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Introduction

The objective of this course is to familiarize you with the fundamental concepts of linear
algebra.

Linear algebra, initially devised to tackle practical problems, has evolved into an abstract
mathematical discipline with its own terminology and symbolism. Even students specializing
in pure mathematics may find it challenging if not approached properly.

In these notes I wanted to avoid as much as possible the use of definitions that appear to
come out of nowhere. Instead, I have introduced them through motivations, drawn from a
real-world problems or computational mathematical needs.

This approach aims to foster an appreciation for linear algebra as an elegant and powerful
theory with broad applications across scientific domains.

We begin by delving into the cornerstone of linear algebra: the notion of vector space.
Rather than abstractly defining it, we draw parallels with familiar vectors in the real plane R2

and space R3 to provide tangible grounding.

Once vector spaces are established, we explore their subspaces and associated operations,
progressing to concepts like generators and linear independence, culminating in the pivotal
notion of a basis.

Next, we delve into the realm of linear maps between vector spaces, emphasizing the unique
association between a linear map and its corresponding matrix, and how each informs the
study of the other.

Lastly, we conclude our journey by exploring one of the earliest and most significant
applications of linear algebra: the efficient resolution of systems of linear equations.

To show the usefulness of the topics discussed in these notes, each chapter will end up with
the discussion of at least one application of linear algebra techniques to real-world problems
in diverse fields such as color perception, cryptography, biology, chemistry and physics.

The author.
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Chapter 1

Vector spaces

Let us start with a little bit of history. The person who ignited the construction of modern
linear algebra is unanimously considered to be Hermann Grassmann (1809-1877), depicted
in Figure 1.1, a German polymath much ahead of his time who worked in several scientific
and humanistic disciplines.

Figure 1.1: Hermann Günter Graßmann.

In 1842, Grassmann published the book ‘Die lineale Ausdehnungslehre, ein neuer Zweig
der Mathematik ’ (Linear expansion theory, a new branch of mathematics) in which, crucially,
he shows (among many other things) that the concept of vector, until then treated only as a
geometric entity and embedded in

• a line (1 dimension)

• a plane (2 dimensions)

• or a volume (3 dimensions)

can be redefined through algebraic operations which happen to be independent of the
dimension.
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This was a huge conceptual step which, nowadays, is of fundamental importance in science:
we can visualize and understand geometry only up to three dimensions, sometimes geometric
constructions can help us and other times can be difficult both to draw and to interpret.
However, if we ‘algebrize’ a geometric problem we can avoid being stuck to the three dimensions,
increase their number and even make sense of vectors in infinite dimensions. Paramount
important examples of theories in which we deal with vectors in more that 3 dimensions are:

• Einstein’s theory of relativity, essential to understand the movement of objects which
travel at very high speed, where 3D space and 1D time are fused together into an entity
called 4-dimensional spacetime

• quantum mechanics, the theory of microscopic particles with far-reaching applications
in many applied scientific fields, in which we may have to deal with vectors in infinite
dimensions, we will see later what that means.

As it often happened in the history of humanity, groundbreaking ideas need time to be
digested, this was also the case for the incredible amount of novel and profound mathematical
content of Grassmann’s book. So, it is not surprising that it was only 80 years later that,
thanks to another great German mathematician, Hermann Weyl (1885-1955), the ideas of
Grassmann found a fertile ground to be rediscovered and to grow into the discipline that
nowadays we call linear algebra.

The most fundamental concept in linear algebra is that of vector (or linear) space. The
mathematical notion of space is not to be confused with the physical one.

Using a single sentence, we could say that:

‘a (mathematical) space is a set equipped with a structure’,

where

• a set is a collection of elements lumped together by the fact of sharing a property,
e.g. the set of cats, the set of dogs, the set of natural numbers 0, 1, 2, 3, . . . , and so on

• a structure, roughly speaking, is a list of operations and properties that must be
defined on and fulfilled by all the elements of the set.

The structure that defines the topic of this chapter, i.e. a vector space, is called linear
structure and it is characterized by the rules associated to just two simple operations: the
sum of two vectors and the multiplication of a vector by a numerical coefficient.

