, for in that case we get:

σ̃1 “ iσ1 “

ˆ

0 i
i 0

˙

, σ̃2 “ iσ2

ˆ

0 1
´1 0

˙

, σ̃3 “ iσ3 “

ˆ

i 0
0 ´i

˙

and
σ̃2

1 “ σ̃2
2 “ σ̃2

3 “ ´I2, σ̃1σ̃2 “ ´σ̃3, σ̃2σ̃1 “ σ̃3, σ̃2σ̃3 “ ´σ̃1, . . .

By comparison with the quaternions, we can establish these correspondences:
$

’

’

’

’

&

’

’

’

’

%

1 Ø I2

i Ø σ̃3

j Ø σ̃2

k Ø σ̃1.

This allow us to represent the quaternions via matrices, in fact:

z “ 1 ¨ a` i ¨ b` j ¨ c` k ¨ d ðñ z “ I2a` σ̃3b` σ̃2c` σ̃1d “

ˆ

a` ib c` id
´c` id a´ ib

˙

“: Az.

Moreover, by direct computation, we have:

detpAzq “ a2 ` b2 ` c2 ` d2 “ |z|2. (1.12)

We notice that Az is a matrix of the type:

M “

ˆ

α β

´β α

˙

,

with detpMq “ |α|2 ` |β|2 and M
t
M “ detpMqI2, so:

SUp2q “

"ˆ

α β

´β α

˙

, |α|2 ` |β|2 “ 1

*

“

"ˆ

a` ib c` id
´c` id a´ ib

˙

, a2 ` b2 ` c2 ` d2 “ 1

*

.

From eq. (1.12) we get the (group) isomorphism

H1 – SUp2q.

The matrices pσ̃1, σ̃2, σ̃3q are anti-Hermitian, i.e. σ̃`
t
“ ´σ̃`, ` “ 1, 2, 3. We will show that

they constitute a basis for the Lie algebra of SUp2q: sup2q – Te SUp2q, the tangent space to
SUp2q at e, the unit element of the group. Since SUp2q has dimension 3 as a manifold, its
tangent space has dimension 3 as well and so does its Lie algebra.
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1.4 Covering and universal covering

The concept of covering (or cover) is very important in differential geometry, in particular in
Lie group theory.

The definition of covering can be puzzling at first sight, thus we prefer to discuss a very
simple example that will serve as a motivation for the definition.

Consider S1
R Ă R2, R ą 0, and R, then the map

π : R ÝÑ S1
R

t ÞÝÑ πptq “ pR cos t, R sin tq

is smooth and surjective, i.e. via π we can cover smoothly the whole manifold S1
R. However,

π is not injective, thus, if we consider any open subset U Ă S1
R, the counter-image π´1pUq

will be composed by infinitely many open subsets of R. For example, to fix the ideas, consider
the open arc A of the circle of radius R which goes from pR, 0q to p0, Rq, then π´1pAq is the
following union of disjoint open intervals in R:

π´1pAq “
ď

kPZ
p2kπ, π{2` 2kπq.

For a fixed value k P Z, the interval Ik “ p2kπ, π{2 ` 2kπq is a connected set in R and the
restriction of π on Ik is a diffeomorphism between Ik and A.

These considerations motivate the definition of covering.

Def. 1.4.1 (Covering) Given the manifold M , a covering of M is the couple pM̃, πq, where
M̃ is a manifold and π : M̃ ÑM verifies the following properties:

1. π is smooth and surjective

2. for all p P M it exists an open connected neighborhood U Ă M of p such that the
restriction of π to all the connected components Ũ Ă M̃ of π´1pUq is a diffeomorphism
between Ũ and U .

If M̃ is simply connected13, then we say that pM̃, πq is the universal covering14 of M .

The components of π´1pUq are called the sheets of the covering.

1.4.1 R and Rn as the universal covering of S1
R and the torus Tn

R is simply connected and we have seen that it is a covering of S1
R, it follows that R is

the universal covering of S1
R. This is the 1-dimensional case of a more general covering

involving Rn and the torus Tn.
Fixed any lattice Λ Ă Rn, we can define an equivalence relation „Λ in Rn by identifying

the elements of Rn that belong to the opposite edges, as depicted in Figure 1.2.
pRn, πq, where π :“ Rn Ñ Tn :“ Rn{ „Λ, x ÞÑ πpxq “ rxs, is the universal covering of the

n-dimensional torus Tn.

13i.e. M , as topological space, is such that any continuous loop contained in M is homotopic to a point.
14If it exists, the universal covering, can be proven to be unique up to homeomorphisms.
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Figure 1.2: The construction of the torus T2.

1.4.2 SUp2q as the two-sheets universal covering of SOp3q

The Lie group SUp2q is diffeomorphic to S3, which is simply connected, thus it is simply
connected itself. We prove that it is the universal covering of SOp3q, the Lie group of proper
rotations in R3.

To this aim, the quaternions will help again. In fact, the first thing that we need to do is
to identify R3 with the quaternions with null real part H0 :“ tib` jc` kd, b, c, d P Ru Ă H.
The map:

q : R3 ÝÑ H0

x “ px, y, zq ÞÝÑ qpxq :“ ix` jy ` kz,

is a natural isomorphism.
Next, fixed any quaternion with unit modulus z P H1, |z| “ 1, it can be verified with

straightforward computations that the map

Rz : H0 ÝÑ H0

qpxq ÞÝÑ Rzpqpxqq :“ zqpxqz´1

is well-posed because zqpxqz´1 has null real part. Moreover:

|Rzpqpxqq| “ |zqpxqz
´1| “ |z| |qpxq| |z´1| “ |qpxq|,
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i.e. Rz is an isometry of H0 – R3. If we interpret Rz as a linear map, then Rz P Op3q. By
direct computation, it can be verified that detpRzq “ 1, so Rz P SOp3q, i.e. Rz is a proper
rotation.

The matrix associated to Rz, z “ a` ib` jc` kd, z P H1, i.e. a2 ` b2 ` c2 ` d2 “ 1, w.r.t.
the canonical basis of R3 is:

Rz “

¨

˝

a2 ` b2 ´ c2 ´ d2 2bc´ 2ad 2bd` 2ac
2bc` 2ad a2 ´ b2 ` c2 ´ d2 2cd´ 2ab
2bd´ 2ac 2cd` 2ab a2 ´ b2 ´ c2 ` d2

˛

‚,

detpRzq “ pa
2 ` b2 ` c2 ` d2q3 “ 1.

Actually, it can be proven that all matrix of SOp3q can be written as the matrix above, so
the map H1 Q z ÞÑ Rz P SOp3q is onto.

Finally, from the fact that each entry of the matrix Rz is a polynomial of order two of the
coefficients of z, it follows with simple calculations that Rz “ Rz1 ðñ z “ z1 or z “ ´z1.
Thus, the correspondence H1 Q z ÞÑ Rz P SOp3q is 2:1.

To resume, we have proven that SUp2q is the universal covering15 of SOp3q. We can say
more: the onto map z ÞÑ Rz is also a homomorphism of groups:

π : H1 – SUp2q � SOp3q
z – Az ÞÝÑ πpzq :“ Rz,

with
kerpπq “ tI2,´I2u, I2 : identity of Mp2,Cq,

so that, by the homomorphism theorem, we have the isomorphism:

SUp2q{tI2,´I2u – SOp3q.

Thinking about SUp2q and SOp3q as Lie groups, π : SUp2q � SOp3q defines a two-sheets
covering (since the counter-image of Rz by π is π´1pRzq “ tz,´zu).

Finally, if we identify SUp2q with S3, the quotient SUp2q{tI2,´I2u becomes the quotient
of S3 w.r.t. the equivalence relation „Ø given by antipodal points identification on the
3-sphere. However, as we have seen in section 1.2, this quotient procedure gives rise to the
real 3-dimensional projective space RP3, thus:

RP3 – S3{ „Ø – SUp2q{tI2,´I2u – SOp3q

and, thanks to these identifications, even the 3-dimensional real projective space RP3

acquires a Lie group structure!

15In Physics, and in the formalism of Clifford algebras, the universal covering of SOp3q is called Spinp3q.
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1.5 Partition of the unity

Partitions of the unity are very important in differential geometry, because they allows us to
extend the definition of objects from a local neighborhood of a point to the whole manifold.
This is used, just to give an idea, for connections and Riemannian metrics.

Let us start with the following useful function displayed in Figure 1.3:

h : RÑ R, hptq “

#

0 if t ď 0

e
1
t if t ą 0

Figure 1.3: The h function.

The properties of h are listed below:

• hptq P r0, 1q @t P R and hptq Ñ
tÑ`8

0;

• h is increasing;

• h P C8pRq.

With this smooth function h, we can cook up other one, depicted on the left hand side of
Figure 1.4:

η : RÑ R, ηptq “
hp1´ |t|2q

hp1´ |t|2q ` hp|t|2 ´ 1
4q

with the following characteristics:

• ηptq ě 0 @t P R;

• h P C8pRq;

• ηptq “ 1 (exactly 1) in r´1
2 ,

1
2 s, in fact, for t P r´1

2 ,
1
2 s, |t|

2 ď 1
4 , so hp|t|2 ´ 1

4q “ 0,
because of the definition of h;

• ηptq “ 0 for t ě 1 or t ď ´1, in fact, in this case 1´ |t|2 ě 0, so that hp1´ |t|2q “ 0 by
definition in these intervals.

The extension to Rn is the following (for n “ 2 the graph is depicted on the right hand side of
Figure 1.4):

η : Rn Ñ R, ηpxq “
hp1´ }x}2q

hp1´ }x}2q ` hp}x}2 ´ 1
4q
, η P C8pRnq,
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• ηptq ě 0 @t P R;

• ηpxq “ 1 (exactly 1) in Bp0, 1
2q;

• ηpxq “ 0 @x P RnzBp0, 1q.

η is called the bump function.

Figure 1.4: From left to right, the bump function η function for n “ 1 and n “ 2.

We recall that, given a topological space X, the support of a function f : X Ñ R is the
closed subset of X defined by supppfq “ tx P X : fpxq ‰ 0u.

The following result is central in the theory of partitions of unity.

Theorem 1.5.1 Let M be a smooth manifold and:

• K ĂM a compact subset of M ;

• V ĂM an open subset of M containing K: K Ă V .

Then, there exists a smooth function g : M Ñ R such that
#

g|K ” 1

supppgq Ă V ùñ g|MzV ” 0.

Thus, g is a generalization of the bump function to M : g is identically 1 on K, identically 0
on MzV and it takes intermediate (unknown) values on V zK.

The proof is constructive.

Corollary 1.5.1 For every point p P M and every open neighborhood V Ď M of p, it exist
f, g P C8pMq such that

#

fppq “ 0

f |MzV ” 1
,

#

gppq “ 1

g|MzV ” 0
.

Proof. It is enough to choose K “ tpu, obviously compact, in the previous theorem: we obtain
a function g P C8pMq such that gppq “ 1 and g|MzV ” 0. Then, by setting fpxq “ 1´ gpxq
for all x PM , we obtain the thesis. 2

Let us now introduce a handy symbol that will give a sort of generalization of smooth
functions for maps not necessarily defined on open sets.
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Def. 1.5.1 Let S Ă M be any subset of M . Then we denote with C8pSq the set of
continuous real-valued functions f : S Ñ R that can be obtained by restriction of a smooth

function f̃ : V Ñ R, V open and S Ă V , i.e. f “ f̃
ˇ

ˇ

ˇ

S
.

We use immediately this concept to show that any C8 function defined on a compact
subset of a manifold M can be extended to a smooth function on the whole
M. . .with a sort of smooth padding with zeros!

Theorem 1.5.2 (Extension theorem for smooth functions) Let K Ă M be a com-
pact subset of the smooth manifold M and let f P C8pMq. Let also K ĂW , W open in M .
Then, it exists f̂ P C8pMq such that:

• f̂
ˇ

ˇ

ˇ

K
“ f ;

• supppf̂q ĂW , so that f̂
ˇ

ˇ

ˇ

MzW
” 0.

Proof. By definition, f extends to f̃ P C8pUq, for some U open in M , K Ă U .
We set V “ U XW and we consider g P C8pMq such that g|K ” 1 and supppgq Ă V ,

which exists thanks to the previous result.
We define

f̂ : M ÝÑ R

q ÞÝÑ f̂pqq “

#

gpqqf̃pqq q P V

0 q PMzV.

f̂ is smooth and f̂
ˇ

ˇ

ˇ

K
” f because gpqq “ 1 for all q P K. Moreover, f̃pqq “ fpqq for all q P K

and, finally, f̂
ˇ

ˇ

ˇ

MzW
“ 0, because either f̂ is evaluated outside V , or, in any case, g is 0. 2

The last concept that we need is that of cover.

Def. 1.5.2 (Cover) Let X be a topological space. A cover of X is a family of subsets
U “ tUαuαPI of X such that X “

Ť

αPA

Uα. The cover is said to be:

• open, if all the sets Uα are open;

• locally finite, if every p P X has a neighborhood U Ă X such that U X Uα ‰ H only
for a finite number of indices α.

Another covering V “ tVβuβPJ is a refining of U if @β P J Dα P I such that Vβ Ă Uα, i.e. if
the subsets of V are smaller than those of U .

Def. 1.5.3 (Partition of unity) Let M be a smooth manifold. A partition of unity on M
is a family of functions tρα : M Ñ RuαPI , I finite or infinite set, such that:

1. ρα P C8pMq;

2. ραppq P r0, 1s @p PM , @α P I;

3. tsupppραquαPI is a locally finite covering of M ;
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4.
ř

αPI

ραppq “ 1 @p PM .

The partition of unity is subordinated to the open covering U “ tUαuαPI of M if supppραq Ă Uα
@α P I.

The last property explains the name. The third property implies that
ř

αPI

ραppq is always a

finite sum of real numbers, and not a series.
The fundamental result about partitions of unity is the following. The proof relies on

the fact that the topological space underlying a smooth manifold is required to be second
countable.

Theorem 1.5.3 Every open covering of a smooth manifold admits a partition of unity subor-
dinated to it.

For the proof see [10].
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Chapter 2

Tangent vector and tangent space
to a manifold at a point (Edoardo Provenzi)

Inspirational epithap wanted...
...

Disclaimer: the reader is invited to get acquainted with the notations and concepts
discussed in Appendix B about ordinary differential calculus in Rn before reading this chapter.

A firm understanding of the concept of tangent vector and tangent space to a point of a
manifold is the most important step towards the comprehension of more advanced concepts of
differential geometry.

There are at least five different, but (of course) equivalent1 ways to define a tangent vector
to a point of a manifold. Each one has advantages and disadvantages, but all of them must be
known. A thorough analysis of the equivalence between these definitions is available in [9].

1. Geometrical definition: tangent vectors as equivalent class of curves. It is an
intuitive definition, but not the easiest one to use in proofs or for its notation;

2. Algebraic definition 7 1: tangent vectors as derivations of smooth scalar
functions. It is probably the most widely used in the literature, thanks to its notational
and conceptual simplicity. It is the one that we will use more commonly throughout
this document.

3. Algebraic definition 7 2: tangent vectors as derivations of germs of smooth
functions. It is similar to the previous one, it has the advantage to make the local
nature of tangent vectors even clearer and of being extendable to real-analytic and
complex manifolds, but it has the disadvantages of being even more abstract and with a
less simple notation.

4. Physicists’ definition: tangent vectors as equivalence classes of n-tuples. It is
mainly used by physicists and engineers, it uses the fact that tangent vectors verify a
peculiar way of transforming under coordinate transformations.

1A perfect equivalence holds only for finite-dimensional manifolds. If the manifold dimension is infinite, the
situation is trickier.
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5. Jets definition: it is a quite abstract definition, that we will not discuss here, but it
as a great importance in modern versions of calculus of variations, covariant geometric
field theory and general relativity.

2.1 Geometric definition of tangent vectors

We start introducing tangent vectors with the most geometrical way. Later, we will discuss
the algebraic and the physicists’ way and prove their equivalence.

Following [8], let us be guided by the very easy example of the unit spheres S1 and S2

depicted in Fig. 2.1 (courtesy of Eric Shapiro) to understand how to define tangent vectors.

Figure 2.1: Intuitive depiction of tangent line to a circle (left) and tangent plane to a sphere
(right).

We see that, while S1 and S2 are manifolds of dimension 1 and 2, respectively, the tangent
line to a point of S1 and the tangent plane to a point of S2 live in R2 and R3, respectively.
While this may not be a problem for manifolds naturally embedded in Rn`1 as the sphere
Sn, for a generic abstract manifold2 M of dimension n it is desirable to have an intrinsic
definition of tangent vector and space, that does not make use of a larger structure.

It turns out that manifold-valued paths are exactly what we need to provide such an
intrinsic definition.

Given a path γ passing through p PM , the tangent vector to γ in p, i.e. the velocity at
which γ passes through p, will be also tangent to M at p, since the image of γ lies in M , as
shown in the picture below.

To make this intuition precise, we must first define what the tangent vector to a path in M
is. As always, since we know how to compute the tangent vector of a path in the local model
Rn, we can consider any local chart pU,ϕq in p and build a path in Rn simply by composing γ
with ϕ|γp´ε,εqXU , that we will still denote with ϕ for simplicity:

ϕ ˝ γ : p´ε, εq ÝÑ Rn
t ÞÝÑ pϕ ˝ γqptq,

2By Whitney’s embedding theorem [10], every n-dimensional manifold M can be embedded in R2n`1,
however, the fact that this embedding exists, does not mean that it is convenient to think about M as an
embedded submanifold of R2n`1. For example, in general relativity, spacetime is a 4-dimensional manifold and
it meaningless to embed it into R9 . . .
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since pϕ ˝ γqp0q “ ϕppq “ x P Rn, ϕ ˝ γ is a path in Rn passing through x “ ϕppq.
Using the standard definition of calculus, the tangent vector to the curve ϕ ˝ γ at x is:

pϕ ˝ γq
‚

p0q :“
pϕ ˝ γqptq ´ pϕ ˝ γqp0q

t
”

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

pϕ ˝ γqptq.

Of course, in general, there may be other curves passing through p with the property that
their local representations via ϕ have the same tangent vector as γ.

The following basic lemma shows that, remarkably, if the local representations any two
curves passing through p have the same tangent vector in Rn w.r.t. a given local chart in p,
then this holds for any other local chart in p.

Lemma 2.1.1 Let pUα, ϕαq, pUβ, ϕβq be two overlapping charts in p and γ, σ two paths passing
through p. Define:

γα :“ ϕα ˝ γ, γβ :“ ϕβ ˝ γ and σα :“ ϕα ˝ σ, σβ :“ ϕβ ˝ σ.

Then:
9γαp0q “ 9σαp0q ðñ 9γβp0q “ 9σβp0q.

Proof. With the notations of the Lemma we have:

9γβp0q “ pϕβ ˝ γq
‚

p0q “ pϕβ ˝ ϕ
´1
α ˝ ϕα ˝ γq

‚

p0q “ pηβα ˝ γαq
‚

p0q,

where ηβα is the (smooth) transition function between charts. Thanks to eq. (B.7) we have:

9γβp0q “ Dpηβα ˝ γαqp0q1 “
(chain rule)

Dηβαpγαp0qqDγαp0q1 “ Dηβαpxq 9γαp0q. (2.1)

Of course, the same holds for the path η, i.e. 9σβp0q “ Dηβαpxq 9σαp0q. By the linearity of the
operator Dηβαpxq, it follows that:

9γβp0q ´ 9σβp0q “ Dηβαpxqp 9γαp0q ´ 9σαp0qq.

Now, ηβα is a local diffeomorphism, thus Dηβαpxq is a linear isomorphism (the Jacobian matrix
of ηβα in x has non null determinant), thus 9γαp0q ´ 9σαp0q “ 0 if and only if 9γβp0q ´ 9σβp0q “ 0,
which proves the theorem. 2
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This lemma implies that the equality of the tangent vector in Rn for the local representation
of two curves in M passing through the same point is an intrinsic property of the manifold
M , meaning that it does not depend on the local chart chosen. This property allows us to
define an equivalence relationship in the set of curves and also the first, geometric, definition
of tangent vector to a manifold at a certain point.

Def. 2.1.1 (Tangentially equivalent, or tangent, curves) Let M be an n-dimensional
manifold and p PM fixed. Two paths γ, σ in M passing through p are tangent, or tangentially
equivalent, if they identify the same tangent vector in Rn when composed with any local chart
ϕ in p, i.e.

pϕ ˝ γq
‚

p0q “ pϕ ˝ σq
‚

p0q.

Being defined via an equality, the fact of being tangentially equivalent is easily seen to be
indeed an equivalence relationship in the set of curves in M passing through p.

Def. 2.1.2 (Geometric tangent vectors and tangent space to M at p) A (geometric)
tangent vector to M at p is a tangentially equivalence class of curves passing through p, denoted
with rγs. The (geometric) tangent space to M at p, denoted with T geom

p M is the set of all
tangent vectors to M at p.

Remark: a slightly different definition of tangent vector can be obtained in a similar manner,
replacing the local charts with smooth scalar functions, in this case we define two paths γ and
η to be equivalent if, for all f P C8pMq, pf ˝ γq‚p0q “ pf ˝ σq‚p0q, where both f ˝ γ and f ˝ σ
are scalar functions of a real variable. In this case we say that γ and η have a contact of
first order in p (a contact of order zero being simply the fact that the pass through the
same point, i.e. γp0q “ ηp0q “ p).

The set of curves in M passing through p quotiented w.r.t. the tangential equivalence
turns out to be a copy of Rn, as stated in the following result.

Theorem 2.1.1 Fixed a local chart pU,ϕq in p PM , the map

Ip,ϕ : T geom
p M

„
ÝÑ Rn

rγs ÞÝÑ Ip,ϕprγsq “ pϕ ˝ γq
‚

p0q,

which associates to a tangentially equivalence class of paths passing through p their common
tangent vector pϕ ˝ γq‚p0q in Rn w.r.t. the local chart ϕ, is a bijection.

Proof. Injectivity is obvious: different tangential classes of curves are associated to different
tangent vectors in Rn.

To prove surjectivity, fixed any v P Rn, we must prove that there exists rγs P T geom
p M such

that Ip,ϕprγsq “ pϕ˝γq
‚

p0q “ v. This can be done very simply by transporting to M via ϕ´1 the
segment of straight line passing through x “ ϕppq and directed as v, i.e. rx,v|p´ε,εq : RÑ Rn,

rx,vptq :“ x` tv, where ε ą 0 is small enough so that rx,vp´ε, εq is contained in ϕpUq:

γ “ ϕ´1 ˝ rx,v|p´ε,εq : p´ε, εq ÑM, γptq “ ϕ´1px` tvq , t P p´ε, εq. (2.2)
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γ is such that γp0q “ ϕ´1 ˝ rx,v|p´ε,εq p0q “ ϕ´1pxq “ ϕ´1pϕppqq “ p, hence, to prove
surjectivity it remains only to check that the tangent vector in Rn of the local representation
of γ associated to ϕ, i.e. pϕ ˝ γq‚p0q, coincides with v:

Ip,ϕprγsq “ pϕ ˝ γq
‚

p0q “ pϕ ˝ ϕ´1px` tvqq
‚

p0q “ px` tvq
‚

p0q “ v.

2

T geom
p M cannot be canonically identified with Rn because Ip,ϕ depends both on the point

p and the local chart ϕ: changing the point p on M and/or the local chart ϕ changes the
identification with Rn.

Since the elements of T geom
p M are called tangent vectors, we expect T geom

p M to be a vector
space, this is actually the case. The linear structure of T geom

p M is borrowed from that of Rn
thanks to the bijection provided by Ip,ϕ.

Linear structure of T geom
p M :

rγs ` rσs :“ I´1
p,ϕpIp,ϕprγsq ` Ip,ϕprσsqq, rγs, rσs P T geom

p M

krγs :“ I´1
p,ϕpkIp,ϕprγsqq, k P R.

This definition of linear structure seems to depend on ϕ, however it does not, it is intrinsic.
We prove this for the sum, an analogous proof holds for the product by a real coefficient.

Using the hypotheses and notations of Lemma 2.1.1, we have:

Ip,ϕβ prγsq “ 9γβp0q “
p2.1q

Dηβαpxq 9γαp0q “ pDηβαpxq ˝ Iϕα,pqprγsq,

since this holds for all rγs P T geom
p M , we have:

Ip,ϕβ “ Dηβαpxq ˝ Iϕα,p ðñ I´1
p,ϕβ

“ I´1
ϕα,p ˝ pDηβαpxqq

´1, x “ ϕαppq. (2.3)

If we denote temporarily with `α and `β the sum brought to T geom
p M by the local charts ϕα

and ϕβ, respectively, then:

rγs `β rσs “ I´1
p,ϕβ

pIp,ϕβ prγsq ` Ip,ϕβ prσsqq

“
p2.3q

I´1
ϕα,p ˝ pDηβαpxqq

´1ppDηβαpxq ˝ Iϕα,pqprγsq ` pDpηβαpxqq ˝ Iϕα,pqprσsqq

“
plin. of Dηβαpxq

pI´1
ϕα,p ˝ pDηβαpxqq

´1 ˝DηβαpxqqpIϕα,pprγsq ` Iϕα,pprσsqq

“ I´1
ϕα,ppIϕα,pprγsq ` Iϕα,pprσsqq

“ rγs `α rσs.

The bijection Ip,ϕ becomes a linear isomorphism between T geom
p M and Rn and thus it can

be used to transport a basis of Rn to a basis of T geom
p M . The easiest one is of course the

canonical basis of Rn, thanks to the proof of the surjectivity of Ip,ϕ, we have that the basis of
geometric tangent vectors of T geom

p M associated to the canonical basis of Rn is:

´

rϕ´1 ˝ rx,e1 |p´ε,εqs, . . . , rϕ
´1 ˝ rx,en |p´ε,εqs

¯

”
`

rt ÞÑ ϕ´1px` te1qs, . . . , rt ÞÑ ϕ´1px` tenqs
˘

,

(2.4)
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where ϕ is any local chart in p and rx,ei |p´ε,εq : p´ε, εq Ñ Rn is the straight line segment passing

through x “ ϕppq, contained in ϕpUq and parallel to the i-th coordinate axis, i “ 1, . . . , n.
Finally, Ip,ϕ can be used also to transport any norm of Rn to T geom

p M . In this case, the
norm on T geom

p M depends on ϕ, however, topologically speaking, this creates no problem at
all because it is well-known that all norms on finite-dimensional vector spaces are equivalent,
in particular, they are equivalent to the Euclidean norm.

To resume, T geom
p M is a normed vector space isomorphic to a copy of Rn but

not canonically.
Before passing to the algebraic definition of tangent vectors and tangent space, we introduce

the concept of differential of push forward of a geometric tangent vector.

Def. 2.1.3 (Differential (or push-forward, or tangent map) of a smooth function)
Given the smooth function f : M Ñ N , the differential (or push forward, or tangent map) of
f at p is the map that transforms a tangentially equivalence class of paths passing through p
to a tangentially equivalence class of paths passing through fppq simply by composition, i.e. :

dfp ” f˚ : T geom
p M ÝÑ T geom

fppq N

rγs ÞÝÑ dfpprγsq ” f˚prγsq “ rf ˝ γs.
(2.5)

With a quite technical computation that uses the definition of the linear structure of T geom
p M ,

it can be proven that dfp is a linear operator. The non manifestly linear nature of T geom
p M and

of the differential of geometric tangent vectors is one of the main reasons why mathematicians
searched for an alternative definition, the algebraic one, which makes linearity manifest, as we
are going to discuss in the next section.

2.2 Algebraic definition of tangent vectors

The link between the geometric and algebraic definition of tangent vectors on a manifold
passes through the following considerations. An element of Rn can be interpreted either as a
point, say x P Rn, and as a vector v P Rn, once these ones are fixed, there is just one way to
define the directional derivative Dvfpxq of a scalar valued function f : Rn Ñ R in x along the
direction defined by v, as discussed in Appendix B.

Directional derivatives are linear, they satisfy Leibniz’s rule when applied to the product of
two functions and they are null when a function is constant along the direction of derivation.

It turns out that these properties are necessary and sufficient to identify a tangent vector on
a manifold in an algebraic way. This alternative vision, as it will be proven, is fully equivalent
to the geometric one previously discussed.

This algebraic abstraction of a tangent vector is typical in modern mathematics and it can
be considered as the analogous of the algebraic abstraction that leads to the definition of scalar
product in an arbitrary vector space: in that case, the properties of bilinearity, symmetry and
positive-definiteness are necessary and sufficient to identify a form on a real vector space as a
scalar product. The advantages of this abstractions are known, e.g. the possibility to define
a scalar product for vector spaces of any dimension and whose elements are not necessarily
vectors in the Euclidean sense, but also polynomials, functions and so on.

The algebraic abstraction of the concept of tangent vector starts with the definition of
a derivation on the set of smooth real scalar functions from M to R, denoted with C8pMq,
in a point p P M . C8pMq is a real algebra w.r.t. the point-wise linear operations and
multiplication.
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Def. 2.2.1 (Derivation on C8pMq in a point) Let f, g P C8pMq. Fixed p PM , a deriva-
tion on C8pMq in p P M is a linear functional v : C8pMq Ñ R that satisfies the following
Leibniz rule:

vpfgq “ fppqvpgq ` gppqvpfq , @f, g P C8pMq.

The set of derivations on C8pMq in p P M is easily proven to be a real vector space, w.r.t.
the point-wise linear operations, that we denote with DerppMq.

The Leibniz rule implies two basic properties of derivations.

Lemma 2.2.1 Let v P DerppMq and f, g P C8pMq. Then:

1. v sets to 0 constant functions: if kc ” c, i.e. kcpqq “ c P R for all q PM , then vpkcq “ 0;

2. If f, g take null values in the application point p, i.e. fppq “ gppq “ 0, then vpfgq “ 0.

Proof.

1.: let k1 ” 1, then:

vpkcq “ vpkck1q “ vpck1q “
v lin.

cvpk1q “ cvpk1 ¨ k1q “
Leibniz

cpk1ppqvpk1q ` k1ppqvpk1qq

“ 2cvpk1q “ 2vpck1q “ 2vpkcq,

i.e. vpkcq “ 0.

2.: vpfgq “ fppqvpgq ` gppqvpfq “ 0vpgq ` 0vpfq “ 0. 2

The following property is of fundamental importance: it says that derivations act locally,
in the sense that only the values taken by a smooth function on an arbitrarily small open
neighborhood of the application point matter to define the action of the derivation.

Theorem 2.2.1 Let v P DerppMq and f, g P C8pMq. If there exists any open neighborhood
U ĎM of p such that f |U “ g|U , then vpfq “ vpgq.

Proof. By hypothesis, f ´ g is a smooth function on M that vanishes in U . Thanks to
proposition 1.5.1, we know that it exists a smooth function h P C8pMq such that hppq “ 1 and
h|MzU ” 0, then the product function pf ´ gqh is zero, thus, thanks to the Leibniz property:

0 “ vppf ´ gqhq “ vpf ´ gq��
�*1

hppq ` pf ´ gqppqvphq “ vpfq ´ vpgq `
���

���
�:0

pfppq ´ gppqq vphq,

i.e. vpfq “ vpgq. 2

We are now ready to define the concept of algebraic tangent vector.

Def. 2.2.2 (Algebraic tangent vector and space) The vector space T alg
p M , called alge-

braic tangent space to the manifold M at the point p P M , is the vector space DerppMq of
derivations on C8pMq in p PM :

T alg
p M :“ DerppMq .

An element of T alg
p M , i.e. a derivation on C8pMq in p P M , will be called an algebraic

tangent vector to M in p.
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v is a linear functional, i.e. v P C8pMq˚, the dual space of C8pMq (interpreted as a real
vector space). C8pMq˚ is an infinite-dimensional vector space, however, as we will show,
the Leibniz property is such a strong constraint to be satisfied that the linear functionals
that satisfy it, i.e. those composing the subspace DerppMq Ă C8pMq˚, form a n-dimensional
vector space, n being the dimension of M .

When we have discussed the case of geometric tangent vectors, we have proven an analogous
dimensional reduction, in that case it was operated by the quotient w.r.t. the tangential
equivalence between paths on the set of paths in M passing through a point. This is a first
indication of the fact that geometric and algebraic tangent vectors are equivalent concepts.

Proving that the algebraic tangent space to a manifold at a point is a n-dimensional vector
space is more difficult than for its geometric counterpart. Multiple proofs are available in
the literature, the line of reasoning that we have chosen to follow in this document is not the
shortest, but it has the advantage that the intermediate steps are fairly easy to prove:

1. first of all, we prove the result in the trivial case of M “ Rn;

2. then, we define the algebraic version of the differential (or push-forward) of a smooth
function and analyze its remarkable properties;

3. by fusing the previous steps, the proof that T alg
p M is (not canonically) isomorphic to Rn

will be almost immediate.

To prove that the algebraic tangent space to Rn, or an open subset of Rn, at a point x0 is
isomorphic to a copy of Rn, we need the following intermediate result, which says that every
smooth function f on Rn is associated to a n-tuple of smooth functions that coincide with the
partial derivatives of f in x0 and, moreover, this n-tuple of smooth functions allows for a sort
of first order expansion of f in a sufficiently small open neighborhood of x0.

Lemma 2.2.2 Let x0 “ px1
0, . . . , x

n
0 q P Rn and f P C8pMq, then there exist n smooth

functions g1, . . . , gn P C8pV q, where V is an open neighborhood V of x0, such that:

gjpx0q “
Bf

Bxj
px0q

and

fpxq “ fpx0q `

n
ÿ

j“1

pxj ´ xj0qgjpxq,

for all x P V .

Proof. V can be considered as star-shaped, i.e. the straight line segment between x0 and
x P V defined by x0 ` tpx´ x0q for all t P r0, 1s is entirely included in V ; if it is not, then we
can restrict it to a star-shaped open subset of Rn and work on this new neighborhood of x0.
Thanks to this remark, the expression fpx0 ` tpx´ x0qq is well-defined for all x P V and we
can re-write the difference fpxq ´ fpx0q as follows:

fpxq ´ fpx0q “ rfpx0 ` tpx´ x0qqs
t“1
t“0 “

ż 1

0
dpfpx0 ` tpx´ x0qqq,
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thanks to the fundamental theorem of integral calculus. On the other side we have

ż 1

0
dpfpx0 ` tpx´ x0qqq “

ż 1

0

B

Bt
fpx0 ` tpx´ x0qqdt,

we can expand the derivative under the integral by using the chain rule:

B

Bt
fpx0`tpx´x0qq “

n
ÿ

j“1

Bf

Bxj
px0`tpx´x0qq

Bpx0 ` tpx
j ´ x0qq

Bt
“

n
ÿ

j“1

Bf

Bxj
px0`tpx´x0qqpx

j´x0q

so that

fpxq´ fpx0q “

ż 1

0

n
ÿ

j“1

Bf

Bxj
px0` tpx´x0qqpx

j ´x0qdt “
n
ÿ

j“1

pxj ´x0q

ż 1

0

Bf

Bxj
px0` tpx´x0qqdt.

Since f is smooth, the integral exists and it is finite, and (since integration increases of one
degree the regularity of the integrand) the functions gj defined as follows:

gjpxq “

ż 1

0

Bf

Bxj
px0 ` tpx´ x0qqdt, @x P V,

are smooth on V . Each gj verifies both fpxq “ fpx0q `
n
ř

j“1
pxj ´ x0qgjpxq and

gpx0q “

ż 1

0

Bf

Bxj
px0 ` tpx0 ´ x0qqdt “

ż 1

0

Bf

Bxj
px0qdt “

Bf

Bxj
px0q

ż 1

0
dt “

Bf

Bxj
px0q,

thus proving the lemma. 2

Theorem 2.2.2 Let V Ď Rn be an open set and x0 P V , then the following map is an
isomorphism of vector spaces:

ι : Rn „
ÝÑ T alg

x0 V

v “ pvjq ÞÝÑ ιpvq :“
n
ř

j“1
vj B

Bxj

ˇ

ˇ

x0
” Dv|x0 ,

where the derivation Dv|x0 : C8pV q Ñ R is nothing but the linear functional on C8pV q that,
when applied to a smooth scalar function f on V , provides its directional derivative along v in
x0:

Dv|x0 pfq “ Dvfpx0q “

n
ÿ

j“1

vj
Bf

Bxj
px0q.

In particular, T alg
x0 V is a n-dimensional vector space.

Proof. The fact that ι is linear can be checked directly and it follows from the linearity of the
operations involved in its definition.

ι is one-to-one: since ι is linear, to prove that it is injective we simply have to check that
kerpιq “ t0Rnu. For that, it is sufficient to show that, if v “ pvjq ‰ 0Rn , i.e. at least one
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component is non null, say, vk ‰ 0, then the corresponding derivation ιpvq is not the null
derivation, i.e. the derivation that sets all smooth scalar functions on V to 0.

To verify that, it is enough to consider the k-th canonical element of the dual basis of Rn,
i.e. εk : V Ñ R, εkpxq :“ xk. Of course εk P C8pV q because the projection on the k-th axis is
smooth, so we can apply ιpvq to it, obtaining:

ιpvqpεkq :“
n
ÿ

j“1

vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

x0

εk “
n
ÿ

j“1

vj
Bεkpx0q

Bxj
“

n
ÿ

j“1

vj
Bxk0
Bxj

“

n
ÿ

j“1

vjδkj “ vk ‰ 0,

and so ι is one-to-one (note that x0 is not a constant, but a variable, for this reason
Bxk0
Bxj

“ δjk).

ι is onto: we must show that, for every D P DerppV q, it exists a vector v “ pvjq P Rn such that

D “ ιpvq “
n
ř

j“1
vj B

Bxj

ˇ

ˇ

x0
. To this aim, we use the previous lemma, expanding an arbitrary

f P C8pV q as follows:

fpxq “ fpx0q `

n
ÿ

j“1

pxj ´ xj0qgjpxq

in a neighborhood of x0 inside V . This expression can be re-written as a functional equation,
namely:

f “ kfpx0q `
n
ÿ

j“1

pεj ´ k
xj0
qgj ,

where kfpx0qpxq ” fpx0q and k
xj0
pxq ” xj0 are constant functions, and εjpxq “ xj . Applying

D on f we get, by linearity, Dpfq “ ���
���: 0

Dpkfpx0qq `
n
ř

j“1
D
´

pεj ´ k
xj0
qgj

¯

, having used the fact

that a derivation sets to 0 constant functions. Now, by using Leibniz’s rule:

Dpfq “
n
ÿ

j“1

„

Dpεj ´ k
xj0
qgjpx0q `

��
���

���:0
pεj ´ k

xj0
qpx0q Dgj



,

where the second term between square brackets vanishes because pεj ´ k
xj0
qpx0q “ εjpx0q ´

k
xj0
px0q “ xj0´x

j
0 “ 0. So, using again the linearity of D, the nullification of constant functions

and the fact that gjpx0q “
Bf
Bxj
px0q (thanks to the previous lemma), we have:

Dpfq “
n
ÿ

j“1

pDpεjq ´
��

��*
0

Dpk
xj0
q qgjpx0q “

n
ÿ

j“1

Dpεjqgjpx0q “

n
ÿ

j“1

Dpεjq
Bf

Bxj
px0q,

since f is arbitrary, we can write D “
n
ř

j“1
Dpεjq B

Bxj

ˇ

ˇ

x0
, thus, to obtain D “ ιpvq we simply

have to consider the vector v “ pvjq P Rn whose components satisfy:

vj :“ Dpεjq , j “ 1, . . . , n. (2.6)

2
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Corollary 2.2.1 For any fixed x0 P Rn, the n derivations on C8pRnq given by

˜

B

Bx1

ˇ

ˇ

ˇ

ˇ

x0

, . . . ,
B

Bxn

ˇ

ˇ

ˇ

ˇ

x0

¸

”
`

De1 |x0 , . . . , Den |x0

˘

form a basis of T alg
x0 Rn.

Proof. Almost immediate: since the linear isomorphism ι of the previous theorem maps
basis to basis, if we apply it to pe1, . . . , enq, the canonical basis of Rn, we obtain a basis of

T alg
x0 Rn. Since the components of the canonical basis elements are all 0 except for only one,

the images of pe1, . . . , enq are exactly the evaluation in x0 of the directional derivatives along
each Cartesian axis, i.e. evx0 ˝

B
Bxj

” B
Bxj

ˇ

ˇ

x0
, j “ 1, . . . , n. 2

2.2.1 The (algebraic) differential of a smooth function between manifolds

As we have already seen in the case of geometric tangent vectors, every smooth map f between
manifolds M and N can be ‘lifted’ to a linear map between the tangent spaces of M and N
called either differential, tangent map or (point-wise) push forward.

Here we provide the definition of differential when the tangent spaces are defined alge-
braically. Its properties will prove to be of fundamental importance.

Def. 2.2.3 (Differential of a smooth function ´ algebraic case) Let f : M Ñ N be a
smooth function and p PM , the differential of f in p is the linear function defined in this way:

dfp : T alg
p M ÝÑ T alg

fppqN

v ÞÝÑ dfppvq,

where dfppvq is the derivation at fppq defined as follows:

dfppvq : C8pNq ÝÑ R
φ ÞÝÑ dfppvqpφq “ vpφ ˝ fq .

(2.7)

The composition between a scalar function with a map between manifolds appears often in
differential geometry, for this reason it bears a special name and symbol.

Def. 2.2.4 (Pull-back of scalar functions) Let f : M Ñ N be a smooth function and
φ : N Ñ R a scalar function on N . Then, we can define a scalar function on M simply by
composition with f :

f˚ : C8pNq ÝÑ C8pMq

φ ÞÝÑ f˚pφq “ φ ˝ f .

f˚ is called the pull-back via f because it pulls-back a scalar function on N , the codomain of
f , to a scalar function on M , the domain of f . Of course, pidM q

˚pφq “ φ for all φ P C8pMq,
so:

pidM q
˚pφq “ idC8pMq. (2.8)
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Note that, if f P C8pM,Nq, g P C8pN,P q and φ P C8pP q, then pg ˝ fq˚pφq :“ φ ˝ pg ˝ fq,
but pf˚ ˝ g˚qpφq “ f˚pg˚pφqq “ f˚pφ ˝ gq “ φ ˝ pg ˝ fq, thus

pg ˝ fq˚ “ f˚ ˝ g˚ . (2.9)

When using the pull-back, the differential of a smooth map becomes:

dfppvqpφq “ pv ˝ f
˚qpφq ðñ dfppvqpφq “ vpf˚pφqq, @φ P C8pNq,

or, since the previous equation holds for every φ P C8pNq,

dfppvq “ v ˝ f˚ ðñ dfppvq “ vpf˚q. (2.10)

If we use the push forward notation (in which the point p is omitted) to push a tangent vector
to M at p towards a tangent vector to N at fppq, then we get the evocative expression below:

f˚ : T alg
p M ÝÑ T alg

fppqN

v ÞÝÑ f˚pvq “ vpf˚q .

The principal properties of the differential are listed in the following proposition.

Theorem 2.2.3 (Properties of the differential) For all p P M the following properties
hold.

1. dpidM qp “ id
T alg
p M

;

2. Chain rule for differential: if f P C8pM,Nq and g P C8pN,P q, then the differential

of the composed function g ˝ f : M Ñ P is the linear map dpg ˝ fqp : T alg
p M Ñ T alg

gpfppqqP

such that:
dpg ˝ fqp “ dgfppq ˝ dfp.

3. If U ĎM is an open set containing p and ι : U ãÑM is the canonical inclusion in M ,
then dιp : T alg

p U Ñ T alg
p M is a canonical linear isomorphism.

4. If f is a local diffeomorphism defined on an open subset U ĎM with values in fpUq Ď N ,

then dfp : T alg
p M Ñ T alg

fppqN is a (globally defined) linear isomorphism and

pdfpq
´1 “ dpf´1qfppq. (2.11)

Proof.

1. By (2.10) we get dpidM qppvq “ v ˝ pidM q
˚ for all v P T alg

p M , moreover, thanks to (2.8) we
have pidM q

˚ “ idC8pMq, thus dpidM qppvq “ v, i.e. dpidM qp “ id
T alg
p M

.

2. Let v P T alg
p M , arbitrary, then:

dpg ˝ fqppvq “
p2.10q

v ˝ pg ˝ fq˚ “
p2.9q

v ˝ pf˚ ˝ g˚q “ pv ˝ f˚q ˝ g˚

“
p2.10q

dfppvq ˝ g
˚ “
p2.10q

dgfppqpdfppvqq

“ pdgfppq ˝ dfpqpvq.
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3. We will prove injectivity and surjectivity of dιp.

Injectivity: we must show that the kernel of the linear map dιp is reduced to the zero derivation.

For that, let us consider an arbitrary v P T alg
p U and suppose that dιppvq “ 0, we must show

that this implies v “ 0. To this aim, let B be an open neighborhood of p such that B Ď U ,
then the extension theorem for smooth function (th. 1.5.2) assures us that any f P C8pUq

can be extended to f̃ P C8pMq in such a way that f̃
ˇ

ˇ

ˇ

B
” f |B. This implies that f and f̃

ˇ

ˇ

ˇ

U
are smooth functions on U that agree on B, which is an open neighborhood of p, but then

theorem 2.2.1 implies vpfq “ vp f̃
ˇ

ˇ

ˇ

U
q. Now, f̃

ˇ

ˇ

ˇ

U
is nothing but f̃ ˝ ι, so

vpfq “ vpf̃ ˝ ιq “
p2.7q

dιppvqpf̃q “ 0,

because, by hypothesis, dιppvq “ 0, the null derivation. Since f P C8pUq is arbitrary, v “ 0
and so dιp is injective.

Surjectivity: consider an arbitrary w P T alg
p M , we must prove that it exists v P T alg

p U such

that w “ dιppvq. We define such derivation as follows: vpfq :“ wpf̃q where f̃ in any smooth

function on M such that f̃
ˇ

ˇ

ˇ

B
“ f |B.

Thanks to theorem 2.2.1, this definition of v does not depend on the choice of f̃ and it
is of course a derivation of C8pUq at p, thanks to the fact that w is linear and verifies the
Leibniz rule. Finally, fixed any arbitrary function g P C8pMq, we have that g, g ˝ ι and Ąg ˝ ι
agree on B, thus:

dιppvqpgq “
p2.7q

vpg ˝ ιq :“ wpĄg ˝ ιq “ wpgq,

since g is arbitrary, we have that w “ dιppvq and so dιp is also surjective.

4. It is an easy consequence of the previous points. In fact, if f is a local diffeomorphism
between U and fpUq, then it exists f´1 : fpUq Ñ U , such that f´1 ˝ f “ idU , thus:

dpidU qp “ dpf´1 ˝ fqp “
p2.q

dpf´1qfppq ˝ dfp.

On the other side, thanks to 1., dpidU qp “ id
T alg
p U

and, thanks to 3., T alg
p U – T alg

p M , thus

dpidU qp “ id
T alg
p M

. So, equating the two expressions for dpidU qp that we have determined, we

find dpf´1qfppq ˝ dfp “ id
T alg
p M

. Exchanging f with f´1 we get, with analogous considerations,

dfp ˝ dpf
´1qfppq “ id

T alg
p N

, thus proving 4. 2

Property 3. allows us to identify in a canonical way the tangent space at a point to an
open neighborhood of p with the tangent space at the same point to the whole manifold: the
derivation dιppvq is the same derivation as v in p acting on smooth scalar functions defined on
the whole manifold M instead of those defined on U .

This is not surprising at all, since, as proven in proposition 2.2.1, the action of a derivation
in a given point on a scalar function depends only on the values of the function in an arbitrarily
small neighborhood of that point. From now on, we will implicitly accept the following natural
identification:

T alg
p U – T alg

p M U ĎM, U open.
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As previously stated, thanks to T alg
x Rn – Rn for all x P Rn and to the properties of

the differential, we can very easily prove the isomorphism between T alg
p M and Rn just by

considering the differential of an arbitrary chart map.

Theorem 2.2.4 If M is a manifold of dimension n, then, fixed any p P M , it exists a
non-canonical linear isomorphism of vector spaces such that:

T alg
p M – Rn

so, in particular, dimpT alg
p Mq “ n.

Proof. If pU,ϕq is an arbitrary chart in p such that ϕppq “ x, then ϕ : U ĎM Ñ ϕpUq Ď Rn

is a local diffeomorphism. By property 4. of the differential, dϕp : T alg
p M Ñ T alg

x Rn is a
linear isomorphism of vector spaces. Since this isomorphism depends on the chart ϕ, it is not
canonical. 2

2.2.2 A basis for T alg
p M

Since T alg
p M is a n-dimensional vector space, it is natural to search for an explicit basis of

tangent vectors.
In proposition 2.2.1 we have seen that, in the identification between Rn and T alg

x Rn, the
canonical basis of Rn is identified with the basis of evaluations in x of the partial derivatives:

Rn „
ÝÑ T alg

x Rn

pe1, . . . , enq ÐÑ

´

B
Bx1

ˇ

ˇ

x
, . . . , B

Bxn

ˇ

ˇ

x

¯

.

Now, once selected a point p P M and a local chart pU,ϕq in p such that ϕppq “ x P Rn,

we have just seen that the differential of ϕ in p is a linear isomorphism between T alg
p M and

T alg
p Rn – Rn, thus its inverse pdϕpq

´1 : T alg
p Rn – Rn Ñ T alg

p M is a linear isomorphism too
and, as such, it maps bases to bases.

As a consequence, we can use pdϕpq
´1 to transport the canonical basis of Rn

(or, equivalently, the basis of T alg
x Rn given by the evaluations in x of the partial

derivatives) to a basis of T alg
p M .

So, for all j “ 1, . . . , n:

pdϕpq
´1 : Rn – T alg

x Rn „
ÝÑ T alg

p M

pejq –
´

B
Bxj

ˇ

ˇ

x

¯

ÐÑ pdϕpq
´1

´

B
Bxj

ˇ

ˇ

x

¯

,

the explicit action of the derivation pdϕpq
´1

´

B
Bxj

ˇ

ˇ

x

¯

on an arbitrary smooth scalar function

f P C8pMq can be computed thanks to eq. (2.11), that in this case gives pdϕpq
´1 “

dpϕ´1qϕppq “ dpϕ´1qx, so that:

pdϕpq
´1

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

pfq “ dpϕ´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

pfq :“
B

Bxj

ˇ

ˇ

ˇ

ˇ

x

pf ˝ ϕ´1q ”
Bpf ˝ ϕ´1q

Bxj
pxq,

54



but f ˝ ϕ´1 : ϕpUq Ď Rn Ñ R is nothing but the local expression of f w.r.t. the chart

pU,ϕq and the real numbers Bpf˝ϕ´1q

Bxj
pxq, j “ 1, . . . , n, represent the value of the directional

derivatives of f ˝ ϕ´1 in the point x P Rn along the unit canonical basis vectors ej of Rn.

The derivations pdϕpq
´1

´

B
Bxj

ˇ

ˇ

x

¯n

j“1
constitute a basis of T alg

p M and, to simplify the heavy

notation, they are usually written as follows:

Bj |p ”
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

“ pdϕpq
´1

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

“ dpϕ´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

, x “ ϕppq. (2.12)

We resume what just discussed in the following theorem.

Theorem 2.2.5 (Coordinate tangent vectors to M at p) Fixed p PM and a local chart

pU,ϕq in it such that ϕppq “ x, the derivations of T alg
p M given by pBj |pq

n
j“1, or

´

B
Bxj

ˇ

ˇ

p

¯n

j“1
,

defined by:
Bj |p : C8pMq ÝÑ R

f ÞÝÑ Bj |p pfq “
Bpf ˝ ϕ´1q

Bxj
pxq ,

(2.13)

or,
B
Bxj

ˇ

ˇ

p
: C8pMq ÝÑ R

f ÞÝÑ
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

pfq “
Bpf ˝ ϕ´1q

Bxj
pxq .

(2.14)

form a basis of T alg
p M . They are called coordinate tangent vectors to M at p.

Both notations are further simplified by writing:

Bj |p pfq ” Bjf |p “
Bpf ˝ ϕ´1q

Bxj
pxq and

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

pfq ”
Bf

Bxj

ˇ

ˇ

ˇ

ˇ

p

“
Bpf ˝ ϕ´1q

Bxj
pxq.

We remark again that the real value obtained by applying th j-th coordinate tangent
vector to M at p on a smooth function f on M is just the value of the partial
derivative of the local expression of f (and not of f itself!) along the j-th axis in
x “ ϕppq.

This is the reason why the expression Bf
Bxj

ˇ

ˇ

ˇ

p
must not not be intepreted as the partial

derivative of f in p in the usual sense, because f is defined on M , not on Rn! The

notation Bjf |p may be used to avoid this misinterpretation, however, the notation Bf
Bxj

ˇ

ˇ

ˇ

p
has

the advantage to make the chain rule ‘visually easier’ to handle, as we will see later.

The basis of coordinate tangent vectors will be the key to understand the link between
the algebraic definition of tangent vectors and the physicist’s one.

Remark: the derivations pB1|p , . . . , Bn|pq are defined by applying the linear isomorphism

pdϕpq
´1 to the canonical basis of Rn, so they cannot be considered as a canonical basis for

T alg
p M (which does not exist), because they depend on the choice of the local chart ϕ

in p! Different charts will produce, in general, different basis for T alg
p M .

Moreover, as p varies in M , the tangent spaces TpM , in spite of being isomorphic to
Rn, are not canonically isomorphic to each other and they must be considered as different
copies of Rn attached to each point p of the manifold M .
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2.2.3 Coordinate formula for the differential

Fixed a local chart pU,ϕ ” pxjqq in p P M such that ϕppq “ x, a tangent vector v P T alg
p M

can be written uniquely as a linear combination of the basis of coordinate tangent vectors as
follows:

v “ vj Bj |p ” vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

,

the real numbers vj , j “ 1, . . . , n are called the components of v on the basis of coordinate
tangent vectors of T alg

p M .
The following result establishes that the components of v characterize not only v as a

derivation belonging to T alg
p M , but also its expression in coordinates, furthermore, it gives a

simple rule to explicitly compute the components vj once the action of v on scalar functions is
known.

Theorem 2.2.6 With the notations of this section, it hold that:

T alg
p M Q v “ vj

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

ðñ dϕppvq “ vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

x

P T alg
x Rn, (2.15)

moreover, the components of v are obtained by applying the derivation v to the local coordinate
functions xj “ εj ˝ ϕ : U Ñ R, i.e.

vj “ vpxjq . (2.16)

Proof.

ùñ : let v “ vj B
Bxj

ˇ

ˇ

p
P T alg

p M , then the isomorphism dϕp allows us to obtain the

tangent vector dϕppvq P T
alg
x Rn, whose action on smooth scalar functions φ P C8pRnq is

dϕppvqpφq “ vpφ ˝ ϕq, but, by definition of differential and by linearity, we have:

dϕp

˜

vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

pφq “ vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

pφ ˝ ϕq “
p2.14q

vj
Bpφ ˝ ϕ ˝ ϕ´1q

Bxj

ˇ

ˇ

ˇ

ˇ

x

“ vj
Bφ

Bxj
pxq “ vj

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

pφq,

since this holds for all φ P C8pRnq, we have proven that v “ vj B
Bxj

ˇ

ˇ

p
P T alg

p M implies

dϕppvq “ vj B
Bxj

ˇ

ˇ

x
P T alg

x Rn.

ðù : suppose that dϕppvq “ vj B
Bxj

ˇ

ˇ

x
P T alg

x Rn, then, applying the inverse linear isomor-

phism pdϕpq
´1 “ dpϕ´1qx : T alg

x Rn Ñ T alg
p M we get:

v “ pdϕpq
´1pdϕppvqq “ vj dpϕ´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

,

i.e. for all φ P C8pUq,

vpφq “ vj dpϕ´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

pφq “
B

Bxj

ˇ

ˇ

ˇ

ˇ

x

pφ ˝ ϕ´1q “ vj
Bpφ ˝ ϕ´1q

Bxj
pxq “ “

p2.14q
vj

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

pφq,

since this holds for all φ P C8pUq, we have proven that dϕppvq “ vj B
Bxj

ˇ

ˇ

x
P T alg

x Rn implies

v “ vj B
Bxj

ˇ

ˇ

p
P T alg

p M .
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Finally, since the coefficients vj appear in two formulas, let us show (redundantly, by instruc-
tively) how to recover eq. (2.16) from both expressions. One strategy is to recall formula (2.6),
which says that the real coefficients vj are computed by applying the derivation dϕppvq to the
elements of the dual canonical basis of Rn, i.e. vj “ dϕppvqpε

jq :“ vpεj ˝ ϕq “ vpxjq.
Another strategy consists in the following brute force computation:

vpxjq “ vk
B

Bxk

ˇ

ˇ

ˇ

ˇ

p

pxjq “ vk
Bpεj ˝ ϕ ˝ ϕ´1q

Bxk
pxq “ vk

Bxj

Bxk
“ vk δjk “ vj .

2

2.2.4 Differential of scalar functions and curves

Two special cases must be examined in relation with the differential: the first is when f is a
scalar function, so that its codomain is a subset of R, the other is when f is a path, so that
its domain is a subset of R.

Differential of a scalar function

Let us start with the case of a scalar function φ P C pMq. Since φ is already a scalar function,
we do not need to resort to other auxiliary scalar functions as in definition 2.2.3 and we can
simply write:

dφp : T alg
p M ÝÑ T alg

φppqR – R
v ÞÝÑ dφppvq :“ vpφq .

(2.17)

Since T alg
φppqR is a tangent space to R at a point and vpφq is a real number, an explanation is

needed to justify the previous definition. Note that T alg
φppqR “ span

´

d
dt

ˇ

ˇ

φppq

¯

and R “ spanp1q,

thus T alg
φppq and R can be canonically identified via the following correspondence:

T alg
φppqR

„
ÝÑ R

d
dt

ˇ

ˇ

φppq
ÐÑ 1,

so:

T alg
φppqR Q vpφq

d

dt

ˇ

ˇ

ˇ

ˇ

φppq

– vpφq1 “ vpφq P R.

It is custom to avoid specifying this canonical identification and to write the differential of a
scalar function simply as in eq. (2.17).

Differential of a curve

Let us now consider γ : p´ε, εq Ñ M and t0 P p´ε, εq. This time, via the identification
R » Tt0R, we can identify t0 with d

dt

ˇ

ˇ

t0
, so that

dγt0 : T alg
t0

R – R ÝÑ T alg
γpt0q

M

t0 ”
d
dt

ˇ

ˇ

t0
ÞÝÑ dγt0p

d
dt

ˇ

ˇ

t0
q,
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where the action of dγt0p
d
dt

ˇ

ˇ

t0
q on smooth functions on M is the canonical one for the differential,

i.e.
dγt0p

d
dt

ˇ

ˇ

t0
q : C8pMq ÝÑ R

φ ÞÝÑ dγt0

´

d
dt

ˇ

ˇ

t0

¯

pφq “ d
dt

ˇ

ˇ

t0
pφ ˝ γq ” pφ ˝ γq‚pt0q.

It us common to simplify the quite heavy notation as follows:

dγt0

˜

d

dt

ˇ

ˇ

ˇ

ˇ

t0

¸

” 9γpt0q , (2.18)

so that, when it is applied to a scalar function φ P C8pMq it verifies:

9γpt0qpφq :“ pφ ˝ γq
‚

pt0q .

Def. 2.2.5 (Velocity of a curve at a point) The tangent vector 9γpt0q P T
alg
γpt0q

M is called

velocity of γ at t0.

As usual, if we want to find out the coordinate expression for 9γpt0q P T
alg
γpt0q

M , we must fix a

local chart pU,ϕ ” pxiqq in p “ γpt0q PM , such that γp´ε, εq Ď U .

Then, since 9γpt0q “ dγt0

´

d
dt

ˇ

ˇ

t0

¯

, the translation of the first equation of (2.15) and of eq.

(2.16) into the present context gives:

9γpt0q “ dγt0

˜

d

dt

ˇ

ˇ

ˇ

ˇ

t0

¸

pxjq
B

Bxj

ˇ

ˇ

ˇ

ˇ

γpt0q

,

but xj “ εj ˝ ϕ, so, by definition of differential:

dγt0

˜

d

dt

ˇ

ˇ

ˇ

ˇ

t0

¸

pxjq “
d

dt

ˇ

ˇ

ˇ

ˇ

t0

pεj ˝ ϕ ˝ γq,

we notice that ϕ˝γ : p´ε, εq Ñ Rn is a curve in Rn and εj ˝ϕ˝γ : p´ε, εq Ñ R are nothing but
its n component functions which are usually indicated with γj , thus, the coordinate expression
for the tangent vector of the curve γ in t0 is:

9γpt0q “
dγj

dt
pt0q

B

Bxj

ˇ

ˇ

ˇ

ˇ

γpt0q

, γj ” εj ˝ ϕ ˝ γ. (2.19)

We finish this section by proving a result which shows that velocity vectors behave as expected
under composition with smooth maps.

Theorem 2.2.7 (Velocity vector of a composite curve) Let f : M Ñ N be a smooth
map, γ : p´ε, εq ÑM be a smooth curve in M and f ˝ γ : p´ε, εq Ñ N the composite curve in
N . The velocity vector of f ˝ γ at any t0 P p´ε, εq satisfies:

pf ˝ γq
‚

pt0q “ dfγpt0qp 9γpt0qq.
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Proof. By definition of velocity vector and thanks to the chain rule for the differential we have:

pf ˝ γq
‚

pt0q “ dpf ˝ γqt0

˜

d

dt

ˇ

ˇ

ˇ

ˇ

t0

¸

“ dfγpt0q ˝ dγt0

˜

d

dt

ˇ

ˇ

ˇ

ˇ

t0

¸

“ dfγpt0qp 9γpt0qq.

2

This seemingly innocent result has a very useful consequence: from left to right, it tells
us how to compute the velocity vector of a composite curve via the differential. But, if read
the other way round, it allows us to compute the differential of a function in terms
of the velocity vector of a curve! Let us see under which condition this is true: given
a smooth function f : M Ñ N and a point p P M , to compute dfppvq, v P T

alg
p M with this

technique we need a curve γ such that γp0q “ p and 9γp0q “ v.
If such γ exists then, by using the previous result, the computation of the differential of f

in p can be performed in terms of velocity vector of the composite curve f ˝ γ as follows:

dfppvq “ pf ˝ γq
‚

p0q, v “ 9γp0q. (2.20)

Actually, we are going to prove that the condition that we have pointed out is always verified.
This result has a major importance also because it provides the bridge between the geometric
and the algebraic definition of tangent vectors in differential geometry.

2.2.5 Equivalence between geometric and algebraic tangent vectors

We can finally prove that the definition of geometric and algebraic tangent vectors to a
manifold at a point are completely equivalent.

Theorem 2.2.8 Let p PM and let γ be a curve in M passing through p, i.e. γp0q “ p. Then,
the map

I : T geom
p M

„
ÝÑ T alg

p M
rγs ÞÝÑ Irγs :“ 9γp0q,

where 9γp0q ” dγt0

´

d
dt

ˇ

ˇ

t0

¯

is the velocity vector of any γ P rγs, is an isomorphism of vector

spaces. Thus, all tangent vectors to a manifold at a point are the velocity vector
of a curve passing through that point.

Proof. First of all, let us prove that I is well-defined. Consider γ1, γ2 P rγs, we must verify
that 9γ1p0q “ 9γ2p0q. To this aim, consider a local chart pU,ϕ ” pxjqq in p “ γp0q and the local
coordinate expressions of γ1 and γ2 given by γj1 :“ εj ˝ ϕ ˝ γ1 and γj2 :“ εj ˝ ϕ ˝ γ2. Then, by
using the coordinate expression of the velocity vector, eq. (2.19), we get:

9γ1p0q “
dγj1
dt
p0q

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

and 9γ2p0q “
dγj2
dt
p0q

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

.

γ1 and γ2 belong to the same tangentially equivalence class of curves (cfr. section 2.1), thus,

by definition, pϕ ˝ γ1q
‚

p0q “ pϕ ˝ γ2q
‚

p0q, i.e.
dγj1
dt p0q “

dγj2
dt p0q, for all j “ 1, . . . , n, since these

values are nothing but the components of pϕ ˝ γ1q
‚

p0q and pϕ ˝ γ2q
‚

p0q, respectively. It follows
that 9γ1p0q and 9γ2p0q have the same decomposition on the coordinate tangent vector basis,
hence, by the uniqueness of this decomposition, 9γ1p0q “ 9γ2p0q.
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This argument also shows that I is injective: if rγs ‰ rσs, σp0q “ p, then, by definition,
9γp0q ‰ 9σp0q. The linearity of I can be verified by direct computation and follows easily from
the linearity of 9γp0q.

The only property that remains to be checked in the surjectivity of I, i.e. that for every

v P T alg
p M , v “ vj B

Bxj

ˇ

ˇ

p
, it exists rγs P T geom

p M such that Iprγsq “ v. We have already

proven that I is well-defined, thus we can concentrate just on searching a representative curve

γ : p´ε, εq ÑM such that γp0q “ p and 9γp0q “ v, i.e. dγj

dt p0q “ vj for all j “ 1, . . . , n.
To solve this problem we take inspiration from eq. (2.2) and we define the curve

γ : p´ε, εq ÝÑ U
t ÞÝÑ γptq “ ϕ´1px` tpv1, . . . , vnqq, x “ ϕppq,

which satisfies γp0q “ p and, @t P p´ε, εq, @j “ 1, . . . , n:

γjptq “ pεj ˝ ϕ ˝ γqptq “ εjpϕpϕ´1px` tpv1, . . . , vnqqq “ εjpx` tpv1, . . . , vnqq “ xj ` tvj .

Finally, thanks to eq. (2.19), we get:

9γp0q “
dγj

dt
p0q

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

“
dpxj ` tvjq

dt
p0q

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

“ vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

“ v.

2

Starting from now, we will drop the specification ‘geom’ and ‘alg’ from the notation of
tangent space and we will write simply TpM for the tangent space to M at p.

It will be clear from the context which kind of vector we are considering and, in any case,
we know how to pass from one to the other and vice-versa. In particular, we have made
the observations that led to eq. (2.20) rigorous and we can resume them in the following
proposition.

Theorem 2.2.9 Let f P C8pM,Nq and p PM . Let also pU,ϕ ” pxjqq be a local chart in p
such that ϕppq “ x P Rn. If v P TpM has the following local coordinate expression v “ vj B

Bxj

ˇ

ˇ

p

w.r.t. this local chart, then it holds that:

dfppvq “ pf ˝ γq
‚

p0q , (2.21)

with γptq “ ϕ´1px` tpv1, . . . , vnqq, for all t P R such that γptq P U .

In particular, the class of tangentially equivalent paths that are in one-to-one correspondence
with the coordinate tangent vectors B

Bxj

ˇ

ˇ

p
is:

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

– rt ÞÑ ϕ´1px` tejqs, x “ ϕppq,

where ej is the j-th element of the canonical basis of Rn. This result confirms what we have
already established in eq. (2.4) and underline once more that the tangent vectors B

Bxj

ˇ

ˇ

p
are

locally defined, they depend on the choice of the coordinate system defined by the chart pU,ϕq
and they are associated to the vectors of the canonical basis of Rn.

In the particular case M “ Rn or of a real vector space V we have global charts and we
can state the previous result as follows.
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Corollary 2.2.2 Let V,W be two finite dimensional real vector spaces, f P C8pV,W q and
x P V . Then it holds that:

dfxpvq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpx` tvq , @v P TxV. (2.22)

2.2.6 Relationship between the differential and the total derivative on vec-
tor spaces

We are now going to show that the differential of a function f : Ω Ď Rn Ñ R, Ω open, coincides
with its total derivative in the sense defined in Appendix B.

Suppose x P Ω, then, by proposition 2.2.1, we can write any v P TxΩ – TxRn as v “ vj B
Bxj

ˇ

ˇ

x
.

By definition of differential of a scalar function, i.e. (2.17), we get:

dfxpvq “ vpfq “ vj
B

Bxj

ˇ

ˇ

ˇ

ˇ

x

pfq “ vj
Bf

Bxj
pxq “ Dvfpxq,

where Dvfpxq is the directional derivative of f in the direction defined by v, identified with a
vector of Rn thanks to the canonical isomorphism TxRn – Rn.

However, in Appendix B it is proven that the Dvfpxq is obtained by applying the total
derivative of f in x to the vector v: Dfpxqpvq “ Dvfpxq and this holds for all v P Rn.

As a consequence, we can canonically identify the differential of a scalar function
defined on an open Ω Ď Rn at any point with its total derivative in the same point:

dfx “ Dfpxq , @f P C8pΩq.

The same identification holds for functions as f : Ω Ď Rn Ñ Rm, Ω open: as always, one
considers the component functions of f “ pf1, . . . , fmq, that are scalar functions to which one
can apply the result just proven.

We will use this result to compute some remarkable differentials in section 2.9.

2.3 Matrix expression of the differential in coordinates

dfp : TpM Ñ TfppqN is a linear operator between finite dimensional vector spaces, thus we
can represent it as a matrix. To understand how to do it, we first examine the trivial case of
M “ Rm and N “ Rn.

Given f : U Ď Rm Ñ V Ď Rn, U open and f smooth, once we fix any x P U , we have just
seen that the differential operator dfx : Rn Ñ Rm coincides with the total derivative of f in
x, which is represented in matrix form by the Jacobian matrix of f in x. It is an instructive
exercise to explicitly verify that this is actually the case.

If we denote with pxiqmi“1 and pyjqnj“1 the coordinates in U and V respectively, then the

coordinate tangent vectors
´

B
Bxi

ˇ

ˇ

x

¯m

i“1
and

ˆ

B
Byj

ˇ

ˇ

ˇ

fpxq

˙n

j“1

form a basis of TxRm and TfpxqRn,

respectively.
To find the matrix expression of dfx w.r.t. these bases we know that we must apply dfx to

the vectors of the first basis and the express the results as a linear combination of the vectors
of the second basis. The coefficients of this combination are the columns of the matrix that
represents dfx w.r.t. the chosen bases.
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Note that dfx

´

B
Bxi

ˇ

ˇ

x

¯

P TfpxqV , thus it is a derivation on C8pV q, so, to make its action

explicit, we have to fix an arbitrary smooth scalar function g P C8pV q and write:

dfx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

pgq :“
B

Bxi

ˇ

ˇ

ˇ

ˇ

x

pg ˝ fq “
(chain rule)

Bg

Byj
pfpxqq

Bf j

Bxi
pxq “

Bf j

Bxi
pxq

Bg

Byj
pfpxqq,

re-writing conveniently Bg
Byj
pfpxqq “ B

Byj

ˇ

ˇ

ˇ

fpxq
pgq to make the coordinate tangent vector basis

of TfpxqRn appear explicitly, we get:

dfx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

pgq “

˜

Bf j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

fpxq

¸

pgq,

since g is arbitrary, we have:

dfx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

“
Bf j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

fpxq

. (2.23)

We have obtained what we wanted: the explicit expression of the coordinate tangent vector
basis of TxRm transformed by dfx and expressed as a linear combination of the coordinate
tangent vector basis of TfpxqRn.

The coefficients of the linear combination are the partial derivatives of the component
functions f j of f in x, it follow that the matrix expression of dfx is exactly the Jacobian
matrix of f in x:

Jfpxq “

¨

˚

˝

Bf1

Bx1
pxq . . . Bf1

Bxm pxq
...

. . .
...

Bfn

Bx1
pxq . . . Bfn

Bxm pxq

˛

‹

‚

“

¨

˚

˝

∇f1pxq
...

∇fnpxq

˛

‹

‚

.

Let us now consider the more general situation of a smooth function f : M Ñ N between
manifolds of dimension m and n, respectively.

As always, the idea is to select a couple of f -related charts pU,ϕq in M containing p and
pV, ψq in N containing fppq and to consider the local representation of f , i.e. f̃ “ ψ ˝ f ˝ ϕ´1,
as in the following diagram:

M Ě U V Ď N

Rm Ě ϕpUq ψpV q Ď Rn.

f

ϕ ψϕ´1

f̃

ψ´1

We write ϕppq “ x ” pxiq P ϕpUq and f̃pxq “ ψpfppqq “ ψpfpϕ´1pxqqq “ y ” pyjq P ψpV q.
Eq. (2.23) implies:

df̃x

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

“
Bf̃ j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

f̃pxq

. (2.24)

Moreover, by definition of f̃ we get: f ˝ ϕ´1 “ ψ´1 ˝ f̃ , thus dpf ˝ ϕ´1q “ dpψ´1 ˝ f̃qx, so, by
the chain rule:

dfp ˝ dpϕ
´1qx “ dpψ´1qf̃pxq ˝ df̃x (2.25)
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and, thanks to property 4. of the differential (cfr. theorem 2.2.3), dpψ´1qf̃pxq “ dpψψ´1pf̃pxqqq
´1 “

dpψfpϕ´1pxqqq
´1 “ dpψfppqq

´1, i.e.

dpψ´1qf̃pxq “ dpψfppqq
´1 (2.26)

so:

dfp

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

“
p2.12q

dfp

ˆ

pdϕpq
´1

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙˙

“
ppdϕpq´1“dpϕ´1qxq

dfp

ˆ

dpϕ´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙˙

“ dfp ˝ dpϕ
´1qx

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

“
p2.25q

dpψ´1qf̃pxq ˝ df̃x

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙

“ dpψ´1qf̃pxq

ˆ

df̃x

ˆ

B

Bxj

ˇ

ˇ

ˇ

ˇ

x

˙˙

“
p2.24q

dpψ´1qf̃pxq

˜

Bf̃ j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

f̃pxq

¸

“
(linearity)

Bf̃ j

Bxi
pxq dpψ´1qf̃pxq

˜

B

Byj

ˇ

ˇ

ˇ

ˇ

f̃pxq

¸

“
p2.26q

Bf̃ j

Bxi
pxq dpψfppqq

´1

˜

B

Byj

ˇ

ˇ

ˇ

ˇ

f̃pxq

¸

“
p2.12q

Bf̃ j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

fppq

,

so:

dfp

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

“
Bf̃ j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

fppq

. (2.27)

If we compare eqs. (2.23) and (2.27), we see that the only difference is that the real coefficients
in the latter are given by the partial derivatives of the local expression f w.r.t. the charts
chosen. Thus, also in the general case of a smooth function between manifolds, the matrix
expression of the differential of f in p (relative to the coordinate tangent vectors)
is given by a Jacobian matrix, but, in this case, of the local expression of f
computed in x “ ϕppq:

Jf̃pxq “

¨

˚

˚

˝

Bf̃1

Bx1
pxq . . . Bf̃1

Bxn pxq
...

. . .
...

Bf̃n

Bx1
pxq . . . Bf̃n

Bxn pxq

˛

‹

‹

‚

“

¨

˚

˝

∇f̃1pxq
...

∇f̃npxq

˛

‹

‚

.

2.4 The inverse mapping and implicit function theorems for
manifolds

The result just obtained has a powerful consequence: all the properties of standard
differential calculus on Rn that are based on hypotheses made on the Jacobian
matrix of a smooth function f : Ω Ă Rn Ñ Rm, Ω open, are also valid, locally, for
smooth functions between manifolds.

In this section we concentrate on two of the most important results of standard differential
calculus on Rn: the inverse mapping and the implicit function theorems.

We have already quoted the first, its extension can be stated as follows.
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Theorem 2.4.1 (Inverse mapping theorem for manifolds) Let f : M Ñ N be a smooth
function and p P M a point such that dfp : TpM Ñ TfppqN is an isomorphism. Then, there
exist two open neighborhoods U ĎM and V Ď N of p and fppq, respectively, such that f |U is
a diffeomorphism.

Proof. First of all notice that dfp, as a linear map, can be an isomorphism between vector
spaces if and only if they have the same dimension, which implies that dimpMq “ dimpNq.

Select two charts pU,ϕq and pV, ψq and consider the local representation f̃ of f . Since the
Jacobian matrix of f̃ is the local representation of dfp and dfp is an isomorphism, Jf̃ϕppq is

invertible. Thanks to this, the standard inverse function theorem can be applied to f̃ and so
f |U is a diffeomorphism. 2

Let us now pass to the implicit function theorem by first recalling its classical statement, which
tells us, in a very involved way, when we can locally solve an equation as φpx, yq “ z0 P R and
express y as a function of x.

Theorem 2.4.2 (Implicit function theorem in Rn) Hypotheses:

• U Ď Rn ˆ Rm: open set;

• px1, . . . , xn, y1, . . . , ymq: coordinates in U ;

• φ : U Ñ Rm: differentiable function;

• px0, y0q P U such that the matrix
´

Bφi

Byj
px0, y0q

¯

i,j
is invertible.

Thesis:

• D two open neighborhoods V0 Ď Rn of x0 and W0 Ď Rm of y0;

• D a differentiable function F : V0 ÑW0,

such that, if φpx0, y0q “ z0 P R, the level set φ´1pz0q X pV0 ˆW0q coincides with the graph of
F , i.e.

@px, yq P V0 ˆW0 : φpx, yq “ z0 ðñ y “ F pxq.

Theorem 2.4.3 (Implicit function theorem for manifolds) Hypotheses:

• M,N : smooth manifolds;

• φ : M ˆN Ñ N : smooth function;

• @p PM , let
φp : N ÝÑ N

q ÞÝÑ φppqq “ φpp, qq;
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• dpφp0qq0 : Tq0 Ñ Tr0Y , where r0 “ φpp0, q0q, is an invertible linear map.

Thesis: it exists two open neighborhoods V0 Ď M of p0 and W0 Ď N of q0 and a smooth
function F : V0 ÑW0 such that φ´1pz0q X pV0 XW0q coincides with the graph of F , i.e.

@pp, qq P V0 ˆW0 : φpp, qq “ r0 ðñ q “ F ppq.

Proof. As for the inverse function theorem, by using two charts we can transport the problem
to Rn, where the standard hypotheses of the implicit function theorem hold. 2

2.5 Alternative definitions of tangent vectors

In this section we complement the definition of geometric and algebraic tangent vector to a
manifold at a point with other two definitions: the first is used mainly by pure mathematicians,
the second mainly by physicists and engineers.

2.5.1 Tangent vectors as derivations on the algebra of germs of smooth
functions

The name ‘germ’ is derived from ‘cereal germ’, which is the reproductive part of the cereal
inside the seed. It is clearly used to indicate the ‘heart’ of a structure. It is a general concept
related to topological spaces, where locality can be defined. In this section we will consider only
the elements of the theory of germs that are strictly needed to give an alternative definition
of tangent vectors, but the theory of germs is much more profound and not just related to
differential geometry.

Def. 2.5.1 (Function element) A smooth function element on a manifold M is an ordered
pair pf, Uq, where U is an open subset of M and f : U Ñ R is a smooth scalar function.

Fixed any point p PM , it is possible to define an equivalence relation on the set of all smooth
function elements whose domains contain p as follows: given f : U Ñ R and g : V Ñ R,
pf, Uq „ pg, V q if it exists an open neighborhood W of p such that:

W Ď U X V and f |W “ g|W ,

i.e. if f and g coincide on some open neighborhood of p, however small, contained in the
intersection of their domains.

Def. 2.5.2 (Germ of f at p) The germ of f at p is the equivalence class of function elements
pf, Uq w.r.t. the equivalence relation defined above. The set of all germs of smooth functions
at p is denoted by C8p pMq.

The germ of a function element pf, Uq at p is denoted simply by rf sp: in fact, there is no need
to include the domain U in the notation because, by definition, the same germ is represented
by the restriction of f to any open neighborhood of p.

C8p is a real vector space and an associative algebra under the point-wise defined linear
operations and multiplication (of course, the sum and the multiplication are defined on the
function element that has the intersection of the two functions as second entry in the couple).

We can now define the key concept of derivation on the algebra of germs.
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Def. 2.5.3 (Derivation on the algebra of germs of smooth functions) A derivation v
on C8p pMq is a linear functional v : C8p pMq Ñ R satisfying the following Leibniz rule:

vprfgspq “ ppqvprgspq ` gppqvprf spq.

Derivations on C8p pMq form naturally a vector space that is denoted by DppMq. Some author
define the tangent space to M at p as the vector space DppMq. The equivalence with the
definition of tangent space in terms of derivations on C8pMq is quite easy to prove thanks to
the locality of derivations expressed by theorem 2.2.1.

Theorem 2.5.1 The map

I : DppMq
„
ÝÑ T alg

p M
v ÞÝÑ Ipvq,

Ipvq : C8pMq ÝÑ R
f ÞÝÑ Ipvqpfq :“ vprf spq,

is a natural linear isomorphism of vector spaces that allows us to identify algebraic tangent
vectors to M at p with derivations on C8p pMq.

Proof. Linearity clearly follows from the linearity of the derivation v. The injectivity of I is
a consequence of the fact that, if Ipvq “ 0 (the identically null derivation on C8pMq), then,
by definition, vprf spq “ 0 for all f P C8pMq, but this means that v is the null derivation on
C8p pMq, thus kerpIq is trivial.

Finally, to prove that I is surjective, we must verify that for any w P T alg
p M there exists

v P DppMq such that w “ Ipvq. Thanks to theorem 2.2.1, such a v P DppMq can simply be
defined as follows:

vprf spq :“ wpfq,

in fact, by definition of germ of smooth functions, if f, g P rf sp, then f and g are smooth
scalar functions that coincide when restricted on an arbitrary small open neighborhood of
p, so theorem 2.2.1 assures us that wpfq “ wpgq, which guarantees that the definition of v
is well-posed. Since w is a derivation on C8pMq, v also acts as a derivation on C8p pMq, i.e.
v P DppMq. 2

Recall that, in order to obtain theorem 2.2.1, we had to make use of the theory of partitions
of the unity and bump functions, thus, one immediate advantage of the use of germs to define
tangent vectors is that we can avoid resorting to that theory and prove the same propositions
with a less number of intermediate steps. We preferred to postpone until now the definition of
tangent vectors via the theory of germs to avoid working with equivalence classes and to keep
the notation as simple as possible.

2.5.2 Physicists’ definition of tangent vectors

We introduce here the oldest definition of tangent vector, which is still the most widely
used even today by the majority of physicists and engineers.

The construction is based on the decomposition of a tangent vector v P TpM on the
coordinates tangent vectors basis, which, as we have seen, is determined once we fix a local
chart. Suppose, however, that p belongs to the intersection of two local charts pU,ϕq and
pŨ , ϕ̃q, then we can decompose v w.r.t. the basis
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• p B
Bx1

ˇ

ˇ

p
, . . . , B

Bxn

ˇ

ˇ

p
q, where B

Bxi

ˇ

ˇ

p
pfq “ Bpf˝ϕ´1q

Bxi

ˇ

ˇ

ˇ

x

or w.r.t. the basis

• p B
Bx̃1

ˇ

ˇ

p
, . . . , B

Bx̃n

ˇ

ˇ

p
q, where B

Bx̃j

ˇ

ˇ

p
pfq “ Bpf˝ϕ̃´1q

Bx̃j

ˇ

ˇ

ˇ

x
,

for all f P C8pU X Ũq.
Since the tangent vector v in p remains the same, we must have:

v “ vi
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“ ṽj
B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

, (2.28)

where, due to the uniqueness of the decomposition of a vector over a basis, the components
vi are uniquely associated to the coordinates on M defined by local chart pU,ϕq and the
components ṽj are uniquely associated to those defined by pŨ , ϕ̃q. It is natural to ask oneself
how the coefficients vi and ṽj are related.

To answer this question, let us recall that the transition functions between these charts
are, respectively:

xi “ εi ˝ ϕ ˝ ϕ̃´1 : ϕ̃pU X Ũq Ď Rn ÝÑ R
x̃ “ ϕ̃ppq ÞÝÑ xipx̃q “ εipϕppqq,

and
x̃j “ εj ˝ ϕ̃ ˝ ϕ´1 : ϕpU X Ũq Ď Rn ÝÑ R

x “ ϕppq ÞÝÑ x̃jpxq “ εjpϕ̃ppqq,

i, j “ 1, . . . , n.
The tool to obtain the explicit coordinate transformations vi ÞÑ ṽj and ṽj ÞÑ vi are the

following formulae:
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“
Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

, (2.29)

and
B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

“
Bxi

Bx̃j
px̃q

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

, (2.30)

typically quoted to be the result of the application of the chain rule, without any further
comment.

It is an instructive computation to verify these formulae. We will do that for the first one,
the method to get the second one is identical. Consider the differential:

dpϕ̃ ˝ ϕ´1qx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

“
p2.23q

Bpεj ˝ ϕ̃ ˝ ϕ´1q

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

x̃

”
Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

x̃

, (2.31)

then, thanks to def. (2.12) of coordinate tangent vectors, we have:

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“ dpϕ´1qx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

pϕ´1 “ ϕ̃´1 ˝ ϕ̃ ˝ ϕ´1 and the chain rule for differential implyq

“ dpϕ̃´1qx̃ ˝ dpϕ̃ ˝ ϕ
´1qx

ˆ

B

Bxi

ˇ

ˇ

ˇ

ˇ

x

˙

“
p2.31q

dpϕ̃´1qx̃

ˆ

Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

x̃

˙

“
p2.23q

Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

,
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which confirms eq. (2.29).
If we insert the expressions (2.29) and (2.30) in (2.28), we get

vi
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“ ṽj
B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

ðñ vi
Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

“ ṽj
Bxi

Bx̃j
px̃q

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

.

By the uniqueness of the decomposition of a vector on a basis, we have that

v “ ṽj
B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

“ vi
Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

implies:

ṽj “
Bx̃j

Bxi
pxqvi ðñ ṽj “ J ji px̃q

ˇ

ˇ

ˇ

x
vi, i, j “ 1, . . . , n, (2.32)

where J ji px̃q is the n ˆ n matrix of functions that contains the partial derivatives of the
function x̃ “ ϕ̃ ˝ ϕ´1 : ϕpU X Ũq Ď Rn Ñ ϕ̃pU X Ũq Ď Rn: each rows contains the gradient of
the function x̃j “ εj ˝ x̃:

J ji px̃q “

¨

˚

˝

∇x̃1

...
∇x̃n

˛

‹

‚

“

¨

˚

˝

Bx̃1

Bx1
. . . Bx̃1

Bxn
...

. . .
...

Bx̃n

Bx1
. . . Bx̃n

Bxn

˛

‹

‚

,

once evaluated in x, this becomes a matrix of real entries that represents the Jacobian matrix

J ji px̃q
ˇ

ˇ

ˇ

x
of the function x̃ in x. Since transition functions are invertible, J ji px̃q

ˇ

ˇ

ˇ

x
P GLpn,Rq.

On the other side, the equality

v “ vi
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“ ṽj
Bxi

Bx̃j
px̃q

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

implies:

vi “
Bxi

Bx̃j
px̃qṽj ðñ vi “

t´

J ji px̃q
ˇ

ˇ

ˇ

x

¯´1
ṽj , i, j “ 1, . . . , n, (2.33)

where
t´

J ji px̃q
ˇ

ˇ

ˇ

x

¯´1
is the inverse and transposed (notice the position of the indices) of

the Jacobian matrix J ji px̃q
ˇ

ˇ

ˇ

x
. The inversion is to be expected because the transition functions

ϕ̃ ˝ ϕ´1 and ϕ ˝ ϕ̃´1 are one the inverse of each other.
The rule (2.32) is called gradient or contravariant transformation and it is an

intrinsic property of tangent vectors (no additional properties of structures have been
used to obtain (2.32) other than those related to tangent vectors).

This motivates why tangent vectors can be alternatively defined as ordered n-tuples of real
scalars that undergo the contravariant transformation (2.32) under local coordinate changes.

Example: consider the polar coordinates px1, x2q “ pr, θq P R` ˆ r0, 2πq on the plane R2, the
point p “ p2, π{2q and the tangent vector v P TpR2 expressed by:

v “ 3
B

Br

ˇ

ˇ

ˇ

ˇ

p

´
B

Bθ

ˇ

ˇ

ˇ

ˇ

p

.
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We want to find the expression of v w.r.t. Cartesian coordinates. The transition map between
polar and Cartesian coordinates in an open neighborhood of p P R2 is

#

x̃1 “ x “ r cos θ

x̃2 “ y “ r sin θ.

The vector v can be expressed as follows:

v “ 3
B

Br

ˇ

ˇ

ˇ

ˇ

p

´
B

Bθ

ˇ

ˇ

ˇ

ˇ

p

“ ṽ1 B

Bx

ˇ

ˇ

ˇ

ˇ

p

` ṽ2 B

By

ˇ

ˇ

ˇ

ˇ

p

,

with v1 “ 3 and v2 “ ´1. By means of eq. (2.32) we get:

ṽ1 “
Bx̃1pr, θq

Bx1
p2, π{2qv1 `

Bx̃1pr, θq

Bx2
p2, π{2qv2 “ 3

Bpr cos θq

Br
p2, π{2q ´

Bpr cos θq

Bθ
p2, π{2q

“ p3 cos θq|p2,π{2q ` pr sin θq|p2,π{2q “ 3 cospπ{2q ` 2 sinpπ{2q “ 2,

and

ṽ2 “
Bx̃2pr, θq

Bx1
p2, π{2qv1 `

Bx̃2pr, θq

Bx2
p2, π{2qv2 “ 3

Bpr sin θq

Br
p2, π{2q ´

Bpr sin θq

Bθ
p2, π{2q

“ p3 sin θq|p2,π{2q ´ pr cos θq|p2,π{2q “ 3,

thus:

v “ 2
B

Bx

ˇ

ˇ

ˇ

ˇ

p

` 3
B

By

ˇ

ˇ

ˇ

ˇ

p

.

Remark: the notation B
Bxi

ˇ

ˇ

p
must not lead to think that the coordinate tangent vector B

Bxi

ˇ

ˇ

p

depends only on xi: in fact it depends on the entire coordinate system. The geometrical
reason underlying this is the fact that B

Bxi

ˇ

ˇ

p
is the derivation whose action on a smooth scalar

function is defined by taking the partial derivative of the local expression of this function w.r.t.
xi, i.e. by letting xi vary and fixing all the other local coordinates xj , j ‰ i. So, if we change
the coordinates xj , they are not constant anymore and this, in general, affects B

Bxi

ˇ

ˇ

p
.

We illustrate this fact with the following concrete example: consider R2 with the standard
Cartesian coordinates px, yq and let p “ p1, 0q P R2, expressed w.r.t. the standard coordinates.
Now, perform the coordinate change defined by

#

x̃ “ x

ỹ “ y ` x3.