The following section is devoted to make this sentence precise.
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1.1 The concept of vector space

Let us start this section by analyzing the operation of multiplication of a vector by a numerical
coefficient. We will see in section 1.2.2 that vector theory is tightly intertwined with that of
systems of linear equations, hence the numerical coefficients that make sense to consider are
those for which linear equations can be solved.

Luckily, to single out what kind of coefficients we have to consider, it is enough to examine
the simplest linear equation, i.e.

ax` b “ 0,

where a and b are the numerical coefficients and x is the variable of the equation.
The solution of this equation amounts at performing two operations:

1. the first is subtracting b from each side of the equation, or, equivalently, summing ´b,
the opposite of b:

ax` �b `��
�p´bq “ 0` p´bq ðñ ax “ ´b,

where the symbol ðñ is used to denote equivalence and it is read ‘if and only if’;

2. the second operation is the division by a or, equivalently, the multiplication by a´1 “ 1
a ,

the inverse of a:

ax “ ´b ðñ �a ¨
1

�a
x “ ´b ¨

1

a
ðñ x “ ´

b

a
.

We see that, in order to solve even the easiest linear equation, we need the existence of the
opposite and the inverse of a numerical coefficient.

This simple remark shows that we cannot use numerical coefficients that belong to

• the set of natural numbers N “ t0, 1, 2, . . . u, because the opposite of a natural number
different than 0 does not belong to N

• or to the set of integer numbers Z “ t0,˘1,˘2, . . . u, because the inverse of an integer
number different than ˘1 does not belong to Z.

At least, the numerical coefficients that we can consider must belong to the set of rational
numbers, i.e. all possible fractions:

Q “
"

p

q
: p, q P Z, q ‰ 0

*

.

However, the most common numerical sets used in the theory of vector spaces are two larger
sets that contain Q as a subset, they are:

• R: the set of real numbers, which contains Q and also the so-called irrational numbers,
i.e. numbers that cannot be expressed as fractions, as e.g.,

?
2, π, . . . By the Pythagorean

theorem,
?

2 is the length of the diagonal of a square with side 1, and π appears in the
formula for the circumference and area of a circle, thus proving that irrational numbers
are extremely important and useful.
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• C: the set of complex numbers, which can be written as z “ a` ib, where a, b P R and
i is the imaginary unit, a special entity defined by the property i2 “ ´1, something that
could not happen if i were real. The need of such an entity was put in evidence when
mathematicians tried to solve quadratic equations, in fact we know that the solution of
ax2 ` bx` c “ 0 is

x1,2 “
´b˘

?
∆

2a
,

if the discriminant ∆ “ b2 ´ 4ac is negative, then x1,2 cannot be real numbers, but they
are the following complex numbers:

x1,2 “
´b˘ i

a

p´∆q

2a
.

More generally, mathematicians call the sets that provide the coefficients to vector spaces
fields and indicate them with F. For the scopes of this course, there is no need to enter in
the formal definition of the concept of field, just keep in mind that Q,R and C are all fields.

Once understood that we will need to consider numbers belonging to a field F, let us follow
the path traced by Grassmann and try to single out what are the algebraic properties that
characterize vectors and operations on them in the usual 2-dimensional real plane.

In order to do that, we first have to agree on what a vector is in geometrical terms. A
vector, symbolized with the letter v, is an oriented segment depicted with an arrow, as in
Figure 1.2, that allows us to perform a translation from the origin of the arrow to its endpoint.

Figure 1.2: A vector v as an oriented segment. Courtesy of Francesco Bottacin.

In doing so, a vector defines (and it is defined by) three qualities:

• the magnitude of the translation, indicated with |v| and called modulus of v

• the direction of the translation, i.e. the unique straight line on which v lies

• the sense of pointing, from left to right or from right to left.

On the set of all vectors, we can naturally define two operations.

1. The multiplication of v by a coefficient λ, that for now we suppose to belong to
R, simply written as λv, which can be interpreted as the dilation or shrinking of the
modulus of v by the factor λ, see Figure 1.3 for a graphical representation. Notice that
multiplying a vector by 1 leaves it unaffected, i.e. 1v “ v.