Our aim is to show that
B

Bx

ˇ

ˇ

ˇ

ˇ

p

‰
B

Bx̃

ˇ

ˇ

ˇ

ˇ

p

,

in spite of the fact that x “ x̃.
First of all notice that the coordinates px̃, ỹq are smooth and global on R2 since the inverse

of the coordinate change px, yq ÞÑ px̃ “ x, ỹ “ y ` x3q is px̃, ỹq ÞÑ px “ x̃, y “ ỹ ´ x̃3q. Thanks
to eq. (2.29), we have:

B

Bx

ˇ

ˇ

ˇ

ˇ

p

“
Bx

Bx
p1, 0q

B

Bx̃

ˇ

ˇ

ˇ

ˇ

p

`
Bpy ` x3q

Bx
p1, 0q

B

Bỹ

ˇ

ˇ

ˇ

ˇ

p

“
B

Bx̃

ˇ

ˇ

ˇ

ˇ

p

` p3x2q
ˇ

ˇ

p1,0q

B

Bỹ

ˇ

ˇ

ˇ

ˇ

p

“
B

Bx̃

ˇ

ˇ

ˇ

ˇ

p

` 3
B

Bỹ

ˇ

ˇ

ˇ

ˇ

p

,
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thus B
Bx

ˇ

ˇ

p
‰ B

Bx̃

ˇ

ˇ

p
.

From now on, any definition of tangent vector to a manifold at a point (geometric,
algebraic, via germs of smooth functions or the physicists’ one) will be considered as
equivalent.

2.6 Canonical identification between vector spaces and their
tangent spaces and differential of linear functions

We have proven that, for every p PM , TpM is isomorphic to Rn, which can be considered the
(non canonical) prototype of any tangent space to a manifold of dimension n at a given point.

On the other side, Rn is also the (non canonical) prototype of another object: a real vector
space V of dimension n: once we fix a basis of V , the map that links a vector of V to the
vector of Rn given by its components w.r.t. the chosen basis is a linear isomorphism (non
canonical because it depends on the basis).

Thanks to the interplay between these two non canonical isomorphisms, we can obtain a
third (canonical!) one: we are going to prove that any finite-dimensional vector space V over
R is canonically isomorphic to its tangent space at any point.

In order to prove this, we must play with the dual nature of V : it can be considered as
a vector space or as a smooth manifold w.r.t. its standard differential structure defined in
section 1.2.

Once we fix any vector u P V , we can consider a particularly natural derivation on C8pV q:
the directional derivative of a smooth scalar function φ P C8pV q:

• in x P V , where here u is considered as a point of the manifold V ;

• w.r.t. to the direction defined by any v P V , where v is considered as a vector of the
vector space V .

By definition, we have:

Dv|x : C8pV q ÝÑ R
φ ÞÝÑ Dv|u pφq “

d
dt

ˇ

ˇ

t“0
φpx` tvq,

where the operation x` tv is guaranteed to be well-defined in V for all t P R because of the
vector space structure of V .

Dv|x plays a central role in the proof of the following result.

Theorem 2.6.1 Let V,W be any two real finite-dimensional vector spaces with their standard
smooth manifold structure. For each point x of V , the map

Ix : V
„
ÝÑ TxV

v ÞÝÑ Ixpvq :“ Dv|x , Dv|x pφq “
d
dt

ˇ

ˇ

t“0
φpx` tvq @φ P C8pV q,

is a canonical linear isomorphism such that, for any linear map L : V Ñ W , the following
diagram commutes:
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V
Ix

ÝÝÝÝÑ TxV

L

§

§

đ

§

§

đ

dLx

W ÝÝÝÝÑ
ILx

TLxW

ðñ dLx ˝ Ix “ ILx ˝ L.

So, the explicitly formula for the differential of a linear function between vector spaces is:

dLxpDv|xq “ DLv|Lx

or, by identifying Dv|x with v,
dLxpvq “ DLv|Lx .

Proof. The linearity of Ix is a direct consequence of the linearity of Dv|x. Let us now prove
that Ix is a bijection.

Injectivity: suppose v1, v2 P V are such that Dv1 |x “ Dv2 |x, then, thanks to the fact that

Dv|x is linear w.r.t. v, we have that Dpv1´v2q
ˇ

ˇ

x
” 0, the 0 derivation. Then, for all φ P C8pV q:

Dpv1´v2q
ˇ

ˇ

x
pφq “

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

φpx` tpv1 ´ v2qq “ 0.

Now we note that the linear functionals ` : V Ñ R living in the dual V ˚ of V are of course
smooth scalar functions on V , i.e. they belong to C8pV q, so we can consider the action of
Dpv1´v2q on ` P V ˚:

0 “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`px` tpv1´ v2qq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

p`pxq ` t`pv1´ v2qq “
��

�
��
�*0

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`pxq `
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

t`pv1´ v2q,

i.e. `pv1´v2q “ 0 for all ` P V ˚. However, thanks to the finite-dimensional Riesz representation
theorem, we know that V – V ˚ and that for all ` P V ˚ it exists only one vector w` P V such
that `pvq “ xv, w`y. Thus, the equation `pv1 ´ v2q “ 0 for all ` P V ˚ can be reformulated as
xv1 ´ v2, w`y “ 0 for all w` P V , but the only vector orthogonal to all other vectors is the null
vector, so v1 ´ v2 “ 0, or v1 “ v2, thus implying the injectivity of Ix.

Surjectivity: we can conveniently use the equivalence between T geom
x V and T alg

x V and prove
surjectivity by considering geometric tangent vectors. The proof then simply consists in
observing that any tangentially equivalent class of curves passing through x with velocity
vector v clearly contains the curve t ÞÑ x` tv.

Finally, suppose L : V Ñ W to be a linear map, then L is of course smooth because its
components w.r.t. any choice of basis (which also play the role of charts for vector spaces,
as seen in chapter 1) for V and W are linear functions of the coordinates. By definition of
differential and thanks to the linearity of L we get, for all φ P C8pV q:

dLxpDv|xqpφq :“ Dv|x pφ ˝ Lq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

φpLpx` tvqq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

φpLx` tLvq

“ DLv|Lu pφq,

i.e. dLxpDv|xq “ DLv|Lx. 2
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To fact that Ix is a canonical isomorphism (i.e. independent of any choice of basis) justifies
why, in differential geometry, the tangent vector t to a vector space at any point v, which is a
vector, is identified with the vector v itself.

An immediate, and very important, consequence of this fact is that, if U is an open
submanifold of a real finite-dimensional vector space V , then TxU – TxV – V , so we obtain a
canonical identification of each tangent space to U with V itself. As a noticeable example,
since GLpn,Rq is an open submanifold of the vector space Mpn,Rq, the following result holds.

Theorem 2.6.2 For all X P GLpn,Rq it holds that:

TX GLpn,Rq –Mpn,Rq,

i.e. the tangent space to the vector space of real invertible matrices of dimension n is the
vector space of all real square matrices of dimension n.

There is another natural, and very useful, identification for tangent spaces to a product
manifold, as stated in the following proposition.

Theorem 2.6.3 Let M1, . . . ,MN be smooth manifolds, and let πj : M1ˆ ¨ ¨ ¨ ˆMN ÑMj, be
the projection onto the j-th factor, for each j “ 1, . . . , N . For any point p “ pp1, . . . , pN q P
M1 ˆ ¨ ¨ ¨ ˆMN the map

TppM1 ˆ ¨ ¨ ¨ ˆMN q
„
ÝÑ Tp1M1 ‘ ¨ ¨ ¨ ‘ TpNMN

v ÞÝÑ pdpπ1qppvq, . . . , dpπN qppvqq,

is a canonical isomorphism.

For example, Tpp,qqpM ˆ Nq can be identified with TpM ‘ TqN and TpM and TqN can be
treated as subspaces of Tpp,qqpM ˆNq.

2.7 Immersion, submersion, embedding and the problem of
compatibility between differential structures

The substructures of a manifold show some subtleties that is important to underline.
First of all, let us define the rank of a smooth map in an analogous way as we did for a

smooth function between Euclidean spaces.

Def. 2.7.1 Let f : M Ñ N be a smooth map between manifolds. The rank of f in p PM is
the rank of the linear function dfp : TpM Ñ TfppqN .

Equivalently, fixed any local chart pU,ϕq in p, the rank of f is the rank of the Jacobian
matrix of the local expression f̃ of f in x “ ϕppq.

If the rank of f remains constant for every point p PM , then f is said to have constant
rank.

Def. 2.7.2 The smooth map f : M Ñ N is a/an:

• Immersion: if dfp is injective for all p PM ;

72



• Submersion: if dfp is surjective for all p PM ;

• Embedding3: if it is an immersion and f : M Ñ fpMq is a homeomorphism.

Examples:

1. The curve
α : R ÝÑ R2

t ÞÝÑ αptq “ pt2, t3q,

is injective, but dα
dt “ p2t

2, 3t2q is null for t “ 0, so dα|t“0 is not injective;

2. The curve
β : R ÝÑ R2

t ÞÝÑ αptq “ pt3 ´ 4t, t2 ´ 4q,

is not injective, e.g. βp´2q “ βp2q “ p0, 0q, but dβ
dt “ p3t´ 4, 2tq is never null in both

coordinates, so β is an immersion, but not an embedding because it is not injective;

3. The curve
γ : p´π{2, 3π{2q ÝÑ R2

t ÞÝÑ αptq “ psinp2tq, cosptqq,

γ is injective and dγ
dt “ p2 cosp2tq,´ sinptqq ‰ p0, 0q @t P p´π{2, 3π{2q, thus it is an

immersion. However, the domain of γ is an open set in R and its codomain is a compact
subset of R2, thus γ cannot be a homeomorphism between its domain and its codomain.

The curve γ, usually called lemniscate, or ‘the 8’ for its shape, shows that even an injective
immersion can fail to be an embedding. However, the next theorem guarantees that every
immersion is, at least, local embedding.

Theorem 2.7.1 Let f : M Ñ N be a smooth map between manifolds. If f is an immersion,
then, for all p PM , it exists an open neighborhood U ĎM of p such that f |U : U Ñ fpUq Ď N
is an embedding.

The most important consequence of the previous result is that, if f : M Ñ N is an injective
immersion, it is always possible to endow fpMq with a differential structure induced by that of
M . In fact, let tpUα, ϕαquαPA be a smooth atlas for M such that f |Uα is a homeomorphism
with its image fpUαq Ď fpMq, then, since ϕ : Uα Ď M Ñ ϕpUq Ď Rn are homeomorphisms,
we get that tpfpUαq, ϕα ˝ f

´1
ˇ

ˇ

fpUαq
quαPA is a smooth atlas for fpMq.

Thus, on fpMq we have two differential structures, namely, the one naturally inherited as
a subset of N and the one induced by M in the way described above. It turns out that these
differential structures can lack of compatibility because the underlying topologies may fail
to be equivalent. This is clearly exemplified by the curve γ: the counter-image of an open
neighborhood of the central point of the 8, in R2, is the union of three open intervals in R,
while for the topology of R an open neighborhood is just an open interval.

In general, it can be difficult to establish if an injective immersion is an embedding, with
the exception of the compact case, as stated below.

3An embedding is a sort of topologically coherent immersion. In French it is called plongement.
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Theorem 2.7.2 Let f : M Ñ N be a smooth map between manifolds. If f is an injective
immersion and M is compact (as topological manifold), then f is an embedding.

The considerations above explain why we find two types of definitions for submanifolds in
differential geometry.

Def. 2.7.3 (Embedded submanifold) Let E,M be two smooth manifolds such that E ĂM .
If the canonical inclusion ι : E ãÑ M is an embedding, then E is said to be an embedded
submanifold of M .

Def. 2.7.4 (Immersed submanifold) Let f : M Ñ N be a smooth map between manifolds.
If f is an injective immersion, then fpMq Ă N , endowed with the differential structure induced
by M , is said to be a manifold immersed in N .

Convention: without any further specification, a submanifold has to be intended as an
embedded submanifold.

A classical example of an immersed submanifold of R2 that is not an embedding is the
spire (coil) that envelops the torus with irrational step.

2.8 Characterization of the tangent space to a level set of a
smooth function

It is possible to give a very useful characterization of the tangent space at a point to a level
set of smooth functions thanks to the following result, whose proof can be found in [10], page
81 (th. 4.12).

Theorem 2.8.1 (The rank theorem) Let M and N be smooth manifolds with dimension
m and n, respectively. Let f : M Ñ N be a smooth function with constant rank r. Then,
for every p PM there exist local charts pU,ϕq centered in p and pV, ψq centered in fppq, with
fpUq Ă V , such that the local expression of f w.r.t. these charts is particularly simple, namely:

f̃px1, . . . , xr, xr`1, . . . , xmq “ px1, . . . , xr, 0, . . . , 0q,

i.e. f̃ acts as the identity on the first r entries and it is identically 0 in the last n´ r.
In particular, if f is a submersion, then r “ n and so

f̃px1, . . . , xn, xn`1, . . . , xmq “ px1, . . . , xnq,

while, if f is an immersion, then r “ m and so

f̃px1, . . . , xmq “ px1, . . . , xm, 0, . . . , 0q.

The rank theorem justifies the following definition.

Def. 2.8.1 Let S ĂM be a submanifold of dimension k of M . A local chart pU,ϕq of M is
said to be adapted to S if either U X S “ H, or ϕpU X Zq “ ϕpUq X pRk ˆ t~0uq, where this
notation means that the part of the submanifold S contained in U is mapped by ϕ to 0, i.e.
xk`1 “ . . . “ xn “ 0. An atlas of M is adapted to S is every chart of it is adapted to S.
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Theorem 2.8.2 Embedded submanifolds always admit adapted charts.

We can extend the definitions, given in chapter 1, of critical and regular point of a function
defined between Euclidean spaces to functions between abstract manifolds.

Theorem 2.8.3 Let M and N be smooth manifolds with dimension m and n, respectively.
Let f : M Ñ N be a smooth function.

• p PM is a critical point of f if dfp : TpM Ñ TfppqN is not surjective. The image, via
f , of a critical point of f is a critical value for f .

• A regular value of f is an element of fpMq that is not a critical value.

We denote with Critpfq ĂM the set of critical points of f .
We need a last definition before stating and proving the main result of this section.

Def. 2.8.2 (Level set of a smooth function) A level set of f : M Ñ N is a subset of M
of the type f´1pqq :“ tp PM : fppq “ qu, where q P fpMq.

Theorem 2.8.4 (Level set theorem for manifolds) Let M and N be smooth manifolds
with dimension n` k and n, respectively, k ě 0. Let f : M Ñ N be a smooth function.

1. For all a P fpMq, the set

Ma “ f´1paqzCritpfq a´ level set via f minus the critical points

is an embedded submanifold of dimension k of M . In particular, if a is a regular value
for f , f´1paq is a k-dimensional embedded submanifold of M .

2. If p PMa, then the tangent space TpMa is the kernel of dfp : TpM Ñ TfppqN :

TpMa “ kerpdfaq . (2.34)

3. If, in particular, N “ R, then f P C8pMq and TpMa is given by the derivations D P TpM
that nullify smooth scalar functions: Dpfq “ 0 for all f P C8pMq.

Proof.

1. By using local charts, we can reduce the problem to the local representation of f , which is
a function defined on an open subset of Rn`k to Rn. For such a function we can apply the
level set theorem 1.2.1 in Euclidean spaces discussed in the first chapter.

2. Let ι : Ma ÑM be the canonical inclusion of Ma in M . By theorem 2.2.3 we know that
dιp : TpMa Ñ TpM is a canonical linear isomorphism, thus we can identify TpMa with TpM
and so 2. is equivalent to dιppTpMaq “ kerpdfpq.

Since p is a regular point, dimpMaq “ k, so dimpTpMaq “ k, moreover dfp is surjective,
hence dimpImpdfpqq “ n and the rank+nullity theorem implies

dimpTpMq “ dimpkerpdfpqq ` dimpImpdfpqq,

but dimpTpMq “ dimpMq “ n` k, so dimpkerpdfpqq “ n` k ´ n “ k.
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Thanks to the fact that dimpkerpdfpqq “ dimpTpMaq, to prove that TpMa and kerpdfpq are
isomorphic it is sufficient to show that one space is included in the other. We chose arbitrarily
to show that TpMa – dιpTpMaq Ď kerpdfpq.

To do that, let us consider a derivation v P TpMa, then dιp : TpMa Ñ TιppqM “ TpM ,
so dιppvq P TpM and we can apply dfp : TpM Ñ TfppqN to dιppvq, obtaining an element of
TfppqN , i.e. dfppdιpq P TfppqN . In order to understand its action, we need to apply it to a
smooth scalar function φ P C8pNq:

dfppdιpvqqpφq “
(chain rule)

dpf ˝ ιqppvqpφq :“ vpφ ˝ f ˝ ιq,

but f ˝ ι : Ma Ñ N is nothing but f |Ma
, so

dfppdιpvqqpφq “ vpφ ˝ f |Ma
q “ 0,

because f |Ma
is, by definition of Ma, a constant function identically equal to a, and φ ˝ f |Ma

is the constant function identically equal to φpaq, so vpφ ˝ f |Ma
q “ 0 because derivations set

to 0 constant functions.
This is true for all φ P C8pNq, so dfppdιppvqq “ 0, i.e. TpMa Ď kerpdfpq.

3. Immediate consequence of 2. 2

2.9 Explicit calculations of tangent spaces

In this section we are going to compute some remarkable differential and apply the result to
obtain the explicit characterization of tangent spaces. In order to do that, we will mix the
level set theorem with the results that we have discussed about the differential.

2.9.1 The tangent space to the sphere at a point

We are going to verify that the tangent space to a sphere at a point x is the hyperplane
orthogonal to the radius connecting the center to x, as intuitively expected from the depiction
in fig. 2.1.

We recall that the n-sphere of radius R ą 0 is SnR “ tx P Rn`1 : }x}2 “ R2u, thus it is
natural to consider the function f : Rn`1 Ñ R, x ÞÑ fpxq “ }x}2 to obtain SnR as a level set:
SnR “ f´1pR2q.

We know that in this case the differential of f coincides with its total derivative, i.e. for
all x P Rn`1, dfx “ Dfpxq, to compute it we simply observe that:

fpx` tyq “ ‖x` ty‖2
“ xx` ty, x` tyy “ ‖x‖2

` 2txx, yy ` t2 ‖y‖2
“ fpxq `Dfpxqty ` optq,

so dfxpyq “ Dfpxqy “ 2xx, yy for all y P Rn`1.
By the level set theorem we get:

TxS
n
R “ kerpdfxq “ ty P Rn`1 : xx, yy “ 0u,

which confirms that TxS
n
R is nothing but the hyperplane in Rn`1 passing through x and

orthogonal to the radius of the sphere connecting x to 0.
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2.9.2 The Lie group Opnq as an embedded submanifold of Mpn,Rq and its
Lie algebra opnq

Here we prove that Opnq “ tA PMpn,Rq : AtA “ Inu, the orthogonal group, is a manifold

of dimension npn´1q
2 and we make its tangent space at any point explicit. The constraint that

defines orthogonal matrices leads us naturally to consider the following function:

f : Mpn,Rq ÝÑ Sympn,Rq
X ÞÝÑ fpXq “ XtX,

(2.35)

because we can easily identify Opnq as the f -level set of the the identity matrix In, in fact:

f´1tInu “ tX PMpn,Rq : fpXq “ XtX “ Inu ” Opnq.

In order to apply the level set theorem, let us compute the differential of f . Both Mpn,Rq
and Sympn,Rq are vector spaces, thus we can canonically identify the tangent spaces to
Mpn,Rq and Sympn,Rq at any point (matrix) with the vector spaces themselves. With this
identification in mind, for all X P Mpn,Rq, dfX : Mpn,Rq Ñ Sympn,Rq and, thanks to eq.
(2.22), for all A PMpn,Rq we have:

dfXpAq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

fpX ` tAq “
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

pX ` tAqtpX ` tAq
˘

“
d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

XtX ` tpXtA`AtXq ` t2AtA
˘

“

��
�
��

�
��*0

d

dt

ˇ

ˇ

ˇ

ˇ

t“0

`

XtX
˘

`
`

XtA`AtX
˘

`
��

���
��:0

`

2tAtA
˘
ˇ

ˇ

t“0

“ XtA`AtX,

i.e. dfXpAq “ XtA`AtX, which is, as it should be, a symmetric matrix.

Remark: this result could have been obtained also by identifying the differential with the
total derivative and observing that:

fpX ` tAq “ XtX ` tpXtA`AtXq ` t2AtA “ fpXq `DfpXqtA` optq,

so that dXfpAq “ DfpXqA “ XtA`AtX.

Now that the differential is explicit, let us analyze its surjectivity: for every B P Sympn,Rq
we must determine under what condition on X it exists at least one A PMpn,Rq such that
B “ dfXpAq “ XtA`AtX.

To obtain this result first notice that B is symmetric, so we can write:

B “
1

2
B `

1

2
B “

1

2
B `

1

2
Bt,

that must be compared to

B “ XtA`AtX “ XtA` pXtAtqt,
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the two expressions are compatible if and only if XtA “ 1
2B, if X is invertible, then we can solve

this equation obtaining A “ 1
2pX

tq´1B. Thus dfX : TXGLpn,Rq – Mpn,Rq Ñ Sympn,Rq is
surjective for all X P GLpn,Rq, since every symmetric nˆ n real matrix B can be written as
dfXp

1
2pX

tq´1Bq, where X P GLpn,Rq.

The identity In is symmetric, an orthogonal matrix X is invertible and In “ fpXq,
thus In is a regular value for f and the level set theorem can be applied to guarantee
that Opnq “ f´1pInq is an embedded submanifold of Mpn,Rq of dimension dimpOpnqq “
dimpMpn,Rqq ´ dimpSympn,Rqq.

The dimension of Sympn,Rq can be recovered by observing that if we want to identify

a symmetric matrix of order n we must specify npn`1q
2 real values: n2 ´ n is the totality of

matrix elements minus those lying on the diagonal, if we divide this number by 2 we obtain
the matrix element above (or below) the diagonal, to these elements we must add back the

diagonal entries, thus arriving to n2´n
2 ` n “ npn`1q

2 . Hence, Sympn,Rq is isomorphic to

Rnpn`1q{2 and so it has dimension npn`1q
2 as a manifold.

It follows that the dimension of Opnq as embedded submanifold of Mpn,Rq is:

dimpOpnqq “ n2 ´
npn` 1q

2
“
npn´ 1q

2
.

Finally, thanks to (2.34), we can compute the tangent space to Opnq as follows:

TXOpnq “ kerpdfXq “ tA PMpn,Rq : XtA`AtX “ 0u, @X P Opnq,

i.e. matrices A PMpn,Rq such that XtA is skew-symmetric, thus, in particular, if X “ In,

TInOpnq “ tA PMpn,Rq : A`At “ 0 ðñ At “ ´Au,

i.e. the tangent space at the identity element of Opnq can be identified with the space of
skew-symmetric matrices.

We will see in the chapter dedicated to Lie groups that TInOpnq can be identified with the
Lie algebra of the Lie group Opnq, that will be denoted with the symbol opnq:

Opnq “ tA PMpn,Rq : At “ A´1u, opnq “ tA PMpn,Rq : At “ ´Au.

Remark: if A were a positive real number a, then we could compute the logarithm of A´1,
obtaining logA´1 “ ´ logA, which suggests that the elements of Opnq could be considered
as the exponential of the elements of opnq. We will see that, indeed, it exists a fundamental
function, called again exponential, that relates Lie algebras and Lie groups.
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Chapter 3

Tangent, cotangent and vector
bundles (Edoardo Provenzi)

Inspirational epithap wanted...
...

The simple act of taking the union of the tangent spaces to a manifold in all its points
generates another manifold, the tangent bundle, with double the dimension of the original
one, and with a surprisingly rich intrinsic structure that happens to be the prototype of the
so-called vector bundles.

3.1 The tangent bundle over a manifold

We have seen that the tangent spaces TpM and TqM to a smooth manifold M of dimension n
in two different points p and q are not canonically isomorphic and so they cannot be identified,
in spite of the fact that they are both two copies of Rn.

The union of the tangent spaces to M as we vary the point on M is then a disjoint one.
The canonical symbol to denote this disjoint union is:

TM “
ğ

pPM

TpM “ tpp, vq : p PM, v P TpMu.

This space comes equipped with a natural projection:

π : TM ÝÑ M
pp, vq ÞÝÑ πpp, vq “ p.

Def. 3.1.1 TM is called the tangent bundle of the smooth manifold M . The fiber over
p PM is the set:

π´1ppq “ tpp, vq : v P TpMu – TpM.

The most important geometrical characteristic of the tangent bundle is its local triviality,
i.e. the fact that, locally, it is diffeomorphic to the Cartesian product between a chart domain
and Rn, the local model of M .
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Local triviality is easily understood if we consider a local chart pU,ϕq in p PM and the
restriction of TM to U , defined by

TM |U “
ğ

pPU

TpM.

As we have seen in chapter 2, the act of fixing a local chart pU,ϕq in p PM induces the
non-canonical linear isomorphism dϕp : TpM

„
Ñ Rn defined by dϕppBi|pq “ ei, where ei is the

i-th element of the canonical basis of Rn, i “ 1, . . . , n, thus the extension on the whole tangent
space to M at p is given by the correspondence: TpM Q v “ vi Bi|p ÐÑ pviqni“1 P Rn.

This holds for every point p P U , so we can extend this non-canonical identification to all
U as follows:

idU ˆ dϕp : TM |U “
Ů

pPU

TpM
„
ÝÑ U ˆ Rn

pp, pvi Bi|pq
n
i“1q ÞÝÑ pp, pviqni“1q.

Finally, each chart map sends U ĎM diffeomorphically to ϕpUq Ď Rn, thus we can further
identify U ˆ Rn with an open subset ϕpUq ˆ Rn of R2n as follows:

ϕˆ idRn : U ˆ Rn „
ÝÑ ϕpUq ˆ Rn

pp, pviqni“1q ÞÝÑ px, pviqni“1q, x “ ϕppq.

By composition we obtain:

Φ ” pϕˆ idRnq ˝ pidU ˆ dϕpq : TM |U
„
ÝÑ ϕpUq ˆ Rn Ď R2n

pp, pvi Bi|pq
n
i“1q ÞÝÑ px, pviqni“1q, x “ ϕppq,

which shows that the couple pTM |U ,Φq is a local chart for TM with local coordinates obtained
by replacing ϕ by its component functions xi ” pεi ˝ ϕqni“1, i.e.

ppx1, . . . , xnq ˆ idRnq ˝ pidU ˆ dϕpq : TM |U
„
ÝÑ ϕpUq ˆ Rn Ď R2n

pp, pvi Bi|pq
n
i“1q ÞÝÑ pxippq, viqni“1q.

Def. 3.1.2 Given a local coordinate system pU,ϕ ” pxiqq in p P M , the coordinates defined
by px1ppq, . . . , xnppq, v1, . . . , vnq, such that v P TpM is written as v “ vj Bj |p, are called the
natural local coordinates on the tangent bundle TM .

As we vary U in an atlas of M , we obtain a covering of TM and the charts can be proven
to be compatible, so that they constitute an atlas for TM , see [10] proposition 3.18 page 66
for the technical proof. As a consequence, TM is a 2n-dimensional smooth manifold.

As we will see later, the property of being diffeomorphic to the Cartesian product U ˆ Rn
that the tangent bundle TM is so important to be one of the conditions included in the
definition of a general vector bundle. The map idU ˆ dϕp : TM |U

„
ÝÑ U ˆ Rn is called a

local trivialization of the vector bundle TM .
The next remark will have a great importance for the general theory of vector bundles: let

us concentrate on the local trivialization TM |Uαβ – Uαβ ˆ Rn, where Uαβ “ Uα X Uβ is the
intersection of two chart domains for M with chart maps ϕα and ϕβ, respectively. We know
that the compatibility between charts is equivalent to the request that the Jacobian matrix
Jηαβ pxq of ηαβ evaluated in any x P ϕβppq, for all p P Uαβ, is non singular, i.e. it belongs to
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GLpn,Rq. This means that each tangent bundle comes equipped with the following smooth
functions

ταβ : Uα X Uβ ÝÑ GLpn,Rq
p ÞÝÑ ταβppq “ Jηαβ pxq, x “ ϕβppq,

which can be easily seen to satisfy the following properties:

$

’

&

’

%

τααppq “ In, @ p P Uα X Uβ

ταβppq “ τβαppq
´1, @ p P Uα X Uβ

ταβppq ˝ τβγppq “ ταγppq, @ p P Uα X Uβ X Uγ

,

thanks to the corresponding features of the transition functions ηαβ between charts.
The functions ταβ are called transition functions between the local trivializations

of TM given by TM |Uα – Uα ˆ Rn and TM |Uβ – Uβ ˆ Rn.
The importance of the transition functions between the local trivializations is that they

permit to construct the manifold structure of a collection of vector spaces attached to points
of a manifold in a sense that will be specified more rigorously later in this chapter.

Remark: notice that, in spite of bearing the same name and of being related as described
above, the transition functions ηαβ : ϕβpUαβq Ď Rn Ñ ϕαpUαβq Ď Rn between two charts of
M and the transition functions ταβ : Uα X Uβ Ñ GLpn,Rq between two local trivializations of
TM are very different objects and must not be confused.

Def. 3.1.3 (Global differential) If f : M Ñ N is a smooth map between smooth manifolds
M and N , then the map df : TM Ñ TN such that df |TpM “ dfp is called the global
differential or global tangent to f .

Theorem 3.1.1 If f : M Ñ N is a smooth map, then its global differential df : TM Ñ TN
is a smooth map.

Proof. It is sufficient to recall eq. (2.27), which gives the local expression of the differential of
f in a point p PM in coordinates as:

dfp

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

“
Bf̃ j

Bxi
pxq

B

Byj

ˇ

ˇ

ˇ

ˇ

fppq

,

where f̃ j are the component functions of the local expressions of f . Thus, the coordinate
representation of df in terms of the natural coordinates of TM and TN is:

dfpx1, . . . , xn, v1, . . . , vnq “

˜

f̃1pxq, . . . , f̃npxq,
Bf̃1

Bxj
pxqvj , . . . ,

Bf̃n

Bxj
pxqvj

¸

,

x “ px1, . . . , xnq. The smoothness of f implies that of the coordinate representation. 2

The properties of df listed below follow easily from those of the differential in a point.

Theorem 3.1.2 (Properties of the global differential) Given smooth maps f : M Ñ N
and g : N Ñ P the following properties hold.
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1. dpidM q “ idTM .

2. Chain rule for the global differential:

dpg ˝ fq “ dg ˝ df.

3. If f is a diffeomorphism, then df : TM Ñ TN is a diffeomorphism and pdfq´1 “ dpf´1q.

Thanks to 3. it is not ambiguous to write simply df´1 for the inverse of the global differential
of a smooth function.

3.1.1 The tangent bundle as the configuration space of a classical mechan-
ical system

A state of a classical mechanical system is given by specifying a configuration, i.e. the position
and the speed of the system particles at a given time. These data are necessary and sufficient
to give the initial conditions to write the system of differential equations given by Newton’s
second law of motion (or its equivalent Lagrangian or Hamiltonian formulations).

If the configuration space is assumed to be a smooth manifold Q, then the state space is
the tangent bundle TQ. Thanks to local triviality, if dimpQq “ n, a state at the time t0 can
be locally described via these coordinates:

`

q1pt0q, . . . , q
npt0q, 9q1pt0q, . . . , 9qnpt0q

˘

,

where qi ” xi in physical notation, and qipt0q ”
dqiptq
dt pt0q.

3.2 Vector bundles

The tangent bundle is the prototype of a category of smooth bundles called vector bundles, to
which this section is dedicated.

Before introducing the formal definition, we stress that the main idea underlying a vector
bundle is to construct a family of vector spaces Ep parameterized by points p of a
manifold M (or, as it is often said, attached to these points) in such a way that these
vector spaces fit together to form another manifold, which is called a vector bundle
over M . We can study with the techniques of differential geometry this new manifold, which
turns out to carry a richer and more interesting structure than the original one.

The next definition contains all the information needed to ‘glue together’ the copies of the
vector spaces attached to each point of M to form a vector bundle.

Def. 3.2.1 (Vector bundle) A (real) vector bundle of rank r over a smooth manifold M of
dimension n ě r, called base space, is described by the triple pE,M, πq, where E is a smooth
manifold, called the total space of the bundle, and π : E ÑM is a smooth surjective map,
such that:

1. for all p PM , the fiber Ep :“ π´1ppq is a real vector space of dimension r;
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2. every p PM admits an open neighborhood U ĎM and a diffeomorphism

χ : E|U :“ π´1pUq
„
ÝÑ U ˆ Rr,

called local trivialization, such that the following diagram commutes:

π´1pUq U ˆ Rr

U

π

χ

pr1
ðñ pr1 ˝ χ “ π.

3. for all p P U , the function χ|p : Ep
„
ÝÑ tpu ˆ Rr – Rr is a linear isomorphism.

Vector bundles of rank 1 are called line bundles.

In literature, to denote (or even to define) vector bundles it is common to use either the
notation pE,M, πq or π : E ÑM or simply E, depending on what has to be emphasized. We
will follow this tradition.

The simplest example of vector bundle is obtained when the family of vector spaces is
constant, i.e., when there is a canonical, fixed, vector space E such that Ep “ E for all p PM :
in this case there is just one copy of E for each p PM and these copies fit together to form
the vector bundle M ˆ E over M . Due to the extreme simplicity of this construction, such a
vector bundle is called trivial.

The tangent bundle of a manifold M of dimension n is a vector bundle of rank
n. This fundamental example shows that, in general, vector bundles are only locally trivial.

Any non globally trivial bundle requires more than one local trivialization, thus it is natural
to ask oneself what happens in the overlap of any two local trivializations. The following result
shows that, thanks to the requests 2. and 3. in the definition of vector bundle, the composition
of two local trivializations on the overlap domain has a particularly simple expression.

Theorem 3.2.1 Let π : E Ñ M be a vector bundle of rank r over M and suppose that
χ1 : π´1pUαq Ñ Uα ˆ Rr and χ2 : π´1pUβq Ñ Uβ ˆ Rr are two local trivializations of E with
non empty intersection Uα X Uβ ‰ H. Then, there exists a smooth map

ταβ : Uα X Uβ Ñ GLpr,Rq

such that the composition χ1 ˝ χ
´1
2 : pUα X Uβq ˆ Rr Ñ pUα X Uβq ˆ Rr can be written as

χ1 ˝ χ
´1
2 pp, vq “ pp, ταβppqvq,

i.e. it acts as the identity on the first entry and linearly on the second entry, with the application
of the non-singular matrix τppq P GLpr,Rq on the vector v P Rr.

Proof. Thanks to property 2. in the definition of vector bundle, the following diagram
commutes (we have not written the restriction of the local trivializations to π´1pUα X Uβq for
notational simplicity).
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pUα X Uβq ˆ Rr π´1pUα X Uβq pUα X Uβq ˆ Rr

Rr Uα X Uβ

χ´1
2

pr1
σ

χ2 χ1

π
pr1

This implies that pr1 ˝ pχ1 ˝ χ
´1
2 q “ pr1, i.e. χ1 ˝ χ

´1
2 acts as the identity of the first entry,

so that the only significant action of the composition χ1 ˝ χ
´1
2 is on the second entry, which

belongs to Rr, we denote this action with the smooth map σ : pUα X Uβq ˆ Rr Ñ Rr so that

χ1 ˝ χ
´1
2 pp, vq “ pp, σpp, vqq.

Property 3. in the definition of vector bundle implies that, for every fixed p P Uα X Uβ, the
map Rr Q v ÞÑ σpp, vq P Rr is a linear isomorphism, thus its action can be associated to a
non-singular matrix τppq P GLpr,Rq such that σpp, vq “ τppqv.

The smoothness of τ is a technical matter left as an exercise. 2

Def. 3.2.2 The smooth map ταβ : Uα X Uβ Ñ GLpr,Rq of the previous theorem is called
transition function between the local trivializations χ1 and χ2 of the vector bundle π : E ÑM .

As we have seen before, when E “ TM , the transition functions map every p in Uα X Uβ in
the Jacobian matrix evaluated in ϕβppq of the transition function ηαβ between two charts
ϕα and ϕβ of M . Moreover, as for the case of the tangent bundle, it is simple to verify that
the transition functions ταα satisfy the so-called cocycle relations (identical to those of the
tangent bundle, with the only difference of the dimension r ď n for the matrix):

$

’

&

’

%

ηααppq “ Ir

ηαβppq “ ηβαppq
´1

ηαβppqηβγppq “ ηαγppq

,

for all p P Uα X Uβ (the first two properties) and for all p P Uα X Uβ X Uγ (the third one).
The importance of the transition functions can be fully understood by the following results,

which shows how to provide a vector bundle structure to a collection of vector spaces with
fixed dimension attached to the points of a manifold via the transition functions.

Theorem 3.2.2 Suppose we are given a manifold M and a collection of real vector spaces
Ep of fixed dimension r attached to each point p PM . Let then:

• E :“
Ů

pPM

Ep;

• π : E ÑM , such that π|Ep maps all elements of Ep to p.

Suppose furthermore that we are given:

1. an open cover tUαuαPA of M ;

84



2. for each α P A, a bijective map χα : π´1pUαq Ñ Uα ˆ Rr such that χα|Ep is a linear

isomorphism between Ep and tpu ˆ Rr – Rr;

3. for each α, β P A such that UαXUβ ‰ H, a smooth map ταα : UαXUβ Ñ GLpr,Rq such
that χα ˝ χ

´1
β pp, vq “ pp, ταβppqvq for all p P Uα X Uβ and v P Rr.

Then there exists a unique topology and smooth structure on E that make it a smooth manifold
and a vector bundle of rank r over M , with projection π and smooth local trivializations
tpUα, χαqu.

The proof is quite technical and we omit it, the interested reader can find it in [10], Lemma
10.6 page 253.

Without this results, in order to give a vector bundle structure on a collection of vector
spaces attached to points of a manifold, one should have to build a manifold topology and
a smooth structure on their disjoint union, then construct the local trivializations and show
that they satisfy all the properties of definition 3.2.1. This is, in general, a much longer and
complicated procedure than the one described in the theorem above.

3.2.1 Operations on vector bundles

The operations that can be done on vector spaces can be extended to vector bundles. The key
to do that is simply to perform these operations on the fibers, which are vector spaces.

Def. 3.2.3 (Whitney (direct) sum of vector bundles) Given a smooth manifold M and
two vector bundles π1 : E1 ÑM and π2 : E2 ÑM of rank r1 and r2, respectively, the Whitney
sum of E1 and E2 is the vector bundle over M of rank r1 ` r2 whose fiber at each point
p PM is the direct sum pE1qp ‘ pE2qp.

It can be proven that, with this definition, we get indeed a vector bundle with total space

E1 ‘ E2 “
ğ

pPM

ppE1qp ‘ pE2qpq.

The transition functions for this bundle are ταβ : Uα X Uβ Ñ GLpr1 ` r2,Rq, where, for each

p PM , ταβppq is a block diagonal matrix of the form

ˆ

pτ1qαβppq 0
0 pτ2qαβppq

˙

.

Def. 3.2.4 (Restriction of a vector bundle) Given a smooth manifold M , a smooth vec-
tor bundle π : E ÑM of rank r and an immersed or embedded subset S ĂM , the restriction
of E to S is the vector bundle with total space ES “

Ů

pPS

Ep and projection πS “ π|ES .

It can be proven that πS : ES Ñ M is a smooth vector bundle. As a particular case, the
restricted vector bundle TM |S is called the ambient vector bundle over M .

Def. 3.2.5 (Dual of a vector bundle) Let E be a vector bundle of rank r over the manifold
M . Then, its dual vector bundle is:

E˚ “
ğ

pPM

Ep
˚.
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Ep
˚ “ HompEp,Rq is the dual vector space of Ep. The projection is again the map π : E˚ ÑM

such that its restriction to every E˚p sends its elements to p. The rank of E˚ is r. The transition
functions are given by τ : U Ñ GLpr,Rq, τ˚ppq “ pτppq´1qt for all p P U .

When we operate the dualization procedure to the tangent bundle of a manifold, we obtain
a very important object, that we discuss in the next section.

3.3 The cotangent bundle over a manifold

Before formalizing the concept of cotangent bundle, let us extend to generic finite-dimensional
real vector spaces what stated in Appendix B about the relationship between Rn equipped
with its canonical basis and its dual space pRnq˚ equipped with the canonical dual basis.

If V is an n-dimensional real vector space, then, by convention, we call its elements v P V
vectors and we write them in matrix form as a nˆ 1 matrix, i.e. as column vectors.

Instead, the elements of its dual space V ˚, i.e. linear functionals ω : V Ñ R, are called
covectors and they are indicated in matrix form as a 1ˆ n matrix, i.e. as row vectors.

We know that the dual basis pε1, . . . , εnq of pRnq˚ is associated to the canonical basis
pe1, . . . , enq via εipejq “ δij , so that εipvjejq “ vi, the same holds for generic vector spaces and
bases.

More precisely, if pe1, . . . , enq is any basis of V , the corresponding dual basis of V ˚, denoted
again pε1, . . . , εnq, is defined by:

εipejq :“ δij ,

which implies that, if v “ vjej , then

εipvjejq “ vjεipejq “ vjδij “ vi.

So, also for generic vector spaces, the i-th element of the dual basis pε1, . . . , εnq acts simply as
the projection on the direction defined by the i-th vector ei of a fixed basis of V .

A generic covector ω P V ˚ will be written in terms of the basis pε1, . . . , εnq as ω “ ωiε
i,

with the components ωi P R satisfying

ωpeiq “ ωjε
jpeiq “ ωjδ

j
i “ ωi,

i.e. the components of ω are determined simply by applying it to all the elements of the basis
pe1, . . . , enq. As a consequence, the action of ω on a generic vector v “ vjej is the following:
ωpvq “ pωiε

iqpvjejq “ ωiv
jεipejq “ ωiv

jδij “ ωiv
i. The fact that

ωpvq “ ωiv
i (3.1)

explains the convention of writing ω in matrix form as a row vector and v as a column vector.
Other useful facts that is worthwhile recalling are listed below:

• Transpose (or dual) map: if A : V Ñ W is a linear operator between two finite
dimensional real vector spaces V and W , the the linear map

At : W ˚ ÝÑ V ˚

ω ÞÝÑ Atpωq
,

Atpωq : V ÝÑ R
v ÞÝÑ Atpωqpvq :“ ωpAvq,

is called the transpose (or dual) map of A.
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• The transpose map verifies pA ˝Bqt “ Bt ˝At and pidV q
t “ idV ˚ , with obvious meaning

of the symbols used.

• The bidual, or second dual space of V is V ˚˚ :“ pV ˚q˚. For finite-dimensional vector
spaces, V and its bidual V ˚˚ are naturally isomorphic via the map:

ξ : V
„
ÝÑ V ˚˚

v ÞÝÑ ξpvq
,

ξpvq : V ˚ ÝÑ R
ω ÞÝÑ ξpvqpωq :“ ωpvq,

(3.2)

the isomorphism being natural because only the intrinsic elements of the spaces involved
have been used to define it and nothing else, in particular without the choice of a basis.

• Because of eqs. (3.1) and (3.2), the real number can be interpreted either as the
application of the linear functional ω P V ˚ to the vector v P V , or as the application
of the linear functional ξpvq P V ˚˚ to the covector ω P V ˚. Because of the natural
identification between V and V ˚˚, it is custom to omit ξ and to write simply v, which,
with this omission, acquires the double role of vector of V and linear functional over
V ˚. Due to this double role, the real number ωpvq “ ξpvqpωq ” vpωq is often written in
a more symmetric-looking way as follows:

xw, vy :“ ωpvq, xv, wy :“ ξpvqpωq ” vpωq,

called pairing between v and ω. The pairing xεi, ejy “ δij is called canonical pairing
between bases of V – V ˚˚ and V ˚.

The definition of cotangent bundle over a smooth manifold M is identical to that of tangent
bundle, the only difference being that the tangent spaces are replaced by their duals.

Def. 3.3.1 T ˚pM “ HompTpM,Rq is the dual of TpM , called the cotangent space to M at
p. An element ω P T ˚pM is called cotangent vector to M in p, or covector, or differential
form.

Def. 3.3.2 (Cotangent bundle) The cotangent bundle over M , denoted with T ˚M is given
by the following disjoint union of cotangent spaces at different p PM :

T ˚M “
ğ

pPM

T ˚pM “ tpp, ωq : p PM, ω P T ˚pMu, π|T˚p M pωq :“ p.

Analogously to what we did for the tangent bundle, we can prove that the cotangent
bundle is manifold of dimension 2n and a vector bundle of rank n.

In the case of tangent spaces, we have seen that the act of fixing a local coordinate system
pU,ϕ ” px1, . . . , xnqq in p P M induces the basis pB1|p , . . . , Bn|pq of TpM . We are going to
prove that the dual basis of T ˚pM can be built by taking the differential of the coordinate
functions xi : U ĎM Ñ R, xippq “ pεi ˝ ϕqppq “ εipx1, . . . , xnq “ xi. Being scalar functions,
we must apply eq. (2.17) to get

dxi
ˇ

ˇ

p

˜

B

Bxj

ˇ

ˇ

ˇ

ˇ

p

¸

“
B

Bxj

ˇ

ˇ

ˇ

ˇ

p

pxiq “
p2.14q

Bpxi ˝ ϕ´1q

Bxj
pxq “

Bpεi ˝ ϕ ˝ ϕ´1q

Bxj
pxq “

Bεi

Bxj
pxq “

Bxi

Bxj
“ δij ,
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so, the linear functionals of TpM given by

dxi
ˇ

ˇ

p
: TpM ÝÑ TxiR – R
Bj |p ÞÝÑ dxi

ˇ

ˇ

p
pBj |pq “ δij ,

verify the pairing
xdxi

ˇ

ˇ

p
, Bj |py “ δij

which means that they are the dual basis of the coordinate tangent vectors Bj |p. This justifies
the following definition.

Def. 3.3.3 (Coordinate cotangent vectors) The vectors pdx1
ˇ

ˇ

p
, . . . , dxn|pq are called co-

ordinate cotangent vectors and they form the standard basis of T ˚pM dually associated to
the basis of coordinate tangent vectors pB1|p , . . . , Bn|pq of TpM .

Once established pdxi
ˇ

ˇ

p
q as the standard basis of T ˚pM , we infer, from what recalled above

for a general vector space, that:

• every cotangent vector ω P T ˚pM can be expressed as the following linear combination:

ω “ ωi dx
i
ˇ

ˇ

p
, ωi “ ωpBi|pq P R,

• the action of dxi
ˇ

ˇ

p
on the generic tangent vector v “ vj Bj |p P TpM is simply the

extraction of the i-th component w.r.t. the coordinate tangent vectors of TpM :

dxi
ˇ

ˇ

p
pvj Bj |pq “ vi.

Analogously as for the tangent bundle, we can define the local coordinates of the cotangent
bundle as follows.

Def. 3.3.4 Given a local coordinate system pU,ϕ ” pxiqq in p P M , the coordinates defined
by px1ppq, . . . , xnppq, ω1, . . . , ωnq, such that ω P T ˚pM is written as ω “ ωi dx

i
ˇ

ˇ

p
, are called the

natural local coordinates on the cotangent bundle T ˚M .

We summarize below the results that we obtained so far about the local expressions of a
tangent and cotangent vectors.

• Given a local chart pU,ϕq of p PM with local coordinate functions xi,

xi “ εi ˝ ϕ : U ĎM ÝÑ R
p ÞÝÑ εipϕppqq.

• The basis of TpM induced by this chart is

´

B1|p , . . . , Bn|p

¯

.

• The dual basis of T ˚pM is
´

dx1
ˇ

ˇ

p
, . . . , dxn|p

¯

.
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• They verify the following pairing: xdxi, Bj |py “ δij .

• A generic tangent vector v P TpM will be written as:

v “ vj Bj |p , vj P R, j “ 1, . . . , n.

• A generic cotangent vector (or covector, or differential form) ω P TpM will be written as:

ω “ ωi dx
i
ˇ

ˇ

p
, ωi “ ωpBi|pq P R, i “ 1, . . . , n.

Many times, in the physical and engineering literature, the specification of the basis is
omitted and the position of the indices is used to qualify the object :

• tangent vector pv1, . . . , vnq - components with indices above

• covector or differential form pω1, . . . , ωnq - components with indices below.

In the trivial case of M “ Rn we have at disposal the single chart atlas pRn, ϕ ” idRnq

which allows us to canonically identify
´

B1|p , . . . , Bn|p

¯

with the canonical basis pe1, . . . , enq

of Rn and
´

dx1
ˇ

ˇ

p
, . . . , dxn|p

¯

with the dual canonical basis pε1, . . . , εnq.

3.3.1 A noticeable example of cotangent vector: the differential of a scalar
function at a point

Let φ : M toR be a smooth scalar function and p P M . Since dφp : TpM Ñ TφppqR – R is
linear, we clearly have that dφp P T

˚
pM , i.e. dφp is a cotangent vector to M at p.

Fixed a local chart pU,ϕ ” pxiqq in p such that ϕppq “ x, we can of course express dφp as
a linear combination of the coordinate cotangent vectors:

dφp “ ωi dx
i
ˇ

ˇ

p
,

and we know that:

ωi “ dφp

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

:“
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

pφq “
Bpφ ˝ ϕ´1q

Bxi
pϕppqq “

Bφ̃

Bxi
pxq,

where φ̃ “ φ ˝ ϕ´1 : ϕpUq Ď Rn Ñ R is the local representation of φ.
Thus, the explicit expression of the cotangent vector dφp is:

dφp “
Bφ̃

Bxi
pxq dxi

ˇ

ˇ

p
. (3.3)
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3.3.2 Transformation rule for the local coordinates of cotangent vectors

Here we analyze how the components of a cotangent vector change when we change the local
coordinates in a point. This is the analog for cotangent vectors of what we have already did
in section 2.5.2 for tangent vectors and thus it can be thought as a sort of physicist definition
of cotangent vectors.

Suppose that p P M belongs to the intersection of two local charts pU,ϕ ” pxiqq and
pŨ , ϕ̃ ” px̃jqq, then we can decompose ω P T ˚pM w.r.t. the basis pdx1

ˇ

ˇ

p
, . . . , dxn|pq or w.r.t.

the basis pdx̃1
ˇ

ˇ

p
, . . . , dx̃n|pq obtaining, respectively,

ω “ ωi dx
i
ˇ

ˇ

p
“ ω̃j dx̃

j
ˇ

ˇ

p
.

As we have just seen, the coefficients of the cotangent vectors can be obtained by applying ω
on the coordinate tangent vectors:

ωi “ ω

˜

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

¸

and ω̃j “ ω

˜

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

¸

.

Recall now from eq. (2.29) that

B

Bxi

ˇ

ˇ

ˇ

ˇ

p

“
Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

,

we get

ωi “ ω

˜

Bx̃j

Bxi
pxq

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

¸

“
Bx̃j

Bxi
pxqω

˜

B

Bx̃j

ˇ

ˇ

ˇ

ˇ

p

¸

“
Bx̃j

Bxi
pxq ω̃j .

Similarly, by using eq. (2.30) and repeating the calculations above on ω̃j we obtain:

ω̃j “
Bxi

Bx̃j
pxqωi.

As we said in section 2.5.2, in the early days of differential geometry (and still nowadays in the
physicist and engineering setting), a tangent vector was interpreted as the assignment of an
n-tuple of real numbers associated to each coordinate system following precise transformation
rules when we change from one coordinate system to another. It is thus important to compare
the transformation rules of the components of a tangent and cotangent vector:

Tangent vectors:

ṽj “
Bx̃j

Bxi
pxqvi, vi “

Bxi

Bx̃j
px̃qṽj

Cotangent vectors:
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ω̃j “
Bxi

Bx̃j
pxqωi, ωi “

Bx̃j

Bxi
pxq ω̃j .

Since eq. (2.29) for the transformation of the coordinated tangent vectors is a direct
consequence of the chain rule, mathematicians considered it as a sort of ‘standard’ for the
transformation under change of coordinate system and called covariant, from the Latin prefix
co-, which means with, so that covariant means that an object ‘vary with’ the standard
transformation rule.

It can be seen that cotangent vectors follow the standard transformation rule, eq. (2.29),
while tangent vectors follow the opposite rule. For this reason, it is still customary to say that:

• cotangent vectors are covariant vectors;

• tangent vectors are contravariant vectors.

Despite the same nomenclature, this has nothing to do with covariant and contravariant
functors of category theory.

3.4 Local and global sections of a vector bundle

In Physics, when we talk about a vector field we mean a vector attached to each point of a
certain region in space. This concept can be made rigorous in differential geometry thanks
to the definition of sections of vector bundles. Being quite simple, we will first introduce the
abstract concept of section on a general vector bundle and then we will specialize it on the
tangent and cotangent bundles.

Let us consider a vector bundle π : E ÑM over the smooth manifoldM and a neighborhood
U of a point p PM . The most natural vectors associated to p are those belonging to the fiber
over it, i.e. π´1ppq “ Ep, because each v P Ep projects on p via π. Thus, a function that
associates points of U to vectors belonging the fibers over them is also a natural object. Of
course, to be able to perform differential calculus over this object, we require it to be smooth,
i.e. we demand that the vector assignment is smooth when we pass from one point to another.

The definition of local section gives a mathematical formalization to what just said.

Def. 3.4.1 (Local section or local vector field) A local section (or a local vector field)
of E on an open set U ĎM is a smooth function σ : U Ñ E such that π ˝ σ “ ιU , i.e. such
that the following diagram commutes:

E

U M

π
σ

ιU

i.e. π ˝ σ “ ιU , where ι is the canonical inclusion of U in M .

Notice that the definition contains exactly the information that we wanted to formalize, in
fact, thanks to the local triviality of E, σppq “ pp, vq P U ˆ Ep, so

pπ ˝ σqppq “ πpp, vq “ p “ ιppq.
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In this way, we do not attach to p any vector, but a vector v belonging to the fiber over p,
which is called the significant part of the section σ, because it is the only information that
allows us to distinguish it from another section on U .

The set of all sections of E on U is denoted with the following symbol:

ΓpU,Eq “ tσ : U Ñ E, π ˝ σ “ ιUu .

ΓpU,Eq is an Abelian group w.r.t. the sum of sections on U defined as follows: if σ1, σ2 P

ΓpU,Eq, with σ1ppq “ pp, v1|pq and σ2ppq “ pp, v2|pq, then pσ1 ` σ2qppq “ pp, v1|p ` v2|pq,

which makes perfect sense because both v1|p and v2|p belong to the same vector space π´1ppq,
so we can add them together meaningfully.

If it is possible to define σ on the entire manifold M , then we get the global sections.

Def. 3.4.2 (Global section or global vector field) A global section (or a global vector
field) of E on M is a smooth function σ : M Ñ E such that π ˝ σ “ idM , i.e. such that the
following diagram commutes.

E

M M

π
σ

idM

Convention: without further specification, a section on a vector bundle will be considered as
global.

The set of all sections of E on M is denoted with the following symbol:

ΓpEq “ tσ : M Ñ E, π ˝ σ “ idMu .

Noticeable examples of sections, or vector fields, are obtained by considering E “ TM and
E “ T ˚M , the tangent and cotangent bundle of M , respectively.

3.4.1 Tangent vector fields

In this and in the next subsection we will omit the adjective local or global, since the definitions
and results hold for both situations, with evident adjustments.

Def. 3.4.3 A (tangent) vector field is a smooth assignment X : M Ñ TM , to each point
p PM , of a tangent vector to M at p, i.e. π ˝X “ idM ,

X : M ÝÑ TM
p ÞÝÑ Xppq ” pp,Xpq,

with Xp P TpM , the significant part of the (tangent) vector field X.

Due to its importance, ΓpTMq, the set of all sections of TM , is denoted with a particular
symbol:

XpMq “ τpMq “ tσ : M Ñ TM, π ˝ σ “ idMu . (3.4)

It is custom to omit ‘tangent’ and write only vector field when it is clear that the vector
bundle that we are considering is TM . We will use this convention.

The basic properties of XpMq are listed in the following result.
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Theorem 3.4.1 The following assertions hold.

• XpMq is a real vector space under point-wise addition and scalar multiplication, i.e.

paX ` bY qp :“ aXp ` bYp, X, Y P XpMq, a, b P R.

The 0 element of XpMq is the null vector field, that attaches to any p PM the 0 tangent
vector of TpM .

• If f P C8pMq and X P XpMq, then fX : M Ñ TM defined as:

pfXqp :“ fppqXp @p PM,

is a vector field.

• XpMq is a module over the ring C8pMq.

Using the natural local coordinates of TM for every coordinate chart pU, pxiqq we can write,
for every p PM ,

Xp “ pp,X
ippq Bi|pq,

where the coefficients Xippq P R, in general, vary with p. This implies the existence of n
functions Xi : U Ď M Ñ R, called component functions of the vector field X P XpMq in
the chart pU, pxiqq such that, for all p PM :

Xp “ Xippq
B

Bxi

ˇ

ˇ

ˇ

ˇ

p

,

which is an equation involving tangent vectors of TpM . Using the fact that XpMq is a module
over the ring C8pMq, this relationship can be written also as an equation involving vector
fields, i.e.

X “ Xi B

Bxi
” XiBi,

where
B
Bxi

: U ÝÑ TM

p ÞÝÑ B
Bxi
ppq :“ pp, B

Bxi

ˇ

ˇ

p
q ” pp, Bi|pq,

is called the i-th coordinate tangent vector field.
It is clear that the restriction of a vector field to a chart domain U is smooth if and only if

the component functions w.r.t. that domain are smooth.

3.4.2 1-forms or cotangent vector fields

Sections of the cotangent bundle are a fundamental object in differential geometry and its
applications.

Def. 3.4.4 (1-form or cotangent vector field) A 1-form or cotangent vector field, is a
smooth assignment ω : M Ñ T ˚M , to each point p PM , of a cotangent vector to M at p, i.e.
π ˝ ω “ idM ,

ω : M ÝÑ T ˚M
p ÞÝÑ ωppq ” pp, ωpq,

with ωp P T
˚
pM , the significant part of the 1-form ω.
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The easiest example of 1-form is the differential of a smooth scalar function f P C8pMq:

df : M ÝÑ T ˚M
p ÞÝÑ dfppq ” pp, dfpq.

The set of all sections of T ˚M is denoted which either

X˚pMq “ ΛpMq “ ΩpMq . (3.5)

As XpMq, also ΛpMq is a real vector space w.r.t. point-wise operations and a module over
the ring C8pMq w.r.t. the operation

pfωqp :“ fppqωp, @f P C8pMq, p PM.

Using the natural local coordinates of TM for every coordinate chart pU, pxiqq we can write,
for every p PM ,

ωp “ pp, ωippq dx
i
ˇ

ˇ

p
q,

where the coefficients ωippq P R, in general, vary with p. This implies the existence of n
functions ωi : U Ď M Ñ R, called component functions of the 1-form ω P ΛpMq in the
chart pU,ϕ ” pxiqq such that, for all p PM :

ωp “ ωippq dx
i
ˇ

ˇ

p
,

which is an equation involving cotangent vectors of T ˚pM . Using the fact that ΛpMq is a
module over the ring C8pMq, this relationship can be written also as an equation involving
1-forms, i.e.

ω “ ωi dx
i
ˇ

ˇ

p
” ωidx

i,

where
dxi : U ÝÑ T ˚M

p ÞÝÑ dxippq :“ pp, dxi
ˇ

ˇ

p
q,

is called the i-th coordinate 1-form.
It is clear that the restriction of a 1-form to a chart domain U is smooth if and only if the

component functions w.r.t. that domain are smooth.

In the particular case where ω “ df , f P C8pMq, thanks to (3.3) it holds dfp “
Bf̃
Bxi
pxq dxi

ˇ

ˇ

p
,

so we can write

df “
Bf̃

Bxi
dxi

i.e. the component functions of the differential of a scalar function are the partial derivatives
of the local representation f̃ “ f ˝ϕ´1 of the scalar function itself w.r.t. the chart. If M “ Rn,
we can use the single chart atlas pRn, idRnq and f̃ “ f , thus the previous formula reduces to
the well-known formula for the total derivative of ordinary differential calculus in Rn.

Thanks to what just discussed, we get a criterion to decide weather a smooth scalar
function on a manifold is constant or not, for the proof see [10] Proposition 11.22, page 282.

Theorem 3.4.2 (Criterion for constant scalar functions on a manifold) f P C8pMq
is constant on each connected components of M if and only if df “ 0.
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This result suggests that we can interpret df as a ‘small’ change of f P C8pMq generated
by small changes of its variables as in ordinary calculus in Rn. This is the case, in fact,
since we are interested in small changes, we can fix any point p P M and a local chart
pU,ϕ ” pxiqq in p, with x “ ϕppq, so that we can associate f to its local representation
f̃ “ f ˝ϕ´1 : ϕpUq Ď Rn Ñ R and consider ∆f :“ f̃px` vq ´ f̃pxq, where the norm of v P Rn
is sufficiently small. By the smoothness of f we can apply a Taylor expansion in x for f̃ and
write:

∆f «
Bf̃

Bxi
pxqvi

but we know that the coordinate cotangent vectors dxi
ˇ

ˇ

p
act as component extractors on

vectors, so vi “ dxi
ˇ

ˇ

p
pvq and thus

∆f «
Bf̃

Bxi
pxq dxi

ˇ

ˇ

p
pvq “ dfppvq.

From this computation, we infer that df encodes the first-order variation of f P C8pMq in an
intrinsic, coordinate-free way, on every manifold M .
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Chapter 4

Tensor calculus (Edoardo Provenzi)

It is well known that around the turn of the
century Riemann’s theory of metrical continua,
which had fallen so completely into oblivion, was
revivified and deepened by Ricci and Levi-Civita;
and that the work of these two decisively
advanced the formulation of general relativity.

Albert Einstein, 1955

Tensor calculus, invented by G. Ricci-Curbastro and T. Levi-Civita in 1900 [16], is
omnipresent in differential geometry and its applications. In this chapter we give a very
basic introduction to this topic, first discussing the tensor product for vector spaces and then
specializing these concepts on the fibers of a vector bundle.

4.1 Tensor products of vector spaces and vectors

Let V,W be two real vector spaces of finite dimension m and n, respectively, V ˚ “ HompV,Rq,
W ˚ “ HompW,Rq their dual spaces and let BilpV ˆW q the vector space of bilinear forms
g : V ˆW Ñ R on V ˆW , i.e. linear in one variable when the other is kept fixed.

The most natural way to build a bilinear form g : V ˆW Ñ R is by considering the
product of two linear forms ϕ P V ˚ and ψ PW ˚, i.e. gpv, wq “ ϕpvqψpwq, in fact, by definition
of bilinearity, if we fix one variable, say w, then ψpwq becomes simply a real coefficient and
the linearity of ϕ in v guarantees the linear behavior of g w.r.t. v; of course the same holds if
we exchange the role of v and w thus guaranteeing the bilinearity of g.

The bilinear form arising in this way is called tensor product of ϕ and ψ and denoted
with ϕb ψ:

ϕb ψ : V ˆW ÝÑ R
pv, wq ÞÝÑ ϕb ψpv, wq :“ ϕpvqψpwq .

(4.1)

For example, if V “ W “ R2, ϕ “ ε1 and ψ “ ε2, where εi is the i-th element of the
canonical basis of pR2q˚, then, for any v, w P R2 such that v “ pv1, v2q and w “ pw1, w2q, we
have ε1 b ε2pv, wq “ v1w2.

The naturalness of the bilinearity of the tensor product of linear forms raises the following
question: is it possible to express all bilinear forms on V ˆW as tensor product of linear
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forms on V and W? The answer is affirmative (for the proof see [10], proposition 12.10 page
311). Thus, if we define the tensor product of V ˚ and W ˚ as the vector space (w.r.t. the
point-wise linear operations)

V ˚ bW ˚ :“ tϕb ψ | ϕ P V ˚, ψ PW ˚u ,

we have the canonical identification

V ˚ bW ˚ – BilpV ˆW q .

It is straightforward to verify the following formulae, valid for each ϕ1, ϕ2 P V
˚, ψ1, ψ2 PW

˚,
a1, a2, b1, b2 P R:

pa1ϕ1 ` a2ϕ2q b ψ “ a1ϕ1 b ψ ` a2ϕ2 b ψ, ϕb pb1ψ1 ` b2ψ2q “ ϕb b1ψ1 ` b2ψ2.

More generally, if we consider the basis pϕ1, . . . , ϕmq of V ˚ and pψ1, . . . , ψnq of W ˚, then
any ϕ P V ˚ and any ψ P W ˚ can be written as ϕ “ aiϕ

i and ψ “ bjψ
j , ai, bj P R for all

i “ 1, . . . ,m, j “ 1, . . . , n, so

ϕb ψ “ aiϕ
i b bjψ

j “
linearity

aibjϕ
i b ψj ,

which implies that
pϕi b ψjqi“1,...,m

j“1,...,n

is a basis for V ˚ bW ˚

and so dimpV ˚ bW ˚q “ mn.
As a consequence, every g P V ˚ bW ˚ – BilpV ˆW q can be univocally written as

g “ gijϕ
i b ψj ,

gij P R, i “ 1, . . . ,m, j “ 1, . . . , n.
The results just discussed can be extended to a finite set of vector spaces, obtaining the

following canonical identification:

p
â

i“1

V ˚i – Mulp

p
ą

i“1

Viq,

where Mulp
p
Ś

i“1
Viq is the vector space of p-multilinear forms, i.e. linear in each one of the p

variables separately, when all the other p´ 1 are kept fixed.

Up to now we have considered tensor products of linear forms and dual vector spaces, we
can define tensor product of vectors and vector spaces by considering the natural isomorphism
between a finite dimensional real vector space V and its bidual V ˚˚ “ HompV ˚,Rq:

V
„
ÝÑ V ˚˚

v ÞÝÑ αv,
,

αv : V ˚ ÝÑ R
ϕ ÞÝÑ αvpϕq “ ϕpvq ” xv, ϕy.

By exchanging the role of V,W and V ˚,W ˚ and thanks to the identification just recalled, we
can define the tensor product of two vectors v P V and w PW as follows:

v b w : V ˚ ˆW ˚ ÝÑ R
pϕ,ψq ÞÝÑ v b wpϕ,ψq “ xv, ϕyxw,ψy,
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i.e. the tensor product of two vectors v, w P V is a bilinear form on V ˚ ˆW ˚.
Thus, both the tensor product of two linear forms and two vectors lead to

bilinear forms, what changes is just their domain.
As before, if we define the tensor product of V and W as the vector space (w.r.t. the

point-wise linear operations)

V bW :“ tv b w | v P V, ψ PW u ,

we have the canonical identification

V bW – BilpV ˚ ˆW ˚q .

As before, if pv1, . . . , vnq and pw1, . . . , wnq are basis of V and W , respectively, then

pvi b wjqi“1,...,m
j“1,...,n

is a basis for V bW,

so dimpV bW q “ mn and a generic element g P V bW – BilpV ˚ ˆW ˚q can be written as

g “ gijvi b wj gij P R, i “ 1, . . . ,m, j “ 1, . . . , n.

The formulae:
#

g “ gijvi b wj v P V, w PW

g “ gijϕ
i b ψj ϕ P V ˚, ψ PW ˚

are vastly used and the position of the indices reveal if we are dealing with the tensor product
of vectors or linear forms. The real coefficients gij and gij can be organized in a mˆn matrix,
for this reason the tensor product is often (erroneously) defined as a matrix.

Finally, as in the previous discussion, we can generalize these results to any finite number
of finite-dimensional vector spaces by obtaining:

p
â

i“1

Vi – Mulp

p
ą

i“1

V ˚i q.

Useful canonical isomorphisms are listed below for finite-dimensional real vector spaces:

V bW –W b V, symmetry of b

pV1 b V2q b V3 – V1 b pV2 b V3q, associativity of b

pV1 ‘ V2q bW – pV1 bW q b pV2 bW q, distributivity of b w.r.t. ‘,

more generally,
r
à

i“1

Vi b
s
à

i“1

Wi –
à

i“1,...,r
j“1,...,s

Vi bWj .

Of course we can consider the tensor product also of the dual of a vector space with another
vector space or vice-versa. The result in this case is particularly important and it is underlined
in the following result.
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Theorem 4.1.1 For any couple of finite-dimensional real vector spaces V and W the following
natural identification holds:

V ˚ bW – HompV,W q ,

where the natural isomorphism between the two spaces is defined on the generic basis element1

ϕb w of V ˚ bW by:

F : V ˚ bW ÝÑ HompV,W q
ϕb w ÞÝÑ F pϕb wq ” Fϕ,w,

Fϕ,w : V ÝÑ W
v ÞÝÑ Fϕ,wpvq “ ϕpvqw.

(4.2)

Proof. Let pv1, . . . , vnq be a basis of V , pv1, . . . , vnq the dual basis of V ˚, such that vivj “ δij ,

and let pw1, . . . , wmq be a basis of W . These bases induce the basis pvibwjq i“1,...,n
j“1,...,m

of V ˚bW .

The theorem will be proven if we show that F sends this basis to a basis of HompV,W q.
To this aim, let us make the action of F explicit: if we apply F pvi b wjq ” Fvi,wj ” F ij P

HompV,W q to an element vk of the basis of V fixed above, then, thanks to eq. (4.2) we get

F ij pvkq “ vipvkqwj “ δikwj . (4.3)

Thus, we have to prove that the linear maps pF ij q i“1,...,n
j“1,...,m

form a basis of HompV,W q.

For this, it is sufficient to consider an arbitrary L P HompV,W q and represent it as a
matrix A “ pajkq w.r.t. the bases of V and W that we have fixed: by definition of matrix

associated to a linear map, the coefficients aji verify Lpviq “ ajiwj for every vector vk of the

basis of V . The linear combination of the maps Fvi,wj with the coefficients aji , i.e. ajiF
i
j , is an

element of HompV,W q, let us apply this map on the generic vector vk of the basis of V and
see what we get:

pajiF
i
j qpvkq “

linearity
ajiF

i
j pvkq “

eq. (4.3)
aji δ

i
kwj “ ajkwj “

def. of L
Lpvkq,

we see that the action of the arbitrary linear map L P HompV,W q on the arbitrary vector vk
of the basis of V is obtained by linear combination of the action of the linear maps F ij , hence
they form a basis for HompV,W q. 2

Also this result permits to understand why tensors are often defined as matrices: after
fixing a basis of V (and so, by duality, also of V ˚) and of W , a linear application belonging to
HompV,W q is a matrix.

4.2 Covariant and contravariant tensors. Tensor algebra of a
vector space

In the previous section, we have seen that, starting from a real vector space V of finite
dimension n, we can build many other spaces via tensor product. These spaces are given by
multilinear functions defined on copies of V and V ˚.

Here we introduce a compact notation and terminology canonically used:

1and then, of course, extended by linearity to the whole space.
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• T 0
0 pV q “ T 0pV q “ T0pV q “ R

• T 1
0 pV q “ T 1pV q “ V

• T p0 pV q “ T ppV q “ Vb ¨ ¨ ¨b
loomoon

p times

V ùñ dimT p0 pV q “ np

• T 0
1 pV q “ T1pV q “ V ˚

• T 0
q pV q “ TqpV q “ V ˚b ¨ ¨ ¨b

loomoon

q times

V ˚ ùñ dimT 0
q pV q “ np

• T pq pV q “ T ppV q b TqpV q “ Vb ¨ ¨ ¨b
loomoon

p times

V b V ˚b ¨ ¨ ¨b
loomoon

q times

V ˚

• T ‚pV q “
À

pě0
T ppV q

• T‚pV q “
À

qě0
TqpV q

• T pV q “
À

p,qě0
T pq pV q, is called tensor algebra of V . .

Let us fix our attention on T pq pV q.

Def. 4.2.1 An element t P T pq pV q is called a p-contravariant and q-covariant tensor on
V .

t is nothing but a multilinear form of the type:

t : V ˚ˆ ¨ ¨ ¨ˆ
loomoon

p times

V ˚ ˆ Vˆ ¨ ¨ ¨ˆ
loomoon

q times

V ÝÑ R.

To understand its action, let us fix as usual a basis pv1, . . . , vnq of V and the dual basis
pv1, . . . , vnq of V ˚, then:

• pvi1 b ¨ ¨ ¨ b vipq is a basis of Vb ¨ ¨ ¨b
loomoon

p times

V , with independent indices i1, . . . , ip “ 1, . . . , n;

• pvj1b¨ ¨ ¨bvjqq is a basis of V ˚b ¨ ¨ ¨b
loomoon

q times

V ˚, with independent indices j1, . . . , jq “ 1, . . . , n;

•
`

vi1 b . . . vip b v
j1 b . . . vjq

˘

i1,...,ip“1,...,n

j1,...,jq“1,...,n
is a basis of T pq pV q.
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Since we have p` q vectors in the basis of T pq pV q, each of which is parameterized by an index
whose variability is between 1 and n, we have n ¨ ¨ ¨n

loomoon

pp`qq times

“ np`q, so

dimpT pq pV qq “ np`q .

The generic decomposition of the tensor of T pq pV q on the basis previously obtained is:

t “ a
i1,...,ip

j1,...,jq
vi1 b . . . vip b v

j1 b . . . vjq ,

with a
i1,...,ip

j1,...,jq
P R, of course they depend on the particular choice of the basis. Physicists

omit the bases and use to write simply

t “
´

a
i1,...,ip

j1,...,jq

¯

,

the presence of p contravariant and q covariant indices of this sort of multi-dimensional matrix
is enough to specify what type of tensor t is.

There is an obvious product between tensors. . . the tensor product:

T p1q1 pV q ˆ T
p2
q2 pV q ÝÑ T p1`p2q1`q2 pV q

pt1, t2q ÞÝÑ t1 b t2,

It is possible to verify that, with this operation, T pV q becomes an algebra.

4.3 Operations on tensors

Here we define the operations on tensors that can be found in differential geometry for different
purposes. Let us start by justifying why we call T pV q the tensor algebra.

4.3.1 Contraction

of type
`

r
s

˘

: it is a linear function Crs : T pq pV q Ñ T p´1
q´1 pV q that reduces the covariance and

contravariance degree of a tensor. Moreover, it generalizes the concept of trace to
tensors. For simplicity of notation, we can define the contraction on the basis elements of
T pq pV q (the definition is extended by linearity on the whole T pq pV q):

Crs pvi1 b ¨ ¨ ¨ b vip b v
j1 b ¨ ¨ ¨ b vjq q :“ vjspvir qvi1 b ¨ ¨ ¨ b��vir b ¨ ¨ ¨ b vip b v

j1 b ¨ ¨ ¨ b��v
js b ¨ ¨ ¨ b vjq

explanation:

• we consider the ir-th element of the V basis and the js-th element of the dual basis of
V ;

• we compute, in a linear way, the real number vjspvirq;

• we multiply this number to the tensor product basis of T pq pV q taking out vir and
vjs . . . because they already served another purpose.
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In coordinates, the contraction can be written as follows: if t P T pq pV q, t “
´

a
i1,...,ip

j1,...,jq

¯

,

Crs ptq “
´

a
i1...ir´1kir`1...ip

j1...js´1kjs`1...jq

¯

,

the same index k replaces the index ir and js, so that a sum over k is intended!
We are now going to prove that the operator C1

1 : T 1
1 pV q “ V b V ˚ Ñ T 0

0 pV q ” R is
simply the trace. If pv1, . . . , vnq is a basis of V and pv1, . . . , vnq is the dual basis, then
t P V b V ˚, t “ aijvi b vj . By using the identification V b V ˚ – HompV, V q ” EndpV q, we
can identify t with the linear function associated to the matrix A “ paijq w.r.t. the basis

pv1, . . . , vnq. By definition, the action of C1
1 is as follows:

C1
1 ptq “ C1

1 paij
vi b v

jq “
linearity

aijC
1
1 pvi b v

jq :“ aijv
jpviq��vi b��v

j “ aijδ
j
i “ aii “ TrpAq.

4.3.2 Symmetrization and antisymmetrization

W e know that some particular multilinear forms are associated with important geometric
concepts. For example, symmetric bilinear forms define real-valued scalar product, which
can be used to define the angle between vectors and the concept of orthogonality ; alternating
forms define determinants, which are involved in the measure of areas and volumes.

Since tensors are multilinear forms, it makes sense to analyze the extension of these
properties to tensors, this will be essential to build important objects such as the p-forms.

We will develop our analysis on T ppV q, the one on TqpV q can be reproduced analogously.
t P T ppV q is such that:

t : V ˚ˆ ¨ ¨ ¨ˆ
loomoon

p times

V ˚ ÝÑ R

pα1, . . . , αpq ÞÝÑ tpα1, . . . , αpq “ ai1...ipα1pvi1q ¨ ¨ ¨α
ppvipq.

We want to single out those multilinear forms t which are symmetric, i.e.

tpασp1q, . . . , ασppqq “ tpα1, . . . , αpq

for every permutation of the set of indices t1, . . . , pu, and those which are alternating, i.e.

tpασp1q, . . . , ασppqq “ signpσqtpα1, . . . , αpq,

where signpσq “ p´1qNpσq P t´1, 1u, where Npσq is the number of inversions performed by σ,
where an inversion is a switch of ordinal position between two indices after the application of
σ. This means that:

signpσq “

#

`1 if σ performs an even number of inversions

´1 if σ performs an odd number of inversions.

Some examples for T 2pV q: if v, w P V , then:

¨ t0 “ v b w is, in general, not symmetric, nor alternating;

¨ t1 “ v b w ` w b v is symmetric, in fact the change v Ø w leaves t1 unaffected;
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¨ t2 “ v b w ´ w b v is alternating, in fact the change v Ø w transforms t2 to ´t2.

Notation:
SppV q : subspace of T ppV q of symmetric tensors on V

ΛppV q “ AppV q : subspace of T ppV q of alternating tensors on V

It can be proven that, if dimpV q “ n, then

dimpT ppV qq “ np, dimpSppV qq “

ˆ

n` p´ 1

p

˙

, dimpΛppV qq “

#

`

n`p´1
p

˘

0 ď p ď n

0 p ą n
.

The case of bilinear forms, i.e. p “ 2 is special, let us see why:

dimpT 2pV qq “ n2, dimpS2pV qq “
pn` 1qn

2
, dimpΛ2pV qq “

npn´ 1q

2
,

so that dimpT 2pV qq “ dimpS2pV qq ` dimpΛ2pV qq, this is a consequence of the fact that every
tensor t P T 2pV q can be written as the sum of a symmetric and an alternating tensor in a
unique way as follows:

v b w “
v b w ` w b v

2
`
v b w ´ w b v

2
ðñ t0 “ t1 ` t2,

thus:
T 2pV q “ S2pV q ‘ Λ2pV q .

For n ą 2 this is no longer true because of a dimensional argument: np ‰
`

n`p´1
p

˘

`
`

n
p

˘

.
The operations that transform a generic tensor to a symmetric and and alternating one

are called:

¨ Symmetrization: defined on the basis of T ppV q as follows

S : T ppV q ÝÑ SppV q
v1 b ¨ ¨ ¨ b vp ÞÑ Spv1 b ¨ ¨ ¨ b vpq “

1
p!

ř

σ
vσp1q b ¨ ¨ ¨ b vσppq,

and extended by linearity to the whole space;

¨ Antisymmetrization: defined on the basis of T ppV q as follows

A : T ppV q ÝÑ ΛppV q
v1 b ¨ ¨ ¨ b vp ÞÑ Spv1 b ¨ ¨ ¨ b vpq “

1
p!

ř

σ
signpσqvσp1q b ¨ ¨ ¨ b vσppq,

and extended by linearity to the whole space.

The normalization factor 1{p! comes from the fact that p! is the number of distinct permutations
of a set of p elements and it is introduced so that S and A reduce to the identity operator if
they act, respectively, on symmetric and alternating tensors. For example: if t “ t1 P S

2pV q,
then

Spt1q “ Spvbw`wbvq “
linearity

Spvbwq`Spwbvq :“
1

2
pvbw`wbvq`

1

2
pwbv`vbwq “ t1,

where, for each term, we have applied the only two permutations on a set of two elements:
the identity and the switch v Ø w.
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4.3.3 Symmetric product and external product

The symmetric product of tensors brings a couple of symmetric tensors to another symmetric
tensor, and the external product of tensors brings a couple of alternating tensors to another
alternating tensor. Let us start with the symmetric product:

d : SppV q ˆ SqpV q ÝÑ Sp`qpV q

pt1, t2q ÞÑ t1 d t2 :“ pp`qq!
p!q! Spt1 b t2q,

by construction, it holds t1 d t2 “ t2 d t1, i.e. d is a commutative operation.
If we want d to be an internal operation, we have to make p and q ‘disappear’, which can

be done by taking the direct sum:

SpV q “
à

pě0

SppV q,

pSpV q,dq is called symmetrical algebra of V .

Example: let v, w P S1pV q “ V , then

v b w P T 2pV q, Spv b wq “
1

2!
pv b w ` w b vq

v d w “
2!

1!1!

1

2!
pv b w ` w b vq “ v b w ` w b v,

which shows the usefulness of the normalization coefficients.
Analogously, if v1, . . . , vr P V , then

v1 d ¨ ¨ ¨ d vr “
ÿ

σ

vσp1q b ¨ ¨ ¨ b vσprq.

Let us now define the external product:

^ : Λp ˆ ΛqpV q ÝÑ Λp`qpV q

pt1, t2q ÞÑ t1 ^ t2 :“ pp`qq!
p!q! Apt1 b t2q,

and

SpV q “
n
à

p“0

SppV q,

we stop at n “ dimpV q because, for p ą n, ΛppV q “ t0u.
pΛpV q,^q is the external algebra of V .

Example: let v, w P Λ1pV q “ V , then

v b w P T 2pV q, Apv b wq “
1

2!
pv b w ´ w b vq

v ^ w “
2!

1!1!

1

2!
pv b w ´ w b vq “ v b w ´ w b v.

Analogously, if v1, . . . , vr P V , then

v1 ^ ¨ ¨ ¨ ^ vr “
ÿ

σ

signpσqvσp1q b ¨ ¨ ¨ b vσprq.
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4.4 Tensor bundles and tensor fields

All the previous constructions and operations on tensors have been defined for an arbitrary
real vector space V of finite dimension. Thus, they can be applied in the case of vector bundles,
where the fiber over each point of the base manifold is, by definition, a vector space.

If π : E Ñ M is a vector bundle, then we have already seen that the dual bundle is
constructed by taking the union of the dual spaces E˚p of the fibers Ep, as p varies in M . This
permits to build in a natural way the tensor bundle.

Def. 4.4.1 (Tensor bundle) The tensor bundle T pq pEq is the vector bundle whose fibers over
p PM are given by

T pq pEpq “ T ppEpq b TqpEpq “ Epb ¨ ¨ ¨bloomoon

p times

Ep b E
˚
pb ¨ ¨ ¨bloomoon

q times

E˚p .

Def. 4.4.2 (Tensor field) A (local or global) p-contravariant and q-covariant tensor field is
a (local or global) section of T pq pEq.

Analogously, we can define the algebras T pEq, SpEq,ΛpEq.
The most important example is given by the tangent and cotangent bundle E “ TM ,

E “ T ˚M of a manifold M and particularly important is the external algebra of the cotangent
bundle to a manifold M :

ΛpT ˚Mq “
n
à

p“0

ΛppT ˚Mq,

called external algebra of M (omitting TM).

Def. 4.4.3 (k-form) A k-form on a manifold M is a section of ΛkpT ˚Mq, i.e. a smooth
assignment of an alternating tensor on T ˚M . The set of all k-forms on M is a vector space
w.r.t. the point-wise linear operations that is denoted either AkpMq or ΩkpMq.

As always, let us look at these objects in the local coordinates of a point p PM induced
by a chart pU,ϕ “ px1, . . . , xnqq: we know that pB1|p , . . . , Bn|pq is a basis for TpM and this
holds for every p P U , thus it is possible to define the sections of TM given by

Bi : U ÝÑ TM
p ÞÝÑ Bippq :“ Bi|p , with πpBi|pq “ p,

Def. 4.4.4 (Local frame for TM) The set pB1, . . . , Bnq is called a local frame of TM on U .

Similarly, by considering the dual basis pdx1
ˇ

ˇ

p
, . . . , dxn|pq of T ˚M , we can define the

sections of T ˚M given by

dxi : U ÝÑ T ˚M
p ÞÝÑ dxippq “ dxi

ˇ

ˇ

p
, with πpdxi

ˇ

ˇ

p
q “ p,

every dxi is a 1-form.
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Def. 4.4.5 (Local frame for T ˚M) The set pdx1, . . . , dxnq is called a local frame of T ˚M
on U .

It is possible to verify that

pdxi1 ^ ¨ ¨ ¨ ^ dxikq, 1 ď i1 ă ¨ ¨ ¨ ă ik ď n,

is a local frame of ΩkpT ˚Mq.
Notice that the condition 1 ď i1 ă ¨ ¨ ¨ ă ik ď n is imposed to guarantee that the

indices i1, . . . , ik are different, otherwise the external product would be zero because of its anti-
symmetry, which can be easily show by taking just two external factors dxh^dxh “ ´dxh^dxh

which implies dxh “ 0. Of course the name of the indices can always be permuted to fulfill
the ordering written above.

Every k-form ω can be written, locally, as follows:

ω “
ÿ

1ďi1ă¨¨¨ăikďn

ai1¨¨¨ikdx
i1 ^ ¨ ¨ ¨ ^ dxik ,

where ai1¨¨¨ik : U Ñ R are scalar functions on the local chart domain U .

Def. 4.4.6 (Closed and exact forms, potentials) A k-form ω is closed if dω “ 0, it is
exact if it exists a pk ´ 1q-form η, called potential form, such that ω “ dη.

Thus, an exact form is in the image of d, and a closed form belongs to the kernel of d.
For example, a 2-forms can be written as ω “ ωijdx

i^ dxj and the matrix ωij containing
its coefficients its anti-symmetric.
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Chapter 5

All about vector fields: flux, Lie
derivative and bracket,
distributions and foliations (Edoardo Provenzi)

The scope of this chapter is to discuss some fundamental objects of differential geometry that
are related with vector fields. We will formalize the relationship between vector fields and
differential equations via the flux theorem, which will allow us to introduce the Lie bracket
and derivative. Then we will introduce the concept of distribution (totally unrelated to the
distributions of the analytical domain. . . ) and foliation.

5.1 Vector fields and derivations

In (3.5), we have defined XpMq, the space of tangent vector fields on a smooth manifold M as
the set of sections on the tangent bundle of M , i.e. XpMq “ tσ : M Ñ TM, π ˝ σ “ idMu.

We are now going to see an algebraic characterization of this space that is useful in many
situations, e.g. for the definition of the Lie bracket 5.3.

Recall that we have defined TpM , the space of tangent vectors on p to M , as DerppMq,
the space of derivations on M in p, i.e. linear Leibniz-like R-functionals defined on the vector
space C8pMq of smooth scalar functions on M , with the additional property that they set to
0 constant functions.

If we want to extend the connection between derivations in a point p and tangent vectors
to p to vector fields, we must get rid of the dependence of the derivation to the point p and
give a more general definition.

Def. 5.1.1 (Derivation of an algebra) Given a commutative algebra A on a field K, we
call derivation on A any linear function1 D : AÑ A that satisfies the Leibniz rule, i.e.

Dpabq “ Dpaqb` aDpbq @a, b P A,

the juxtaposition of symbols means that we are multiplying by using the product of A.

The set of all derivations on A is written as DerpAq and it is a vector space w.r.t. linear
operations defined point-wise.

1Notice that, in this definition, D P EndpAq, so D is not a functional but an endomorphism of A.
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In differential geometry, we have at disposal a commutative algebra: C8pMq, thus the
vector space DerpC8pMqq is perfectly defined and: Dpfgq “ Dpfqg` fDpgq, @f, g P C8pMq.

Remark 5.1.1 It is important to stress the difference between DerpC8pMqq and DerppMq:

• the derivations belonging to DerpC8pMqq are endomorphisms D of C8pMq which act
globally on smooth scalar functions on M : D : C8pMq Ñ C8pMq

• those belonging to DerppMq are the tangent vectors to M at p, so they are linear
functionals vp acting locally, in an open neighborhood of p: vp : C8pUq Ñ R.

In spite of being different objects, there is a clear correspondence between them: we can
define tangent vectors independently of a specified point to by considering a section of the
tangent bundle TM , i.e. a vector field on M , as formalized in the following result.

Theorem 5.1.1 The vector space of vector fields on M and of derivations on C8pMq are
canonically isomorphic:

XpMq – DerpC8pMqq .

In the proof of this theorem we use the concepts and results that we have developed previously.
Here we simply show how to build the isomorphism: consider the vector field

X : M ÝÑ TM
p ÞÝÑ Xppq ” Xp,

such that Xp P TpM ” DerppMq, i.e. Xp is a derivation at p, and then define the function

Xpfq : M ÝÑ R
p ÞÝÑ Xpfqppq :“ Xppfq,

but then
DX : C8pMq ÝÑ C8pMq

f ÞÝÑ DXpfq :“ Xpfq,

is clearly a derivation on C8pMq.
Vice-versa, starting from the derivation D : C8pMq Ñ C8pMq, we can univocally define

the vector field X : M Ñ TM , p ÞÑ Xp, Xp P TpM whose local expression in local coordinate
system px1, . . . , xnq of p PM is:

Xp “ Dpxjqppq Bj |p ,

perfectly well-defined because xj : M Ñ R are smooth functions and so Dpxjq P C8pMq, so
Dpxjqppq P R.
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5.2 Integral curves and flux of a vector field

In this section we point out the relationship between vector fields and differential equations.
In order to accomplish this task, we first need to recall a classical result of the theory of
differential equations in Rn.

Theorem 5.2.1 (D ! of the solution of a system of ordinary differential equations in Rn)
Let U Ď Rn an open set and let px1, . . . , xnq : U Ñ R be smooth functions. Then:

• D : for all t0 P R and x0 P U there exists δ ą 0 and an open subset U0 Ă U , with
x0 P U0, such that, for all x P U0, there exists a curve γx : pt ´ δ0, t ` δ0q Ñ U which
solves the following Cauchy problem:

#

dγjptq
dt “ xjpγptqq, j “ 1, . . . , n

γpt0q “ x0.
(5.1)

• Smooth dependence on initial data : the function

Θ : pt0 ´ δ, t0 ` δq ˆ U0 ÝÑ U
pt, xq ÞÝÑ Θpt, xq “ γxptq,

is smooth, i.e. γxptq is smooth w.r.t. t P pt0 ´ δ, t0 ` δq and γx is smooth in x P U0.

• ! : two solutions of the Cauchy problem always coincide in the intersection of their
domains.

Since this result holds locally, we can imagine that it is possible to extend it to manifolds.
This is indeed the case and to prove it we must introduce a suitable terminology.

Def. 5.2.1 (Integral curve of a vector field) Given a smooth manifold M , let us con-
sider:

• X P XpMq

• p PM

• I Ă R open and such that 0 P I

• γ : I ÑM smooth.

Then γ is the integral curve of the vector field X passing through p if:
#

γ1ptq “ Xpγptqq, @t P I

γp0q “ p.

Geometrically, the fact that γ is the integral curve of X means that the tangent vector γ1ptq to
M at each element of its support tγptq, t P Iu ĂM coincides with the tangent vector assigned
by the vector field X in the point γptq.

We can transform locally the search for integral curves of a vector field in the situation
considered in theorem 5.2.1, as formalized in the following result.
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Theorem 5.2.2 (D ! of the integral curves of a vector field on a manifold) Let X P

XpMq, p P M and pU,ϕ “ pxjqj“1,...,nq a local chart in p. Then the assertions of theorem
5.2.1 holds if we replace the Cauchy problem (5.1) with the following:

#

dγ̃jptq
dt “ Xjpγ̃ptqq, j “ 1, . . . , n

γ̃pt0q “ ϕppq P Rn,
(5.2)

where γ̃ : ϕ ˝ γ : p´ε, εq Ñ Rn and X “ XjBj is the decomposition of X induced by the local
coordinates px1, . . . , xnq.

Proof. The proof consists in composing γ with ϕ to get a curve γ̃ : ϕ ˝ γ : p´ε, εq Ñ Rn with ε
small enough so that γp´ε, εq Ă U . If we write its components as pγ̃1, . . . , γ̃nq, then

γ̃1ptq “ pγ̃jq1ptq Bj |γ̃ptq ,

where Bj |γ̃ptq P Tγ̃ptqR
n – Rn.

It is now clear that γ is an integral curve of X if and only if γ̃ is a solution of the Cauchy
problem in Rn written in (5.2) and so the theorem 5.2.1 can be applied. 2

Let us now use this result to prove a very powerful theorem, fundamental for differential
geometry of smooth manifolds.
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Theorem 5.2.3 (The flux theorem) Let M be a manifold. For every X P XpMq there
exists a unique open neighborhood U of t0u ˆM in R ˆM and a unique smooth function
Θ : U ÑM such that the following assertions hold.

1. For all fixed p PM , the set

Up :“ tt P R : pt, pq P Uu Ď R

is an open interval containing 0.

2. For all fixed p PM , the curve

ϑp : Up ÝÑ M
t ÞÝÑ ϑpptq “ Θpt, pq

is the only maximal integral curve of X passing through p (i.e. it cannot be extended to
a larger domain remaining an integral curve of X).

3. For all fixed t P R, the set

Ut :“ tp PM : pt, pq P Uu ĎM

is an open subset of M .

4. For all fixed t P R, the curve

ϑt : Ut ÝÑ M
p ÞÝÑ ϑtptq “ Θpt, pq

is a diffeomorphism such that ϑ´1
t “ ϑ´t and ϑ0 “ idUt . Moreover, if p P Ut, then

p P Ut`s if and only if Θpt, pq P Us and in this case it holds that

ϑspϑtppqq “ ϑs`tppq .

5. For all f P C8pMq and all p PM :

d

dt
pf ˝ ϑpq

ˇ

ˇ

ˇ

ˇ

t“0

“ Xpfqppq .

6. For all pt, pq P U :

dpϑtqppXpq “ Xϑtppq .

Before going through the details of the proof, let us remark that, when we write ϑspϑtppqq
we are considering two different integral curves of X: from p, we first follow the integral
curve of X passing through p for a time t and we stop when we arrive at the point ϑtppq PM .
From here, we continue by following the integral curve of X passing through ϑtppq for a time
s and we stop when we arrive at the point ϑspϑtppqq PM .
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This is the reason why the equality ϑspϑtppqq “ ϑs`tppq is so strong: it says that, with
the procedure just described, we arrive exactly to the same point as if we followed just the
integral curve of X passing from p for a time s` t.
Proof.

1. Theorem 5.2.2 implies that, for all p PM , there exists always an integral curve of X passing
through it and that two integral curves of X passing through p coincide in the intersection of
their domains. This allows us to simply define Up as the union of all the open intervals
I Ď R containing 0 on which an integral curve γ : I ÑM of X passing through p is
defined. Being the union of open sets, Up is open.

2. The previous argument implies that it exists ϑp : Up Ñ M , integral curve of X passing
through p and defined on the whole Up. This is the maximal integral curve and it is unique
as a consequence of the unicity of the solution of the Cauchy problem (5.2). Moreover, this,
together with the fact that we know how to construct Up, allow us to build U and Θ:

U :“ tpt, pq P RˆM : t P Upu, Θ : U ÑM, Θpt, pq :“ ϑpptq.

Notice that this definition of U does not imply immediately that it is open, we will prove it
later.

3. To prove that U is open and that Θ is smooth a quite technical use of theorem 5.2.2 must
be performed, together with the result in 4. We skip these details and pass directly to the
more interesting proof of 4.

4. The proof of 3. will be simpler if we first deal with the point 4. By definition U0 “M and
ϑ0 “ idM . Let p PM and t P Up, we write q “ ϑpptq, as represented in the figure below.

It is useful to perform a re-parameterization of ϑp as follows: let us define

Up ´ t :“ ts P R : s` t P Upu

then, the curve
σ : Up ´ t ÝÑ M

s ÞÝÑ σpsq “ ϑpps` tq

is still an integral curve of X because

σ1psq “
dϑp

ds
ps` tq “ Xpϑpps` tqq “: Xpσpsqq

and σ passes through q, in fact σp0q “ ϑpptq “ q.
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We observe now that, by unicity of the integral curve, σpsq “ ϑqpsq, so it must be:

ϑϑ
pptqpsq “ ϑqpsq “ σpsq “: ϑpps` tq,

i.e. Θps,Θpt, pqq “ Θps` t, pq or ϑs`tppq “ ϑspϑtppqq. Moreover, Up ´ t Ď Uq.
Since 0 P Up, 0´ t “ ´t P Uq, but Uq is the domain of ϑq, so the fact that ´t P Uq means

that ϑqp´tq “ p. This formalizes the fact that, if we are placed in q, then we can turn back to
p by ‘reversing the time’ of the quantity t.

If we interchange the couple p´t, qq with pt, pq we get that Uq ` t Ď Uq, thus it holds that
Uq ´ t “ Uq “ UΘpt,pq. But then q “ Θpt, pq P Us if and only if p P Us`t, which concludes the
proof of 4.

5. Since ϑpp0q “ p and pϑpq1p0q “ Xp, thanks to the definition of differential we have:

Xpfqppq “ dfppXpq “
d

dt
pf ˝ ϑpptqq

ˇ

ˇ

ˇ

ˇ

t“0

.

6. Let pt0, p0q P U and f P C8pMq, then:

dpϑt0qp0pXp0qpfq “ Xp0pf ˝ ϑt0q (def. of differential)

“
d

dt
pf ˝ ϑt0 ˝ ϑ

p0ptqq

ˇ

ˇ

ˇ

ˇ

t“0

(by using 5.q

“
d

dt
fpϑt0`tq

ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt
fpϑp0pt0 ` tqq

ˇ

ˇ

ˇ

ˇ

t“0

“ Xϑp0 pt0qpfq “ Xϑt0 pp0q
pfq,

since the result hold for all f P C8pMq, we have dpϑtqppXpq “ Xϑtppq. 2

The function Θ contains the information about all the integral curves of X passing through
all the points of M . For this reason it deserves a special name and characterize certain special
vector fields.

Def. 5.2.2 (Flux) For every X P XpMq, the function Θ : U Ď R ˆM Ñ M is called the
local flux of the vector field X.

Def. 5.2.3 (Complete vector field) X P XpMq is called complete if U “ RˆM ÑM , i.e.
if all the integral curves of X are defined for all t P R.

Def. 5.2.4 (X-invariant vector field) Let X,Y P XpMq, and Θ the local flux of X. Y is
said to be X-invariant if, for all pt, pq belonging to the domain of the local flux of X, we have:

dpϑtqppYpq “ Yϑtppq, ϑtppq “ Θpt, pq.

Let us interpret this last definition: for all p P M we can evaluate Y in p, obtaining Yp, a
tangent vector to M . We then move along the integral curve of X for a time t, until arriving
to the point q “ ϑtppq. We can compare the tangent vector Yϑtppq with the one that we obtain
by applying the differential map to ϑtppq calculated in Yp, i.e. dpϑtqppYpq, which is a tangent
vector to M at q, so it belongs to the same tangent space as Yϑtppq and the comparison is
meaningful. If it happens that these two tangent vectors are the same, then Y is X-invariant2.

Thanks to the property 6. of the flux theorem, X is X-invariant.

2more synthetically: computing the tangent vector Y at ϑtppq is the same as sending the tangent vector Yp
to Yϑtppq via differential along the integral curve of X passing through p.
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5.3 The Lie bracket

As previously said, the concept of Lie bracket shows the usefulness of interpreting vector fields
as derivations on the ring of smooth scalar functions. In fact, if X,Y P XpMq are interpreted
as derivations, i.e. X,Y : C8pMq Ñ C8pMq are linear Leibniz-like operators, then they can
be composed to get two new linear operators on XpMq, namely X ˝ Y and Y ˝X, this is a
privilege that we do not have if we interpret X,Y as sections of TM . Linearity is obviously
preserved by composition, however the Leibniz-like behavior is not, in fact, by using first the
Leibniz behavior of Y and then of X we get:

pX˝Y qpfgq “ XpY pfgqq “ XpfY pgq`Y pfqgq “ fXpY pgqq`XpfqY pgq`XpgqY pfq`XpY pfqqg,

this is different than fXpY pgqq `XpY pF qqg, which is what we would expect from an hypo-
thetical Leibniz-like behavior of X ˝ Y . In fact, if we consider the geometrical meaning of the
two intermediate terms of X ˝ Y , we see that they act as a second-order differential operators,
thus making, globally, X ˝ Y a second-order differential operator, instead of a first-order one,
as it should be, a vector field is associated to the first order Cauchy problem (5.2).

Nonetheless, the intermediate terms of X ˝ Y are symmetrical w.r.t. the exchange of X
with Y , thus, if we compute Y ˝X and we subtract it from X ˝ Y , we erase these spurious
terms and we remain with a derivation. These considerations justify the following definition.

Def. 5.3.1 (Lie bracket) Given X,Y P XpMq, their Lie bracket is the vector field rX,Y s P
XpMq defined by:

rX,Y s :“ X ˝ Y ´ Y ˝X .

X, Y are said to commute if rX,Y s “ 0, the null vector field.

The properties of the Lie bracket of vector fields are listed below.

Theorem 5.3.1 Let X,Y, Z P XpMq, f, g P C8pMq and a, b P R, then the following properties
hold.

1. rY,Xs “ ´rX,Y s.

2. raX ` bY, zs “ arX,Zs ` brY,Zs and rZ, aX ` bY s “ arZ,Xs ` brZ, Y s.

3. rX, rY,Zss ` rZ, rX,Y ss ` rY, rZ,Xss “ 0.

4. rfX, gY s “ fgrX,Y s`fXpgqY ´gY pfqX, in particular, of f ” 1, rX, gY s “ grX,Y s`
XpgqY , i.e.

rX, ¨s : XpMq ÝÑ XpMq
Y ÞÝÑ rX,Y s,

is a derivation on XpMq.

5. If X “ XhBh and Y “ Y kBk are the representations of X and Y in a local coordinate
system, then the local coordinate expression for the Lie bracket rX,Y s is the following:

rX,Y s “ pXhBhY
k ´ Y hBhX

kqBk .

In particular, rBh, Bks “ 0, as a consequence of Schwarz’s theorem.
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Proof.

1. and 2. Direct computation.

3. We have:

rX, rY, Zss “ rX,Y Z ´ ZY s “ XY Z ´XZY ´ Y ZX ` ZY X,

rY, rZ,Xss “ rY,ZX ´XZs “ Y ZX ´ Y XZ ´ ZXY `XZY,

rZ, rX,Y ss “ rZ,XY ´ Y Xs “ ZXY ´ ZY X ´XY Z ` Y XZ,

summing the left hand sides and the rightmost hand sides we get 0.

4. We have:

rfX, gY s “ fXpgY q ´ gY pfXq “ fXpgqY ` fgXY ´ gY pfqX ´ gfY X

“ fgpXY ´ Y Xq ` fXpgqY ´ gY pfqX “ fgrX,Y s ` fXpgqY ´ gY pfqX.

5. We have:

rX,Y s “ rXhBh, Y
kBks

(by linearity)

“ XhBhpY
kBkq ´ Y

kBkpX
hBhq

(applying the Leibniz rule for the action of the partial derivatives Bh and Bkq

“ XhpBhY
kqBk `X

hY kBhBk ´ Y
kpBkX

hqBh ´ Y
kXhBkBh

(by Schwarz’s theorem for second order partial derivatives)

“ XhpBhY
kqBk `��

���XhY kB2
hk ´��

���Y kXhB2
kh ´ Y

kpBkX
hqBh

“ XhpBhY
kqBk ´ Y

kpBkX
hqBh

(by exchanging h with k in the second termq

“ XhpBhY
kqBk ´ Y

hpBhX
kqBk

“ pXhBhY
k ´ Y hBhX

kqBk.

2

Thanks to the properties just proven, the vector space of all vector fields on M endowed
with the Lie bracket, i.e. pXpMq, r , sq is a Lie algebra, as it is clear from the definition that
follows.

Def. 5.3.2 (Lie algebra) A vector space a over a field K is a Lie algebra3 if there exists a
binary operation r , s : aÑ a, called Lie bracket, that satisfies the following properties for all
a, b P K and all x, y, z P a:

1. Anti-symmetry: ry, xs “ ´rx, ys

2. Bilinearity: rax` by, zs “ arx, zs ` bry, zs and rz, ax` bys “ arz, xs ` brz, ys

3. Jacoby identify: rx, ry, zss ` rz, rx, yss ` ry, rz, xss “ 0.

By anti-symmetry it follows that rx, xs “ 0 for all x P a.
3A lower case fraktur letter is usually used to denote a Lie algebra.
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5.4 The Lie derivative

The Lie derivative allows us to define the concept of derivative w.r.t. a vector field on
a manifold. As we will see in chapter 7, this is not exactly the perfect generalization of the
concept of directional derivative in Rn to abstract manifolds.

As always, let us first analyze the trivial case of M “ Rn. In this situation the tangent
spaces to each point of M are canonically identified with Rn, so a vector field X P XpRnq is
simply a section of TRn – R2n, i.e. a smooth map X : U Ď Rn Ñ Rn, where U is an open
neighborhood of p P Rn and, as usual, we have made use of the identification TpRn – Rn.
Thus the derivative of another vector field Y P XpRnq along an integral curve of X in p can be
simply reduced to the directional derivative of Y in p along the direction given by the tangent
vector Xp P Rn.

However, it is immediate to understand that these considerations do not work anymore in
a non-trivial manifold M . Consider, in fact, the situation depicted in the figure 5.1.

Figure 5.1: Comparing tangent vectors at different points of an integral curve.

If we want to estimate the rate of change of the vector field Y when we pass from p “ ϑ0ppq
to q “ ϑtppq, where ϑtppq “ Θpt, pq, Θ being the local flux of X, then we should compute the
quantity:

lim
tÑ0

Yq“ϑtppq ´ Yp“ϑ0ppq

t
,

but Yq P TqM and Yp P TpM , thus the comparison Yq ´ Yp is ill-posed because the two vectors
live in different vector spaces!

The solution to this problem is to take back Yq to the vector space TpM along the integral
curve of X. Notice that

ϑ´t : M ÝÑ M
q ÞÝÑ ϑ´tpqq “ p,

so, we clearly have to apply the differential to ϑ´t to move the tangent vectors to the integral
curve of X at q to bring them back to tangent vectors to the integral curve of X at p, i.e.

dpϑ´tqq : TqM ÝÑ Tϑ´tpqq“pM

Yq ÞÝÑ dpϑ´tqqpYqq,

since Y ˝ Θ is smooth, the function t ÞÑ dpϑ´tqϑtppqpYϑtppqq is a smooth curve in TpM that
depends smoothly on p. Notice that, in general, dpϑ´tqqpYqq will be different than Yp, as
depicted in figure 5.2, thus the difference between these two tangent vectors will be different
than the null vector of TpM . We can now formalize the concept of Lie derivative as follows.
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Figure 5.2: Construction of the Lie derivative of a vector field.

Def. 5.4.1 (Lie derivative of a vector field) The Lie derivative of the vector field Y P

XpMq along the vector field X P XpMq is the linear operator:

£X : XpMq ÝÑ XpMq
Y ÞÝÑ £XY,

where

£XY ppq :“ lim
tÑ0

dpϑ´tqϑtppqpYϑtppqq ´ Yp

t
”

d

dt

`

dpϑ´tqϑtppqpYϑtppqq
˘

ˇ

ˇ

ˇ

ˇ

t“0

. (5.3)

which is called the Lie derivative of Y along X in the point p PM .

It is clear that, if Y is a X-invariant vector field, then £XY “ 0, the null vector field.
Formula (5.3) is clearly not easy to handle, which is why mathematicians searched for a

simpler expression, the result is surprising: thanks to the properties of the flux of vector fields,
it can be proven that the Lie derivative is simply the Lie bracket!

Theorem 5.4.1 For all X,Y P XpMq, it holds that

£XY “ rX,Y s .

The link between the Lie derivative and bracket shows that this latter hides a geometrical
meaning that we investigate in the following subsection.

It is possible to generalize the concept of Lie derivative also to arbitrary tensor fields.

Def. 5.4.2 (Lie derivatives of scalar functions) Given X P DerpC8q – XpMq, the Lie
derivative of a rank-0 tensors, i.e. a scalar fields φ P C8pMq ” T 0

0 pMq, along X is the linear
operator:

£X : C8pMq ÝÑ C8pMq

φ ÞÝÑ £Xφ “ Xpφq .
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Let us now pass to 1-forms ω P Ω1pMq ” T 0
1 pMq: given a vector field Y P XpMq ” T 1

0 pMq,
we can build a scalar field simply by applying ω to Y , in fact

ωpY q : M ÝÑ R
p ÞÝÑ ωpY qppq :“ ωppYpq

is perfectly defined because ωp P T
˚
pM and Yp P TpM . In local coordinates, if ω “ ωidx

i and
Y “ Y jBj , with ωi : M Ñ R and Y j : M Ñ R smooth coefficient functions, then

ωpY q “ ωiY
i,

in fact ωpY q “ ωidx
ipY jBjq “ ωiY

jdxipBjq “ ωiY
jδij “ ωiY

i.
Let us impose that £XpY q verifies the Leibniz rule:

£XpωpY qq “ p£XωqY ` ωp£XY q,

so p£XωqY “ £XpωpY qq ´ ωp£XY q, but we already know how the Lie derivative is defined
for scalar and vector fields, i.e. £XpωpY qq “ XpωpY qq and £XY “ rX,Y s, respectively, thus
we get:

p£XωqY “ XpωpY qq ´ ωprX,Y sq.

This simple computation explains the definition of the Lie derivative of a 1-form as follows.

Def. 5.4.3 (Lie derivatives of a 1-form) The Lie derivative of a 1-form ω P Ω1pMq ”
T 1

0 pMq along X is the linear operator:

£X : Ω1pMq ÝÑ Ω1pMq
ω ÞÝÑ £Xω,

£Xω : TM ÝÑ R
Y ÞÝÑ £XωpY q :“ XpωpY qq ´ ωprX,Y sq .

The general case is given by a tensor field t P T pq pMq: if Y1, . . . , Yq P T
1
0 pMq “ TM and

ω1, . . . , ωp P T
0
1 pMq “ Ω1pMq, then tpY1, . . . , Yq, ω1, . . . , ωpq P C8pMq and so:

£XptpY1, . . . , Yq, ω1, . . . , ωpqq “ XptpY1, . . . , Yq, ω1, . . . , ωpqq,

thus, to define the Lie derivative of t, we must impose, as before, the Leibniz behavior and
solve for £Xt:

£XptpY1, . . . , Yq, ω1, . . . , ωpqq “ p£XtqpY1, . . . , Yq, ω1, . . . , ωpq`

` tprX,Y1s, . . . , Yq, ω1, . . . , ωpq ` . . .

` tpY1, . . . , Yq´1, rX,Yqs, ω1, . . . , ωpq

` tpY1, . . . , Yq,£Xω1, ω2, . . . , ωpq ` . . .

` tpY1, . . . , Yq, ω1, . . . , ωp´1,£Xωpq,

i.e. the Lie derivative of the tensor field t P T pq pMq along X P XpMq is:

p£XtqpY1, . . . , Yq, ω1, . . . , ωpq :“ XptpY1, . . . , Yq, ω1, . . . , ωpqq

´ tprX,Y1s, . . . , Yq, ω1, . . . , ωpq ` . . .

´ tpY1, . . . , Yq´1, rX,Yqs, ω1, . . . , ωpq

´ tpY1, . . . , Yq,£Xω1, ω2, . . . , ωpq ` . . .

´ tpY1, . . . , Yq, ω1, . . . , ωp´1,£Xωpq.
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5.4.1 Geometrical features of the Lie bracket

Given two vector fields X,Y P XpMq, figure 5.3 depicts the following path:

• we start from p P M and we follow the integral curve of X passing through p for an
amount of ‘time’ measured by the value h of the parameter t, arriving in q;

• we restart from q, but now we follow the integral curve of Y passing through q for the
same amount of time h, arriving in r;

• we restart from r, following the integral curve of X passing through r for an amount of
time ´h, arriving in s;

• finally, from s, we follow the integral curve of Y passing through s for an amount of
time ´h, arriving in the point T that we indicate as γphq.

The curve h ÞÑ γphq is smooth and such that γp0q “ p.

Figure 5.3: Geometrical interpretation of the Lie bracket.

In [18] we can find the proof of the following result.

Theorem 5.4.2 With the notations above, it holds that:

1. γ1p0q “ 0, i.e. at first order, the quadrilateral depicted in figure 5.3 is closed;

2. γ2p0q “ 2rX,Y s, i.e. at second order, the obstruction to the closure of the quadrilateral
depicted in figure 5.3 is measured by the Lie bracket between X and Y .
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5.4.2 Pushforward of a vector field by a diffeomorphism

The concept of Lie bracket (and so of Lie derivative) can be related to an operation that
relates vector fields between manifolds: the pushforward.

To introduce this operation, consider a smooth map f : M Ñ N and a vector field X
on M , then, for each p PM , dfp : TpM Ñ TfppqN , but Xp P TpM , thus dfppXpq is a tangent
vector to N at q “ fppq.

However, depending on the properties of f , this technique may fail to defines a vector field
Y on N . In fact, if f is not surjective, there is no rule to assign a tangent vector to N at
the points q P NzfpMq. On the other hand, if f is not injective, then there are at least two
distinct points p1, p2 PM such that fpp1q “ fpp2q “ q P N , in this case Y 1

p1 :“ dfp1pXp1q and
Y 2
p2 :“ dfp2pXp2q would be two possibly different tangent vectors to N at the same point q,

thus creating an ambiguity in the assignment for the hypothetical vector field on N that we
would like to create via f and X.

These considerations motivate why we can push a vector field forward to another manifold
by means of a map if and only if the map is a diffeomorphism.

Def. 5.4.4 (Pushforward of a vector field) Let M,N be to manifolds, X P XpMq and
f : M Ñ N a diffeomorphism. We call pushforward induced by f the linear map f˚ ” df
defined as follows:

f˚ ” df : XpMq ÝÑ XpNq
X ÞÝÑ f˚pXq ” df,

where, for all q P N , f˚pXqpqq ” f˚pXqq, or dfpXqpqq ” dfpXqq, is defined as follows:

f˚pXqq “ dff´1pqqpXf´1pqqq or dfpXqq “ dff´1pqqpXf´1pqqq.

Again, we underline that the need of a diffeomorphism is clear from the definition: thanks to
this, we can bring back any point q P N to a point p “ f´1pqq PM and use the vector field
X P XpMq.

If f : M Ñ N is only a smooth map and not a diffeomorphism, then it is impossible to
define the push-forward of vector fields, however, it is still possible to correlate them, in the
sens formalized below.

Def. 5.4.5 (f-related vector fields) Let f : M Ñ N be a smooth function between mani-
folds, X P XpMq and Y P XpNq. X and Y are f -related if, for all p PM

Yfppq “ dfppXpq,

i.e. if the tangent vectors determined by Y in the points of N belonging to the range of f
coincide with the tangent vectors determined by the differential map of f applied to the tangent
vectors determined by X in the points of M .

If f is a diffeomorphism, it is easy to see that Y “ f˚pXq is the only vector field on N f -related
to X, see [10] Proposition 8.19 page 183.

The properties of f -related vector fields are listed in the following result, for the proof
see [10] chapter 8.

Theorem 5.4.3 Let f : M Ñ N be a smooth function between manifolds, X P XpMq and
Y P XpNq.
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1. Y is f -related to X if and only if, for every φ P C8pNq, it holds that

Xpφ ˝ fq “ Y pφq ˝ f.

2. If Y1 is f-related to X1 and Y2 is f-correlated to X2, then rY1, Y2s is f-correlated to
rX1, X2s. In other words, the Lie bracket is compatible with the f -correlation.

3. If f is a diffeomorphism, then

rf˚pX1q, f˚pX2qs “ f˚prX1, X2sq,

i.e. the pushforward f˚ : XpMq Ñ XpNq is compatible with the Lie bracket.

These properties are used to solve the following problem: suppose to have a local frame
X1, . . . , Xn for TM , dimpMq “ n, is there a set of conditions to guarantee that it exists a
local chart pU,ϕq of M such that Xj “ Bj , j “ 1, . . . , n on U?

A necessary condition can be found very easily: since rBi, Bjs “ 0 @i, j “ 1, . . . , n, it is
necessary that rXi, Xjs “ 0 @i, j “ 1, . . . , n. In theorem 5.4.6 we will see that this condition is
also sufficient, but to formulate it properly we have to define a new concept and to introduce
intermediate results.

Def. 5.4.6 (Regular and singular points of a vector field) Let X P XpMq, a point p P
M is said to be a regular point of the vector field X if Xp ‰ 0, i.e. if the tangent vector to M
assigned by X in p is not null, otherwise, if Xp “ 0, p is called a singular point for X.

Theorem 5.4.4 Let X P XpMq and p P M a regular point for X. Then, it exists a local
chart pU,ϕq centered in p, i.e. ϕppq “ 0 P Rn, such that:

X|U “ B1,

i.e. in an open neighborhood of p, the tangent vectors assigned by X are all parallel.

The following theorem says that if rX,Y s “ 0, then the quadrilateral depicted in figure 5.3
is closed, not only at the second order, but at every order, i.e. the obstruction to its closure is
totally contained in the Lie bracket.

Theorem 5.4.5 Let X,Y P XpMq with flux Θ : U :Ñ M and Ψ : V :Ñ M , respectively.
Then, the following assertions are equivalent:

1. rX,Y s “ 0

2. Y is X-invariant

3. X is Y -invariant

4. ψs ˝ϑt “ ϑt ˝ψs as long as one of the two is defined, i.e. the fluxes of X and Y commute.

We can now see that the condition of commuting is necessary and sufficient for linearly
independent vector fields Xj in XpMq to be written locally as Bj
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Theorem 5.4.6 Let X1, . . . , Xk P XpMq linearly independent vector fields in every point of
M , thus k ď n “ dimpMq (if k “ 1 then Xp ‰ 0 @p PM). Then, the following properties are
equivalent:

1. for all p P M it exists a local chart pU,ϕq centered in p such that: Xj |U “ Bj, @j “
1, . . . , k.

2. rXi, Yjs “ 0 @i, j “ 1, . . . , k.

5.5 Foliation of a manifold: distributions and the Frobenius
theorem

TO BE WRITTEN...
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Chapter 6

Riemannian and
pseudo-Riemannian manifolds (Edoardo

Provenzi)

We start with the introduction of the fundamental concept of Riemannian and pseudo-
Riemannian metric.

6.1 Riemannian and pseudo-Riemannian metrics

A scalar product on a vector space allows us measuring the length of vectors and the angles
between them. In differential geometry, the typical vector spaces that we have to deal with
are the tangent spaces to each point p of a manifold M . If we assign a scalar product to each
tangent space TpM , i.e.

gp : TpM ˆ TpM ÝÑ R
pv, wq ÞÝÑ gppv, wq

smoothly w.r.t. changes of p PM , then we fix a so-called Riemannian metric on M .
Since the (real-valued) scalar product is bilinear, symmetric, i.e. gppv, wq “ gppw, vq for

all v, w P TpM and positive-definite, i.e. gppv, vq ě 0 for all v P TpM , with gppv, vq “ 0 if and
only if v “ 0, a Riemannian metric on M is nothing but a positive-definite symmetric tensor
field on TM of type p0, 2q, i.e. 2-covariant, as formalized by the definition below.

Def. 6.1.1 (Riemannian metric and manifold) A Riemannian metric on a manifold M
is a positive-definite tensor field g P S0

2pMq. A Riemannian manifold is a couple pM, gq, where
g is a Riemannian metric on M .

The norm canonically induced by the scalar product gp on TpM will be denoted with } }p:

}v}2p “ gppv, vq @v P TpM.

More generally, as it is required in relativistic theories, we can reduce the requests on g by
dropping off the property of being positive, but keeping the fundamental property of non-
degeneracy, i.e. gppv, wq “ 0 @w P TpM implies v “ 0, i.e. the only vector gp-orthogonal to
all the other vectors of TpM is the 0 vector of TpM , in this case we get a pseudo-Riemannian
metric.
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Def. 6.1.2 (pseudo-Riemannian metric and manifold) A pseudo-Riemannian metric
on a manifold M is a non-degenerate tensor field g P S0

2pMq. A pseudo-Riemannian manifold
is a couple pM, gq, where g is a pseudo-Riemannian metric on M .

An important concept related with pseudo-Riemannian metrics is their signature.

Def. 6.1.3 (Signature) Given a pseudo-Riemannian metric g on a connected manifold M
of dimension n, we say that g has signature pr, sq, r ` s “ n, if the maximal dimension of a
subspace of TpM where g is:

• positive-definite is r;

• negative-definite is s.

The definition is well-posed for connected manifolds because, by an argument of continuity, it
can be proven that r and s do not depend on the point p PM .

A particularly important case, that of relativistic theories, is that of signature p1, n´ 1q
or pn ´ 1, 1q, in which case one says that g is a Lorentz metric, or that g has a Lorentz
signature.

In a local chart pU,ϕ “ px1, . . . , xnqq, the metric, being a symmetric tensor field of type
p0, 2q can be written as:

g “ gµνdx
µ b dxν , gµν P C8pUq,

where the matrix of functions pgµνq is symmetric and positive-definite for a Riemannian
metric, and symmetric and of signature pr, sq for a pseudo-Riemannian metric.

Since real symmetric matrices can be diagonalized, gµν can always put in the diagonal
form gµν “ diagpλ1, . . . , λnq, where λi is the i-th eigenvalue of gµν .

When M “ Rn, the tangent and cotangent bundle are canonically isomorphic and the
canonical Euclidean metric induce by the Euclidean scalar product is such that gµν “ gµν “ In,
i.e. the identity matrix of dimension n.

Remark about the notation: by symmetry, we could write g “ gµνdx
µ d dxν , where d

is the symmetric product, or, as it is typically done by physicists, g “ gµνdx
µdxν , which is

justified by the fact that the product is symmetric. Finally, many authors use the so-called
Gauss’ notation by writing ds2 instead of g, so that we usually find the following notation for
the metric:

ds2 “ gµνdx
µdxν .

By definition, the matrix gµν is invertible, since, in the Riemannian case, it is positive-definite
and, in the pseudo-Riemannian case, it is non-degenerated.1 The inverse is usually denote as
gµν , so that:

gµγgγν “ δµν , gµγg
γν “ δ ν

µ .

Apart from permitting the computation of the scalar product between tangent vectors,
a (pseudo)-Riemannian metric also allows us to canonically identify the tangent and the
cotangent bundle with the help of the following linear isomorphism:

5p : TpM
„
ÝÑ T ˚pM

v ÞÝÑ 5ppvq,

5ppvq : TpM ÝÑ R
w ÞÝÑ 5ppvqpwq :“ gppv, wq.

1To avoid specifying if we are discussing a Riemannian or pseudo-Riemannian metric, we will simply write
(pseudo-)Riemannian metric by meaning that we can refer to both cases.
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Being TM the disjoint union of TpM when we vary the point p PM , we can define a linear
isomorphism 5 of bundles 5 : TM

„
ÝÑ T ˚M simply by requiring that 5|TpM “ 5p for all p PM .

Let us search for a local expression of 5: let g “ gµνdx
µb dxν and let X “ XhBh be a local

section of TM , i.e. a local vector field, then the application of 5 to X must give a local section
of T ˚M , i.e. a local covector field, or a 1-form on M that will be written as 5pXq “ αjdx

j in
local coordinates.

By definition of 5, we have:

5pXqpBkq “ gpX, Bkq “ pgµνdx
µ b dxνqpXhBh, Bkq,

but dxµ b dxν is a symmetric bilinear form, so we can move the coefficients Xh outside and
write:

5pXqpBkq “ gµνX
hpdxµ b dxνqpBh, Bkq.

Now, by definition of tensor product of two linear forms (cfr. (4.1)), we have that pdxµ b
dxνqpBh, Bkq “ dxµpBhqdx

νpBkq “ δµhδ
ν
k, so:

5pXqpBkq “ gµνX
hδµhδ

ν
k “ ghkX

h.

However, we also have:
5pXqpBkq “ αjdx

jpBkq “ αjδ
j
k “ αk,

thus αk “ ghkX
h, so, finally:

5pXhBhq “ ghkX
hdxk .

Since the basis are the (fixed) standard basis of the tangent ant the cotangent bundle, it is
custom to omit them and write simply the components, i.e.

5pXhq “ ghkX
h “ gkhX

h,

by symmetry.
In conclusion, we can write:

5 : TM
„
ÝÑ T ˚M

pXhq ÞÝÑ 5pXhq “ pαkq “ gkhX
h.

This formula explains why it is custom to say that 5 is the isomorphism which transforms the
components pXhq of a local vector field to the components pαkq of a local 1-form by ‘lowering
the indices with the metric tensor’. The symbol 5 (‘flat’ or ‘bemolle’) is chosen because
in music it lowers in pitch by one semitone.

Analogously, the inverse isomorphism 5´1 ” 7 : T ˚M
„
ÝÑ TM act like this:

7 : T ˚M
„
ÝÑ TM

pαkq ÞÝÑ 7pαkq “ pX
hqghkαk.

It is custom to say that 7 is the isomorphism which transforms the components pαkq of a
local 1-form to the components pXhq of a vector field by ‘raising the indices by using
the inverse metric tensor’, since pXh “ ghkαkq. Again, the symbol 7 (‘sharp’ or ‘diesis’) is
because in music it highers in pitch by one semitone.

Summarizing, in the presence of a (pseudo-)Riemannian metric we can transform vec-
tor fields to 1-forms and vice-versa, simply by applying the metric tensor and its inverse,
respectively.
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6.1.1 Noticeable example 1: the gradient of a scalar function

Let us apply the isomorphism 7 : T ˚M Ñ TM to the differential of a smooth scalar function
φ P C8pMq. We know that dφ is a section of T ˚M , i.e. a 1-form, so, if we apply 7 to dφ, we
obtain a vector field, which turns out to be the generalization of the gradient to manifolds.

Def. 6.1.4 (Gradient of a scalar function) Given a scalar function φ P C8pMq, its gra-
dient gradpφq P XpMq is the vector field defined by:

gradpφq :“ 7pdφq.

In local coordinates, if dφ “ pBjφq dx
j , then the action of 7 on the components is as follows:

7pBjφq “ gij pBjφq, so that
gradpφq “ gij pBjφq pBix

iq,

coherently with the fact that gradpφq is a tangent vector, so it must be a linear combination of
the Bi’s. This shows that, for generic manifolds, the presence of a (pseudo-)Riemannian
metric is fundamental in order to define the gradient of a scalar function.

This fact is hidden for the trivial case of M “ Rn because, as already remarked, in that
situation gij “ gij “ In and so gradpφq “ p Bφ

Bx1
, . . . , Bφ

Bxn q.

6.1.2 Noticeable example 2: symplectic manifolds, the Hamiltonian iso-
morphism and the Poisson bracket

Riemannian, or pseudo-Riemannian, metrics and manifolds are built via symmetric positive-
definite, or non-degenerated, tensor fields of type p0, 2q. Another remarkable construction can
be obtained by considering anti-symmetric non-degenerated tensor fields of type p0, 2q.

Def. 6.1.5 (Simplectic form and manifold) A closed non-degenerated 2-form ω “ ωijdx
idxj

is called a simplectic form on M and a couple pM,ωq is said to be a simplectic manifold.

Also for simplectic manifold we can identify the tangent and the cotangent bundles with the
analogous of the isomorphism 7 that, in this setting, is called the Hamiltonian isomorphism:

H : T ˚M
„
ÝÑ TM

pαjq ÞÝÑ Hpαjq “ Xi, Xi “ ωijαj .

We can repeat the same construction as before with 7 to obtain a vector field from the
differential of a scalar function φ P C pMq but, this time, by using H instead of 7. What we
obtain is Hpdφq P XpMq, which is called Hamiltonian vector field of the scalar function φ.

Since a 2-form ω takes as input two vector fields, it is interesting to see what happens
if we consider the differential of two scalar functions φ, ψ P C8pMq, the Hamiltonian vector
fields associated to them, i.e. Hpdφq, Hpdψq, and then we apply ω. The result is the so-called
Poisson bracket:

tφ, ψu :“ ωpHpdφq, Hpdψqq .

C8pMq becomes a Lie algebra w.r.t. the Poisson bracket (just as the set of tangent vector
fields on M becomes a Lie algebra w.r.t. the Lie bracket).
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6.2 Existence of Riemannian metrics

We can now prove the existence of Riemannian metrics.

Theorem 6.2.1 Every smooth manifold M admits a Riemannian metric.

Proof. The idea is quite simple: we start with a local Riemannian metric and then we extend
it to the whole manifold thanks to a partition of the unity. Let us discuss the technical details.

Consider an atlas A “ tpUα, ϕαqu of M and a partition of the unity tραu subordinated to
the covering tUαu (so that each ρα is identically 0 outside Uα).

On Uα it is very easy to induce a metric from the Euclidean metric of Rn. To see how,
consider a chart function ϕα : Uα

„
ÝÑ ϕαpUαq Ď Rn, if ϕα ” px

1, . . . , xnq, then we know that
the vector fields pB1, . . . , Bnq provide a local frame for TM |Uα . Given p P Uα and two tangent
vectors Xp, Yp P TpM , Xp “ XiBi

ˇ

ˇ

p
, Yp “ Y jBj

ˇ

ˇ

p
, we define a scalar product between Bi|p and

Bj |p by means of the Euclidean product x , y of Rn as follows:

gαp pBi|p , Bj |pq :“ xϕαpBi|pq, ϕαpBj |pqy “ xei, ejy “ δij ,

recalling that Bi|p “ dϕ´1
α

ˇ

ˇ

p
peiq, ei being the i-th element of the canonical basis of Rn. The

extension to any couple Xp, Yp of tangent vectors in TpM is performed by linearity:

gαp pX|p, Ypq :“ XiY jgαp pBi|p , Bj |pq “ XiY jδij “
n
ÿ

i“1

XiY i.

gαp is then a positive-definite bilinear form for all p PM and for all α. Now we glue together
these scalar products to build a tensor field g P T 0

2 pMq by defining:

gp :“
ÿ

α

ραppqg
α
p , @p PM.

The definition is well-posed because the sum is actually finite since, for all p PM , there is only
a finite number of ραppq different from 0. Plus, ραppq ě 0 for all p P M and all α, thus the
coefficients ραppq do not modify the positive-definiteness of the forms gαp and then g results in
a positive-definite symmetric tensor field, i.e. a Riemannian metric on M . 2

Remark: the proof just developed works only to prove the existence of positive-
definite (or negative-definite) Riemannian metrics on M . It does not work if we want
to build a pseudo-Riemannian metric on M with signature pr, sq. In fact, even if the gα have
the same signature, the g resulting from the sum may not have the same signature and could
even be degenerated.

6.3 Riemannian metrics and changes of coordinates

If pU,ϕ ” px1, . . . , xnqq and pŨ , ϕ̃ ” px̃1, . . . , x̃nqq are two local charts, then in U X Ũ the
transition functions allow us to express x̃ as a function of x and vice-versa. We already know
that the differentials of x̃ and that of x are related by the Jacobian matrix of the function
x̃ “ x̃pxq:

dx̃h “
Bx̃h

Bxi
dxi. (6.1)
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If we write the Riemannian metric g in terms of the x̃ and x coordinates, we have:

g “ g̃hkdx̃
h b dx̃k “ gijdx

i b dxj ,

where the matrices pg̃hkq and pgijq represent the metric in the local coordinate systems
x̃ “ px̃1, . . . , x̃nq and x “ px1, . . . , xnq, respectively.

By replacing (6.1) in the expression of g we obtain:

g “ g̃hk dx̃
h b dx̃k “ g̃hk

ˆ

Bx̃h

Bxi
dxi

˙

b

ˆ

Bx̃k

Bxj
dxj

˙

“
bilinearity of b

ˆ

Bx̃h

Bxi
g̃hk

Bx̃k

Bxj

˙

dxi b dxj ,

which, compared with g “ gijdx
i b dxj gives:

gij “
Bx̃h

Bxi
g̃hk

Bx̃k

Bxj
.

If we use the matrix notation we can re-write this relationship as follows:

pgijq “

ˆ

Bx̃

Bx

˙t

pg̃hkq

ˆ

Bx̃

Bx

˙

,

where
`

Bx̃
Bx

˘

is the Jacobian matrix of the transition function x̃pxq. This is coherent with the
well-known linear algebra result which says that the matrices associated to symmetric bilinear
forms transform, after a change of basis, by multiplication with the change of basis matrix on
the right and its transposed (not its inverse) on the left.

This fact has an important consequence: the determinant of the matrices associated to the
metric g in different coordinate systems are, in general, different, in fact:

detpgijq “ detpg̃hkq

ˆ

det

ˆ

Bx̃

Bx

˙˙2

,

i.e. they are related by the square of determinant of the Jacobian matrix of the transition
function x̃pxq. The information that we can assure is that the sign of detpgijq and detpg̃hkq is
the same.
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Chapter 7

Connections on vector bundles (Edoardo
Provenzi)

Connections on manifolds are also called, in particular in the Physics literature, covariant
derivatives. To motivate the exigence of introducing these objects let us start by showing
a problem related with the Lie derivative that can be underlined already in the trivial case
when the manifold M is an open set U in Rn.

7.1 Motivation

Consider two vector fields X,Y P XpUq, then, since all the tangent spaces in every point p P U
can be canonically identified with Rn, i.e. TpU – TpRn – Rn, X and Y can be simply thought
as vector-valued functions defined on U : X,Y : U Ă Rn Ñ Rn.

Thanks to this identification, the derivative of Y along X in every point p P U can be
identified with the directional derivative of Y : U Ñ Rn in the direction defined by the vector
Xppq ” Xp, we write:

BXY |p :“ DXpY ppq ” lim
εÑ0

Y pp` ε X|pq ´ Yp

ε
,

having used definition (B.3).
Let us examine the properties of BX : for all X1, X2, Y1, Y2 P XpUq, a, b P R and f P C8pUq,

we have

1. BXpaY1 ` bY2q “ aBXY1 ` bBXY2

2. BXpfY q “ XpfqY ` fBXY

3. BaX1`bX2Y “ aBX1Y ` bBX2Y

4. BfXY “ fBXY .

Property 1. follows simply from the linearity of the directional derivative. To understand
property 2. notice that fY : U Ñ Rn, p ÞÑ fppqYp is the product of two functions, one
real-valued the other vector-valued, defined on U , thus the Leibnitz rule must be applied
and we get BXpfY qppq “ DXpfppqYp ` fppqDXpY ppq, but DXpY ppq “ BXY |p and, regarding
the first term, we must recall that X P DerpC8pUqq, i.e. X can be interpreted also as a
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derivation whose action on the elements of C8pUq is exactly the directional derivative, i.e.
Xppfq “ DXpfppq. So, BXpfY qppq “ XppfqYp ` fppq BXY |p for all p P U , i.e. property 2.

To resume: 1. & 2. ùñ BXpY q is R-linear but not C8pUq-linear w.r.t. Y .

Property 3. is an immediate consequences of the linearity of the directional derivative
w.r.t. the directional vector, cfr. formula (B.10). To understand property 4. notice that
BfXpY q|p “ DpfXqppqpY qppq “ DfppqXpY ppq, but fppq P R and Xp P Rn, so the evaluation of
fX in p simply gives a scalar multiple of the vector Xp and thus the property follows again
from formula (B.10).

To resume: 3. & 4. ùñ BXpY q is both R-linear and C8pUq-linear w.r.t. X.

It is crucial to stress that the other operator that we have defined that implements the
derivative of a vector field w.r.t. another one, i.e. the Lie derivative £XY , does not possesses
property 4., i.e. it is not C8pUq-linear, in fact, thanks to anti-symmetry and Leibniz rule:

£fXY “ rfX, Y s “ ´rY, fXs “ £Y fX “ ´Y pfqX ´ f£YX “ ´Y pfqX ` f£XY,

thus £fXY “ ´Y pfqX ` f£XY , i.e. £fXY ‰ f£XY .
This shows that the Lie derivative, in spite of being a fundamental object that allows

determining conditions to show the existence of integral submanifolds, cannot be considered
as the perfect analogue of the directional derivative of a function defined on an open
subset of Rn.

Another limitation related to the Lie derivative is that it allows to compute the rate of
variation of an object w.r.t. a vector field, only when this object is build from the tangent
bundle to a manifold: in fact, vector and covector fields and tensors on a manifold are always
built by starting from the tangent bundle. Thus, we cannot avoid the problem underlined
above also when we take the Lie derivative of general tensors on a manifold.

The aim of connections (actually the linear ones) is solve both problems at once, i.e. to define
a R and C8pUq- linear derivative along a vector field on M of the section of a general vector
bundle E on M , not only of the tangent bundle TM .

7.2 Failed approach towards the generalization of the Lie deriva-
tive

It is highly instructive to discuss an approach that goes in the direction that we want, but
that fails for one reason that will be underlined. The information learned from this failure
will allow us understanding the correct path to follow.

Consider a generic vector bundle π : E ÑM of rank r on a manifold M , let M P XpMq
and s : U Ñ E be a section of E on an open set U ĂM . As stressed when we have defined
the Lie derivative, given the integral curve γ of X passing through a given point p P U , it does
not make sense to compute the derivative of s along X in p as follows

lim
tÑ0

spγptqq ´ spγp0qq

t

simply because spγptqq P Eγptq and spγp0qq P Eγp0q, which are two different vector spaces!
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In the trivial case M “ Rn all the fibers are canonically isomorphic to each other and the
can perform the difference of vectors belonging to different fibers, but this is not possible if M
is not trivial.

Vector bundles are not trivial, but they are always locally trivial, so a more refined idea
could be to use local triviality to try to extend our definition of derivative. Let us see how long
we can go by using this feature. We know that it exists an open cover tUiu with sets Ui small
enough such that E|Ui is trivial, i.e. there are diffeomorphisms χi : E|Ui

„
Ñ Ui ˆ Rr. If we

compose the section with the local trivializations χi as in the following commutative diagram

E|Ui Ui ˆR
r

U X Ui

χi

s s̃i“χi˝s

then the advantage is that we obtain s̃ippq “ pp, s̃
1
i ppq, . . . , s̃

r
i ppqq @p P U , where each s̃ki ppq :

U X Ui Ñ R is a simple smooth scalar function, for all k “ 1, . . . , r, and so we can apply any
vector field X P XpMq (interpreted as a derivation of C8pU X Uiq) to these functions.

This seems to suggest that we could define the derivative Xpsq of the section s, on
a small open neighborhood Ui of p, by deriving the functions s̃ki as follows: Xpsq|Ui «
pXps̃1

i q, . . . , Xps̃
r
i qq, we use the symbol « because we will see that this definition is not entirely

correct. The problem with this definition is that, even if it is perfectly correct on Ui, we must
assure its coherence when we consider another open cover tUju and local trivializations χj on
the intersections U X pUi XUjq (that we will denote simply as Ui XUj to avoid a cumbersome
notation). The following commutative diagram shows how the situation looks in this case.

E|UiXUj

pUi ˆ Ujq ˆ Rr pUi X Ujq ˆ Rr

Ui X Uj

χi χj

ηij

s̃js̃i

s

The two Cartesian products pUiXUjqˆRr written on the left and on the right are characterized
by different copies of Rr that host different coordinates of s̃i and s̃j . They are related by the
transition functions ηij : Ui X Uj Ñ GLpr,Rq and, for all p P Ui X Uj , ηijppq is an invertible
matrix that represents the change of coordinates from the two copies of Rr, explicitly:

s̃ippq “

¨

˚

˝

p,

¨

˚

˝

s̃1
i ppq
...

s̃ri ppq

˛

‹

‚

˛

‹

‚

“

¨

˚

˝

p, ηijppq

¨

˚

˝

s̃1
j ppq
...

s̃rjppq

˛

‹

‚

˛

‹

‚

,

i.e. s̃ki “ ηij s̃
k
j , k “ 1, . . . , r.

The components pXps̃1
i q, . . . , Xps̃

r
i qq represent the local expressions of a section of Xpsq

on E if, on Ui X Uj , they are related by the transition functions ηij like this:
¨

˚

˝

Xps̃1
i q

...
Xps̃ri q

˛

‹

‚

“ ηij

¨

˚

˝

Xps̃1
j q

...
Xps̃rjq

˛

‹

‚

,
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i.e. Xps̃ki q “ ηijXps̃
k
j q, k “ 1, . . . , r.

Let us see if this is really what happens by applying X (thought as a derivation of
C8pUi X Ujq) on both sides of the equation s̃ki “ ηij s̃

k
j . Thanks to the Leibniz-like behavior

of X we find:
Xps̃ki q “ ηijXps̃

k
j q `Xpηijqs̃

k
j , @k “ 1, . . . , r,

this is different from the equation Xps̃ki q “ ηijXps̃
k
j q that we expected because of the spurious

term given by the derivatives of the transition functions Xpηijqs̃
k
j .

This shows that the components Xps̃ki q define a section representing the derivative of the
section s along the vector field X if and only if Xpηijq “ 0 for all i, j. However, this, in general,
is not true and so this approach defines an non-intrinsic object that depends on the local
trivialization used. The only situation in which this construction works it when the transition
functions ηij are locally constant, so that their derivatives are null, in this case we talk about
a flat vector bundle.

7.3 Connections on vector bundles

In the previous we have shown that:

1. the naive definition of the derivative of the section of a vector bundle w.r.t. a vector field
as the limit of the incremental ratio makes no sense because we are comparing vectors
belonging to different vector spaces;

2. a finer use of the local trivialization of the vector bundle leads us to an object that
makes sense, but that cannot be considered as the derivative of a section because, in
general, it depends on the trivialization itself.

The conclusion that we reach is that, unlike the Lie derivative, there is no intrinsic
way to define the derivative of the section of a vector bundle by using only the
elements already present in the vector bundle structure. We are forced to introduce
an external structure, which is provided by the connection, as we define below (we recall
that ΓpEq is the set of all sections of the vector bundle π : E ÑM).

Def. 7.3.1 (Connection) A connection on a vector bundle π : E ÑM is a function

∇ : XpMq ˆ ΓpEq ÝÑ ΓpEq
pX, sq ÞÝÑ ∇pX, sq ” ∇Xs,

that transforms the couple given by a vector field X on M and a section s of the bundle pE,M, πq
in another section ∇Xs of the same bundle, in such a way that, for all X,X1, X2 P XpMq,
f, f1, f2 P C8pMq, s, s1, s2 P ΓpEq and k1, k2 P R, the following properties are satisfied:

1. C8pMq-linearity w.r.t. the vector field: ∇f1X1`f2X2s “ f1∇X1s` f2∇X2s

2. R-linearity w.r.t. the section: ∇Xpk1s1 ` k2s2q “ k1∇Xs1 ` k2∇Xs2

3. Leibniz property: ∇Xpfsq “ f∇Xs`Xpfqs .
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These properties are obviously inspired by those of the directional derivative of a function
defined on an open set of Rn that we have discussed in section 7.1 and are imposed by hand to
make ∇Xs the correct generalization of the directional derivative in the trivial case.

Def. 7.3.2 (Covariant derivative) The section ∇Xs is the covariant derivative of the sec-
tion s along the vector field X.

There is a special case that deserves a particular attention and a dedicated definition.

Def. 7.3.3 (Linear connection) A connection on the tangent bundle TM to a manifold M
is called a linear connection on M .

Having defined a connection does not guarantee that such an object exists. In the second
special case of a globally trivial vector bundle of rank r, i.e. E “ M ˆ Rr, a connection is
easily seen to exist. In fact, a section s P ΓpM ˆ Rrq can only have this form

s : M ÝÑ M ˆ Rr
p ÞÝÑ sppq “ pp, ps1ppq, . . . , srppqqq,

where si P C8pMq for all i “ 1, . . . , r. If X P XpMq, then the canonical section define as
follows

∇Xs : M ÝÑ M ˆ Rr
p ÞÝÑ sppq “ pp, ppXs1qppq, . . . , pXsrqppqqq,

can be verified to be a covariant derivative of s along X (by direct verification of the defining
properties), so ∇X : XpMq ˆ ΓpM ˆ Rrq Ñ ΓpM ˆ Rrq, pX, sq ÞÑ ∇Xs is a connection on the
trivial bundle pM ˆ Rr,M, πq.

The following results shows, via a constructive proof that makes use of the partition of
unity1, that at least a connection (actually infinite, as we will see later) exist for all vector
bundle.

Theorem 7.3.1 Every vector bundle π : E ÑM admits a connection.

Proof. We have just seen that, for a trivial bundle, a connection can be defined as above.
We can always find an open cover pUαq of M that corresponds to a local trivialization of the

bundle, i.e. such that the functions χα, E|Uα
χα
ÝÑ Uα ˆ Rr, are diffeomorphisms.

On Uα ˆ Rr there is a canonical connection ∇0
X as previously defined. Then, the function

χα allows us to define a connection ∇α, which depends on the local trivialization, on E|Uα .
To define ∇α we must declare what is the covariant derivative of a section s of E|Uα : the

first thing we need to do is to compose χα with s to obtain a section of the trivial bundle
Uα ˆ Rr, then we can apply ∇0

X to this section, obtaining another section of Uα ˆ Rr, by
applying χ´1

α we take this section back to E|Uα . Thus:

∇α
Xs :“ χ´1

α p∇0
Xpχα ˝ sqq,

1We notice that this proof cannot be used to guarantee the existence of connections on complex or algebraic
manifolds because they do not possess a partition of unity. In fact, there is no alternative proof for those cases,
i.e. the theorem is not valid, in general, for vector bundles of complex or algebraic manifolds.
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the properties of a connection are easily proven to be satisfied by ∇α
X thanks to the fact that

∇0
X is a connection.

The idea to extend the connection ∇α
X from the restriction of E on Uα to all E consists in

smoothly extend it to zero outside Uα and then to smoothly glue together all the ∇α
X as Uα

varies in the cover. This can be achieved thanks to a partition of the unity pραq subordinated
to the cover pUαq. We recall that each ρα is a smooth function defined on M whose support is
contained in Uα, i.e. ρα ” 0 on MzUα, and that the functions ρα sum up to 1.

Thanks to this, for all (global) section s of E on M , we can define its covariant derivative
∇Xs along X as follows:

∇Xs :“
ÿ

α

ρα ∇X |Uα ps|Uαq, with ρα ∇X |Uα :“ ρα∇α
X .

It is customary to write the connection associated to the covariant derivative ∇Xs simply as
∇X “

ř

α
ρα∇α

X .

By direct computation, it can be proven that ∇X just defined verifies all the properties of
a connection. Here, we just verify the Leibniz property. For all f P C8pMq we have that

∇Xpfsq “
ÿ

α

ρα∇α
Xpf s|Uαq

p∇α
X is a connectionq

“
ÿ

α

ραpf ∇α
Xps|Uαq `Xpfq s|Uαq

pf,Xpfq : independents of αq

“ f
ÿ

α

ρα ∇α
Xps|Uαq `Xpfq

ÿ

α

ρα s|Uα

pρα s|Uα “ ραsq

“ f∇Xs`Xpfq
ÿ

α

ραs “ f∇Xs`Xpfqs
ÿ

α

ρα

p
ÿ

α

ρα “ 1q

“ f∇Xs`Xpfqs.

Thus, the Leibniz property holds, the others are even simpler to check. 2

As expected from the considerations at the beginning of this chapter, the Lie derivative

£ : XpMq ˆ XpMq ÝÑ XpMq
pX,Y q ÞÝÑ £XY “ rX.Y s,

is not a connection on TM . In fact, £fX ‰ f£XY for f P C8pMq. Thus, there is a sort
of trade-off between Lie derivative and connection w.r.t. their properties: the Lie derivative is
intrinsically defined on TM but it fails to be C8-linear, while a connection is not intrinsically
defined on a vector bundle (neither on TM) but it has that property. So, there remains a
degree of freedom in the choice of a connection. This ambiguity can be eliminated in special
cases, e.g. when the vector bundle has a Riemannian structure, as we will see later with the
concept of Levi-Civita connection.
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It is useful to single out two noticeable properties of a connection ∇X :

• for all section s of E on M and all point p PM , ∇Xsppq depends on the behavior of the
section s in a neighborhood of p;

• instead, ∇Xsppq depends only on the value of X in p, i.e. on Xp P TpM , the other
tangent vectors in a neighborhood of p assigned by X are totally irrelevant.

Hence, the behavior of ∇Xsppq is local w.r.t. s and point-wise w.r.t. X. These
features of ∇X are rigorously stated in the following proposition.

Theorem 7.3.2 (Structural properties of ∇Xs) Let π : E ÑM be a vector bundle and
∇ a connection on E.

1. If X, X̃ P XpMq are such that Xp “ X̃p and there exists an open neighborhood U of p
such that s, s̃ P ΓpMq are coincident on U , i.e. s|U “ s̃|U , then

∇Xsppq “ ∇X̃ s̃ppq.

2. For all open set U ĂM there exists only one connection on E|U

∇U : XpMq ˆ ΓpUq ÝÑ ΓpUq
pX, sq ÞÝÑ ∇U pX, sq,

such that, for all p P U , X P XpMq and s P ΓpMq, we have:

∇U
X

ˇ

ˇ

U
ppq “ ∇Xsppq.

3. If, for all X P XpMq and s, s̃ P ΓpMq it exists a path γ : p´ε, εq ÑM such that γp0q “ p,
γ1p0q “ Xp and s ˝ γ “ s̃ ˝ γ, then ∇Xsppq “ ∇X s̃ppq.

The third property is a refinement of the first one: for two covariant derivatives to coincide in
a point is it enough that they coincide on a ‘small’ arc of path passing through that point and
having the vector Xp as tangent vector in p.

Proof. TO BE WRITTEN...Lezione 17, 1h02m. 2

7.3.1 Expression of a connection in local coordinates: the Christoffel sym-
bols

Let pU,ϕq be a local chart of M that trivializes E, i.e. such that E|U
„
ÝÑ
χ

U ˆ Rr.
By applying the inverse of χ to the couple given by a generic point p P U and an arbitrary

vector of the canonical basis of Rr, i.e. pp, p0, . . . , 0, 1, 0, . . . , 0qq, where the value 1 is in the
k-th position, k “ 1, . . . , r, we determine a local basis for E|U , i.e. r local sections defined on
U , that we denote with pe1, . . . , erq P ΓpUq for simplicity,

ek : U ÝÑ E|U
p ÞÝÑ χ´1pp, p0, . . . , 0, 1, 0, . . . , 0qq,
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such that pe1ppq, . . . , erppqq is a basis of the fiber Ep, for all p P U .
Moreover, we know that the local chart pU,ϕq determines a local basis of TM given by

pB1, . . . , Bnq, n “ dimpMq.
Let us then consider Bj , j “ 1, . . . , n, as the vector field w.r.t. we want to define a

connection and eh, h “ 1, . . . , r, as the section of E on which this connection acts. Then ∇Bjeh
is again a section of E, by definition of connection. Hence, there must be suitable functions
Γkjh P C8pUq such that:

∇Bjeh “ Γkjhek , j “ 1, . . . , n, h, k “ 1, . . . , r, (7.1)

notice that three indices are essential: k is the linear combination index and j, h take into
account that the connection is defined w.r.t. the vector field Bj and it is applied on the basis
section eh.

Def. 7.3.4 (Connection coefficients - Christoffel symbols) The function Γkjh P C8pUq
appearing in eq. (7.1) are called (local) connection coefficients. In the special case E “ TM ,
r “ n and the connection coefficients are called Christoffel symbols.

Def. 7.3.5 (Flat connections) A connection is said to be flat if all its coefficients are
identically 0.

Let us verify that the connection coefficients determine completely the connection. For
any X P XpMq and s P ΓpUq we have:

X “ XjBj and s “ sheh, Xj , sh P C8pUq,

thus, by definition of connection and by using its properties,

∇Xs “ ∇Xps
hehq “ Xpshqeh ` s

h∇Xeh,

∇Xeh “ ∇XjBj
eh “ Xj∇Bjeh “ XjΓkjhek, thus, by renaming the summation index Xpshqeh “

Xpskqek, we get

∇Xs “ Xpskqek ` s
hXjΓkjhek “ pXps

kq ` ΓkjhX
jshqek.

In the literature sometimes we write simply s “ pskq avoiding the specification of the basis
sections ek. In this case we get the much easier formula to remember:

∇Xps
kq “ Xpskq ` ΓkjhX

jsh , (7.2)

in fact, it says that the covariant derivative is composed by two term:

• the first term is simply given by the action of X, interpreted as a derivation, applied on
sk (the equivalent of the directional derivative in Rn);

• the additional term, i.e. the correction w.r.t. the classical directional derivative, is
provided by a linear combination in which the connection coefficients appear. Thus, if
the connection is trivial (i.e. its coefficients are all 0), then the covariant derivative and
the directional derivative coincide.
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7.3.2 Parallel sections

We now want to discuss the very important concept of parallel sections. In order to examine
this, we need to discuss the properties of covariant derivatives in relation with curves. We
begin with a definition.

Def. 7.3.6 (Section along a curve) Let π : E Ñ M be a vector bundle over M and let
γ : I Ď RÑM be a path in M . A section of E along γ is a C8 function s : I Ñ E such that
@t P I, sptq P Eγptq.

Such a section is said to be extendable to a local section s P ΓpE,Uq if there exist an open
neighborhood U of the image of γ and a section s̃ P ΓpE,Uq such that sptq “ s̃pγptqq @t P I.

Notation: the set of sections of E along γ forms a vector space, w.r.t. the point-wise linear
operations, that is denoted by ΓpE, γq.

Theorem 7.3.3 Let γ : I ÑM be a path in M and ∇ a connection on E. Then, it exists a
unique operator D : ΓpE, γq Ñ ΓpE, γq such that:

1. D is R-linear, i.e.

Dpa1s1 ` s2s2q “ a1Dps1q ` a2Dps2q, @a1, a2 P R, s1, s2 P ΓpE, γq.

2. D satisfies the Leibniz rule:

Dpfsq “ f 1s` fDpsq, @f P C8pIq.

3. If s P ΓpE, γq is extendable and s̃ is an extension of s to an open neighborhood of the
image of γ, then we have:

Dsptq “ ∇γ1ptqs̃.

See [1] for the proof.

Def. 7.3.7 (Covariant derivative along a path) The operator D : ΓpE, γq Ñ ΓpE, γq is
called the covariant derivative along the path γ. Ds is the covariant derivative of s along the
tangent vectors to the path γ.

Now we have all the information to introduce the concept of parallel section.

Def. 7.3.8 (Parallel section) Let ∇ be a connection on the vector bundle E over M and
let γ : I ÑM be a path in M . A section s P ΓpE, γq is said to be parallel (along γ) if Ds ” 0.

Instinctively, the request Ds ” 0 could leads us to think that the section s remains ‘constant’
along γ, but this is not the case and the word parallel is actually more adequate, let us see
why.

As t runs in I, the corresponding point in M over the image of the path γ changes, thus
when we apply the section s to t we obtain a sequence of vectors belonging to the fibers Eγptq,
t P I.

Now, since D measures the rate of variation of the section s along γ, the fact that Ds ” 0
is naturally interpreted as the fact that the vectors sptq are as similar as possible as we move
to one point to another of the image of γ in M .
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Since these vectors belong to different fibers and the fibers are not canonically isomorphic
vector spaces, being as similar as possible cannot be translated to being constant, i.e. the
same vector. It is thus more correct to use the word ‘parallel’ instead of constant.

Let us use eq. (7.2), i.e. ∇Xps
kq “ Xpskq ` ΓkjhX

jsh, to further analyze the consequences
of the condition Ds ” 0. Thanks to property 3. of theorem 7.3.3, the action of X in γptq is
simply the derivative of the path γ in t, i.e. Xγptq “ γ1ptq, thus:

Xpskq ` ΓkjhX
jsh “ 0 ðñ

dsk

dt
pγptqq ` Γkjh

dγj

dt
ptqsh “ 0 @k “ 1, . . . , r,

where dsk

dt pγptqq replaces Xpskq because this is the derivation of the function sk in the direction
given by X, but X is tangent to γ in every point. But, thanks to the point 6. of the flux
theorem 5.2.3, computing the derivative of a sk in the tangent direction to γ is the same as
evaluating sk on the points belonging to the curve γptq and then computing the derivative
w.r.t. the parameter t.

Thanks to these identifications, we have written explicitly eq. (7.2) as a system of ordinary
differential equations, that, as we recall in the next theorem, always admits a unique solution.

Theorem 7.3.4 (D ! of solutions of a system of ODE) Let I Ď R be an interval, k ě 1,
t0 P I, x0, . . . , xk´1 P Rn, and A : I ˆ pRnqk Ñ Rn a C8 function, linear w.r.t. the variables
in pRnqk. Then, the Cauchy problem

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

dks
dtk
ptq “ Apt, sptq, . . . , d

k´1s
dtk´1 ptqq

spt0q “ x0

ds
dt ptqpt0q “ x1

...
dk´1s
dtk´1 pt0q “ xk´1,

admits a unique C8 solution s : I Ñ Rn.

Thanks to this result, given any point p P M , we can extend any vector v P Ep, keeping it
‘parallel to itself’, along a curve passing through p, as depicted in figure 7.3.2.

Figure 7.1: A graphic representation of the concept of parallel transport of a vector along a
curve thanks to the presence of a connection.
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Theorem 7.3.5 Let π : E ÑM a vector bundle on M , ∇ a connection on E and γ : ra, bs Ñ
M a path in M . If p “ γpaq, then, for all v P Ep there exists a unique parallel section
V P ΓpE, γq such that V paq “ v.

Proof. The only slightly technical part of the proof consists in the fact that the curve, in general,
is not contained in a chart domain. This problem can be fixed by using the compactness of

the interval ra, bs: the fact that it exists a finite open covering of ra, bs “
k
Ť

j“1
rsj , tjs implies

that there is a finite number of charts pU1, ϕ1q, . . . , pUk, ϕkq, chosen from a local trivialization
of E, that cover the image of γ.

Modulo a suitable choice of the covering, we can also suppose that γprsj , tjsq Ď γpra, bsqXUj ,
for j “ 1, . . . , k.

Then, the existence and uniqueness theorem for solutions of a system of ODE quoted
before implies that it exists a unique parallel section V1 along γ|rs1,t1s such that V1paq “ v.

Thanks again to compactness, we have the freedom to chose the covering of ra, bs as follows:
a “ s1 ă s2 ă t1 ă s3 ă t2 ă ¨ ¨ ¨ ă tk´1 ă tk “ b, i.e. the sub-intervals that cover ra, bs are
partially overlapping (see the picture below).

This trick serves our purposes because, when we solve the system of ODEs in the second open
neighborhood, we obtain a unique parallel section V2 along γ|rs2,t2s such that V2pt1q “ V1pt1q.

By uniqueness, V1 and V2 must be equal on rs2, t1s, so, by gluing together V1 and V2, we
get a unique parallel section along γ|rs1,t2s.

Following this procedure until tk “ b, we obtain a unique parallel section V along γ such
that V paq “ v. 2

This result allows us the possibility to define the extremely useful concept of parallel
transport.

Def. 7.3.9 (Parallel transport) Let π : E ÑM a vector bundle on M , ∇ a connection on
E and γ : r0, 1s ÑM a path in M with γp0q “ p0 and γp1q “ p1.

Given v P Ep0 , the only section V P ΓpE, γq parallel along γ and such that V p0q “ v P Ep0
is called the parallel extension of v along γ.

The parallel transport along γ is the function:

γ̃ : Ep0 Ñ Ep1

defined by γ̃pvq “ V p1q, V P ΓpE, γq being the parallel extension of v P Ep0.
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The picture above shows the action of the parallel transport.
The most important property of the parallel transport is expressed by the following result.

Theorem 7.3.6 The parallel transport along γ is a linear isomorphism between the vector
spaces Ep0 and Ep1 , the inverse of γ̃ being the parallel transport along γ´, where γ´ptq :“ γp1´tq
is the path that describes that same curve as γ, but traveled in reverse, so: γ̃´1 “ γ̃´.

Proof. We have seen that the condition Dv ” 0, which characterizes parallel sections to a
curve, is locally equivalent to:

dV k

dt
` ΓkjhpV

jq1sh “ 0 @k “ 1, . . . , r,

which is a linear system of ODEs. A classical results of the theory of ODEs guarantees that
linearity implies that the solution V ptq depends linearly on the initial conditions. This fact is
translated in the linearity of the function γ̃ : Ep0 Ñ Ep1 .

Let us now prove that γ̃´1 “ γ̃´. We denote with D´ the covariant derivative along γ´.
For all section V P ΓpE, γq, we set V ´ptq :“ V p1´ tq in such a way that V ´ P ΓpE, γ´q.

Since γ1´ptq “ γ1p1´ tq ¨ p1´ tq1 “ ´γ1p1´ tq, a direct calculation gives D´t V
´ “ ´D1´tV .

Since the only difference between the two covariant derivatives is the sign, it follows that V ´

is parallel along γ´ if and only if V is parallel along γ. But then, if V is the parallel extension
of v P Ep0 along γ, then V ´ is the parallel extension of V p1q “ γ̃pvq P Ep1 along γ´.

This implies that γ̃´ “ γ̃´1, so γ̃ is an isomorphism. 2

The parallel transport is defined also along piece-wise smooth paths : it is enough to compose
the parallel transport along the smooth pieces and use the final value of a piece as the initial
condition for the following piece.
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7.4 Relationship between connections and differential forms

It is possible to give an alternative definition of a connection, which is more suitable to be
used than the previous definition in certain situations. This alternative formulation reveal a
strong link between connections and differential forms.

We recall from def. 4.4.3 that a k-form on a manifold M is a section of ΛkpT ˚Mq, i.e. a
smooth assignment of an alternating tensor on T ˚M and that the vector space of all k-forms
on M is written either AkpMq or ΩkpMq.

Consider now a vector bundle π : E ÑM .

Def. 7.4.1 A k-form with values in E is a section of ΛkpT ˚Mq b E. The vector space of all
k-forms with values in E is denoted with either AkpEq or ΩkpEq.

In local coordinates, the general element of AkpEq can be written as

ÿ

i

ωi b si, (7.3)

where si are sections of E, i.e. elements of A0pEq ” ΓpE,Mq, while ωi P AkpMq are k-forms
on M .

With these definitions and notations, an alternative definition of connection on E can be
given as follows.

Def. 7.4.2 (Alternative definition of connection) A connection on E is a R-linear op-
erator

∇ : A0pEq ” ΓpE,Mq Ñ A1pEq

such that
∇pfsq “ f∇s` df b s @f P C8pMq, @s P ΓpE,Mq. (7.4)

The request expressed in (7.4) is the equivalent of the Leibniz rule in the present context.
The first term of (7.4), i.e. f∇s is immediate to understand: it is the function f not derived
multiplied by the derivative of s, which is provided by ∇ itself.

To comprehend the reason underlying the second term, i.e. df b s, notice that we expect s
not derived ‘multiplied by a derivative of f ’, and this derivative must provide a 1-form on M .
Thanks to (7.3) we see that the only intrinsic way to achieve this is by taking as multiplication
the tensor product and as ‘derivative’ of f : M Ñ R its differential, which, as we know, is a
1-form on M .

At first glance, this definition of connection, apart the request of a Leibniz-like behavior
just discussed, seems quite unrelated to the original definition 7.3.1 because no vector field
enters into play here. To understand the link between the two definitions we must consider
the following pairing (which acts on E-values 1-forms and vector fields on M and gives back
sections of E):

x , y : A1pEq ˆ XpMq ÝÑ A0pEq ” ΓpE,Mq
ˆ

α ”
ř

i
ωi b si, X

˙

ÞÝÑ xα,Xy :“
ř

i
ωipXqsi,

perfectly well-defined because ωi and X are dual objects, one belongs to the tangent and the
other to the cotangent space to M , so that ωipXq P C8pMq.
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The relationship between ∇X and ∇ is then:

∇Xs “ x∇s,Xy. (7.5)

Once establish this, let us see how the novel definition of connection can be written in local
coordinates. Let pe1, . . . , erq a local frame for E on an open U ĎM , i.e. a set of r sections of
E that, in every point p P U , form a basis of the fiber Ep, then

∇ej “ ωkj b ek, k “ 1, . . . , r,

where ωkj are 1-forms defined on the open U .
What just said is true for every open U , in the particular case when U is a chart domain

for M , we have at disposal a local coordinate system pU,ϕ “ px1, . . . , xnqq and the 1-forms
dx1, . . . , dxn are a local basis of T ˚M , hence we can represent the 1-forms ωkj as follows:

ωkj “
n
ÿ

i“1

Γkijdx
i

for suitable functions Γkij P C8pUq. They are denoted like this because, as we shall see in a
moment, they agree with the connection coefficients defined in 7.3.4. To verify this, we select
as vector field X “ Bi and we compute the covariant derivative of ej w.r.t. X by means of eq.
(7.5):

∇Biej “ x∇ej , Biy “ xω
k
j b ek, Biy

“ xωkj b ek, Biy

definition of x , y

“ ωkj pBiqek “
r
ÿ

k“1

Γkhjdx
hpBiqek “

r
ÿ

k“1

Γkhjδ
h
i ek

“ Γkijek, k “ 1, . . . , r, i, j “ 1, . . . , n,

but then the functions Γkij satisfy eq. (7.1), i.e. the definition of connection coefficients. These
considerations justify the following definition.

Def. 7.4.3 (Connection 1-form) The matrix of 1-forms ω “ pωkj q, j “ 1, . . . , n, k “
1, . . . , r, where

ωkj “ Γkijdx
i

are 1-forms defined on the chart domain pU, px1, . . . , xnqq, is called the connection 1-form
associated to the connection ∇ w.r.t. the local frame selected.

As always, it is important to establish how the expression of ω changes when we change the
local reference frame. Since a local frame is a basis of a vector space, if pẽ1, . . . , ẽrq is another
local frame for E on the same chart domain U , there exists an invertible matrix A “ pakhq of
functions akh P C8pUq such that:

ẽh “ akhek,

where the akh are smooth functions of the point p P U because the dependence of the fiber Ep
on p is smooth.
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Let ω̃ “ pω̃hi q the connection 1-form of ∇ w.r.t. the local frame pẽ1, . . . , ẽrq, then, by using
the multi-linearity of the tensor product, we have:

∇ẽi “ ω̃hi b ẽh “ ω̃hi b a
k
hek “ akhω̃

h
i b ek,

on the other side, thanks to Leibniz’s rule, we also have:

∇ẽi “ ∇paki ekq “ aki∇ek ` daki b ek “ aki ω
`
k b e` ` da

k
i b ek

indices change :k Ø j, `Ø k

“ ajiω
k
j b ek ` da

k
i b ek

“ pajiω
k
j ` da

k
i q b ek.

Since the vector basis pekq of the two expressions of ∇ẽi that we have determined are the
same, the coefficients must agree, this implies that:

akhω̃
h
i “ ajiω

k
j ` da

k
i , @k “ 1, . . . , r, i “ 1, . . . , n.

We notice that akhω̃
h
i is nothing but the matrix product between A and ω̃, while (notice the

indices position) ajiω
k
j is the matrix product between ω and A, so, in matrix notation, the

previous transformation law can be written as follows:

Aω̃ “ ωA` dA,

or
ω̃ “ A´1ωA`A´1dA , (7.6)

an expression that has a fundamental importance in gauge field theory.

Example of computation of covariant derivative: let us consider the simple case of
a vector bundle of rank 1, i.e. a line bundle (each fiber is a straight line). In this case, the
matrix ω “ pωkj q is a 1ˆ1 matrix of 1-forms, i.e. simply a 1-form

ω “ ω1
1 “ Γ1

i1dx
i “ Γidx

i.

Hence, the connection 1-form in this case is simply a differential form, or covector:

ω “ pΓiq “ pΓ1, . . . ,Γnq.

If X “ XjBj P XpUq and s “ s1e1 P ΓpE,Mq, where s1 P C8pUq and e1 is a local basis of E
in U , we have:

∇Xs “ pXps
1q ` Γ1

j1X
js1qe1 ” pXps

1q ` ΓjX
js1qe1,

since 1 is fixed, so the only running index for Γ is indeed j.
If we avoid the specification of the basis element e1 and we simplify the expression by

writing simply s instead of s1, we get:

∇Xs “ Xpsq ` ΓjX
js.

Finally, if we choose as particular vector field X “ Bi, then the covariant derivative takes the
following form:

∇Bis “ Bis` Γis,

which shows that, for line bundles, the covariant derivative is simply the partial derivative
plus an extra term proportional to the section itself by the (only) connection coefficient.

143



7.5 Induced connection on tensor bundles

In the same way as we have extended the concept of Lie derivative from vector to tensor fields
by forcing the Leibniz rule to be satisfied, we can extend the concept of connection to tensor
bundles. The following proposition state this rigorously.

Theorem 7.5.1 Let M be a smooth manifold and ∇ a connection on TM . Then, it exists a
unique way to define a connection ∇ on T pqM , @p, q, that satisfies the following properties:

1. ∇ coincides with the given connection on TM (i.e. it is an actual extension of ∇, this
is why we keep the same symbol)

2. on T 0M ” C8pMq the action of ∇ is simply the usual derivation implemented by a
vector field, i.e. ∇Xpfq “ Xpfq, @X P XpMq

3. if tj P T
hj
kj
pMq, j “ 1, 2, and X P XpMq, the following Leibniz rule holds:

∇Xpt1 b t2q “ p∇Xt1q b t2 ` t1 b p∇Xt2q

4. ∇ commutes with contractions.

Moreover, if η P T1pMq ” A1pMq and X,Y P XpMq, the following Leibniz rule holds2:

XpηpY qq “ p∇XηqpY q ` ηp∇XY q, (7.7)

which gives a formula to compute the covariant derivative of a 1-form:

p∇XηqpY q “ XpηpY qq ´ ηp∇XY q . (7.8)

Proof. Let us verify the uniqueness. Suppose that ∇ satisfies the properties 1. ´ 4. Then,
given η P A1pMq and X,Y P XpMq, we have that ηpY q is a function belonging to C8pMq,
thus, thanks to 2., ∇XpηpY qq “ XpηpY qq.

Now, using the Leibniz rule satisfied by ∇X , we get eq. (7.7). This shows that the
connection on TM determines uniquely the connection on T ˚M .

Property 3. determines uniquely the connection on all the tensor bundles T hkM :

p∇Xtqpω
1, . . . , ωh, Y1, . . . , Ykq “ Xptpω1, . . . , ωh, Y1, . . . , Ykqq

´

h
ÿ

r“1

tpω1, . . . ,∇Xω
r, . . . , ωh, Y1, . . . , Ykq

´

k
ÿ

s“1

tpω1, . . . , ωh, Y1, . . . ,∇XYs, . . . , Ykq.

To show the existence, it is enough to define ∇ on T ˚M and T hkM as above, the fact that it is
a connection is tautological because we have defined it by requiring the validity of the Leibniz
rule (the other properties are automatically satisfied). 2

2The coupling ηpY q must be thought as of product.
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7.5.1 Explicit formulae for covariant derivatives of tensors relatives to lin-
ear connections

Given a smooth manifold M of dimension n, let ∇ be a linear connection on M , i.e. a connection
on TM , and let pU,ϕ ” px1, . . . , xnqq a local chart on M . We know that pB1, . . . , Bnq is a local
frame for TM on the open set U and we can write

∇BiBj “ ΓhijBh ,

where Γhij are the Christoffel symbols.
Our aim is to find explicit formulae to compute the covariant derivative of any tensor in

the case of a linear connection.
We have seen that, if Y P XpMq “ T 1

0 pMq, Y “ Y jBj , then, by Leibniz’s rule:

∇BiY “ ∇BipY
jBjq “ pBiY

jqBj ` Y
j∇BiBj “ pBiY

hqBh ` Y
jΓhijBh “ pBiY

h ` Y jΓhijqBh,

thus, the components of the covariant derivative of a vector field Y P XpMq can be
explicitly written as follows:

∇BipY
hq “ BiY

h ` ΓhijY
j , (7.9)

i.e. the sum of the usual derivative, plus an extra term containing the components
of the vector field multiplied by the Christoffel symbols of the linear connection.

Let us now repeat the computation by considering 1-forms, i.e. the cotangent space. Let
pdx1, . . . , dxnq be a local frame for T ˚M on U , then ∇Bidxj “ Γ̃jihdx

h, where Γ̃jih is another
set of Christoffel symbols. Notice that now the running index for the sum, h, is positioned
below, while before it was positioned above.

The Christoffel symbols Γ̃jih and Γjih are of course related and to make their relation

explicit we just have to recall that xdxj , Bhy “ δjh which is a constant (either 0 or 1), thus
Bixdx

j , Bhy “ 0. Recalling that the action of ∇Bi on a smooth scalar function is the same as
the action of Bi, we get 0 “ Bixdx

j , Bhy “ ∇Bixdxj , Bhy, so, thanks to Leibniz’s rule and the
bilinearity of the pairing x , y we have:

0 “ ∇Bixdx
j , Bhy “ x∇Bidx

j , Bhy ` xdx
j ,∇BiBhy “ xΓ̃

j
i`dx

`, Bhy ` xdx
j ,ΓkihBky

“ Γ̃ji`xdx
`, Bhy ` Γkihxdx

j , Bky “ Γ̃ji`δ
`
h ` Γkihδ

j
k “ Γ̃jih ` Γjih,

which implies Γ̃jih “ ´Γjih, i.e. the Christoffel symbols that appear in the covariant
derivative of the differential form dxj are exactly the opposites of those appearing
in the covariant derivative of the vector field Bj . This implies that:

∇Bidx
j “ ´Γjihdx

h .

As a consequence, if ω “ ωjdx
j is a 1-form, we have:

∇Biω “ ∇Bipωjdx
jq “

∇Bi pωjq“Bipωjq
pBiωjqdx

j ` ωj∇Bidx
j

“ pBiωhqdx
h ` ωjp´Γjihdx

hq “ pBiωh ´ Γjihωjqdx
h,
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thus, the components of the covariant derivative of a 1-form ω P A1pMq can be
explicitly written as follows:

∇Bipωhq “ Biωh ´ Γjihωj , (7.10)

i.e. the sum of the usual derivative, minus an extra term containing the compo-
nents of the 1-form multiplied by the Christoffel symbols of the linear connection.

Since a vector field is a tensor field X P T 1
0 pMq and a 1-form is a tensor field ω P T 0

1 pMq,
by comparing eqs. (7.9) and (7.10) it is not difficult to imagine, by multilinearity of the
tensor, that the explicit formula for the components of the covariant derivative of a tensor field
t P T 1

1 pMq is just the usual derivative with two extra terms proportional to the tensor field,
with coefficients given by the Christoffel symbols of the connections with plus and minus sign.

To verify this guess, we write t “ thkBh b dx
k, where the coefficient functions thk are smooth

on U . Then we have:

∇Bit “ ∇Bipt
h
kBh b dx

kq “ pBit
h
kqBh b dx

k ` thkp∇BiBhq b dx
k ` thkBh b p∇Bidx

kq

(thanks to p7.9q, p7.10q)

“ pBit
h
kqBh b dx

k ` thkΓ`ihB` b dx
k ` thkBh b p´Γki`dx

`q

(exchanging k Ø `)

“ pBit
h
kqBh b dx

k ` Γhi`t
`
kBh b dx

k ´ Γ`ikt
h
` Bh b dx

k

“ pBit
h
k ` Γhi`t

`
k ´ Γ`ikt

h
` qBh b dx

k

thus, in components:

∇Bipt
h
kq “ Bit

h
k ` Γhi`t

`
k ´ Γ`ikt

h
` , (7.11)

which shows that the covariant derivative of a tensor field of type
`

1
1

˘

is the usual derivative plus
two extra terms involving linear combinations of the tensor components with the Christoffel
symbols, notice the difference of sign w.r.t. the position, above or below, of the running index
for the sum.

By repeating this same computations for a tensor field of type
`

p
q

˘

we get the following
explicit formula for the covariant derivative of the components:

∇Bipt
h1h2...hp
k1k2...kq

q “ Bit
h1h2...hp
k1k2...kq

` Γh1i` t
`h2...hp
k1k2...kq

` Γh2i` t
h1`h3...hp
k1k2...kq

` . . .Γ
hp
i` t

h1h2...hp´1`
k1k2...kq

´ Γ`ik1 ´ t
h1h2...hp
`k2...kq

´ Γ`ik2t
h1h2...hp
k1`k3...kq

´ ¨ ¨ ¨ ´ Γ`ikq t
h1h2...hp
k1k2...kq´1`

.

To simplify the heavy notation, in literature we find also the symbol t,i to denote Bit and t;i
to denote ∇Bit, so that, for example for a vector field Y “ Y hBh we find the formula:

Y h
;i “ Y h

,i ` ΓhijY
j .

7.5.2 Covariant differential, hessian and divergence

Given a linear connection on M and a tensor field t P T hk pMq, we define the covariant version
of the differential as follows.
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Def. 7.5.1 (Covariant differential) The covariant differential or total covariant deriva-
tive is the operator:

∇ : T hk ÝÑ T hk`1

t ÞÝÑ ∇t,

p∇tqpω1, . . . , ωh, Y1, . . . , Yk, Yk`1q :“ p∇Yk`1
tqpω1, . . . , ωh, Y1, . . . , Ykq , (7.12)

i.e. the covariant derivative w.r.t. the last vector field. If ∇t ” 0, t is said to be a parallel
tensor field.

Thanks to the covariant differential it is possible to define a parallel transport for tensors in
the exactly analogous way that we introduced before for vector fields.

Let us now see how it is possible to extend two important objects of calculus in Rn: the
hessian and the divergence. In Rn the hessian is the square matrix that contains the second
order partial derivatives of a scalar function; in the case of a smooth scalar function f on a
manifold, its covariant derivative coincides with its differential, i.e. ∇f “ df which is not a
function anymore, but a differential form, thus, if we want to differentiate a second time, we
must necessarily apply the covariant differential! These observations motivates the following
definition of hessian.

Def. 7.5.2 (Hessian of a smooth scalar function) Given f P C8pMq and a linear con-
nection on M , the tensor field of type

`

0
2

˘

defined as:

∇p∇fq “ ∇pdfq

is called the hessian of f .

Let us provide a more explicit expression of the hessian. First of all, since ∇p∇fq is a 2-times
covariant tensor, a bilinear form that must be applied to a couple of vector fields X,Y P XpMq.
Then,

∇p∇fqpX,Y q “ ∇Y p∇pfqqpXq,

having used the definition of covariant differential, eq. (7.12), Y playing the role of the last
vector field Yk`1. Since ∇pfq “ df , we can rewrite the previous formula as

∇p∇fqpX,Y q “ p∇Y pdfqqpXq,

but the formula to compute the covariant derivative of a 1-form is provided by eq. (7.8), which
gives:

∇p∇fqpX,Y q “ Y pdfpXqq ´ dfp∇YXq,

but, by definition of differential, dfpXq “ Xpfq and dfp∇YXq “ p∇YXqpfq, so:

∇p∇fqpX,Y q “ Y pXpfqq ´ p∇YXqpfq ,

which shows that the hessian is not simply the composition of the directional derivative of f
w.r.t. to X and then w.r.t. Y , as provided by the first term, but there is also an extra term
where the covariant derivative w.r.t. Y appears.

The expression of this explicit formula in coordinates will show us the link with the classical
expression of the hessian. If pU,ϕ ” px1, . . . , xnqq is a local coordinate system in M , then, if
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we fix the basis pB1, . . . , Bnq of TM |U , and take X “ Bi and Y “ Bj , then we can associate to
∇p∇pfqq a matrix whose pi, jq entry is given by:

∇p∇pfqqpBi, Bjq “ BjpBifq ´ p∇BjBiqpfq,

i.e.
∇p∇pfqqpBi, Bjq “ B2

jif ´ ΓhjiBhf ,

which shows that, if M “ Rn with the classical flat connection ∇ “ d characterized by Γhji ” 0,

we have that the hessian of f P C8pRnq is the matrix
´

B2f
BxjBxi

¯

ij
. Instead, for a non-trivial

manifold with a non-flat connection, an extra term involving the Christoffel symbols appears.

Let us now pass to the divergence: if X is a vector field on M and ∇ is a linear connection on
M , then ∇X P T 1

1 pMq, thus it is perfectly well-defined to contract this tensor of type
`

1
1

˘

w.r.t.
its only covariant and contravariant index. What we obtain turns out to be the generalization
of the classical divergence of a vector field on Rn to the case of a smooth manifold.

Def. 7.5.3 (Divergence of a vector field) Given X P XpMq and a linear connection on
M , the divergence of X is the smooth scalar function defined as follows:

divpXq “ C1
1 p∇Xq,

where C is the contraction operator.

As before, let us make this formula explicit by considering a vector field X “ XkBk, then we
know that

∇BjX “ pBjX
k ` ΓkjhX

hqBk,

from this it follows that the covariant differential can be written in every chart domain
pU,ϕ ” px1, . . . , xnqq as:

∇X “ pdXk ` Γkjhdx
jq b Bk P T

1
1 pUq.

We get the divergence of X by contracting the upper and bottom index, i.e. k and j,
respectively, which can be done by renaming both of them as k and considering the implicit
sum over k:

divpXq “ C1
1 p∇Xq “ BkXk ` ΓkkhX

h .

In the trivial case M “ Rn with the flat connection, the Christoffel symbols are identically 0
and we obtain the classical formula of the divergence of a vector field, i.e.

divpXq “
n
ÿ

k“1

BXk

Bxk
.

7.6 Compatibility between a linear connection and a (pseudo)-
Riemannian metric

In this section we discuss the issue of compatibility between the definition of a linear connection
on a manifold M , i.e. a connection defined on the tangent bundle TM of M and the Riemannian
metric defined on M itself. We first need to formalize this concept.
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Def. 7.6.1 Let pM, gq be a (pseudo)-Riemannian manifold. A linear connection on M is
compatible with the Riemannian metric g if, for all vector field X,Y, Z P XpMq, it holds that:

∇XgpY,Zq “ gp∇XY, Zq ` gpY,∇XZq. (7.13)

The compatibility equation (7.13) is simply the request that a Leibniz-like behavior holds
when ∇X is applied to the scalar product of vector fields induced by the (pseudo)-Riemannian
metric g.