2. The sum of two vectors u and v, depicted in Figure 1.4, is implemented by following
sequential translations: from the point A to B thanks to u and then from B to C thanks
to v. If write w “ u` v, then the translation implemented by w is from the point A to
C in one shot.
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Figure 1.3: A vector can be shrunk or dilated, while preserving its direction and sense of
pointing, by multiplying it with a positive real coefficient λ belonging to p0, 1q, e.g. λ “ 1{2, or
to p1,`8q, e.g. λ “ 2, respectively. If λ “ 0, then the vector collapses to its origin. Courtesy
of Francesco Bottacin.

Figure 1.4: The geometric sum of two vectors. Courtesy of Francesco Bottacin.

Notice that, as shown in Figure 1.5, the order of the sum of two vectors is not important,
i.e. w “ u ` v “ v ` u. In mathematical jargon, we say that the sum of two vectors is
commutative. It can also be seen that, geometrically, the sum of two vectors agrees with the
diagonal of the parallelogram that has the vector as edges.

Figure 1.5: The geometric sum of two vectors. Courtesy of Francesco Bottacin.

Now let us consider negative coefficients λ P R, for example λ “ ´1, what happens if we
multiply a vector by such a coefficient? Geometrically, the vector keeps its magnitude and
direction unaltered, but it flips its sense of pointing, as shown in Figure 1.6. The vector p´1qv,
simply written ´v, is called the opposite of v.

Figure 1.6: The vectors v and its opposite ´v. Courtesy of Francesco Bottacin.
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By mixing the sum and the opposite we can build a novel operation on vectors called
difference and defined as follows

u´ v :“ u` p´1qv.

In particular, if we perform the difference between a vector and itself we nullify the vector, i.e.
the resulting vector reduces to a point with zero magnitude.

This special vector is called for obvious reasons the null vector and it is indicated with 0.
There are two ways to obtain the null vectors:

1. v ´ v “ 0 (difference between a vector and itself)

2. 0v “ 0 (multiplication of a vector by zero).

If we now fix a Cartesian system of coordinates such that its origin is set at the initial point
of a vector v, then we can uniquely associate to v a couples of components, indicated with
vx and vy, obtained by considering the orthogonal projections of the endpoint of v on the
Cartesian axes X and Y , respectively, as in Figure 1.7. The expression of v in terms of its
components is written as v “ pvx, vyq, in particular, 0 “ p0, 0q.

Figure 1.7: 2-dimensional components of a vector in a Cartesian system. Courtesy of Francesco
Bottacin.

It is well-known (and if nobody has shown you that so far, it is a very (very!) instructive
exercise to verify it) that the previous operations on vectors can all be performed through
their components, namely, if u “ pux, uyq and v “ pvx, vyq, then:

$

’

&

’

%

λu “ pλux, λuyq, λv “ pλvx, λvyq ùñ ´u “ p´ux,´uyq, ´v “ p´vx,´vyq

u` v “ pux ` vx, uy ` vyq

u´ v “ pux ´ vx, uy ´ vyq.

(1.1)

Thanks to these expressions it is very simple to prove by direct computation that the product
between a coefficient and a vector satisfies the properties of associativity and distributivity,
i.e., for all coefficients λ, µ P R and vectors u, v P R2, we have

$

’

&

’

%

pλµqv “ λpµvq

λpu` vq “ λu` λv

pλ` µqv “ λv ` µv.

(1.2)

Similarly, it can be verified that also the vector sum is associative, i.e.

pu` vq ` w “ u` pv ` wq (1.3)

and, since the null vector has both components equal to 0, it holds that

0` v “ v ` 0 “ v. (1.4)
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Now, let us increase the difficulty by considering a vector v belonging to the real 3D
space instead of the real 2D plane. As shown in Figure 1.8, it is still possible to construct
a coordinate system with origin in the initial point of the vector v such that v is uniquely
associated to its Cartesian components vx, vy, vz by orthogonal projections onto the X, Y , Z.

Figure 1.8: 3-dimensional components of a vector in a Cartesian system. Courtesy of Francesco
Bottacin.