Notice also that, since g is a (bilinear) smooth function, ∇XgpY, Zq “ XpgpY, Zqq.
The compatibility between a linear connection and a (pseudo)-Riemannian metric can be

characterized in six other ways, which are listed in the following result.

Theorem 7.6.1 (Characterizations of compatibility connection-metric) Let pM, gq be
a (pseudo)-Riemannian manifold of dimension n and ∇ a linear connection on M . Then, the
following assertions are equivalent.

1. ∇ is compatible with g.

2. ∇g ” 0, i.e. g is parallel w.r.t. ∇.

3. In all local coordinate system px1, . . . , xnq it holds that:

Bkgij “ g`jΓ
`
ki ` gi`Γ

`
kj . (7.14)

4. For every couple of vector fields V,W along the curve γ in M , it holds that3:

d

dt
gpV,W q “ gpDV,W q ` gpV,DW q . (7.15)

5. For all couple of vector field V,W parallel along γ, gpV,W q is constant along γ.

6. The parallel transport defined by ∇ along each curve is an isometry, i.e. it is not only
an isomorphism between all tangent spaces on the point traveled by the curve, but it also
preserved the norms of tangent vectors and the distances between them.

Proof. The strategy of the proof to demonstrate the equivalences is the following:

1. ðñ 2. 2. ðñ 3. 1. ùñ 4. 4. ùñ 5. 5. ùñ 6. 6. ùñ 1.

1. ðñ 2.

2. ðñ 3.

1. ùñ 4.

4. ùñ 5.

5. ùñ 6.

6. ùñ 1.
2

3We recall that DV denoted the covariant derivative of V along the direction tangent to the curve γ, and
analogously for DW .
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7.7 The Levi-Civita connection
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Chapter 8

Principal fiber bundles and
applications to field theory (Dylan Russon)

Inspirational epithap wanted...
...

Fibre bundles play a major role in modern theoretical physics, whereas it is in general
relativity or in the standard model of particle physics. This chapter will discuss largely fibre
bundles and connections. In the first part of this chapter, we will define the notion of fibre
bundle, beginning with the general fibre bundles and moving into the specific case of principal
bundle where the notions of Lie groups defined in the previous chapter will play a central
role. Then we will discuss the specific case (but important) of associated vector bundles. The
second part will treat the notion of connections and covariant derivatives that are necessaries
tools in gauge theories such as Yang-Mills theory.

8.1 Fibre Bundles

We already have encountered vector bundles, namely the tangent bundle TM and the cotangent
bundle T ˚M of a differential manifold M . For example, for the tangent space TM there was a
natural projection π : TM ÑM that associate to each vector the point p in M at which it is
tangent. The inverse image of any point p of M under π (called the fibre over p) was nothing
more that the tangent space TpM and vector fields could be defined as smooth cross-section
of TM . We will generalize these notions in this section, going from the general definition of
bundles to the specific case of vector bundles associated to principal bundles.

8.1.1 First definitions

First, let’s give the proper definition of a bundle.

Def. 8.1.1 (Bundle) A C8-bundle is the data of a surjective projection π : E ÑM , where
E and M are smooth manifolds and π is a C8-map. E is called the total space, M the base
space and for every p PM , Fp :“ π´1ptpuq is called the fibre over p.
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In the following, we will sometimes denote a bundle by a greek letter like ξ. In this case,
Epξq will be the total space of the bundle and Mpξq will be its base space.

In the bundles we will treat, every fibre over p P M will be diffeomorphic to the same
space F , in which case, we will talk about fibre bundle and F will be called the fibre of the
bundle. This motivates the more specific definition.

Def. 8.1.2 (Fibre bundle) Let F be a smooth manifold. The bundle π : E ÑM is said to
be a fibre bundle if, for each p PM , there is an open neighborhood U ĂM and a diffeomorphism
h : U ˆF Ñ E|U :“ π´1pUq, called local trivialization of E such that we have the commutation

E|U U ˆ F

U

π

h

pr1

where pr1 is the projection on U , or say differently πphpx, yqq “ x, for all x P U and y P F .

A collection tpUi, hiqui of local trivialization such that the open tUiui are covering M is
called an atlas of the bundle. We have that if Ui XUj ‰ H, then for p in this intersection and
f P F , we can defined diffeomorphisms ψijppq : F Ñ F , called the bundle transition functions,
such that h´1

i ˝ hjpp, fq “ pp, ψijppqpfqq. These maps satisfy

1. ψiippq “ idF

2. ψijppq “ pψjippqq
´1

3. ψijppq ˝ ψjkppq “ ψikppq for all Ui, Uj , Uk such that Ui X Uj X Uk ‰ H.

We recognize what we had for TM where, to each p PM , we had a local coordinate chart
pU, φq and we could define the map

TM |U ÝÑ φpUq ˆ Rm
v ÞÝÑ px1, ¨ ¨ ¨xp, vpx1q, ¨ ¨ ¨ , vpxpqq

The fact that the fibre of TM is Rm, a vector space, tells us that we are in a special fibre
bundle : a vector bundle.

Def. 8.1.3 (Vector bundle) A vector bundle of rank k of base manifold M is a fibre bundle
where the fibre is Rk. More specifically, to each p PM , Fp “ π´1ptpuq is a vector space of size
k and there is an open neighborhood U ĂM of p on which we have the local trivialization h
that satisfies π ˝ h “ pr1

E|U U ˆ Rk

U

π

h

pr1

We have in particular that, for each p PM , by the local trivialization, the map hp : tpuˆRk Ñ
π´1ptpuq is an isomorphism of vector spaces.
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Now let’s give some particular example of fibre bundle.

1. One of the most known fibre bundle is the Möbius strip where the base space is the
circle S1, and the fibre can be seen as a closed interval of R. The total space can be
regarded as a rectangle where the edge must be identified but in identifying opposite
vertices. We can construct in the same spirit the Klein bottle.

PUT THE FIGURE HERE

2. These two examples are in the case that the total space is ”twisted” in some sense. A
more simpler example is just considering the total space as the product of the base space
with the fibre, and the projection map is just the projection on the base space, i.e. the
bundle pr1 : M ˆ F ÑM .

3. If G is a Lie group and H is a Lie subgroup of G, then the bundle π : GÑ G{H, where,
@ g P G, we have πpgq :“ gH is a fibre bundle with fibre H.

It is sometimes useful to see a bundle as a subspace of a bundle of reference.

Def. 8.1.4 (Sub-bundle) We say that a bundle π̃ : Ẽ Ñ M̃ is a sub-bundle of a bundle
π : E ÑM if we have Ẽ Ă E, M̃ ĂM and if π̃ is the restriction of π to Ẽ.

Now, as vector fields can be seen as cross-section of the tangent bundle TM , let’s give the
proper definition of a cross-section :

Def. 8.1.5 (Cross-section) Let π : E ÑM be a bundle. A cross-section of the bundle is a
map σ : M Ñ E such that

E

π ˝ σ “ idM

M

πσ

i.e. that for each point p PM , its image σppq is in the fibre Fp “ π´1ptpuq

We can note that in the specific case to a product bundle π : M ˆF ÑM , by construction
a cross-section σ gives rise to a unique function σ̃ : M Ñ F such that @ p PM , σppq “ pp, σ̃ppqq.

To end this part, let us give the definition of a bundle map :

Def. 8.1.6 (Bundle map) Let πE : E Ñ M and πE1 : E1 Ñ N two bundles. A homomor-
phism of bundle is a pair of smooth maps pu, fq with u : E Ñ E1 and f : M Ñ N such that
we have the commutative diagram

E E1

M N

πE

u

πE1

f
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i.e. that we have πE1 ˝ u “ f ˝ πE.

In the case of vector bundles, we require in addition that the restriction of u on the fibres
to be linear, i.e. that for each p P M , up : π´1

E ptpuq Ñ π´1
E1 ptfppquq is an homomorphism of

vector space.

We can remark that the commutation πE1 ˝ u “ f ˝ πE tells us that for all p P M ,
upπ´1

E ptpuqq Ă π´1
E1 ptfppquq i.e. that the bundle maps sends fibers into fibers.

Now that we have defined bundle maps, a question arise whether it is possible or not to
define the pull-back of a bundle. This is given by the following

Def. 8.1.7 (Pull-back) Let π : E Ñ M be a fibre bundle that we will denote by β and let
f : M 1 ÑM be a map, where M 1 is another manifold. We define the pull-back of β to be the
bundle π1 : E1 ÑM 1, denoted by f˚pβq, where

1. M 1 is the base space

2. E1 :“ tpx1, eq PM 1 ˆ E{fpx1q “ πpequ

3. @ px1, eq P E1, π1px1, eq “ x1

This gives rise to a bundle map pfβ, fq between the bundle f˚pβq and β, where, for all
px1, eq P E1, fβpx

1, eq “ e. We can note that each fibre of f˚pβq is diffeomorphic to the fibre of
β so f˚pβq is a fibre bundle of fibre F .

8.1.2 Principal bundles

There are special fibre bundles where the fibre is a Lie group G. These bundles have the
particularity that we can associate to them, in a way that is to define, general bundles. But
first, let’s define what is a G-bundle.

Def. 8.1.8 (G-bundle) Let G be a Lie group. We say that π : E ÑM is a G-bundle if G
has a right action on E and if π : E Ñ M is isomorphic to the bundle ρ : E Ñ E{G where
E{G is the space of the orbit given by the action of G on E and ρ is the canonical projection
on the space of orbits.

A principal bundle is thus a particular G-bundle in the following sense :

Def. 8.1.9 (Principal bundle) A principal G-bundle is a G-bundle where the action of G
on E is free.

For the rest of this chapter, to emphasize that we have a principal map, we will denote the
total space by P instead of E.

Note that in a principal G-bundle π : P ÑM , we have a fibre bundle with fibre G. Indeed,
if x PM , and p P π´1pxq, π´1pxq is the orbit of p under the action of G. By the freedom of
its action and by theorem ??, we get that π´1pxq is isomorphic to G.
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Now let’s give a simple example of principal bundle.

If we consider the product bundle pr1 : M ˆGÑM , where the right action of G is simply
the right multiplication : @ p PM and @x0 P G, pp, g0qg :“ pp, g0gq. This bundle is called the
trivial principal bundle.

We would like to define principal bundle map as bundle maps that would preserve the
group action. This is satisfied by requiring the map to be equivariant

Def. 8.1.10 (Principal bundle map) Let π : P Ñ M and π̃ : P̃ Ñ M̃ be two principal
G-bundles and let pu, fq be a bundle map. Then pu, fq is said to be a principal bundle map if
u : P Ñ P̃ is G-equivariant as stated in definition ??, i.e. we have, for all p P P and g P G.

uppgq “ uppqg (8.1)

As for equation (??) we can generalize this in the case where π : P Ñ M is a principal
G-bundle, π̃ : P̃ Ñ M̃ a principal G̃-bundle and ρ : GÑ G̃ a group homomorphism. Then the
bundle map pu, fq is a principal bundle map if we have, for all p P P and g P G

uppgq “ uppqρpgq (8.2)

There is a particular case where pu, idM q is a principal map between a pair of principal
G-bundle π : P ÑM and π̃ : P̃ ÑM . Then in this case, u is an isomorphism.

By these principal bundle map, we can define a trivial principal G-bundle.

Def. 8.1.11 (Trivial principal bundle) A principal G-bundle π : P ÑM is trivial if there
is a principal bundle map from π : P ÑM to the product bundle pr1 : M ˆGÑM .

There is a special characterization of trivial principal G-bundle when looking at cross-
section. Mainly

Theorem 8.1.1 A principal G-bundle is trivial if, and only if, it possesses a continuous
cross-section.

Proof. To do... 2

8.1.3 Associated vector bundles

In this last part of this section, we will see how to associate a general bundle to a principal
G-bundle by extended the action of the group on another manifold. First, we will define the
G-product.

Def. 8.1.12 (G-product) Let G be a Lie group and let X and Y two spaces on which G has
a right-action given respectively by

ρ : X ˆG ÝÑ X
px, gq ÞÝÑ ρpx, gq “ ρgpxq :“ xg

,
θ : Y ˆG ÝÑ Y

py, gq ÞÝÑ θpy, gq “ θgpyq :“ yg.
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Then, we can define the right action of G on the product space X ˆ Y by the map

Θg : X ˆ Y ÝÑ X ˆ Y
px, yq ÞÝÑ Θgpx, yq :“ pρgpxq, θgpyqq “ pxg, ygq

, @ g P G

The G-product of X and Y is then the quotient of the product X ˆ Y on the space of orbits of
the action of Θ, i.e. that two elements px, yq and px1, y1q belongs to the same equivalence class
if there exists g P G such that x1 “ xg and y1 “ yg. We denote the G-product by X ˆG Y and
the equivalence class of px, yq P X ˆ Y is written rx, ys.

In the case one of the space is G itself, then it can be shown that there is an diffeomorphism
between GˆG Y and Y .

Now we have the key ingredients to define associated bundles.

Def. 8.1.13 (Associated bundle) Let π : P Ñ M a principal G-bundle and F a smooth
manifold on which G acts on the left. We define its associated bundle through the action of G
on F by the fibre bundle πF : PF ÑM with fibre F where

‚ PF :“ P ˆG F where the right action on this space is defined by

pp, vqg :“ ppg, g´1vq (8.3)

‚ πF is defined by
πF prp, vsq “ πppq (8.4)

We need to check that this bundle defined in this way is indeed a fibre bundle.

First, let’s notice that πF is well defined. If we take another representent rp1, v1s of rp, vs,
we have that there exists g P G such that pp1, v1q “ ppg, g´1vq hence

πF prp
1, v1sq “ πpp1q “ πppgq “ πppq “ πF prp, vsq

because p and pg belongs to the same orbit hence to the same fibre.

To see that πF : PF ÑM is indeed a fibre bundle. We need to find a local trivialization of
PF . Let’s consider the atlas of the principal bundle π : P ÑM given by tpUi, hiuqi. Then, for
every x PM , there exists an open U such that we have the diffeomorphism h : UˆGÑ π´1pUq.
We have thus the identification U ˆG – π´1pUq. Now let’s consider π´1

F pUq, we have :

π´1
F pUq “ π´1pUq ˆG F – pU ˆGq ˆG F “ pU ˆGˆ F q{G “ U ˆ pGˆG F q

But we have the further identification that GˆG F – F . Indeed, there is a diffeomorphism
between GˆG F and F given by the map

ι : GˆG F ÝÑ F
rg, vs ÞÝÑ vg´1

• this map is well defined since, given two different representative rg1, v1s “ rg2, v2s, then
there exists g P G such that g2 “ g1g and v2 “ v1g. Therefore, v2g

´1
2 “ v1gpg1gq

´1 “

v1gg
´1g´1

1 “ v1g
´1
1 .
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• it is injective since, if ιprg, vsq “ ιprg1, v1sq then vg´1 “ v1g1´1. It follows that, applying
the element g´1g1 to g and v : rg, vs “ rgg´1g1, vg´1g1s “ rg1, v1g1´1g1s “ rg1, v1s. Hence
we get injectivity

• the map is clearly surjective since, for all v P F , we have ιpre, vsq “ v.

We finally get that π´1
F pUq – U ˆ F so the open covering of M defines also a local trivial-

ization of PF and the fibre at x PM , π´1
F pxq, is diffeomorphic to F . Hence πF : PF ÑM is a

fibre bundle.

As we did for fibre bundle in general and principal bundle, let’s define what is an associated
bundle map.

Def. 8.1.14 (Associated bundle map) Let π : P Ñ M and π̃ : P̃ Ñ M̃ two principal
G-bundle with associated bundle πF : P ˆG F ÑM and π̃F : P̃ ˆG F Ñ M̃ respectively and
let pu, fq be a principal bundle map. An associated bundle map puF , fq between the pair of
associated bundle is defined by

uF prp, vsq :“ ruppq, vs (8.5)

This is well-defined since

uF prpg, g
´1vsq “ ruppgq, g´1vs “ ruppqg, g´1vs “ ruppq, vs “ uF prp, vsq

because u is equivariant as a principal bundle map. And it is a bundle map because we have,
for all rp, vs P P ˆG F

f ˝ πF prp, vsq “ f ˝ πppq

π̃F ˝ uF prp, vsq “ π̃F pruppq, vsq “ π̃puppqq

and f ˝ πppq “ π̃puppqq since pu, fq is a bundle map.

Finally, we will get interest in the particular case of associated vector bundle where we
replace the space F by a vector space V and requiring that the action of G on V is linear.
Hence we require that the action

θ : G ÝÑ GLpV q
g ÞÝÑ θg

is a representation of G in V .

More formally, if π : P Ñ M is a principal G-bundle and V is a vector of dimension n
on which G acts linearly, then the associated bundle πV : P ˆG V Ñ M can be given the
structure of an n-dimensional real vector bundle. Indeed, if x PM , let p P π´1ptxuq and define
the homeomorphism

ιp : V ÝÑ π´1
V ptxuq

v ÞÝÑ ιppvq :“ rp, vs
(8.6)

Then we define the operations

1. ιppv1q ` ιppv2q :“ ιppv1 ` v2q, @ v1, v2 P V

2. λιppvq :“ ιppλvq, @λ P R,@ v P V
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This is well defined thanks to the linearity of the action of G on V , since if we take another
element p1 P π´1ptxuq such that ι1ppv

1q “ ιppvq, then we get

rp1, v11s ` rp
1, v12s “ rp

1, v11 ` v
1
2s

“ rpg, g´1v1 ` g
´1v2s

“ rpg, g´1pv1 ` v2qs

“ rp, v1 ` v2s

“ rp, v1s ` rp, v2s

And let’s end this section with an important example of principal bundle associated to a
vector bundle : the bundle of frames.

Let π : E ÑM be a vector bundle of rank n. A frame at a point p PM is an ordered set
of basis vectors for the vector space Ep. If we define by Fp the set of all frames at the point p,
the bundle of frames FpEq is defined to be the disjoint union of all such spaces i.e. that a
point in FpEq is a pair pp, bq where p PM and b P Fp and the projection map πF : FpEq ÑM
is the function that takes a frame into the point in M to which it is attached.

In fact, since for each p PM , there is an isomorphism between Ep and Rn, a frame can be
seen as a linear isomorphism. Indeed, let B be the canonical basis for Rn, a frame b of Ep is
uniquely determined by the image vectors of the vectors of B through a suitable isomorphism
λ : Rn Ñ Ep which represents the base change.

We can define a natural free action of GLpn,Rq on FpEq. If λ P Fp represented by a
matrix Λ and if α is an automorphism of Rn represented by a matrix A then we define the
right action of GLpn,Rq on the fibres Fp by

θ : Fp ˆGLpn,Rq ÝÑ Fp
pλ, αq ÞÝÑ λ ˝ α “ ΛA

This action is transitive by unicity of base change and can be extended to the bundle
FpEq by

Θ : FpEq ˆGLpn,Rq ÞÝÑ FpEq
ppp, λq, Aq ÞÝÑ pp, θpλ,Aqq

We can therefore see that πF : FpEq ÑM is a GLpn,Rq-principal bundle.

Indeed, the right action is free and the orbits coincide with the fibers. It remains to see
that we have a local trivialization. Let tpUi, ϕiqui be a local trivialization for E where we have
the diffeomorphisms ϕi : E|Ui Ñ Ui ˆ Rn with restrictions on the fibers ϕi,p : Ep Ñ tpu ˆ Rn.
Then we can define the maps :

ψi : FpEq|Ui “ π̃´1pUiq ÞÝÑ Ui ˆGLpn,Rq
pp, λq ÞÝÑ pp, ϕi,p ˝ λq

These maps are invertible and differentiable with inverse differentiable so they are diffeomor-
phisms and tpUi, ψiqiu is a local trivialization for FpEq.
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Consider a point p of M and U its open neighborhood, and qan element of FpEq|U . We
can write q “ pp, λq. Then we have ψpqq “ pp, ϕp ˝ λq “ pπpqq, hpqqq for a certain function
h : F Ñ GLpn,Rq. It remains to see that this map is equivariant w.r.t. the right action of the
group :

hpΘpq, Aqq “ hpΘppp, λq, Aq “ hpp, θpλ,Aqq “ hpp, λ ˝ αq

“ pp, ϕp ˝ λ ˝ αq “ pp, θpϕp ˝ λ,Aqq “ Θppp, ϕp ˝ λq, Aq

“ Θphpp, λq, Aq “ Θphpqq, Aq

By local trivialization, we have that F{GLpn,Rq –M and each fibre is diffeormorphic to
GLpn,Rq. Hence π̃ : FpEq ÑM is a principal fibre of structure group GLpn,Rq.

A special bundle of frames is the tangent frame bundle (called also the frame bundle of
the manifold M) where the vector bundle in consideration is the tangent bundle. In this case,
a local section is called a smooth local frame. One important example is that given a local
coordinate chart pU,ϕ “ px1, . . . , xmqq around a point p PM , we have a basis of TpM given
by pB1|p, . . . , Bm|pq so we can define a local section of TM by

Bi : U ÝÑ TM
p ÞÝÑ Bippq :“ Bi|p

The same can be done for the cotangent bundle.

8.2 Connection and parallel transport

The purpose of connections is to compare points belonging to different fibres in a way that is
independent of a local trivialization. Hence, we are looking for vector fields that go for one
fibre to another. In this section, we will define a connection in two ways, one as a collection of
tangent spaces, the other as a differential one-form. We will first give the definition for general
bundles then restrict ourselves to principal and associated bundle to conclude with parallel
transport and curvature.

8.2.1 Connection of Ehresmann

Connection in a general bundle

First, let give the definition of a vertical subspace.

Def. 8.2.1 (Vertical subspace) Let π : E Ñ M be a bundle, and let e P E. The vertical
subspace VeE of the tangent space TeE is defined to be the kernel of the push-forward of π at
e i.e.

VeE :“ kerpπ˚q “ tv P TeE, π˚pvq “ 0u (8.7)

The elements of VeE are called vertical. As e P E changes, these subspaces form a C8-subbundle
V E of the bundle TE.
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If E is an n-manifold and M a m-manifold, since π is a projective surjection, it is of
constant rank m (i.e. that for all e P E, π˚ : TeE Ñ TπpeqM is of rank m), then we have
dimVeE “ n´m.

Remark that VeE can then be seen as the tangent space to the fiber π´1ptπpequq.

Now, as mentioned above, we want to look at vector fields that points away to the fibres,
not tangent to it. This motivates the following definition :

Def. 8.2.2 (Ehresmann connection) A general connection (or Ehresmann connection) on
the bundle π : E ÑM is a smooth assignment to each point e P E of a vector subspace HeE
of TeE such that

TeE “ VeE ‘HeE (8.8)

The subbundle HE of TE associated to it is called the horizontal subbundle of TE and elements
of HeE are called horizontal.

Hence, this definition means that each vector w P TeE can be written in a unique way
as w “ v ` h where v P VeE and h P HeE. To emphasize this, we will sometimes write by
v “ verpwq and h “ horpwq for respectively the vertical and horizontal components of w.

Also, by the definition of the vertical subspace VeE of TeE, we get that the restriction of
π˚ to HeE is an isomorphism of vector space and we have dimHeE “ dimTπpeqM “ m.

We can give another definition of the connection in terms of a differential one-form. More
precisely, we define a connection 1-form on a bundle π : E ÑM as a linear map

Φ : TE Ñ V E (8.9)

that satisfies

1. Φ ˝ Φ “ Φ (idempotent)

2. ImΦ “ V E (surjectivity)

This definition means that we can see the connection one-form as a projection of TE onto
V E. In particular, if e P E, then Φe : TeE Ñ VeE is the projection of TeE into VeE. The
horizontal sub-bundle is thus defined by HE :“ ker Φ. These two different definitions are in
fact equivalent and the decomposition (8.8) say that for all e P E, Φe is simply the projection
of TeE on VeE parallel to HeE.

We can remark that, using the notation of ver and hor, for all w P TeE, we have
Φepwq “ verpwq.

Connection in a principal bundle

These definitions of vertical subspace and connection need to be slightly adapted in the
framework of principal bundle to guarantee the action of the Lie group.

Since a principal bundle is a bundle, we have the same definition for the vertical subspace :
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Def. 8.2.3 (Principal vectical subsapce) Let π : P ÑM be a principal bundle of struc-
ture group G. For each p P P , the vertical subspace VpP of TpP is defined to be the kernel of
the linear push-forward π˚ at p

VpP :“ kerπ˚ “ tτ P TpP {π˚τ “ 0u

The particularity here is that VpP can be identified with the Lie algebra g of G. Let’s
introduced the necessary tools to show this.

Let ∆ : P ˆGÑ P the usual right action of G on P given by ∆pp, gq “ δgppq “ pg where
δg : P Ñ P is the usual diffeomorphism define in the previous chapter. Then, taking ξ P g, we
can define a curve in G locally : t ÞÑ expptξq P G, for t P R small enough, that passes though
e the neutral element of G at t “ 0 and tangent to ξ. Now letting this curve acts on p P P , we
obtain a curve on P given by t ÞÑ δexpptξqppq “ p expptξq. This curve passes through p at t “ 0
and so it is tangent to a vector of TpP . This thus associates to each vector of g a vector in
TpP by the map

up : g ÝÑ TpP

ξ ÞÝÑ uppξq :“
d

dt
p expptξq

ˇ

ˇ

ˇ

ˇ

t“0

(8.10)

By varying p P P , we can define a map that associate to each vector ξ P g a vector field on
P denoted by Xξ whose value at p P P is given by Xξ

p :“ uppξq.

u : g ÝÑ XpP q
ξ ÞÝÑ Xξ (8.11)

In other words, we associate to the vector fields on G, whose integral curve is σξ : t ÞÑ expptξq,
the vector field on P whose integral curve is given by t ÞÑ p expptξq.

As g and XpP q are Lie algebras, we can notice that this u is a morphism of Lie algebras
since it satisfies, for all ξ, η P g

Xrξ,ηs “ uprξ, ηsq “ rupξq, upηqs “ rXξ, Xηs

We can thus show the identification mentioned above :

Theorem 8.2.1 Let π : P ÑM be a principal bundle of group structure G and let g be the
Lie algebra of G. Then the map up defined above is an isomorphism between g and VpP .

Proof. First notice that up is linear since for each ξ P g, uppξq is a derivative. Now let’s prove
injectivity and surjectivity.

• For injectivity, suppose that ξ P kerpupq, ξ ‰ 0. Since the action of G on P is free, the
only element that fixes the point p is the neutral element e. Hence, for t ‰ 0, we will
have p expptξq ‰ p so the curve on P induced by t ÞÑ expptξq is not constantly equal
to p and the vector uppξq tangent to this curve in p at t “ 0 will be non-zero. This
contradicts the fact that ξ P kerpupq so we get that ξ “ 0 and up is injective.
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• The surjectivity follows immediately. Indeed, by a local trivialization of the principal
bundle π : P Ñ M , p P P will correspond to a point px, gq P M ˆ G, hence the fibre
π´1ptxuq is diffeomorphic to G. By the dimension analysis seen for general bundle,
we get that dimVpP “ dimP ´ dimM “ dimG. Hence the restriction of up to the
codomain VpP , since up is linear, injective and dimVpP “ dimG “ dim g guarantees
that up is surjective.

2

Now, let’s define the notion of a connection in the special case of a principal bundle.

Def. 8.2.4 (Connection in a principal bundle) Let π : P ÑM a principal bundle with
group structure G. A connection is a smooth assignment to each point p P P of the total space
of a subspace HpP of TpP such that

1. TpP “ VpP ‘HpP

2. the subspace HpP is invariant by the action of the group G i.e.

δg˚pHpP q “ HδgppqP, for all p P P and g P G. (8.12)

Another way of defining a connection is as a one-form

Def. 8.2.5 (Connection one-form) Let u´1
p : VpP Ñ g being the inverse of the isomor-

phism between g and VpP . We defined the connection one-form ω : TP Ñ P ˆ g of the
principal G-bundle π : P ÑM as a g valued one-form defined by, @ p P P :

ωp : TpP ÝÑ g
τ ÞÝÑ ωppτq :“ u´1

p pΦppτqq
(8.13)

where Φp : TpP Ñ VpP is the projection of TpP on VpP parallel to HpP associated to the
differential one-form Φ : TP Ñ V P defined in the same way as in (8.9).

This one-form satisfies several properties of which

Proposition 8.2.1

1. If Xξ is the vector field induced by u on ξ then, for all p P P

ωppX
ξ
pq “ ξ (8.14)

2. For all g P G, p P P and τ P TpP , we have

pδ˚gωqppτq “ Adg´1pωppτqq (8.15)

3. h P HpP if, and only if, ωpphq “ 0.

Proof.
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1. Since, for all p P P , Xξ
p “ uppξq P VpP by theorem 8.2.1, we have that

ωppX
ξ
pq “ u´1

p pverpXξ
pqq “ u´1

p pX
ξ
pq “ u´1

p puppξqq “ ξ.

2. First, let’s see the link between the action on VpP and the action on g. Let ξ P g and let
g P G, we have

δg˚puppξqq “ δg˚

ˆ

d

dt
p expptξq

˙ˇ

ˇ

ˇ

ˇ

t“0

“
d

dt
δgpp expptξqq

ˇ

ˇ

ˇ

ˇ

t“0

But we have

δgpp expptξqq “ p expptξqg “ pgpg´1 expptξqgq

“ pgpCg´1pexpptξqq “ pg expptAdg´1pξqq

by equation (??). Hence

δg˚puppξqq “
d

dt
pg expptAdg´1pξqq

ˇ

ˇ

ˇ

ˇ

t“0

“ upgpAdg´1pξqq (8.16)

Furthermore, we have, for all g P G, p P P and τ P TpP

pδ˚gωqppτq “ ωδgppqpδg˚τq

“ u´1
pg ˝ Φpgpδg˚τq

“ u´1
pg ˝ δg˚ ˝ Φppτq

Because by (8.12) we have the commutation δg˚ ˝ Φp “ Φpg ˝ δg˚ . Hence

pδ˚gωqppτq “ u´1
pg ˝ δg˚ ˝ up ˝ u

´1
p ˝ Φppτq

“ u´1
pg ˝ δg˚ ˝ uppωppτqq

“ u´1
pg ˝ upgpAdg´1pωppτqqq

“ Adg´1pωppτqq.

where in the penultima equality we use equation (8.16)

3. By definition, one of the implication is straightforward. The only if part is also direct
because since up is an isomorphism between VpP and g, if ωpphq “ 0 then this means
that Φphq “ 0 hence h P HpP .

2
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8.2.2 Covariant derivative and parallel transport

An important tool to compare points in is the use of parallel transport, that is a way to
transport points from one fibre to another.

Parallel transport in a principal bundle

Let π : P ÑM be a principal G-bundle where G is a Lie group equipped with a connection
ω. We have seen the basic definitions of vertical fields and horizontal fields. Vertical fields can
be easily constructed but there is also a way to generate more explicitly horizontal fields from
a given vector field : this is the operation of horizontal lifting. Indeed we have seen that for
each p P P , π˚ is an isomorphism from HpP to TπppqM . This yields to the following

Def. 8.2.6 (Horizontal lift) Let X be a vector field on M . Then there exists a unique
vector field, called the horizontal lift of X and that we denote by XÒ such that, for all p P P

1. π˚pX
Ò
p q “ Xπpgq

2. ΦppX
Ò
p q “ 0

We can remark that since, for all p P P , XÒp P HpP , then we have that δg˚pX
Ò
p q “ XÒpg, i.e.

the operation of horizontal lift is G-equivariant. In fact, this property and the point ii) of the
definition guarantee that a vector field on P is the horizontal lifting of a vector field defined
on M .

This operation of horizontal lifting satisfied several properties

1. XÒ ` Y Ò “ pX ` Y qÒ

2. pfXqÒ “ f ˝ πXÒ for all f P C8pMq

3. rX,Y sÒ “ horprXÒ, Y Òsq

An analogue procedure of horizontal lifting can be applied to curves on the base manifold
M .

Def. 8.2.7 (Horizontal lift of a curve) Let σ : ra, bs ÑM be a smooth curve. We define
the horizontal lifting of σ by the curve σÒ : ra, bs Ñ P satisfying

1. Φpprσ
Òsq “ 0 i.e that the curve is horizontal,

2. πpσÒptqq “ σptq for all t P ra, bs.

Here the last point is to satisfy the fact that applying the projection π to this curve on P
will give us back the curve on M .

As for vector fields, we have seen that to each vector field on M we could associate a
unique horizontal lift on P , we have also existence and uniqueness of horizontal lift of a curve

Theorem 8.2.2 Let σ : ra, bs Ñ M be a smooth curve on M . Then for all point p P
π´1ptσpaquq of the fibre over σpaq P M , there exists a unique horizontal lift of σ such that
σÒpaq “ p
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Proof. To do... 2

This theorem shows us the spirit of our goal : we want to compare a point p P P of one
fibre with another point q P P of another fibre. If we call πppq “ m PM and πpqq “ n PM ,
having a smooth curve on M , σ : ra, bs Ñ M such that σpaq “ m and σpbq “ n, then the
horizontal lift of this curve σÒ will allow us going from the fibre π´1pmq to the fibre π´1pnq.

Def. 8.2.8 (Parallele translation) Let σ : ra, bs ÑM be a smooth curve of M . We define
the parallel translation along σ the map

τ : π´1ptσpaquq ÝÑ π´1ptσpbquq
p ÞÝÑ σÒpbq

(8.17)

where σÒ is the horizontal lift of σ that passes through p at t “ a.

Connection and covariant derivative in an associated vector bundle

These notions of connection and parallel transport can be extended in the case of associated
vector bundles. Let’s see how the definitions of vertical and horizontal subspace (hence of
connection) can be induced from the ones on a principal bundle.

Def. 8.2.9 Let π : P Ñ M be a principal G-bundle equipped with a connection ω and let
πF : PF ÑM be its associated bundle through the action of G on F . Let rp, vs P PF “ P ˆGF ,
we define

1. the vertical subspace Vrp,vspPF q of the tangent space Trp,vspPF q by

Trp,vspPF q :“ kerπF˚ “ tτ P Trp,vspPF q{πF˚τ “ 0u (8.18)

2. the horizontal subspace Hrp,vspPF q of the tangent space Trp,vspPF q by

Hrp,vspPF q :“ kv˚pHpP q (8.19)

where
kv : P ÝÑ P ˆG F

p ÞÝÑ rp, vs
(8.20)

The horizontal subspace is well defined. Indeed, we can notice that, for all p P P , we have

kg´1v ˝ δgppq “ kg´1vppgq “ rpg, g
´1vs “ rp, vs “ kvppq

Hence kg´1v ˝ δg “ kv. Now if we choose rp1, v1s another representative of the class rp, vs
(i.e. that there exists g P G such that pp1, v1q “ ppg, g´1vq) then, by the characterization of a
horizontal subspace in the principal bundle, we have

kv1˚pHp1P q “ kg´1v˚pHpgP q

“ kg´1v˚pδg˚pHpP qq

“ pkg´1v ˝ δgq˚pHpP q

“ kv˚pHpP q
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Having a connection, we can also define the notions of lifting a curve and parallel trans-
porting.

Let σ : ra, bs ÑM be a smooth curve on M and rp, vs a point in the fibre π´1
F ptσpaquq. By

theorem 8.2.2 there is a unique horizontal lift of σ on P such that σÒpaq “ p. We then define
the horizontal lift of σ on P ˆG F that passes to rp, vs at t “ a to be the curve

σÒF :“ rσÒ, vs (8.21)

Then the parallel translation along σ in the bundle P ˆG F is simply the map

τF : π´1
F ptσpaquq ÝÑ π´1

F pσpbquq

rp, vs ÞÝÑ σÒF pbq “ rσ
Òpbq, vs

(8.22)

where σÒ is such that σÒpaq “ p.

In the case of a vector bundle, this parallel transport allows to define a derivative of a
cross-section in a way that is independent of any choice of a local trivialization : this is the
covariant derivative.

Def. 8.2.10 (Covariant derivative) Let π : P Ñ M be a principal bundle with structure
group G and let V be a vector space on which G acts. Consider a smooth curve σ : r0, εs ÑM
in M such that σp0q “ x0 and let τ tV be the parallel translation map going from the fibre
π´1
V ptσptquq to the fibre π´1

V ptx0uq. Then if ψ : M Ñ P ˆG V is a cross-section, we define the
covariant derivative of ψ at x0 in the direction σ by

∇σψ :“ lim
tÑ0

ˆ

τ tV ψpαptqq ´ ψpx0q

t

˙

(8.23)

Considering two curves σ1 and σ2 tangent at x0, we have that ∇σ1ψ “ ∇σ2ψ. Hence, we
can extend the definition of the covariant derivative to tangent vectors in Tx0M by defining
that if v P Tx0M is a tangent vector and σ is one of these representative curve, then

∇vψ :“ ∇σψ

and going further, we define the covariant derivative along a vector field X on M by

p∇Xψqpx0q :“ ∇Xx0
ψ

∇X is a linear operator. It also satisfies the following properties

1. ∇Xpfψq “ f∇Xψ `Xpfqψ

2. ∇fX`Y ψ “ f∇Xψ `∇Y ψ

The covariant derivative of a cross-section gives a cross-section. By expressing it in local
coordinates, we will make appear the Christoffel symbols.
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Let π : E Ñ M be a vector bundle of rank r and consider pU,ϕ “ x1, . . . , xmq a local
coordinate chart such that there is a local trivialization h : U ˆ Rr Ñ E|U . We can define a
local basis of r local section defined by

ek : U ÝÑ E|U
p ÞÝÑ hpp, p0, . . . , 0, 1, 0, . . . , 0qq

Thus, for each p P U , pe1ppq, . . . , erppqq forms a basis for the fibre Ep.

Now we want to apply the covariant derivative to these sections along the vector fields
formed by the standard local frame of TM pB1, . . . , Bmq given by the local chart. The new
sections obtained can be expressed in the local basis pekqk so we define

∇Bjeh “ Γkjhek

where Γkjh P C
8pUq. These functions are called the connection coefficients or, in the case of

the tangent bundle, they are known as the Christoffel symbols.

We can then express the covariant derivative in local coordinates : let s P ΓpUq a local
section and X P XpMq a vector field. Then we have the decomposition X “ XjBj and s “ sheh.
The covariant derivative of s along X is then

∇Xs “ ∇Xps
hehq “ Xpshqeh ` s

h∇Xeh

“ Xpshqeh ` s
h∇XjBj

eh

“ Xpshqeh ` s
hXj∇Bjeh

“ Xpshqeh ` Γkjhs
hXjek

“ Xpskqek ` Γkjhs
hXjek

“ pXpskq ` Γkjhs
hXjqek

Actually, there is another standard definition of these connections in terms of connection
one-forms that we can write in a matrix. The connection one-form defined in this way is a
matrix of one-forms ω “ rωkks where

ωkj “ Γkijx.
i

are one-forms defined on the coordinate chart pU, px1, . . . , xmqq which is associated to ∇ w.r.t.
the local frame.

Curvature

Let π : P Ñ M a principal G-bundle and let HP “ tHpP {p P P u its connection. We
have already defined Φ : TP Ñ V P the vertical projection. In the same spirit, let’s define
h : TP Ñ HP the horizontal projection, i.e. for all p P P , hp : TpP Ñ HpP is the projection
on HpP parallel to VpP . By this, we can define the exterior covariant derivative of a form.

Def. 8.2.11 (Exterior covariant derivative) If ω is a k-form on P , we define the exterior
covariant derivative Dω to be horizontal pk ` 1q-form defined by

DωpX1, . . . , Xk`1q “ dωphX1, . . . , hXk`1q (8.24)

where X1, . . . , Xk`1 are vector fields on P .
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and the curvature

Def. 8.2.12 (Curvature) Let ω be a connection one-form defined on the principal G-bundle
π : P ÑM . We define the curvature two-form Ω to be the exterior covariant derivative of the
connection, i.e.

Ω “ Dω (8.25)

We can give an explicit formula of this curvature two-form through the Cartan structure
equation :

Theorem 8.2.3 (Cartan structure equation) Let ω be a connection one-form and let
Ω “ dω be its curvature two-form. If X and Y are vector fields on P , we have, for all p P P :

ΩppXp, Ypq “ dωppXp, Ypq ` rωppXpq, ωppYpqs (8.26)

Proof. Since we have the direct sum TP “ V P ‘HP , and since we have linear functions in
the equation, it suffices to show the equation in three simple case.

1. X and Y are horizontal. This case is the easiest because we have then that ωpXq “ 0
and ωpY q “ 0. For the remaining term, we have by definition :

ΩppXp, Ypq “ DωpXp, Ypq “ dωphppXpq, hppYpqq “ dωpXp, Ypq

since X and Y are horizontal.

2. X and Y are vertical. By (8.11), there exist ξ, η P g such that X “ Xξ and Y “ Y η.
Now by equation (??) we have

dωpXξ, Y ηq “ XξpωpY ηqq ´ Y ηpωpXξqq ´ ωprXξ, Y ηsq

But the point iii) of proposition 8.2.1 guarantees that ωppX
ξ
pq “ ξ and ωppY

η
p q “ η so

they are constants and applying a vector fields annihilate them. For the second term,
we have that ωprXξ, Y ηsq “ ωpXrξ,ηsq “ rξ, ηs and hence the right hand side of equation
(8.26) vanishes. On the other hand, the left hand side is automatically 0 since X and Y
are vertical.

3. X is horizontal and Y is vertical. Since X is horizontal, then ωpXq “ 0 so the commutator
vanishes and ΩpX,Y q “ 0 because Y is vertical. It remains to show that dωpX,Y q “ 0.
Now, doing the same procedure as in the previous case, there exists η P g such that
Y “ Xη and we can write

dωpX,Xηq “ XpωpXηqq ´XηpωpXqq ´ ωprX,Xηsq “ ´ωprX,Xηsq

because ωpXηq “ η is constant and ωpXq “ 0 because X is horizontal.

But we have the Lie derivative rX,Xηs “ ´LXηX “ lim
tÑ0

δexpptηq˚pXq ´X

t
. Hence if

X is horizontal, the right action on it gives also a horizontal vector field, and so the
difference by vector space structure. This proves that rX,Xηs is horizontal and then
ωprX,Xηsq “ 0
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To finish this chapter, let’s rewrite this formula in a local way.

If we denote by B “ tv1, ¨ ¨ ¨ , vnu a basis of the Lie algebra g. Then equation (8.26) can be
rewritten as :

Ωa “ dωa `
1

2
cabcω

b ^ ωc (8.27)

Indeed, let write in the basis B, ω “ ωava and Ω “ Ωava. Hence, we have

dωpX,Y q “ dωapX,Y qva (8.28)

And

ωpXq, ωpY qs “ rωbpXqvb, ω
cpY qvcs “ ωbpXqωcpY qrvb, vcs “ ωbpXqωcpY qcabcva

But

cabcω
bpXqωcpY q “

1

2

”

cabcω
bpXqωcpY q ` cacbω

cpXqωbpY q
ı

“
1

2

”

cabcω
bpXqωcpY q ´ cabcω

cpXqωbpY q
ı

“
1

2
cabcω

bpXq ^ ωcpY q

Finally

rωpXq, ωpY qs “
1

2
cabcω

bpXq ^ ωcpY qva (8.29)

And adding (8.28) and (8.29) we get the result.

We also have the famous Bianchi identity

DΩ “ 0.

An example : connection in a straight bundle

Let π : E ÑM a complex vector bundle of rank 1 (called a straight bundle where each
fiber is diffeomorphic at C) on a base manifold M and place a connection on E

∇ : XpMq ˆ ΓpEq ÝÑ ΓpEq.

If U ĂM is an open, any local section of E will be e1 P ΓpEq such that π ˝ e1 “ idU ; in
particular if e1 it is not canceled out on U , then it constitutes a local frame for E: we have
that every other section s P ΓpEq will be written in the form s “ s1e1 with s1 P C8pUq with
values in C. If we then identify U with the domain of a local chart pU,ϕq associated to the
local coordinates x1, . . . , xm on M , then the local description of the connection will be

∇Bie1 “ Γie1, (8.30)

If we take X “ XjBj P XpUq and s “ s1e1 P ΓpEq we find that

∇Xs “ ∇Xps
1e1q “ Xps1qe1 ` s

1∇XjBj
e1 “ Xps1qe1 ` s

1pXj∇Bje1q

“ Xps1qe1 ` s
1XjΓje1 “ pXps

1q `XjΓjs
1qe1
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and, without indicating the local frame, we get the simpler formula, ∇Xs
1 “ Xps1q `

XjΓjs
1; if in addition X “ Bi, then

∇Bis
1 “ Bis

1 ` Γis
1. (8.31)

What is also interesting is how the connection change when we change the local frame.
If e1, ẽ1 are two different local frame of E on the open U we can express one in terms of the
other as ẽ1 “ he1 with h P C8pUq with complex values, then we will have ∇Bie1 “ Γie1 and
∇Bi ẽ1 “ Γ̃ie1; in particular the connection coefficients transform according to the following
law:

∇Bi ẽ1 “ ∇Biphe1q “ pBihqe1 ` hΓie1 “ pBih` hΓiqe1

“ pBih` hΓiqh
´1ẽ1 “ pΓi ` h

´1Bihqẽ1,

whence it is obtained
Γ1i “ Γi ` h

´1Bih.

We also know that a connection one-form is a matrix ω “
”

ωji

ı

where ωji are one-forms.

In this case ω is a matrix of order 1, therefore it will be

ω “ ω1
1 “ Γ1

i1x.
i “ Γix.

i.

And using Ω “ Dω, we can find the curvature 2-form Ω “ Ωijx.
i ^ x.

j :

Ω “ pBjΓix.
jq ^ x.

i “ pBjΓi ´ BiΓjqx.
j ^ x.

i

“ pBiΓj ´ BjΓiqx.
i ^ x.

j ,

from which we get

Γij “ BiΓj ´ BjΓi. (8.32)

8.3 An application in Physics : the case of electromagnetism

In this section, we will treat a remarkable application of the fibre bundles and connections
theory in a physical context: gauge theories. We will see that the Lagrangian of a free
relativistic particle is invariant under the global action of group U1pCq; by introducing a
principal bundle with this structural group on the R4 manifold - spacetime - it will be possible
to introduce a covariant derivative (i.e. a connection) that safeguards its shape even for a
local type of action and subsequently defines a curvature. In this way it will be possible to
reinterpret the force exerted by the electromagnetic field as the physical manifestation of this
curvature.

8.3.1 Some recall on electromagnetism

Electromagnetism is the study of the electromagnetic force, an interaction between electrically
charged particles, one of the four fundamental interactions. Originally, the electricity and
magnetism were seen as two different forces but works done in particular by Maxwell and
Faraday show that these two forces can be seen as two faces of a same interaction : this yields
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to electromagnetism. One of its particularities is that it is compatible with special relativity.

In the following, we will place ourselves in the spacetime R4 seen as a (pseudo)Riemannian
manifold equipped with the Minkowski metric η with signature p`,´,´,´q.

The spacetime components x P R4 will be denoted xµ with x0 “ ct where c is the speed
of light.We will boldly indicate the points of spacetime while we will mark the vectors in
ordinary three-dimensional space with arrows. The Greek indices (as in xµ) will vary from 0
to 3, indicating the spacetime components and in particular the variable x0 “ ct - denoting c
the speed of light.

The electric field and magnetic field will be indicating by
#»

E “
#»

Ept, #»x q “ pE1, E2, E3q and
#»

B “
#»

Bpt, #»x q “ pB1, B2, B3q. As for the charge density and current density ρ “ ρpt, #»x q and
#» “ #» pt, #»x q “ pj1, j2, j3q can be put together in the quadrivector ג “ jµ “ pcρ, #» q called
quadricurrent.

Now let us recall Maxwell’s equations in their classical differential form that show the link
between the magnetic field and electric field :

#»∇ ¨ #»

E “
ρ

ε0
(8.33a)

#»∇ ¨ #»

B “ 0 (8.33b)

#»∇ˆ #»

E `
B

#»

B

Bt
“ 0 (8.33c)

#»∇ˆ #»

B ´
1

c2

B
#»

E

Bt
“ µ0

#» (8.33d)

Since we have the identities of the analysis
#»∇ˆ p #»∇F q “ 0 and

#»∇ ¨ p #»∇ˆ #»

F q “ 0, then by
the last identity, equation (8.33b) suggests that we can introduce a vector field

#»

A “
#»

Apt, #»x q “
pA1, A2, A3q such that

#»

B “
#»∇ˆ #»

A, called potential magnetic field vector; in this way we have

#»

B “

»

–

B1

B2

B3

fi

fl “

»

–

B2A
3 ´ B3A

2

B3A
1 ´ B1A

3

B1A
2 ´ B2A

1

fi

fl “
#»∇ˆ #»

A. (8.34)

Now expressing the magnetic field in terms of this potential magnetic field vector in
equation (8.33c) we obtain

0 “
#»∇ˆ #»

E `
B

#»

B

Bt
“

#»∇ˆ #»

E `
B

Bt
p

#»∇ˆ #»

Aq “
#»∇ˆ

˜

#»

E `
B

#»

A

Bt

¸

,

and by the first identity, we can introduce a scalar field ϕ “ ϕpt, #»x q, called scalar potential
such that

#»

E “

»

–

E1

E2

E3

fi

fl “

»

–

´BtA
1 ´ B1ϕ

´BtA
2 ´ B2ϕ

´BtA
3 ´ B3ϕ

fi

fl “ ´
B

#»

A

Bt
´

#»∇ϕ. (8.35)
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Now we can combine these two potentials into a single potential quadrivector of the
electromagnetic field :

A “ Aµ “ pA0,
#»

Aq “
´ϕ

c
,

#»

A
¯

.

This potential quadrivector is not univocally determined : indeed is we consider the
quadigradient of a scalar function Λ : R4 Ñ R there is an invariance (called gauge invariance)
under the following transformation:

ˆ

φ

c
,

#»

A

˙

ÝÑ

ˆ

φ1

c
,

#»

A1
˙

“

ˆ

φ

c
´

1

c

BΛ

Bt
,

#»

A `
#»∇Λ

˙

.

The gauge consists in the choice of the Λ function. Two of the main choice of gauge is the
Coulomb’s gauge where we impose

#»∇ ¨ #»

A “ 0

The other (the one that we will take here) is the Lorentz’s gauge where we choose a Λ such
that BµA

µ “ 0, i.e.
1

c2

Bφ1

Bt
`

#»∇ ¨ #»

A “ 0

In this case, Maxwell’s equations become

1

c2

B2

Bt2
φ

c
´∆φ “ 2φ “ µ0cρ “ µ0J

0

1

c2

B2 #»

A

Bt2
´∆

#»

A “ 2
#»

A “ µ #» .

where ∆ indicates the Laplacian in the spatial components and 2 indicates the Dalembertian
operator. These two equations can be put together in the form

2Aµ “ µ0J
µ.

8.3.2 Elements of analytical mechanics

The dynamic of a physical quantity can be described by a physical quantity, called the action,
on which we do a variational principle.

SAÑB “

ż B

A
Lpsqds

where s represent the position of the system in phase space. The least action principle states
that, on all possible trajectories, the one taken effectively is the one making the action extremal.
Usually, for a material point, the phase space is constituted with the position #»x and the speed
9#»x of the material point and the action is written

S r #»x p¨qs “

ż t1

t0

L
´

#»x ptq, 9#»x ptq
¯

dt,

where L : R3 ˆ R3 Ñ R is an appropriate Lagrangian function.
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In classical mechanics, the Lagrangian is given as the difference between kinetic energy
and potential energy:

L
´

#»x , 9#»x
¯

“
1

2
m| 9#»x |2 ´ V p #»x q,

The Hamilton’s variational principle states that the evolution of a system minimizes the
action : this principle leads to Euler-Lagrange equations that describe the motion of the
system:

d

dt

BL

B 9xi
´
BL

Bxi
“ 0.

In the case of field theory, the notion of particle transforms to the concept of fields that
can be seen as functions on space time with complex value. A particle is then an expression of
an excited state of the physical field. In this case, we take into account the interaction of the
particle in the Lagrangian by terms of interaction with the fields. If the fields are denoted by
ψk : R4 Ñ C, then we have

Lpx, 9xq “

ż

Ω
L pψkpxq, Bµψkpxqqdx

where Lpψkpxq, Bµψkpxqq is the Lagrangian density and Ω is a subset of spacetime.
As before, we can define the action by the integral of the Lagrangian between to instant

and doing Hamilton’s principle, we derive the Euler-Lagrange equations in this case

Bν
BL

BpBνψkq
“
BL
Bψk

. (8.37)

Now, the importance of investigating the action is that we can deduce conservation laws
by looking at invariance of the action. This is the famous Noether’s theorem

Theorem 8.3.1 When the equations of motion (or, equivalently, the action S) are invariant
under a continuous symmetry, there is a conserved current when the equation of motions are
satisfied.

Note that we can have two types of symmetries : symmetries of the Lagrangian under
a transformation of the coordinates and internal symmetries of the Lagrangian that do not
correspond to transformations on spacetime coordinates but characteristic of a field. In the
following development, a field will be seen as a section of a bundle on R4 and an internal symme-
try will be when the group action will be on the fiber points and not the point of the base space.

In our case of interest, we will look at the particles of the electromagnetic field : a photon γ.
To specify its state, we need its spacetime position on the manifold R4 but also the polarization
of the wave. If you do a rotation on the direction of oscillation, then the photon will still be
at the same coordinates : an internal symmetry is then given by the action of the group of
rotation U1pCq acting on the polarization plane.

8.3.3 U1pCq gauge theory

We now begin to introduce the Abelian gauge theory with gauge group U1pCq which describe
electromagnetism.
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We consider the Lagrangian density of a free relativistic particle which do not interact
with other fields or other particles. In this case, L will depend only in the field of the particle
and its derivatives. If we call ψ : R4 Ñ C the complex scalar field of the particle of mass m,
then the Lagrangian is given by

Lpψ,ψ, Bµψ, Bµψq “
1

2
λ

„

ηµνBµψBνψ ´
m2c2

~2
ψψ



, (8.38)

This Lagrangian has the particularity that it is invariant if we act on the field by an element
of the group U1pCq. Indeed, let α P R and let do the transformations :

ψ ÝÑ ψ1 “ eiαψ, ψ ÝÑ ψ1 “ e´iαψ, (8.39)

then the Lagrangian L1 “ Lpψ1, ψ1, Bµψ1, Bµψ1q transforms as follows

L1 “ 1

2

„

ηµνBµψ
1Bνψ1 ´

m2c2

~2
ψ1ψ1



“
1

2

„

ηµνBµpe
iαψqBνpe

´iαψq ´
m2c2

~2
peiαψqpe´iαψq



“
1

2

„

eiαe´iαηµνBµψBνψ ´
m2c2

~2
ψψ



“ L.

Now one of the problem in our model is that we have to take into account the locality
principle i.e. that distant objects cannot have instantaneous mutual influence. In this case,
we can ask how to compare physically the field in two distinct points ψpxq, ψpyq.

Mathematical description of the problem

One way to solve this problem mathematically is to attach to each point x of spacetime a
copy of C to which belong the value of ψpxq. To do so, we introduce a fibre bundle structure
of base manifold R4 : in particular, we introduce a U1pCq-principal bundle π : P Ñ R to which
we associate a vector bundle πL : LÑ R4 where L “ P ˆU1pCq C which is a line bundle, on
which U1pCq acts with the classical multiplication.

In this case, the field ψ can be reinterpreted as a differential section of L. More precisely,
to each open U of R4, there is s “ ψ : U Ñ L|U “ π´1pUq such that πL ˝ s “ idU and for all
x, ψpxq P Lx “ π´1ptxuq – C.

As for the example made in the previous section, if we have a local frame e1 P ΓpLq, the
section s will be written s “ ψ1e1, with ψ1 P C8pUq with value in C. In all the following, we
will identify the section with the field.

Now, a difference about what was done before is that it is reasonable to assume that the
group action U1pCq depends on the point where it is applied. In fact, mathematically, this
dependence is to take into account that the value ψpxq belong to the fibre Lx. Then the
problem of comparing to field at two distinct points can be overcome by defining a connection
on L and then do a parallel translation to identify the 2 fibers Lx and Ly.
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Hence here, we replace the multiplication eiα by eiαpxq where α : R4 Ñ R. The transforma-
tions of the field are then

ψ ÝÑ ψ1 “ eiαpxqψ, ψ ÝÑ ψ1 “ e´iαpxqψ. (8.40)

Now we need to see if the Lagrangian keeps its invariance if we apply this new transformation.
For the derivatives of the field, we have the following transformations :

Bµψ
1 “ Bµ

´

eiαpxqψ
¯

“ iBµαpxqe
iαpxqψ ` eiαpxqBµψ,

Bµψ1 “ Bµ

´

e´iαpxqψ
¯

“ ´iBµαpxqe
´iαpxqψ ` e´iαpxqBµψ;

The invariance of the Lagrangian is lost !

In fact, the lost of the invariance can be understood as the fact that the standard directional
derivative is no longer well defined on the field ψ seen as a section. The solution is to introduce
a connection on the bundle L that will give us a covariant derivative ∇µ to replace Bµ. This
will give a properly derivative of the field ψ.

To do so, we introduce a field, called gauge field, which transforms in a way to preserve the
invariance of the Lagrangian. We denote A “ Aµ (in fact, we are looking at the coefficients of
the differential form corresponding to the field Aµ by Aµ “ ηµνA

ν).

The transformation that we ask (and that we can retrieve, see below) is the following

Aµ ÝÑ A1µ “ Aµ ´
1

q
Bµαpxq. (8.41)

where here q is the charge of the particle1. Then the connection is ∇ : XpR4q ˆ ΓpLq Ñ ΓpLq
which maps pBµ, sq ÞÝÑ ∇µs, where the operator ∇µ is defined by the position

∇µ :“ Bµ ` iqAµ.

Since we are in the case of a bundle of rank 1, we have the identification

Γµ “ iqAµ

We can thus replace Bµ in the Lagrangian by ∇µ to get

Lpψ,ψ, Bµψ, Bµψq Ñ Lpψ,ψ, Bµψ, Bµψ,Aµq “ Lpψ,ψ,∇µψ,∇µψq.

We can remark that the action of Up1q on ψ induce in fact an action on the local frame
e1. Indeed, if e1 and ẽ1 are two local bases of L, then any section s P ΓpLq can be written
s “ ψ1e1 “ ψ̃1ẽ1. Hence, we have

ψ1e1 “ s “ ψ̃1ẽ1 “ eiαpxqψẽ1 ðñ e1 “ eiαpxqẽ1,

1In general, if σ : U Ñ P is a local section of a G-principal bundle P ÑM , and if we define A :“ σ˚pωq where
ω is a connection of the principal bundle, then for every principal automorphism φ, there exists some Ω : U Ñ G
such that for all x P U , σpxq “ φ ˝ σpxqΩpxq. In the case, the transformation of the local representative A can
be written :

Aµpxq ÞÑ ΩpxqAµpxqΩ
´1
pxq ` ΩpxqBµΩ´1

pxq.
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i.e. that the e1 transform with the action of U1pCq as

e1 ÞÑ ẽ1 “ e´iαpxqe1.

We can also note that Up1q also acts on the gauge potential, and this will allow us to get
the transformation given by (8.41). Indeed, if we have two local bases of L, e1 and ẽ1 such
that ẽ1 “ e´iαpxq then we have Γµ “ iqAµ and Γ1µ “ iqA1µ. Let’s see how Γµ and Γ1µ are related
:

Γ1µẽ1 “ ∇µẽ1 “ ∇µpe
´iαpxqe1q “ Bµpe

´iαpxqqe1 ` e´iαpxq∇µe1

“ ´iBµαpxqe
´iαpxqe1 ` e´iαpxqΓµe1

“ ´iBµαpxqe
´iαpxqeiαpxqẽ1 ` e´iαpxqΓµeiαpxqẽ1

“ pΓµ ´ iBµαpxqq ẽ1,

hence we have Γ1µ “ Γµ ´ iBµαpxq.

Now, it remains to see if indeed the new Lagrangian is invariant by the action of U1pCq.

Since we have introduced a new field, we need to take it into account in the Lagrangian. We
need to add another term LA that depends only on the gauge potential A and its derivatives
and we construct it so that it is invariant under the transformation of the gauge potential.
The new Lagrangian of electrodynamics is the following

LEDpψ,ψ,∇µψ,∇µψ,A, BµAq “ Lpψ,ψ,∇µψ,∇µψq ` LApA, BµAq.

Let’s see if the first term of the Lagrangian is now invariant by the action under the
transformations (8.40) and (8.41).

The new Lagrangian is written

Lpψ,ψ,∇µψ,∇µψq “
1

2

„

ηµν∇µψ∇νψ ´
m2c2

~2
ψψ



Let’s see how the terms ∇µψ transforms by the action of the group :

∇1µψ1 “ pBµ ` iqA1µqψ
1 “ pBµ ` iqAµ ´ iBµαpxqq

´

eiαpxqψ
¯

“ iBµαpxqe
iαpxqψ ` eiαpxqBµψ ` iqAµeiαpxqψ ´ iBµαpxqe

iαpxqψ

“ eiαpxq pBµ ` iqAµqψ “ eiαpxq∇µψ

Similarly, the term ∇µψ is transformed according to the law

∇µψ ÝÑ ∇1µψ1 “ e´iαpxq∇µψ.
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Finally, we have

L1 “ Lpψ1, ψ1,∇1µψ1,∇1µψ1q

“
1

2

„

ηµν∇1µψ1∇1νψ1 ´
m2c2

~2
ψ1ψ1



“
1

2

„

ηµν
´

eiαpxq∇µψ
¯´

e´iαpxq∇µψ
¯

´
m2c2

~2

´

eiαpxqψ
¯´

e´iαpxqψ
¯



“
1

2

„

ηµν∇µψ∇νψ ´
m2c2

~2
ψψ



“ L,

Hence the new Lagrangian is now invariant by the action of the group Up1q.

Curvature and electromagnetic field

Now that we have a connection, we can look at the corresponding curvature 2-form
Ω “ Ωµνx.

µ ^ x.
ν given by the formula (8.32)

Ωµν “ BµpiqAνq ´ BνpiqAµq “ iqpBµAν ´ BνAµq “ iqFµν ,

where we have set Fµν :“ BµAν ´ BνAµ
2. It is the coefficients of an antisymmetric 2-covariant

tensor. Hence F “ Fµνdx
µ ^ dxν is a differential 2-form. It is also an exact form because it

can be written as the exterior derivative of the 1-form A “ Aµdµ

F “ dA “ pBνAµdxνq ^ dxµ

“ pBνAµ ´ BµAνqdx
ν ^ dxµ “ Fµνdxµ ^ dxν .

We can remark that this tensor is invariant under the action (8.41) of the group Up1q

Fµν ÝÑ F 1µν “ BµA
1
ν ´ BνA

1
µ

“ Bµ

ˆ

Aν ´
1

q
Bναpxq

˙

´ Bν

ˆ

Aµ ´
1

q
Bµαpxq

˙

“ BµAν ´
1

q
BµBναpxq ´ BνAµ `

1

q
BνBµαpxq

“ BµAν ´ BνAµ “ Fµν .

In terms of matrix representation, F “
“

Fµν
‰

, can be written in the form

F “

»

—

—

–

F00 F01 F02 F03

F10 F11 F12 F13

F20 F21 F22 F23

F30 F31 F32 F33

fi

ffi

ffi

fl

.

2In the case the group action is an non-abelian group, we would have additional terms with the commutator
on the field. Mainly, we would have

Fµν “ BµAν ´ BνAµ ´ iqrAµ,Aνs

.
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Now seeing the components Aµ as the components of the potential quadrivector of the

electromagnetic field A “ Aµ “ pφ{c,
#»

Aq, and remembering that we can identify B0 “
1
cBt, this

matrix can be expressed in terms of the electric and magnetic fields. We have in particular

F01 “ B0A1 ´ B1A0 “ ´
1

c
BtA

1 ´ B1

ˆ

φ

c

˙

“
1

c
E1

F02 “ B0A2 ´ B2A0 “ ´
1

c
BtA

2 ´ B2

ˆ

φ

c

˙

“
1

c
E2

F03 “ B0A3 ´ B1A0 “ ´
1

c
BtA

3 ´ B3

ˆ

φ

c

˙

“
1

c
E3

F12 “ B1A2 ´ B2A1 “ ´B1A
2 ` B2A

1 “ ´B3

F13 “ B1A3 ´ B3A1 “ ´B1A
3 ` B3A

1 “ B2

F23 “ B2A
3 ´ B3A2 “ ´B2A

3 ` B3A
2 “ ´B1,

Finally we get the tensor

F “

»

—

—

–

0 E1{c E2{c E3{c
´E1{c 0 ´B3 B2

´E2{c B2 0 ´B1

´E3{c ´B2 B1 0

fi

ffi

ffi

fl

which is the Faraday tensor. Hence the electromagnetic fields is the manifestation of the
curvature associated to the connection on the fibre bundle π : LÑ R4. 3

Maxwell’s equations

Finally, let’s go back to Lagrangian and see how we can retrieve Maxwell’s equations.

In the Lagrangian, we have still one unknown in the choice of the added term of the
Lagrangian LA. This term must be a scalar and should be invariant under the action of the
group Up1q. A solution is to put

LA “ ´
1

4
FµνF

µν , (8.42)

Finally, the total expression of the Lagrangian is

LED “ L` LA “
1

2

„

ηµν∇µψ∇νψ ´
m2c2

~2
ψψ



´
1

4
FµνF

µν

“
1

2

„

ηµνpBµ ` iqAµqψpBν ´ iqAνqψ ´
m2c2

~2
ψψ



´
1

4
FµνF

µν

“
1

2
ηµνrBµψBνψs `

1

2
ηµν iqrAµψBνψ ´AνψBµψ ´ iqAµAνψψs ´

m2c2

~2
ψψ ´

1

4
FµνF

µν .

Now, the choice of LA was made so that with this Lagrangian, we could retrieve Maxwell’s
equation. Indeed, let go in vacuum where there is no particle. In this case, the Lagrangian
reduce to the term LA. First we get

3The curvature is physically expressed as the force of the electromagnetic field.
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LED “ LA “ ´
1

4
FµνF

µν “ ´
1

4
pBµAν ´ BνAµqpB

µAν ´ BνAµq

“ ´
1

4
pBµAνB

µAν ´ BµAνB
νAµ ´ BνAµB

µAν ` BνAµB
νAµq

“ ´
1

2
pBµAνB

µAν ´ BµAνB
νAµq.

And the Euler-Lagrange equations associated with this Lagrangian are :

Bν
BLA

BpBνAµq
“
BLA

BAµ
. (8.43)

Since the Lagrangian does not dependent on the components of the gauge potential, the
second term vanishes. For the first term, we have

BLA

BpBνAµq
“ ´

1

2
pBνAµ ´ BµAνq “ ´

1

2
F νµ “

1

2
Fµν ,

Hence, Euler-Lagrange equations are finally given by

BνF
µν “ 0. (8.44)

This equation in fact is a covariant form of two of the Maxwell’s equations.

Indeed, take µ “ 0. In this case we obtain Maxwell-Gauss equation :

0 “ BνF
0ν “ B0F

00 ` BiF
0i “ ´

1

c
BiE

i ðñ
#»∇ ¨ #»

E “ 0;

Now taking µ “ i, this will lead to Maxwell-Ampere equation :

For example, if i “ 1, we find

0 “ BνF
1ν “ B0F

10 ` BjF
1j “

1

c2
BtE

1 ` B2p´B
3q ` B3B

2,

which is equivalent to B2B
3 ´ B3B

2 ´ 1
c2
BtE

1 “ 0 and is the first component of the vector
equation

#»∇ˆ #»

B ´
1

c2

B
#»

E

Bt
“ 0;

The other components are obtained by taking i “ 2, 3.

It remains to find the two last equations. This will be done thanks to Bianchi’s identity.
From the curvature 2-form Ω “ iqFµνdxµ ^ dxν , we have

0 “ DΩ “ dΩ “ pBαΩβγdxαq ^ dxβ ^ dxγ

“ pBαΩβγ ´ BαΩγβ ` BβΩγα ´ BβΩαγ ` BγΩαβ ´ BγΩβαqdx
α ^ dxβ ^ dxγ

“ 2pBαΩβγ ` BβΩγα ` BγΩαβqdx
α ^ dxβ ^ dxγ ,

Hence we get BαΩβγ ` BβΩγα ` BγΩαβ “ 0, and this leads ultimately to

BαFβγ ` BβFγα ` BγFαβ “ 0. (8.45)

We can then derive the two last equations :
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• Maxwell-Flux is obtained by only looking at space variables i.e. taking αβγ “ ijk. We
get

0 “ B1F23 ` B2F31 ` B3F12 “ B1p´B
1q ` B2p´B

2q ` B3p´B
3q,

which is nothing less than
#»∇ ¨ #»

B “ 0;

• For Maxwell-Faraday, we take αβγ “ 0ij. In this case, setting for example i “ 2 and
j “ 3, we have

0 “ B0F23 ` B2F30 ` B3F02 “
1

c
Btp´B

1q `
1

c
B2p´E

3q `
1

c
B3pE

2q,

i.e. B3E
2 ´ B2E

3 ` 1
cBtB

1, which is the first component of the vector equation

#»∇ˆ #»

E `
B

#»

B

Bt
“ 0.

and the two other components are obtained by taking αβγ “ 0 1 2 and αβγ “ 0 1 3.
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The ‘uproar of the Boeotians’.
(Attributed to) Carl Friedrich Gauss

Part II:

Homogeneous spaces and
hyperbolic geometry
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Chapter 9

Homogeneous spaces (Antoine Guennec and Edoardo

Provenzi)

A homogeneous space X is to be understood as a space that remains stable under a group of
transformations G and such that its points are all ‘connected’ by the transformations of G. In
the theory of homogeneous spaces, the main attention is concentrated on the transformations
of G and not on the elements of X, the reason underlying this is is given by the stabilizer-orbit
theorem, which says that X can be reconstructed via a suitable quotient of G. This result will
allow us to exhibit extremely important examples of homogeneous spaces.

9.1 Preliminaries : group actions and linear transformation
groups

9.1.1 Group actions

In this section we shall consider G to be a group and X a non-empty set. 1G denotes the
neutral element of G.

Def. 9.1.1 The action of a group G on X is given by an operation

η : GˆX ÝÑ X
pg, xq ÞÝÑ ηpg, xq :“ g ¨ x

which verifies, for all x P X and g, h P G:

1. 1G ¨ x “ x

2. g ¨ ph ¨ xq “ pghq ¨ x.

If we fix any element g P G, the group action η induces a bijective function on X by ηg : X Ñ X,
x ÞÑ ηgpxq “ ηpg, xq, its inverse being obviously ηg´1 . This remark shows that, if G acts on X,
then it can be seen as a subgroup of SympXq, the group of all bijective functions on X and
the action η can be equivalently characterized by the group homomorphism η̃ : GÑ SympXq,
g ÞÑ η̃pgq :“ ηg. In fact, requiring η̃ to be a group homomorphism we assure that η̃p1Gq “ IdX ,
hence η̃p1Gqpxq “ x @x P X, and η̃pghq “ η̃pgq ˝ η̃phq “ ηg ˝ ηh, so η̃pghqpxq “ pghq ¨ x @x P X.

Example 9.1.1 Some basic examples of group actions are listed below.
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1. The usual multiplication by a scalar belonging to the field K on which a vector space V
is defined is a group action by interpreting K as G and V as X:

λ ¨

¨

˚

˝

v1

...
vn

˛

‹

‚

“

¨

˚

˝

λv1

...
λvn

˛

‹

‚

, λ P K, v “ pv1, . . . , vnqt P V.

2. The usual matrix multiplication of GLpn,Rq on the vector space Rn is a group action.

3. X “ t1, 2, 3u. Then, any subgroup of S3, the group of all permutations of X, for example
A3 “ tId, p123q, p132qu, operates as a group action on X.

4. X “ DRp0, 1q “ tpx, yq
t P R2 : x2 ` y2 ď 1u, the unit disk in R2, and

G “ SOp2q “

"ˆ

cosϑ sinϑ
´ sinϑ cosϑ

˙

, ϑ P r0, 2πq

*

,

the group of rotations in R2. Then, G operates on DRp0, 1q by matrix multiplication.

5. X “ DCp0, 1q “ tz P C : |z| ď 1u, the unit disk in C, and

G “ Up1q :“ teiθ : θ P r0, 2πqu,

the group of rotations in C. Then, G operates on DCp0, 1q by matrix multiplication.

We now define the most important subspaces of X and G associated to the action of a
group: the orbit and the stabilizer, respectively.

Def. 9.1.2 Let the group G act on the set X and fix any x P X.

1. The G-orbit of x is the subset of X given by:

Orb(x) “ tg ¨ x : g P Gu Ă X,

i.e. all the elements y P X that can be connected to x by a transformation g P G: y “ g ¨x.

2. The stabilizer group of x (or isotropy subgroup, or little group of x) is given by:

Stabpxq “ Gx “ tg P G : g ¨ x “ xu Ă G,

i.e. the set of transformations of G that act as the identity on x, leaving it unaltered.

The use of the word group for the stabilizer of x P X is not accidental, one can easily prove
that Stabpxq is a subgroup of G.

Def. 9.1.3 (G-homogeneous space) We say that X is a G-homogeneous space (or that G
operates transitively on X) if it exists at least one x P X such that X “ Orbpxq, i.e for all
y P X there exists an element g P G such that g ¨ x “ y.

183



It is easy to see that the request of existence of at least one element x of X whose G-orbit
is the whole X is equivalent to the fact that the G-orbits of all the elements of X are the
whole X. In fact, consider two arbitrary elements y, x P X, then there exist g, g P G such that
g ¨ x “ y and ḡ ¨ x “ x̄, i.e. x “ ḡ´1 ¨ x̄, so pgḡ´1q ¨ x̄ “ y thus also Orbpx̄q “ X. Hence, a
G-homogeneous space has only one G-orbit: X itself !

Often, a G-homogeneous space X is defined by requiring that, for any couple x, y P X,
there exists at least an element g P G such that g ¨ x “ y. The two definitions are of course
equivalent.

Consequently, a homogeneous space is fully ‘connected’ by the group that operates upon
it: any point of X reaches any other point via a group transformation. This property is often
popularized by saying that, set-theoretically speaking, in a homogeneous space, no point is
more important than other, which explains the adjective ‘homogeneous’.

Example 9.1.2 Consider again the group Up1q, the unit complex disk DCp0, 1q and its
contour BDCp0, 1q “ tz P C : |z| “ 1u. Then, BDCp0, 1q is trivially Up1q-homogeneous
because for any couple of points z, w on the unit circle in C separated by the angle θ, we have
that w “ eiθz.

However, DCp0, 1q is not Up1q-homogeneous, in fact for any z, w P DCp0, 1q and any
θ P r0, 2πq, if we write w “ eiθz then |w| “ |z|, thus it is enough to consider two elements
inside the unit disk with different modulus, e.g. z “ 1

2 and w “ 2
3 i, to exhibit a couple of

points of DCp0, 1q that cannot be connected by a transformation of Up1q.
The same considerations can be repeated in the real case to prove that the contour of the

real unit disk, i.e. BDRp0, 1q “ tpx, yq P R2 : x2`y2 “ 1u – S1, is SOp2q-homogeneous, and,
of course, also Op2q-homogeneous, but the disk itself DRp0, 1q is not SOp2q-homogeneous.
In spite of the fact that DRp0, 1q is not homogeneous w.r.t. rotations, we will see that it is
homogeneous w.r.t. hyperbolic rotations.

Example 9.1.3 The subgroup H of a group G is always a G-homogeneous space. In fact, the
unit element 1G of G belongs to H and it is connected with all the other elements of H. To
see this, take any h P H, then h belongs also to G, so h “ 1G ¨ h, which shows the transitivity
of G on H.

We now come to the most important result of this section. To introduce it, we first recall
that, given a group G, a fixed element g P G and a subgroup H of G, the left coset of H in
G relative to g is the set:

gH :“ tgh : h P Hu.

For all fixed g P G, belonging to the g-left coset of H is an equivalence relationship on G,
thus, as g varies in G, we subdivide G into disjoint subsets, the cosets gH. The union of these
classes is the quotient space G{H:

G{H :“ tgH, g P Gu ” ttgh : h P Hu, g P Gu.

G{H is a group if and only if H is a normal subgroup of G, where H is called normal if it
is stable under conjugation by elements of G, i.e. if @h P H and @g P G it holds ghg´1 P H.

Clearly, the easiest case is represented by H “ t1Gu, in this situation it is evident that
G{1G – G.
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To introduce the paramount important orbit-stabilizer theorem, we first notice that, for
every fixed x P X, the map

G ÝÑ Orbpxq
g ÞÝÑ g ¨ x

is surjective by definition of orbit but, in general, is not injective. However, as the following
result says, if we quotient G on the stabilizer of x, then we remove all possible
redundancy and we remain with a bijection.

Theorem 9.1.1 (Orbit-stabilizer theorem) Let x, y P X and G a group acting on X.

1. The map
G äStabpxq

„
ÝÑ Orbpxq

g Stabpxq ÞÝÑ g ¨ x
(9.1)

is bijective.

2. Orbpxq = Orbpyq ùñ Dg P G such that g Stabpxq g´1 “ Stabpyq, i.e. if the orbits of
two elements of X coincide, then their stabilizers are conjugated by an element g of G,
and, as such, they are isomorphic to each other.

Proof.

1. First of all, let us check that the application (9.1) is well-defined, i.e. it does not depend
on the choice of the representative in the equivalence class g Stabpxq. If h P g Stabpxq, there
exists k P Stabpxq such that h “ gk, then h ¨ x “ g ¨ pk ¨ xq “ g ¨ x.

Injectivity of (9.1): let g, h P G such that g ¨ x “ h ¨ x, we must prove that this implies
g Stabpxq “ hStabpxq. To do this, notice that ph´1gq ¨ x “ x, so h´1g P Stabpxq, i.e.
g P hStabpxq. However, g belongs also to g Stabpxq because 1G P Stabpxq, hence g belongs
to the intersection of the equivalence classes hStabpxq and g Stabpxq, which, however, are
disjoint. Thus, the only possibility that remains valid is that g Stabpxq “ hStabpxq.

Surjectivity of (9.1): any y P Orbpxq is written as g ¨ x “ y for some g P G, but then it is
the image of (9.1) because any element of g Stabpxq can be written as gk, with k P Stabpxq,
so pgkq ¨ x “ g ¨ pk ¨ xq “ g ¨ x “ y.

2. We assume Orbpxq “ Orbpyq, then there is a g P G such as y “ g ¨ x ðñ g´1y “ x. Now
suppose h P Stabpxq and observe that:

pghg´1q ¨ y “ pghq ¨ pg´1 ¨ yq “ pghq ¨ x “ g ¨ ph ¨ xq “ g ¨ x “ y.

Consequently, g Stab(x)g´1 P Stabpyq, i.e. g Stab(x)g´1 Ď Stabpyq. By interchanging the roles
of x and y, we find the opposite inclusion Stabpyq Ď g Stabpxq g´1, so g Stabpxq g´1 “ Stabpyq.
2

If X is G-homogeneous, then Orbpxq “ X for all x P X, thus the orbit-stabilizer theorem
implies the following, fundamental, result.
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Corollary 9.1.1 If X is a G-homogeneous space, then, for any fixed x P X:

1. the map
G äStabpxq

„
ÝÑ X

g Stabpxq ÞÝÑ g ¨ x
(9.2)

is bijective, i.e.
X – G äStabpxq, (9.3)

so, every G-homogeneous space can be identified with a suitable set of trans-
formations.

2. the stabilizers of all elements of X are conjugated, and thus isomorphic, to each other.

In Figure 9.1.1 we provide a graphical interpretation of a homogeneous space.

Figure 9.1: Fixed x P X, every other element in X can be viewed as a transformation acting
on x, i.e we identify y with all the transformations of G that allow us to pass from x to y
modulo the transformations of the stabilizer in x. In the picture g2 “ g1k, with k P Stabpxq.

Example 9.1.4 The straight lines in Rn are R-homogeneous spaces.
Let L “ tu0 ` λv : λ P Ru be the straight line in Rn passing through u0 with direction v,

u0 and v are fixed in Rn. Then the group pR,`q operates transitively on the set L via the
action

ηv : Rˆ L ÝÑ L
pλ, uq ÞÝÑ ηvpλ, uq :“ u` λv.

Of course, the stabilizer at any point of L is t0u because any other λ ‰ 0 will modify the
vector u on L. The orbit-stabilizer theorem gives us the bijection L – R ät0u– R.

Remark 9.1.1 If X a G-homogeneous space, it is often interesting to search for a subgroup
H of G whose action on X is still transitive and whose stabilizer is reduced to the unit element
1G. If such a subgroup exists, then all the equivalence classes that compose the quotient group
w.r.t. H are reduced to a single representative and so the orbit-stabilizer group implies that

H – X, H transitive on X with trivial stabilizer.

186



9.2 Linear transformation groups and spheres

We remind the definitions of the real and complex linear transformation groups. The symbol
x , y will denote the real or complex Euclidean scalar product, respectively.

Def. 9.2.1 (Real matrix groups)

• GLpn,Rq “ tnˆ n real invertible matrixu (general linear group)

• GL`p2,Rq “ tg P GLp2,Rq : detpgq ą 0u

• SLpn,Rq “ tg P GLpn,Rq : detpgq “ 1u (special linear group)

• Opnq “ tg P GLpn,Rq : @x, y P Rn, xgx, gyy “ xx, yyu (orthogonal group)

• SOpnq “ tg P Opnq : detpgq “ 1u (special orthogonal group).

Def. 9.2.2 (Complex matrix groups)

• Upnq “ tg P GLpn,Cq : @x, y P Cn, xgx, gyy “ xx, yyu (unitary group)

• SUpnq “ tg P Upnq : detpgq “ 1u (special unitary group).

We also remind that Sn´1 “ tx P Rn : }x} “ 1u Ă Rn is the pn´ 1q-dimensional sphere in Rn
and S2n´1 “ tz P Cn : }z} “ 1u Ă Cn is the p2n´ 1q-dimensional real sphere in Cn.

Remark 9.2.1 In finite dimension, a nˆ n matrix (real or complex) corresponds to a linear
applications f : E ÞÝÑ E with E “ Rn or Cn. However even if Cn » R2n, one should not mix
up R-linear and C-linear maps. A classical counter example is provided by f : CÑ C, z ÞÑ z,
which is R-linear but not C-linear.

In the case of orthogonal and unitary group, we have the equivalent definitions :

g P Opn,Rq ðñ gtg “ Idn

g P Upnq ðñ g:g “ Idn,

where g: “ gt is the adjoint of g. This is easily shown by noticing that

xgtgx, yy “ xgx, gyy “ xx, yy @x, y P Rn ðñ xgtgx´ x, yy “ 0 @x, y P Rn

ðñ gtgx “ x @x P Rn

ðñ gtg “ In,

and equivalently in the case of the unitary group.
We introduce next some non-Euclidean transformation groups based on the Lorentzian

product.

Def. 9.2.3 We define the Lorentzian (or Minkowski) scalar product on Rn`1 and Cn`1

as :

xx, yyL “

n
ÿ

i“1

xiyi ´ xn`1yn`1 “ xx̃, ỹy ´ xn`1yn`1 x, y P Rn`1

“

n
ÿ

i“1

xiyi ´ xn`1yn`1 “ xx̃, ỹy ´ xn`1yn`1 x, y P Cn`1,
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where x̃ “ px1, . . . , xnq
t, ỹ “ py1, . . . , ynq

t and x , y is the Euclidean product in Rn or Cn.
The linear groups of signature pn, 1q, also called Lorentzian signature, are the following:

• Opn, 1q “ tg P GLpn` 1,Rq : @x, y P Rn, xgx, gyyL “ xx, yyLu

• SOpn, 1q “ tg P Opn, 1q : detpgq “ 1u

• Upn, 1q “ tg P GLpn` 1,Cq : @x, y P Cn, xgx, gyyL “ xx, yyLu

• SUpn, 1q “ tg P Upn, 1q : detpgq “ 1u.

The Lorentzian scalar product can be defined by using the Euclidean scalar product by noticing
that it holds:

xx, yyL “ xηx, yy with η “

ˆ

In 0
0 ´1

˙

. (9.4)

Similarly, the orthogonal and unitary group of signature pn, 1q can be re-defined through the
conditions below:

g PMpn` 1,Rq, g P Opn, 1q ðñ gtηg “ η (9.5)

g PMpn` 1,Cq, g P Upn, 1q ðñ g:ηg “ η. (9.6)

Thanks to Binet’s theorem, for all matrices g P Opnq, Opn, 1q, Upnq or Upn, 1q, it holds that
| detpgq| “ 1.

9.3 Homogeneity of spheres under the group of rotations

The simplest and most intuitive homogeneous spaces are represented by spheres. We have
already seen that the circle S1 is homogeneous under the action of rotations, SOp2q in the real
case, Up1q in the complex one. In what follows, we shall see that this result can be extended
to higher dimensions.

Notation: in the whole section pejqj“1,..,n will denote the canonical basis of Rn or Cn.
Clearly, each ej belongs to the sphere Sn´1 since their Euclidean norm is 1.

9.3.1 Spheres in Rn

Before starting, it is worth mentioning that the action of GLpn,Rq and its subgroups on Rn
will be the usual matrix multiplication in this section. This will not always be the case in
homogeneous spaces, as we will see later on.

Theorem 9.3.1 Let n ě 2.

1. Sn´1 is SOpnq-homogeneous

2. Stabpenq “

"ˆ

h 0
0 1

˙

: h P SOpn´ 1q

*

– SOpn´ 1q

By the orbit-stabilizer theorem, we get:

Sn´1 – SOpnq äSOpn´1q ðñ Sn´1 –

""

g

ˆ

h 0
0 1

˙

: h P SOpn´ 1q

*

, g P SOpnq

*

.
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Proof.

1. To prove that SOpnq operates transitively on Sn´1, we have to show that it exists at least
one element of Sn´1 that can be connected to all the other elements of Sn´1 via transformations
of SOpnq. We are going to show that this element is e1, i.e. that @x P Sn´1 Dg P SOpnq such
that ge1 “ x.

Fixed x P Sn´1 Ă Rn, thanks to the Gram-Schmidt orthonormalization procedure, we can
find x2, x3, . . . , xn P S

n´1 Ă Rn such that px, x2, . . . , xnq is an orthonormal basis for Rn.
If we use the vectors px, x2, . . . , xnq as columns of a matrix A, then we know that A P Opnq

and that detpAq “ ˘1. To guarantee a determinant equal to 1, we slightly modify A by
considering the matrix

g “

¨

˝

| | |

x x2 . . . εxn
| | |

˛

‚,

with ε “ ˘1 chosen such that detpgq “ 1, in this way g P SOpnq. By direct computation we
get ge1 “ x, but x was arbitrarily chosen in Sn´1, so the action of SOpnq is transitive on
Sn´1. Notice that the matrix g depends on x because the Gram-Schmidt orthonormalization
is initiated by x itself.

2. Let us search under which conditions it is possible to build a matrix such that

g “

ˆ

h b
c d

˙

P SOpnq,

with h P Mpn ´ 1,Rq, b P Mppn ´ 1q ˆ 1,Rq, c P Mp1 ˆ pn ´ 1q,Rq and d P R that satisfies
gen “ en. The set of these matrices will give Stabpenq.

First of all we notice that g P SOpnq ðñ g´1 “ gt, thus gen “ en ùñ en “ gten. By
direct computation we have:

• gen “

¨

˚

˚

˚

˝

b1
...

bn´1

d

˛

‹

‹

‹

‚

, so gen “ en ðñ

¨

˚

˚

˚

˝

b1
...

bn´1

d

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

0
...
0
1

˛

‹

‹

‹

‚

ðñ b “ 0Mppn´1qˆ1q and d “ 1

• gten “

¨

˚

˚

˚

˝

c1
...

cn´1

d

˛

‹

‹

‹

‚

, so en “ gten ðñ

¨

˚

˚

˚

˝

0
...
0
1

˛

‹

‹

‹

‚

“

¨

˚

˚

˚

˝

c1
...

cn´1

d

˛

‹

‹

‹

‚

ðñ c “ 0Mp1ˆpn´1qq and d “ 1.

Hence, the desired matrix is g “

ˆ

h 0
0 1

˙

, which belongs to SOpnq if and only if h P SOpn´1q,

i.e. detphq “ 1 and hth “ In´1. This shows that Stabpenq – SOpn´1q and, since all stabilizers
of a homogeneous space are isomorphic to each other, Sn´1 – SOpnq{SOpn´ 1q. 2

9.3.2 Spheres in Cn

The results and proofs are the nearly identical for spheres in Cn as for those in Rn. The only
difference is that we need take some precautions with the determinant of C-linear applications.
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Theorem 9.3.2 Let n ě 2.

1. S2n´1 is SUpnq-homogeneous

2. Stabpenq “

"ˆ

h 0
0 1

˙

: h P SUpn´ 1q

*

– SUpn´ 1q.

By the orbit-stabilizer theorem, we get:

S2n´1 – SUpnq äSUpn´1q ðñ S2n´1 –

""

g

ˆ

h 0
0 1

˙

: h P SUpn´ 1q

*

, g P SUpnq

*

.

Proof.

1. Fix an arbitrary z P S2n´1 Ă Cn and apply again the Gram-Schmidt orthonormalization
procedure to find z2, . . . , zn P S

2n´1 Ă Cn such that pz, z2, . . . , znq is an orthonormal basis for
Cn. Also, let gθ P Upnq,

gθ “

¨

˝

| | . . . |

z z2 . . . eiθzn
| | . . . |

˛

‚, θ P r0, 2πq.

Then we have again gθe1 “ z, for all θ P r0, 2πq and, thanks to the properties of the
determinant, detpgθq “ eiθ detpg0q P S

1, where detpg0q “ eiϕ. We finish by choosing θ “ ´ϕ
so that detpgθq “ e´iϕeiϕ “ 1, in order to have gθ P SUpnq.

2. Exactly the same proof as in the real case, we simply need to replace the transpose matrix
by the adjoint matrix and SOpnq by SUpnq. 2

Remark 9.3.1 Since all n-spheres of different radius are isomorphic, we have exactly the
same results for spheres of positive radius, SnR “ tx P Rn`1 : }x} “ Ru. This fact will be useful
later.

9.4 Homogeneity of the open unit ball: relationship between
projective spaces and hyperbolic rotations

We have seen that the contour of the unit disk in R2 and C is a homogeneous space under the
rotation group SOp2q and Up1q, respectively, but that the unit disks DRp0, 1q and DCp0, 1q
are not homogeneous under the action of these groups.

In this section we are going to show that DRp0, 1q and DCp0, 1q and, more generally, the
open unit ball in Rn and Cn, are homogeneous spaces w.r.t. the groups SOpn, 1q and SUpn, 1q,
the Lorentzian analogues of SOpnq and SUpnq, whose action is implemented by hyperbolic
rotations. In order to show this, it is useful to embed Rn and Cn in the real or complex
projective space, respectively. For this reason, we begin by discussing the action of the general
linear group on projective spaces.
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9.4.1 The action of group GLpn` 1,Rq on RPn

We have already seen in chapter 1 the real projective space1

RPn “ Rn`1zt0u äRˆ”

$

’

&

’

%

$

’

&

’

%

λ

¨

˚

˝

u1
...

un`1

˛

‹

‚

, λ ‰ 0

,

/

.

/

-

,

¨

˚

˝

u1
...

un`1

˛

‹

‚

‰ 0

,

/

.

/

-

,

its twin brother is the complex projective space:

CPn “ Cn`1zt0u äCˆ ,

Rˆ and Cˆ being R and C without their 0 element. Here we are going analyze more thoroughly
the projective space, for the sake of a smoother reading, we will fix our attention only on the
real projective space, knowing that everything we will write in this subsection also holds true
for the complex projective space, simply by replacing R with C and Rˆ with Cˆ.

Notation: in this section, the equivalence class Rˆ ¨ u P RPn, u P Rn`1zt0u, will be
denoted by :

rus “

»

—

–

u1
...

un`1

fi

ffi

fl

“

»

—

–

λu1
...

λun`1

fi

ffi

fl

.

Notice now that, for every u P Rnzt0u, the following map2 is clearly an injection of Rn into
RPn:

Rn ãÑ RPn

u ÞÑ

„

u
1



.
(9.7)

Since every element v P RPn can be written as v “

»

—

—

—

–

v1
...
vn
vn`1

fi

ffi

ffi

ffi

fl

, we have either vn`1 ‰ 0, and so

v “

„

u
1



, with u P Rn, or vn`1 “ 0, and so v “

„

u
0



, with u P Rnzt0u. Thus, the injection

(9.7) becomes a bijection between Rn and the set

"„

u
1



: u P Rn
*

. As a consequence, we can

split the real projective space in the following disjoint union:

RPn “

"„

u
1



: u P Rn
*

\

"„

u
0



: u P Rnzt0u
*

–
p9.7q

Rn \ RPn´1.

Of course, we can iterate the splitting on the second set, obtaining:

RPn – Rn \ Rn´1 \ ¨ ¨ ¨ \ R1 \ RP0.
1Geometrically speaking, we have seen in chapter 1 that the projective spaces is isomorphic to the set of

straight lines passing through 0 in Rn.
2The choice of setting to 1 the last coordinate is an arbitrary, yet usual, choice. Changing the position of 1

leads to an isomorphic decomposition in the following.
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The description of RP0 deserves a special discussion: RP0 is the quotient space Rzt0u äRˆ ,
i.e.

RP0 “ ttλu, λ ‰ 0u , u ‰ 0u – tr1su

a set containing a single Rˆ-equivalence class, canonically chosen to be r1s. In the projective
geometry literature, r1s is denoted with 8 and called the point at the infinite. So, to
resume:

RPn – Rn \ Rn´1 \ ¨ ¨ ¨ \ R1 \ t8u. (9.8)

We can now start with the definition of the action of GLpn` 1,Rq on RPn:

GLpn` 1,Rq ˆ RPn ÝÑ RPn
pg, rusq ÞÑ g ¨ rus :“ rgus,

which is well-defined because, thanks to the R-linearity of g, for all λ P Rˆ we have:

g ¨ rλus “ rgpλuqs “ rλpguqs “ rgus “ g ¨ rus,

so the choice of the representative u in a class in RPn does not impact the action.
However, we notice that this action is not stable when restricted on Rn, interpreted as a

subset of RPn via the injection (9.7). To see this, take

g “

ˆ

A b
c d

˙

P GLpn` 1,Rq

with A P GLpn,Rq, c PMp1ˆ n,Rq, b PMpnˆ 1,Rq and d P R, then, by direct computation3:

g ¨ u –
p9.7q

g ¨

„

u
1



“

„

Au` b
cu` d



“

„

Au`b
cu`d

1



–
p9.7q

Au` b

cu` d
P Rn ðñ cu` d ‰ 0,

however, not all the matrices of GLpn ` 1,Rq satisfy the constraint cu ` d ‰ 0, e.g. for all

u P Rnzt0u, the matrix g “

˜

A 0
ut

}u}2
´1

¸

with A P GLpn,Rq belongs to GLpn` 1,Rq but:

g ¨ u –
p9.7q

g ¨

„

u
1



“

«˜

A 0
ut

}u}2
´1

¸

ˆ

u
1

˙

ff

“

«

Au
utu
}u}2

´ 1

ff

“

„

Au
0



P RPn´1 ‰ Rn.

9.4.2 Homogeneity of the open unit ball in Rn

Even if the action GLpn` 1,Rq is not stable when operating on Rn, its subgroup SOpn, 1q
acts in a stable way on the unit ball

B :“ BRp0, 1q “ tx P Rn : xx, xy “ }x}2 ă 1u Ă Rn.

Even more, the action of SOpn, 1q is transitive on B. To prove this result, it is useful to show
that we can find a copy of the unit ball in RPn.

3cu P R because it is the matrix product of c PMp1ˆ n,Rq and u interpreted as an element of Mpnˆ 1,Rq,
so cu is nothing but the Euclidean scalar product xc, uy if we interpret both c and u as column vectors of Rn.
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Theorem 9.4.1 The unit ball B in Rn can be characterized as follows:

B – B1 :“ trus P RPn : xu, uyL ă 0u Ă RPn.

Proof. We start by noting that the constraint that defines B1, i.e. xu, uyL ă 0, is well-defined
in RPn, in fact, for each rus P RPn and λ P Rˆ, xu, uyL ă 0 ðñ xλu, λuyL “ λ2xu, uyL ă 0.

Now, let v P B Ă Rn, i.e. xv, vy ă 1, and let

„

v
1



be its copy in RPn, then

x

„

v
1



,

„

v
1



yL :“ xv, vy ´ 1 ă 0.

Conversely, let rus “

„

ū
un`1



P B1, i.e. xu, uy ă 0, with ū P Rn, then

x

ˆ

ū
un`1

˙

,

ˆ

ū
un`1

˙

yL “ xū, ūy ´ u
2
n`1 ă 0, (9.9)

which implies that un`1 must be different than 0, given that xū, ūy “ ‖ū‖ ě 0. So,

„

ū
un`1



“

„ ū
un`1

1



–
p9.7q

ū

un`1
P Rn.

To verify that ū
un`1

P B we notice that (9.9) implies that }ū}2 ă u2
n`1, i.e. }ū} ă |un`1| so

›

›

›

ū
un`1

›

›

›
“

}ū}
|un`1|

ă 1, thus ū
un`1

P B. 2

Theorem 9.4.1 implies that the unit ball in Rn can be identified with the (double)
cone in Rn`1 obtained as the set of straight lines passing through the origin of
Rn`1 and with slope strictly smaller than 1. Figure 9.2 gives a pictorial illustration of
this cone.

Figure 9.2: The double cone in Rn`1 in bijection with the unit ball in Rn.

Until the end of this section, the open unit ball B in Rn will be identified with its copy in
RPn as defined by the previous theorem.
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The action of Opn, 1q on B is:

Opn, 1q ˆB ÝÑ B
pg, rusq ÞÑ g ¨ rus :“ rgus,

well-defined because the action of Opn, 1q is stable on the elements of B since the matrices
belonging to Opn, 1q preserve the Lorentzian product, so, for all u P B and g P Opn, 1q,

xgu, guyL “ xu, uyL ă 0.

It turns out that the subgroup SOpn, 1q is enough to guarantee a transitive action on B. A
couple of preliminary results will help us prove this result quite easily.

Lemma 9.4.1 Let a P SOpnq, then

ˆ

a 0
0 1

˙

P SOpn, 1q.

Proof. From eq. (9.5) we know that, given η “

ˆ

In 0
0 ´1

˙

,

ˆ

a 0
0 1

˙

P SOpn, 1q if and only if

its determinant is 1, which is true, and if

ˆ

a 0
0 1

˙t

η

ˆ

a 0
0 1

˙

“ η ðñ

ˆ

a 0
0 1

˙tˆ
In 0
0 ´1

˙ˆ

a 0
0 1

˙

“

ˆ

ata 0
0 ´1

˙

“
ata“In

η.

Therefore,

ˆ

a 0
0 1

˙

P SOpn, 1q. 2

Lemma 9.4.2 Let

ˆ

a b
c d

˙

P SOp1, 1q, then

¨

˝

a 0 b
0 In´1 0
c 0 d

˛

‚P SOpn, 1q.

Proof. Let g “

ˆ

a b
c d

˙

P SOp1, 1q, then by eq. (9.5) it holds that

gtηg “ η ðñ

ˆ

a2 ´ c2 ab´ cd
ab´ cd b2 ´ d2

˙

“

ˆ

1 0
0 ´1

˙

(9.10)

and so, if we set h “

¨

˝

a 0 b
0 In´1 0
c 0 d

˛

‚, then detphq “ detpgq “ 1 and

htηh “

¨

˝

a2 ´ c2 0 ab´ cd
0 In´1 0

ab´ cd 0 b2 ´ d2

˛

‚ “
p9.10q

ˆ

In 0
0 ´1

˙

,

so h P SOpn, 1q. 2
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Theorem 9.4.2 Let n ě 2.

1. The action of SOpn, 1q on B is transitive

2. Stabp0q “
!

ˆ

a 0
0 detpaq

˙

, a P Opnq
)

– Opnq.

Therefore, the stabilizer-orbit theorem implies:

B – SOpn, 1q äOpnq ðñ B –

""

g

ˆ

a 0
0 detpaq

˙

, a P Opnq

*

, g P SOpn, 1q

*

.

Proof.

1. Let x P B arbitrary, x ‰ 0. We wish to show that there is a g P SOpn, 1q such that g ¨x “ 0.
We will do this following this path:

• we search for g1 P SOpn, 1q such that g1 ¨ x “

¨

˚

˚

˚

˝

|x|
0
...
0

˛

‹

‹

‹

‚

• we search for g2 P SOpn, 1q such that g2 ¨

¨

˚

˚

˚

˝

|x|
0
...
0

˛

‹

‹

‹

‚

“ 0

• finally, we set g “ g2g1 to get the wanted result : g ¨ x “ 0.

Let r “ |x|. Since SOpnq is transitive on the sphere Sn´1
r , there exists a P SOpnq such

that a ¨ x “

¨

˚

˚

˚

˝

r
0
...
0

˛

‹

‹

‹

‚

. We then define g1 “

ˆ

a 0
0 1

˙

, which belongs to SOpn, 1q thanks to Lemma

9.4.1, then:

g1 ¨ x “

»

—

—

—

–

ˆ

a 0
0 1

˙

¨

˚

˚

˚

˝

x1
...
xn
1

˛

‹

‹

‹

‚

fi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

–

r
0
...
0
1

fi

ffi

ffi

ffi

ffi

ffi

fl

“

¨

˚

˚

˚

˝

r
0
...
0

˛

‹

‹

‹

‚

.

Next, it can be verified with straightforward computations that the matrix

g̃2 “
1

?
1´ r2

ˆ

1 ´r
´r 1

˙

P SOp1, 1q

verifies

g̃2 ¨

„

r
1



“

„

ar`b
cr`b

1



“

„

0
1



“ 0.
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We now use Lemma 9.4.2 to extend g̃2 to SOpn, 1q with

g2 “
1

?
1´ r2

¨

˝

1 0 ´r
0 In´1 0
´r 0 1

˛

‚,

with g2 having the desired property: g2 ¨

¨

˚

˚

˚

˝

r
0
...
0

˛

‹

‹

‹

‚

“ 0. Finally, if g “ g2g1, we get g ¨ x “ 0.

2. Let g “

ˆ

A b
c d

˙

P SOpn, 1q, with A a nˆ n matrix such that g ¨ 0 “ 0. Thus,

g ¨ 0 “ 0 ðñ

ˆ

A b
c d

˙„

0
1



“

„

b
d



“
b

d
“ 0 ðñ b “ 0,

d ‰ 0 since this would go against the already established stability of SOpn, 1q on B.
Moreover, g P Opn, 1q, thus:

gtηg “ η ðñ

ˆ

AtA´ ctc ´ctd
´dc ´d2

˙

“

ˆ

In 0
0 ´1

˙

ðñ c “ 0 , AtA “ In and d2 “ 1,

therefore A P Opnq. Finally, since g P SOpn, 1q, detpgq “ ddetpAq “ 1, thus d “ detpAq´1 “

detpA´1q “
APOpnq

detpAtq “ detpAq. This concludes the proof since we have proven that:

Stabp0q “
!

ˆ

A 0
0 detpAq

˙

: A P Opnq
)

– Opnq.

2

9.4.3 Homogeneity of the open unit ball in Cn

To extend the previous results to the open unit ball in Cn we just need replace Opnq by Upnq,
the proofs are practically identical to the real case.

Once again, we can identify the complex open unit ball B Ă Cn with elements of rus P CPn
such that xu, uyL ă 0 and the action of Upn, 1q on B is stable.

Theorem 9.4.3 Let n ě 2.

1. The action of SUpn, 1q is transitive on B Ă Cn

2. Stabp0q “

"ˆ

A 0

0 detpAq

˙

, A P Upnq

*

– Upnq.

Therefore, by the stabilizer-orbit theorem:

B – SUpn, 1q äUpnq ðñ B –

""

g

ˆ

A 0

0 detpAq

˙

, A P Upnq

*

, g P SUpn, 1q

*

.
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9.5 Homogeneity of the upper-half plane H

The upper half plane H is another very important example of homogeneous space. To prove
this result we first need to introduce and discuss the Möbius transformations. The most
general definition of Möbius transformations in two dimensions is given in the context of
the action of GLp2,Cq on CP1, that is convenient to write through the splitting

CP1 – C\ t8u “
"„

z
1



: z P C
*

\

"„

z
0



: z P Czt0u
*

(9.11)

called the Riemann sphere. For all z, w P C, the action

GLp2,Cq ˆ C\ t8u ÝÑ C\ t8u
ˆˆ

a b
c d

˙

,

„

z
w

˙

ÞÝÑ

ˆ

a b
c d

˙

¨

„

z
w



,

is defined by considering two cases corresponding to w ‰ 0 and w “ 0, respectively.
In the first case, i.e. for all z P C and w ‰ 0, we have:

ˆ

a b
c d

˙

¨

„

z
1



“

„ˆ

a b
c d

˙ˆ

az ` b
cz ` d

˙

“

„

az ` b
cz ` d



“

$

’

’

’

’

’

&

’

’

’

’

’

%

«

az`b
cz`d

1

ff

if cz ` d ‰ 0

«

az ` b

0

ff

if cz ` d “ 0

–

#

az`b
cz`d P C if cz ` d ‰ 0

8 P t8u if cz ` d “ 0
.

In the second case, i.e. for all z P C and w ‰ 0, we have:

ˆ

a b
c d

˙

¨

„

z
0



“

ˆ

a b
c d

˙

¨

„

1
0



“

„ˆ

a b
c d

˙ˆ

1
0

˙

“

„

a
c



“

#

a
c P C if c ‰ 0

8 P t8u if c “ 0
.

This very general definition of Möbius transformations is not needed to show that H is a
homogeneous space, in fact, we can restrict our attention to the much simpler action of the
group SLp2,Rq on H to obtain this result, as we discuss in the next subsection.

9.5.1 Möbius transformations on the upper-half plane H

In this section, H “ tz P C : Impzq ą 0u “ tpx` iyq P C : y ą 0u will denote the upper half
plane in C. When we consider H, the Möbius transformations acquire a much simpler form as
it is stated in the following result.

Lemma 9.5.1 The Möbius action

M : GL`p2,Rq ˆH ÝÑ H
ˆˆ

a b
c d

˙

, z

˙

ÞÝÑ

ˆ

a b
c d

˙

¨ z :“ az`b
cz`d

,

is an actual group action on H.

197



Proof. First of all, we show that the operation is stable. Let g “

ˆ

a b
c d

˙

P GL`p2,Rq, so that

detpgq “ ad´ bc ą 0, and z “ x` iy P H, so that y ą 0. Then,

• cz`d “ 0 ðñ cpx` iyq “ ´d ðñ cx “ ´d and y “ 0, which cannot happen because
y ą 0, thus the denominator of the Möbius transformations is always different than 0 in
the whole H.

• Impg¨zq “ Im
´

az`b
cz`d

¯

“ 1
|cz`d|2

Imppaz`bqpcz`dqq “ 1
|cz`d|2

Impiypad´bcqq “ ypad´bcq
|cz`d|2

“

y detpgq
|cz`d|2

ą 0.

Hence, the Möbius transformation defined above is stable on H. We now need to verify the
properties of group action.

1. If g “ In, then a “ d “ 1, b “ c “ 0, so In ¨ z “
z`0
0`1 “ z.

2. Let g “

ˆ

a b
c d

˙

P GL`p2,Rq and h “

ˆ

k l
m n

˙

P GL`p2,Rq, then gh “

ˆ

ak ` bm al ` bn
ck ` dm cl ` dn

˙

and:

• pghq ¨ z “ pak`bmqz`pal`bnq
pck`dmqz`pcl`dnq

• g ¨ ph ¨ zq “
a kz`l
mz`n

`b

c kz`l
mz`n

`d
“

apkz`lq`bpmz`nq
cpkz`lq`dpmz`nq “

pak`bmqz`pal`bnq
pck`dmqz`pcl`dnq .

Hence, pghq ¨ z “ g ¨ ph ¨ zq for all z P H. 2

GL`p2,Rq is the maximal stability group for the Möbius action on H, since SLp2,Rq is a
subgroup of GL`p2,Rq, we get that also the Möbius action on H restricted to the matrices of
SLp2,Rq is an actual group action.

It turns out that the SLp2,Rq Möbius action on H is enough to guarantee transitivity.
Compared to the proof of other homogeneous spaces that we have discussed so far, the
SLp2,Rq-homogeneity of H is relatively easy to demonstrate.

Theorem 9.5.1 The following statements hold:

1. the upper-half plane H is SLp2,Rq-homogeneous

2. Stabpiq “ SOp2q.

Thus, the stabilizer-orbit theorem implies:

H – SLp2,Rq äSOp2q ðñ H – ttgh, h P SOp2qu , g P SLp2,Rqu .

Proof.

1. Let z “ x` iy P H arbitrary, so y ą 0 and the matrix g “

˜?
y x?

y

0 1?
y

¸

belongs to SLp2,Rq.

Then,

g ¨ i “

?
yi` x{

?
y

0 ¨ i` 1{
?
y
“
?
y

ˆ

i
?
y `

x
?
y

˙

“ x` iy “ z.
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Thus, the action of SLp2,Rq on H is transitive because the whole H can reached by i via a
Möbius transformations.

2. Given g “

ˆ

a b
c d

˙

P SLp2,Rq, let us explicitly write the stabilization condition on i:

g ¨ i “ i ðñ
ai` b

ci` d
“ i ðñ ai` b “ di´ c ðñ a “ d and b “ ´c.

Furthermore, if we fuse these equalities with the fact that detpgq “ ad´ bc “ 1, we get the

constraint a2 ` b2 “ 1. Consequently, every matrix of Stabpiq is written as

ˆ

a b
´b a

˙

, with

a2` b2 “ 1, which is the parameterization of a generic SOp2,Rq matrix, thus Stabpiq “ SOp2q.
2

Let rgs “ gSOp2,Rq for a generic equivalence classes in SLp2,Rq äSOp2,Rq and let

ϕ : SLp2,Rq äSOp2,Rq ÝÑ H

rgs ÞÝÑ g ¨ i

be the bijection generated by the orbit-stabilizer theorem and Mg : H Ñ H, z ÞÑ M pg, zq, for
all g P SLp2,Rq, then the following diagram

SLp2,Rq äSOp2,Rq H

SLp2,Rq äSOp2,Rq H

ϕ

Id Mg

ϕ

is commutative.

9.5.2 The isomorphism H – Sym`
1 p2,Rq

A very useful characterization of the upper half plane H is represented by the set (which is
not a group) of matrices

Sym`
1 p2,Rq “ tg P SLp2,Rq : g “ gt, g positive definite: utgu ě 0 @u P R2u.

To show this fact, we first need to recall a handy representation of the elements in Sym`1 p2,Rq.
In the proof of the theorem, pe1, e2q will denote the canonical basis of R2.

Lemma 9.5.2 g “

ˆ

α β
β γ

˙

P Sym`
1 p2,Rq if and only if α ą 0 and detpgq “ 1.

Proof.

ùñ : we assume g P Sym`
1 p2,Rq. Then, detpgq “ 1 by definition and, since g is positive-

definite, α “ xge1, e1y ą 0, the inequality is strict because, if α “ 0, then detpgq “ ´β2 ď 0,
which contradicts the fact that detpgq “ 1.
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ðù : now we assume g “

ˆ

α β
β γ

˙

such that α ą 0 and detpgq “ 1. First of all we notice

that detpgq “ 1 ðñ αγ “ 1` β2, which also implies that γ ą 0.

If we write u “ xe1 ` ye2 “

ˆ

x
y

˙

P R2, then:

xgu, uy “ xgpxe1 ` ye2q, xe1 ` ye2y “ αx2 ` γy2 ` 2xyβ

“ X2 ` Y 2 ` 2XY
β
?
αγ

with X “ x
?
α , Y “ y

?
γ.

We remark that β
?
αγ “

β?
1`β2

P p´1, 1q for all β P R. Therefore, if XY ě 0,

X2 ` Y 2 ` 2XY
β
?
αγ

ě X2 ` Y 2 ´ 2XY “ pX ´ Y q2 ě 0

and in the other case, if XY ď 0,

X2 ` Y 2 ` 2XY
β
?
αγ

ě X2 ` Y 2 ` 2XY “ pX ` Y q2 ě 0

Therefore, g is definite positive and g P Sym`
1 p2,Rq. 2

By writing the determinant of g explicitly we get αγ ´ β2 “ 1, solving w.r.t. γ we obtain

γ “ 1`β2

α , so that the generic parameterization of a matrix in Sym`
1 p2,Rq is:

Sym`
1 p2,Rq “

#˜

α β

β 1`β2

α

¸

, α ą 0, β P R

+

.

Theorem 9.5.2 The following assertions hold.

1. The function
F : H

„
ÝÑ Sym`

1 p2,Rq

z “ x` iy ÞÝÑ 1
y

ˆ

1 ´x
´x x2 ` y2

˙

,

is bijective with inverse given by:

ω : Sym`
1 p2,Rq

„
ÝÑ H

ˆ

α β
β γ

˙

ÞÝÑ 1
αp´β ` iq.

2. The map
˚ : SLp2,Rq ˆ Sym`

1 p2,Rq ÝÑ Sym`
1 p2,Rq

pm, gq ÞÝÑ m ˚ g “ pm´1qtgm´1

is a group action.
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Proof.

1. Both maps F and ω are well-defined thanks to the previous lemma. First we check that
ωpF pzqq “ z for all z “ x` iy P H:

F pzq “
1

y

ˆ

1 ´x
´x x2 ` y2

˙

ùñ ωpF pzqq “ y

ˆ

x

y
` i

˙

“ x` iy “ z.

Now we check that F pωpgqq “ g for all g P Sym`
1 p2,Rq. To this aim, let g “

ˆ

α β
β γ

˙

P

Sym`
1 p2,Rq, then:

ωpgq “
´β

α
` i

1

α
ùñ F pωpgqq “ α

˜

1 β
α

β
α

1`β2

α2

¸

“

˜

α β

β 1`β2

α

¸

“
1“detpgq“αγ´β2

ˆ

α β
β γ

˙

.

2. The axioms of group actions follow from direct computations. Let g P Sym`
1 p2,Rq and

m,n P SLp2,Rq.

• Id ˚ g “ Id g Id “ g

• pmnq ˚ g “ ppmnq´1qt g pmnq´1 “ pm´1qtpn´1qtg n´1m´1 “ m ˚ pn ˚ gq.

All that is left to prove is then the stability of the action on Sym`1 p2,Rq, i.e. that m ˚ g
has unitary determinant, is symmetric and positive-definite for all m P SLp2,Rq and g P
Sym`1 p2,Rq:

• detpm ˚ gq “ detppm´1qtqdetpgqdetpmq “ detpmq detpgq detpmq “ 1 ùñ m ˚ g P
SLp2,Rq

•
`

pm´1qtgm´1
˘t
“ pm´1qtgm´1, thus m ˚ g is symmetric (which explains why we must

consider pm´1qt) in the definition of the action ˚ and not m´1)

• for all u P R2, xm ˚ gu, uy “ xpm´1qtgm´1u, uy “ xgpm´1uq, pm´1 uqy ě 0 since
g P Sym`1 p2,Rq.
Moreover, m´1u “ 0 ðñ u “ 0 because m is invertible. Therefore, m ˚ g is positive-
definite. 2

To resume, we have determined the following isomorphisms:

SLp2,Rq{SOp2q – H – Sym`
1 p2,Rq .

As we will see later, these are three among the six prototypes of the hyperbolic plane
(also called hyperbolic models), the remaining three being the hyperboloid in R3, the Poincaré
and the Klein disks.
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9.5.3 The action of SLp2,Rq on Sym`
1 p2,Rq

Finally, we show that the action of SLp2,Rq on Sym`
1 p2,Rq is analogous to the action of

SLp2,Rq on H by Möbius transformations. The proof of this result needs a lemma.

Lemma 9.5.3 Let g “

ˆ

α β
β γ

˙

P Sym`
1 p2,Rq. Then, ωpgq “ 1

αp´β`iq is the unique solution

in H of the equation:
ˆ

z
1

˙t

g

ˆ

z
1

˙

“ αz2 ` 2βz ` γ “ 0.

Proof. The two complex solutions of the equation are:

z1,2 “
´2β ˘

a

4β2 ´ 4αγ

2α
“
´β ˘

a

β2 ´ αγ

α
,

but 1 “ detpgq “ αγ ´ β2, so β2 ´ αγ “ ´1, so

z1,2 “
´β ˘ i

α
,

the only solution in H is the one corresponding to `i, i.e. the only solution in H is:

1

α
p´β ` iq “ ωpgq.

2

Theorem 9.5.3 Let m P SLp2,Rq, g P Sym`
1 p2,Rq and z P H. Then,

1. ωpm ˚ gq “ m ¨ ωpgq

2. F pm ¨ zq “ m ˚ F pzq,

i.e. the following diagram

Sym`
1 p2,Rq H

Sym`
1 p2,Rq H

ω

m˚

F

m¨

ω

F

is commutative. Hence, the action of SLp2,Rq on Sym`
1 p2,Rq is transitive.

Proof.

1. We start by fixing the notation:

• m “

ˆ

a b
c d

˙

P SLp2,Rq, so that m´1 “

ˆ

d ´b
´c a

˙

• z̃ “ ωpm ˚ gq P H

• z “ ωpgq P H
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• ω̃ “ m´1 ¨ z̃ “ M pm´1, z̃q P H.

We note that:

m´1

ˆ

z̃
1

˙

“

ˆ

dz̃ ´ b
´cz̃ ` a

˙

“ p´cz̃ ` aq
loooomoooon

‰0

ˆ

dz̃´b
´cz̃`a

1

˙

“ p´cz̃ ` aq

ˆ

m´1 ¨ z̃
1

˙

“ pcz̃ ` aq

ˆ

ω̃
1

˙

,

(9.12)
where ´cz̃ ` a ‰ 0 because, if we write z̃ P H as z̃ “ x ` iy, then ´cz̃ ` a “ 0 would be
equivalent to ´cx` a´ icy “ 0, but, since y ą 0, this would imply a “ c “ 0, that cannot be
because m´1 would have a null row and would not be invertible.

Thanks to Lemma 9.5.3, z̃ “ ωpm ˚ gq “ ωppm´1qtgm´1q verifies:

ˆ

z̃
1

˙t

pm´1qtgm´1

ˆ

z̃
1

˙

“ 0, (9.13)

but
ˆ

z̃
1

˙t

pm´1qt “

ˆ

m´1

ˆ

z̃
1

˙˙t

“
p9.12q

p´cz̃ ` aq

ˆ

ω̃
1

˙t

,

so:

ˆ

z̃
1

˙t

pm´1qtgm´1

ˆ

z̃
1

˙

“ 0 ðñ p´cz̃ ` aq2
ˆ

ω̃
1

˙t

g

ˆ

ω̃
1

˙

“ 0

ðñ

ˆ

ω̃
1

˙t

g

ˆ

ω̃
1

˙

“ 0.

Therefore, thanks to Lemma 9.5.3, ω̃ “ ωpgq and so ωpm ˚ gq “ m ¨ ωpgq.

2. Having proven 1., i.e. m ¨ ωpgq “ ωpm ˚ gq, the proof of 2. is very easy. In fact, thanks to
theorem 9.5.2, z “ ωpgq so F pzq “ F pωpgqq “ g, thus:

F pm ¨ zq “ F pm ¨ ωpgqq “ F pωpm ˚ gqq “ m ˚ g “ m ˚ F pzq.

2
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Chapter 10

Geometry of the Lorentz space and
Lorentz transformations (Antoine Guennec and
Edoardo Provenzi)

The geometry of the Lorentz space and its related Lorentz transformations are two of the
three basic tools that will allow us to rigorously describe the different realizations (called
models) of hyperbolic geometry, the third tool being represented by Möbius transformations,
that will be analyzed in the following chapter.

10.1 A quick recap about the Euclidean scalar product

In this section, we recall very quickly just the basic facts of Euclidean geometry that will use
in the rest of this chapter.

Def. 10.1.1 The Euclidean scalar product on Rn is defined as:

xx, yy “ x1y1 ` ¨ ¨ ¨ ` xnyn,

its associated norm1 is:

|x| “ }x}E “
a

xx, xy “ px2
1 ` ¨ ¨ ¨ ` x

2
nq

1
2 ,

and its associated metric is:

dEpx, yq “ |x´ y| “
a

xx´ y, x´ yy.

Lemma 10.1.1 (Cauchy-Schwarz inequality) Let x, y P Rn. Then,

| xx, yy | ď |x| |y|

and the equality holds if and only if x and y are linearly dependent.

Proof. Suppose x and y are linearly dependent. Then, it exists t ‰ 0 such that y “ tx, so

| xx, yy | “ | xx, txy | “ |t xx, xy | “ |t||x|2 “ |x||t||x| “ |x||y|.

1In this chapter, exceptionally, it is notationally more convenient to use the symbol | | for the Euclidean
norm and reserve } } to the Lorentzian norm.
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Conversely, assume x and y are linearly independent. Then for all t P R, tx´ y ‰ 0 and so

0 ă |tx´ y|2 “ |x|2t2 ´ 2 xx, yy t` |y|2 “ fptq,

which implies that the discriminant of f is negative, i.e. ∆ “ 4 xx, yy2 ´ 4|x|2|y|2 ă 0, hence

xx, yy2 ă |x|2|y|2 ðñ | xx, yy | ă |x||y|.

2

We will denote by En “ pRn, dEq the Euclidean metric n-space considering it as an affine
space so that we can perform translations in En.

Def. 10.1.2 (Isometries and similarities in En) The isometries of En are transforma-
tions that preserve distances:

IpEnq “
 

φ : Rn Ñ Rn : dEpφpxq, φpyqq “ dEpx, yq @x, y P Rn
(

.

The similarities of En are transformations that preserve shapes:

SpEnq “
 

φ : Rn Ñ Rn : Dk ą 0 : dEpφpxq, φpyqq “ kdEpx, yq @x, y P Rn
(

.

The sets of isometries and similarities form a group under composition.
The most important set of transformations in Euclidean geometry are the orthogonal ones,

which form the group Opnq, defined as maps that preserve the scalar product:

xφpxq, φpyqy “ xx, yy @x, y P Rn.

The following lemma allows us to characterize the orthogonal transformations.

Lemma 10.1.2 φ : Rn Ñ Rn is an orthogonal transformation if and only if it is linear and,
given an orthonormal basis pu1, . . . , unq of Rn, pφpu1q, . . . , φpunqq is an orthonormal basis of
Rn.

Proof. Suppose φ is an orthogonal transformation and pu1, . . . , unq is any orthonormal basis
of Rn. Then,

xφpuiq, φpujqy “ xui, ujy “ δij ,

hence pφpu1q, ¨ ¨ ¨ , φpunqq is, by definition, an orthonormal basis of Rn and so, for all x P Rn,

φpxq “
n
ÿ

i“1

xφpxq, φpuiqyφpuiq “
pφ orthogonalq

n
ÿ

i“1

xx, uiyφpuiq,

but we also have x “
n
ř

i“1
xx, uiyui, so, by writing xi “ xx, uiy, we get:

φp
n
ÿ

i“1

xiuiq “
n
ÿ

i“1

xiφpuiq, @x P Rn. (10.1)
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Now, if we consider λx “
n
ř

i“1
λxiui, we have:

φpλxq “
n
ÿ

i“1

λxiφpuiq “ λ
n
ÿ

i“1

xiφpuiq “ λφpxq, @x P Rn.

Moreover, if we consider another vector y “
n
ř

i“1
yiui P Rn, thanks to (10.1) we get

φp
n
ÿ

i“1

yiuiq “
n
ÿ

i“1

yiφpuiq,

thus

φpx` yq “ φp
n
ÿ

i“1

xiui `
n
ÿ

j“1

yjujq “ φp
n
ÿ

k“1

pxk ` ykqukq “
p10.1q

n
ÿ

k“1

pxk ` ykqφpukq

“

n
ÿ

i“1

xiφpuiq `
n
ÿ

i“1

yiφpuiq

“ φpxq ` φpyq,

hence the linearity of φ.

Conversely, suppose that φ is linear and that, for any orthonormal basis pu1, . . . , unq of Rn,
pφpu1q, . . . , φpunqq is again an orthonormal basis of Rn. Then,

φpxq “ φp
n
ÿ

i“1

xiuiq “
pφ linearq

n
ÿ

i“1

xiφpuiq @x P Rn,

thus

xφpxq, φpyqy “

C

n
ÿ

i“1

xiφpuiq,
n
ÿ

j“1

yjφpujq

G

“

n
ÿ

i“1

n
ÿ

j“1

xiyj xφpuiq, φpujqy

“

n
ÿ

i“1

n
ÿ

j“1

xiyjδi,j “
n
ÿ

i“1

xiyi

“ xx, yy .

2

Def. 10.1.3 The function

q : Rn ÝÑ R
x ÞÝÑ qpxq :“ xx, xy “ }x}2E

is called the quadratic form associated to the Euclidean scalar product.

The following result shows how an orthogonal transformation φ : Rn Ñ Rn can be
characterized via the quadratic form q.
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Lemma 10.1.3 φ : Rn Ñ Rn is an orthogonal transformation if and only if is preserves the
quadratic form q, i.e. qpφpxqq “ qpxq for all x P Rn.

Proof. By direct computation we get

qpx´ yq “ qpxq ´ 2 xx, yy ` qpyq ðñ xx, yy “
qpxq ` qpyq ´ qpx´ yq

2
, @x, y P Rn,

so, it also holds that

xφpxq, φpyqy “
qpφpxqq ` qpφpyqq ´ qpφpxq ´ φpyqq

2
, @x, y P Rn.

So, if qpφpxqq “ qpxq for all x P Rn, then:

xφpxq, φpyqy “
qpφpxqq ` qpφpyqq ´ qpφpxq ´ φpyqq

2
“
qpxq ` qpyq ´ qpx´ yq

2
“ xx, yy ,

i.e. φ is orthogonal.
Vice-versa, if φ is orthogonal, then qpφpxqq`qpφpyqq´qpφpxq´φpyqq “ qpxq`qpyq´qpx´yq

for all x, y P Rn, but this equality holds true no matter how x and y are chose only when
qpφpxqq “ qpxq for all x P Rn. 2

Finally, we come to the complete characterization of IpEnq and SpEnq.

Theorem 10.1.1 Let f : Rn Ñ Rn.

1. f P IpEnq if and only if f is of the form fpxq “ a` φpxq, with a P Rn and φ P Opnq.

2. f P SpEnq if and only if f is of the form fpxq “ a ` kφpxq, with a P Rn, k ą 0 and
φ P Opnq.

Proof. First of all, notice that 1. is simply a special case of 2. with k “ 1, thus we will
concentrate only on the proof of 2.

2. ùñ : if fpxq “ a` φpxq, then, for all x, y P Rn,

dpfpxq, fpyqq “ xa` kφpxq ´ pa` kφpyqq, a` kφpxq ´ pa` kφpyqqy
1
2

“ xkpφpxq ´ φpyqq, kpφpxq ´ φpyqqy
1
2

“
pφ linearq

k xpφpx´ yqq, φpx´ yqy
1
2

“
pφ orthogonalq

k xx´ y, x´ yy
1
2

“ kdpx, yq.

2. ðù : suppose f P SpEnq and let a “ fp0q and ψpxq “ fpxq ´ a. Since f is a similarity
there is a k ą 0 such that |fpxq ´ fpyq| “ k|x´ y| for all x, y P Rn and so

|ψpxq| “ |fpxq ´ fp0q| “ k|x´ 0| “ k|x|.
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Consequently, by setting φ “ 1
kψ and using lemma 10.1.3, we have φ P Opnq and

fpxq “ a` kφpxq.

2

Corollary 10.1.1 An affine function f : Rn Ñ Rn, fpxq “ a ` λx, with a, x P Rn and
λ P Rzt0u is always a Euclidean similarity and it is a Euclidean isometry if and only if λ “ 1.

Proof. The proof consists simply in remarking that λ can be identified with a one-entry matrix,
which is orthogonal if and only if λ “ 1{λ, i.e. λ “ 1. 2

10.2 The geometry of the Lorentz n-space

The main reference throughout this section is Ratcliffe’s book [15].
Lorentzian geometry is founded on an alternative definition of the scalar product in Rn

w.r.t.the Euclidean one for n ě 2, when n “ 1 the two products agree. For this reason, in this
chapter we will always implicitly consider n ě 2.

The Lorentz scalar product is actually a so-called pseudo-scalar product. The formal
algebraic theory that allowed the modern definition of such a concept has been developed by
E. Witt in [21]. Here we collect only the definitions and results that are needed to understand
Lorentz’s geometry, for a more thorough discussion see, e.g., [14].

Let V be a real vector space and x, y arbitrary vectors in V .

1. A bilinear form on V is an R-bilinear function b : V ˆ V Ñ R;

2. The quadratic form associated to b is the linear functional qb : V Ñ R defined by
qbpxq :“ bpx, xq. It is often simpler to work with qb than with b and no information is
lost, since we can reconstruct b from q via the well-known polarization identity:

bpx, yq “
1

2
pqbpx` yq ´ qbpxq ´ qbpyqq;

3. b is symmetric if bpx, yq “ bpy, xq for all x, y. In what follows, b will always be implicitly
considered symmetric;

4. b is positive (negative) definite if x ‰ 0 implies qbpxq ą 0 pă 0q;

5. b is positive (negative) semi-definite if x ‰ 0 implies qbpxq ě 0 pď 0q;

6. Of course, if b is positive (negative) definite, then it is also positive (negative) semi-
definite;

7. If b is neither positive nor negative semi-definite, b is called indefinite;

8. b is nondegenerate if bpx, yq “ 0 @y implies x “ 0;

9. A scalar product g on V is a positive-definite nondegenerate symmetric bilinear form
on V . pV, gq is called a scalar product space;
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10. A pseudo-scalar product b on V is a nondegenerate symmetric bilinear form on
V . Thus, the big difference between a pseudo- and a scalar product is the lack of
definite-positiveness for the first. pV, bq is called a pseudo-scalar product space;

11. For any vector subspace W Ă V , we denote with b|W and qb|W the restriction of b to
W ˆW and of qb to W , respectively. If b is a symmetric bilinear form, so is b|W ;

12. The index ν of a symmetric bilinear form b on V is the largest integer that coincides
with the dimension of a subspace W Ă V on which bW is negative definite. Thus
0 ď ν ď dimpV q, and ν “ 0 if and only if b is positive-semidefinite or positive-definite;

13. If pu1, . . . , unq is a basis for V , the n ˆ n matrix B “ pbijq “ bpui, ujq is called the
matrix of b relative to pu1, . . . , unq. If b is symmetric, then B is a symmetric matrix.

If x “
n
ř

i“1
xiui and y “

n
ř

i“1
yiui, then, by bilinearity we have

bpx, yq “ bp
n
ÿ

i“1

xiui,
n
ÿ

i“1

yiuiq “
n
ÿ

i“1

n
ÿ

j“1

xiyjbpui, ujq “
n
ÿ

i“1

n
ÿ

j“1

xiyjbij “ xx,Byy “ xBx, yy,

thus the action of b on the vectors of V is completely determined by B;

14. A symmetric bilinear form b on V is nondegenerate if and only if its matrix B relative
to an arbitrary basis of V is invertible;

15. A vector u P pV, bq such that qbpuq “ ˘1 is said to be a unit vector in pV, bq. Two vectors
x, y P pV, bq are orthogonal if bpx, yq “ 0;

16. A set of m ď n mutually orthogonal unit vectors in pV, bq is said to be an orthonormal
family. If m “ n, then we talk about an orthonormal basis of pV, bq;

17. The matrix of b associated to an orthonormal basis pu1, . . . , unq is diagonal, in fact its
entries are given by:

bpui, ujq “ ˘δi,j ,

the ordered sequence of ´1 and `1, repeated for all the time they appear in the diagonal
of the matrix associated to b w.r.t.any orthonormal basis is called signature of b;

18. The signature appears in the orthonormal expansion of any x P pV, bq on an orthonormal
basis pu1, . . . , unq as follows:

x “
n
ÿ

i“1

εibpx, uiqui , (10.2)

where εi “ qbpuiq P t´1,`1u;

19. The orthogonal projection π of any x P pV, bq onto a subspace W “ spanpu1, . . . , umq,
where pu1, . . . , umq is an orthonormal family and m ă n is the following:

πpxq “
m
ÿ

i“1

εibpx, uiqui ;
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20. The residual vector

y :“ x´ πpxq “ x´
m
ÿ

i“1

εibpx, uiqui (10.3)

is orthogonal to all vectors of W : bpy, wq “ 0 @w PW ;

21. The number of negative signs in the signature of b is constant for any orthonormal basis
pu1, . . . , umq of pV, bq and it coincides with the index ν. For the proof see [14], lemma 26
page 51.

Let us specify all this in the case of the Lorentz pseudo-scalar product in Rn.

Def. 10.2.1 (Lorentz’s pseudo-scalar product) Let x, y P Rn. The Lorentz (or Lorentzian)
pseudo-scalar product between x and y is defined as follows:

x ˝ y “ ´x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn .

pRn, ˝q, i.e. Rn interpreted as a vector space endowed with the Lorentzian pseudo-scalar
product, is denoted by R1,n´1 and called the Lorentzian n-space.

In literature, we find several other definitions of the Lorentzian scalar product. The first
alternative definition that we discuss is the following:

x ˝ y “ x1y1 ` ¨ ¨ ¨ ` xn´1yn´1 ´ xnyn

and Rn endowed with this last Lorentzian scalar product is denoted by Rn´1,1. Results in
both cases are exactly the same and the choice of Rn´1,1 or R1,n´1 depends on convenience or
taste.

Instead, the following alternative and perfectly valid choice:

x ˝ y “ x1y1 ´ ¨ ¨ ¨ ´ xn´1yn´1 ´ xnyn

corresponds to the opposed signature w.r.t.the previous one.
The case of n “ 4 is of particular importance in Physics, as it is the geometric setting of

special relativity, with the coordinate x1 “ t playing the role of time and px2, x3, x4q “ px, y, zq
the role of space coordinates. For this reason, it bears a special name.

Def. 10.2.2 The Lorentz space R1,3 is called Minkowski spacetime M.

The bilinearity and symmetry of the Lorentz pseudo-scalar product is immediate to see,
to prove its nondegeneracy it is enough to take as y all the vectors of the canonical basis
pe1, . . . , enq of Rn:

x ˝ e1 “ ´x1 ¨ 1` x2 ¨ 0` ¨ ¨ ¨ ` xn ¨ 0 “ ´x1

...

x ˝ en “ ´x1 ¨ 0` x2 ¨ 0` ¨ ¨ ¨ ` xn ¨ 1 “ xn

so, x ˝ ei “ 0 for all i “ 1, . . . , n implies x “ 0.

Def. 10.2.3 The quadratic form associated to the Lorentz pseudo-scalar product is:

qpxq :“ x ˝ x “ ´x2
1 ` x

2
2 ` ¨ ¨ ¨ ` x

2
n, qpxq P R,

and the Lorentz pseudo-norm is:

}x} :“
a

qpxq “
b

´x2
1 ` x

2
2 ` ¨ ¨ ¨ ` x

2
n, }x} P R` Y t0u Y iR`.
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Remark 10.2.1 The Lorentz pseudo-scalar product can be rewritten using the Euclidean
scalar product:

x ˝ y “ xx, ηyy “ xηx, yy , with η “

ˆ

´1 0
0 In´1

˙

“ diagp´1, 1, . . . q, ηt “ η´1 “ η, η2 “ In.

It is clear that the Lorentz pseudo-scalar product is indefinite. This fact allows us to
separate the Lorentz n-space in three different subsets called time-like, light-like and space-like,
a terminology taken from special relativity (see chapter 13 for the physical motivation of these
names).

Def. 10.2.4 x P R1,n´1 is said to be

• time-like if x ˝ x ă 0 ðñ qpxq ă 0 ðñ its squared Lorentz pseudo-norm is negative;

• light-like if x ˝ x “ 0 ðñ qpxq “ 0 ðñ its squared Lorentz pseudo-norm is null;

• space-like if x ˝x ą 0 ðñ qpxq ą 0 ðñ its squared Lorentz pseudo-norm is positive;

• causal if it is not space-like.

One of the three options is called likeness of x.
Moreover, the orientation (or parity) of a time-like or light-like vector is:

• positive if x1 ą 0;

• negative if x1 ă 0.

Examples: if we consider the vectors pe1, . . . , enq of the canonical basis of Rn, then
e1 ˝ e1 “ ´1 and ej ˝ ej “ 1 for all 2 ď j ď n, so:

• e1 is a time-like vector;

• ej , for all 2 ď j ď n, are space-like vectors;

• e1 ` e2 “ p1, 1, 0, . . . , 0q
t is a light-like vector.

In the Minkowski space, we have the identification px1, x2, x3, x4q ” pt, x, y, zq, where t is
the time coordinate and px, y, zq are the spatial ones. The Lorentz pseudo-norm in this case is
called Minkowski pseudo-norm.

It is instructive to examine the geometric meaning of likeness in the case n “ 2 for a
generic x P R1,1 starting from the light-like case.

• u “ px, yq is light-like if and only if x2 “ y2 ðñ |x| “ |y|, i.e. light-like vectors lie on
the two π{4 degrees straight lines passing through the origin.

• The time-like case is characterized by x2 ă y2 ðñ |x| ă |y|, i.e. time-like vectors
belong to the interior of the upper and lower triangular regions in R2 delimited by the
origin and the straight lines where light-like vectors live.

• The space-like case is obviously identified by the remaining areas. Figure 10.1 gives a
graphical representation of this simple analysis.

211



Figure 10.1: A graphical depiction of likeness regions in 2 dimensions, together with the level
lines of the Lorentz pseudo-norm.

In the figure we can also see that the level lines of the quadratic form qpxq, i.e. the vectors
with same Lorentz pseudo-norm are hyperbolas contained in either the time-like or
space-like regions with asymptotes given by the light-like straight lines. In fact, for all c ‰ 0,
qpxq “ c ðñ ´x2

1 ` x2
2 “ c, which is the equation of a hyperbola. If c ă 0 the hyperbola

belongs to the time-like region, if c ą 0 to the space-like region.
More generally, the light-like equation x ˝ x “ 0 ðñ qpxq “ 0 ðñ }x} “ 0 defines

a hypercone Cn´1 in Rn, called light cone. Time-like vectors belong to its interior, while
space-like vectors belong to the external region. Figure 10.2 depicts the case n “ 3.

Time-like

Light-like

Space-like

Figure 10.2: The Lorentz n-space is separated in three components: light-like vectors belong
to the surface of the light cone, time-like vectors lie inside and space-like vectors lie outside.

The name light cone is an extension of the case n “ 4, where Cn´1 is the cone traveled
by rays of light in the Minkowski spacetime of special relativity. The positive and negative
time-like regions are called, respectively, future and past light cone.
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In En, vectors with same Euclidean norm lie on spheres, while, in the n-Lorentz space,
vectors with same Lorentz pseudo-norm lie on hyperboloids contained in either the
time-like or space-like regions. This very simple consideration gives the first hint of why the
Euclidean scalar product is related to spherical geometry while the Lorentzian pseudo-scalar
product is related to hyperbolic geometry.

The following notational convention will simplify a lot future equations: whenever useful,
we will write x P Rn as

x “ px1, x2, . . . , xnq
t “ px1, x̄q

t, i.e. x̄ “ px2, x3, . . . , xnq
t.

With this notation:

• Lorentz scalar product and norm:

x ˝ y “ xx̄, ȳy ´ x1y1, ‖x‖2
“ |x̄|2 ´ x2

1 ;

• R1,n´1 Q x “

$

’

&

’

%

light-like: |x̄| “ |x1| px P Cn´1q

time-like: |x̄| ă |x1| px P intpCn´1qq

space-like: |x̄| ą |x1| px P extpCn´1qq

.

Just like in Euclidean geometry, orthogonality will play a major role.

Def. 10.2.5 x, y P R1,n´1 are called Lorentz-orthogonal if x ˝ y “ 0. They are Lorentz-
orthonormal if they are Lorentz-orthogonal and the modulus of their pseudo-Lorentz norm is
1, i.e. }x} “ i if x is time-like and }x} “ 1 if x is space-like.

The Euclidean scalar product allows us to fully understand the Euclidean geometry, hence
it is not surprising that many information about the Lorentz n-space geometry can be gathered
by studying the Lorentz scalar product.

We start by first proving a very simple fact and then a result that will have important
consequences.

Lemma 10.2.1 For all x P R1,n´1 and all t ą 0, the vector tx has the same likeness and
orientation as x.

Proof. For all t ą 0, ‖tx‖ “ t ‖x‖ and ptxq1 “ tx1, thus tx and x have the same likeness and
orientation. 2

Theorem 10.2.1 If x, y P R1,n´1 are non-zero, equioriented and causal, then x ˝ y ď 0 and
the equality holds if and only if x and y are linearly dependent light-like vectors.

Proof. The case of x and y being both negatively oriented can be derived from the positive
case by replacing x and y with ´x and ´y, respectively, thus we can assume that both x and
y are positively oriented, i.e. x1 ą 0 and y1 ą 0.

By hypothesis, x is time-like or light-like, so:

x ˝ x ď 0 ðñ |x̄|2 ď x2
1 ðñ
x1ą0

|x̄| ď x1,
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and, similarly, |ȳ| ď y1. These inequalities, together with the Cauchy-Schwartz inequality
10.1.1 applied on the Euclidean scalar product | |, imply

xx̄, ȳy ď | xx̄, ȳy | ď |x̄||ȳ| ď x1y1, (10.4)

hence we come to the conclusion that x ˝ y “ xx̄, ȳy ´ x1y1 ď 0.

Let us now examine when x ˝ y “ xx̄, ȳy ´ x1y1 “ 0, i.e. x1y1 “ xx̄, ȳy, thus we can replace
x1y1 on the rightmost part of inequality (10.4) with xx̄, ȳy, this implies xx̄, ȳy ď |x̄||ȳ| ď xx̄, ȳy,
i.e. xx̄, ȳy “ |x̄||ȳ|. Lemma 10.1.1 guarantees that this can happen if and only if x̄ and ȳ are
linearly dependent, we can therefore set ȳ “ tx̄, with t ‰ 0, and observe that

x ˝ y “ 0 ðñ x1y1 “ t|x̄|2 ðñ y1 “
t|x̄|2

x1
, (10.5)

which implies two things: firstly t ą 0 (x1 and y1 are both supposed to be positive), secondly,

y ˝ y “ |ȳ|2 ´ y2
1 “
ȳ“tx̄

t2|x̄|2 ´ t2|x̄|4

x21
. Recalling that y is either time-like or light-like, we must

have:
y ˝ y ď 0 ðñ x2

1 ď |x̄|
2 ðñ 0 ď |x̄|2 ´ x2

1 ðñ 0 ď x ˝ x.

If x is time-like, then x ˝ x ă 0 and the previous inequality is not verified, thus x must
be light-like (i.e. x ˝ x “ 0). Being light-like and positively oriented, x satisfies |x̄| “ x1

and so the central equation of formula (10.5) implies x1y1 “ tx2
1, i.e. y1 “ tx1. In conclu-

sion, ȳ “ tx̄ and y1 “ tx1 imply that y “ tx and also that x and y are both light-like vectors. 2

So, two light-like vectors are Lorentz-orthogonal if and only if they are scalar
multiple of each other. Instead, for time-like vectors it holds the following.

Corollary 10.2.1 If x, y P R1,n´1 are equioriented time-like vectors, then x ˝ y ă 0.

A significant implication of this theorem is that, in the Lorentzian geometry of R1,n´1,
two orthogonal vectors are no longer characterized by a relative angle of π{2: if one
belongs to the interior and the other to the exterior of the light cone, they can be orthogonal
even if their relative angle is different than π{2.

Corollary 10.2.2 Let x, y be two non-zero Lorentz-orthogonal vectors, i.e. x ˝ y “ y ˝ x “ 0,
then:

x time-like ùñ y space-like.

Proof. We can assume that y has the same orientation of x, in the opposite case it is sufficient
to replace y with ´y to obtain the proof. If x is time-like then, by theorem 10.2.1, if y is
time-like or light-like, we must have x˝y ă 0, where the inequality is strict because the equality
can happen only with two linearly dependent light-like vectors. Since x ˝ y ă 0 is incompat-
ible with the hypothesis x˝y “ 0, the only option that remains is that y must be space-like. 2

Let us see an example using again the simple case of n “ 2: x ˝ y “ 0 ðñ x1y1 “ x2y2,
then of course e1 “ p1, 0q and e2 “ p0, 1q are Lorentz orthogonal, but, for example, also any
couple of vectors of the form x “ p1, aq and y “ pa, 1q is, @a P R. Figure 10.3 depicts the case
0 ă c ă 1.
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(1, a)

(a, 1)

x1

x2

Figure 10.3: A graphical depiction of orthogonality in the 2 dimensional Lorentz space.

The relative position between the two vectors p1, aq and pa, 1q is not accidental, in fact, as
we are going to prove, a time-like x and a space-like y vectors in R1,1 are Lorentz-orthogonal if
and only if the angles α and β that they form w.r.t.the horizontal axis are complementary, i.e.
they sum to π{2, modulo an integer multiple of π: α` β “ π{2` kπ, k P Z. To prove this,
we just write down the polar coordinates x “ pr cosα, r sinαqt and y “ pR cosβ,R sinβqt of x
and y, r,R ą 0, α, β P r0, 2πq, then, the Lorentz-orthogonality condition can be rewritten as

rR cosα cosβ ´ rR sinα sinβ “ 0 ðñ rRpcospα` βqq “ 0 ðñ cospα` βq “ 0,

which implies α` β “ π{2` kπ.

Notice that the reverse statement of the theorem is not true: given two non-zero Lorentz-
orthogonal vectors x, y P R1,n´1, if x is space-like then y can be both space-like and time-like.
A simple example is given by the vectors e2 “ p0, 1, 0q

t and e3 “ p0, 0, 1q
t of the canonical

basis of R1,2: }e2}
2 “ }e3}

2 “ 1, so they are space-like, but e2 ˝ e3 “ 0.
The following result tell us, among other information, that the sum of two equioriented

time-like vectors is still a time-like vector with the same orientation.

Corollary 10.2.3 If x and y are non-zero, equioriented, causal vectors, then x` y has the
same orientation as x and y. Moreover, x` y is light-like if and only if x and y are linearly
dependent light-like vectors, otherwise x` y is time-like.

Proof. For the same reason given in the proof of theorem 10.2.1, we consider only the positively
oriented case. In this case we have x1, y1 ą 0, so px` yq1 “ x1 ` y1 ą 0 and so x` y is also
positively oriented. Additionally, by direct computation we have:

‖x` y‖2
“ ‖x‖2

` 2px ˝ yq ` ‖y‖2 ,

which is ď 0 as the sum of three terms ď 0. So, x` y is either light-like or space-like. Finally,
thanks to the previous theorem,

‖x` y‖2
“ 0 ðñ ‖x‖2

“ ‖y‖2
“ x ˝ y “ 0

which is true if and only if x and y are light-like and linearly dependent. 2
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To fix the ideas, let us consider only vectors oriented towards the future, then the previous
result can be re-written as follows:

• the sum of two linearly dependent light-like vectors will be a light-like vectors towards
the future;

• the sum of two non-linearly dependent light-like vectors will be a time-like vector towards
the future;

• the sum of two time-like vectors will be a time-like vector towards the future;

• the sum of a time-like vector and a light-like vector will be a time-like vector towards
the future.

Before stating the following corollary, we recall some definitions about cones taken from [5].

Def. 10.2.6 Let C be a subset of a vector space V , then:

• C is a cone if, for all t ą 0, x P C ùñ tx P C;

• a cone C is convex if, for all t P r0, 1s and all couple of vectors x, y P C, tx`p1´ tqy P C;

• a cone C is proper (or regular) if C X´C “ t0u, where 0 is the zero vector of V , C is
the topological closure of C and ´C :“ t´x, x P Cu.

Corollary 10.2.4 The set of all positively (respectively negatively) oriented time-like vectors
forms an open connected proper convex cone in R1,n´1.

Proof. Theorem 10.2.1 implies that the set of all positive (respectively negative) oriented
time-like vectors forms a cone in R1,n´1. This cone is either the upper or the bottom part of
the open set given by the interior of Cn´1, thus it is connected, open and proper. Finally, let
x and y two positively (resp. negatively) oriented time-like vectors.

The convexity of the proper cone they form follows from the combination of theorem 10.2.1
with theorem 10.2.1: for all t P p0, 1q set x̃ :“ tx and ỹ :“ p1 ´ tqy, then x̃ and ỹ belong to
the same cone as x and y by theorem 10.2.1, thus their sum x̃ ` ỹ “ tx ` p1 ´ tqy belongs
to the same cone too for all t P p0, 1q by theorem 10.2.1. Since x “ ptx` p1´ tqyq|t“1 and
y “ ptx` p1´ tqyq|t“0, we have that the convex combination tx ` p1 ´ tqy belongs to the
same cone as x and y for all t P r0, 1s. 2

Def. 10.2.7 (Time-like cone) We call the cone of all positively (respectively, negatively)
oriented time-like vectors in R1,n´1 the future (respectively, the past) time-like cone.

These results explain why the concept of orientation is defined only for causal vectors: the
future and the past light-cones and time-cones are the connected components of
two disjoint sets, thus orientation allows us to single out which connected component we
are dealing with.

Instead, for all n ě 3 the space-like region is connected (but not convex because
antipodal points w.r.t.the origin cannot communicate via a straight line segment), so specifying
an orientation of a space-like vector does not single out any particular connected component
of the space-like region. The only exception is represented by the case n “ 2, but in the
literature this special case is simply treated separately from the others without introducing a
particular nomenclature for space-like vectors even for this exception.
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10.2.1 Orthogonality and orthonormality in the Lorentz n-space

Motivated by the central importance of the concept of orthonormal basis in Euclidean geometry,
we give the equivalent definition in Lorentzian geometry in R1,n´1.

As a preliminary remark, we notice that, since light-like vectors have null Lorentz pseudo-
norm, only time-like or space-like vectors can be unit vectors in R1,n´1.

Def. 10.2.8 (Orthonormality in R1,n´1) A set of m ď n mutually Lorentz-orthogonal unit
vectors in R1,n´1 is said to be an orthonormal family. If m “ n, then we have an orthonormal
basis of R1,n´1.

We now note that the matrix of the Lorentz pseudo-scalar product relative to an orthonor-
mal basis u1, . . . , un coincides with the diagonal matrix η “ diagp´1,`1,`1, . . . ,`1q.

Thus, the signature of the Lorentz pseudo-scalar product is p´,`,`, . . . ,`q, so, thanks to
property 21 of the pseudo-scalar product previously quoted, its index ν is 1.

However, it is clear that the index ν of the Lorentz pseudo-scalar product is the
maximal number of linearly independent time-like vectors. In fact, such vectors
generate the subspace of R1,n´1 with highest dimension on which the Lorentz pseudo-scalar
product is, by definition of time-likeness, negative-definite.

The consequence of this line of reasoning is that in every Lorentz-orthonormal basis
of R1,n´1 there is exactly one time-like vector and n ´ 1 space-like vectors. By
convention, the time-like vector is set to be the first basis vector. This justifies the following,
more explicit, definition of Lorentz-orthonormal basis of R1,n´1.

Def. 10.2.9 A set of n vectors B “ pu1, . . . , unq is a Lorentz-orthonormal basis of R1,n´1 if

ui ˝ uj “

$

’

&

’

%

´1 if i “ j “ 1

1 if i, j ě 2, i “ j

0 if i ‰ j

.

Moreover, we say the basis is positive if u1 is a positively oriented time-like vector.

By direct computation, it can be verified that the canonical basis pe1, . . . , enq of Rn is
a Lorentz-orthonormal basis of R1,n´1.

A Lorentz-orthonormal basis B “ pu1, . . . , unq of R1,n´1 is an actual basis of Rn, i.e. it
is a family of n linearly independent vectors. To verify this, consider an arbitrary linear
combination of the vectors of B, i.e. the vector ũ “ α1u1 ` ¨ ¨ ¨ ` αnun, with αi P R for all i.
Then, by using Lorentz-orthonormaly in the direct computation of the Lorentz pseudo-scalar
products between ũ and each vector of B, we have:

ũ ˝ ui “ αipui ˝ uiq “

#

´α1 if i “ 1

αi if i ě 2
,

ũ “ 0 ùñ 0 “ 0 ˝ ui “

#

´α1 if i “ 1

αi if i ě 2
ùñ α1 “ ¨ ¨ ¨ “ αn “ 0.

The existence of Lorentz-orthonormal bases is guaranteed by the following result.
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Theorem 10.2.2 (Gram-Schmidt Lorentz-orthonormalisation) Let B “ pu1, . . . , unq
be a vector basis of R1,n´1 with u1 a time-like vector. Then we can extract a basis BL “

pw1, ¨ ¨ ¨ , wnq from B such that:

1. BL is a positive Lorentz-orthonormal basis.

2. spanpw1, . . . , wkq “ spanpu1, ¨ ¨ ¨ , ukq for all k P t1, . . . , nu.

Proof. This proof follows a path very similar to the proof for the usual Gram-Schmidt process,
but with some minor tweaks. We start by setting

w1 :“

#

u1
|‖u1‖| if u1 is positive

´ u1
|‖u1‖| if u1 is negative

,

and then we set
#

v2 :“ u2 ` pu2 ˝ w1qw1

w2 :“ v2
‖v2‖

and
$

’

&

’

%

vk :“ uk ` puk ˝ w1qw1 ´
k´1
ř

i“2
puk ˝ wkqwk

wk :“ vk
‖vk‖

for k ě 3.

With such a construction, BL “ tw1, ¨ ¨ ¨ , wnu is a positive Lorentz orthonormal basis that
verifies the wanted conditions. 2

Remark 10.2.2

Similarly, we can apply a similar process when pu1, . . . , umq is a set of linearly independent,
space-like vectors to extract a set of space-like vectors pw1, . . . , wmq such that

wi ˝ wj “ δij and spanpw1, . . . , wkq “ spanpu1, . . . , ukq,

for all k P t1, . . . ,mu.

Def. 10.2.10 Let V be a vector subspace of Rn. The Lorentz-orthogonal complement of V is:

V L “ tx P Rn : x ˝ y “ 0 @y P V u.

The properties of the Lorentz-orthogonal complement are given in the next result, where we
use the symbol V K to denote the Euclidean orthogonal complement of V .

Lemma 10.2.2 Let V be a vector subspace of Rn and write ηpV Kq :“ tηx, x P V Ku, then:

1. V L “ ηpV Kq;

2. pV LqL “ V , i.e. the Lorentz-orthogonalization is an involutive operation.
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Proof.

1. : it is a consequence of remark 10.2.1, i.e. x ˝ y “ xx, ηyy “ xηx, yy @x, y P Rn, and of the
fact that η “ diagp´1, 1, . . . , 1q verifies η2 “ In.

V L Ď ηpV Kq : let x P V L, then x ˝ y “ 0 @y P V and so xηx, yy “ 0 @y P V , i.e. ηx P V K

but then x “ ηpηxq P ηpV Kq.

ηpV Kq Ď V L : let x P ηpV Kq, then ηx P ηpηpV Kqq “ V K, so xηx, yy “ 0 @y P V , but then

x ˝ y “ 0 @y P V , i.e. x P V L.

2. : we have

x P pV LqL ðñ x ˝ y “ 0 @y P V L ðñ
p1.q

x ˝ ηz “ 0 @z P V K,

which is equivalent to xx, ηpηzqy “ xx, zy “ 0 @z P V K, i.e. x P pV KqK “ V . 2

1. is clearly the consequence of the fact that x ˝ y “ xx, ηyy “ xηx, yy, hence Lorentz-
orthogonality between two vectors x and y of R1,n´1 can be interpreted as the Euclidean
orthogonality between one vector and the Euclidean orthogonal reflection of the other along
its first coordinate.

We end this section with the classification of vector subspaces in R1,n´1 in 3 categories.

Def. 10.2.11 Let V be a vector subspace of R1,n´1.

• V is time-like if it contains at least a time-like vector;

• V is space-like if every x P V zt0u is space-like;

• V is light-like otherwise.

Rn, as improper subset of R1,n´1, is a time-like vector subspace, because Rn “ spanpe1, . . . , enq
and e1 is time-like.

It might be a little surprising that a time-like vector subspace V of R1,n´1 is defined just
by requiring the existence of a time-like vector in V , while, on the contrary, we demand all
non-null vectors of a space-like vector subspace to be space-like. The difference is justified
by corollary 10.2.2 which imposes a strong constraint on the number of time-like vectors
that can appear in a Lorentz-orthonormal basis of a vector subspace: either one or zero!
Even if a basis of a vector subspace V of R1,n´1 is composed only by time-like vectors, after
orthonormalization, only one vector will remain time-like and the others will become space-like.
Moreover, as a consequence of corollary 10.2.3, only one light-like vector can appear
in a basis of a light-like vector subspace and all the other basis vectors must be
space-like.

Figure 10.4 gives a graphical depiction of vector subspaces of R1,2 (which are necessarily
either hyperplanes or straight lines passing through the origin).
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Figure 10.4: A graphical representation of vector subspaces in R1,2.

We note that:

• space-like vector subspaces intersect the double light-cone only in the origin, either
perpendicularly w.r.t.the cone axis, or not, but without intersecting it in other points;

• time-like vector subspaces intersect the double light-cone not trivially;

• light-like vector subspaces are either straight lines defined by light-like vectors, or
hyperplanes generated by a light-like vector and a space-like vector such that the
hyperplane is tangent to the light-cone.

The relationship between time-like and space-like vector subspaces of R1,n´1 is established
by the following result.

Theorem 10.2.3 A vector subspace V Ď R1,n´1 is time-like if and only if V L is space-like.

Proof.

ùñ : suppose V is time-like and x P V a time-like vector. If y P V Lzt0u then, by corollary
10.2.2, y must be space-like since x and y are Lorentz-orthogonal. Thus, V L is space-like.

ðù : we now assume V L to be space-like. Since pV LqL “ V , to prove that V is time-like it
is enough to exhibit a time-like vector y Lorentz-orthogonal to V L. A good candidate for this
role is provided by the residual vector of the Lorentz-orthogonal projection on V L of a vector
x R V L, as reported in eq. (10.3).

To this aim, we need to consider an orthonormal basis B “ pu1, . . . , umq, m “ dimpV Lq ď n,
of V L, which we know to exist thanks to remark 10.2.2.
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Let x P Rn be a time-like vector, then x R V L because V L is space-like, so, by definition,
all its vectors are space-like. The residual vector of the Lorentz-orthogonal projection of x on
V L is:

y “ x´
m
ÿ

i“1

px ˝ uiqui,

notice that the coefficients εi appearing in eq. (10.3) quoted before are all `1 because V L is
space-like.

Eq. (10.3) assures us that y is Lorentz-orthogonal to every vector in V L (in particular, to
every ui) and so, to finish the proof, we just have to check if y is a time-like vector. By the
bilinearity of ˝ we have:

y ˝ y “

˜

x´
m
ÿ

i“1

px ˝ uiqui

¸

˝ y “ x ˝ y ´
m
ÿ

i“1

px ˝ uiq pui ˝ yq
loomoon

“0

“ x ˝ y

“ x ˝

˜

x´
m
ÿ

i“1

px ˝ uiqui

¸

“ x ˝ x´
m
ÿ

i“1

px ˝ uiqpx ˝ uiq “ x ˝ x´
m
ÿ

i“1

px ˝ uiq
2

ď x ˝ x,

but x is time-like, so x ˝ x ă 0 and so y ˝ y ă 0 and y is time-like. 2

If we interchange the role of V with that of V L and we use the fact that pV LqL “ V , we
get the following corollary.

Corollary 10.2.5 A vector subspace V Ď R1,n´1 is space-like if and only if V L is time-like.

Finally, if V Ď R1,n´1 is a light-like vector subspace, since it cannot be neither time-like
nor space-like due to the previous results, we get the set of light-like vector subspaces is stable
w.r.t.Lorentz-orthogonalization.

Corollary 10.2.6 A vector subspace V Ď R1,n´1 is light-like if and only if V L is light-like.

10.3 Lorentz transformations

The analogue of orthogonal linear transformations of the group Opnq for the Euclidean n-space
are the Lorentz transformations for the Lorentz n-space.

Def. 10.3.1 A Lorentz transformation on R1,n´1 is a map φ : R1,n´1 Ñ R1,n´1 that preserves
the Lorentz pseudo-scalar product, i.e.

φpxq ˝ φpyq “ x ˝ y @x, y P R1,n´1.

It is simple to prove that the set of Lorentz transformation on R1,n´1 form a group under
composition.

Def. 10.3.2 (The Lorentz group) The group of Lorentz transformation on R1,n´1 is called
the Lorentz group and it is denoted with the symbol Op1, n´ 1q or L .
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The following result is the equivalent of theorem 10.1.2 for the Lorentz n-space.

Theorem 10.3.1 φ : R1,n´1 Ñ R1,n´1 is a Lorentz transformation if and only if it is linear
and, given a Lorentz-orthonormal basis pu1, . . . , unq of R1,n´1, pφpu1q, . . . , φpunqq is a Lorentz-
orthonormal basis.

Proof.

ùñ : we start by assuming that φ : R1,n´1 Ñ R1,n´1 preserves the Lorentz pseudo-scalar
product. Then, for all Lorentz-orthonormal basis pu1, . . . , unq,

φpuiq ˝ φpujq “ ui ˝ uj “

#

´1 if i “ j “ 1

δij otherwise
,

so pφpu1q, ¨ ¨ ¨ , φpunqq is a Lorentz-orthonormal basis. Hence, for all x P R1,n´1, thanks to eq.
(10.2) we have:

φpxq “
n
ÿ

i“1

εipφpxq ˝ φpuiqqφpuiq “
pφ Lorentz transf.q

n
ÿ

i“1

εipx ˝ uiqφpuiq,

with ε1 “ ´1 and εi “ `1 for all 2 ď i ď n. Eq. (10.2) implies also that x “
n
ř

i“1
εipx ˝ uiqui,

so, by writing xi “ εipx ˝ uiq, we get:

φp
n
ÿ

i“1

xiuiq “
n
ÿ

i“1

xiφpuiq, @x P R1,n´1. (10.6)

Following exactly the same line of reasoning used in the proof of theorem 10.1.2, we obtain
the linearity of the Lorentz transformation.

ðù : conversely, suppose that φ is linear and that, for any Lorentz-orthonormal basis
pu1, . . . , unq of R1,n´1, pφpu1q, . . . , φpunqq is again a-Lorentz orthonormal basis of R1,n´1. Then,

φpxq “ φp
n
ÿ

i“1

xiuiq “
pφ linearq

n
ÿ

i“1

xiφpuiq @x P R1,n´1,

thus

φpxq ˝ φpyq “

˜

n
ÿ

i“1

xiφpuiq

¸

˝

˜

n
ÿ

j“1

yjφpujq

¸

“

n
ÿ

i“1

n
ÿ

j“1

xiyjφpuiq ˝ φpujq,

but φpu1q ˝ φpu1q “ ´1 and φpuiq ˝ φpujq “ δij otherwise, so

φpxq ˝ φpyq “
n
ÿ

i“1

xiyi ´ x1y1 “ x ˝ y,

i.e. φ is a Lorentz transformation. 2

Being a linear transformation in Rn, a Lorentz transformation φ can be written as a matrix,
usually denoted with Λ P Mpn,Rq. More precisely, we have the following definition.
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Def. 10.3.3 (Lorentzian matrix) A matrix Λ P Mpn,Rq is called Lorentzian if the function
φΛ : Rn Ñ Rn defined by φΛpxq :“ Λx, for all x P Rn, is a Lorentz transformation.

Remark 10.3.1 Λ can be interpreted as the matrix associated to φΛ w.r.t.the canonical basis
pe1, . . . , enq of Rn.

As it happens for orthogonal transformations, Lorentzian matrices and Lorentz transforma-
tions can be identified, moreover, the algebraic properties of a Lorentzian matrix characterize
completely the associated Lorentz transformation, as stated in the following theorem.

Theorem 10.3.2 Let Λ be a n ˆ n real matrix and η “ diagp´1, 1, . . . , 1q. The following
statements are equivalent.

1. Λ is a Lorentzian matrix

2. Λt is a Lorentzian matrix

3. The columns of Λ form a Lorentz-orthonormal basis of R1,n´1

4. The rows of Λ form a Lorentz-orthonormal basis of R1,n´1

5. Λ verifies ΛtηΛ “ η

6. Λ verifies ΛηΛt “ η

7. Λ preserves the quadratic form qpxq “ ´x2
1 ` x2

2 ` ¨ ¨ ¨ ` x2
n “ ‖x‖2 associated to the

Lorentz pseudo-scalar product, i.e. qpΛxq “ qpxq ðñ ‖Λx‖2
“ ‖x‖2.

Proof.

1. ðñ 3. : thanks to remark 10.3.1, Λ has on the columns the vectors pφΛpe1q, . . . , φΛpenqq
of Rn, which is a Lorentz-orthonormal basis of R1,n´1. Lemma 10.3.1 can then be used to
guarantee the equivalence between 1. and 3.

1. ðñ 7. : the proof is exactly the same as the one of lemma 10.1.3, the only difference
being that the Euclidean scalar product x , y as to be replaced by the Lorentz pseudo-scalar
product ˝.

1. ðñ 5. : by remark 10.2.1 we get

Λx ˝ Λy “ xΛx, ηΛyy “ xx,ΛtηΛyy, @x, y P Rn,

so, @x, y P Rn it holds that:

Λ Lorentzian ðñ Λx ˝ Λy “ x ˝ y

ðñ xx,ΛtηΛyy “ xx, ηyy

ðñ ΛtηΛ “ η

which shows that 1. is equivalent to 5.

1. ðñ 6. : since η “ η´1, property 5. can be restated by saying that Λ is Lorentzian if and
only if ηΛtηΛ “ In, or that ηΛtη is the left inverse of Λ and so, by elementary linear algebra
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in Rn, Λ is invertible with inverse Λ´1 “ ηΛtη. Actually also Λ´1 is a Lorentzian matrix, in
fact, if the associated transformation is φ´1

Λ pxq :“ Λ´1x for all x P Rn, then we have

x ˝ y “ ppφΛφΛ´1qxq ˝ ppφΛφΛ´1qyq “ pφΛpφΛ´1pxqq ˝ pφΛpφΛ´1pyqq @x, y P R1,n´1,

but φΛ is a Lorentz transformation, so

x ˝ y “ pφΛ´1pxqq ˝ pφΛ´1pyqq @x, y P R1,n´1,

hence Λ´1 “ ηΛtη is Lorentzian and we can use property 5. on Λ´1 to write

pηΛtηqtηpηΛtηq “ η ðñ ηΛηη2Λtη “ η ðñ η´1ηΛηΛtηη “ η´1ηη ðñ ΛηΛt “ η,

having used the fact that η2 “ In and η “ ηt “ η´1.

1. ðñ 2. : immediate consequence of the equivalence between 1. and 5. and 1. and 6. In
fact, by the first equivalence we have that Λ is Lorentizan if and only if ΛtηΛ “ η, by the
latter this is equivalent to ΛηΛt “ η, which is nothing by the first equivalence written for Λt,
thus implying that Λ is Lorentzian if and only if Λt is.

1. ðñ 4. : Λ is Lorentzian if and only if Λt is, if and only if (by 1. ðñ 3.) Λt has a
Lorentz-orthonormal basis of R1,n´1 on its columns, which is equivalent to say that Λ has a
Lorentz-orthonormal basis of R1,n´1 on its rows. 2

Despite the extreme simplicity of its proof, this theorem has important consequences. The
first one is an immediate consequence of property 7.

Corollary 10.3.1 A Lorentz transformation preserves the likeness of a vector x P R1,n´1, i.e.
even if vectors can be modified by a Lorentz transformation,

• Lorentz-transformed time-like vectors still belong to the interior of the light-cone;

• Lorentz-transformed space-like vectors still belong to the exterior of the light-cone;

• Lorentz-transformed light-like vectors still belong to the light-cone.

Thus, as a whole, the light cone, the time-like and the space-like regions remain
unaltered after a Lorentz transformation.

The light cone is characterized by the equation qpxq “ 0, i.e. is the 0-level set of the quadratic
form q associated to the Lorentz pseudo-scalar product. Of course, there is nothing special
about the value 0, as underlined by the next corollary.

Corollary 10.3.2 The level sets of the quadratic form q associated to the Lorentz pseudo-scalar
product are preserved by a Lorentz transformation, i.e. if x P R1,n´1 belongs to the hyperboloid
defined by qpxq “ c, then also its Lorentz transformed (which is, in general, another vector)
belongs to the same hyperboloid. In other words, as a whole, the hyperboloid qpxq “ c,
c P R, remains unaltered after a Lorentz transformation.
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As we have seen in the proof, a Lorentzian matrix Λ is invertible with inverse Λ´1 “ ηΛtη
which is a Lorentzian matrix too, thus, if we identify Lorentz transformations φ with their
Lorentzian matrices Λ, we can identify Op1, n´ 1q with a subgroup of GLpn,Rq as follows:

Op1, n´ 1q “
 

φ : Rn Ñ Rn : φpxq ˝ φpyq “ x ˝ y, @x, y P R1,n´1
(

“
 

Λ P GLpn,Rq : ΛtηΛ “ η “ ΛηΛt, η “ diagp´1, 1, . . . , 1q
(

.

Notice that if ˝ is replaced by the Euclidean scalar product x , y and η by In, then
Op1, n´ 1q becomes the group Opnq:

Opnq “
 

φ : Rn Ñ Rn : xφpxq, φpyqy “ xx, yy , @x, y P Rn
(

“
 

A P GLpn,Rq : AtInA “ In “ AInA
t
(

.

By Binet’s theorem, detpηq “ detpΛtηΛq “ detpΛtq detpηqdetpΛq, i.e. detpΛtq detpΛq “ 1,
but detpΛtq “ detpΛq, thus

detpΛq “ ˘1 ,

as it happens for an orthogonal matrix. As usual, we denote with

SOp1, n´ 1q ” L` :“
 

Λ P Op1, n´ 1q : detpΛq “ 1
(

,

the special (or proper) Lorentz group.

Another important subgroup of Op1, n´ 1q is defined below.

Def. 10.3.4 (Positive Lorentz transformations) A Lorentz transformation Λ P Op1, n´
1q is called positive (or positively oriented) if it preserves the orientation of the light cone, i.e.
if, for all x P R1,n´1, x time-like,

x1 ą 0 ùñ pΛxq1 ą 0.

The subgroup of Op1, n´ 1q given by positive Lorentz transformations is denote as follows:

POp1, n´ 1q ” L Ò :“
 

Λ P Op1, n´ 1q : x time-like, x1 ą 0 ùñ pΛxq1 ą 0
(

,

and called either positive or orthochronous Lorentz group.

We stress that, if Λ P POp1, n´ 1q and x P R1,n´1 is a time-like vector such that x1 ă 0, then
´x1 ą 0 and ´pΛxq1 “ pΛp´xqq1 ą 0, hence pΛxq1 ă 0. In other words, a positive Lorentz
transformation preserves the orientation of time-like vectors in the interior of both the upper
and the lower parts of the light-cone.

In relativistic theories, where the coordinate x1 is identified with time t, the previous
remark is translated by saying that positive Lorentz transformations preserve the orientation
of time-like vectors both in the interior of both the future and the past light-cone.

The subgroup

SPOp1, n´ 1q ” SO`p1, n´ 1q ” L Ò
` :“ SOp1, n´ 1q X POp1, n´ 1q,

is called special positive or proper orthochronous or restricted Lorentz group. It
can be proven to be the connected component to the identity of the Lorentz group.

More insights about the structure of the subgroups of the Lorentz group just defined are
provided by the next theorems. In particular, it is quite remarkable that the positivity of a
Lorentz transformation is fully encoded in the first entry of the Lorentzian matrix Λ.
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Theorem 10.3.3 Let Λ “ pΛijq1ďi,jďn P Op1, n´ 1q.

1. Λ P POp1, n´ 1q if and only if Λ11 ě 1.

2. Λ P Opnq X POp1, n´ 1q if and only if Λ11 “ 1.

Proof.

1. : we start by showing that Λ is positive if and only if Λ11 ą 0. Since Λ has a Lorentz-
orthonormal basis on its rows and since the first vector of this basis is time-like, the entries of
the first row of Λ form a the time-like vector that we denote with v1.

Fixed a generic positive time-like vector x P Rn, Λ is positive if and only if Λx is a positive
time-like vector, i.e. if the first entry of Λx is positive, but this is nothing but xv1, xy, so Λ is
positive if and only if xv1, xy ą 0.

However xv1, xy “ xv1, η
2xy “ xv1, ηpηxqy “ v1 ˝ ηx, thus Λ is positive if and only if

v1 ˝ ηx ą 0. Notice that ηx is a negative vector because x is positive, so x1 ą 0, but η “
diagp´1, 1, . . . , 1q, so pηxq1 ă 0. By theorem 10.2.1, if v1 is a negative vector too, then
v1 ˝ ηx ď 0, so the fact that v1 ˝ ηx ą 0 implies that v1 must be positive, i.e. Λ11 ą 0.

Moreover, since v1 a unit norm time-like vector, we have ‖v1‖2
“ ´1, but ‖v1‖2

“

´Λ11
2 ` |v̄1|

2, thus
Λ2

11 “ 1` |v̄1|
2 ě 1,

which implies Λ11 ě 1 since we have shown that Λ11 is positive.

2. : first of all we remark that 1. implies the following equivalence Λt P POp1, n ´ 1q ðñ
Λ11 ě 1, in fact Λt is a Lorentzian matrix too an it shares the first entry, Λ11, with Λ.

Now, if Λ11 “ 1 then Λ2
11 “ 1 ` |v̄1|

2 implies |v̄1|
2 “ 0, so v1 “ p1, 0, . . . , 0q ” e1

t (the
transposed of the first vector of the canonical basis of Rn, recalling that we always work under
the assumption that vectors in Rn are column vectors). It follows that the first column c1 of
Λ is c1 “ vt1 “ e1. Therefore, Λ has the form

Λ “

ˆ

1 0
0 A

˙

,

A P GLpn´ 1,Rq and, by theorem 10.3.2,

ΛtηΛ “ η ðñ

ˆ

1 0
0 At

˙ˆ

´1 0
0 In´1

˙ˆ

1 0
0 A

˙

“

ˆ

´1 0
0 In´1

˙

ùñ AtA “ In´1,

but then ΛtΛ “ In and so Λ P Opnq.
It remains only to prove that if Λ P Opnq XPOp1, n´ 1q, then, necessarily, its first entry is

equal to 1. To this aim, notice that, in this case, every column of Λ is an orthonormal vector
w.r.t.both the Euclidean and the Lorentz scalar product, this implies that c1, the first column
of Λ, satisfies ‖c1‖2

“ ´1 and |c1|
2 “ 1, so ‖c1‖2

` |c1|
2 “ 0. But, since the first element of c1

is actually Λ11, we also have ‖c1‖2
“ ´Λ11

2 ` |c̄1|
2 and |c1|

2 “ Λ11
2 ` |c̄1|

2, so

0 “ ‖c1‖2
` |c1|

2 “ ´Λ11
2 ` |c̄1|

2 ` Λ11
2 ` |c̄1|

2 “ 2|c̄1|
2,

i.e. c̄1 “ 0. Since c1 “ pΛ11, c̄1q, this implies c1 “ pΛ11, 0, . . . , 0q and the only what that
c1 has unit Euclidean norm is that Λ11 “ ˘1, but Λ11 ě 1 so only the option Λ11 “ 1 is valid. 2
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During the proof of the last theorem, we have also proven this result, which says, geometri-
cally, that the only orthogonal transformations that preserve the light-cone are the orthogonal
transformations that leave the first axis invariant.

Corollary 10.3.3

Opnq X POp1, n´ 1q “

"ˆ

1 0
0 A

˙

: A P Opn´ 1q

*

– Opn´ 1q.

We end this section by showing that the group of Lorentz transformations acts transitively
on the vector subspace of R1,n´1 of different likeness, which become, then, homogeneous spaces
w.r.t.the action of L . In fact, we can prove an even stronger result: transitivity is guaranteed
already by the subgroup of positive Lorentz transformations.

Theorem 10.3.4 Let VTm, VSm and VLm be the set of m-dimensional time-like, space-like and
light-like vector subspace of R1,n´1, respectively. Then, the action of POp1, n´ 1q is transitive
on each of them.

Proof.

Transitivity of POp1, n´ 1q on VTm. We start by observing that V m :“ spanpe1, . . . , emq – Rm

is a time-like vector subspace of R1,n´1 because e1 is time-like. We will prove the transitivity
of POp1, n´ 1q on VTm by showing that for a given time-like m-dimensional vector subspace V
belonging to the set VTm there is a Λ P POp1, n´ 1q such that Λ

`

Vmq “ V .
By theorem 10.2.2 we can guarantee the existence of a positive Lorentz-orthonormal basis

B “ pw1, . . . , wmq of V . We use the vectors of B to define the matrix

Λ :“

¨

˝

| . . . |

w1 . . . wn
| . . . |

˛

‚,

which, thanks to theorem 10.3.2, belongs to POp1, n´ 1q because its columns form a positive
Lorentz-orthonormal basis. By direct computation we have that Λpeiq “ wi @i “ 1, . . . ,m, so,
by linearity, ΛpVmq “ V .

Transitivity of POp1, n´ 1q on VSm. This time, we set Wm :“ spanpe2, . . . , em`1q to be our
m-dimensional space-time vector subspace of reference (note that the dimension m of a space-
like vector subspace must be strictly less than n since it cannot contain any time-like vector by
definition). Let W P VSm and u PWL, where WL is the Lorentz-orthogonal of W , a positive
time-like vector such that ‖u‖2

“ ´1. Then, Ṽ :“ spanpu,W q is a time-like vector subspace
of R1,n´1 and so, by what we have just proven, it is connected to V m`1 by a positive Lorentz
transformation, that we indicate again with Λ P POp1, n´ 1q for simplicity. So: ΛpṼ q “ V m`1

and Λpuq “ e1 (the time-like vectors are connected by Λ). If we prove that ΛpW q “ Wm,
then, being Λ invertible, we have Λ´1pWmq “W , thus proving the transitivity. To this aim,
let w PW Ă Ṽ . Then Λpwq P spanpe1q

L because

Λpwq ˝ e1 “ Λpwq ˝ Λpuq “ w ˝ u “ 0,
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and so, since the Lorentz-orthogonal of spanpe1q is spanpe2, . . . , enq “Wn´1,

Λpwq P spanpe1q
L X ΛpṼ q “Wn´1 X V m`1 “Wm,

which allows us to conclude that ΛpW q Ă Wm. Finally, if B “ pw1, . . . , wmq is a Lorentz-
orthonormal basis of W , then wi ˝wj “ δij and so Λpwiq ˝Λpwjq “ δij , which means that also
pΛpwiqq1ďiďm is a basis of Wm. Hence, by linearity, we have ΛpW q “Wm.

We leave the transitivity of POp1, n´ 1q on VLm as an exercise. 2

The previous theorem has an important consequence: the transitivity of Lorentz trans-
formations on the hyperboloids in R1,n´1 defined as set-level surfaces of the quadratic form
associated to the Lorentz pseudo-scalar product. To understand how this is possible, it is
sufficient to consider the particular case of m “ 1: the elements of VT1 and VS1 are straight
lines passing through the origin and belonging to the interior or the exterior of the light-cone,
respectively.

Each one of these straight lines intersects the hyperboloid defined by the equation ‖x‖2
“ α,

α P Rzt0u, in two antipodal points w.r.t.the origin and belonging to the two disconnected
hyperboloid sheets. Thus, the transitivity of positive Lorentz transformations on VT1 and
VS1 implies that every couple of vectors belonging to same sheet of the hyperboloid can be
connected by a positive Lorentz transformation.

The following result summarizes the previous arguments.

Corollary 10.3.4 Let α P Rzt0u, fixed. Op1, n´ 1q acts transitively on the hyperboloid

Hn´1
α “ tx P R1,n´1 : ‖x‖2

“ αu.

Proof. We start by remarking that given x P Hn´1
α , we have

Vx XHn´1
α “ tx,´xu , where Vx “ spantxu.

Let x, y P Hn´1
α . Then by theorem 10.3.4, there is a transformation Λ P POp1, n ´ 1q such

that ΛpVxq “ Vy. Because Λ preserves the Lorentz pseudo-scalar,

ΛpVx XHn´1
α q “ Vy XHn´1

α

and so we have either
Λpxq “ y or Λpxq “ ´y.

In the second case, it suffices to take ´Λ P Op1, n´ 1q as the transitive action from x to y. 2
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Chapter 11

Möbius transformations (Antoine Guennec,
Nicoletta Prencipe and Edoardo Provenzi)

Möbius transformations are the main toolbox for the conformal model of hyperbolic geometry.
Before discussing them rigorously, we give an intuitive introduction.

11.1 Introduction to Möbius transformations

The most natural setting for Möbius transformations is that of sphere, where a Möbius
transformation is defined as a finite composition of basic geometric transformations called
inversions, whose basic idea is depicted in Figure 11.1: by sliding continuously an elastic
band on a ball, we can transform it into the equator, thus transforming the surface of the ball
contained in the interior of the elastic band to half the surface of ball; in this situation the
ball surface contained in the elastic band and the remaining one are isomorphic.