From a geometrical point of view, if we want to perform the multiplication of a 3D vector
by a real coefficient λ or the the sum of two 3D vectors, the corresponding diagrams that we
have to draw are more complicated than in 2D.

Instead, if we want to perform the same operations using the Cartesian components,
we simply have to add a third one, but the algebraic rules remain exactly the same: if
u “ pux, uy, uzq and v “ pvx, vy, vzq, then (1.1), (1.2), (1.3) and (1.4) keep the same structure,
the only difference being that now there is a third component relative to the axis Z.

It follows that all the algebraic properties satisfied by the vectors of the real plane are also
satisfied by those of the real space.

In fact, these algebraic properties happen to be those that define the linear structure that
we were searching for !

Remark. The word vector comes from the same Latin word, which meant ‘carrier’, it was
wisely chosen by mathematician to express the fact that a vector carries a point to another
point. However, modern mathematicians prefer to use the wording linear structure than vector
structure to avoid the misleading interpretation of objects belonging to the abstract vector
spaces that we are going to define as ‘carriers’.
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The only two concepts that are left to recall before formalizing the definition of vector
space are those of Cartesian product and function.

Let us start with the first: given any two sets S and T , their Cartesian product is symbolized
as S ˆ T and it is given by

S ˆ T “ tps, tq : s P S, t P T in that orderu,

i.e. the elements of the Cartesian product are ordered couples, in which the first element
belongs to S and the second to T .

For example, if H “ t0, 1, . . . , 23u and M “ t0, 1, . . . , 59u, then the Cartesian product
H ˆM represents the clock because each ordered couple specifies the hour and the minute of
a day. The importance of the order should be clear: while p12, 45q is 45 minutes past noon,
p45, 12q does not define any moment of the day!

Now let us recall the concept of function: given any two non empty sets X and Y , a
function f between them, written

f : X ÝÑ Y
x ÞÝÑ y “ fpxq,

is a law that assigns to every element x of X (called domain of f) one and only one element
y “ fpxq of Y . For example, the function

f : R ÝÑ r0,`8q
x ÞÝÑ y “ x2,

assigns to every real number its square, which is a non-negative real number.

Cartesian product and functions merge together in the definition of graph of a function f ,
which is the subset of the Cartesian product X ˆ Y given by

Gf :“ tpx, yq, x P X, y “ fpxqu.

The graph of the function in the example above is set Gf “ tpx, x
2q, x P Ru Ă Rˆ r0,`8q,

geometrically represented by the parabola with vertex in the origin of the Cartesian plane
depicted in the figure below.

´3 ´2 ´1 1 2 3

2

4

6

8

x

y “ x2

We are now ready to meaningfully define the concept of vector space in a way that should
not appear as catapulted from a galaxy far far away. . .
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Def. 1.1.1 (Vector space) A vector space over a field F is a not empty set V endowed with
two operations, the first called sum

V ˆ V ÝÑ V
pv, wq ÞÝÑ v ` w,

the second called multiplication by an element of F

Fˆ V ÝÑ V
pλ, vq ÞÝÑ λv,

which satisfy the following properties for all v, v1, v2 P V , λ, µ P F :

1. v1 ` v2 “ v2 ` v1

2. pv1 ` v2q ` v3 “ v1 ` pv2 ` v3q

3. there exists a neutral element for the sum called null vector, i.e. 0 P V such that
0` v “ v ` 0 “ v

4. there exists an opposite vector for the sum, i.e. ´v P V such that v`p´vq “ p´vq`v “ 0

5. λpv1 ` v2q “ λv1 ` λv2

6. pλ` µqv “ λv ` µv

7. pλµqv “ λpµvq

8. there exists a neutral element for the multiplication by a coefficient of F, i.e. 1F such
that 1Fv “ v.

The previous properties define the linear structure of V . The elements of V are called
vectors and those of F are called coefficients or scalars.

• If F “ R, V is a real vector space

• If F “ C, V is a complex vector space.

1R and 1C will be denoted simply as 1.
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1.1.1 Examples of vector spaces

As a generalization of the real plane R2 and the real space R3, we can consider the Cartesian
power of the field itself, i.e.