Σ

Σ�

Figure 11.1: Inversion on a sphere: as the radius of the circle increased until reaching the
diameter of the sphere, the ‘interior’ of the circle (in green) is diffeomorphic to the ‘outside’
(in pink).

Once written in mathematical terms, this continuous transformation that maps the spherical
surface contained in a circle to the one left outside is called inversion on a sphere. By noticing
that a circle can be obtained by cutting a sphere in R3 with a plane, it should not be surprising
that, in the definition of inversion on a sphere of an arbitrary (finite) dimension n, a circle is
replaced by a hypersphere, i.e. the intersection between a n-hyperplane and a n-sphere.

The group of Möbius transformations on the sphere, denoted by MpSnq is the subgroup
of AutpSnq “ tf : Sn Ñ Sn, f bijectiveu generated by inversions w.r.t. hyperspheres.
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While it is true that handling Möbius transformations on the sphere is the most economical
way to do it in terms of transformations involved (i.e. inversions), it is also true that it is
more intuitive to analyze Möbius transformations in the Euclidean space. This can be done
thanks to the stereographic projection introduced in chapter 1, which allows us to set up a
bijection between the n-sphere minus the north pole and the hyperplane in Rn`1 defined by
tx P Rn`1 : xn`1 “ 0u, which can be identified with Rn. To obtain a complete bijection we
will need to introduce an artificial element, an abstract point denoted by 8 and called the
point at infinity.

Dealing with Möbius transformations in the Euclidean domain enlarged with the point
at infinity comes with a price: we will see (corollary 11.4.1) that we no longer need only
inversions to characterize them, but also other geometric operations, called reflections w.r.t.
hyperplanes.

The importance of reflections and inversions motivates why we start the formal analysis of
Möbius transformations by defining them in the next subsection.

11.2 Reflections and inversions

Consider a unit vector a P Rn, |a| “ 1, then, by the orthogonal projection theorem, we have
Rn “ spanpaq ‘ spanpaqK and so spanpaqK :“ tx P Rn : xx, ay “ 0u is a pn´ 1q-dimensional
vector subspace of Rn, i.e. a hyperplane in Rn passing through the origin. If we consider the
affine structure of Rn, the vectors of spanpaqK can be rigidly translated away from 0 by a real
quantity t via the transformation x ÞÑ x´ ta. This operation identifies an affine space of
dimension n´ 1 whose algebraic expression can be obtained by replacing x with x´ ta in
the equation xx, ay “ 0, i.e. xx´ ta, ay “ 0 ðñ xx, ay ´ t|a|2 “ 0 ðñ

|a|“1
xx, ay “ t.

These considerations justify the following definition.

Def. 11.2.1 (Hyperplane in Rn) Given a P Rn, |a| “ 1, and t ě 0, the hyperplane associ-
ated to a and t is the set

P pa, tq :“ tx P Rn, xx, ay “ tu.

Thus:

• a is the normal vector to P pa, tq

• t is the distance between P pa, tq and 0, which can be taken non-negative because its
possible negative sign can be incorporated in the vector a without changing its unit
norm by redefining t and a as follows:

t ÞÑ |t| ě 0 and a ÞÑ signumptq a.

Geometrically, the reflection w.r.t. P pa, tq is the map ρ that takes any point x P Rn at a
distance d from P pa, tq to a point ρpxq which lies specularly on the other side of the hyperplane
at the same distance d. The 2D version of this operation is depicted in Figure 11.2.

To understand how to analytically define ρpxq notice that, if we perform the sum x` λa,
then we move x perpendicularly w.r.t. P pa, tq and by a magnitude λ. Let λ˚ be such that
x ` λ˚a P P pa, tq, then clearly ρpxq “ x ` 2λ˚a. To make λ˚ explicit we have to write

xx` λ˚a, ay “ t ðñ xx, ay ` λ˚�
��>

1

}a}2 “ t ðñ λ˚ “ t´ xx, ay.
We formalize this concept in the following definition.

230



Figure 11.2: 2D graphical representation of a reflection w.r.t. a hyperplane, which is a straight
line in two dimensions.

Def. 11.2.2 A reflection in Rn w.r.t. the hyperplane P pa, tq is the affine function:

ρa,t : Rn ÝÑ Rn
x ÞÑ ρa,tpxq :“ x` 2pt´ xx, ayqa.

(11.1)

ρa,tpxq is said to be the reflection of x w.r.t. to the hyperplane P pa, tq.

If the dependence of ρ on the parameters a and t of the hyperplane P pa, tq is not significant,
we will simplify the notation and write ρ instead of ρa,t.

Figure 11.2 suggests some geometrical properties of ρa,t, e.g. the vectors belonging to
P pa, tq are unaffected by the action of ρa,t, if we apply it two times we come back to the
original vector, so that the inverse of ρa,t is itself and the Euclidean distance between any two
reflected vectors is the same as the original distance.

These properties, and one more, are rigorously stated in the following theorem.

Theorem 11.2.1 ρa,t satisfies the following properties for all x, y P Rn:

1. ρa,tpxq “ x if and only if x P P pa, tq

2. ρ2
a,tpxq “ x, i.e. ρa,t is an involution, and so ρ2

a,t “ idRn, i.e. ρa,t is a bijection with
ρa,t

´1 “ ρa,t

3. ρa,t is a Euclidean isometry: |ρa,tpxq ´ ρa,tpyq| “ |x´ y|

4. ρa,t P Opnq ðñ t “ 0.
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Proof. The proofs can be obtained by direct computation.

1. :

ρa,tpxq “ x ðñ x “ x` 2pt´ xx, ayqa pa ‰ 0q

ðñ xx, ay “ t

ðñ x P P pa, tq.

2. :

ρ2
a,tpxq “ ρa,tpρa,tpxqq “ ρa,tpxq ` 2pt´ xρa,tpxq, ayqa

pletting s ” 2pt´ xx, ayqq

“ x` sa` 2pt´ xx` sa, ayqa

“ x` sa` 2pt´ xx, ayqa´ 2sa

“ x` sa` sa´ 2sa

“ x.

3. : first of all, we note that

ρa,tpxq ´ ρa,tpyq “ x´ y ´ 2 xy ´ x, ay a,

so

|ρa,tpxq ´ ρa,tpyq|
2 “ |px´ yq ´ 2 xy ´ x, ay a|2

“ |x´ y|2 ´ 4 xy ´ x, ay2 ` 4 xy ´ x, ay2

“ |x´ y|2.

4. : if t ‰ 0, then ρa,tp0q “ 2ta ‰ 0 since a P Sn, thus ρa,t is not linear and thus it cannot
belong to Opnq. If t “ 0 then, for all x, y P Rn,

xρa,0pxq, ρa,tpyqy “ xx´ 2 xx, ay a, y ´ 2 xy, ay ay

“ xx, yy ´ 2 xx, ay xa, yy ´ 2 xy, ay xx, ay ` 4 xx, ay xa, yy�
��>

1
|a|2

“ xx, yy .

2

As a consequence of property 2., ρa,t is bijective, thus a reflection w.r.t. a hyperplane in
Rn maps bicontinuously any point in Rn that lies on one side of the hyperplane to a unique
point that lies on the other side.

The concept of inversion deals with the same problem, with one (major) difference: the
hypersurface w.r.t. the inversion is performed is not a hyperplane but a (hyper)sphere. While
a hyperplane extends towards the infinite, a sphere is bounded, this fact implies that it
is impossible to continuously fill the whole outer space to the spherical surface simply by
reflecting its interior points w.r.t. the tangent hyperplane to the sphere at a point, a different
geometrical operation is needed.
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As proven by G. Bellavitis in his 1836 paper [2], this operation consists in mapping any
point x inside the sphere to the unique point σpxq outside the sphere characterized by the
following two properties: firstly, σpxq lies on the same line joining x with the center of the
sphere; secondly, the norm of σpxq is inverted w.r.t. that of x.

The easiest way to formalize this idea is by first considering the unit sphere Sn´1 in Rn
centered in 0: if x P Rn is such that |x| ă 1, then σ0,1pxq :“ 1

|x|
x
|x| “

1
|x|2

x is the desired

inverted point outside Sn´1.
If, instead of Sn´1, we consider Sn´1

r , r ą 0, then we can turn back to the previous case by
applying σ0,1 to x

r and then by restoring the correct radius via a multiplication by r, denoted
with mr. Mathematically, this corresponds to the composed function σ0,r :“ mr ˝ σ0,1 ˝m1{r,
hence, given any x P Rn such that |x| ă r ðñ |x{r| ă 1 we have

σ0,rpxq “ pmr ˝ σ0,1 ˝m1{rqpxq “ mrpσ0,1px{rqq “ mr

˜

r�2

|x|2
x

�r

¸

“ mr

ˆ

r

|x|2
x

˙

“

ˆ

r

|x|

˙2

x.

The most general case is that of Sn´1
a,r , the pn´ 1q-sphere centered in a P Rn with radius r ą 0,

i.e.
Sn´1
a,r :“ tx P Rn : |x´ a| “ ru.

Following the same argument used above, the inversion σa,r will be given by the composition
τa ˝ σ0,r ˝ τ´a, τ being the translation operator. Thus, for all x P Rnztau satisfying |x´ a| ă
r ðñ |x´ a|{r ă 1:

σa,rpxq “ τapσ0,rpx´ aqq “ τa

˜

ˆ

r

|x´ a|

˙2

px´ aq

¸

“ a`
r2

|x´ a|2
px´ aq.

Def. 11.2.3 Let a P Rn and r ą 0, then the inversion in Rn w.r.t. the sphere Sn´1
a,r is the

non-linear function

σa,r : Rnztau ÝÑ Rnztau
x ÞÑ σa,rpxq :“ a` r2

|x´a|2
px´ aq.

σa,rpxq is said to be the inverse of x w.r.t. to the sphere Sn´1
a,r .

If the specification of the parameters a and r is not significant, we will simply write σ instead
of σa,r.

The following result shows that the conjugation that is needed to define a generic inversion
starting from the inversion w.r.t. to unit sphere can be operated by fusing into an affine
function the multiplication by r and the translation by a.

Lemma 11.2.1 Let:

• σ0,1 the inversion w.r.t. Sn´1, the unit sphere centered in 0 in Rn

• σa,r the inversion w.r.t. the sphere Sn´1
a,r , a P Rn, r ą 0

• for all x P Rn, φpxq “ a` rx, with a and r as above.

Then,

σa,r “ φ ˝ σ0,1 ˝ φ
´1 .
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Proof. For all x P Rn we have, by definition, σa,rpxq “ a` r2

|x´a|2
px´ aq, but, if we replace x

by r px´aq
|x´a|2

as argument of φ we get

φ

ˆ

r
x´ a

|x´ a|2

˙

“ a`
r2

|x´ a|2
px´ aq,

so σa,rpxq “ φ
´

r x´a
|x´a|2

¯

. Since σ0,1pxq “
x
|x|2

,

σ0,1

ˆ

x´ a

r

˙

“
x´ a

r

r2

|x´ a|2
“ r

x´ a

|x´ a|2
,

hence σa,rpxq “ φ ˝ σ0,1

`

x´a
r

˘

for all x P Rn.
Finally, by solving φpxq “ a ` rx w.r.t. x we obtain φ´1pxq “ x´a

r , so that σa,rpxq “
φ ˝ σ0,1 ˝ φ

´1pxq for all x P Rn. 2

Remark 11.2.1 Both reflection w.r.t. a hyperplane and inversion w.r.t. a sphere are,
essentially, one-dimensional operations, in the sense that all the points belonging to the
same straight line orthogonal to the hyperplane involved in a reflection are left on this straight
line; in the same way, all the points belonging to the straight line passing through the origin
of the sphere involved in an inversion are left on that line.

Contrarily to a reflection w.r.t. a hyperplane, which is defined on the whole Rn, an
inversions w.r.t. a sphere Sn´1

a,r is defined on Rn deprived of the sphere center a.
Notice also that σa,rpxq is the only point verifying

|σa,rpxq ´ a||x´ a| “ r2, (11.2)

thus, the closer x is to the center of the sphere a, the further apart σa,rpxq is sent
on the straight line connecting x to a. Figure 11.3 gives a graphical representation of
this phenomenon in two dimensions.

Figure 11.3: 2D graphical representation of an w.r.t the circle S1
a,r.
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As it can be seen, as we approach the center of the circle, the inverted point goes farther
and farther. It is not difficult to imagine that, if we want to extend the concept of inversion to
contemplate also the center of the sphere a, then we have to associate it to a point at infinite,
that we will rigorously define later.

In the following theorem we prove the properties of inversions analogous to those of
reflections. We put the accent on the fact that, by its own definition, an inversion cannot be
an isometry, except for the points belonging to the sphere w.r.t. the inversion is performed.

Theorem 11.2.2 Let a P Rn, r ą 0 and σ be the inversion w.r.t. Sn´1
a,r . Then, for all

x, y P Rnztau:

1. σa,rpxq “ x if and only if x P Sn´1
a,r

2. σ2
a,rpxq “ x, i.e. σa,r is an involution, and so σa,r is invertible with σa,r

´1 “ σa,r

3. |σa,rpxq ´ σa,rpyq| “
r2

|x´a||y´a| |x´ y|.

Proof. Let x, y P Rnztau.

1. : the relationship |σa,rpxq ´ a||x ´ a| “ r2 always holds for σa,r, thus σa,rpxq “ x if and
only if |x´ a|2 “ r2, i.e. x P Sna,r.

2. :

σ2
a,rpxq “ σa,rpσa,rpxqq “ a`

r2

|σa,rpxq ´ a|2
pσa,rpxq ´ aq

“ a`
|x´ a|2

r2

ˆ

r2

|x´ a|2
px´ aq

˙

“ x.

3. :

|σa,rpxq ´ σa,rpyq| “

ˇ

ˇ

ˇ

ˇ

r2

|x´ a|2
px´ aq ´

r2

|y ´ a|2
py ´ aq

ˇ

ˇ

ˇ

ˇ

“ r2

ˇ

ˇ

ˇ

ˇ

x´ a

|x´ a|2
´

y ´ a

|y ´ a|2

ˇ

ˇ

ˇ

ˇ

“ r2

B

x´ a

|x´ a|2
´

y ´ a

|y ´ a|2
,
x´ a

|x´ a|2
´

y ´ a

|y ´ a|2

F
1
2

“ r2

ˇ

ˇ

ˇ

ˇ

|x´ a|2

|x´ a|4
´ 2

xx´ a, y ´ ay

|x´ a|2|y ´ a|2
`
|y ´ a|2

|y ´ a|4

ˇ

ˇ

ˇ

ˇ

1
2

“ r2

ˇ

ˇ

ˇ

ˇ

1

|x´ a|2
´ 2

xx´ a, y ´ ay

|x´ a|2|y ´ a|2
`

1

|y ´ a|2

ˇ

ˇ

ˇ

ˇ

1
2

“ r2

ˇ

ˇ

ˇ

ˇ

|y ´ a|2 ´ 2 xx´ a, y ´ ay ` |x´ a|2

|x´ a|2|y ´ a|2

ˇ

ˇ

ˇ

ˇ

1
2

“ r2

ˇ

ˇ

ˇ

ˇ

xpx´ aq ´ py ´ aq, px´ aq ´ py ´ aqy

|x´ a|2|y ´ a|2

ˇ

ˇ

ˇ

ˇ

1
2

“ r2

ˇ

ˇ

ˇ

ˇ

xx´ y, x´ yy

|x´ a|2|y ´ a|2

ˇ

ˇ

ˇ

ˇ

1
2

“ r2 |x´ y|

|x´ a||y ´ a|
.

2
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Property 3. of theorem 11.2.2 states that, if x and y do not belong to the sphere Sn´1
a,r ,

then their Euclidean distance after the application of σa,r will be proportional to their original
Euclidean distance inside the sphere, with a non-linear proportionality coefficient that depends
on both x and y through the formula r2{|x´ a||y ´ a|.

This property is crucial to understand the profound link between Möbius transformations
and the so-called cross ratio.

The following theorems underline the importance of reflections and inversions, by relating
them to the Euclidean isometries and similarities.

Theorem 11.2.3 Every Euclidean isometry of Rn is a composition of at most n`1 reflections.

Proof. As a preliminary observation, we recall that, by theorem 10.1.1, all Euclidean isometry
f : Rn Ñ Rn can be written as fpxq “ a ` φpxq with a P Rn and φ P Opnq, for all x P Rn.
Hence, an isometry is an orthogonal transformation if and only is it leaves 0 fixed.

The proof is constructive and it is based on the following strategy:

• we start by building the first reflection ρ0 such that φ0 :“ ρ0 ˝ f belongs to Opnq;

• then we build by induction the other n reflections ρ1, . . . , ρn such that, for all k P
t1, . . . , nu, the transformation φk :“ ρk ˝ ρk´1 ˝ ¨ ¨ ¨ ˝ ρ0 ˝ f belongs to Opnq and leaves
all the first k vectors of the canonical basis e1, . . . , ek of Rn fixed;

• when we arrive to k “ n we obtain an orthogonal (hence linear) transformation φn “
ρn ˝ ¨ ¨ ¨ ˝ ρ0 ˝ f which leaves all the vectors of the canonical basis e1, . . . , en of Rn fixed.
The matrix associated to φn w.r.t. the canonical basis of Rn is of course In, so φn ” idRn ;

• finally, we observe that

φn “ ρn ˝ ¨ ¨ ¨ ˝ ρ0 ˝ f “ idRn ðñ pρ0 ˝ ¨ ¨ ¨ ˝ ρnq ˝ pρn ˝ ¨ ¨ ¨ ˝ ρ0q ˝ f “ ρ0 ˝ ¨ ¨ ¨ ˝ ρn

but the reflections ρi are involutions, i.e. ρ2
i “ idRn for all i “ 0, 1, . . . , n, so that

f “ ρ0 ˝ ¨ ¨ ¨ ˝ ρn, which proves that we need at most n` 1 reflections to represent any
arbitrary isometry f .

Let us start by building the reflection ρ0 such that φ0 “ ρ0 ˝ f P Opnq. We write
x0 :“ fp0q “ a and we set

ρ0 :“

$

&

%

idRn if x0 “ 0

ρ x0
|x0|

,
|x0|
2

otherwise
,

φ0 is clearly an isometry as composition of two isometries, f and the reflection ρ0. Let us
verify if it leaves 0 fixed: by using definition (11.1) we have

ρ0px0q “

$

&

%

idRnp0q “ 0 if x0 “ 0

ρ x0
|x0|

,
|x0|
2

px0q “ x0 ` 2

ˆ

|x0|
2 ´

A

x0,
x0
|x0|

E

˙

x0
|x0|

“ x0 ´ x0 “ 0 otherwise
,

so φ0p0q “ ρ0pfp0qq “ ρ0px0q “ 0, hence φ0 is indeed an orthogonal transformation.
Let us pass to the construction of the remaining reflections ρ1, . . . , ρn. As we have previously

declared, we will use the induction technique, so we need to start by proving that there exists
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a reflection ρ1 such that φ1 :“ ρ1 ˝ φ0 “ ρ1 ˝ ρ0 ˝ f is an orthogonal transformation that leaves
e1 fixed. We set x1 :“ φ0pe1q ´ e1 and we define such a reflection as follows

ρ1 :“

#

idRn if φ0pe1q “ e1

ρ x1
|x1|

,0 otherwise
,

φ1 is either φ0, which is an orthogonal transformation, or the composition of φ0 with the
reflection ρ x1

|x1|
,0, which is orthogonal thanks to property 4. of theorem 11.2.1, in both cases

φ1 P Opnq.
We also observe that φ1pe1q “ ρ1pφ0pe1qq, which is equal to idRnpe1q “ e1 if φ0pe1q “ e1,

otherwise:
φ1pe1q “ ρ1 ˝ φ0pe1q “ φ0pe1q ´ 2 xφ0pe1q, x1y

x1

|x1|
2
,

but |φ0pe1q ´ x1|
2 “ |φ0pe1q|

2 ´ 2 xφ0pe1q, x1y ` |x1|
2, so ´2 xφ0pe1q, x1y “ |φ0pe1q ´ x1|

2 ´

|φ0pe1q|
2 ´ |x1|

2, thus

φ1pe1q “ φ0pe1q `
`

|φ0pe1q ´ x1|
2

looooooomooooooon

“1

´ |φ0pe1q|
2

looomooon

“1

´|x1|
2
˘ x1

|x1|
2

“ φ0pe1q ´ |x1|
2 x1

|x1|
2
“ φ0pe1q ´ x1

“ e1,

where we have used the fact that |φ0pe1q ´ x1| “ |e1| “ 1 and |φ0pe1q| “ 1 because φ0 P Opnq
and |e1| “ 1. To resume, φ1 P Opnq and it leaves e1 fixed, thus the first induction step is
fulfilled.

We now assume that, for all1 k P t3, . . . , nu there exists φk´1 P Opnq that fixes e1, . . . , ek´1.
Let xk :“ φk´1pekq ´ ek and define

ρk :“

#

idRn if φk´1pekq “ ek

ρ xk
|xk|

,0 otherwise
.

By repeating exactly the same computations performed in the case of φ1, it can be verified that
φk :“ ρk ˝ φk´1 P Opnq, and that φk leaves ek fixed. To verify that φk leaves also e1, . . . , ek´1

fixed we write

φkpeiq “ ρkpφk´1peiqq “ ρ xk
|xk|

,0pφk´1peiqq “ φk´1peiq ´ 2 xxk, φk´1peiqy
xk
|xk|2

,

but, for 1 ď i ă k ď n´ 1,
φk´1peiq “ ei (11.3)

by hypothesis of induction and so

xxk, φk´1peiqy “
p11.3q

xφk´1pekq ´ ek, eiy “ xφk´1pekq, eiy ´���
�:0

xek, eiy “ xφk´1pekq, eiy

“
p11.3q

xφk´1pekq, φk´1peiqy “
φk´1POpnq

���
�:0

xek, eiy

“ 0,

1notice that for k “ 1, 2 we have already built φ0 and φ1, so we do not need to assume their existence.
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which implies that

φkpeiq “ φk´1peiq
looomooon

“ei

´2 xxk, φk´1peiqy
looooooomooooooon

“0

xk
|xk|2

“ ei, @i “ 1 ď i ă k ď n´ 1.

Hence, φk P Opnq and fixes e1, . . . , ek, which is what we had to verify in order to conclude the
proof. 2

We can easily extend the previous result to Euclidean similarities.

Corollary 11.2.1 Every Euclidean similarity is a composition of at most n` 3 reflections
and inversions.

Proof. First we treat the special case of the similarity gpxq “ kx, k ą 0. Let σ1 :“ σ0,1 and
σ2 :“ σ0,

?
k. Then, by direct computation, we get

σ2 ˝ σ1pxq “ σ2

ˆ

x

|x|2

˙

“ kx “ gpxq.

More generally, a similarity f P SpRnq, by theorem 10.1.1, can be written as fpxq “ a` kφpxq
with a P Rn, k ą 0 and φ P Opnq. As we have seen in the proof of the previous theorem, by
letting x0 “ fp0q “ a and ρ0 “ ρ x0

|x0|
,
|x0|
2

, we have

fpxq “ ρ0 ˝ fpxq “ kφpxq

“ σ2 ˝ σ1 ˝ φpxq,

and, as seen in proof of the previous result, φ can be decomposed into n reflections and so the
corollary is proven. 2
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11.3 The stereographic projection as an inversion and the one
point compactification of Rn

In chapter 1 we have shown that the stereographic projection allows us to identify the n-sphere
without the north (or south) pole with the hyperplane in Rn`1 defined by:

P pen`1, 0q “ tx P Rn`1 : xx, en`1y “ 0u “ tpx1, . . . , xn, 0q, x1, . . . , xn P Ru ” Rnˆt0u – Rn.

Figure 11.4 gives a schematic depiction of the stereographic projection in 3D.

Figure 11.4: Stereographic projection in 3D.

Geometrically, it is intuitive that the stereographic projection acts as an inver-
sion. In this section we are going to give a formalization of this fact.

In order to keep the analysis as simple as possible, we will implicitly identify Rn with the
hyperplane in Rn`1 passing through the origin and orthogonal to en`1 whenever needed and
we will also reverse the roles of Rn and the n-sphere, as specified in the following definition.

Def. 11.3.1 The map

π : Rn „
ÝÑ Snzten`1u

x ÞÝÑ πpxq :“

ˆ

2x1
1`|x|2

, . . . , 2xn
1`|x|2

, |x|
2´1

1`|x|2

˙

,

is called the stereographic projection from Rn to Snzten`1u.

π coincides with the map ϕ´1
N defined in eq. (1.6) with R “ 1, i.e. the inverse stereographic

chart relative to the north pole of Sn, that is a bijection between Rn and Snzten`1u.
The following result gives an alternative geometric representation of π.

Theorem 11.3.1 For all x “ px1, . . . , xn, 0q P Rn, the stereographic projection πpxq can be
written as follows:

πpxq “ x`
|x|2 ´ 1

1` |x|2
pen`1 ´ xq. (11.4)
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This means that the stereographically projected vector πpxq is obtained through the vector
sum of x with a modulated version of the difference en`1 ´ x, where the modulation factor

s “ |x|2´1
1`|x|2

‰ 1 is introduced to guarantee that πpxq lies on the unit sphere, i.e. that |πpxq| “ 1.

Proof. Let us write πpxq “ x` spen`1 ´ xq “ p1´ sqx` sen`1, then, by direct computation,

|πpxq| “ 1 ðñ |x|2p1´ sq2 ` 2sp1´ sq xx, en`1y
looomooon

“0

`s2
���

�:1
|en`1|

2 “ 1

ðñ |x|2 “
1´ s2

p1´ sq2
“

1` s

1´ s
ðñ s “

|x|2 ´ 1

1` |x|2
,

if we introduce this expression of s in πpxq “ p1´ sqx` sen`1 we get

πpxq “

ˆ

1´
|x|2 ´ 1

1` |x|2

˙

px1, . . . , xn, 0q `
|x|2 ´ 1

1` |x|2
p0, . . . , 0, 1q

“

ˆ

2

1` |x|2

˙

px1, . . . , xn, 0q `
|x|2 ´ 1

1` |x|2
p0, . . . , 0, 1q “

ˆ

2x1

1` |x|2
, . . . ,

2xn
1` |x|2

,
|x|2 ´ 1

1` |x|2

˙

,

which coincides with the definition of stereographic projection given in (11.3.1). 2

Consider Sn
en`1,

?
2
, the sphere with radius

?
2 centered in en`1, then the inversion σen`1,

?
2 :

Rn`1zten`1u
„
Ñ Rn`1zten`1u, σen`1,

?
2pxq “ en`1 `

2
|x´en`1|2

px´ en`1q, is a bijection. If we

restrict this bijection to the hyperplane P pen`1, 0q – Rn we still get a bijection with its

codomain. It turns out that the codomain of σen`1,
?

2

ˇ

ˇ

ˇ

Rn
is Snzten`1u and that its analytical

form coincides with the one of the stereographic projection.

Theorem 11.3.2 It holds that

π “ σen`1,
?

2

ˇ

ˇ

ˇ

Rn
. (11.5)

Proof. We simply have to apply σen`1,
?

2 to px, 0q, with x P Rn, to verify that we get πpxq. To

this aim, we first remark that: |x´ en`1|
2 “ |x|2 ´ 2���

��: 0
xx, en`1y `���

�: 1
|en`1|

2 “ 1` |x|2, so

σen`1,
?

2pxq :“ en`1 `
2

|x´ en`1|
2
px´ en`1q “ en`1 `

2

1` |x|2
px´ en`1q

“ p0, . . . , 0, 1q `
2

1` |x|2
px1, . . . , xn,´1q

“

ˆ

2x1

1` |x|2
, . . . ,

2xn
1` |x|2

,
|x|2 ´ 1

1` |x|2

˙

“ πpxq.

2

The so-called one point compactification of Rn is obtained by extending the stereographic
projection π : Rn „

Ñ Snzten`1u to a larger space, denoted with R̂n, in such a way that the
extended map π̂ : R̂n Ñ Sn is a bijection that encompasses also en`1. This is done by adding
one single abstract point to Rn that, however, gets a very concrete representation in Rn`1

thanks to π̂.
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Def. 11.3.2 (Point at infinity) The abstract point denoted with 8 and defined by

π̂p8q “ en`1 ðñ 8 “ π̂´1pen`1q (11.6)

is called the point at infinity of Rn.

The reason for this name is twofold: first, geometrically, the extension of the stereographic
projection to en`1 cannot give a finite value of Rn, second, analytically, if we have a sequence
pxnqně0 Ă Rn such that |xn| ÝÑ

nÑ`8
`8, then πpxnq ÝÑ

nÑ`8
en`1 “ π̂p8q. Since Sn is compact,

the map π̂ : R̂n „
Ñ Sn creates a bijection between R̂n and a compact space, which motivates

the name ‘compactification’.

Def. 11.3.3 (One point compactification of Rn) Let 8 be an abstract point not belonging
to Rn. The one point compactification of Rn is the set R̂n “ Rn Y t8u, the extension of the
stereographic projection π to R̂n is the bijection

π̂ : R̂n „
ÝÑ Sn

x ÞÝÑ π̂pxq :“

#

πpxq if x ‰ 8

en`1 if x “ 8
.

The point at infinity of Rn can be identified, thanks to π̂, with the north pole of the unit sphere
Sn, which is a point that lives in the pn` 1q-dimensional space Rn`1. To better understand
this fact, let us consider the cases n “ 1, 2.

• The one-point compactification of R is

R̂ “ RY t8u – S1 “
p9.8q

RP1,

i.e. the unit circle in R2 and the point at infinity of the real line, interpreted as a
hyperplane in R2, can be identified with e2.

• The one-point compactification of R2 is

R̂2 “ R2 Y t8u – S2 “
p9.8q

RP2,

i.e. the unit sphere in R3 and the point at infinity of the real plane R2, interpreted as a
hyperplane in R3, can be identified with e3.

The one-point compactification of C has a special name.

Def. 11.3.4 (Riemann sphere) The one-point compactification of the complex plane C is
called Riemann sphere

Ĉ :“ CY t8u “
p9.11q

CP1.

Thanks to the bijection provided by π̂, it is possible to endow R̂n with a metric.

Def. 11.3.5 (Chordal metric) The chordal metric dC on R̂n is:

dCpx, yq :“ |π̂pxq ´ π̂pyq|, @x, y P R̂n.
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So, to compute the chordal metric, we stereographically project x, y P R̂n on the sphere Sn and
then we compute the Euclidean norm of the difference between the two projections, interpreted
as points of Rn`1. Of course, if x “ y “ 8, dCp8,8q “ |en`1 ´ en`1| “ 0. The following
result shows what are the values taken by the chordal metric in all the other cases.

Theorem 11.3.3 Let x, y P Rn. Then, for all x, y P Rn

1. dCpx,8q “
2?

1`|x|2

2. dCpx, yq “
2|x´y|?

1`|x|2
?

1`|y|2
.

Proof. First we remind that π “ σen`1,
?

2 and we observe that, for all x P Rn, we have

|x´ en`1|
2 “ |x|2 ´ 2���

��: 0
xx, en`1y `���

�: 1
|en`1|

2 “ 1` |x|2.

1.

dCpx,8q “ |πpxq ´ πp8q| “

ˇ

ˇ

ˇ

ˇ

���en`1 `
2

1` |x|2
px´ en`1q ´���en`1

ˇ

ˇ

ˇ

ˇ

“
2

1` |x|2
|x´ en`1| “

2

1` |x|2
`

|x´ en`1|
2
˘

1
2 “

2

1` |x|2

a

1` |x|2

“
2

a

1` |x|2
.

2. Since here x, y P Rn, we can write dCpx, yq “ |πpxq ´ πpyq| “ |σen`1,
?

2pxq ´ σen`1,
?

2pyq|.
Using property 3. of theorem 11.2.2 we find

dCpx, yq “
2|x´ y|

|x´ en`1||y ´ en`1|

“
2|x´ y|

a

1` |x|2
a

1` |y|2
.

2

Property 1. says that the chordal distance between any point x P Rn with the point at infinity
is finite. Property 2. of this last theorem implies that the metrical intuition that we have in
Euclidean spaces can be transferred to R̂n for all the points different than 8.

Corollary 11.3.1 f : R̂n Ñ R̂n is continuous in a point x0 P Rn w.r.t. the chordal metric if
and only if f is continuous in x0 w.r.t. the Euclidean metric.

The following definitions formalize the quite intuitive extension of reflections and inversions
to R̂n (for simplicity we keep the same symbols). In particular, note that the center of a
sphere is mapped to the point at infinite by the corresponding inversion, and vice-versa.

Def. 11.3.6 Let ρa,t be a reflection and σa,r an inversion in Rn. The extension of ρa,t in 8
and of σa,r in 8 and a are defined as follows:

ρa,tp8q :“ 8 and

#

σa,rp8q :“ a

σa,rpaq :“ 8
.
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The properties listed in theorems 11.2.1 and 11.2.2 are valid also for their extended versions.
The great advantage of considering the point at infinity is that both reflections and
inversions become bijections on R̂n.

We also extend isometries and similarities to R̂n as follows.

Def. 11.3.7 The sets of isometries and similarities on R̂n are:

IpR̂nq :“ tφ : R̂n Ñ R̂n, φ|Rn is an isometry and φp8q “ 8u

SpR̂nq :“ tφ : R̂n Ñ R̂n, φ|Rn is a similarity and φp8q “ 8u.

The request φp8q “ 8 is fully justified by theorem 11.2.3 for isometries: they are compositions
of reflections, which fix 8. Similarities instead are compositions of reflections and inversions,
so the request to fix 8 does not seems well-motivated. In fact, we will see soon, corollary
11.2.1 and theorem 11.4.2, that the action on 8 of the inversions involved in the creation of a
similarity cancel out, remaining with a map that fixes 8 also in the case of similarities.

The final information that we need before passing to the definition and analysis of Möbius
transformations is the concept of sphere in the one point compactification of Rn.

In the same way as we can identify the hyperplane P pen`1, 0q – Rn united with t8u with
the sphere Sn by means of π̂, we can identify the union of a hyperplane with the point at the
infinity with a sphere. This consideration justifies the following definition.

Def. 11.3.8 A sphere Σ in R̂n is either a Euclidean sphere Sn´1
a,r or the union of a hyperplane

with the point at infinity P̂ pa, tq :“ P pa, tq Y t8u.

11.4 Möbius transformations in the Euclidean space

Möbius transformations arise from the combinations of inversions and reflections of R̂n, one of
the main interest in combining them is that, when they are fused together, they form a group.
Notice that this is not a trivial statement because neither the set of reflections nor the set
inversions form a group: we do not have a identity element or any stability. However, theorem
11.2.3 tells us that by combining reflections and inversions we can obtain the identity function
and the group of similarities.

Def. 11.4.1 A Möbius transformation φ : R̂n Ñ R̂n is a finite composition of reflections
w.r.t. a hyperplane and inversions w.r.t. a sphere in R̂n. The group of Möbius transformations
is:

MpR̂nq “
 

φ “ µ1 ˝ ¨ ¨ ¨ ˝ µm m P N, µi reflections or inversions of R̂n, i P t1, . . . ,mu
(

.

It can be verified that MpR̂nq is a group under composition. We underline that, by definition,
a Möbius transformation is a bijection in R̂n.

We shall see that Möbius transformation can be equivalently characterized in three different
ways:

1. they are the only transformation that preserve the cross-ratio (see below)

2. they are the only transformations that map spheres of R̂n into other spheres of R̂n
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3. when n ě 3 and we restrict them to Rn they are the only transformations of Rn that
preserve angles, i.e they are the only conformal maps of Rn.

Let us start by analyzing the relationship between Möbius transformations and the cross ratio.
Since every Euclidean isometry and similarity can be decomposed into a combination of

reflections and inversions thanks to theorem 11.2.3 and corollary 11.2.1, we have the following
chain of inclusions among groups:

IpR̂nq Ă SpR̂nq ĂMpR̂nq.

11.4.1 Möbius transformations and the cross ratio

The cross ratio is the fundamental invariant of Möbius transformations.

Def. 11.4.2 Let u, v, x, y P R̂n such that u ‰ y, v ‰ x. The cross-ratio of pu, v, x, yq is the
(continuous) function:

r¨ , ¨ , ¨ , ¨s : R̂n ˆ R̂n ˆ R̂n ˆ R̂n „
ÝÑ r0,`8q

pu, v, x, yq ÞÝÑ ru, v, x, ys :“ dCpu,xqdCpv,yq
dCpu,yqdCpv,xq

.

In the special case that u, v, x, y belong to Rn, then, thanks to property 2. of theorem 11.3.3,
we can re-write their cross ratio as follows:

ru, v, x, ys “
|u´ x||v ´ y|

|u´ y||v ´ x|
. (11.7)

We remark that if one of the four points, say u, is 8, that point can simply be ‘dropped out’
of the computation, in the sense that the factor in which it appears can be simply set to 1.
The reason underlying this rule relies on theorem 11.3.3, in fact

r8, v, x, ys “
dCp8, xqdCpv, yq

dCp8, xqdCpv, yq
“

2?
1`|x|2

2|v´y|?
1`|v|2

?
1`|y|2

2?
1`|y|2

2|v´x|?
1`|v|2

?
1`|x|2

“
|v ´ y|

|v ´ x|

and similarly if 8 has any other place in the cross ratio. From now on, we will use the following
formulae as definitions of cross ratio when 8 is one of the points involved in its computation:

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

r8, v, x, ys “ |v´y|
|v´x|

ru,8, x, ys “ |u´x|
|u´y|

ru, v,8, ys “ |v´y|
|u´y|

ru, v, x,8s “ |u´x|
|v´x|

. (11.8)

It must be stressed that there are several definitions of cross ratio in the literature, most
of the time with little consequences since we can switch u, v, x, y in the cross-ratio in many
different ways without changing the overall result. In particular, the definition that we gave is
different than the one given by Ratcliffe in [15]. We chose the definition above because it will
be the handier when we will deal with the conformal hyperbolic model.

244



Theorem 11.4.1 A map φ : R̂n Ñ R̂n is a Möbius transformation if and only if φ preserves
the cross ratio.

Proof.

ùñ : suppose φ is a Möbius transformation, then it is enough to show that any generic
inversion and reflection preserves the cross ratio since, by definition, every Möbius transfor-
mation is a combination of inversions and reflections and thus the composition of cross ratio
preserving functions will be overall cross ratio preserving.

First of all we suppose that the values taken by φ are finite, we will deal with the 8 later.
In this case, we can use formula (11.7) to compute the cross ratio.

If φ is a reflection ρa,t, then the cross ratio is preserved by the fact that reflections are
Euclidean isometries.

This argument cannot be used if φ is an inversion σa,r, because inversions are not isometries.
If we remove a form the possible values that the points u, v, x, y can take, then, by property 3.
of theorem 11.2.2, i.e.

|σa,rpxq ´ σa,rpyq| “
r2|x´ y|

|x´ a||y ´ a|
,

we have:

rσa,rpuq, σa,rpvq, σa,rpxq, σa,rpyqs “
|σa,rpuq ´ σa,rpxq||σa,rpvq ´ σa,rpyq|

|σa,rpuq ´ σa,rpyq||σa,rpvq ´ σa,rpxq|

“
r2|u´ x|

r2|u´ y|

r2|v ´ y|

r2|v ´ x|

|x´ a||y ´ a||u´ a||v ´ a|

|x´ a||y ´ a||u´ a||v ´ a|
loooooooooooooooomoooooooooooooooon

“1

“ ru, v, x, ys.

Suppose now that2 φpuq “ 8. By definition 11.3.6, if φ “ ρa,t, this can happen only if u “ 8
since ρa,tp8q “ 8, i.e. we must prove that

r8, ρa,tpvq, ρa,tpxq, ρa,tpyqs “ r8, v, x, ys “
p11.8q

|v ´ y|

|v ´ x|
,

which is very simple:

r8, ρa,tpvq, ρa,tpxq, ρa,tpyqs “
p11.8q

|ρa,tpvq ´ ρa,tpyq|

|ρa,tpvq ´ ρa,tpxq|
“

ρa,t isometry

|v ´ y|

|v ´ x|
“ r8, v, x, ys.

Instead, if φ “ σa,r, then we know that φpuq “ 8 only if u “ a. So, we must prove that

r8, σa,rpvq, σa,rpxq, σa,rpyqs “ ra, v, x, ys,

on the left-hand side we have

r8, σa,rpvq, σa,rpxq, σa,rpyqs “
p11.8q

|σa,rpvq ´ σa,rpyq|

|σa,rpvq ´ σa,rpxq|
“

p3. of th. 11.2.2q

r2 |v´y|
|v´a||y´a|

r2 |v´x|
|v´a||x´a|

“
|v ´ y||x´ a|

|y ´ a||v ´ x|
,

2This argument can be extended verbatim to v, x, y, so we will consider only u.
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on the right-hand side we have

ra, v, x, ys “
|v ´ y||x´ a|

|y ´ a||v ´ x|
,

which verifies the preservation of the cross ratio also in this case. To resume, all Möbius
transformations preserve the cross ratio.

ðù : conversely, we assume that φ preserves the cross ratio. We analyze first the case
when φ fixes 8, i.e. φp8q “ 8, we will deal with the other option later. Let u, v, x, y P Rn
such that u ‰ y, v ‰ x and pu, vq ‰ px, yq. If u ‰ x, then

iq rφpuq,8, φpxq, φpyqs “ ru,8, x, ys ðñ
p11.8q

|φpuq ´ φpxq|

|φpuq ´ φpyq|
“
|u´ x|

|u´ y|

ðñ
|φpuq ´ φpxq|

|u´ x|
“
|φpuq ´ φpyq|

|u´ y|

iiq rφpuq, φpvq, φpxq,8s “ ru, v, x,8s ðñ
p11.8q

|φpuq ´ φpxq|

|φpvq ´ φpxq|
“
|u´ x|

|v ´ x|

ðñ
|φpuq ´ φpxq|

|u´ x|
“
|φpvq ´ φpxq|

|v ´ x|
.

Similarly, if v ‰ y,

iq r8, φpvq, φpxq, φpyqs “ r8, v, x, ys ðñ
p11.8q

|φpvq ´ φpyq|

|φpvq ´ φpxq|
“
|v ´ y|

|v ´ x|

ðñ
|φpvq ´ φpyq|

|v ´ y|
“
|φpvq ´ φpxq|

|v ´ x|

iiq rφpuq, φpvq,8, φpyqs “ ru, v,8, ys ðñ
p11.8q

|φpvq ´ φpyq|

|φpuq ´ φpyq|
“
|v ´ y|

|u´ y|

ðñ
|φpvq ´ φpyq|

|v ´ y|
“
|φpuq ´ φpyq|

|u´ y|
.

Hence, by combining iq and iiq in both cases we obtain that, for all u, v, x, y P Rn such that
u ‰ y and v ‰ x,

|φpuq ´ φpyq|

|u´ y|
“
|φpvq ´ φpxq|

|v ´ x|
,

if we set k “ |φpvq ´ φpxq|{|v ´ x|, then k ą 0 and it does not depend on u and y, which are
two generic distinct elements of Rn, so that we can write |φpuq´φpyq| “ k|u´ y|, which shows
that φ is a Euclidean similarity and, hence a Möbius transformation.

Finally, if a ‰ 8 and φp8q “ a, then we can combine φ with any inversion of the type σa,r,
r ą 0, obtaining pσa,r ˝ φqp8q “ 8. Using the result obtained above, we have that σa,r ˝ φ is
a Möbius transformations, and so φ is also Möbius transformation by definition. 2

The following result gives important stuctural information about Möbius transformations.
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Theorem 11.4.2 Let φ PMpR̂nq. Then:

1. φp8q “ 8 if and only if φ is a similarity of R̂n

2. if φp8q ‰ 8, then, there exist:

• a unique sphere Σ in Rn on which φ acts as a Euclidean isometry, i.e. for all
x, y P Σ, |φpxq ´ φpyq| “ |x´ y|

• a unique inversion σ w.r.t. Σ and a unique Euclidean isometry ψ P IpR̂nq such
that φ can be decomposed as follows φ “ ψ ˝ σ.

Proof.

1. : the previous theorem implies directly that if φp8q “ 8 and φ is a Möbius transforma-
tion, then φ is a similarity on R̂n. Vice-versa, a similarity on Rn is a Möbius transformation
on Rn; now, thanks to the proof of corollary 11.2.1, every similarity is the composition of at
most n` 1 reflections and two inversions w.r.t. the same center. This implies that, the only
possible extension of φ to the point at infinity is the one that fixes 8, in fact, reflections fix 8
and also the composition of the two inversions will globally leave 8 fixed. As previously said,
this argument provides a full justification of the definition given in 11.3.7.

2. : first we prove the existence of the decomposition φ “ ψ ˝ σ and then its uniqueness.
Notice that this automatically implies that we also have to exhibit the sphere Σ w.r.t. the
inversion σ is defined.

Existence: since φ is a Möbius transformation that modifies the point at infinity, it is natural
to set the center of the sphere Σ that we are looking for as a :“ φ´1p8q. Regarding the ray of
the sphere, let us preliminarly set it to 1, i.e. let us consider the sphere Sn´1

a,1 and the inversion
σ̄ w.r.t. to it.

Clearly, φ ˝ σ̄ fixes 8 and so it is a Euclidean similarity thanks to point 1. Hence, it exists
k ą 0 such that, for all x, y P Rn, we have

|pφ ˝ σ̄qpxq ´ pφ ˝ σ̄qpyq| “ k|x´ y|. (11.9)

Furthermore, σ̄ is an inversion and so it is also an involution, σ̄2 “ idRn , so

|φpxq ´ φpyq| “ |pφ ˝ idRnqpxq ´ pφ ˝ idRnqpyq| “ |pφ ˝ σ̄
2qpxq ´ pφ ˝ σ̄2qpyq|

“ |pφ ˝ σ̄qpσ̄pxqq ´ pφ ˝ σ̄qpσ̄pyqq|

“
p11.9q

k|σ̄pxq ´ σ̄pyq| “
3. of th.11.2.2

k
|x´ y|

|x´ a||y ´ a|
.

(11.10)

Observe now that x, y P Sna,r, then |x´ a| “ |y ´ a| “ r, so, if we set r :“
?
k, then

|φpxq ´ φpyq| “ k
|x´ y|

|x´ a||y ´ a|
“ k

|x´ y|

k
“ |x´ y|,

and so φ is a Euclidean isometry on Σ :“ Sn´1
a,r if and only if r “

?
k is the radius of Σ, which

implies its uniqueness. Finally, we can conclude by setting σ “ σa,r and ψ “ φσ. The following
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computations show that ψ P IpR̂nq. Clearly ψp8q “ φpσp8qq “ φpaq “ 8. Moreover, if
x, y P Rn, then the following chain of equalities holds

|ψpxq ´ ψpyq| “ |φpσpxqq ´ φpσpyqq| “
p11.10q

k
|σpxq ´ σpyq|

|σpxq ´ a||σpyq ´ a|

“
3. of th.11.2.2

k
k |x´y|
|x´a||y´a|

|σpxq ´ a||σpyq ´ a|
“ k2 |x´ y|

|x´ a||y ´ a|

1

|σpxq ´ a||σpyq ´ a|

“
p11.2q

k2 |x´ y|

|x´ a||y ´ a|

|x´ a||y ´ a|

k2
“ |x´ y|.

Uniqueness: suppose that we also have φ “ ψ0 ˝ σ0 with ψ0 a Euclidean isometry and σ0 an
inversion w.r.t. a sphere Sn´1

a0,r0 . We start by proving that Σ and Σ0 share their center: the
decomposition φ “ ψ ˝σ gives φpaq “ 8, while the decomposition φ “ ψ0 ˝σ0 gives φpa0q “ 8,
so a “ φ´1p8q “ a0.

As proven above, φ is an isometry on both Σ and Σ0 if and only if their radius has a
specific, fixed, value, thus not only Σ and Σ0 are concentric, but they also share their radius,
i.e. Σ “ Σ0. This implies that also σ and σ0 coincide, which, in turn, implies that ψ “ ψ0.

This shows that uniqueness of Σ and of the decomposition of φ.
Finally, let us ask if there exists another sphere Sn´1 on which φ acts isometrically. For

sure, this sphere Sn´1 must have a center different than a, otherwise, as we have just proven,
we fall back to the previous sphere Σ. Thus, let us suppose that Sn´1 “ Sn´1

b,s , with b P Rn,
b ‰ a, and s ą 0. The idea to prove the uniqueness of Σ is to show that there exist two points
x̄, ȳ P Sn´1

b,s such that |φpx̄q ´ φpȳq| ‰ |x̄´ ȳ|, and so φ does not act as an isometry on Sb,s.

To this aim, we observe that it exists α ą 0, α ‰ 1, such that Sn´1
a,αr and Sn´1

b,s intersect
in two points, that will constitute the two points x̄ and ȳ that we are searching for, in fact,
recalling that r2 “ k we have, by eq. (11.10) :

|φpx̄q ´ φpȳq| “
r2|x̄´ ȳ|

|x̄´ a||ȳ ´ a|
“

r2

α2r2
|x̄´ ȳ| ‰ |x̄´ ȳ|,

hence φ cannot be an isometry on Sn´1
b,s . 2

Remark that the same arguments used in the proof above can be used to assure it does
not exist any hyperplane P pa, tq on which φ acts as an isometry. Hence, Σ is the not only the
unique sphere in Rn on which φ is isometric, but also on R̂n. For this reason, the following
definition is completely justified.

Def. 11.4.3 For any Möbius transformation φ P MpR̂nq such that φp8q ‰ 8, the unique
sphere Σ on which φ acts as an isometry is called the isometric sphere of φ.

We now arrive to the analogous of corollary 11.2.1 for Möbius transformations.

Corollary 11.4.1 Every Möbius transformation on R̂n is at most the composition of n` 3
reflections or inversions.

Proof. Let φ PMpR̂nq. If φp8q “ 8 then φ is a similarity and so it can be decomposed into
n ` 3 reflections or inversions by corollary 11.2.1. Instead, if φp8q ‰ 8 then, by theorem
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11.4.2, we have the following decomposition φ “ ψ ˝ σ with ψ P IpRnq and σ an inversion.
Since every isometry is the product of at most n` 1 reflections, φ is the composition of at
most pn` 2q reflections or inversions. 2

The importance of the last corollary lies not in the actual number of reflections or inversions
that make up a Möbius transformation, but on the fact that there is a finite upper bound
limit: this was not evident from the original definition of Möbius transformations. While it is
still big, the Möbius group is still limited in size and it is only slightly bigger than the group
of Euclidean similarities SpRnq.

A very important consequence of what we have just proven is the possibility to connect the
Möbius transformations geometrically defined as compositions of reflections and inversions, with
the analytical formula used in R, R2 or C that makes use of fractional linear transformations.

Corollary 11.4.2 The Möbius transformations on R, R2 or H are fractional linear transfor-
mations, i.e.

φpxq “
ax` b

cx` d
, x P R

e la formula per R2 e C...vedi anche capitolo 8 sezione 8.5...

Proof.
2

11.4.2 The action of Möbius transformations on the set spheres in R̂n

In the previous subsection we have seen how Möbius transformations and spheres of R̂n are
linked. We now show a very powerful result: Möbius transformations acts transitively on the
set of spheres of R̂n.

We start by proving the stability of the set of spheres in R̂n w.r.t. Möbius transformations.
We will do this by using several results that we underline in separated lemmas because of their
stand-alone interest.

Lemma 11.4.1 The following assertions hold:

1. isometries and similarities in Rn are stable on the set of hyperplanes and on the set of
Euclidean spheres, i.e. they map hyperplanes into hyperplanes and Euclidean spheres
into Euclidean spheres

2. the group of Euclidean isometries IpRnq (and so that of Euclidean similarities) acts
transitively on the set of hyperplanes in Rn and the group of Euclidean similarities SpRnq
acts transitively on the set of spheres in Rn.

Proof.

1. : since isometries are similarities, we will prove this result directly on the set of similarities.
From theorem 10.1.1 we know that f P SpRnq if and only if it can be expressed in the form

fpxq “ b` kφpxq ðñ φpxq “
fpxq ´ b

k
, @x P Rn, (11.11)
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with b P Rn, k ą 0 and φ P Opnq. If k “ 1, f P IpRnq.

Hyperplanes: given a hyperplane P pa, tq “ tx P Rn : xx, ay “ tu, with a P Rn such that
|a| “ 1 and t ě 0, our aim is to show that fpP pa, tqq is a hyperplane.

We recall that, since φ belongs to Opnq, it is linear, invertible and xφpxq, φpyqy “ xx, yy,
@x, y P Rn. Hence @x P P pa, tq the following chain of equalities holds:

xφpxq, φpaqy “ xx, ay “ t ðñ xkφpxq, kφpaqy “ k2t ðñ
p11.11q

xfpxq ´ b, kφpaqy “ k2t

ðñ xfpxq, kφpaqy ´ xb, kφpaqy “ k2t

ðñ xfpxq, kφpaqy “ k2t` xb, kφpaqy

ðñ xfpxq,
kφpaq

|kφpaq|
y “

k2t` xb, kφpaqy

|kφpaq|
,

note that we are allowed to divide by k|φpaq| because k ą 0 and a ‰ 0, so |φpaq| “ |a| ‰ 0.
Moreover |kφpaq| “ k|φpaq| “ k|a| “ k, hence xfpxq, φpaqy “ kt` xb, φpaqy @x P P pa, tq.

This means that fpxq P P pφpaq, kt ` xb, φpayqq, which is well defined as a hyperplane
because |φpaq| “ 1. As noticed in the definition of hyperplane, the positivity of kt` xb, φpaqy
is not an issue because its possible negative sign we can integrated in the vector φpaq without
changing its norm. To avoid a cumbersome notation, we consider this as implicitly performed.

This proves that

fpP pa, tqq “ P pφpaq, kt` xb, φpaqyq @f P SpRnq, (11.12)

i.e. the image of a hyperplane orthogonal to a and distant t from 0 is still a hyperplane
orthogonal to φpaq and distant xb, φpaqy from 0.

Euclidean spheres: Let Sn´1
a,r “ tx P Rn : |x´ a| “ ru, with a P Rn and r ą 0. We want to

show that fpSn´1
a,r q is a sphere in Rn. Let x be a point of Sn´1

a,r , then

r2 “ |x´a|2 “ xx´a, x´ay “ xφpx´aq, φpx´aqy “ xφpxq´φpaq, φpxq´φpaqy “ |φpxq´φpaq|2.

Multiplying both sides by k2 and using eq. (11.11) we obtain:

k2r2 “ |kφpxq ´ kφpaq|2 “ |fpxq ´ b´ kφpaq|2 “ |fpxq ´ pb` kφpaqq|2 “ |fpxq ´ fpaq|2,

so, if x P Sn´1
a,r , then |fpxq ´ fpaq| “ kr, i.e.

fpSn´1
a,r q “ Sn´1

fpaq,kr @f P SpRnq, (11.13)

i.e. the image of a Euclidean sphere of center a and radius r is still a Euclidean sphere of
center fpaq and radius kr.

2. : we first prove the thesis for hyperplanes and then for spheres.

Hyperplanes: let us fix two hyperplanes P pa, tq and P pa1, t1q, with a, a1 P Rn such that
|a| “ |a1| “ 1 and t, t1 ě 0. Our aim is to prove that it always exists an isometry f P IpRnq
such that fpP pa, tqq “ P pa1, t1q. Thanks to eq. (11.12) with k “ 1 because f is an isometry,
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we can rewrite the last equation as P pφpaq, t ` xb, φpaqyq “ P pa1, t1q so that our problem is
equivalent to showing that there exist φ P Opnq and b P Rn such that the system

#

φpaq “ a1

t` xb, φpaqy “ t1

has at least one solution for all vectors a, a1 P R such that |a| “ |a1| “ 1, i.e. a, a1 P Sn´1.
Thanks to the transitivity of Opnq on Sn´1, it surely exists φ P Opnq such that a1 “ φpaq, if
we introduce this in the second equation we get t ` xb, a1y “ t1, or xb, a1y “ t1 ´ t, which is
satisfied by all vectors b P Rn such that b P P pa1signumpt1 ´ tq, |t1 ´ t|q.

Euclidean spheres: analogously to the previous case, once fixed any two spheres Sn´1
a,r and

Sn´1
a1,r1 , a, a

1 P Rn and r, r1 ą 0, we must prove that it exists a similarity f P SpRnq such that

fpSn´1
a,r q “ Sn´1

a1,r1 . Thanks to eq. (11.13), we can rewrite the last equation as Sn´1
fpaq,kr “ Sn´1

a1,r1 ,

or Sn´1
b`kφpaq,kr “ Sn´1

a1,r1 , and so our problem is equivalent to the existence of φ P Opnq, k ą 0

and b P Rn such that the system

#

b` kφpaq “ a1

kr “ r1 ą 0

has at least one solution for all a, a1 P Rn and r, r1 ą 0. We have immediately that k “ r1{r ą 0,
which implies b ` r1

r φpaq “ a1. If we set φ “ idRn P Opnq, then we get b ` r1

r a “ a1, which

leads to b “ a1 ´ r1

r a. So, in conclusion, k “ r1{r, φ “ idRn and b “ a1 ´ r1

r a solve the system
above, thus implying the transitivity of SpRnq on the set of Euclidean spheres in Rn. 2

Note that if we consider similarities in R̂n, since they fix 8, this lemma states that
similarities in R̂n map hyperplanes Y t8u into hyperplanes Y t8u and Euclidean spheres
into Euclidean spheres. Hence, a weaker, but useful, reformulation of this assertion is that
isometries and similarities in R̂n are stable on the set of spheres in R̂n.

As a consequence, reflections, which are particular types of isometries, are stable on the
set of spheres in R̂n.

Lemma 11.4.2 Let a P Rn and α, β P R satisfying αβ ă |a|2. Then, the set of points defined
by

Σα,β :“ tx P Rn : α|x|2 ` 2 xx, ay ` β “ 0u (11.14)

represents either a hyperplane or a sphere in Rn.

Proof. First of all we note that if a “ 0 we cannot hope to find the equation of a pn ´ 1q-
dimensional hyperplane in Rn simply because the orthogonal complement of the null vector of
Rn is Rn itself. However, it is clear that when a “ 0, eq. (11.14) represents the equation of a
sphere centered in 0 and with radius r “

a

´β{α. So, for a “ 0, eq. (11.14) represents all the
spheres centered in 0 and with arbitrary (strictly positive) radius provided that α ‰ 0 and
αβ ă 0.

Let us now consider the case a P Rnzt0u. If α “ 0, eq. (11.14) represents the hyperplane
P p a

|a| ,´
β

2|a|q.
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If α ‰ 0, eq. (11.14) represents (under a constraint that we will determine below) the
sphere Sn´1

´ a
α
,

?
|a|2´αβ
|α|

. In fact, by dividing both sides of eq. (11.14) by ´α we get

´|x|2 ´
2

α
xx, ay ´

β

α
“ 0 ðñ ´|x|2 ` 2

A

x,´
a

α

E

´
β

α
“ 0 ðñ |x|2 ´ 2

A

x,´
a

α

E

`
β

α
“ 0,

which coincides with the equation of a sphere of radius r and center c, i.e.

|x´ c|2 “ r2 ðñ |x|2 ´ 2 xx, cy ` |c|2 ´ r2 “ 0,

if and only if the center is c “ ´ a
α and the radius r satisfies β

α “
|a|2

α2 ´ r
2, i.e. r2 “

|a|2

α2 ´
β
α , or

r “

?
|a|2´αβ

|α| . Thus, the constraint that allows eq. (11.14) to represent any sphere of arbitrary

radius centered in a ‰ 0 is αβ ă |a|2.
We can resume our analysis by saying that eq. (11.14) represents any sphere or hyperplane

in Rn provided that αβ ă |a|2 for all a P Rn, as it was to be proven. 2

The next lemma shows that also inversions are stable on the set of spheres in R̂n.

Lemma 11.4.3 Inversions are stable on the set of spheres in R̂n.

Proof. Thanks to lemma 11.2.1, we can write any inversion σ “ σa,r as σ “ φ ˝σ0,1 ˝φ
´1, with

φpxq “ a` rx for all x P Rn. Thanks to corollary 10.1.1, φ and φ´1 are similarities, which are
stable on the set of spheres in R̂n thanks to lemma 11.4.1. Hence we can reduce the proof to
the case of σ “ σ0,1, i.e. from now on we will consider σpxq “ x

|x|2
, x ‰ 0, and what we have

to prove is that if we apply σ to either a sphere or a hyperplane we get back another sphere
or hyperplane.

Since eq. (11.14) represents all possible hyperplane or sphere in Rn provided that αβ ă |a|2,
to finish the proof of the theorem it is enough to show that σ preserves the structure of that
equation. This turns out to be very easy: let x satisfy eq. (11.14), i.e. α|x|2` 2 xx, ay ` β “ 0,
which is equivalent to

α|x|2 ` 2 xx, ay ` β “ 0 ðñ α` 2

B

x

|x|2
, a

F

`
β

|x|2
“ 0 ðñ α` 2 xσpxq, ay `

β

|x|2
“ 0,

but |σpxq|2 “
ˇ

ˇ

ˇ

x
|x|2

ˇ

ˇ

ˇ

2
“
|x|2

|x|4
“ 1
|x|2

, so β
|x|2

“ β|σpxq|2 and so we obtain that

α|x|2 ` 2 xx, ay ` β “ 0 ðñ β|σpxq|2 ` 2 xσpxq, ay ` α “ 0,

which shows that σpxq satisfies an equation of the same form as the one satisfied by x with
the same constraint αβ ă |a|2. 2

Theorem 11.4.3 The Möbius transformations on R̂n are stable on the set of spheres in R̂n.

Proof. The proof will be just a sequence of considerations based on results that we have
already proven that will allow us to greatly simplify the rest of the proof.

First of all, if φ PMpR̂nq fixes 8, then, by theorem 11.4.2, φ is a similarity on R̂n and so
it is stable on the set of spheres in R̂n by lemma 11.4.1.
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If φp8q ‰ 8, then, again thanks to theorem 11.4.2, we can decompose φ P MpR̂nq as
φ “ ψ ˝ σ, where ψ is a Euclidean isometry and σ is an inversion w.r.t. a sphere. Again by
lemma 11.4.1, ψ will be stable on the set of spheres in R̂n, so what is left to prove is just
that an inversion σ is stable on the set of spheres in R̂n, which is guaranteed by lemma 11.4.3. 2

Thanks to this theorem, the natural action of the group of Möbius transformations on the set
of spheres in R̂n defined by

MpR̂nq ˆ Spheres in R̂n ÝÑ Spheres in R̂n
pφ,Σq ÞÝÑ φpΣq

is well-defined.

Theorem 11.4.4 The action of MpR̂nq on the set of spheres of R̂n is transitive.

Proof. Property 2. of Lemma 11.4.1 says that the group of similarities SpR̂nq ĂMpR̂nq acts
transitively on the set of hyperplanes united with t8u of R̂n and on the set of Euclidean
spheres in the following sense: for every fixed couple of spheres in R̂n, Σ1 and Σ2 (both
hyperplanes united with t8u or both Euclidean spheres), there exists a similarity ψ P SpR̂nq
such that ψpΣ1q “ Σ2.

However, the set of similarities of R̂n is not transitive on the whole set of generalized
spheres in R̂n. Indeed, it is not possible to map a hyperplane united with t8u into a Euclidean
sphere, or vice-versa, through a similarity. A simple explanation of this fact is that, clearly, 8
belongs to the first category of sphere in R̂n but not to the second. Moreover, property 1. of
theorem 11.4.2 says that similarities in R̂n leave the point 8 fixed, thus they cannot map an
object containing 8 into an object not containing it, or vice-versa.

So, to conclude the proof, we must show that if we have two spheres Σ1,Σ2 in R̂n, such
that Σ1 “ P pa, tq Y t8u and Σ2 “ Sn´1

b,r , there exists a Möbius transformation φ, necessarily

in MpR̂nqzSpR̂nq for what we have just observed, such that φpΣ1q “ Σ2.
By a straightforward computation, it can be verified that σ0,1pP pe1,

1
2q Y t8uq “ Sn´1

e1,1
,

notice that σ0,1p8q “ 0 P Sn´1
e1,1

. By property 2. of Lemma 11.4.1, there exist ψ1, ψ2 P SpR̂nq
such that ψ1pΣ1q “ P pe1,

1
2qY t8u and ψ2pΣ2q “ Sn´1

e1,1
. Hence φ ” ψ´1

2 ˝σ0,1 ˝ψ1 is a Möbius
transformation, because composition of two similarities and an inversion, moreover, clearly,
φpΣ1q “ Σ2.

2

Theorem 11.4.5 Let φ P MpR̂nq and let Σ be a sphere of R̂n such that φpxq “ x @x P Σ.
Then φ is either idR̂n or the reflection or inversion w.r.t. Σ, depending on the fact that Σ is a
hyperplane united with 8 or a Euclidean sphere, respectively.

Proof. Σ is either a hyperplane Y t8u or a pn´1q-dimensional sphere in Rn. Thus an inversion
w.r.t. Σ can be either a reflection w.r.t. a hyperplane (that fixes 8) or an inversion w.r.t. a
Euclidean sphere.

We start by assuming that Σ “ P pen, 0q Y t8u, but

P pen, 0q “ spanpenq
K “ spanpe1, . . . , en´1q “ Rn´1,

hence Σ “ R̂n´1. By the hypothesis that φ fixes all the points of Σ we have, in particular:

253



• φp8q “ 8 ùñ φ is a Euclidean similarity by th. 11.4.2, i.e. φpxq “ a ` kAx, k ą 0,
A P Opnq, for all x P Rn

• φp0q “ 0 ùñ φ “ kA

• φpe1q “ e1 ùñ |φpe1q ´ φp0q| “ |e1 ´ 0| “ |e1| “ 1, but since φ “ kA this is equivalent
to |kAe1 ´ kA0| “ k|Ae1| “

APOpnq
k|e1| “ k, which implies k “ 1, so A P Opnq

• φpejq “ ej , j “ 2, . . . , n´ 1 implies that the matrix A P Opnq associated to φ w.r.t. the
canonical basis of Rn is either

A “

ˆ

In´1 0
0 1

˙

“ idRn or A “

ˆ

In´1 0
0 ´1

˙

,

because these are the only possible options compatible with the fact that detpAq “ ˘1.

So, either φ is the identity on Rn, extended to the identity on R̂n because φp8q “ 8, or φ is
the reflection w.r.t Σ. Hence the thesis is proven when Σ “ R̂n´1.

We now assume that Σ is an arbitrary sphere of R̂n and that φ fixes Σ. By the transitivity
of MpR̂nq on the set of spheres of R̂n, there exists a Möbius transformation ψ PMpR̂nq such
that ψpΣq “ R̂n´1, i.e. ψpsq “ x P R̂n´1 for all s P Σ. It follows that, for all x P R̂n´1,

pψ ˝ φ ˝ ψ´1qpxq “ ψpφpsqq “ ψpsq “ x,

i.e. ψ fixes R̂n´1 so, thanks to what proven above, ψ ˝ φ ˝ ψ´1 “ idR̂n or ψ ˝ φ ˝ ψ´1 ” ρ, the

reflection w.r.t. R̂n´1. By composing on the left both members by ψ´1 and on the right by ψ,
we have that it is either φ “ ψ´1 ˝ ψ “ idR̂n or φ “ ψ´1 ˝ ρ ˝ ψ.

We now want to understand what kind of transformation ψ´1 ˝ ρ ˝ ψ is. To this scope, let
us consider, instead of the generic φ PMpR̂nq, a reflection or inversion σ w.r.t. Σ, which is
not the identity. By repeating the argument above on σ, we obtain that ψ ˝ σ ˝ ψ´1 “ ρ, the
reflection or inversion w.r.t. Σ, i.e. σ “ ψ´1 ˝ ρ ˝ ψ “ φ. 2

This result will be fundamental to prove theorem 11.5.1.

We know that reflections and inversions fix the points of the hyperplane or sphere w.r.t. they
act, respectively. The theorem just proven tells us that this condition is sufficient to determine
if a Möbius transformation is a pure reflection or inversion, provided that we have excluded
the possibility that it is the identity on the whole R̂n, which is particularly easy because it is
sufficient to consider any point not belonging to the hyperplane or the sphere.

The last property of Möbius transformations that we prove here refers to inverse points.

Def. 11.4.4 Let Σ be a sphere of R̂n and σ the reflection or inversion w.r.t. Σ. Two points
x, y P R̂n are said to be inverse points w.r.t. Σ if y “ σpxq.

Theorem 11.4.6 Let φ PMpR̂nq and let Σ be a sphere of R̂n. If x and y are inverse points
w.r.t. Σ, then φpxq and φpyq are also inverse points w.r.t. Σ1 “ φpΣq.
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Proof. The thesis of the theorem is trivially true if φ is the identity. So, let us assume that φ is
not the identity and that σ is the reflection or inversion w.r.t. Σ. Then, φ ˝ σ ˝ φ´1 fixes each
point of Σ1 “ φpΣq and so φ ˝ σ ˝ φ´1 “ ρ is the reflection or the inversion w.r.t. Σ1. Finally,
if x and y are inverse points w.r.t. Σ, i.e. y “ σpxq, then

ρpφpxqq “ pρ ˝ φqpxq “ pφ ˝ σ ˝ φ´1 ˝ φqpxq “ pφ ˝ σqpxq “ φpσpxqq “ φpyq,

i.e. y “ σpxq implies φpyq “ ρpφpxqq. 2

11.4.3 The conformality of Möbius transformations

A conformal transformation is a map that maintains angles. In this section we show that
conformal and Möbius transformations are tightly interconnected to the point of being
confounded in a Euclidean vector space of dimension higher or equal to 3.

An intuitive idea behind this fact can be obtained by considering two intersecting spheres
of R̂n, Σ1 and Σ2: if φ is a Möbius transformation, then φpΣ1q and φpΣ2q are two other
intersecting spheres Σ11 and Σ12 of R̂n. It is natural to ask oneself how Σ11 and Σ12 are positioned
to one another when compared to Σ1 and Σ2, since Möbius transformations are continuous
functions and contain Euclidean similarities, intuitively we imagine that they are positioned
more or less in the same way.

Furthermore, if this is the case, then the angle between the normal vectors n1 of Σ1 and
n2 of Σ2 at an intersecting point x P Σ1 X Σ2 should not change.

The path that we will follow to make this argument rigorous starts with a definition.

Def. 11.4.5 Let U Ď Rn open and φ : U Ñ Rn, f P C 1pUq, i.e. all the partial derivatives
Bφi
Bxj

exists and they are continuous functions on U . φ is said to be conformal if there is a

function κ : U Ñ R`, called the scale factor of φ, such that

1

κpxq
Jφpxq P Opnq @x P U,

Jφpxq being the Jacobian matrix of φ calculated in x.

In other words, a conformal function is a continuously differentiable map whose Jacobian
matrix can be turned into an orthogonal one simply by re-scaling its coefficients with a positive
factor that is allowed to change in every point of the function domain.

Def. 11.4.6 Given x, y P Rn, x, y ‰ 0, we denote with θpx, yq the angle between them, i.e.
the only angle in r0, πs that verifies this equation:

cospθpx, yqq “
xx, yy

|x||y|
. (11.15)

f : Rn Ñ Rn preserves the angle between non-zero vectors if θpfpxq, fpyqq “ θpx, yq for all
x, y P Rn.

It is clear that an orthogonal tranformation f P Opnq preserves the angle between non-zero
vectors because it preserves the scalar product between them and their norms. The next lemma
says that, among linear transformations, the orthogonal ones are the only angle preserving
maps modulo a scalar coefficient.
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Lemma 11.4.4 Let A a nˆ n real matrix. Then, there is a k P R` such that k´1A P Opnq
if and only if A preserves the angle between non-zero vectors.

Proof.

ùñ : we assume there is a k such that k´1A is an orthogonal matrix, then k´1A is
non-singular and so, for all x, y P Rn, x, y ‰ 0, also Ax and Ay are non-zero vectors and we
can write:

cospθpAx,Ayqq “
xAx,Ayy

|Ax||Ay|
“

@

k´1Ax, k´1Ay
D

|k´1Ax||k´1Ay|

“
k´1A POpnq

xx, yy

|x||y|
“ cospθpx, yqq.

ðù : conversely, we suppose that A preserves the angle between non-zero vectors. Then,
in particular,

θpAei, Aejq “ θpei, ejq “
π

2
@i, j P t1, . . . , nu, i ‰ j.

Hence, pAe1, . . . , Aenq is an orthogonal basis of Rn, so, if we normalize each vector and we set
it as a column of a matrix B, i.e.

B “

¨

˝

| ¨ ¨ ¨ |
Ae1
|Ae1|

¨ ¨ ¨ Aen
|Aen|

| ¨ ¨ ¨ |

˛

‚,

then B belongs to Opnq and so does B´1 because Opnq is a group.
By direct computation we get Bei “

Aei
|Aei|

for all i “ 1, . . . , n, so, if we multiply both

members by |Aei| and compose them with B´1 we get B´1Aei “ |Aei|ei ” ciei, with ci ą 0,
for all i “ 1, . . . , n.

Finally, notice that B´1A preserves the angles between non-zero vectors because it is the
composition of two angle-preserving operators, so, using definition (11.15) and the injectivity
of the cosine function in r0, πs we have that, for all i, j “ 1, . . . , n, i ‰ j,

θpB´1Apei ` ejq, B
´1Aejq “ θpei ` ej , ejq ðñ

xciei ` cjej , cjejy

|cjej ||ciei ` cjej |
“
xei ` ej , ejy

|ei ` ej ||ej |

ðñ
c2
j

cj
b

c2
i ` c

2
j

“
1
?

2

ðñ
cj

b

c2
i ` c

2
j

“
1
?

2

ðñ

b

2c2
j

b

c2
i ` c

2
j

“ 1 ðñ 2c2
j “ c2

i ` c
2
j

ðñ cj “ ci,

thanks to the strict positivity of the coefficients ci. Thus all the coefficients can be identified
with a constant k ą 0, which implies B´1Aei “ kei, @i “ 1, . . . , n, i.e., by direct computation,
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B´1A “ kIn, or 1
kA “ B P Opnq. 2

We recall that, given a differentiable curve γ : p´ε, εq Ñ Rn, the tangent vector to γ at
γp0q is the vector of Rn defined by the formula:

γ1p0q “ lim
tÑ0

γptq ´ γp0q

t
.

Def. 11.4.7 Let α, β : p´ε, εq Ñ Rn be two differentiable curves with αp0q “ βp0q and
α1p0q, β1p0q ‰ 0. The angle between α and β is defined as the angle between the vectors of Rn
given by α1p0q and β1p0q.

We can now give a characterization of conformality that it is often used as an alternative
definition of this property.

Theorem 11.4.7 Let U Ď Rn be open, φ : U Ñ Rn, φ P C 1pUq. Then, φ is conformal if and
only if φ preserves the angle between curves.

Proof.

ùñ : if φ is conformal, then there is a scale factor κ : U Ñ R` such that κ´1pxqJφpxq P
Opnq for all x P U . Let α, β : p´ε, εq Ñ U be two C 1 curves such that αp0q “ βp0q and
α1p0q, β1p0q ‰ 0. Then, κpαp0qqJφpαp0qq “ κpβp0qqJφpβp0qq is an orthogonal matrix and so,
by Lemma 11.4.4, Jφpαp0qq “ Jφpβp0qq preserves angles between the non-zero (by hypothesis)
vectors α1p0q and β1p0q. Hence

θ
`

pφ ˝ αq1p0q, pφ ˝ βq1p0q
˘

“ θ
`

Jφpαp0qqα
1p0q, Jφpβp0qqβ

1p0q
˘

“ θ
`

α1p0q, β1p0q
˘

,

which shows that the angle between α and β is the same as the one between φ ˝ α and φ ˝ β,
i.e. φ preserves the angle between curves.

ðù : conversely, by Lemma 11.4.4, if φ preserves angles, then Jφpxq preserves angles be-
tween non-zero vectors for each fixed x P U . Hence, there exists a κ ą 0 such that κpxq´1Jφpxq
is orthogonal for all x P U and so φ is conformal on U . 2

Def. 11.4.8 Let U Ď Rn open and let φ : U Ñ Rn be a differentiable function. φ preserves
(resp. reverses) orientation at a point x P U if det Jφpxq ą 0 (resp. det Jφpxq ă 0).

φ preserves (resp. reverses) orientation if φ preserves (resp. reverses) orientation at each
point of its domain.

Theorem 11.4.8 Every reflection and inversion in Rn is conformal and reverses orientation.

Proof.

Reflections. Let ρ be a reflection w.r.t. a hyperplane. The easiest way to prove that ρ is
conformal is by recalling that it is an isometry, hence there exist b P Rn and B P Opnq such that
ρpxq “ b`Bpxq for all x P Rn, thus Jρpxq “ B and so ρ verifies the definition of conformality
with κpxq “ 1 @x P Rn.

257



However, for later use in this proof, let us also verify the conformality of ρ by computing
directly the Jacobian of the original expression of the reflection, i.e. ρpxq “ x`2pt´xa, xy aq “
idRnpxq ` 2t´ 2 xa, xy a, |a| “ 1, t ě 0. Thanks to eq. (B.11) we have

Jρpxq “ I ´ 2A,

where A is the matrix A “ paiajq1ďi,jďn. Notice that Jρpxq does not depend on the parameter t,
so we are allowed to set it to 0, but then ρ becomes an orthogonal (hence linear transformation),
i.e. ρpxq “ Jρpxq, @x P Rn, hence, by property 4. of theorem 11.2.1 this implies that

Jρpxq “ I ´ 2A P Opnq (11.16)

for all A “ paiajq1ďi,jďn with a P Rn, |a| “ 1.

Let us now prove that ρ reverses orientation. By the transitivity of the action of SOpnq on
Sn´1, there is a ψ P SOpnq such that ψpaq “ e1 and so for any x P Rn,

pψ ˝ ρ ˝ ψtqpxq “ ψpρpψtpxqqq “ ψ
`

ψtpxq ` 2pt´
@

a, ψtpxq
D

qa
˘

“
ψt“ψ´1

x` 2pt´ xψpaq, xyqψpaq

“ x` 2pt´ xe1, xyqe1,

but xe1, xy “ px1, 0, . . . , 0q
t, so, by direct computation we get

x` 2pt´ xe1, xyqe1 “ p´x1 ` 2t, x2, . . . , xnq
t “ ηx` 2te1,

with η “ diagp´1, 0, . . . , 0q, hence Jψ˝ρ˝ψtpxq “ η and so detpJψ˝ρ˝ψtpxqq “ ´1 for all x P Rn.
Furthermore, Jψ˝ρ˝ψtpxq “ Jψ˝ρ˝ψ´1pxq and the functions ψ and ρ are linear and affine,
respectively, so their Jacobian matrices do not depend of the evaluation point, which can be
arbitrarily taken to be x. Thanks to these considerations and to the chain rule for Jacobian
matrices we have

Jψ˝ρ˝ψtpxq “ JψpxqJρpxqJψ´1pxq “ JψpxqJρpxqJψpxq
´1,

and so, by Binet’s theorem:

´1 “ detpJψ˝ρ˝ψtpxqq “ ���
���detpJψpxqq detpJρpxqq���

��
��

detpJψpxqq
´1 “ detpJρpxqq

for all x P Rn, hence ρ reverses orientation.

Inversions. Let us start by considering an inversion w.r.t. a sphere centered in 0, i.e.
σ0,rpxq “

r2

|x|2
x, defined for x ‰ 0, we will consider the generic case later. By theorem

B.0.4, the computation of the Jacobian matrix of σ0,r gives:

Jσ0,rpxq “
r2

|x|2

ˆ

I ´ 2
xixj
|x|2

˙

“
r2

|x|2
pI ´ 2Axq ” κpxqBx,

where Ax “
´

xi
|x|

xj
|x|

¯

1ďi,jďn
, Bx “ I ´ 2Ax and κpxq “ r2

|x|2
P R` for all x ‰ 0. Notice that the

entries of the matrix Ax are the components of the normalized vector x
|x| , so, thanks to eq.

(11.16), Bx “ I ´ 2Ax is orthogonal, for all x ‰ 0. This proves that σ0,r is conformal.
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Let us now prove that σ0,r reverses orientation: the properties of the determinant imply

detpJσ0,rpxqq “
r2n

|x|2n
detpI ´ 2Axq “

r2n

|x|2n
detpJρpxqq “

detpJρpxqq“´1
´
r2n

|x|2n
ă 0.

Note that detpI ´ 2Axq “ detpI ´ 2Aq “ detpJρpxqq, because for every fixed x ‰ 0 the matrix
Jσ0,rpxq “ I ´ 2Ax “ Jρpxq, with ρ “ ρ x

|x|
,0.

Finally, let us consider the generic inversion σa,rpxq “ a` r2

|x´a|2
px´ aq. If τapxq “ x` a is

the translation operator by a, then it is clear that σa,r “ τa ˝ σ0,r ˝ τ
´1
a . So, since Jτapxq “ I

for all x, the chain rule for the Jacobian gives:

Jσa,rpxq “ Jσ0,rpx´ aq,

which allows us to conclude that also σa,r is conformal and reverses orientation for all a P Rn
thanks to the previous analysis of σ0,r. The procedure is totally analogous, paying attention
to impose the condition x ‰ a instead of x ‰ 0. 2

Since Möbius transformations are finite compositions of reflections and inversions, they
are conformal too.

Corollary 11.4.3 Every Möbius transformation is conformal.

In 2 dimensions, all holomorphic3 and anti-holomorphic4 functions with a non-vanishing
Jacobian are conformal mappings.

However, as soon as we pass to the third dimensions, conformal mappings are completely
determined by Möbius transformations. This result has been first proven by Liouville [12]
in 1850 in the case of C 3 mappings in R3 and then it has been quickly extended to higher
dimensions. Nonetheless, it remained an open problem for over a century how to relax the
hypothesis of this theorem by considering only C 1 functions, until Hartman solved it [6], [19].

Theorem 11.4.9 (Liouville-Hartman theorem of conformal mappings) Let U Ď Rn
open, n ě 3 and f : U Ñ Rn a C 1 map. Then, f is conformal is and only if f is the restriction
of a Möbius transformation on U .

11.5 Möbius transformations in the upper half space Un and
the open unit ball Bn

Up to now we have analyzed the set of Möbius transformations MpR̂nq on the whole space
R̂n. In this section we will focus our attention on subgroups of MpR̂nq given by Möbius
transformations that preserve proper subsets of R̂n and on the relationship between them.
The information that we will gather will prove to be of crucial importance in the analysis of
the hyperbolic models that we will discuss in chapter 12.

The proper subsets of R̂n that we will consider are

R̂n´1 – P pen, 0q Y t8u “ tx P Rn : xx, eny “ 0u Y t8u,

3A function f : CÑ C, fpzq “ upzq ` ivpzq, is said to be holomorphic if Bu
Bx
“ Bv
By

and Bu
By
“ ´ Bv

Bx
4anti-holomorphic if Bu

Bx
“ ´ Bv

By
and Bu

By
“ Bv
Bx
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which separates R̂n into two disjoint, connected subsets of dimension n, the upper and the
lower half plane, together with the open connected subsets of R̂n given by the unit ball and
the complementary of its closure. The explicit definitions are given below:

• the upper-half space: Un “ tx P Rn : xn ą 0u “ tx P Rn : xx, eny ą 0u;

• the lower-half space: Ln “ tx P Rn : xn`1 ă 0u “ tx P Rn : xx, eny ă 0u;

• the open unit ball: Bn “ tx P Rn : |x| ă 1u;

• the complementary in R̂n of the closed unit ball: pĎBnqc “ tx P Rn : |x| ą 1u Y t8u.

Clearly,
R̂n “ Un \ P pen, 0q \ t8u \ Ln “ Bn \ Sn´1 \ pĎBnqc.

The mathematical analysis starts with the stereographic projection relative to the sphere
embedded in R̂n, which is the isomorphism between R̂n´1 – P pen, 0qYt8u and Sn´1 given by

π̂ : R̂n´1 „
ÝÑ Sn´1

x ÞÝÑ π̂pxq :“

$

&

%

ˆ

2x1
1`|x|2

, . . . , 2xn´1

1`|x|2
, |x|

2´1
1`|x|2

˙

if x ‰ 8

en if x “ 8
.

For the aim of this section, it is fundamental to use theorem 11.3.2 which guarantees that we can

interpret π̂ as the restriction of an inversion w.r.t. a sphere in R̂n, precisely π̂ “ σen,
?

2

ˇ

ˇ

ˇ

R̂n´1
,

or
π̂ : R̂n´1 Ă R̂n „

ÝÑ Sn´1 Ă R̂n

x ÞÝÑ

#

en `
2

|x´en|2
px´ enq if x ‰ 8

en if x “ 8
.

We have all the information we need in order to understand the action of both σen,
?

2 and
π̂, which is depicted in Figure 11.5 in the two-dimensional: by the properties of an inversion
w.r.t. a sphere, σen,

?
2 will leave the sphere Sn´1

en,
?

2
fixed and it will inverse the points in its

interior to points in its exterior. In particular, its center, given by en, will be sent to 8 and
the points on Sn´1 will be mapped on R̂n´1.
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Figure 11.5: Two-dimensional representation of the geometric objects involved in the stereo-
graphic projection in R̂n.

Let us now study the action of σen,
?

2 on Un,Ln,Bn, pĎBnqc. The most important piece
of information that we need to understand this action consists in recalling that σen,

?
2 is a

homeomorphism, so it maps connected subsets of R̂n into connected subsets of R̂n.
In order to single out the image of each connected subset via σen,

?
2 it is sufficient to think

about the fact that R̂n´1 splits R̂n into Un and Ln, and also to the fact that R̂n it is mapped
to the spherical surface Sn´1, thus:

• either σen,
?

2 maps Un to Bn and Ln to pBnqc

• or, σen,
?

2 maps Un to pBnqc and Ln to Bn.

In order to choose between these two mutually exclusive options, it is enough to consider the
image via σen,

?
2 of a wisely chosen point, i.e. u “ p1`

?
2qen. In fact, u P Sn´1

en,
?

2
XUnXpBnqc

and u will remain fixed after the application of σen,
?

2 thanks to property 1. in 11.2.2, thus u,

as all the other points belonging to the upper half space, will be mapped to pBnqc, i.e.

σen,
?

2pU
nq “ ĎBnc and σen,

?
2pL

nq “ Bn.

We can say more, thanks to property 2. in 11.2.2, σ´1
en,
?

2
“ σen,

?
2, so also the opposite is true,

i.e.
σen,

?
2p
ĎBncq “ Un and σen,

?
2pB

nq “ Ln.

The result that we have obtained can be reached in an alternative way. To do that, we need
the following preliminary results, direct consequences of a straightforward computation:

|σen,
?

2pxq|
2 “

#

1` 4xn
|x´en|2

if x ‰ 8

1 if x “ 8
, (11.17)
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and

xσen,
?

2pxq, eny “

#

|x|2´1
|x´en|2

if x ‰ 8

1 if x “ 8
. (11.18)

Let x P Ln, i.e. xn “ xx, eny ă 0, then, using eq. (11.17) we obtain that |σen,
?

2pxq|
2 ă 1,

hence σen,
?

2pxq P Bn, i.e. Ln is mapped into Bn. Furthermore, for all x P Bn, i.e. such that
|x| ă 1, by using eq. (11.18) we get xσen,

?
2pxq, eny ă 0, i.e. σen,

?
2pxq P Ln, so also Bn is

mapped into Ln. With analogous arguments it is possible to verify that Un is mapped into
ĎBnc and vice-versa.

Historically, the upper half space and the interior of the unit ball have been, arbitrarily,
privileged w.r.t. their counterparts. This explains why, in general, we prefer to identify Un
with Bn instead of pBnqc. This can be achieved very easily by swapping Un with Ln thanks to
the reflection w.r.t. R̂n´1, i.e. ρen,0.

Clearly, σen,
?

2 ˝ ρen,0 PMpR̂nq and so it is an isomorphism between R̂n and itself. Thus,

the transformation σen,
?

2 ˝ ρen,0|Un : Un „
Ñ Bn is an isomorphism between the upper half

space and the interior of the unit ball.

Def. 11.5.1 The Möbius transformation η ” σen,
?

2 ˝ ρen,0 PMpR̂nq, whose restriction to Un
allows us to identify Un and Bn is called standard transformation.

Def. 11.5.2 We call MpUnq and MpBnq, the set of Möbius transformations stable on the
upper-half space and the open unit ball, respectively, i.e.:

MpUnq “ tφ PMpR̂nq : φpUnq “ Unu; (11.19)

MpBnq “ tφ PMpR̂nq : φpBnq “ Bnu. (11.20)

It is possible to verify that both of them are subgroups of MpR̂nq.
Since Un and Bn are identified through a Möbius transformation, it is possible to define

in a natural way, via η, an isomorphism that permits to identify their Möbius subgroups as
shown in the following commutative diagram:

Un Bn

Un Bn.

φ

η

η˝φ˝η´1

η

The function
ι : MpUnq „

ÝÑ MpBnq
φ ÞÝÑ ιpφq :“ η ˝ φ ˝ η´1

is clearly an isomorphism of groups.

Let us now focus on the link between MpR̂nq and MpR̂n´1q. In particular, the problem of
extending an element of MpR̂n´1q to the whole R̂n is related to the concept defined as follows.

Def. 11.5.3 Let t ě 0, r ą 0, a P Rn´1, |a| “ 1, and ã “ pa, 0q P Rn. The Poincaré extension
φ̃ PMpR̂nq of φ PMpR̂n´1q is defined as follows:

• if φ “ ρa,t, then φ̃ :“ ρã,t;
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• if φ “ σa,r, then φ̃ “ σã,r;

• if φ “ φ1 ˝ ¨ ¨ ¨ ˝ φm, then φ̃ :“ φ̃1 ˝ . . . φ̃m, where φi is a reflection on an inversion of
R̂n´1, @i P t1, . . . ,mu.

The following intermediate result will prove to be useful in the sequel.

Lemma 11.5.1 Let φ PMpR̂n´1q, then its Poincaré extension φ̃ is stable on the hyperplane
R̂n´1 “ P pen, 0q Y t8u, i.e. φ̃pR̂n´1q “ R̂n´1.

Proof. By definition of Poincaré extension, to prove the statement it is sufficient to prove it
for the simple cases of φ “ ρa,t and φ “ σa,r.

• If φ “ ρa,t, then φ̃ “ ρã,t, with ã “ pa, 0q. Let us consider the hyperplane R̂n´1 “

P pen, 0q Y t8u. Clearly ρã,tp8q “ 8. Let us consider x P P pen, 0q, i.e. xx, eny “ 0. By
definition ρã,tpxq “ x` 2pt´ xx, ãyqã, since xã, eny “ 0, then

xρã,tpxq, eny “ xx` 2pt´ xx, ãyqã, eny “ xx, eny ` 2pt´ xx, ãyqxã, eny “ 0,

hence ρã,tpxq P P pen, 0q, so R̂n´1 is globally fixed by φ̃.

• If φ “ σa,r, then φ̃ “ σã,r, with ã “ pa, 0q because xã, eny “ 0. Let us consider the

hyperplane R̂n´1 “ P pen, 0q Y t8u. Thence σã,tp8q “ ã P P pen, 0q. Let us consider

x P P pen, 0q, i.e. xx, eny “ 0. By definition σã,rpxq “ ã` r2

|x´ã|2
px´ ãq, since xã, eny “ 0,

then

xσã,tpxq, eny “ xã`
r2

|x´ ã|2
px´ ãq, eny “ xã, eny `

r2

|x´ ã|2
pxx, eny ´ xã, enyq “ 0.

hence σã,rpxq P P pen, 0q, so R̂n´1 is globally fixed by φ̃. 2

The following theorem gives a further link between the two subgroups of MpR̂nq, MpUnq
or its isomorphic group MpBnq, and MpR̂n´1q, through the Poincaré extension.

Theorem 11.5.1 Let φ̃ P MpR̂nq. Then, φ̃ P MpUnq if and only if φ̃ is the Poincaré
extension of φ PMpR̂n´1q.

Proof.

ðù : as we did in the previous lemma, it is sufficient to prove the statement for φ̃ as the

Poincaré extension of a reflection φ “ ρa,t, i.e. φ̃ “ ρã,t, or an inversion φ “ σa,r, i.e. φ̃ “ σã,r,
with ã “ pa, 0q. Let x P Un, i.e. xx, eny ą 0. Note that xã, eny “ 0.

• if φ̃ “ ρã,t, then ρã,tpxq “ x` 2pt´ xx, ãyqã, then

xρã,tpxq, eny “ xx, eny ` 2pt´ xx, ãyqxã, eny “ xx, eny ą 0,

thus ρã,tpxq P Un;
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• if φ̃ “ σã,r, then σã,rpxq “ ã` r2

|x´ã|2
px´ ãq, then

xσã,rpxq, eny “ xã, eny `
r2

|x´ ã|2
pxx, eny ´ xã, enyq “

r2

|x´ ã|2
xx, eny ą 0,

thus σã,rpxq P Un.

Note that we could repeat an analogous procedure with Ln instead of Un, with the opposite
inequality, obtaining that, if φ̃ is the Poincaré extension of φ PMpR̂n´1q, then it preserves
also the lower-half space.

ùñ : suppose ψ PMpUnq ĂMpR̂nq, we must prove that it exists φ PMpR̂n´1q such that

φ̃ “ ψ. As a natural candidate we consider φ ” ψ|R̂n´1 .
First of all, let us check that our candidate is suitable, i.e. that its domain and image are

R̂n´1. This is an immediate consequence of the fact that ψ, as a Möbius transformation, is an
homeomorphism, so it leaves BUn – R̂n´1 fixed.

Moreover φ ” ψ|R̂n´1 is an homeomorphism on R̂n´1. Moreover, since ψ is a Möbius

transformation on R̂n, ψ preserves the cross ratios in R̂n, so its restriction φ must preserve
the cross ratios in R̂n´1, hence, by theorem 11.4.1 φ PMpR̂n´1q.

The only thing that remains to be done is to prove that φ̃, the Poincaré extension of φ, is
ψ, or, analogously, that φ̃ ˝ ψ´1 “ idR̂n , in fact, this implies that ψ is the right inverse of φ̃,

which is invertible as an element of MpR̂nq, so it coincides with the inverse φ̃´1. In order to
obtain this result, we need two preliminary facts:

1. φ̃ ˝ ψ´1 is stable on Un as composition of functions that are stable on Un, indeed
ψ´1 P MpUnq by hypothesis and φ̃ P MpUnq thanks to the first implication of this
theorem;

2. φ̃ ˝ ψ´1 fixes R̂n´1 pointwise, i.e. φ̃ ˝ ψ´1pxq “ x for all x P R̂n´1, in fact, by definition

φ̃
ˇ

ˇ

ˇ

R̂n´1
“ φ “ ψ|R̂n´1 , so φ̃ ˝ ψ´1

ˇ

ˇ

ˇ

R̂n´1
“ φ̃

ˇ

ˇ

ˇ

R̂n´1
˝ ψ´1

ˇ

ˇ

R̂n´1 “ ψ|R̂n´1 ˝ ψ
´1
ˇ

ˇ

R̂n´1 “

idR̂n´1 .

The result 2. guarantees that we can apply theorem 11.4.5 with Σ “ R̂n´1. This implies that,
either φ̃ ˝ ψ´1 “ idR̂n or φ̃ ˝ ψ´1 “ ρen,0. However, this second option is not possible because,

by 1. it is stable on Un while ρen,0pUnq “ Ln, hence φ̃ “ ψ. 2

An immediate consequence of this last theorem is the following corollary:

Corollary 11.5.1 MpUnq and MpR̂n´1q are isomorphic (as subgroups of MpR̂nq).

The isomorphism p between MpR̂n´1q and MpUnq is given by the Poincaré extension as
follows:

p : MpR̂n´1q
„
ÝÑ MpUnq

φ ÞÝÑ ppφq :“ φ̃

Indeed by the definition of the Poincaré extension it is clear that for all φ D! Poincaré extension
φ̃ and φ̃ PMpUnq because of the first implication we proved in the previous theorem. Moreover,
thanks to the second implication of the theorem, for all ψ PMpUnq D!φ PMpR̂n´1q such that
φ̃ “ ψ. By direct computation, it can be proven that p is also a group homomorphism.

264



Now we are going to analyze the link between MpUnq and MpR̂n´1q from another per-
spective which involves angles. This is not surprising as we have already underlined the
conformality of between Möbius transformations in subsection 11.4.3.

To proceed gradually we need to introduce the concept of orthogonality between (general-
ized) spheres in R̂n.

Def. 11.5.4 Two spheres Σ1 and Σ2 of R̂n are said to be orthogonal if Σ1 X Σ2 P Rn and for
all x P Σ1 X Σ2 the two normal vectors at x to each sphere are orthogonal.

The condition Σ1 X Σ2 P Rn is introduced to guarantee that Σ1 and Σ2 actually intersect in
at least a point in Rn. The normal vector to a hyperplane has already been defined, while,
here, we take as normal vector to a sphere in one of its points any vector that is normal to the
tangent space to the sphere in the given point.

Since a generalized sphere in R̂n can be either a hyperplane Yt8u or a Euclidean sphere,
there are three possible scenarios, depicted in Figure 11.6:

1. if Σ1 “ P pa, tq Y t8u and Σ2 “ P pb, sq Y t8u, then they are orthogonal if and only if a
and b are orthogonal vectors;

2. if Σ1 “ P pa, tq Y t8u and Σ2 “ Sn´1
b,r , then they are orthogonal if and only if b P P pa, tq;

3. if Σ1 “ Sn´1
a,r and Σ2 “ Sn´1

b,s , then they are orthogonal if and only if |a´ b|2 “ r2 ` s2.

Note that, by symmetry, in cases 2. and 3. it is sufficient to check the orthogonality condition
of the normal vectors in just one of the two points of intersection between the spheres.

Figure 11.6: the three types of orthogonal spheres in R̂2.

Theorem 11.5.2 Let φ be a reflection or inversion with respect to a sphere Σ in R̂n, then
φ PMpUnq if and only if Σ is orthogonal to R̂n´1.

Proof. Let us recall that R̂n´1 – P pen, 0q Y t8u. We will consider the cases of reflection and
inversion separately.
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1. Let φ “ ρã,t be the reflection with respect to Σ “ P pã, tqYt8u, then the following chain
of equivalent assertions holds:

ρã,t PMpUnq th.11.5.1
ðñ Dρa,t PMpR̂n´1q such that ρ̃a,t “ ρã,t and ã “ pa, 0q

ðñ xã, eny “ 0

ðñ ã and en are orthogonal vectors

ðñ Σ “ P pã, tq Y t8u and R̂n´1 “ P pen, 0q Y t8u are orthogonal.

2. Let φ “ σã,r be the inversion with respect to Σ “ Sn´1
ã,r , then the following chain of

equivalent assertions holds:

σã,r PMpUnq th.11.5.1
ðñ Dσa,r PMpR̂n´1q s.t. σ̃a,r “ σã,r and ã “ pa, 0q

ðñ xã, eny “ 0

ðñ ã P P pen, 0q

ðñ Σ “ Sn´1
ã,r and R̂n´1 “ P pen, 0q Y t8u are orthogonal.

2

Since every Möbius transformation can be written as the composition of reflections and
inversions, a direct consequence of the previous theorem is the following.

Corollary 11.5.2 Every Möbius transformation φ PMpUnq is the composition of reflections
and inversions with respect to spheres in R̂n which are orthogonal to R̂n´1.

For the following theorem we need to define the subgroup of IpR̂nq stable on the upper
half space:

IpUnq “ tψ P IpR̂nq : ψpUnq “ Unu “ IpR̂nq XMpUnq. (11.21)

Theorem 11.5.3 Let φ PMpUnq such that φp8q ‰ 8. Let Σ be the isometric sphere of φ
and φ “ ψ ˝ σ its decomposition (see theorem 11.4.2), with σ the reflection or inversion w.r.t.
Σ and ψ P IpR̂nq. Then Σ is orthogonal to R̂n´1 and ψ P IpUnq.

Proof. From corollary 11.5.2, since φ P MpUnq and φ “ ψ ˝ σ, Σ is orthogonal to R̂n´1.
What remains to be proven is that ψ P IpUnq. σ is the reflection or inversion with respect
to Σ, which is orthogonal to R̂n´1. From theorem 11.5.2 this implies that σ PMpUnq. Since
σ´1 “ σ, then ψ “ σ ˝ φ. Now σ PMpUnq and φ PMpUnq, hence ψ PMpUnq as composition
of elements of MpUnq. Moreover ψ P IpR̂nq, so we can conclude that ψ P IpUnq. 2

Now we are going to analyze the properties of the last Möbius subgroup: MpBnq.
As we already know it is possible to identify Un and Bn through the standard transformation

η defined in 11.5.1 as η “ σen,
?

2 ˝ ρen,0. Moreover, it permits to define the isomorphism of
subgroups ι as follows:

ι : MpUnq „
ÝÑ MpBnq

φ ÞÝÑ ιpφq :“ η ˝ φ ˝ η´1.
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Up to now we have analyzed in detail the properties of MpUnq. Because of the isomorphism
between MpUnq and MpBnq it is reasonable to think that analogous properties should hold
for MpBnq. This is actually the case and it order to prove it, we will make large use of the
isomorphism between the two subgroups.

As we have seen in corollary 11.5.1 the Poincaré extension induces the isomorphism p
between MpUnq and MpR̂n´1q.

p : MpR̂n´1q
„
ÝÑ MpUnq

φ ÞÝÑ ppφq :“ φ̃.

Note that R̂n´1 “ BUn, hence the Poincaré extension gives a correspondence between the
Möbius subgroup of Un and the Möbius subgroup of its border BUn. Analogously we would
like to define a Poincaré extension which links the Möbius subgroups associated to Bn and its
border BBn “ Sn´1, respectively.

First of all we need to identify MpSn´1q. For that, we need to search for an analogous
version of p for Bn, to do that we will clearly make use of p, which connects MpUnq with
MpR̂n´1q. Thence it is important to define MpSn´1q as something related to MpR̂n´1q.

Before giving this definition let us recall that the extended stereographic projection
π̂ : R̂n´1 ÝÑ Sn´1 maps bijectively R̂n´1 onto Sn´1, π̂pR̂n´1q “ Sn´1 and π̂´1pSn´1q “ Rn´1.

Now we can define the Möbius group of Sn´1 as follows:

MpSn´1q “
 

φ : Sn Ñ Sn such that π̂´1 ˝ φ ˝ π̂ PMpR̂n´1q
(

, (11.22)

the following commutative diagram visualizes the action of such Möbius transformations:

Sn´1 R̂n´1

Sn´1 R̂n´1.

φ

π̂

π̂´1˝φ˝π̂

π̂´1

Clearly π̂ allows us to define the group isomorphism µ between MpR̂n´1q and MpSn´1q

as follows:
µ : MpSn´1q

„
ÝÑ MpR̂n´1q

φ ÞÝÑ µpφq :“ π̂´1 ˝ φ ˝ π̂.

The definition of the Poincaré extension p1 for the elements of MpSn´1q to elements of
MpBnq is given below.

Def. 11.5.5 Let φ PMpSn´1q, let ψ “ π̂´1 ˝ φ ˝ π̂ “ µ´1pφq PMpR̂n´1q and let ψ̃ PMpUnq
be the Poincaré extension of ψ, ψ̃ “ ppψq. We define the Poincaré extension of φ as
φ̃ ” p1pφq “ η ˝ ψ̃ ˝ η´1 “ ι ˝ p ˝ µ´1pφq PMpBnq.

The following commutative diagram visualizes the action of p1:

MpR̂n´1q MpSn´1q

MpUnq MpBnq.

p

µ

p1

ι
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Two immediate consequences of this definition are the analogous versions of theorem 11.5.1
and corollary 11.5.1, that can be proven analogously.

Theorem 11.5.4 φ P MpBnq if and only if φ is the Poincaré extension of an element of
MpSn´1q.

Corollary 11.5.3 The Poincaré extension p1 is an isomorphism between the Möbius groups
MpSn´1q and MpBnq.

We will now analyze the analogous version of theorem 11.5.2.

Theorem 11.5.5 Let φ be a reflection or inversion w.r.t. a sphere Σ in R̂n, then φ PMpBnq
if and only if Σ is orthogonal to Sn´1.

Proof. Since φ P MpBnq, let us consider ψ “ ι´1pφq “ η´1 ˝ φ ˝ η P MpUnq. Let us call
Σ1 “ η´1pΣq, after a straightforward computation it is immediate to verify that ψ fixes Σ1

pointwise. Moreover ψ ‰ idR̂n , indeed if ψ “ idR̂n “ η´1 ˝ φ ˝ η, then φ “ idR̂n , which is false.
Theorem 11.4.5 allows us to conclude that ψ is the reflection or inversion w.r.t. Σ1.

Moreover, because of theorem 11.5.2, ψ P MpUnq if and only if Σ1 is orthogonal to
R̂n´1. Note that if we apply η to both Σ1 and R̂n´1 we obtain ηpΣ1q “ Σ and ηpR̂n´1q “

σen,
?

2 ˝ ρen,0pR̂
n´1q “ σen,

?
2pR̂

n´1q “ Sn´1.

By corollary 11.4.3, η PMpR̂nq is conformal, thence it preserves angles, and so, in particu-
lar, it preserves orthogonality. Finally we can conclude that Σ1 is orthogonal to R̂n´1 if and
only if Σ is orthogonal to Sn´1. 2

The following corollary is the analogous version for Bn of 11.5.2.

Corollary 11.5.4 Every Möbius transformation in MpBnq is the composition of reflections
and inversions w.r.t. spheres of R̂n which are orthogonal to Sn´1.

We will now analyze a similar result to 11.5.3.

Theorem 11.5.6 Let φ PMpBnq, then:

1. if φp8q “ 8, then φ P Opnq “ IpBnq;

2. if φp8q ‰ 8, let Σ be its isometric sphere and let φ “ ψ ˝ σ be its decomposition5,
with ψ P IpR̂nq and σ the inversion w.r.t. Σ, then Σ is orthogonal to Sn´1 and
ψ P Opnq “ IpBnq.

Proof.

1. Let us consider the case φp8q “ 8. By point 1. of theorem 11.4.2, φ P SpR̂nq hence
it can be written as φpxq “ b ` kAx, with k ą 0, A P Opnq and b P Rn. Notice that,
since φ PMpBnq, the vector b should belong to Bn, hence |b| ă 1. Indeed if |b| ě 1, then
φp0q “ b R Bn, but 0 P Bn and this is contradictory with the hypothesis φ PMpBnq.
Let us suppose b ‰ 0. Clearly η´1 ˝ φ ˝ η PMpUnq. Theorem 11.5.1 and lemma 11.5.1
allow us to say that η´1 ˝ φ ˝ η is stable on R̂n´1, i.e. η´1pφpηpR̂n´1qqq “ R̂n´1, hence

5given by 2. in theorem 11.4.2.
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φpηpR̂n´1qq “ ηpR̂n´1q, but ηpR̂n´1q “ Sn´1, this means that φpSn´1q “ Sn´1, i.e. φ is
stable on Sn´1. Since we have supposed b ‰ 0, we can define b̃ “ At b

|b| . It is easy to

verify that |b̃| “ 1, thus b̃ P Sn´1.

Now since φ is stable on Sn´1 we must have that |φpb̃q| “ 1. Explicitly:

|φpb̃q| “

ˇ

ˇ

ˇ

ˇ

b` k
b

|b|

ˇ

ˇ

ˇ

ˇ

“ ||b| ` k| “ |b| ` k “ 1, (11.23)

which implies that k “ 1´ |b|, which is positive because b P Bn.

Clearly also ´b̃ P Sn´1, i.e. | ´ b̃| “ 1 and |φp´b̃q| “ 1. Developing the computation and
using the fact that k “ 1´ |b| we obtain:

|φp´b̃q| “

ˇ

ˇ

ˇ

ˇ

b´ k
b

|b|

ˇ

ˇ

ˇ

ˇ

“ ||b| ´ k| “ |2|b| ´ 1| “ 1. (11.24)

Hence |b| “ 0 or |b| “ 1 which is contradictory because we assumed that b ‰ 0 and
|b| ă 0.

This means that b “ 0, thus φpxq “ kAx. Since φ is stable on Sn´1, let us consider
x P Sn´1, |x| “ 1 and |φpxq| “ 1, but 1 “ |φpxq| “ k|Ax| “ k|x| “ k, hence k “ 1 and
φ “ A P Opnq “ IpSn´1q.

2. Let us consider the case φp8q ‰ 8. Let a “ φ´1p8q P Rn, using the decomposition
given by point 2. in theorem 11.4.2 φ “ ψ ˝ σ we have that φpaq “ ψpσpaqq “ 8, so
σpaq “ ψ´1p8q “ 8, hence σpaq “ 8. This implies that a is the center of the isometric
sphere Σ “ Sn´1

a,r and σ “ σa,r. Moreover by corollary 11.5.4, since φ P MpBnq the
spheres Σ “ Sn´1

a,r and Sn´1 are orthogonal, hence r is such that |a|2 “ r2 ` 1. Now, by
theorem 11.5.5 we know that σ PMpBnq, moreover φ PMpBnq, hence ψ PMpBnq, but
also ψ P IpR̂nq, so ψ PMpBnq X IpR̂nq “ IpBnq “ Opnq.

2

A direct consequence of the previous theorem is the following corollary.

Corollary 11.5.5 Let φ PMpBnq, then φp0q “ 0 if and only if φ P Opnq.

Proof. If φp8q “ 8 then φ P Opnq because of point 1. in the previous theorem.
Let us consider the case of φp8q ‰ 8. Because of the previous theorem we have the

decomposition φ “ ψ ˝ σ, with ψ P Opnq and σ the inversion w.r.t. the sphere Sn´1
a,r , with

r2 “ |a|2´ 1. The condition φp0q “ 0 corresponds to φp0q “ ψpσp0qq “ 0, but, since ψ P Opnq,
ψp0q “ 0, thence the previous condition is equivalent to σp0q “ 0. Now, because of property
1. in theorem 11.2.2, this means that 0 P Sn´1

a,r , hence |0´ a| “ |a| “ r, but r2 “ |a|2 ´ 1, so
|a|2 “ |a|2 ´ 1 which gives a contradiction. Hence, φ P Opnq if and only if φp0q “ 0. 2
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Chapter 12

The hyperbolic models (Antoine Guennec)

Around 300 B.C, Euclid wrote his famous ‘Elements’ [7], a thirteen-volume work where he
presented the fundamentals of Greek geometry and number theory. In the first pages, he
exposes his five postulates of planar geometry:

1. ‘Let it have been postulated to draw a straight-line from any point to any point’

2. ‘And to produce a finite straight-line continuously in a straight-line’

3. ‘And to draw a circle with any center and radius’

4. ‘And that all right-angles are equal to one another’

5. ‘And that if a straight-line falling across two (other) straight-lines makes internal angles
on the same side (of itself whose sum is) less than two right-angles, then the two (other)
straight-lines, being produced to infinity, meet on that side (of the original straight-line)
that the (sum of the internal angles) is less than two right-angles (and do not meet on
the other side)’.

This last postulate is best known as the parallel postulate and it is equivalent to Playfair’s
axiom when combined with the first four axioms:

‘In a plane, given a line and a point not on it, at most one line parallel to the given line can
be drawn through the point’

For over two thousand years, mathematicians have tried to simplify Euclid’s axioms of
geometry, by proving the fifth axiom from the first four (known as the fifth postulate problem),
but without success. However, in the 19th century, things took a surprising turn when
mathematicians discovered that in fact the fifth axiom was independent from the first four
while trying to prove the fifth postulate problem by contradiction by denying the fifth axiom.
To the general astonishment of mathematicians at the time, geometries that refute the fifth
axiom (while keeping the first four), turned out to be highly consistent.

The geometries that reject some of Euclid’s postulates are fittingly designated as non-
Euclidean geometries. Hyperbolic geometry is a non-Euclidean geometry where we keep the
first four postulates and we refute the fifth postulate by replacing it with the following:

‘In a plane, given a line and a point not on it, there are infinitely many lines parallel to the
given line that can be drawn through the point.’
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Funnily enough, while Gauss is thought to be the one of the first mathematicians to have
worked on hyperbolic geometry, he never published anything about it out of fear of the ‘uproar
of the Boeotians’ (1829, letter from Gauss to W. Bessel), to the extend that Gauss’ visionary
work on non-Euclidean geometry was only found among his papers after his death in 1855.

While the first publications on hyperbolic geometry were independently given by Nikolai
Lobachevsky and János Bolyai in 1829 and 1832 respectively, it was only during the second
half of the 19th century that hyperbolic geometry was fully developed by mathematicians such
as Poincaré and Hilbert, with the culmination point being at the start of the 20th century with
Einstein’s groundbreaking use of hyperbolic geometry in his formulation of special relativity,
thus showing that hyperbolic geometry was not just meant to be left in the dark cupboards of
the mathematics department. More recently, hyperbolic geometry has made a come back with
its use in artificial intelligence and information processing, such as in [13]or [3] which make a
nice use of Poincaré’s and Klein’s disk embedding, respectively).

12.1 A brief overview on the four models of the hyperbolic
n-space

The hyperbolic space n-space The hyperbolic space of dimension n OR The hyperbolic n-space,
in contrast to Sn and Rn, can be described in various different ways. In what follows we will
by giving show the four main models that are prevalent in literature: Hn the hyperboloid, Bn
the conformal ball model (also known as Poincaré disk), Un the conformal upper half plane,
and Kn, the projective model (also known as Klein disk). Up to an isomorphism, for every
n ě 2, there exists a unique complete and simply connected hyperbolic manifold of dimension
n. Hence, every hyperbolic models that we shall present will be isomorphic to each other.
Hence all the hyperbolic models are isomorphic.

Once we have our geometric model embedded in Rn, if we wish to refute Euclid’s fifth
postulate we have two choices: either straight lines are distorted (conformal model) or angles
are (projective model), but not both options together, otherwise we come back to the usual
Euclidean space forse questa frase va tolta perché a questo punto non è giustificata. These
modifications affect the hyperbolic space in such a way that the quickest path between points
is often curved compared to Euclidean geometry. Questa frase forse la toglierei perché ad
esempio nel modello di Klein le geodetiche sono rette i.e. non sono distorte.

This section has the only purpose to give the reader a glimpse of the four models and
a general idea of the path that we will be taking after this introduction, represented in the
diagram below. Many tools will be needed to be introduced before we reach our objectives.

Poincaré disk Upper-half space pConformal modelq

Hyperboloid

Cayley-Klein model pProjective modelq
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12.1.1 The Hyperboloid Hn in a nutshell

We start with what we will use as the basis of our hyperbolic n-spaces: the hyperboloid Hn

represented in Figure 12.1. Embedded in the Lorentzian n-space Rn,1, the hyperboloid is
defined as upper sheet of the set of time-like vectors of Lorentz (bisogna dire quale norma)
norm ´1:

Hn “ tx P Rn`1 : x2
1 ` ¨ ¨ ¨ ` x

2
n ´ x

2
n`1 “ ´1, xn`1 ą 0u.

Figure 12.1: The Hyperboloid model: the line between A and B is distorted compared with
the usual Euclidean straight lines. In fact, usual Euclidean lines (with the Euclidean metric)
are longer than hyperbolic lines.Toglierei questa frase perché qui è detta troppo velocemente
(le straight lines in che spazio sono?/le hyperbolic lines con che metrica le misuri per dire che
sono più lunghe?) e il lettore a questo punto non ha abbastanza strumenti per capire questa
frase.

Clearly, the map
Rn ÝÑ HnĂ Rn`1

¨

˚

˝

x1
...
xn

˛

‹

‚

ÞÝÑ

¨

˚

˚

˚

˝

x1
...
xn

a

1` x2
1 ` ¨ ¨ ¨ ` x

2
n

˛

‹

‹

‹

‚

is a bijection and so Hn is indeed n-dimensional space. The hyperbolic distance between two
points x, y P Hn is then defined using the hyperbolic cosine:

coshpdHpx, yqq “ ´x1y1 ´ ¨ ¨ ¨ ´ xnyn ` xn`1yn`1 “ ´x ˝ y.

Note that here we used the second definition given in ?? with the minus sign on the list
coordinate instead of the first one.

Geodesic lines (lines that minimize the distance and are of constant speed lines of constant
speed that minimize the distance) will be shown to be of the form:

γptq “ coshptqx` sinhptqy,

where t is the path’s parameter and x, y is the initial condition.
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Moreover the isometry group IpHnq will be proven to be POpn, 1q, the positive Lorentz
group. Finally, for a curve γ : ra, bs Ñ Hn the hyperbolic arc length along the hyperboloid is
will be shown to be:

}γ} “

ż b

a
}γ1ptq} “

ż

γ
pdx2

1 ` ¨ ¨ ¨ ` dx
2
n ´ dx

2
n`1q

1
2 .

12.1.2 The conformal models Bn and Un in a nutshell

What is important to remember here is the fact that conformal is equivalent to ‘angles are
maintained ’. A conformal transformation maintains the angle between two curves in the
space (a rotation or translation for example rotations and translations are classic examples
of conformal transformations) and a conformal model is a hyperbolic geometry model that
maintains the same notion of Euclidean angles than the usual Euclidean geometry.

We will be presented with two analogous models: We are going to introduce now two
analogous models: the open unit ball Bn (also said Poincaré disk in the 2-dimensional case
B2) and the upper-half space Un.

Bn “ tx P Rn : |x| ă 1u, Un “ tx P Rn : xn ą 0u.

The two models are very similar, one is found from the other by an homeomorphic and
inversive transformation (which is also conformal!) through a Möbius transformation (which
are conformal as we have seen in corollary 11.4.3) as so:

ηpxq “ σen,
?

2pρen,0pxqq “ en `
2

|Jx´ en|2
pJx´ enq, where J “

ˆ

In´1 0
0 ´1

˙

.

Hence the two models will be shown to have isomorphic isometric groups IpBnq » IpUnq »
MpÊn´1q, where MpÊkq is the set of Möbius transformation defined in on a k-dimension
Euclidean space. From section ?? of the previous chapter we already know that MpUnq –
MpBnq – MpR̂n´1q, here we will show that this isomorphism preserves also the metric
structure of the different models involved. The metric given to the hyperbolic conformal ball
model will be inherited from the Hyperboloid model by setting the projection ζ from Bn to
Hn (see figure 12.2) to be an isometry (in other words, we set dBpx, yq “ dHpζpxq, ζpyqq and
thus the metric the hyperbolic metric on Bn is defined as: Bn inherits its metric from Hn

through the projection ζ from Bn to Hn, as depicted in figure 12.2, i.e. we define the metric
dB on Bn in a way such that ζ is an isometry, i.e. dBpx, yq “ dHpζpxq, ζpyqq hence:

coshpdBpx, yqq “ 1`
2|x´ y|2

p1´ |x|2qp1´ |y|2q
.

A questo punto il lettore non può capire la formula, perché non conosce la funzione ζ che non
è stata ancora definita analiticamente.
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Figure 12.2: Illustration of the isometry between Hn and Bn. Hyperbolic lines are transformed
into arcs of Euclidean circles othogonal to Sn´1 or diameter line of Sn´1. Illustration of the
isometry between Hn and Bn. Geodesics on Hn are transformed into arcs of Euclidean circles
othogonal to Sn´1 or diameters of Sn´1.

Moreover, hyperbolic lines geodesics in the a conformal model will be arcs of Euclidean
circles and lines orthogonal to the boundary of the model (Sn´1 in the case of Bn and
Rn´1 » tx P Rn : xn “ 0u in the case of Un). See figure 12.3 for a two-dimensional depiction.

Figure 12.3: The Poincaré disc (left) is just the 2 dimensional instance of the conformal ball
model. Here we see that lines that minimizes minimizing the distances are either diameters
of the circle or arc of circle, orthogonal to the border Sn´1. In a similar way, in the two-
dimensional upper-half space U∈, i.e. the upper-half plane (right) the lines that minimize
distance are either straight vertical lines or arcs of a half circle semicircle.
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12.1.3 The projective model Kn in a nutshell

The projective model lies between the hyperbolic model and the conformal ball model: geo-
metrically, it is the unit ball, however, lines are not distorted when compared with the usual
Euclidean lines, but angles are. While the metric on the projective model is less easy to
work with, it has the advantage that its concept can be extended to any open convex sets via
its cross ratio formulation (Hilbert’s metric). In a 2-dimensional space, this model is often
referenced as the Beltrami-Cayley-Klein model (K actually stands for Klein).

Figure 12.4: The isomorphism of Hn onto Kn versus the isomorphism of Hn onto Bn

When compared with the conformal ball model, the bijective projection of Hn onto Kn

(see figure 12.4) seems much more natural. In fact if we look back at theorem 9.4.1, the
correspondence between the unit ball and the lines passing through zero and with a time-like
orientation vector is exactly the isomorphism Hn Ñ Kn given by

Hn ÝÑ Kn
¨

˚

˝

x1
...

xn`1

˛

‹

‚

ÞÝÑ 1
xn`1

¨

˚

˝

x1
...
xn

˛

‹

‚

.

Lines joining x and y in the Hyperboloid are of the form

Lx,y “ spanpx, yq XHn.

It is easy to see that if x̃ and ỹ are the projection on Kn of x and y then spanpx̃, ỹq “ spanpx, yq
and so the line Lx,y once projected in Kn is

Lx̃,ỹ “ spanpx, yq XKn » spanpx, yq X
 

ˆ

x
1

˙

: x P Rn
(

,

so it is a Euclidean line once extended. Hence lines in the projective model are the Euclidean
lines. Just like in the conformal model the metric is derived by requiring the bijection Kn Ñ Hn
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to be an isometry, i.e dKpx, yq “ dHpµpxq, µpyqq and so the projective model metric can be
expressed using the hyperbolic cosine:

coshpdKpx, yqq “
1´ xx, yy

a

p1´ |x|2q
a

1´ |y|2
.

12.2 The hyperboloid model and the hyperbolic metric

In this section we are going to define and analyze in detail the first model of hyperbolic
geometry: the hyperboloid. A quick recap about the concept of distance and angle in the
Euclidean setting will help us underlying similarities and differences between spherical and
hyperbolic geometry.

12.2.1 Memories of spherical geometry

The classical way of introducing the concept of angle and spherical distance is based on the
Cauchy-Schwarz inequality (lemma 10.1.1). In fact, as a direct consequence, we have that for
all x, y P Rn, there is a number αpx, yq P r´1, 1s such that

xx, yy “ αpx, yq ‖x‖ ‖y‖ ,

which, for non-zero vectors, satisfies the following properties: αpx, yq “ 0 if and only if x and y
are orthogonal and αpx, yq “ ˘1 if and only is x and y are linearly dependent. Being cos|r0,πs
a bijective function between r0, πs and r´1, 1s, with cosp0q “ 1, cospπ{2q “ 0 and cospπq “ ´1,
we have the identification:

αpx, yq “ cospθpx, yqq,

where θpx, yq P r0, πs is defined to be the angle between x and y. θpx, yq is related to the
so-called spherical distance between two vectors, that we recall next.

Def. 12.2.1 The spherical distance dSpx, yq between two vectors x, y P Rn is the angle between
the projections of x and y on the unit sphere Sn´1.

It follows that θpx, yq and dSpx, yq are identical when ‖x‖ “ ‖y‖ “ 1, which implies the
equation

cospdSpx, yqq “ xx, yy ðñ dSpx, yq “ arccospxx, yyq (12.1)

and, since cos2pdSpx, yqq ` sin2pdSpx, yqq “ 1, sinpdSpx, yqq “

b

1´ xx, yy2, where only the

positive determination of the square root makes sens here because dSpx, yq has been defined
as the angle between x, y, which belongs to r0, πs, so sinpdSpx, yqq ě 0.

The straight lines on the sphere through x, y P Sn´1 is

`x,y “ spanpx, yq X Sn´1,

and the shortest (geodesic) arc between x, y P Sn´1 has the expression

γptq “ cosptqx`
sinptq

b

1´ xx, yy2

ˆ

y ´ xx, yyx

˙

, t P r0, dSpx, yqs,
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notice that γp0q “ x and

γpdSpx, yqq “ cospdSpx, yqqx`
sinpdSpx, yqq
b

1´ xx, yy2

ˆ

y ´ xx, yyx

˙

“ xx, yyx`

b

1´ xx, yy2

b

1´ xx, yy2

ˆ

y ´ xx, yyx

˙

“ y,

or
γptq “ cosptqx` sinptqy, t P r0, dSpx, yqs,

if x and y are orthogonal.
We also remark that sine and cosine are the only functions verifying

1 “ cosptq2 ` sinptq2 “

∥∥∥∥ˆcosptq
sinptq

˙
∥∥∥∥2

E

and

S1 “

"ˆ

cosptq
sinptq

˙

P R2 : t P R
*

.

The hyperboloid model that we will analyze now will show analogous features, the major
difference being represented by the fact that the circular functions sine and cosine must be
replaced by the their hyperbolic counterparts:

coshptq “
ex ` e´x

2
, sinhptq “

ex ´ e´x

2
,

which, for all t P R, satisfy∥∥∥∥ˆcoshptq
sinhptq

˙∥∥∥∥2

E

“ cosh2ptq ´ sinh2ptq “ 1

and ∥∥∥∥ˆcoshptq
sinhptq

˙∥∥∥∥2

“ ´ cosh2ptq ` sinh2ptq “ ´1.

12.2.2 The hyperboloid model and its metric

We have just seen how we can build a distance on the sphere from the scalar product and the
cosine function. Here we follow exactly the same path by replacing the unit sphere with the
unit hyperboloid, i.e. the one defined by qpxq “ ´1 and the cosine by the hyperbolic cosine.

Def. 12.2.2 The hyperboloid model of hyperbolic geometry is defined as the upper connected
part of the level set defined by qpxq “ ´1 in R1,n, explicitly,

Hn “ tx P R1,n : ‖x‖2
“ ´1, x1 ą 0u.
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The hyperboloid model can thus be described also as the set of all unit positive time-
like vectors in R1,n. The analysis of the hyperboloid model starts with a variation of the

Cauchy-Schwarz inequality specific for positive time-like vectors.

Theorem 12.2.1 Let x, y P R1,n be two positive time-like vectors. Then:

x ˝ y ď ‖x‖ ‖y‖ ,

with equality if and only if x and y are linearly dependent.

Proof. Set t :“ | ‖x‖ | ą 0 (‖x‖2
“ ´t2) and because x P spanpxq is a one-dimensional

time-like vector subspace of R1,n, by theorem 10.3.4 there exists φ P POp1, nq such that

φpspanpxqq “ spanpe1q and consequently we have φpxq “ te1. Set z ”

ˆ

z1

z̄

˙

:“ φpyq. Then,

‖x‖2 ‖y‖2
“ ‖φpxq‖2 ‖φpyq‖2

“ ´t2p´z2
1 ` |z̄|q “ t2z2

1 ´ t
2|z̄|

ď t2z2
1 “ pte1 ˝ zq

2 “ pφpxq ˝ φpyqq2 “ px ˝ yq2,

thus ‖x‖2 ‖y‖2
ď px ˝ yq2. Notice that the equality ‖x‖2 ‖y‖2

“ px ˝ yq2 holds if and only if
z̄ “ 0, which implies φpyq P spanpe1q and, since the action of POp1, nq on time-like vector
subspaces is stable, y P spanpxq, i.e. x and y are linearly dependent.

Finally, theorem 10.2.1 guarantees that x ˝ y ă 0, hence p‖x‖ ‖y‖q2 “ ‖x‖2 ‖y‖2
ď px ˝ yq2

is an inequality between two negative real numbers, which implies

x ˝ y ď ‖x‖ ‖y‖

since the function ξ ÞÑ ξ2 is decreasing, and thus order-reversing, in p´8, 0s. 2

If x, y P Hn, then }x}2 “ }y}2 “ ´1, so }x} “ }y} “ i and }x}}y} “ ´1, this leads directly
to the following corollary.

Corollary 12.2.1 Let x, y P Hn. Then:

x ˝ y ď ´1,

with equality if and only if x “ y.

Now, at this point the fundamental observations towards the construction of the hyperbolic
distance on Hn are that coshpαq ě 1 for all α P R and that coshp´αq “ coshpαq, thus we can
consider just positive entries α ě 0 and formulate the following corollary.

Corollary 12.2.2 Let x, y P R1,n be two positive time-like vectors, then there exists a unique
αpx, yq ě 0 such that

x ˝ y “ coshpαpx, yqq ‖x‖ ‖y‖ . (12.2)

In particular, if x, y P Hn, then }x}}y} “ ´1 and so it exists only one αpx, yq ě 0 such that
coshpαpx, yqq “ ´x ˝ y.

Following the lead given to us by spherical geometry, we introduce the hyperbolic distance
on Hn as follows.
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Def. 12.2.3 (Hyperbolic distance on Hn) The hyperbolic distance between two elements
x, y of Hn is dHpx, yq “ αpx, yq, where αpx, yq ě 0 is the only non-negative real number that
satisfies the equation:

coshpdHpx, yqq “ ´x ˝ y, (12.3)

or, equivalently,

dHpx, yq “ arcoshp´px ˝ yqq . (12.4)

The non-negative real number αpx, yq is called the Lorentzian time-like angle between
x, y P Hn.

A transformation T : Hn Ñ Hn is a hyperbolic isometry on Hn if it verifies the following
condition:

dHpT pxq, T pyqq “ dHpx, yq, @x, y P Hn. (12.5)

The set of hyperbolic isometries on Hn is denoted with IpHnq.

By (12.1), we have that the spherical distance is dSpx, yq “ arccospxx, yyq, thus, apart from
the minus sign in front of the Lorentz pseudo-scalar product, the only change that is required
to pass from the spherical to the hyperbolic distance on Hn is to replace the inverse circular
function arccos with the inverse hyperbolic function arcosh.

Clearly, dH is positive, symmetric and dHpx, yq “ 0 if and only if x “ y by corollary 12.2.1.
All that is left to prove to verify that dH is actually a distance is the triangular inequality,
which is far from being trivial.

The proof of the triangular inequality of dH needs a result that is important by its own:
the possibility to identify the isometries of Hn with positive Lorentz transformations. The
proof of this result requires the following lemma, which is proven with a technical reasoning of
vast applicability that we will encounter again in this chapter.

Lemma 12.2.1 A generic transformation S : Hn Ñ Hn that preserves the Lorentz pseudo-
scalar product can be extended to a positive Lorentz transformation φS P POp1, nq if and only
if there exists a transformation T : Hn Ñ Hn that preserves the Lorentz pseudo-scalar product
and that has an arbitrary fixed point h P Hn, i.e. T phq “ h, which can be extended to a positive
Lorentz transformation φT P POp1, nq.

Proof. If a generic transformation S : Hn Ñ Hn that preserves the Lorentz pseudo-scalar
product can be extended to a positive Lorentz transformation φS , then this property is also
shared by a map T of this kind that also has the additional property of having a fixed point
h P Hn. So, the non-trivial part of the proof consists in showing that the opposite is true.

To this end, write Sphq “ x P Hn and recall that POp1, nq is transitive, in particular, on
the set of 1-dimensional time-like vector subspaces of R1,n, so it surely exists R̃ P POp1, nq

such that R̃pxq “ h. Since both x and h belong to Hn, we can consider R :“ R̃
ˇ

ˇ

ˇ

Hn
and

compute pR ˝ Sqphq “ Rpxq “ h, which shows that h is a fixed point for T :“ R ˝ S, which
surely preserves the Lorentz pseudo-scalar product since it is the composition of two functions
that share this property.

Notice now that, since POp1, nq is a group, it exists a transformation R̃´1 P POp1, nq such

that the restriction R´1 :“ R̃´1
ˇ

ˇ

ˇ

Hn
satisfies the equation S “ R´1 ˝ T .
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Finally, if T can be extended to a positive Lorentz transformation, i.e. if there exists φT P

POp1, nq such that T “ φT |Hn , then S “ R´1 ˝ T “ R̃´1
ˇ

ˇ

ˇ

Hn
˝ φT |Hn “ pR̃´1 ˝ φT q

ˇ

ˇ

ˇ

Hn
, hence

we recognize the extension of S to POp1, nq to be φS :“ R̃´1 ˝ φT . 2

Theorem 12.2.2 Every hyperbolic isometry on Hn can be extended to be a positive Lorentz
transformation and every positive Lorentz transformation is a hyperbolic isometry on Hn.
Thus, we have the identification:

POp1, nq – IpHnq.

Proof. If φ P POp1, n´ 1q, then φ : Hn Ñ Hn and, by definition (12.3), we have:

coshpdHpx, yqq “ ´x ˝ y “ ´pφpxq ˝ φpyqq “ coshpdHpφpxq, φpyqqq, @x, y P Hn,

but cosh is injective on R`, so dHpφpxq, φpyqq “ dHpx, yq for all x, y P Hn.

Conversely, let T : Hn Ñ Hn be a hyperbolic isometry, T ” pT1, . . . , Tn`1q, Tj : Hn Ñ R
being the j-th component function of T , i.e for j P t1, . . . , n` 1u,

T : Hn ÝÑ Hn

x ÞÝÑ

¨

˚

˚

˚

˝

T1pxq
T2pxq

...
Tn`1pxq

˛

‹

‹

‹

‚

”

ˆ

T1pxq

T pxq

˙

.

We must prove that there exists φ P POp1, nq such that T “ φ|Hn . Since φ preserves the
Lorentz pseudo-scalar product on R1,n, for this problem to be well-posed, we must first check
if T preserves the Lorentz pseudo-scalar product on Hn. In order to do that we use eq. (12.3)
and the fact that T preserves the hyperbolic distance to write, for all x, y P Hn,

dHpT pxq, T pyqq “ dHpx, yq ðñ coshpdHpT pxq, T pyqqq “ coshpdHpx, yqq

ðñ T pxq ˝ T pyq “ x ˝ y.

Having proven that a hyperbolic isometry T preserves the Lorentz pseudo-scalar product on
Hn has another important consequence, i.e. the possibility to invoke lemma 12.2.1: if we solve
our problem w.r.t.just one hyperbolic isometry T : Hn Ñ Hn with a fixed point, then we
automatically solve it for all the other hyperbolic isometries of Hn.

A particularly clever choice of such a fixed point is represented by e1, that clearly belongs
to Hn. The reason underlying this choice can be understood by recalling that the matrix

Λ “

ˆ

1 0
0 A

˙

, A P Opnq, (12.6)

is a positive Lorentzian matrix thanks to corollary 10.3.3. Since a Lorentzian matrix is
associated to a Lorentz transformation w.r.t. the canonical basis pe1, . . . , enq, the fact that the
first column of Λ coincides is p1, 0, . . . , 0qt means that e1 is a fixed point for the transformation.

As a consequence, the only thing that remains to do in order to prove the theorem is to
use the properties of T to build a suitable orthogonal matrix such that expression in (12.6)
extends T from Hn to the whole R1,n.
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We start by observing that T pe1q “ e1 implies, for all u P Hn:

T puq ˝ T pe1q “ T puq ˝ e1 “ ´T1puq ` 0` . . . 0 “ ´T1puq,

on the other side, since the Lorentz pseudo-scalar product is preserved by T , we have:

T puq ˝ T pe1q “ u ˝ e1 “ ´u1 ` 0` . . . 0 “ ´u1,

so T1puq “ u1 for all u P Hn.
Consider now x, y P Hn and recall that x ˝ y “ ´x1y1 ` xx̄, ȳy, x̄ “ px2, . . . , xn`1q

t,
ȳ “ py2, . . . , yn`1q

t, so

x ˝ y “ T pxq ˝ T pyq ðñ ´���x1y1 ` xx̄, ȳy “ ´���
���T px1qT py1q `

@

T pxq, T pyq
D

,

where the first terms in each member of the second equality above cancel out because, as we
have just proven, T1pxq “ x1 and T1pyq “ y1. So,

x ˝ y “ T pxq ˝ T pyq ðñ xx̄, ȳy “
@

T pxq, T pyq
D

,

notice that this property is not yet enough to say that T “ pT2, . . . , Tn`1q
t is an orthogonal

transformation on Rn, that we could associated to the Opnq matrix that we are searching for,
because up to now we have shown that T preserves the Euclidean scalar product only when
we apply it to the vectors x̄ and ȳ, which were obtained by extracting the last n components
of x, y P Hn. The extension to Rn can be achieved by considering the following bijection:

p : Hn „
ÝÑ Rn

u “

¨

˚

˚

˚

˝

u1

u2
...

un`1

˛

‹

‹

‹

‚

ÞÝÑ ppuq :“

¨

˚

˝

u2
...

un`1

˛

‹

‚

,

which allows us to build the function T̃ :“ T ˝ p´1, explicitly

T̃ : Rn ÝÑ Rn
u ÞÝÑ pT2pp

´1puqq, . . . , Tn`1pp
´1puqqqt.

T̃ is an orthogonal transformation on Rn, lemma 10.1.2 guarantees that T̃ is linear and, by
denoting with AT̃ the associated matrix w.r.t. the canonical basis of Rn, we have that

ˆ

1 0
0 AT̃

˙

is the Lorentzian matrix of a transformation φ P POp1, nq such that φ|Hn “ T . 2

We now start the proof of the triangular inequality for dH : a fundamental tool for this
proof is given by the so-called Lorentzian cross product, which is the hyperbolic variant of the
classical cross (or vector) product xˆ y between two vectors x, y in R3.

Recall that the x ˆ y is a vector orthogonal to the plane that contains x and y, i.e.
xx, xˆ yy “ xy, xˆ yy “ 0 and defined as follows:

xˆy :“ det

¨

˝

e1 e2 e3

x1 x2 x3

y1 y2 y3

˛

‚“ px2y3´x3y2qe1´px1y3´x3y1qe2`px1y2´x2y1qe3 “

¨

˝

x2y3 ´ x3y2

x3y1 ´ x1y3

x1y2 ´ x2y1

˛

‚.
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Def. 12.2.4 Let x, y P R1,2. The Lorentzian cross-product is defined as

xb y :“ ηpxˆ yq “

¨

˝

´x2y3 ` x3y2

x3y1 ´ x1y3

x1y2 ´ x2y1

˛

‚.

Remark 12.2.1 The Lorentzian cross product of x and y in R1,2 is Lorentz-orthogonal to
both x and y:

x ˝ pxb yq “ x ˝ ηpxˆ yq “ xx, ηpηpxˆ yqqy “ xx, xˆ yy “ 0,

and analogously for y. Then, if x or y belong to H2, their Lorentzian cross product is space-like.

The proof of the following result can be obtained by direct computation.

Theorem 12.2.3 For all x, y, w, z P R1,2 we have:

1. xb y “ ´y b x, ‘antisymmetry’;

2. pxb yq ˝ z “ det

¨

˝

x1 x2 x3

y1 y2 y3

z1 z2 z3

˛

‚, ‘Lorentz mixed product formula’ ;

3. xb py b zq “ px ˝ yqz ´ px ˝ zqy;

4. pxb yq ˝ pz b wq “ det

ˆ

x ˝ w x ˝ z
y ˝ w y ˝ z

˙

, ‘Lorentz version of Lagrange identity’ .

5. xb y “ ´ηpxq ˆ ηpyq “ ηpyq ˆ ηpxq.

Corollary 12.2.3 For all x, y P R1,2 we have:

‖xb y‖2
“ px ˝ yq2 ´ ‖x‖2 ‖y‖2 .

Proof. By using property 4. of theorem 12.2.3 we get:

‖xb y‖2
“ pxb yq ˝ pxb yq “ det

ˆ

x ˝ y x ˝ x
y ˝ y y ˝ x

˙

“ px ˝ yq2 ´ ‖x‖2 ‖y‖2 .

2

The three statements that follow are direct consequences of the previous corollary.

Corollary 12.2.4 If x, y P R1,2 are space-like, then

1. |x ˝ y| ă ‖x‖ ‖y‖ ðñ xb y is time-like;

2. |x ˝ y| “ ‖x‖ ‖y‖ ðñ xb y is light-like;
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3. |x ˝ y| ą ‖x‖ ‖y‖ ðñ xb y is space-like.

Corollary 12.2.5 Let x, y P R1,2 be two linearly independent, positively-oriented, time-like
vectors. Then, xb y is space-like and

‖xb y‖ “ ´ ‖x‖ ‖y‖ sinhpαpx, yqq,

where αpx, yq is the Lorentzian time-like angle between x and y.
In particular, if x, y P Hn, then ‖xb y‖ “ sinhpαpx, yqq.

Proof. Thanks to corollary 12.2.3 we have:

‖xb y‖2
“ px ˝ yq2 ´ ‖x‖2 ‖y‖2

“
p12.2q

‖x‖2 ‖y‖2 cosh2pαpx, yqq ´ ‖x‖2 ‖y‖2

“ ‖x‖2 ‖y‖2
pcosh2pαpx, yqq ´ 1q “ ‖x‖2 ‖y‖2 sinh2pαpx, yqq.

From remark 12.2.1, xby is Lorentz-orthogonal to x which is time-like so xby must space-like
by corollary 10.2.2. The space-likeness of xb y implies ‖xb y‖ ą 0, so:

‖xb y‖ “ ´ ‖x‖ ‖y‖ sinhpαpx, yqq.

2

We are now ready to prove the triangular inequality of the hyperbolic distance on Hn. As
we have said, we will have to use the properties of the Lorentz cross-product, however, since it
is defined only on R1,2, it seems not appropriate to use this operation to prove a property of
dH on Hn for n different than 3.

In fact, as we will see in the proof below, the clever idea that will allow us to circumvent
this problem consists in the very simple observation that only three vectors are involved in
the triangular inequality so, proving the triangular inequality of dH in the 3-dimensional
vector subspace generated by those three vectors or with R1,2 will be enough to infer the same
property of dH on Hn thanks to the transitivity of POp1, nq on time-like vector subspaces and
to the isometric nature of positive Lorentz transformations.

Theorem 12.2.4 The hyperbolic distance dH is a metric on Hn.

Proof. As previously said, only the triangular inequality for dH remains to be proven. Let
x̃, ỹ, z̃ P Hn distinct and Ṽ “ spanpx̃, ỹ, z̃q. Thanks to theorem 10.3.4, it exists φ P POp1, nq
such that φpṼ q “ spanpe1, e2, e3q – R1,2. We set x “ φpx̃q, y “ φpỹq and z “ φpz̃q.

As proven in theorem 12.2.2, positive Lorentz transformations preserve the hyperbolic
distance, thus proving the triangular inequality for x, y, z P R1,2 is equivalent to prove it for
the vectors x̃, ỹ, z̃. To this aim, let us use corollary 12.2.5 to write

‖xb y‖ “ sinhpdHpx, yqq and ‖y b z‖ “ sinhpdHpy, zqq, (12.7)

then, by property 3. of theorem 12.2.3, we have

pxb yq b py b zq “ ´ ppxb yq ˝ yq
loooooomoooooon

“0

z ´ ppxb yq ˝ zqy “ ´ppxb yq ˝ zqy, (12.8)
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´ppxb yq ˝ zq P R, thus pxb yq b py b zq and y are linearly dependent, so pxb yq b py b zq is
either time-like or it is the zero vector. Corollary 12.2.4 implies the following inequality

|pxb yq ˝ py b zq| ď ‖xb y‖ ‖y b z‖ . (12.9)

Finally, we recall the formula coshpa ` bq “ cosh a cosh b ` sinh a sinh b for all a, b P R. We
have gathered all the information that we need to prove the triangular inequality for x, y, z:

coshpdHpx, yq ` dHpy, zqq “ coshpdHpx, yqq coshpdHpy, zqq ` sinhpdHpx, yqq sinhpdHpy, zqq

“
p12.3q and p12.7q

px ˝ yqpy ˝ zq ` ‖xb y‖ ‖y b z‖

ě
p12.9q

px ˝ yqpy ˝ zq ` |pxb yq ˝ py b zq|

ě px ˝ yqpy ˝ zq ` pxb yq ˝ py b zq

ě
p4. of th. 12.2.3q

((((
(((px ˝ yqpy ˝ zq ` px ˝ zqpy ˝ yq ´((((

(((px ˝ yqpy ˝ zq

“ px ˝ zq}y}2 “ ´px ˝ zq

“
p12.3q

coshpdHpx, zqq,

i.e. coshpdHpx, yq ` dHpy, zqq ě coshpdHpx, zqq, but cosh is a strictly increasing function on
R`, so it preserves the order and we can write dHpx, yq ` dHpy, zq ě dHpx, zq, which is the
triangular inequality that we wanted to prove. 2

Def. 12.2.5 The metric space (Hn, dH) is called the hyperbolic n-space.

In the geometry of the sphere, the geodesic lines are given by the intersection of the sphere
Sn with a 2-dimensional vector subspace of Rn`1 (and thus results in circles). Once again the
hyperboloid model has very similar features as those of spherical geometry.

Def. 12.2.6 A hyperbolic line in Hn is the intersection of Hn with a 2-dimensional time-like
vector subspace of R1,n.

Since a 2-dimensional time-like vector subspace of R1,n must pass through the origin, its
intersection with Hn will always be a hyperbola, so, in turn, a hyperbolic line in Hn is
just a hyperbola.

Lemma 12.2.2 Two distinct elements x, y of the hyperboloid Hn are linearly independent
and so they span a 2-dimensional time-like vector subspace of R1,n.

Proof. By absurd, let x, y P Hn, x ‰ y, be linearly dependent, then y “ λx, λ P Rzt1u, then
}x}2 “ ´1 “ }y}2 “ }λx}2 “ λ2}x}2, λ “ ´1. However, λ cannot be -1 because otherwise y
would not belong to Hn anymore since its first coordinate would be negative. 2

Remark 12.2.2 Given two distinct x, y P Hn, we have

`x,y :“ Hn X spanpx, yq

that is the unique hyperbolic line of Hn that contains both x and y.
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We will show that these hyperbolic lines are the ‘straight lines’ of the hyperbolic metric,
i.e. the curves that minimize the hyperbolic distance between two points.

Def. 12.2.7 Three points x, y and z of Hn are said to be hyperbolically collinear if there is a
hyperbolic line ` passing through x, y and z.

Lemma 12.2.3 If x, y, z P Hn are such that

dHpx, zq “ dHpx, yq ` dHpy, zq,

then x, y and z are hyperbolically collinear.

Proof. As shown in the proof of the triangular inequality for dH , it is possible to consider the
Lorentzian cross product of vectors belonging to Hn by associating them to vectors belonging
to R1,2, in what follows this assumption will be implicitly assumed.

Let x, y, z P Hn verify the equality dHpx, zq “ dHpx, yq ` dHpy, zq and apply cosh to both
members, then, using the already quoted property coshpa` bq “ cosh a cosh b` sinh a sinh b
for all a, b P R, we get:

coshpdHpx, zqq “ coshpdHpx, yq ` dHpy, zqq

“ coshpdHpx, yqq coshpdHpy, zqq ` sinhpdHpx, yqq sinhpdHpy, zqq

“ p´x ˝ yqp´y ˝ zq ` ‖xb y‖ ‖y b z‖
“ px ˝ yqpy ˝ zq ` ‖xb y‖ ‖y b z‖ ,

but coshpdHpx, zqq “ ´x ˝ z, so

´x ˝ z ´ px ˝ yqpy ˝ zq “ ‖xb y‖ ‖y b z‖ .

We can interpret the left-hand side of the previous equality as the following determinant:

det

ˆ

x ˝ z x ˝ y
y ˝ z y ˝ y

˙

“ px ˝ zq ‖y‖2
´ px ˝ yqpy ˝ zq “ ´x ˝ z ´ px ˝ yqpy ˝ zq,

but, thanks to property 4. of theorem 12.2.3, we have

det

ˆ

x ˝ z x ˝ y
y ˝ z y ˝ y

˙

“ pxb yq ˝ py b zq,

which implies
pxb yq ˝ py b zq “ ‖xb y‖ ‖y b z‖ .

Thanks to remark 12.2.1, xb y and yb z are space-like vectors, thus their norm is positive, so
pxb yq ˝ py b zq “ |pxb yq ˝ py b zq| and we can write:

|pxb yq ˝ py b zq| “ ‖xb y‖ ‖y b z‖ .

Property 2. of corollary 12.2.4 implies that pxb yq b py b zq is light-like, moreover, thanks to
eq. (12.8),

pxb yq b py b zq “ ´ppxb yq ˝ zqy,
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but ´ppxb yq ˝ zq P R and y is time-like, hence pxb yq b pyb zq is a light-like vector collinear
with a time-like vector, which is possible if and only if pxbyqbpybzq “ 0, i.e. ppxbyq˝zqy “ 0,
but y P Hn, so the only possibility that remains is that pxb yq ˝ z “ 0.

Finally, by property 4. of theorem 12.2.3 we have:

det

¨

˝

x1 x2 x3

y1 y2 y3

z1 z2 z3

˛

‚“ ppxb yq ˝ zq “ 0

and so x, y, z are linearly dependent, so each vector belong to Hn and to the span of the other
two vectors, thus, by definition, x, y, z are hyperbolically collinear. 2

In order to prove that hyperbolic lines minimize the hyperbolic distance, we start with the
definition and analysis of hyperbolic geodesic arcs.

Def. 12.2.8 (Geodesic arc) A geodesic arc in a generic metric space pX, dq is a distance
preserving function γ : ra, bs Ď RÑ X, with a ă b.

Explicitly, this means that @t, s P ra, bs, s ď t, we have: dpγpsq, γptqq “ dps, tq, but dps, tq “
t´ s, so the request for a geodesic arc can be explicitly restated as follows:

dpγpsq, γptqq “ t´ s, @t, s P ra, bs, s ď t.

Def. 12.2.9 (Hyperbolic geodesic arc) A geodesic arc in the metric space pHn, dHq is
called a hyperbolic geodesic arc.

Theorem 12.2.5 Let γ : ra, bs Ñ Hn be a curve. The following statements are equivalent.

1. The curve γ is a hyperbolic geodesic arc.

2. There exist Lorentz-orthonormal vectors x, y P R1,n such that

γptq “ coshpt´ aqx` sinhpt´ aqy. (12.10)

3. The curve satisfies the differential equation γ2 ´ γ “ 0.

Proof.

1 ùñ 2 : we assume γ to be a geodesic arc on pHn, dHq. Then for all t P ra, bs, we have

dHpγpaq, γpbqq “ b´ a “ t´ a` b´ t

“ dHpγpaq, γptqq ` dHpγptq, γpbqq,
(12.11)

which, by lemma 12.2.3, shows that γptq, γpaq and γpbq are hyperbolically collinear for all
t P ra, bs, i.e γptq P spanpγpaq, γpbqq, and so

γpra, bsq Ă `γpaq,γpbq.

Since the image of γ belongs to Hn, spanppγpaq, γpbqq is a time-like vector subspace of R1,n,
so, thanks to the transitivity of POp1, nq on the set of time-like vector subspaces of R1,n, there
exists φ P POp1, nq such that φpspanpγpaq, γpbqqq “ spanpe1, e2q – R1,1 and φpγpaqq “ e1.
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For all t P ra, bs, let zt :“ φpγptqq. To obtain eq. (12.10), the decomposition of zt on the
R1,1 orthonormal basis pe1, εe2q, where ε “ ˘1, will prove very helpful. In fact, if we write

zt “ xzt, e1y e1 ` xzt, e2y e2 (12.12)

and we apply φ´1 to both members we obtain

φ´1pztq “ xzt, e1yφ
´1pe1q ` xzt, e2yφ

´1pe2q,

having used the linearity of Lorentz transformations. By definition, the last equation can be
re-written as follows:

γptq “ xzt, e1y γpaq ` xzt, e2yφ
´1pe2q,

notice now that x :“ γpaq P Hn is a time-like vector and y :“ φ´1pe2q is a space-like
vector because e2 is space-like Lorentz transformations do not modify the likeness of vectors.
Thus, x and y are Lorentz-orthogonal, plus, since φ´1 preserves the Lorentz norm, and
‖x‖ “

∥∥φ´1pe1q
∥∥ “ ‖e1‖ “ 1 and ‖y‖ “

∥∥φ´1pe2q
∥∥ “ ‖e2‖ “ 1, hence x and y are Lorentz-

orthonormal vectors.
It follows that the only thing that remains to do is to prove that xzt, e1y “ coshpt´ aq and

xzt, e2y “ sinhpt´ aq. Let us start with the first coefficient:

xzt, e1y “ ´zt ˝ e1 “ ´φpγptqq ˝ φpaq

“
pφPPOp1,nqq

´γptq ˝ γpaq “ coshpdHpγptq, γpaqqq

“ coshpt´ aq.

Now, regarding the second coefficient, we remark that zt belongs to Hn, so, using the
decomposition in eq. (12.12), we must have

´xzt, e1y
2
` xzt, e2y

2
“ ´1 ðñ ´ cosh2pt´ aq ` xzt, e2y

2
“ ´1,

which implies that xzt, e2y “ ˘ sinhpt ´ aq. By choosing the positive determination, we get
precisely formula (12.10).

2 ùñ 1 : we assume γ : ra, bs Ñ Hn is such that there is x, y P R1,n, Lorentz-orthonormal,
that verify γptq “ coshpt ´ aqx ` sinhpt ´ aqy @t P ra, bs. This means that γptq P spanpx, yq,
and so px, yq is a Lorentz-orthonormal basis for this vector subspace. We recall that, by
definition of Lorentz-orthonormal basis, x is time-like and y is space-like.

Now, given s, t P ra, bs, s ď t, we have

coshpdHpγpsq, γptqqq “ ´γpsq ˝ γptq

“ ´pcoshps´ aqx` sinhps´ aqyq ˝ pcoshpt´ aqx` sinhpt´ aqyq

(by Lorentz-orthogonality of x and yq

“ ´pcoshpt´ aq coshps´ aq ‖x‖2
loomoon

“´1

` sinhpt´ aq sinhps´ aq ‖y‖2
loomoon

“1

q

“ coshpt´ aq coshps´ aq ´ sinhpt´ aq sinhps´ aq

“ coshppt´ aq ´ ps´ aqq

“ coshpt´ sq,
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thus, since coshpξq is injective for ξ ě 0, dHpγpsq, γptqq “ t´ s and so γ is a geodesic arc.

2 ùñ 3 : if γptq “ coshpt´ aqx` sinhpt´ aqy @t P ra, bs, then

cosh2pt´ aq “ coshpt´ aq
sinh2pt´ aq “ sinhpt´ aq

*

ùñ γ2ptq ´ γptq “ 0, @t P ra, bs.

3 ùñ 2 : suppose γ2ptq´γptq “ 0 @t P ra, bs. From ODE calculus, we know that the general
solution of the previous differential equation is:

γptq “ coshpt´ aqγpaq ` sinhpt´ aqγ1paq. (12.13)

Thus, proving 2. comes down to proving that γpaq and γ1paq are Lorentz-orthonormal.
To this aim, we notice that, since γptq P Hn for all t P ra, bs, γptq ˝ γptq “ ´1 for all

t P ra, bs, so γ ˝ γ : ra, bs Ñ R is the constant function t ÞÑ ´1, thus pγ ˝ γq1ptq “ 0. On the
other side, by applying the Leibniz rule on the Lorentz pseudo-scalar product we get

pγ ˝ γq1ptq “ γ1ptq ˝ γptq ` γptq ˝ γ1ptq “ 2 γptq ˝ γ1ptq @t P ra, bs,

where, in the last step, we have used the symmetry of ˝. By mixing these results we find
γptq ˝ γ1ptq “ 0 for all t P ra, bs, hence, in particular, γpaq and γ1paq are Lorentz-orthogonal.
Moreover, using (12.13), for all t P ra, bs we have,

‖γptq‖2
“ ´1 “ γptq ˝ γptq

“ pcoshpt´ aqγpaq ` sinhpt´ aqγ1paqq ˝ pcoshpt´ aqγpaq ` sinhpt´ aqγ1paqq

“ cosh2pt´ aq ‖γpaq‖2
looomooon

“´1

` sinh2pt´ aq
∥∥γ1paq∥∥2

“ ´ cosh2pt´ aq ` sinh2pt´ aq
∥∥γ1paq∥∥2

,

where the terms proportional to γpaq ˝ γ1paq have not been written because of the Lorentz-
orthogonality between γpaq and γ1paq. We conclude that

´ cosh2pt´ aq ` sinh2pt´ aq
∥∥γ1paq∥∥2

“ ´1 @t P ra, bs,

which implies ‖γ1paq‖2
“ 1, i.e. γpaq and γ1paq are Lorentz-orthonormal. 2

Remark 12.2.3 In the theory of dynamical systems, the differential equation satisfied by
a hyperbolic geodesic arc, i.e. γ2 ´ γ “ 0, is that of the harmonic repulsor, whose phase
portrait is known to be given by hyperbolae. Instead, the differential equation satisfied by a
spherical geodesic arc, i.e. γ2 ` γ “ 0, is that of the harmonic oscillator, whose phase portrait
is represented by circles.

When we extend the arc parameterization interval ra, bs to the whole R, we say that a
geodesic arc γ is a geodesic line.

Corollary 12.2.6 A function γ : R Ñ Hn is a hyperbolic geodesic line if and only if there
are x, y P R1,n Lorentz-orthonormal such that

γptq “ coshptqx` sinhptqy

“ coshptqγp0q ` sinhptqγ1p0q.
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Corollary 12.2.7 The hyperbolic geodesic lines of Hn are its hyperbolic lines.

Proof. Let x, y P Hn, x ‰ y, and `x,y “ Hn X spanpx, yq be a hyperbolic line passing trough x
and y, which defines, geometrically, a hyperbola connecting the points on the hyperboloid Hn

identified by the vectors x and y. Thanks to the transitivity of POp1, nq on VTm, the set of all
time-like m-dimensional vector subspaces of R1,n, m ď n, there is a φ P POp1, nq such that

φpspanpx, yqq “ spanpe1, e2q » R1,1.

Then, if we apply φ to `x,y we transform the hyperbola connecting x and y on Hn to a
rectangular hyperbola on R1,1 relative to the canonical basis pe1, e2q. We use H1 to denote
this object, which is well-known to be parameterized by the hyperbolic functions as follows:

φp`x,yq “ H1 “
 

γptq “ coshptqe1 ` sinhptqe2, t P R
(

and so, thanks to the linearity of φ, we get

`x,y “
 

coshptqφ´1pe1q ` sinhptqφ´1pe2q, t P R
(

.

Since φ preserves the likeness, the orientation and the norm of vectors, we have that `x,y is
written as in formula (12.10), thus it is a hyperbolic geodesic line. 2

Def. 12.2.10 A metric space X is geodesically complete if each geodesic arc γ : ra, bs Ñ X
extends to a unique geodesic line λ : RÑ X.

The previous results show us that each hyperbolic geodesic arc extends uniquely to a
hyperbolic geodesic line, i.e. it can be seen as a piece of an infinite hyperbola, thus Hn is
geodesically complete.

The final result that we discuss is the equivalence between the hyperbolic topology on Hn

generated by dH and the Euclidean topology on Hn inherited by Rn`1 with the Euclidean
distance dE . In the proof of this result we will use the Taylor-MacLaurin series expansion for
cosh:

coshpxq “ 1`
x2

2
`
x4

24
` ¨ ¨ ¨ “

m
ÿ

k“0

x2k

p2kq!
`Opx2m`1q (12.14)

Theorem 12.2.6 The metric topology on Hn given by dH is equivalent to dE.

Proof. For all x P Hn and r ą 0, let us define the open neighborhoods of radius r around x
w.r.t. the Euclidean and the hyperbolic distance, respectively, as follows:

BEpx, rq :“ ty P Hn : dEpx, yq ă ru, BHpx, rq :“ ty P Hn : dHpx, yq ă ru.

If we prove that BEpx, rq Ď BHpx, rq and that BHpx, rq Ď BEpx, rq for all x P Hn and r ą 0,
then the theorem will be proven.

BEpx, rq Ď BHpx, rq : consider x, y P Hn distinct, then, since |x´y|2 “ px´yq21`¨ ¨ ¨`px´yq
2
n

and ‖x´ y‖2
“ ´px´ yq21` ¨ ¨ ¨` px´ yq

2
n, we have dEpx, yq

2 “ |x´ y|2 ą ‖x´ y‖2, moreover,
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‖x´ y‖2
“ px ´ yq ˝ px ´ yq “ ‖x‖2

´ 2x ˝ y ` ‖y‖2
“ ´2x ˝ y ´ 2 “ 2 coshpdHpx, yqq ´ 2 “

2pcoshpdHpx, yqq ´ 1q, i.e.

‖x´ y‖2
“ 2pcoshpdHpx, yqq ´ 1q, (12.15)

so

dEpx, yq
2 ą 2pcoshpdHpx, yqq ´ 1q ą

p12.14q
2

ˆ

1`
dHpx, yq

2

2
´ 1

˙

“ dHpx, yq
2, (12.16)

so, by positivity, dEpx, yq ą dHpx, yq. Let now y P BEpx, rq, then dHpx, yq ă dEpx, yq ă r, so
y P BHpx, rq too, thus BEpx, rq Ď BHpx, rq for all x P Hn and all r ą 0.

BHpx, rq Ď BEpx, rq : we start by noticing that, thanks to corollary 12.2.6, once we fix an

arbitrary x P Hn, all the hyperbolic lines passing through x are parameterized by a unit
space-like vector y Lorentz-orthogonal to x, i.e.

Lx :“ t`x,z “ spanpx, zq XHn, z P Hnztxuu – ty P spanpxqL, ‖y‖2
“ 1u “: SLx .

Again corollary 12.2.6 tells us that the hyperbolic geodesic line associated to y P SLx is

γyptq “ coshptqx` sinhptqy t P R.

γy is clearly continuous in the Euclidean topology on the whole R, in particular, the continuity
in t “ 0 can be explicitly written as follows:

@ε ą 0 Dδypεq ą 0 : |t| ă δypεq ùñ dEpγyp0q, γyptqq ă ε, (12.17)

having interpreted the images of γy as points in pRn`1, dEq. The key observation that let us
introduce the hyperbolic distance in our reasoning is that, by definition of hyperbolic geodesic,

dHpx, γyptqq “ dHpγyp0q, γyptqq “ |t´ 0| “ |t| t P R,

so that expression (12.17) can be replaced by

@ε ą 0 Dδypεq ą 0 : dHpx, γyptqq ă δypεq ùñ dEpγyp0q, γyptqq ă ε

or, equivalently,
dHpx, zq ă δypεq ùñ dEpx, zq ă ε z P γypRq. (12.18)

Moreover, by the transitivity of POp1, nq on time-like vector subspaces, there exists
φ P POp1, nq such that φpxq “ e1 and so we have

φpspanpxqLq “ φpspanpe1q
Lq “ spanpe2, . . . , en`1q – Rn.

Now recall that SLx is the set of space-like vectors y belonging to spanpxqL such that ‖y‖2
“ 1,

but the Lorentz norm of a space-like vector is positive, so also ‖y‖ “ 1. Since φ preserves
the Lorentz norm, φpSLx q is the set of vectors belonging to spanpe2, . . . , en`1q – Rn with unit
Lorentz norm, however, the Lorentz and the Euclidean norms coincide on spanpe2, . . . , en`1q,
so φpSLx q “ ty P Rn : |y| “ 1u ” Sn´1, which is compact. By the continuity of φ´1, we get
that also SLx “ φ´1pSn´1q is compact. The compactness of SLx allows us to set

δpεq :“ inf
yPSLx

tδypεqu ą 0
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which allows us to get rid of the dependence on y in the implication (12.18) and to write

dHpx, zq ă δpεq ùñ dEpx, zq ă ε @ε ą 0,

i.e. for all radius ε ą 0, z P γypRq, it exists a radius δpεq ą 0 such that BHpx, δpεqq Ď BEpx, εq
which concludes the proof. 2

12.2.3 The hyperbolic arc length

Let γ : ra, bs Ñ Hn be a curve. In this section we shall discuss how the metric given by the
hyperbolic distance on Hn can be extended to compute the arc length. For that, we need to
recall that a partition P “ tt0, . . . , tmu of ra, bs is an ordered finite set such that

a “ t0 ă t1 ă ¨ ¨ ¨ ă tm “ b.

We set a partial ordering on partitions

Q ď P ðñ P Ď Q

and set
|P | “ inf

kPt1,...,mu
|tk ´ tk´1|,

|P | is the finest partition interval. Notice that |P | Ñ 0 can be interpreted as ‘P converges to
ra, bs’ and that if Q ď P , then |Q| ď |P |.

Def. 12.2.11 Let γ : ra, bs Ñ Hn be a curve and let P “ tt0, . . . , tmu be a partition of ra, bs.
We define the hyperbolic P-inscribed length of γ as:

LHpγ, P q “
m
ÿ

i“1

dHpγptiq, γpti´1qq.

Moreover, the curve γ is rectifiable if there is a real number Lpγq such that for all ε ą 0,
there is a partition Pε of ra, bs such that for any partition Q verifying Q ď Pε, then

|Lpγq ´ LHpγ,Qq| ă ε.

Lemma 12.2.4 If γ is rectifiable, then for any partition P of ra, bs,

LHpγ, P q ď Lpγq.

Proof. Let P be a partition of ra, bs. First we note that if Q is a partition of ra, bs such that
Q ď P , then

Lpγ, P q ď Lpγ,Qq (12.19)

by the triangular inequality of dH . Since γ is rectifiable, for any ε there is a Pε such that for
all Q ď Pε,

|Lpγq ´ LHpγ,Qq| ă ε.
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Moreover, Qε :“ Pε Y P is such that Qε ď Pε and Qε ď P . Finally, for all ε ą 0 we have

LHpγ, P q ´ Lpγq ď
p12.19q

LHpγ,Qεq ´ Lpγq

ď lim
εÑ0

LHpγ,Qεq ´ Lpγq “ 0,

hence
LHpγ, P q ď Lpγq.

2

Def. 12.2.12 Let x, y P Hn. We define the Lorentzian distance as

dLpx, yq “ ‖x´ y‖ .

Lemma 12.2.5 The Lorentzian distance dL verifies the following properties.

1. dLpx, yq ě 0 with equality if and only if x “ y

2. dLpx, yq “ dLpy, xq

Proof. Let x, y P Hn. Then,

‖x´ y‖2
“ ‖x‖2

´ 2px ˝ yq ` ‖y‖2

ě
p12.2.1q

´2´ 2 ‖x‖ ‖y‖
loomoon

“´1

“ 0,

with equality if and only if they are linearly dependent, which implies x “ y since x, y belong
to Hn. 2

Remark 12.2.4 The Lorentzian distance is not a metric since it does not verify the triangular
inequality. In fact, if we take x, y, z P Hn hyperbolically collinear and such that y is between x
and z, then it can be proven that

dLpx, zq ą dLpx, yq ` dLpy, zq.

While the Lorentzian distance is not a metric, it will be useful because it can approximate
the hyperbolic metric locally. To show this, we use formula (12.15) to write

‖x´ y‖2
“ 2pcoshpdHpx, yqq ´ 1q „

yÑx
2

ˆ

1´
dHpx, yq

2

2
´ 1

˙2

“ dHpx, yq
2

and so, by positivity,
dLpx, yq „

yÑx
dHpx, yq.

Def. 12.2.13 Let γ : ra, bs Ñ Hn be a curve and let P “ tt0, . . . , tmu be a partition of ra, bs.
We define the Lorentzian P-inscribed length of γ as:

LLpγ, P q “
m
ÿ

i“1

‖γptiq ´ γpti´1q‖ .

Moreover, the curve γ is Lorentz-rectifiable if there is a real number Lpγq such that for all
ε ą 0, there is a partition Pε of ra, bs such that for any partition Q verifying Q ď Pε, then

|Lpγq ´ LLpγ,Qq| ă ε.
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Since we do not have the triangular inequality for the Lorentzian distance, lemma 12.2.4 does
not hold in the case of Lorentz-rectifiable curves.

Lemma 12.2.6 If Lpγq exists, then it is unique.

Proof. Assume γ is Lorentz-rectifiable with L1pγq and L2pγq. If L1pγq ‰ L1pγq, then there
exists a ε ą 0 such that |L1pγq ´ L2pγq| ą ε. Let P,Q be partitions of ra, bs such that

• |L1pγq ´ LLpγ, P
1q| ă ε

2

• |L2pγq ´ LLpγ,Q
1q| ă ε

2 ,

for all partitions P 1, Q1 of ra, bs verifying P 1 ď P and Q1 ď Q. The partition R :“ P YQ is
such that R ď P and R ď Q, and we come to the following contradiction:

|L1pγq ´ L2pγq| ď |L1pγq ´ Lpγ,Rq| ` |L2pγq ´ Lpγ,Rq| ă ε.

2

Def. 12.2.14 Let γ : ra, bs Ñ Hn be a curve. We define the hyperbolic arc length as

|γ|H :“

#

Lpγq if γ is rectifiable
8 otherwise

,

similarly, we define the Lorentzian length of γ as

‖γ‖ “

#

Lpγq if γ is Lorentz-rectifiable
8 otherwise

.

Theorem 12.2.7 Let γ : ra, bs Ñ Hn be a curve. Then γ is rectifiable in Hn if and only if γ
Lorentz-rectifiable. Furthermore, the hyperbolic length is the same as the Lorentz length of γ,
i.e.

|γ|H “ ‖γ‖ .

Proof. We need to collect some preliminary results. Let η ą 0, using the Taylor-MacLaurin
series of cosh (12.14) we have

η2 ď 2pcoshpηq ´ 1q “ 2

˜

1`
η2

2
`
η4

24
`

m
ÿ

k“3

η2k

p2kq!
`Opx2m`1q ´ 1

¸

“ 2

˜

η2

2
`
η4

24

˜

m
ÿ

k“0

4!
η2k

p2k ` 4q!
`Opx2m`1q

¸¸

ď 2

˜

η2

2
`
η4

24

˜

m
ÿ

k“0

η2k

p2kq!
`Opx2m`1q

¸¸

“ η2 `
η4

12
coshpηq.

Consequently, if coshpηq ď 12,

2pcoshpηq ´ 1q ď η2p1` η2q. (12.20)
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If we replace η in eq. (12.20) with dHpx, yq and we suppose that dHpx, yq ď arcoshp12q, then,
since dLpx, yq

2 “ 2pcoshpdHpx, yqq ´ 1q by eq. (12.15), we get

dLpx, yq
2 ď dHpx, yq

2p1` dHpx, yq
2q ðñ dLpx, yq ď dHpx, yq

a

1` dHpx, yq2.

On the other side, eq. (12.16) implies that dHpx, yq
2 ď 2pcoshpdHpx, yqq ´ 1q “ dLpx, yq

2,
hence dHpx, yq ď dLpx, yq for all x, y P Hn not necessarily distinct.

So, for all x, y P Hn such that dHpx, yq ď arcoshp12q, it holds that

dHpx, yq ď dLpx, yq ď dHpx, yq
a

1` pdHpx, yqq2. (12.21)

We can now start with the proof of the equivalence.

ùñ : we start by assuming that γ is rectifiable. Let ε ą 0 and P a partition of ra, bs such
that for all Q ď P we have by lemma 12.2.4

|γ|H ´ LHpγ, P q ă ε.

Let δ ą 0 and set
µpγ, δq “ sup

aďsătďb

 

dHpγpsq, γptqq : |t´ s| ă δ
(

.

Note that since ra, bs is compact and γ is continuous, γ is uniformly continuous and so
µpγ, δq Ñ

δÑ0
0. Let δ ą 0 such that coshpµpγ, δqq ď 12 and

|γ|H
a

1` µpγ, δq2 ă |γ|H ` ε,

and P 1 a partition of ra, bs such that P 1 ď P and |P | ă δ. Then for all partitions Q “

tt0, . . . , tmu of ra, bs such that Q ď P 1 we have:

|γ|H ´ ε ď LHpγ,Qq ď LLpγ,Qq

on one side, and

LLpγ,Qq “

m
ÿ

i“1

‖γptiq ´ γpti´1q‖

ď

m
ÿ

i“1

dHpγptiq, γpti´1qq

b

1` d2
Hpγptiq, γpti´1qq

ď LHpγ,Qq
a

1` µpγ, δq2

ď |γ|H ` ε.

Hence, by combining both inequalities,
ˇ

ˇ|γ|H ´ LLpγ,Qq
ˇ

ˇ ă ε, @Q ď P 1

and by the unicity of the Lorentzian arc length (lemma 12.2.6), γ is Lorentz-rectifiable and
|γ|H “ ‖γ‖.

ðù : we now suppose γ is Lorentz-rectifiable. Let ε ą 0 and P be a partition of ra, bs such
that if Q ď P ,

ˇ

ˇ ‖γ‖´ LLpγ,Qq
ˇ

ˇ ă ε. Then,

LHpγ,Qq ´ ‖γ‖ ď LLpγ,Qq ´ ‖γ‖ ď ε
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for all Q ď P , and so γ is rectifiable. 2

Before proving the theorem regarding the metric of the arc length, we first make the
following remark: for any C1-curve γ : ra, bs Ñ Hn, we have that γptq is Lorentz-orthogonal to
γ1ptq for all t P ra, bs, i.e.

γptq ˝ γ1ptq “ 0,

in fact, by differentiating the Lorentz pseudo-scalar product and using the Leibniz property
together with the symmetry of ˝ we get:

pγptq ˝ γptqq1ptq “ 2pγptq ˝ γ1ptqq

“ pt ÞÑ }γptq}2 ” ´1q1 “ 0.

Theorem 12.2.8 Let γ : ra, bs Ñ Hn a C1-curve. Then γ is rectifiable and the hyperbolic
length of γ is given by

‖γ‖H “
ż b

a

∥∥γ1∥∥ dt.
Proof. Let F : ra, bsn`1 Ñ R defined by

F pt1, . . . , tn`1q “
`

´ γ11pt1q
2 ` ¨ ¨ ¨ ` γ1n`1ptn`1q

2
˘

1
2 .

Since γ is C1 and γ1ptq is space-like for all t because it is Lorentz-orthogonal to γptq P Hn, F
is continuous on ra, bsn`1 which is compact, thus F is uniformly continuous. The set

 

|F ptq ´ F psq|, t, s P ra, bsn`1
(

is bounded since F is continuous on a compact set.
For any fixed δ ą 0 we define

µpF, δq “ sup
t,sPra,bsn`1

 

|F ptq ´ F psq|, |ti ´ si| ď δ, i P t1, . . . , n` 1u
(

.

As in the previous proof, F is uniformly continuous so µpF, δq Ñ
δÑ0

0 and if we set P “

tt0, . . . , tmu such that |P | ď δ, we have by the mean-value theorem Dsij P rtj´1, tjs

|γiptjq ´ γiptj´1q| “ γ1ipsijqptj ´ tj´1q

and if we set sj “ ps1,j , . . . , sn`1,jq, then

‖γiptjq ´ γiptj´1q‖ “
`

´ rγ1ptjq ´ γ1ptj´1qs
2 ` rγ2ptjq ´ γ2ptj´1qs

2 ` ¨ ¨ ¨ ` rγn`1ptjq ´ γn`1ptj´1qs
2
˘

1
2

“
`

´ γ11ps1,jq
2 ` γ11ps2,jq

2 ` ¨ ¨ ¨ ` γ1n`1psn`1,jq
2
˘

1
2 ptj ´ tj´1q

“ F psjqptj ´ tj´1q.

Additionally, we set

Spγ, P q “
m
ÿ

j“1

∥∥γ1ptjq∥∥ ptj ´ tj´1q

295



and we remind

LLpγ, P q “
m
ÿ

j“1

‖γptjq ´ γptj´1q‖ .

As such, we have

ˇ

ˇSpγ, P q ´ LLpγ, P q
ˇ

ˇ “
ˇ

ˇ

m
ÿ

j“1

∥∥γ1ptjq∥∥ ptj ´ tj´1q ´ F psjqptj ´ tj ´ 1q
ˇ

ˇ

ď µpF, δqpb´ aq p˚2q

and furthermore,

ˇ

ˇ

ż b

a

∥∥γ1ptq∥∥ dt´ Spγ, P qˇˇ “
ˇ

ˇ

m
ÿ

i“1

`

ż tj

tj´1

∥∥γ1ptq∥∥´ ∥∥γ1ptjq∥∥ ptj ´ tj´1qdt
˘ˇ

ˇ

ď

m
ÿ

i“1

ż b

a

ˇ

ˇ

∥∥γ1ptq∥∥´ ∥∥γ1ptjq∥∥ ptj ´ tj´1q
ˇ

ˇ

looooooooooooooooooomooooooooooooooooooon

ďµpF,δq

dt

ď µpF, δqpb´ aq p˚2q

Finally, by combining p˚1qand p˚2q we obtain

ˇ

ˇ

ż b

a

∥∥γ1ptq∥∥ dt´ LLpγ, P qˇˇ ď
ˇ

ˇ

ż b

a

∥∥γ1ptq∥∥ dt´ Spγ, P qˇˇ` ˇ

ˇSpγ, P q ´ LLpγ, P q
ˇ

ˇ

ď 2µpF, δq

and since µpF, δq Ñ
δÑ0

0 and |P | Ñ
δÑ0

0

‖γ‖ “
ż b

a

∥∥γ1ptq∥∥ dt “ lim
|P |Ñ0

LLpγ, P q

2

Def. 12.2.15 Let γ : ra, bs Ñ Hn curve. If dx “ pdx1, , . . . , dxn`1q, then

‖dx‖ “ p´dx2
1 ` dx

2
2 ` ¨ ¨ ¨ ` dx

2
n`1q

1
2

and
ż

γ
‖dx‖ :“ ‖γ‖ .

Additionally if γ is a C1´curve,

‖γ‖ “
ż

γ
‖dx‖ “

ż b

a

∥∥γ1ptq∥∥ dt.
The differential ‖dx‖ is called the element of hyperbolic arc length of Hn.
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12.2.4 The hyperboloid as a Riemannian manifold

In this short subsection we will prove that the hyperboloid Hn can be considered a Riemannian
manifold. To this aim, we recall that the Lorentz pseudo-scalar product is a bilinear, symmetric
non-degenerate form. Hence, if we set

f : Rn`1 ÝÑ R
x ÞÝÑ px ˝ xq,

then differential of f is
dfxpyq “ 2px ˝ yq.

In fact,
fpx` yq “ px` yq ˝ px` yq “ fpxq ` 2px ˝ yq

looomooon

linear

` py ˝ yq
loomoon

quadratic

,

since the differential represents the unique linear approximation of f , the result follows.

Theorem 12.2.9 The hyperboloid Fn “ f´1pt´1uq is a Riemannian n-manifold.

Proof. The differential dfxpyq “ 2px ˝ yq is surjective and -1 is not a critical value of f , so, by
the level set theorem 1.2.1, the hyperboloid is a differential manifold of dimension n. Moreover,
thanks to eq. (2.34), for every x P Fn, the tangent space TxFn is given by

TxFn “ ker dfx “ spanpxqL.

Now, since x is time-like, spanpxqL is a n-dimensional space-like vector subspace of Rn`1

and so, for all y P TxFn we have y ˝ y ą 0. Hence, the Lorentz pseudo-scalar product is
positive-definite on the tangent spaces TxFn and so Fn is a Riemannian manifold. 2

Finally, Hn can be defined as the biggest subset of Fn that contains e1 and that is simply
connected and so Hn is a complete, simply connected Riemannian manifold of dimension n
with metric tensor gxpu, vq “ u ˝ v.

12.3 The conformal model Bn

The conformal model comes hand in hand with the previous section on Möbius transformation.
The conformal model of hyperbolic geometry lies in the open unit ball Bn or the the upper-half
space Un and is a model that maintains up to a certain extent the notion of Euclidean
angles, hence it’s name. Additionally, to explain the naming further, the set of conformal
transformations that is stable on Bn (or Un respectively) is the isometry group of the model
and by Liouville’s theorem of conformal transformations, is the set of Möbius transformations
stable on Bn (Un respectively).
We begin by redefining the Lorentzian scalar product in Rn`1:

x ˝ y “ x1y1 ` x2y2 ` ¨ ¨ ¨ ` xnyn ´ xn`1yn`1

and we identify the open unit ball with it’s injection in Rn`1, with the notation x̄ “

¨

˚

˝

x1
...
xn

˛

‹

‚

:

Bn “
 

x P Rn |x| ă 1
(

“
 

x P Rn`1 |x̄| ă 1
(
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. We wish to transfer the hyperbolic metric of the hyperboloid model Hn onto the the open
unit ball Bn. This can be done via a stereographic projection ζ by projecting x P Bn
away from ´en`1 until it meets Hn. Explicitly, for x P Bn, ζ is of the form

ζpxq “ x` spx` en`1q

such that ‖ζpxq‖2
“ ´1. By developing the computations, we obtain s “ 1`‖x‖2

1´‖x‖2 . Note that in

the case of x P Bn, the Lorentzian norm and the Euclidean norm coincide. Hence,

Figure 12.5: Illustration of the isometry between Hn and Bn.

ζpxq “ x`
1` |x|2

1´ |x|2
px` en`1q

“
` 2x1

1´ |x|2
, . . . ,

2xn
1´ |x|2

,
1` |x|2

1´ |x|2
˘

Lemma 12.3.1 ζ : Bn Ñ Hn is bijective with inverse

ζ´1pyq “
` y1

1` yn`1
, . . . ,

yn
1` yn`1

˘

Proof. Let y P Hn. Since x P Bn, ζpxq P Hn and ´en`1 are aligned and belong to the same
Euclidean line, we have similarly ζ´1pyq, y and ´en`1 that must also be aligned. Hence, ζ´1

must be of the form
ζ´1pyq “ y ` sp´en`1 ´ yq

such that ζ´1pyq ˝ en`1 “ 0.