Fn “ Fˆ ¨ ¨ ¨ ˆ F pn timesq,

where n P N. So Rn and Cn, n ě 1, are both vector spaces. R2 and R3 are simply particular
cases of the vector space Rn with n “ 2, 3.

The vectors of Fn are called n´tuples and the sum and product by an element of F are
defined as those for R2 and R3, i.e.

pa1, . . . , anq ` pb1, . . . , bnq :“ pa1 ` b1, . . . , an ` bnq,

λpa1, . . . , anq :“ pλa1, . . . , λanq,

where λ, a1, . . . , an, b1, . . . , bn P F.
The neutral element for the sum is the null vector 0 “ p0, . . . , 0q, the opposite of a vector

pa1, . . . , anq is then p´a1, . . . ,´anq because

pa1, . . . , anq ` p´a1, . . . ,´anq “ pa1 ´ a1, . . . , an ´ anq “ p0, . . . , 0q “ 0

and the neutral element for the multiplication by a scalar is clearly the number 1.

The second example is provided by the set of polynomials of degree ď n in an
indeterminate X with coefficients in a field F, indicated with the symbol FnrXs. Each
element of FnrXs is written as

ppXq “ a0 ` a1X ` a2X
2 ` ¨ ¨ ¨ ` anX

n “

n
ÿ

j“0

ajX
j ,

for some n P N and aj P F for all j “ 0, 1, . . . , n.

Given two arbitrary polynomials ppXq “
n
ř

j“0
ajX

j and qpXq “
n
ř

j“0
bjX

j , the operations

that make FnrXs a vector field over F are

ppXq ` qpXq “
n
ÿ

j“0

paj ` bjqX
j ,

λppXq “
n
ÿ

j“0

pλajqX
j .

We can see that, despite the fact that the elements of FnrXs are different to those of Fn, their
linear structures are practically identical: in fact the operations of sum and multiplication
by a scalar for FnrXs involve only the coefficients of the polynomials, which are n-tuples of
scalars as in Fn!
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Coherently with this remark, the neutral element for the sum is the polynomial 0 “
n
ř

j“0
0Xj ,

i.e. the polynomial with all null coefficients, so the opposite of a polynomial with coefficients
pa1, . . . , anq is the polynomial with coefficients p´a1, . . . ,´anq and the neutral element for the
multiplication by a scalar is again the number 1.

The third example is given by a so-called functional space.
Given any non empty set X and a vector space V over the field F, let us consider the set

F :“ tf : X Ñ V, f is a functionu, then F becomes a vector space over F when we endow it
with the so-called point-wise linear structure, i.e. for all f, g P F and λ P F

f ` g : X ÝÑ V
x ÞÝÑ pf ` gqpxq :“ fpxq ` gpxq,

(1.5)

λf : X ÝÑ V
x ÞÝÑ pλfqpxq :“ λfpxq.

(1.6)

Notice that fpxq and gpxq belong to the vector space V , so it makes perfect sense to sum
them and to multiply them by λ P F.

The neutral element for the sum is the so-called null function,

0F : X ÝÑ V
x ÞÝÑ 0F pxq :“ 0V ,

because f ` 0F is the function such that pf ` 0F qpxq “ fpxq ` 0V “ fpxq, so f ` 0F “ f .
The opposite of a function f P F is ´f , defined as p´fqpxq :“ ´fpxq and the neutral

element for the multiplication by a scalar is also in this case the number 1 because p1fqpxq “
1fpxq “ fpxq.
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1.2 Vector subspaces

Let’s motivate our interest in vector subspaces with an analogy: if you are interested in buying
a house, you go there and look at its exterior, the facade, the windows, hopefully the garden,
and so on. . . however you would never buy a house without taking a good look at its interior:
the bedroom, the kitchen, and so on. . . because the interior of a house provides very valuable
information on the house itself.

Also in mathematics, each time we define a space, some of its subspaces are a source of
important information, as we will detail in chapter 2.

A subspace is a ‘smaller’ part a space which ‘behaves well’ with respect to the structure
that defines the whole space, where for a good behavior we mean that if we restrict the space
structure to the smaller part, all the requests that define the structure are still fulfilled.