ζ´1pyq “ 0 ðñ pyp1´ sq ´ sen`1q ˝ en`1 “ 0 ðñ ´yn`1p1´ sq ` s “ 0 (12.22)

ðñ sp1` yn`1q “ 1 ðñ s “
1

1` yn`1
(12.23)
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Hence,

ζ´1pyq “
` y1

1` yn`1
, . . . ,

yn
1` yn`1

˘

.

Injectivity : Suppose ζpxq “ ζpyq. Then,

1` |x|2

1´ |x|2
“

1` |y|2

1´ |y|2
ðñ |x| “ |y|

and
2xi

1´ |x|2
“

2yi
1´ |y|2

|x|“|y|
ùñ xi “ yi

for all i P t1, . . . , nu. Therefore, x “ y
Surjectivity : Let y P Hn. First, we have

•
∥∥ζ´1pyq

∥∥2
“

|ȳ|2

p1`yn`1q
“

yn`1´1
p1`yn`1q2

“
yn`1´1
1`yn`1

• 1´ |ζ´1pyq|2 “ 2
1`yn`1

. Thus, by combining the two computations,

ζpζ´1pyqq “
`

2
y1

1` yn`1

1

1´ |ζ´1pyq|2
, . . . , 2

yn
1` yn`1

1

1´ |ζ´1pyq|2
,
1` |ζ´1pyq|2

1´ |ζ´1pyq|2
˘

“
`

y1, . . . , yn, yn`1

˘

2

12.3.1 The hyperbolic metric on the unit ball

Through the bijection ζ between Hn and Bn, we wish to extend the hyperbolic metric onto
Bn. To do so, we force ζ to be an isometry.

Def. 12.3.1 We define the hyperbolic metric on Bn, also called Poincaré metric, as follows:
for x, y P Bn,

dBpx, yq “ dHpζpxq, ζpyqq

The metric space pBn, dBq is called the conformal ball model.

Once again, the hyperbolic cosine will give us an elegant formulation of the metric.

Theorem 12.3.1 The Poincaré metric dB is given by

coshpdBpx, yqq “ 1`
2|x´ y|2

p1´ |x|2qp1´ |y|2q
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Proof.

coshpdHpζpxq, ζpyqqq “ ´ζpxq ˝ ζpyq

“ ´

n
ÿ

i“1

4xiyi
p1´ |x|2qp1´ |y|2q

`
p1` |x|2qp1` |y|2q

p1´ |x|2qp1´ |y|2q

“
´4 xx, yy ` 1` |x|2 ` |y|2 ` |x|2|y|2

p1´ |x|2qp1´ |y|2q

“
p1´ |x|2qp1´ |y|2q ` 2|x|2 ` 2|y|2 ´ 4 xx, yy

p1´ |x|2qp1´ |y|2q

“ 1`
2|x´ y|2

p1´ |x|2qp1´ |y|2q

2

To interpret this metric, we can think of a 1 meter ruler with an infinite amount of graduations
and where graduations become smaller and smaller. In the figure 12.6 shown below, we can
see such a representation. The space is more and more compacted as we reach the border of
the disc.

Figure 12.6: The Poincaré disc: between each radius, we go 1 unit of distance. we see that at
edges, the space is very heavily compacted

Theorem 12.3.2 The element of hyperbolic arc length of the conformal model of the unit
ball is given by

‖dx‖B “
2|dx|

1` |x|2

Proof. Let x P Bn and y “ ζpxq. Then, we have

yi “
2xi

1´ |x|2
and yn`1 “

1` |x|2

1´ |x|2
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Then, for h P Bn arbitrarily close to zero and i P t1, .., nu we have the following computation

ζipx` hq “
2pxi ` hiq

1´ |x` h|2
“

2pxi ` hiq

p1´ |x|2qp1´ 2
A

x
1´|x|2

, h
E

`
|h|2

1´|x|2
q

1
“

2pxi ` hiq

1´ |x|2
`

1`
2 xx, hy

1´ |x|2
`Op|h|2q

˘

“
2xi

1´ |x|2
`

2hi
1´ |x|2

`
4xi xx, hy

p1´ |x|2q2
`Op|h|2q

and from this we are able to deduce

dyi “
2dxi

1´ |x|2
`

4xi xx, dxy

p1´ |x|2q2
.

Similarly, for h P Bn arbitrarily close to zero we have

ζn`1px` hq “
1` |x` h|2

1´ |x` h|2
“1 1` |x|2 ` 2 xx, hy ` |h|2

1´ |x|2
`

1`
2 xx, hy

1´ |x|2
`Op|h|2q

˘

“
1` |x|2

1´ |x|2
`

4 xx, hy

p1´ |x|2q2
`Op|h|2q

and so

dyn`1 “
4 xx, dxy

p1´ |x|2q2
.

From this we are able to obtain

• dy2
i “

4
p1´|x|2q2

`

dx2
i `

4xidxixx,dxy
1´|x|2

`
4x2i xx,dxy

2

p1´|x|2q2

˘

•
n
ř

i“1
dy2
i “

4
p1´|x|2q2

`

|dx|2 ` 4xx,yy2

p1´|x|2q2

˘

• dy2
n`1 “

16xx,dxy2

p1´|x|2q4

, which when combined

‖dx‖B “ ‖dy‖ “

g

f

f

e

n
ÿ

i“1

dy2
i ´ dy

2
n`1

“

b

4|dx|2

p1´|x|2q2
“

2|dx|

1´ |x|2

2

As announced in the preface of this section, Möbius transformation plays the major role in
the conformal model. Here we have a first taste: Möbius transformation act isometrically on
the conformal ball model.

1we use the approximation 1
1´X

“ 1`X `OpX2
q
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Lemma 12.3.2 If φ is a Möbius transformation stable on Bn and x, y P Bn, then

|φpxq ´ φpyq|2

p1´ |φpxq|2qp1´ |φpyq|2q
“

|x´ y|2

p1´ |x|2qp1´ |y|2q

Proof. If φp0q “ 0, then φ P Opnq and so φ is an isometry and the result is automatically
given to us. Suppose φp0q ‰ 0. We then have the decomposition φ “ ψσ with ψ a Euclidean
isometry and σ a inversion of a sphere Spa, rq of R̂n, orthogonal to Sn´1. Hence, to prove this
lemma, all that is needed is to prove the result for σ. First, we recall that since Spa, rq is
orthogonal to Sn´1, r2 “ |a|2 ´ 1 and since σ is a inversion,

|σpxq ´ σpyq|2
11.2.2
“

r4|x´ y|2

|x´ a||y ´ a|
.

Furthermore,

φpxq “ a`
r2

|x´ a|2
px´ aq

ùñ |φpxq|2 “ |a|2 `
2r2 xa, xy ´ 2r2 ` r4

|x´ a|2

ùñ |φpxq|2 ´ 1 “
r2
`

|x´ a|2 ` 2 xa, x´ ay ` |a|2 ´ 1
˘

|x´ a|2

“
r2p|x|2 ´ 1q

|x´ a|2

Hence, we come to the conclusion

|φpxq ´ φpyq|2

p1´ |φpxq|2qp1´ |φpyq|2q
“

r4|x´ y|2

|x´ a|2|y ´ a|2
|x´ a|2|y ´ a|2

r4p1´ |x|2qp1´ |y|2q

“
|x´ y|2

p1´ |x|2qp1´ |y|2q

. 2

As a direct of this lemma, we obtain our first result step to showing that the isometry group
of Bn is it’s Möbius group.

Theorem 12.3.3 If φ PMpBnq, then φ acts as an isometry on Bn:

dBpx, yq “ dBpφpxq, φpyqq,

for all x, y P Bn

Corollary 12.3.1 For all x P Bn we have

dBp0, xq “ logp
1` |x|

1´ |x|
q

Proof. Let x P B. Then

coshpdBp0, xqq “ 1`
2|x|2

1´ |x|2
“

1` |x|2

1´ |x|2
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and by recalling that arccoshpyq “ logpy `
a

y2 ´ 1q, we come to the computation

dBp0, xq “ log

ˆ

1` |x|2

1´ |x|2

d

p1` |x|2q2

p1´ |x|2q2
´ 1

˙

“ log

ˆ

1` |x|2

1´ |x|2
`

2|x|

1´ |x|2

˙

“ log
`1` |x|

1´ |x|

˘

2

12.3.2 The isometry group of Bn

We know at least that the isometry of B is as big as it’s Möbius group. In fact, it cannot be
bigger. Just like the Lorentz group for the hyperboloid model, we will need transitivity of the
Möbius group on Bn in order to advance further.

Lemma 12.3.3 The action of MpBnq on Bn is transitive.

Proof. Let a P Bn, a ‰ 0 and set σa “ σp a
|a|2

, rq such that r2 “ 1
|a|2

´ 1. Then σ P MpBnq
since σ is a inversion of a sphere orthogonal to Sn´1 and σap0q “ a. 2

Theorem 12.3.4 Every Möbius transformation of Bn restricts to an isometry on Bn and
every isometry of Bn extends to a Möbius transformation

Proof. As seen just above, every Möbius transformation stable on Bn is an isometry, so all
that’s left to prove is that every isometry of Bn is a restriction of a Möbius transformation.
Let φ a isometric transformation on Bn. We start by setting

ψ “

#

σφ if φp0q ‰ 0

φ if φp0q “ 0

where σ is the inversion such that σpφp0qq “ 0. Then, ψp0q “ 0 and ψ is an isometry of B.
We notice that for x, y P B, we have

dBpψpxq, 0q “ dBpx, 0q ðñ
|ψpxq|2

1´ |ψpxq|2
“

|x|2

1´ |x|2

ðñ |ψpxq| “ |x|

and in the same way |ψpyq| “ |y|. From this we deduce that ψ is a also Euclidean isometry on
Bn:

dBpψpxq, ψpyqq “ dBpx, yq ðñ
|ψpxq ´ ψpyq|2

p1´ |ψpxq|2q
“

|x´ y|2

p1´ |x|2qp1´ |y|2q

ðñ |ψpxq ´ ψpyq| “ |x´ y|
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. Hence, ψ preserves Euclidean distances and it can extended to ĎBn by setting

sψpxq “ 2ψp
x

2
q.

Because sψ preserves Euclidean distances and so the Euclidean inner product, ψpe1q, . . . , ψpenq

is a orthonormal basis and so for x P ĎBn, sψpxq “
n
ř

i“1
ciψ̄peiq “

n
ř

i“1
xiei with

n
ř

i“1
c2
i ď 1 and

@

ψ̄pxq, ψ̄peiq
D

“ xx, eiy “ xi

“ ci

. From this we deduce that ψ̄ is linear and ψ̄ “ ψ . Hence, ψ is the restriction of an
orthogononal transformation and so φ extends to a Möbius transformation.
Unicity : Suppose φ1 and φ2 are two Möbius transformations that both extend φ, ie φ “

φ1

ˇ

ˇ

Bn “ φ2

ˇ

ˇ

Bn . Then for any sphere Σ in Bn, φ´1
2 φ1pΣq “ Σ and so by theorem 11.4.5,

φ1 “ φ2. 2

Corollary 12.3.2 IpBnq and MpBnq are isomorphic.

The conformal model is well known as having two ways to compute it’s metric: one direct
method that we have seen before, and another method by using the cross ratio. Weirdly
enough, in literature we often see either one or the other and not both at the same time. Even
less often, it’s rarely shown exactly how both are related. A possible explanation of this, is
that relating both metrics requires the use of many results from Möbius transformations:

1. The image of a sphere of R̂n of a Môbius transformation is also a sphere.

2. Möbius transformations preserve angles.

3. Möbius transformations preserves the cross-product.

Theorem 12.3.5 Let x, y P Bn. Then,

dBpx, yq “ logprx, y, u, vsq “ log
` |x´ u||y ´ v|

|x´ v||y ´ u|

˘

where u, v are the two points of intersection between a circle or line orthogonal to Sn´1

containing x and y and Sn´1 as in the figure below

304



Proof. Let x, y P Bn distinct. We first suppose that y “ 0. In this case, all that is needed to
be done is to rewrite corollary 12.3.1

dBpx, 0q “ log
`1` |x|

1´ |x|

˘

“ log
`

|x´ p´ x
|x|q||0´

x
|x| |

|x´ x
|x| ||0´ p´

x
|x|q|

˘

“ log
`

rx, 0,´
x

|x|
,
x

|x|
s
˘

. Hence, x, y, u “ ´ x
|x| and x “ x

|x| all belong to the line Lx “ ttx : t P Ru which is a orthogonal

line to Sn´1. If y ‰ 0, we set ỹ “ y
|y|2

and σ “ σpỹ,
a

|ỹ|2 ´ 1q. As such, .σpyq “ 0 and so

dBpx, yq “ dBpσpxq, σpyqq “ dBpσpxq, 0q

“ rσpxq, σpyq, ũ, ṽs

where ũ and ṽ are the two points of intersection of the line Lσpxq “ ttσpxq : t P Ru and Sn´1.
We set u “ σ´1pũq and v “ σ´1pṽq. Since, Lσpxq is a Euclidean line, it become a circle Cx,y

under the transformation σ by the preservation of spheres of R̂n by the Möbius group and the
fact that σpV px, yqq “ V px, yq. Furthermore, since σpxq, σpyq, σpuq, σpvq all belong to Lσpxq,
x, y, u, v all lie on Cx,y. Because σ PMpBnq, σ is stable on Sn´1, so u and v both belong to
Sn´1. Finally, σ is conformal so Lσpxq is orthogonal to Sn´1 implies Cx,y is also orthogonal to
Sn´1. 2

Remark 12.3.1 In the case that x and y do not lie on the same lines passing through 0,
the circle C orthogonal to Sn´1 and passing through x and y. A simple construction follows:
if a is the center of the circle and r it’s radius, then the orthogonality of the circle C with
Sn´1 forces a to be on the vector subspace V px, yq and lies on a line L Ă V px, yq passing
through x`y

2 and orthogonal in V px, yq to the line Lx,y “ tx` tpx´ yq : t P Ru. Moreover, the
condition r2 “ |a|2 ´ 1 forces a to be the unique point on the line L that verify this condition.
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A shorter proof but more profound proof, would be to remark that x1 “ x
|x|2

and y1 “ y
|y|2

must

also lie this circle and since the circle can be defined from only three points, we are done.

From, this we get the intuition of the two geodesics of the conformal ball model: lines and
circles orthogonal to Bn. Naturally, the isometry group IpBnq “MpBq should transfer any
geodesic of pBn, dBq to other geodesics. In fact, we can generalise this to m-spheres or
m-planes orthogonal to Sn´1 defined as

• a m´ plane orthogonal to Sn´1 is a vector subspace of Rn of dimension m

• a m´ sphere is the intersection between a sphere Spa, rq and a vector subspace of Rn
of dimension m` 1

Theorem 12.3.6 MpBnq is transitive on the set of combined set of m-spheres and m-planes
orthogonal to Sn´1, with m P t1, . . . , n´ 1u.

Proof. For the stability of the action of MpBnq, the conformality of the Möbius transformations
combined with the fact that Möbius transformations is stable on the set of spheres of Sn´1

suffices. Let m P t1, . . . , n´ 1u and set V “ spante1, . . . , emu. For any m-plane Ṽ orthogonal
to Sn´1, we have a rotation φ P Opnq ĂMpBnq such that φpV q “ Ṽ (by transitivity of Opnq
on vector subspaces of Rn, a consequence of the Gramm-Schmidt decomposition). Furthermore,
we can use this same argument to reduce the case of two m-spheres Σ “ Spa, rq X Vm and
Σ1 “ Spb, sq X V 1m orthogonal to Sn´1, to the case where they belong to the same vector
subspace of dimension m` 1 (Vm “ V 1m), with a and b to be on the same line, ie b “ ka with

|k| ą 1
|a| . If we set a1 “ |a|´r

|a| a and b1 “ |b|´s
|b| b then a1 and b1 are both in Bn and are points of

Σ and Σ1 respectively lying on the line La “ tλa : λ P Ru. Then, transferring a1 to b1 via

σ “ σp
b1

|b1|2
, r1bqσp

a1

|a1|2
, r1aq PMpBnq

with r12a “
1
|a1|2

´ 1 and r1b “
1
|b1|2

´ 1, allows us to transfer Σ to Σ1. All that’s left is to show

we can transfer Σ to a m-plane V (any will do). We do so by reusing σa “ σp a1

|a1|2
, r1aq which

transfers Spa, rq to a hyperplane P since we have a1 P Spa, rq and σpa1q “ 0, but 0 cannot
belong to a Euclidean sphere orthogonal to Sn´1, so σpΣq “ P pa, 0q a hyperplane with normal
vector a. This is assured by the comformality of the transformation, if α is C1´curve on
Spa, rq such that αp0q “ a1 and β a curve defined by βptq “

`

|a|´r
|a| ` t

˘

a, then α1p0q and β1p0q

are orthogonal and so are their image by σa. Hence, if Σ “ Spa, rqXV , with V a m` 1 vector
subspace, we have

σapΣq “ V 1 “ xayK X V

a m-plane orthogonal to Sn´1. 2

Lemma 12.3.4 Let x, y P Bn be two linearly dependent distinct points. Then, z P B verifies

dBpx, yq “ dBpx, zq ` dBpz, yq

if and only if z lies between x and y (ie z “ tx` p1´ tqy).
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Proof. We start with the assumption that z “ 0 is between x and y. With such a condition,
we have x

|x| “ ´
y
|y| and

dBpx, yq “ log
`

rx, y,´
x

|x|
,
x

|x|
s
˘

“ log
`

rx, y,
y

|y|
,´

y

|y|
s
˘

“ log

ˆ

|x` x
|x| ||y `

y
|y| |

|x´ x
|x| ||y ´

y
|y| |

˙

“ log

ˆ

|x` x
|x| |

|x´ x
|x| |

˙

` log

ˆ

|y ` y
|y| |

|y ´ y
|y| |

˙

“ dBpx, 0q ` dBp0, yq

If we now consider x, y P B are any linearly dependent points and z a point between x and y,
then we can send z to 0 through the inversion σz (as in lemma 12.3.3 ) and because σz leaves
the line Lx,y invariant on Bn and maintains the image of z between the images of x and y,

dBpx, yq “ dBpσzpxq, σzpyqq “ dBpσzpxq, 0q ` dBp0, σzpyqq

“ dBpx, zq ` dBpz, yq

Conversely, suppose
dBpx, yq “ dBpx, zq ` dBpz, yq,

with z not linearly dependent with x and y.

...

pto be continued, proof in progress . . . q

2

Corollary 12.3.3 The geodesics arcs of conformal ball model are the 1-planes and 1-spheres
orthogonal to Sn´1.

We could have shown the geodesic of the conformal model directly from the Hyperboloid
model, by how the geodesics are transferred. However, it is useful to note that even if we chose
to present the conformal model as a ”descendant” of the hyperboloid model, it is very much
a model of hyperbolic geometry that holds by itself. In fact quite often, the conformal ball
model is presented as the Poincaré disc (the 2-dimensional version) by it’s own and completely
separated from the hyperboloid model.

12.3.3 The upper-half plane Un

Once the conformal model of the open unit ball Bn is done, the conformal model of the upper-
half plane Un is a walk in a park. Through the conformality of the Möbius transformation
η “ πρ (the bijection Un Ñ Bn), with π “ σpen,

?
2q and ρ “ ppen, 0q, the upper-half plane

easily inherits all of the properties of the conformal model of the open ball Bn. Naturally, we
define the hyperbolic metric on Un by defining η as an hyperbolic isometry between Bn and
Un
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Def. 12.3.2 The hyperbolic metric on Un is given by

dU px, yq “ dBpηpxq, ηpyqq

Similarly to the case of Bn, we have two ‘clean’ version of the hyperbolic metric on Un.

Theorem 12.3.7 Let x, y P Un distinct. Then,

coshpdU px, yqq “ 1`
|x´ y|2

2xnyn

Proof.

coshpdU px, yqq “ coshpdBpηpxq, ηpyqqq

“ 1`
2|ηpxq ´ ηpyq|

p1´ |ηpxq|2qp1´ ηpyq2q

“ 1` 2
4|ηpxq ´ ηpyq|2

|ηpxq ´ en|2|ηpyq ´ en|2
ˆ
|ηpxq ´ en|

2

4xn

|ηpyq ´ en|
2

4yn

“ 1`
|x´ y|2

2xnyn

2

Since the transformation between Bn and Un is a Möbius transformation, thus conformal, we
have the exactly the same results than on Bn:

Theorem 12.3.8 We have the following:

• the Isometry group of Un is isomorphic to it’s Möbius group MpUnq

• The geodesics of Un are the lines and circles orthogonal to En´1

• If x and y are two distinct points of Un, then

dU px, yq “ logprx, y, u, vsq

where u and v are the points of intersection between the geodesic γxy that passes through
x and y and En´1

Theorem 12.3.9 The element of hyperbolic arc length on the upper-half plane is given by:

‖dx‖U “
|dx|

xn

Proof. Let x P Un and y “ ηpxq. Then, from

y “ en `
2

|ρpxq ´ en|2
pρpxq ´ enq,

we have for i ă n:

yi “
2xi

|x` en|2
and yn “ 1´

2pxn ` 1q

|x` en|2
.
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Figure 12.7: The two type of lines of the upper-half plane: half-circles and Euclidean lines
orthogonal to En´1

Then for h arbitrarily close to 0 and i P t1, . . . , n´ 1u we find

ηipx` hq “
2pxi ` hiq

|x` h` en|2
“

2pxi ` hiq

|x` en|2

“
2pxi ` hiq

|x` en|2 ` 2 xh, x` eny ` |h|2

2
“

2pxi ` hiq

|x` en|2

ˆ

1´ 2
xh, x` eny

|x` en|2
`Op|h|2q

˙

“ ηipxq `
2hi

|x` en|2
´

4xi xh, x` eny

|x` en|4
`Op|h|2q

ηnpx` hq “ 1´
2pxn ` hn ` 1q

|x` h` en|2

“ 1´
2pxn ` 1q ` 2hn

|x` en|2 ` 2 xh, x` eny ` |h|2

4
“ 1´

p2pxn ` 1q ` 2hnq

|x` en|2

ˆ

1´
2 xh, x` eny

|x` en|2
`Op|h|2q

˙

“ ηnpxq `
2hn

|x` en|2
`

4pxn ` 1q xh, x` eny

|x` en|4
`Op|h|2q .

Hence we have,

dyi “
2dxi

|x` en|2
´

4xi xdx, x` eny

|x` en|4
and dyn “ ´

2dxn
|x` en|2

`
4pxn ` 1q xdx, x` eny

|x` en|4

2we use the approximation 1
1`x

“ 1´ x`Opx2q
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which brings us to the following computation

|dy|2 “ dy2
n `

n
ÿ

i“1

dy2
i

“

ˆ

´
2dxn

|x` en|2
`

4pxn ` 1q xdx, x` eny

|x` en|4

˙2

`

n´1
ÿ

i“1

ˆ

2dxi
|x` en|2

´
4xi xdx, x` eny

|x` en|4

˙2

“
4

|x` en|4

ˆ

|dx|2 ´
4 xdx, x` eny

2

|x` en|2
`

4|x` en|
2 xdx, x` eny

2

|x` en|4

˙

“
4|dx|2

|x` en|4

ùñ |dy| “
2|dx|

|x` en|2
.

Furthermore, by reusing ?? we have

1´ |y|2 “
4xn

|x` en|2

which allows us to conclude with

‖dx‖U “ ‖dy‖B “
2|dy|

1´ |y|2

“
4|dx|

|x` en|2
|x` en|

2

4xn

“
|dx|

xn

2

On a final note: we can observe that the upper half plane when compared to the other models
is the ‘furthest’ away in the sense that it is the most different in it’s geometry. This allows us
to obtain a very different point of view (very useful in some occasions ) and it’s arc length
metric is the most practical of the four hyperbolic model.

12.4 The Projective model Kn

The projective model Kn as it’s name implies, is the embedding of the hyperboloid model Hn

in the projective space RPn. Quite often, this model is presented in it’s 2´dimensional version
as the Klein disc (hence K for Klein). In fact we have actually seen this model previously in
9.4, without naming it as such. We start by reminding the projective group and space:

RPn “ Rn`1 äRˆ and PGLpn` 1,Rq “ GLpn` 1q äRˆ .

Moreover, we will use in what follows the notation for x P Rn`1 and λ P Rˆ

x ¨ Rˆ “ rxs “ rλxs.

The embedding of Rn in RPn is given by

Rn »
 

„

x
1



: x P Rn
(

Ă RPn.
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Figure 12.8: The gnomonic projection between Hn and Kn

While the conformal model stands by itself in it’s own way it is less the case of the projective
model Kn, as it’s geometry descends directly from the hyperboloid model.

Hn ÝÑ RPn ÝÑ Kn Ă Rn

x ÞÝÑ rxs “
”

x
xn`1

ı

ÞÝÑ p x1
xn`1

, . . . , xn
xn`1

q
.

Additionally, by the fact that every Euclidean line passing through 0 in the cone of time-like
vectors contains a unique element of Hn, our previous work in 9.4 and more specifically
theorem 9.4.1 allows us to deduce that this mapping is a bijection and the projective model is
given by

Kn “
 

x P Rn : |x| ă 1
(

.

Notice here that while the projective model of hyperbolic geometry is the same set than the
conformal ball model, their geometry as we shall see is very different: the conformal ball model
maintains the notion of Euclidean angles but has curved space whereas the projective space
will maintain Euclidean lines. Explicitly, if we define κ as the mapping Hn Ñ Kn, then for
x P Hn and y P κn we have

κpxq “
` x1

xn`1
, . . . ,

xn
xn`1

˘

and

κ´1pyq “
y ` en`1

| ‖y ` en`1‖ |
.
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12.4.1 The hyperbolic metric on the projective model and it’s group of
isometry

Consistently with what we have done with the conformal model, we define the hyperbolic
metric on Kn by setting κ, the bijection between Hn and Kn, as an hyperbolic isometry
between both spaces.

Def. 12.4.1 The hyperbolic metric on Kn for is defined as

dKpx, yq “ dHpκ
´1pxq, κ´1pyqq

for all x, y P Kn.

Similarly to before, we have a simple hyperbolic cosine version of the metric:

Theorem 12.4.1 For all x, y P“ Kn, we have

coshpdKpx, yqq “
1´ xx, yy

a

1´ |x|2
a

1´ |y|2

Proof.

coshpdKpx, yqq “ coshpdHpκ
´1pxq, κ´1pyqqq

“ ´
` x` en`1

| ‖x` en`1‖ |
˘

˝
` y ` en`1

| ‖y ` en`1‖ |
˘

“
1´ xx, yy

a

1´ |x|2
a

1´ |y|2

2

As one can see the metric isn’t as nice as the other metrics of the other models: the Euclidean
inner product xx, yy the metric not only depends on how far you are from the point (in a
Euclidean way), but the direction also distorts the space. This is the reason why projective
model is often said to be the model that doesn’t keep Euclidean angles. In fact, the hyperbolic
arc length isn’t any more welcoming. . .

Theorem 12.4.2 The element of hyperbolic arc length on the projective model Kn is given by

‖dx‖K “

b

p1´ |x|2q|dx|2 ` xx, dxy2

1´ |x|2

We can also obtain the metric by using the cross-ratio in a similar way to the conformal ball
model.

Corollary 12.4.1 For all x P Kn we have

dKp0, xq “
1

2
log

`1` |x|

1´ |x|

˘

“
1

2
logprx, 0,´

x

|x|
,
x

|x|
sq
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Proof.

dKp0, xq “ arcoshp
1

a

1´ |x|2
q “ log

ˆ

1
a

1´ |x|2
`

d

` 1
a

1´ |x|2

˘2
´ 1

˙

“ log
` 1` |x|
a

1´ |x|2

˘

“
1

2
log

`1` |x|

1´ |x|

˘

“
1

2
logprx, 0,´

x

|x|
,
x

|x|
sq

2

The thing to notice here is that ´ x
|x| and x

|x| are the two points of intersection between the

Euclidean line that passes through 0 and x and Sn´1. In fact, as we shall see later on, we can
extend this formulation of the metric for any points x, y P Kn.

Def. 12.4.2 The action of a projective transformation φ P PGLpn` 1,Rq on Rn is defined by

φ :
Rn ÝÑ Rn

x “

„

x
1



ÞÝÑ

„

φ

ˆ

x
1

˙

“

„

y
yn`1



“
y

yn`1

.

Note that projective transformation are not always well defined on all of Rn since yn`1 “
B

φ

ˆ

x
1

˙

, en`1

F

can be zero. We now search for the set of projective transformation that

leave Kn invariant.

Lemma 12.4.1 Let φ P GLpn ` 1,Rq. Then φ leaves the light cone tz P Rn`1 : ‖z‖ ď 1u
invariant if and only if there is a scalar λ ą 0 such that λφ is a Lorentz transformation.

Proof. Suppose we have φ P GLpn ` 1,Rq such that it leaves the light cone invariant. By
continuity of φ, φ also leaves the inside of the light cone (ie the set time like vectors) invariant
and by the same argument it also leaves the set of light-like vectors invariant. Hence, φpen`1q

is time like. Furthermore, by the transitivity of Opn, 1q on the 1´dimensional time-like vector
subspace, there is a Lorentz transformation A inOpn, 1q such that

Aφpen`1q “ λen`1,

with λ ą 0. All that’s left to show is that λ´1Aφ P Opn ` 1q X POpn, 1q (see 10.3.3). Let
x P Rn`1 be linearly independent to en`1 and Bx P Opn`1qXOpn, 1q such that φ̃ “ λ´1BxAφ
leaves V px, en`1q invariant and fixes en`1. Consequently, we may assume n “ 1 and because
φ̃ leaves en`1 unchanged, it is of the form

φ̃ “

ˆ

a 0
b 1

˙

.

Since φ̃ is stable on the set of light-like vectors, we have∥∥∥∥φ̃ˆ 1
´1

˙∥∥∥∥2

“ 0 “

∥∥∥∥φ̃ˆ1
1

˙∥∥∥∥2

ðñ a2 ´ pb´ 1q2 “ a2 ´ pb` 1q2

ðñ b “ 0

ùñ a “ ˘1.
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Hence, φ̃ P Opn ` 1q X Opn, 1q which implies λ´1Aφ P Opn ` 1q X Opnq and that λ´1φ is a
Lorentz transformation. 2

Lemma 12.4.2 A projective transformation rφs P PGLpn` 1,Rq leaves Kn invariant if and
only if any element of it’s class (ie λφ with |λ| ą 0) leaves the light cone invariant.

Proof. This proof is a direct consequence of 9.4.1 2

Hence by combining both lemmas we come to the conclusion that every projective transforma-
tion that leaves Kn invariant is the class of a unique positive Lorentz transformation.

Theorem 12.4.3 Every isometry of Kn extends to a unique projective transformation that
leaves Kn invariant and every projective transformation that leaves Kn invariant can be
restricted to an isometry.

Proof. The isometries of Hn are it’s Lorentz transformation and via the isometry κ : Hn Ñ K
correspond to the isometries of Kn. Hence, by applying both lemmas we obtain the theorem.
2

Corollary 12.4.2 IpKnq “ POpn, 1q äRˆ

Corollary 12.4.3 A isometry of Kn fixes 0 if and only if it is the restriction of a orthogonal
transformation of Rn on Kn.

While the projective model does not maintain the Euclidean notion of angles, it offers a big
advantage compared to other models: the hyperbolic lines of the projective model are exactly
the Euclidean lines. This makes this model very useful for convexity arguments. It’s worth
mentioning that we cannot have a hyperbolic model that retains both the Euclidean lines and
the conform with the Euclidean angles since otherwise we return back to the Euclidean model
of geometry: in hyperbolic geometry we cannot have the cake and eat it !

Theorem 12.4.4 The hyperbolic lines of Kn are the Euclidean lines restricted to Kn.

As announced previously, we can give a version of the hyperbolic metric on Kn using the
cross-ratio. In the literature, this is known as the Cayley-Klein metric. This formulation of
the hyperbolic metric can also be extended to bounded convex sets, in which case it is called
the Hilbert metric.

Theorem 12.4.5 The hyperbolic metric on Kn is given by:

dKpx, yq “
1

2
log

`

rx, y, u, vs
˘

,

for all x, y P Kn distinct and u, v the two points of intersection of the Eulcidean line `x, y and
Sn´1 such that |x´ u| ą |y ´ u| and |y ´ v| ą |x´ v|.
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Figure 12.9: Example of the cross-ratio points in the case of Klein disc (2´dimensional case)

12.4.2 Birkhoff’s version of Hilbert’s metric on convex sets

In this section we will study a generalisation of the Cayley-Klein metric to any convex set:
the Hilbert metric. To do so, we will introduce a second metric Birkhoff metric that will allow
us to extend the easily prove that the Hilbert metric is well defined on any convex set. This
section is mainly based on [11].

Def. 12.4.3 Let Ω Ă Rn be a bounded open convex set, non-empty. We define the Hilbert
metric on Ω as

δpx, yq “

#

log
`

rx, y, u, vs
˘

if x ‰ y

0 if x “ y

for all x, y P Ω and with u, v P BΩ defined as the points of intersection of the Euclidean line
passing through x and y and the border of Ω such that |x´ u| ą |y ´ u| and |y ´ v| ą |x´ v|.

Figure 12.10: Example of the Hilbert metric on a 2´dimensional convex set
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To show that the Hilbert metric is well defined we will be using a path different from how the
Hilbert metric is usually introduced by introducing Birkhoff’s version of the Hilbert metric on
cones.

Def. 12.4.4 Let V be a vector space and C Ă V a subset. We say that C is a cone if C verifies

1. C is convex: @x, y P C, λ P r0, 1s, λx` p1´ λqy P C

2. λC Ď C, for all λ ą 0.

3. C̄ X p´C̄q “ t0u

Mathematical tradition dictates us to make the following remark: by combining 1. and 2. of
the definition of a cone we obtain that a cone is stable under addition. In what follows, we
shall consider V to be a vector space and C Ă V a cone. In order to define Birkhoff’s metric,
we introduce a partial ordering on cone.

Def. 12.4.5 We define the partial ordering on the C for x, y P C as

x ďc y ðñ y ´ x P C.

Furthermore, we say that y dominates x if there exists α, β P R such that

αy ďc x ďc βy

and the equivalence relationship given by this partial ordering as

x „c y ðñ y dominates x and x dominates y.

In the case that y dominates x, we note the following quantities:

M
`x

y

˘

“ inftβ P R : x ďc βyu

m
`x

y

˘

“ suptα P R : αc ďc xu

Lemma 12.4.3 If x, y P Czt0u, then x „c y if and only if there is 0 ă α ď β such that

αy ďc x ď βy.

Moreover, if x „c y we have

m
`x

y

˘

“ suptα ą 0 : y ď
1

α
xu “M

`y

x

˘´1

Def. 12.4.6 We define the Birkhoff metric on the cone C as

dpx, yq “

$

’

’

’

&

’

’

’

%

log

ˆ

Mpx
y
q

mpx
y
q

˙

if x „c y and y, x ‰ 0

0 if x “ y “ 0

8 otherwise

Theorem 12.4.6 Let x, y, z P Czt0u such that x „c y „c z. Then,
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1. dpx, yq ě 0

2. dpx, yq “ dpy, xq

3. dpx, zq ď dpx, yq ` dpy, zq

4. dpx, yq “ dpλx, µyq for all λ, µ ą 0

Moreover, if V is a Banach space, then dpx, yq “ 0 if and only if x “ λy for some λ ě 0.

Proof. Let x, y, z P Cz0 such that x „c y „c z.

1. We take note that if 0 ă α ă mpxy q and 0 ă Mpxy q ă β, we have αy ďc x ďc βy and

y ďc
β
αy since

β

α
y ´ y P C ðñ βy ´ αy P C

ðñ pβy ´ xq
PC

` px´ αyq P Cq
pPCq

P C.

Hence, pβα ´ 1qy P C and consequently β
α ´ 1 ď 0 since C̄Xp´C̄q “ t0u. To conclude, if we note

pαnqně0 and pβnqně0 two real sequences such that 0 ă αn ă mpxy q, 0 ăMpxy q ă βn,

lim
nÑ8

αn “ mp
x

y
q and lim

nÑ8
βn “Mp

x

y
q,

then we obtain through the limit

Mpxy q

mpxy q
“ lim

nÑ8

αn
βn
ě 1.

2. To prove the second point, we simply need to use mpxy q “Mp yxq
´1:

dpx, yq “ log
`
Mpxy q

mpxy q

˘

“ log
`

M
`x

y

˘

M
`y

x

˘˘

“ log
`Mp yxq

mp yxq

˘

“ dpy, xq .

3. Let α,β as before, 0 ă λ ă m
`

y
z

˘

and 0 ăM
`

y
z

˘

ă µ. Then, we have αy ďc x and λz ďc y,
which when combined gives us αλz ď x, thus

0 ă αλ ă m
`x

y

˘

.

Similarly by combining x ďc βy and y ďc µz, we obtain x ďc βµz and so

M
`x

z

˘

ď βµ

and by pushing α,β,λ and µ to their respective sup or inf limits, we obtain

m
`y

z

˘

m
`x

y

˘

ď m
`x

z

˘

and M
`x

z

˘

ďM
`x

y

˘

M
`y

z

˘

.
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This allows us to directly conclude:

dpx, zq “ log

ˆ

Mpxz q

mpxz q

˙

ď log

ˆ

Mpxy q

mpxy q

Mpyz q

mpyz q

˙

ď dpx, yq ` dpy, zq .

4. Let λ, µ ą 0. Then,

M
`λx

µy

˘

“
λ

µ
M

`x

y

˘

and m
`λx

µy

˘

“
λ

µ
m
`x

y

˘

,

and so
dpx, yq “ dpλx, µyq.

2

Theorem 12.4.7 Let C Ă V a closed cone in a pn ` 1q´dimensional vector space with a

non-empty interior (ie
o
C ‰ tøu ) and H Ă V be a n-dimensional affine hyperplane such that

Ωc “ H X
o
C is a open, bounded and convex set. Then, the restriction of the Birkhoff metric d

on Ωc coincides with the Hilbert metric δ.

Proof. Let x, y P Ωc distinct, α “ m
`

x
y

˘

“M
`

y
x

˘´1
and β “M

`

x
y

˘

. We remark that because

C is closed, we have αy and x ď βy. We set u “ x ´ αy P BC, v “ y ´ 1
βx P BC, `x,y the

Euclidean line passing through x and y and x1, y1 P BΩc the two points of intersection between
`x,y and BΩc such that |y ´ x1| ą |x´ x1| and |x´ y1| ą |y ´ y1|.

Since x1 and y1 do not lie between x and y, we have λ, µ ą 1 such that

x1 “ y ` λpx´ yq and y1 “ x` µpy ´ xq.

318



Now let φ P V ˚ be a linear functional such that3

H “ tz P V : φpzq “ 1u

and we remark that

y ` λpx´ yq “ x1 “
u

φpuq
“
x´ αy

1´ α
ùñ α “

λ´ 1

λ

x` µpy ´ xq “ y1 “
v

φpvq
“
y ´ β´1x

1´ β´1
ùñ β “

µ

µ´ 1

which leads us to
|y ´ x1|

|x´ x1|
“

λ

1´ λ
“

1

α
“M

`y

x

˘

“ m
`x

y

´1˘

and
|x´ y1|

|y ´ y1|
“

µ

1´ µ
“ β “M

`x

y

˘

.

Finally we may conclude:

dpx, yq “ log

ˆ

Mpxy q

mpxy q

˙

“ logp
|y ´ x1|

|x´ x1|

|x´ y1|

|y ´ y1|
q “ δpx, yq

2

Corollary 12.4.4 The Hilbert metric δ is well defined on any open bounded convex set.

Proof. If Ω Ă Rn is a convex, bounded and open set, then we embed it in Rn`1 as

Ω1 “ t

ˆ

x
1

˙

: x P Ωu, set C “ tλx : x P Ω̄1, λ ě 0u and H “ t

ˆ

x
1

˙

: x P Rn`1u. 2

On a last word, this corollary is in fact the weak version to a much stronger result:
we can extend the Hilbert metric to any open, convex, possibly unbounded, subset of an
infinite-dimensional Banach space !

3If a is a normal vector of H and t P R such that ta P H, then we have

H “ tx P V : xx, ay “ tu “ tx P V :
Aa

t

E

, x
looomooon

“φpxq

“ 1u
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The only simple notions whose specialisations
form a multiply extended manifoldness are the
positions of perceived objects and colors.

B. Riemann, 1854

Part III:

Applications
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Chapter 13

The standard formulation of special
relativity (Valérie Garcin, Nicoletta Prencipe and Edoardo Provenzi)

The concept of an absolute space has been abandoned since Galilean relativity, in which
‘space-time’ is interpreted as the metric space pR4 – Rˆ R3, dt2 b d`2q, where dt and d` are
the Euclidean metric on R and R3, respectively. Special relativity is known to be an extension
of Galilean relativity in which, along with the motion of objects with mass, also the peculiar
behavior of electromagnetic signals propagation is taken into account. As we will recap soon,
considering also this kind of signals impose to give up the concept of an absolute time and to
build a ‘spacetime’ where both space and time are relative to an observer and not absolute.

Formally, Galilean relativity is based on the following two postulates:

1. the space is homogeneous and isotropic and the time is homogeneous1;

2. laws of physics2 have the same form in all inertial (i.e. not accelerated) reference frames,
i.e. no inertial reference frame is privileged.

In special relativity Einstein added the following, fundamental, postulate:

3. the speed of light in vacuum has a constant value c when measured in all inertial reference
frames.

These postulates constitute the minimal set of axioms able to determine in a unique way
the metric of spacetime and the analytic form of the coordinate changes from one inertial
frame to another.

We will start with the metric issue. Using a standard nomenclature, we call event e a
point in R4 written in coordinates as3 xµ “ pct,xq, where t and x “ pxiq, i “ 1, 2, 3, are,
respectively, the time instant and the spatial position of the event as measured by an inertial
observer with respect to her/his inertial reference frame R. Let us consider, in particular, the
following two events: the first, e1 “ pct1, x

i
1q, consists in a light signal emanating at the time

t1 from the spatial position pxi1q; the second, e2 “ pct2, x
i
2q, consists in the same light signal

arriving at the time t2 in the spatial position pxi2q. Since the signal propagates with constant

1In this context, isotropy means invariance under rotations, while homogeneity means invariance under
multiplication by a real constant.

2In Galileian relativity, the laws of physics refer only to mechanics, while in Einstein’s special theory of
relativity one considers also electromagnetism.

3Using ct instead of t is customary in special relativity: physically, this amounts at replacing the time t
with the corresponding space ct traveled by a ray of light during t.
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speed c, the distance that is traveled is cpt2 ´ t1q, however, since we have endowed R3 with

the Euclidean metric, this same distance equals

ˆ

3
ř

i“1
pxi2 ´ x

i
1q

2

˙1{2

, so the coordinates of the

events e1 and e2 in the fixed inertial frame R are related by the equation:

c2pt2 ´ t1q
2 ´

3
ÿ

i“1

pxi2 ´ x
i
1q

2 “ 0 ðñ c2pt2 ´ t1q
2 ´ }x2 ´ x1}

2 “ 0, (13.1)

}x2´x1}
2 being the Euclidean distance in R3 between x1 and x2. Of course, eq. (13.1) remains

valid for all spacetime differences, also infinitesimal ones, thus we can write the differential
version of eq. (13.1) as c2dt2 ´ }dx}2 “ 0. In special relativity, the quantity

ds2 “ c2dt2 ´ }dx}2, (13.2)

is called spacetime interval. From eq. (13.1) it follows that the spacetime interval between two
events connected by a signal traveling at the speed of light is null. Since the speed of light is
an upper limit for velocity, this amounts at promoting it as a reference and at normalizing to 0
the spacetime distance between any two events, no matter how far in space or time, connected
by a light-speed signal.

Let us underline a key invariance property of ds2 that will be used to single out the
analytical form of the coordinate change between inertial observers. Postulates 1 and 3 imply
that the spacetime interval ds2 between two events described in the inertial reference frame
R and the spacetime interval ds12 between the same couple of events described in any other
inertial reference frame R1 is exactly the same: ds12 “ ds2, see e.g. [?], page 7 or [?], page 117,
for a rigorous proof.

If we write a generic event e P R4 as a column vector px0 “ ct, x1, x2, x3qt “ pxµqt and the
infinitesimal difference between any two events as dx “ pdxµqt, then the spacetime interval
can be written as the (non positive-definite) quadratic form ds2 “ pdxµqtηµνpdx

νq, where
η “ pηµνq is the matrix diagpηµνq “ p1,´1,´1,´1q. The metric space M “ pR4, ηq is called
Minkowski spacetime and η is the matrix associated to the Minkowski metric tensor such that
η “ ηµνdx

µ b dxν . The associated pseudo-norm, i.e. }u}2M “ pu0q2 ´ rpu1q2 ` pu2q2 ` pu3q2s

is called Minkowski norm of u PM.
Noticeable subsets of M are the lightcone and the world-lines. The lightcone is the subset

of M given by L “ tpct, x, y, zq P R4 : ds2 “ 0 ðñ c2t2 ´ x2 ´ y2 ´ z2 “ 0u. The volume
surrounded by L together with L itself will be denoted with L̊. A world-line in M is any
connected set of events between an initial and a final one. World-lines of inertial motions are
easily seen to be segments of straight lines in M.

We have the following categorization of events in terms of the spacetime interval:

• ds2 “ 0, the events e1, e2 are connected by a signal traveling at the speed of light, they
belong to the lightcone L;

• ds2 ą 0, or }dx}2 ă c2dt2, i.e. the spatial separation between the events e1, e2 is less
that the distance traveled by a light ray, which implies that they are connected by a
world-line with speed inferior than c, they lie in the interior of the lightcone, the so-called
time-like zone of the Minkowski space. It is also called causality region, because changes
in the event e1 cause changes in the event e2. It is clear that these events are contained
in L̊;
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• ds2 ă 0, or }dx}2 ă c2dt2, i.e. the spatial separation between the events e1, e2 is greater
that the distance traveled by a light ray, i.e. the events e1, e2 cannot be physically
connected, they lie outside the lightcone, the so-called space-like zone of the Minkowski
space, also said non-causal region.

We are now ready to discuss the problem to relate the coordinates of two inertial frames.
First of all, it is simple to deduce from postulate 1 that the coordinate transformation
ω : R4 Ñ R4, xµ ÞÑ x1µ “ ωpxµq from R to R1 of an event must be linear (under the
reasonable hypothesis to be differentiable).

In fact, by postulate 1, there are no special instants and positions in R4, so, the Euclidean
distance between two events remains the same when these are translated by a fixed vector
b P R4. This is true independently on the coordinate system used to write the events in two
arbitrary inertial reference frames R and R1. Let x “ xµ and y “ yµ be the coordinates of
the two events in R and ωµpxq and ωµpyq the coordinates of the same events in R1. Since
pxµ ` bµq ´ pyµ ` bµq “ xµ ´ yµ, we must have ωµpx ` bq ´ ωµpy ` bq “ ωµpxq ´ ωµpyq. If
we derive the two sides of the last equation with respect to xν , ν “ 0, 1, 2, 3, we obtain
Bωµ

Bxν px` bq “
Bωµ

Bxν pxq, for all b P R4, since y does not depend on x.
Thanks to the fact that b is arbitrary, x` b represents any vector in R4, so the function

Bωµ

Bxν is constant, which implies that Bωµ

Bxν pxq “ Λµν P R for all x P R4, µ, ν “ 0, 1, 2, 3, i.e.

x1µ “ ωµpxq “ Λµνx
ν ` aµ. (13.3)

The fact that the coordinate transformation between inertial reference frames must be
linear does not imply that any linear function ωµ implements such a transformation. In fact,
the invariance of the spacetime interval imposes strong constraints on the matrix Λ “ pΛµνq.
To see this, let us write the difference vector dxµ in the inertial reference frame R1 by using
eq. (13.3): dx1µ “ y1µ ´ x1µ “ Λµνyν ` aµ ´ pΛ

µ
νxν ` aµq “ Λµνdxν . Thus, on one side,

ds12 “ ηµνdx
1µdy1ν “ ηµνΛµαΛνβdx

αdyβ, (13.4)

and, on the other side,
ds2 “ ηαβdx

αdyβ, (13.5)

so, the equality ds12 “ ds2 implies the following constraint on Λ:

ηµνΛµαΛνβ “ ηαβ ðñ ΛtηΛ “ η. (13.6)

The set of all these matrices forms a group, called the Lorentz group and denoted by the
symbol Op1, 3q “ tΛ P GLp4,Rq : ΛtηΛ “ ηu, or L . Of course, every matrix Λ P Op1, 3q is
invertible, in fact, by computing the determinant of both sides of ΛtηΛ “ η and using Binet’s
theorem we get detpΛq “ ˘1.

What we have shown so far is that postulate 1 and the constancy of the speed of light in
inertial reference frames imply that the coordinates used to describe the same even in two
generic inertial reference frames are related by a nonhomogeneous linear transformation of the
type x1 “ Λx` a, Λ P Op1, 3q, a P R4.

The set of these transformations forms the so-called the Poincaré group defined by P “

tpΛ, aq : Λ P Op1, 3q, a P R4u, endowed with composition law given by pΛ1, a1q ¨ pΛ2, a2q “

pΛ1Λ2, a1 ` Λ1a2q.
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The Poincaré group contains the Lorentz group and the group of translations as subgroups:
Op1, 3q is isomorphic to the subgroup of P given by the elements pΛ, 0q, while the elements of
P of the form p1, aq are translations by the constant vector a P R4.

The coordinate transformations x1 “ Λx ` a are called Poincaré transformations, and
those corresponding to a “ 0, i.e. x1 “ Λx are called Lorentz transformations.

Since we have not put any further restrictions on these maps, we have managed to show
that the coordinate transformation between two inertial reference frames coincide with the
Poincaré transformation. The translation part of these maps is trivial, in the following section
we will analyze the structure of the Lorentz group in order to better understand the geometrical
action of the Lorentz transformations on the inertial reference frames.
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Part IV:

Appendices
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Appendix A

Einstein’s convention (Edoardo Provenzi)

In differential geometry, we often deal with expressions with many indices and sums. To
simplify the notation, it is common to use Einstein’s convention and implicitly assume a
sum over repeated indices above and below in an algebraic expression, the sum being of course
performed over the range of index variability, e.g. if i “ 1, . . . , n, then

aibi :“
n
ÿ

i“1

aibi.

This notation is consistent as long as we agree to write the indices below for the basis vectors
of Rn and above for the components w.r.t. them. The convention for the dual space pRnq˚
is inverted. Coherently with that, the canonical basis of Rn will be denoted with peiq

n
i“1,

while its dual basis will be written as pεjqnj“1, εj P HompRn,Rq ” pRnq˚, the two bases are
linked via the pairing:

εjpeiq “ δji , i, j “ 1, . . . , n.

Given the vector x “ xiei P Rn, xi P R, for all i “ 1, . . . , n, the action of the linear functional
εj on x is:

εjpxq “ εjpxieiq “ xiεjpeiq “ xiδji “ xj ,

i.e. εj simply extracts the j-th component of the vector x P Rn w.r.t. the canonical
basis peiq

n
i“1.

Vectors in Rn, or any other vector space V , will always be considered as column vectors,
while their duals, belonging to pRnq˚, or V ˚, will be considered as row vectors.

It is very important to make explicit the use of the Einstein convention when we deal with
matrices associated with linear maps between vector spaces and with bilinear forms on a vector
space. Let f : V ÑW be a linear function between the vector spaces V and W of dimension n
and m, respectively, then, if we denote the matrix associated to f with A “ paijq, i “ 1, . . . ,m,
j “ 1, . . . , n, i.e. we write the row index above and the column index below, the Einstein
convention can be coherently applied to compute the product of A with a column vector
v “ pv1, . . . , vnqt of V , in fact:

Av “

¨

˚

˝

a1
1 ¨ ¨ ¨ a1

n
...

...
am1 ¨ ¨ ¨ amn

˛

‹

‚

¨

˚

˝

v1

...
vn

˛

‹

‚

“

¨

˚

˝

a1
1v

1 ` ¨ ¨ ¨ ` a1
nv

n

...
am1 v

1 ` ¨ ¨ ¨ ` amn v
n

˛

‹

‚

“ paijv
jq,

which is a column vector with m rows belonging to W . Notice that, if the matrix is square,
then the trace of A is TrpAq “ aii.
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Now we examine the case of a bilinear form. Let g : V ˆV Ñ R be an R-bilinear form over
the vector space V of dimension n, then, by fixing a basis pu1, . . . , unq of V we can associate
to g the matrix G “ pgijq, where the matrix elements are defined by the formula:

gpui, ujq :“ gij ,

so that G “ pgijqi,j“1,...,n. Notice that now the matrix elements of G are written with two
indices below, this is the only way of being coherent with Einstein’s notation, in fact, if
v, w P V , v “ pviq and w “ pwjq where vi and wj , i, j “ 1, . . . , n, are the components of v and
w w.r.t. the basis puiq of V , then

gpv, wq “ gijv
iwj :“

n
ÿ

i“1

n
ÿ

j“1

gijviwj ,

will be a real scalar, as correctly expected.
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Appendix B

Recap of ordinary calculus in Rn
(Edoardo Provenzi)

We collect here some basic results and definitions of ordinary calculus in Rn. We assume that
the reader is already familiar with this topic, the aim of this appendix is just to recap the
most important concepts of standard calculus.

In particular, we stress some concepts, as e.g. the spaces between which partial derivatives
act or the role of the dual basis of Rn or that of the evaluation map, that are sometimes hidden
when presenting ordinary calculus but that are essential for the development of differential
calculus on manifolds.

It is convenient to fix the notation that will be used, unless otherwise specified, in this
appendix:

• x0 P Ω Ď Rn, Ω open set

• f : Ω Ď Rn Ñ Rm

• LpRn,Rmq is the vector space of linear operators from Rn to Rm

• Up0q is an open neighborhood of the null vector 0 P Rn

• Upx0q is the open neighborhood of x0 obtained by translation of Up0q by the vector x0:

Upx0q “ tx0 ` h, h P Up0qu

• a curve, or path, in Rd, d ě 1, is a continuous function γ : I Ď RÑ Rd, where I is an
open real interval.

• Modulo a translation and a rescaling, it is always possible to consider I to be p´ε, εq for
a suitable ε ą 0.

• We say that γ passes through x0 P Rd if γp0q “ x0.

The main idea behind differential calculus in Rn is the concept of local linearization, which
leads directly to the definition of derivative. For functions of only one real variable there is
only one derivative, but for functions of more than one real variable two different (and not
equivalent) derivatives can be considered: the total and the directional derivative along a
vector. We start recalling the definition of the total derivative, which has been formalized as
follows by Fréchet.
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Def. B.0.1 f is said to be Fréchet-differentiable (or simply differentiable) in x0 P Ω if there
exist:

• an open neighborhood Upx0q Ď Ω

• a linear operator1 Dfpx0q P LpRn,Rmq, that, in general, depends on x0

• a rest function ρx0 : Up0q Ď Rn Ñ Rm,

such that:

1. fpx0 ` hq “ fpx0q `Dfpx0qh` ρx0phq, @h P Up0q

2. ρx0p0q “ 0

3.
}ρx0 phq}

}h} ÝÑ
}h}Ñ0

0.

f is differentiable on Ω if it is differentiable in every point of Ω.

This definition is the precise formalization of the intuitive statement that it is possible to
approximate the action of f on nearby points x “ x0 ` h around x0 by a linear function
and that the error in doing this tends to zero faster than the distance between x and x0, i.e.
}h} “ }x´ x0}.

Def. B.0.2 Dfpx0q is called the total derivative, the Fréchet derivative, or simply the
derivative of f in x0.

Condition 1. and 3. imply an important equation, to find its expression let us rewrite 1. as
fpx0 ` hq ´ fpx0q ´ Dfpx0qh “ ρx0phq, so that }fpx0 ` hq ´ fpx0q ´ Dfpx0qh} “ }ρx0phq}
thus, dividing by }h} and taking the limit }h} Ñ 0, thanks to 3. we obtain:

lim
}h}Ñ0

}fpx0 ` hq ´ fpx0q ´Dfpx0qh}

}h}
“ 0. (B.1)

Theorem B.0.1 (Uniqueness of the total derivative) If Dfpx0q exists, then it is unique.

Proof. We must proof that if D1fpx0q and D2fpx0q are two total derivatives of f in x0, then
they must agree as linear operators belonging to LpRn,Rmq.

To this aim, observe that (B.1) implies, in particular, that the numerator tends to 0 as
}h} Ñ 0, i.e. @ε ą 0 Dδε ą 0 such that }h} ă δε implies both

}fpx0`hq´fpx0q´D1fpx0qh} ă
ε

2
}h} and }fpx0`hq´fpx0q´D2fpx0qh} ă

ε

2
}h}, (B.2)

having used the arbitrariness of ε. Now, thanks to the triangular inequality, we have:

}D1fpx0qh´D2fpx0qh} “ }fpx0 ` hq ´ fpx0q ´D2fpx0qh´ pfpx0 ` hq ´ fpx0q ´D1fpx0qhq}

ă }fpx0 ` hq ´ fpx0q ´D2fpx0qh} ` }fpx0 ` hq ´ fpx0q ´D1fpx0qh}

ă
pB.2q

ε}h}.

1Sometimes Dfpx0q is written as f 1px0q.
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Noticing that D1fpx0qh´D2fpx0qh “ D1fpx0q ´D2fpx0qqh, we can write

}pD1fpx0q ´D2fpx0qqh}

}h}
ă ε @}h} ă δε.

When h “ 0, it is clear that D1fpx0qh “ D2fpx0qh “ 0 because the total derivative is linear,
so, let us consider h ‰ 0, then, from the previous expression we get:

}D1fpx0q ´D2fpx0q} :“ sup
h‰0

}pD1fpx0q ´D2fpx0qqh}

}h}
ă ε @}h} ă δε,

which implies that D1fpx0q “ D2fpx0q. 2

Because of the uniqueness of the total derivative, many authors say that Dfpx0q provides
the best linear approximation of f in a neighborhood of x0.

Remark: if we replace Rn and Rm by any two finite-dimensional normed spaces, then the
definitions and results above remain valid.

The reason why Dfpx0q is called the total derivative is that it contains, as special cases,
all the derivatives of f in x0 along any possible directions, as we are going to formalize.

Def. B.0.3 The straight line passing through x0 and directed as the vector v P Rn
is the curve in Rn defined as follows:

rx0,v : R ÝÑ Rn
t ÞÝÑ rx0,vptq “ x0 ` tv.

In order to define the concept of directional derivative, we just need to observe that the
composed function f ˝ rx0,v : RÑ Rm is a curve in Rm passing through fpx0q “ fprx0,vp0qq.

Def. B.0.4 Given f : Ω Ď Rn Ñ Rm and x0 P Ω, if the following limit (in Rm) exists2

Dvfpx0q “ lim
tÑ0

pf ˝ rx0,vqptq ´ fpx0q

t
“ lim

tÑ0

fpx0 ` tvq ´ fpx0q

t
” pf ˝ rx0,vq

‚

p0q, (B.3)

then we call it the directional derivative of the function in x0 along the vector v.
We say that f is Gateaux differentiable in x0 if the directional derivatives of f in x0

exists for every direction v. f is Gateaux differentiable on Ω if it is Gateaux differentiable in
every point of Ω.

As a particular vector v we can choose ei, the i-th element of the canonical basis of Rn,
in this case the directional derivative of f in x0 is called partial derivative of f in x0 and
denoted with

Bf

Bxi
px0q :“ Deifpx0q.

Each function
f : Ω Ď Rn ÝÑ Rm

x ÞÝÑ fpxq “ py1, . . . , ymq,

2Notice that Dvfpx0q is a vector in Rm and not a linear operator.
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is uniquely associated to an ordered collection of m real-valued functions, the so-called
component functions f1, . . . , fm : Ω Ñ R, defined as follows:

@x P Ω, fpxq “ py1, . . . , ymq “: pf1pxq, . . . , fmpxqq.

The partial derivatives Bfj

Bxi
px0q, i “ 1, . . . , n, j “ 1, . . . ,m, of the component functions can be

organized in a mˆn matrix with real entries called Jacobian matrix of f in x0 and denoted
with Jfpx0q PMpmˆ n,Rq:

pJfpx0qq
j
i “

Bf j

Bxi
px0q ðñ Jfpx0q “

¨

˚

˝

Bf1

Bx1
px0q . . . Bf1

Bxn px0q
...

. . .
...

Bfm

Bx1
px0q . . . Bfm

Bxn px0q

˛

‹

‚

. (B.4)

Let us now prove that the vector Dvfpx0q P Rm can be recovered by Dfpx0q P LpRn,Rmq
simply by applying this linear operator to the vector v, it is in this sense that the total
derivative contains all the information on the directional derivatives.

The easiest and more profound way to prove this relationship is by first examining the
special case n “ 1, i.e. curves γ : p´ε, εq Ñ Rm.

In standard differential calculus we prove that a function of one real variable, as γ, is
differentiable in x0 P p´ε, εq if and only if the limit

9γpx0q :“ lim
tÑ0

γpx0 ` tq ´ γpx0q

t
”
dγ

dt
px0q P Rm

exists and it is finite. In this case, 9γpx0q is called the value of the derivative of γ in x0.
The fact that, in this special case, the existence of the total derivative of γ in x0, i.e. the

linear operator Dγpx0q P LpR,Rmq, is equivalent to the existence of its derivative 9γpx0q in x0

should not be surprising if we think about the canonical identification of the vector space
LpR,Rmq with Rm via the linear isomorphism given by

LpR,Rmq „
ÝÑ Rm

T ÞÝÑ T1,
(B.5)

i.e. the application of any linear operator T P LpR,Rmq to the only element of the canonical
basis of R, i.e. 1.

Let us use again the special element 1 of R to define the directional derivative of γ in x0

and examine its relationship with the total derivative. 1 identifies the only possible direction
in R, so the straight line in R passing through x0 P R and directed as the vector 1 P R is:

rx0,1 : R ÝÑ R
t ÞÝÑ rx0,1ptq “ x0 ` t.

The curve γ : p´ε, εq Ñ Rm admits a directional derivative in x0 P p´ε, εq towards the only
possible direction defined by 1 P R if it exists and it is finite the vector of Rm defined by the
limit:

D1γpx0q “ lim
tÑ0

pγ ˝ rx0,1qptq ´ γpx0q

t
“ lim

tÑ0

γpx0 ` tq ´ γpx0q

t
” 9γpx0q,

i.e.

D1γpx0q ´ 9γpx0q “ 0 ðñ lim
tÑ0

γpx0 ` tq ´ γpx0q ´ 9γpx0qt

t
“ 0, (B.6)
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but the limit above is nothing but the 1-dimensional version of eq. (B.1). In eq. (B.1) the role
of 9γpx0q is played by the total derivative Dfpx0q which is an operator belonging to LpRn,Rmq,
this apparent mismatch can be corrected thanks to the canonical isomorphism (B.5), which
allows us identifying 9γpx0q with the linear operator Dγpx0q1.

So, eq. (B.6) becomes

D1γpx0q ´ 9γpx0q “ 0 ðñ 9γpx0q “ Dγpx0q1,

and we come to the conclusion that the directional derivative of γ in x0 along the direction
1 P R exists if and only if the total derivative Dγpx0q exists and, moreover, D1γpx0q is nothing
but the application of the total derivative Dγpx0q to 1, as represented by the suggestive
equation:

9γpx0q “ D1γpx0q “ Dγpx0q1 , (B.7)

in which 1 plays two different roles: in the expression D1γpx0q it must be interpreted as a
vector defining the only possible direction of derivation in R, while in the expression Dγpx0q1
it must be though as the only canonical basis element of the vector space R.

The extension of this result to a function f : Ω Ď Rn Ñ Rm is almost straightforward if
we build, analogously to what we have done before, the curve f ˝ rx0,v in Rm passing through
fpx0q by composing f with the straight line rx0,vptq “ x0 ` tv, x0 P Ω, v P Rn.

Supposing that the curve f ˝ rx0,v is differentiable in 0, we have3:

pf ˝ rx0,vq
‚

p0q “
pB.7q

Dpf ˝ rx0,vqp0q1

“
(chain rule)

Dfprx0,vp0qqDrx0,vp0q1

“
pB.7q

Dfpx0q 9rx0,vp0q

“ Dfpx0q
dpx0 ` tvq

dt
p0q

“ Dfpx0qv,

but pf ˝ rx0,vq
‚

p0q is precisely Dvfpx0q thanks to eq. (B.3), so we have proven that, if f is
Fréchet differentiable in x0, then f is also Gateaux differentiable in x0 and the directional
derivative can be simply obtained by applying the total derivative to the vector v:

Dvfpx0q “ Dfpx0qv . (B.8)

Counter-examples show that the reverse is not true: even if a function has directional derivatives
in every direction in a point, it can be not differentiable. Thus, the Fréchet differentiability of
a function of multiple real variables is stronger than the Gateaux derivability, whereas for one
variable the two concepts collapse due to the canonical isomorphism LpR,Rmq » Rm.

Remark: this way of proving the relationship between directional and total derivative for
functions of several real variables is neither the easiest, nor the standard one. However, we
chose to present it because this way of reasoning is the closest to the one used in differential
geometry, as the reader can appreciate starting from chapter 2.

3we omit the composition sign between linear operators, as conventional.
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There is a last special case to consider, that of a scalar function f : Ω Ă Rn Ñ R. In this
case, the linear operator Dfpx0q is an element of LpRn,Rq ” pRnq˚, the dual space of Rn,
i.e. Dfpx0q is a linear functional on Rn. Rn and its dual are canonically isomorphic via the
correspondence

Rn „
ÝÑ pRnq˚

pe1, . . . , enq ÞÝÑ pε1, . . . , εnq,

where εjpeiq “ δji , i, j “ 1, . . . , n, is the dual canonical basis of Rn. This isomorphism
allows us to identify Dfpx0q P pRnq˚ with a vector of Rn called the gradient of f in x0 and
denoted with ∇fpx0q.

The representation of ∇fpx0q in components, with respect to the canonical basis of Rn, is
given by the column vector:

∇fpx0q “

ˆ

Bf

Bx1
px0q, . . . ,

Bf

Bxn
px0q

˙t

,

i.e. the Jacobian matrix in x0 of a real-valued function of n real variables collapses to a vector
whose components are the partial derivatives of f calculated in x0.

The directional derivative of f along a vector v P Rn can be obtained via the general
formula (B.8). In this case, since the Jacobian matrix is simply a row, its action on v reduces
to the scalar product of ∇fpx0q with v:

Dvfpx0q “ x∇fpx0q, vy, (B.9)

which can be also seen as a particular instance of the finite-dimensional version of the Riesz
isomorphism theorem: the action of the linear functional Dfpx0q P pRnq˚ of v P Rn is the
scalar product of the vector of Rn uniquely associated to Dfpx0q, i.e. ∇fpx0q, and v.

Thanks to the linearity of the limit, Dvf is linear w.r.t f , but we can say more: if we
express the vector v as the linear combination k1v1 ` k2v2, v1, v2 P Rn, k1, k2 P Rzt0u, then,
by the bilinearity of the real scalar product, we get:

Dvfpx0q “ x∇fpx0q, k1v1`k2v2y “ k1x∇fpx0q, v1y`k2x∇fpx0q, v2y “ k1Dv1fpx0q`k2Dv2fpx0q,

i.e.
Dk1v1`k2v2fpx0q “ k1Dv1fpx0q ` k2Dv2fpx0q , (B.10)

so the directional derivative Dvf is linear w.r.t both f and v. This property is crucial in
chapter 7.

B.0.1 Noticeable examples of gradients and total derivatives

We show here how to compute the gradients and total derivatives of particularly important
functions.

Directional derivatives of the squared Euclidean norm and of the Euclidean scalar
product

In the proofs that will follow we will often use the equality

}a` b}2 “ }a}2 ` }b}2 ` 2xa, by,

which holds for all a, b P Rn.

333



Theorem B.0.2 Let x, a P Rn, fpxq “ }x}2 and gapxq “ }x´a}
2, then @x P Rn it holds that:

• ∇fpxq “ 2x

• ∇gapxq “ 2px´ aq.

This theorem has a clear interpretation: the computation of the gradient of the square
Euclidean norm and of its translations is formally identical to that of the first derivative of
the square function in R and its translations.

Proof. By direct computation:

Dvfpxq “ lim
εÑ0

fpx` εvq ´ fpxq

ε
“ lim

εÑ0

}x` εv}2 ´ }x}2

ε

“ lim
εÑ0

}x}2 ` }εv}2 ` 2xx, εvy ´ }x}2

ε

“ lim
εÑ0

ε2}v}2 ` 2εxx, vy

ε

“ lim
εÑ0

`

ε}v}2 ` 2xx, vy
˘

“ 2xx, vy.

By (B.9), Dvfpxq “ x∇fpxq, vy “ 2xx, vy, i.e. x∇fpxq, vy “ x2x, vy, or x∇fpxq ´ 2x, vy “ 0
for all directions v, but this is possible if and only if ∇fpxq ´ 2x “ 0, i.e. ∇fpxq “ 2x.

Analogously,

Dvgapxq “ lim
εÑ0

}x` εv ´ a}2 ´ }x´ a}2

ε

“ lim
εÑ0

}px´ aq ` εv}2 ´ }x´ a}2

ε

“ lim
εÑ0

}x´ a}2 ` }εv}2 ` 2xx´ a, εvy ´ }x´ a}2

ε

“ lim
εÑ0

ε2}v}2 ` εx2px´ aq, vy

ε

“ lim
εÑ0

`

ε}v}2 ` x2px´ aq, vy
˘

“ x2px´ aq, vy.

The same argument used above leads to the equation x∇gapxq ´ 2px´ aq, vy “ 0 for all
directions v, hence ∇gapxq “ 2px´ aq. 2

Theorem B.0.3 Let x, a P Rn, fapxq “ xa, xy, then ∇fapxq “ a.

Interpretation: the computation of the gradient of the Euclidean scalar product function
between two vectors in Rn is formally identical to that of the first derivative of the function in
R given by the product between a a scalar coefficient and a real variable.

Proof. By direct computation:
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Dvfapxq “ lim
εÑ0

xa, x` εvy ´ xa, xy

ε

“ lim
εÑ0

xa, xy ` εxa, vy ´ xa, xy

ε

“ lim
εÑ0

εxa, vy

ε

“ xa, vy.

So x∇fpxq ´ a, vy “ 0 for all directions v, i.e. ∇fpxq “ a. 2

Corollary B.0.1 Let x, a P Rn, fa : Rn Ñ Rn given by fapxq “ xa, xy a, then

Jfapxq “

¨

˚

˚

˚

˝

a1a1 a2a1 . . . ana1

a1a2 a2a2 . . . ana2
...

...
...

...
a1an a2an . . . anan

˛

‹

‹

‹

‚

” paiajq1ďi,jďn. (B.11)

Proof. It is enough to consider the component functions pfaqjpxq “ xa, xy aj , j “ 1, . . . , n and
then apply to the previous theorem, obtaining ∇pfaqjpxq “ aaj . Since the rows of Jfapxq are
∇pfaqjpxq, we get the result. 2

Theorem B.0.4 Let x, a P Rn, f : Rn Ñ R defined as fpxq “ 1
}x}2

and g : Rn Ñ Rn given by

gpxq “ x
}x}2

, then @x P Rn it holds that:

• ∇fpxq “ ´ 2x
}x}4

• Jgpxq “
1
}x}2

´

In ´ 2
pxixjq1ďi,jďn

}x}2

¯

,

where pxixjq1ďi,jďn is the matrix given by

pxixjq1ďi,jďn “

¨

˚

˚

˚

˝

x1x1 x2x1 . . . xnx1

x1x2 x2x2 . . . xnx2
...

...
...

...
x1xn x2xn . . . xnxn

˛

‹

‹

‹

‚

.

So, even when }x}2 appears at the denominator of a fraction we can compute the gradient
or the Jacobian matrix by considering }x}2 as a real variable and using the derivation rules.

Proof. By direct computation:

Dvfpxq “ lim
εÑ0

1

ε

„

1

}x` εv}2
´

1

}x}2



“ lim
εÑ0

1

ε

„

1

}x}2 ` 2ε xx, vy ` ε2}v}2
´

1

}x}2



“
1

}x}2
lim
εÑ0

1

ε

»

–

1

1` ε
A

2x
}x}2

, v
E

` ε2 }v}
2

}x}2

´ 1

fi

fl ,
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recalling the Taylor expansion 1
1`ξ “

ξÑ0
1´ ξ `Opξ2q we have that

1

1` ε
A

2x
}x}2

, v
E

` ε2 }v}
2

}x}2

´ 1 „
εÑ0
�1´ ε

B

2x

}x}2
, v

F

´ ε2 }v}
2

}x}2
´ �1 “ ´ε

B

2x

}x}2
, v

F

´ ε2 }v}
2

}x}2
,

so that

Dvfpxq “
1

}x}2
lim
εÑ0

1

ε

„

´ε

B

2x

}x}2
, v

F

´ ε2 }v}
2

}x}2



“

B

´
2x

}x}4
, v

F

By the same argument used in the proof of the previous theorems we get ∇fpxq “ ´ 2x
}x}4

.

The formula for Jgpxq follows immediately from that of ∇fpxq and the Leibnitz property
of the directional derivative applied to the component functions gjpxq “ xj

1
}x}2

, j “ 1, . . . , n,

of gpxq. 2

Theorem B.0.5 Let x P Rn, b P Rm, A P Mpm ˆ n,Rq and fA,bpxq “
1
2}Ax ´ b}2, then

∇fA,bpxq “ AtpAx´ bq.

Proof. Let us compute fA,bpx` εvq:

fA,bpx` εvq “
1

2
}Apx` εvq ´ b}2 “

1

2
}pAx´ bq ` εAv}2

“
1

2

`

}Ax´ b}2 ` ε2}Av}2 ` 2εxAx´ b, Avy
˘

.

Then:

DvfA,bpxq “ lim
εÑ0

}Ax´ b}2 ` ε2}Av}2 ` 2εxAx´ b, Avy ´ }Ax´ b}2

2ε

“ lim
εÑ0

ε2}Av}2 ` 2εxAx´ b, Avy

2ε

“ lim
εÑ0

ˆ

ε}Av}2

2
` xAx´ b, Avy

˙

“ xAx´ b, Avy

“ xAtpAx´ bq, vy.

So x∇fA,bpxq ´AtpAx´ bq, vy “ 0 for all directions u, i.e. ∇fA,bpxq “ AtpAx´ bq. 2

The total derivative of the determinant

Finally, we show how to compute the total derivative of the determinant in some special
cases. First of all we notice that det : Mpn,Rq Ñ R, so for all M P Mpn,Rq, D detpMq P
LpMpn,Rq,Rq – pMpn,Rqq˚ – pRn2

q˚, i.e. D detpMq is a linear functional on Mpn,Rq, so,
when it is applied to a matrix of Mpn,Rq, it gives back a real number.

First of all, let us compute D detpInq, In being the identity matrix nˆ n. For all h P R,
hÑ 0 and for all matrix M PMpn,Rq, In ` hA is a infinitesimal perturbation of In, thus, by
definition of total derivative it holds that:

detpIn ` hMq “ detpInq `D detpInqhM ` ρInphMq, (B.12)
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where ρIn : Mpn,Rq Ñ R is such that
ρIn phMq

h Ñ
hÑ0

0, i.e. ρInphMq “ ophq. In order to make

eq. (B.12) explicit, we recall that the coefficient of the higher order term of the characteristic
polynomial pptq “ detpM ´ tInq, t P R, of a generic matrix M P Mpn,Rq is p´1qn. Thus,
thanks to the fundamental theorem of algebra we can write:

detpM ´ tInq “ p´1qn
n
ź

i“1

pt´ λiq, λi P C,

where λi are the complex eigenvalues of M . If we multiply both members of the previous
equation by p´1qn we get

p´1qn detpM ´ tInq “
n
ź

i“1

pt´ λiq,

which, taking into account the property detpcMq “ cn detpMq for all c P R and for all nˆ n
matrix M , can be re-written as:

detp´M ` tInq “
n
ź

i“1

pt´ λiq.

Let us now operate the change of variable defined by t “ ´ 1
h , h ‰ 0. As a consequence, the

previous equation can be written in terms of h as follows:

detp´M ´
1

h
Inq “

n
ź

i“1

p´
1

h
´ λiq “

n
ź

i“1

´
1

h
p1` hλiq “

ˆ

´
1

h

˙n n
ź

i“1

p1` hλiq,

i.e., since
`

´ 1
h

˘n
“
p´1qn

hn ,

p´1qnhn detp´M ´
1

h
Inq “

n
ź

i“1

p1` hλiq,

using again the property detpcMq “ cn detpMq we get:

detpIn ` hMq “
n
ź

i“1

p1` hλiq.

By direct computation, we can expand the right-hand side of the previous equation as follows:

n
ź

i“1

p1` hλiq “ 1` h
n
ÿ

i“1

λi ` ophq “ detpInq ` hTrpMq ` ophq,

thus
detpIn ` hMq “ detpInq ` hTrpMq ` ophq, (B.13)

which, by comparison with eq. (B.12), gives

D detpInqM “ TrpMq , @M PMpn,Rq,
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i.e. D detpInq is the linear functional that, when applied to any M PMpn,Rq, gives back its
trace, i.e.

D detpInq “ Tr .

Thanks to this result, we can compute D detpAq, for a generic A P GLpn,Rq. Let
M PMpn,Rq, then, since A is invertible, we can write, for all h P R, hÑ 0:

detpA` hMq “ detpApIn `A
´1hMqq

“ detpAq detpIn `A
´1hMq

by using pB.13q we get:

“ detpAqp1` hTrpA´1Mq ` ophqq

“ detpAq ` hTrpdetpAqA´1Mq ` ophq,

thus, by comparison with (B.12), we find:

D detpAqM “ detpAqTrpA´1Mq , @A P GLpn,Rq, M PMpn,Rq,

and so, in particular,

D detpAqM “ TrpA´1Mq , @A P SLpn,Rq, M PMpn,Rq.

Since TrpA´1Aq “ TrpInq “ n, if we apply the total derivative to the matrix A itself we get:

D detpAqA “ n detpAq, @A P GLpn,Rq,

and
D detpAqA “ n, @A P SLpn,Rq.

B.1 The classes of functions C 1, . . . ,C k, . . . ,C8

A function f : Ω Ă Rn Ñ Rm belongs to the class C 0pΩq if is it continuous in every point of Ω.
The notion of continuous differentiability is more complicated than in the case of functions

of only one variable. Let us start with the continuous differentiability.

Def. B.1.1 (C 1-differentiability) A function f : Ω Ă Rn Ñ Rm is said to belong to the
class C 1pΩq if it is Fréchet differentiable for any point x0 P Ω and if the Fréchet derivative
function, i.e. the map that associates to each point of Ω the Fréchet derivative of f in it:

Df : Ω Ď Rn ÝÑ LpRn,Rmq – Rnm
x0 ÞÝÑ Dfpx0q,

is continuous.

Suppose f P C 1pΩq, then it is possible to introduce the following continuous linear
functional on C 1pΩq that has a great importance in differential geometry:

B

Bxi

ˇ

ˇ

ˇ

ˇ

x0

:“ evx0 ˝
B

Bxi
P C 1pΩq˚, (B.14)
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where evx0 is the evaluation map in x0, so:

B
Bxi

ˇ

ˇ

x0
: C 1pΩq ÝÑ R

f ÞÝÑ B
Bxi

ˇ

ˇ

x0
pfq “

`

evx0 ˝
B
Bxi

˘

pfq “ Bf
Bxi
px0q,

so, first we compute the partial derivative of f w.r.t xi and then we evaluate the resulting
function in x0.

Suppose that f P C 1pΩq, then we can ask ourselves if the Fréchet derivative function is
Fréchet differentiable in a point x0 P Ω. If this is the case, then we say that f is two-times
Fréchet differentiable in x0 and we denote its second Fréchet derivative in x0 as D2fpx0q.

Of course D2fpx0q will still be a linear operator, but this time it will belong to the vector
space LpRn, LpRn,Rmqq because the domain of Df is still Ω Ď Rn, but its range is the vector
space of linear operators from Rn to Rm, i.e. LpRn,Rmq.

A useful result of linear algebra allows us to naturally identify LpRn, LpRn,Rmqq – Rn2m

with the vector space BilpRn ˆ Rn,Rmq of bilinear maps from Rn ˆ Rn to Rm:

φ : LpRn, LpRn,Rmqq „
ÝÑ BilpRn ˆ Rn,Rmq

T ÐÑ φT , φT px, yq :“ pTxqy, @x, y P Rn,

perfectly well-defined: T P LpRn, LpRn,Rmqq, so T acts linearly on x P Rn to get Tx P
LpRn,Rmq, which acts linerly on y to get pTxqy P Rm. The naturalness of the isomorphism
comes from the fact that no other structure than the very nature of the elements of the spaces
involved in the definition is used.

These considerations justify the following definition.

Def. B.1.2 (C 2-differentiability) If D2fpx0q exists for every x0 P Ω, then

D2f : Ω Ď Rn ÝÑ BilpRn ˆ Rn,Rmq
x0 ÞÝÑ D2fpx0q,

is called second total derivative function of f .
f is said to belong to the class C 2pΩq if the function D2f exists and it is continuous in

every point of Ω.

Theorem B.1.1 (Schwarz’s theorem) If f P C 2pΩq, then D2fpx0q P BilSpRn ˆ Rn,Rmq
for all x0 P Ω, where BilS stays for symmetric bilinear functions.

Of course, we can iterate the procedure and consider Dkfpx0q, the k-th total derivative of
f in x0, which will be an element of the multilinear maps from k copies of Rn to Rm:

Dkfpx0q P MulkpRn ˆ . . .ˆ Rn,Rmq – Rn
km,

i.e. Dkf transforms linearly each variable of the Cartesian product Rn ˆ ¨ ¨ ¨ ˆ Rn (k times),
taken separately, to an element of Rm.

Def. B.1.3 (C k-differentiability) If Dkfpx0q exists for every x0 P Ω, then

Dkf : Ω Ď Rn ÝÑ MulpRn ˆ ¨ ¨ ¨ ˆ Rn,Rmq
x0 ÞÝÑ Dkfpx0q,

is called the k-th total derivative function of f .
f is said to belong to the class C kpΩq if the function Dkf is continuous on Ω.
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Schwarz’s theorem implies that, if f P C kpΩq, then Dkfpx0q P MulkSpRn ˆ ¨ ¨ ¨ ˆ Rn,Rmq for
all x0 P Ω, where MulkS stays for symmetric multilinear functions.

Def. B.1.4 (C8-differentiability or smoothness) f is said to belong to the class C8pΩq,
or simply to be smooth on Ω, if Dkf exists and it is continuous on Ω for all k P N.

The continuous linear functional B
Bxi

ˇ

ˇ

x0
:“ evx0 ˝

B
Bxi

P C8pΩq˚ plays a crucial role in
differential geometry.
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Appendix C

Recap of projective geometry (Nicoletta

Prencipe and Edoardo Provenzi)
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Index

LpRn,Rmq, 328

P pa, tq, 230

SppV q, 103

TpM , 47

ΓpEq, 92

ΓpE, γq, 137

ΓpU,Eq, 92

ΛpMq, 94

ΛppV q “ AppV q, 103

ΩpMq, 94

ΩkpMq, 105

DerpC8pMqq, 108

DerppMq, 47
B
Bxj

ˇ

ˇ

p
, 55

B
Bxi

ˇ

ˇ

x0
, 338

AkpMq, 105

XpMq, 92

C8p pMq, 65

L , 221

L Ò, 225

L Ò
`, 225

L`, 225

Bi, 55

ρa,t, 231

τpMq, 92

Critpfq, 22

GLpn,Cq, 30

GLpn,Rq, 30

Op1, nq, 221

Opnq, 30

POp1, n´ 1q “ O`p1, n´ 1q, 225

SLpn,Cq, 30

SLpn,Rq, 30

SOp1, n´ 1q, 225

SOpnq, 30

SUpnq, 30

Upnq, 30
εj , 333
dfp, 51
k-form, 105

closed, 106
exact, 106

C 1-differentiability of function of real
variables, 338

C8pMq, 25
C8pM,Nq, 25
1-form, 93, 94

Atlas, 10
Equivalence of, 13

Base space, 82
Bump function, 38
Bundle, 151

Associated, 156
associated map, 157
cross-section, 153
fibre, 152
map, 153
Pull-back, 154
sub, 153
vector, 152

Cartesian product function, 14
Causal vector, 211
Chordal metric, 241
Christoffel symbols, 136
Cocycle relations, 84
Compatibility between a linear connection

and a Riemannian metric, 149
Component functions, 331
Components of a tangent vector, 56
Conformal map, 255
Connection
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1-form, 142

coefficients, 136

Ehresmann, 160

flat, 136

linear, 133

on a vector bundle, 132

one-form, 162

Principal bundle, 162

Constant rank functions, 72

Contact

of first order between paths, 44

of order zero between paths, 44

Contraction of tensors, 101

Contravariant transformation, 68

Coordinate

1-form, 94

tangent vector field, 93

Coordinate cotangent vectors, 88

Cotangent bundle, 87

Cotangent space, 87

Cotangent vector, 87

Covariant

differential, 146

divergence, 146

hessian, 146

Covariant derivative, 133, 166

along a path, 137

exterior, 167

Covector, 87

Cover, 39

Covering, 34

universal, 34

Critical

point, 22

value, 22

Critical point, 75

Critical value, 75

Curvature, 168

Curve passing through a point in a
manifold, 27

Curve in Rd, 328

Derivation

of C8pMq, 108

of a commutative algebra, 107

on C8pMq in a point, 47

on the algebra of germs of smooth
functions, 66

Derivative
Partial, 330
Total or Fréchet, 329

Diffeomorphic manifolds, 27
Diffeomorphism, 27
Differentiable function

Fréchet, 329
Gateaux, 330

Differential
of a scalar function (algebraic case), 51
of a scalar function (geometric case),

46
Differential form, 87
Differential structure, 13
Direct (Whitney) sum of vector bundles, 85
Directional derivative, 330
Dual canonical basis of Rn, 333
Dual map, 86
Dual of a vector bundle, 85

Embedding, 72
External algebra, 104
External product, 104

Fiber, 79
Flux of a vector field, 113

Geodesic
arc, 286

Germ of smooth functions, 65
Global differential, 81
Gradient, 333
Gradient of a scalar function, 126
Gradient transformation, 68
Grassmannian manifold, 21
Group

action, 182
stabilizer, 183

Homogeneous space, 183
Horizontal lift, 164

curve, 164
Hyperbolic

n-space, 284
distance on Hn, 279
geodesic arc, 286
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isometry on Hn, 279
Hyperboloid model, 277
Hyperplane, 230

Identical manifolds, 28
Immersion, 72
Integral curve of a vector field, 109
Inverse mapping theorem in Rn, 12
Inversion, 233

Jacobian matrix, 331

Leibniz rule, 47
Lemniscate, 73
Level set of a smooth function, 75
Lie

algebra, 115
braket, 114

Lie derivative
of a 1-form, 118
of a scalar field, 117
of a vector field, 117

Lie group, 30
Light cone, 212
Light-like vector, 211
Line bundle, 83
Local

coordinate functions, 10
coordinate system, 10
coordinate transformation function, 11
frame of T ˚M , 106
frame of TM , 105
linearization, 328
representation of a function between

manifolds, 24
Lorentz

group, 221
metric, 124
orthochronous group, 225
proper group, 225
proper orthochronous group, 225
restricted group, 225
signature, 124

Lorentz transformation
positive, 225

Lorentz’s pseudo-scalar product, 210
Lorentzian n-space, 210
Lorentzian cross-product, 282

Lorentzian matrix, 223
Lorentzian scalar product, 187
Lorentzian time-like angle, 279
Lowering the indices, 125

Möbius transformations, 197
Manifold

differential (smooth), 13
topological, 9

Matrix expression of the differential, 63
Minkowski pseudo-norm, 211
Minkowski spacetime, 210

Non-degeneracy, 123

One point compactification of Rn, 241
Orbit, 183

Pairing, 87
Parallel

tensor field, 147
Parallel section, 137
Parallel transport, 139
Parallele translation, 165
Partition of unity, 39
Path in Rd, 328
Path passing through a point in a

manifold, 27
Pauli matrices, 33
Point at infinity of Rn, 241
Poisson bracket, 126
Potential, 106
Principal bundle, 154

map, 155
Trivial, 155

Product manifold, 14
Projective manifold, 20
pseudo-Riemannian

manifold, 124
metric, 124

Pseudo-scalar product, 209
Pull-back of scalar functions, 51
Pushforward of a vector field, 120

Quaternions, 32

Raising the indices, 125
Rank
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of a smooth map between manifolds,
72

Reflection, 231
Regular point of a vector field, 121
Regular value, 22, 75
Related

atlases, 24
charts, 24

Related vector fields, 120
Restriction of a vector bundle, 85
Riemann sphere, 197, 241
Riemannian

manifold, 123
metric, 123

Scale factor, 255
Section

along a curve, 137
global, 92
local, 91

Sheets of a covering, 34
Signature of a pseudo-Riemannian metric,

124
Simplectic

form, 126
manifold, 126

Singular point of a vector field, 121
Smooth

function between manifolds, 25
Smoothness of a function of real variables,

340
Space

Hausdorff, 9
locally Euclidean topological, 9
second countable, 9

Space-like vector, 211
Sphere, 17
Spherical distance, 276
Stereographic projection, 15, 17
Straight line passing through a point with

a given direction, 330
Submanifold

Embedded, 74
Immersed, 74

Submersion, 72
Support of a function, 38
Symmetric

algebra, 104
product, 104

Tangent
curves (or tangentially equivalent), 44

Tangent bundle, 79
Tangent space

(algebraic) to a manifold at a point, 47
(geometric) to a manifold at a point,

44
Tangent vector

(algebraic) to a manifold at a point, 47
(geometric) to a manifold at a point,

44
Tangent vector field, 92
Tensor

algebra of a vector space, 100
alternating, 102
antisymmetrization, 103
bundle, 105
contraction, 101
contravariant and covariant on a

vector space, 100
external product, 104
field, 105
symmetric, 102
symmetric product, 104
symmetrization, 103

Tensor product
of dual vector spaces, 97
of linear forms, 96
of vector spaces, 98
of vectors, 97

Theorem
Existence and unicity of the integral

curves of a vector field on a
manifold, 110

Flux, 111
Implicit function for manifolds, 64
implicit function in Rn, 64
Inverse mapping for manifolds, 64
Level set in Rn, 22
orbit-stabilizer, 185
Rank, 74

Time-like vector, 211
Total space, 82
Transition function, 11
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Transpose map, 86

Vector bundle, 82
flat, 132

Vector field
complete, 113
global, 92

invariant w.r.t. another one, 113
local, 91

Velocity of a curve at a point, 58
Vertical subspace, 159

principal, 161

Whitney’s embedding theorem, 42
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