For the case of a vector space V , a subspace should be a part W Ă V for which the
properties of sum and multiplication by a scalar given by 1 to 8 of Def. 1.1.1 are all still
valid and the results of these operations applied to elements of W produce again elements of
W . If W satisfies this last feature we say that W is stable or closed with respect to those
operations.

Naively, we may think that considering only a bunch of elements of a vector space V and
throwing out some others would not change that much, however we can have an immediate
example of a subset S of V which surely does not fulfill the properties of a linear structure:
imagine that S is obtained from V just by eliminating the null vector 0, then S will not satisfy
the request 3. of Def. 1.1.1 and so it cannot be considered a vector space itself! This very
simple example shows that there may be obstructions to the fulfillment of all the requests of a
linear structure when we reduce the elements of a vector space.

The following definition translates in rigorous mathematical language what discussed
above.

Def. 1.2.1 (Vector subspace) Let V be a vector space over the field F and W Ď V a subset
of V . W is a vector subspace of V if the operations of sum and multiplication by a scalar of F
defined on V restricted to the elements of W still verify the axioms of a linear structure, i.e.
properties 1. to 8. of Def. 1.1.1, and W is stable with respect to them.

Since the elements of W are also elements of V , the associativity and distributivity of the
linear operations are still valid because they are, by definition, valid for all the elements of V ,
and so also for those of W . What is essential to test is if, given w,w1, w2 PW and λ P F, we
have

1. w1 ` w2 PW

2. ´w PW

3. λw PW

4. 0 PW .

Example 1.2.1 R Ă R2 is a real vector subspace of R2, but r0,`8q Ă R is not a vector
subspace of R because, for instance, given w “ 2 P r0,`8q, clearly ´w “ ´2 R r0,`8q.
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The previous four conditions can be reduced to a single one.

Theorem 1.2.1 Let V be a vector space over the field F and W Ă V a subset of V . W is a
vector subspace of V if and only if

λ1w1 ` λ2w2 PW, @λ1, λ2 P F, w1, w2 PW.

Proof.

• By taking λ1 “ λ2 “ 1, we describe condition 1.

• By taking either λ1 “ ´1 and λ2 “ 0 or the opposite choice, we describe condition 2.

• By taking either λ1 “ λ and λ2 “ 0 or the opposite choice, we describe condition 3.

• By taking λ1 “ 1, λ2 “ ´1 and w1 “ w2 “ w, we have

λ1w1 ` λ2w2 PW ðñ w ´ w “ 0 PW,

which is condition 4.

2

The expression that appears in the theorem is a particular case of a more general one that
has a fundamental importance in linear algebra, for this reason it deserves a special name.

Def. 1.2.2 (Linear combination) Let V be a vector space over the field F and let n P N be
finite. An expression of the type

λ1v1 ` ¨ ¨ ¨ ` λnvn “
n
ÿ

j“1

λjvj

is called a linear combination of the vectors vj with the coefficients λj.

Thus, in terms of the definition just given, we can say that, in order to test if W is a
vector subspace of V it must be verified if the generic linear combination of two vectors of W
belongs to W .

1.2.1 Special examples of vector subspaces

V and t0u are called the trivial vector subspaces for self-explanatory reasons. A non-trivial
example of vector subspace is provided by the intersection of all the vector subspaces of V .
We recall that the intersection of two sets X and Y , denoted with X X Y is defined as the set
of all the elements that are contained in both X and Y . For instance, if X “ t1, 2, 3, 4, 5u and
Y “ t1, 3, 5, 7u, then X X Y “ t1, 3, 5u. Notice that X X Y is always smaller or, at best, equal
to the smallest set. Where ‘smallest’ is intended with respect to the ordering relation given by
the inclusion of sets.

Theorem 1.2.2 Let V be a vector space over the field F and Wj an arbitrary vector subspace
of V . If J is the set that contains all the indices j, then

W “
č

jPJ

Wj

is a vector subspace of V . W is the smallest non-trivial vector subspace of V .
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Proof. Thanks to the previous theorem, in order to prove that W is a vector subspace of V ,
we have to verify that, given w1, w2 PW and λ1, λ2 P F, λ1w1 ` λ2w2 PW .

By definition of intersection, w1 and w2 belong to all the vector subspaces Wj , so also the
linear combination λ1w1 ` λ2w2 belongs to all the vector subspaces Wj (otherwise we could
not call them vector subspaces!), hence λ1w1 ` λ2w2 PWj for all j P J , which, by definition
of intersection, means that λ1w1 ` λ2w2 PW . 2

One may naturally wonder if the same property holds for the union of vector subspaces,
but the answer is, in general, negative. A very instructive way to see why is by considering
the case of the vector space given by the real space V “ R3 and the two vector subspaces

Wx :“ tpx, 0, 0q : x P Ru and Wy :“ tp0, y, 0q : y P Ru,

since two elements of the ordered triple are fixed to 0, it is quite easy to recognize in Wx the
x-axis and in Wy the y-axis. Both can be identified with the real line R, which is of course a
real vector space, so Wx and Wy are vector subspaces of R3.

The union Wx YWy is the set

W “Wx YWy “ tpx, 0, 0q or p0, y, 0q, x P R, y P Ru.

Let us check if W is a vector subspace of R3. If we take for instance the vectors p1, 0, 0q PWx

and p0, 1, 0q PWy, then of course both of them belong to W . Every dilation or contraction by
a scalar creates another vector that belongs to Wx and Wy and so also to W , however the
problem is created by their sum, which is the vector p1, 0, 0q ` p0, 1, 0q “ p1, 1, 0q and it does
not belong to W , because both its first two coordinates are non-zero simultaneously. Figure
1.9 gives a graphical representation of this fact in 2-dimensions.

Figure 1.9: The vector p1, 1, 0q, depicted in the plane R2 embedded in the space R3, does not
belong to the union of the horizontal and the vertical axes.
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The problem showed by this example implicitly suggests its solution: in fact, since it is
the sum of vectors belonging to the vector subspaces which creates the problem, we can try to
replace the union of two subspaces by their sum, in the sense defined below.

Def. 1.2.3 (Sum of vector subspaces) Let V be a vector space and U and W two vector
subspaces of V . The set

U `W :“ tu` w : u P U, w PW u,

is called the sum of U and W .

Example 1.2.2 To highlight the difference between union and sum, let us consider again the
subspaces Wx and Wy above, we have:

Wx `Wy “ tw “ px, 0, 0q ` p0, y, 0q “ px, y, 0q : x, y P Ru.

With such a definition, the vector p1, 0, 0q ` p0, 1, 0q “ p1, 1, 0q PWx `Wy!

It turns out that, not only U `W is a vector subspace of V , but it has a special property
stated in the following theorem.

Theorem 1.2.3 Let V be a vector space over F and U and W two vector subspaces of V .
Then, U `W is the smallest vector subspace of V that contains U YW .

Proof. Let us first prove that U`W is a vector subspace of V . If v1 “ u1`w1 and v2 “ u2`w2

are two generic vectors of U `W and λ P F, then1

v1 ` v2 “ pu1 ` w1q ` pu2 ` w2q

“
associativity of `

u1 ` pw1 ` u2q ` w2

“
commutativity of `

u1 ` pu2 ` w1q ` w2

“
associativity of `

pu1 ` u2q ` pw1 ` w2q P U `W.

Similarly, λpu` wq “ λu` λw P U `W , so U `W is stable with respect to the sum and the
multiplication by a scalar.

It is very simple to show that U YW is contained in U `W : in fact every u P U can be
written as u “ u` 0 and 0 PW because W is a vector subspace of V , so it must contain the
null vector, hence u “ u`0 P U `W . Analogously, every w PW can be written as w “ 0`w
and 0 P U , so w P U `W .

Finally, we have to show that U `W is the smallest vector subspace of V that contains
U Y W . Let L Ď V be a vector subspace of V that contains U Y W , then U Ď L and
W Ď L, we must show that U `W Ď L. Take any u P U , then, since U Ă L, we have
that u P L, analogously, for all w P W , w P L, so u ` w is the sum of two vectors of L,
which is a vector subspace, so u ` w P L. This proves that, for all u P U and w P W ,
tu`w : u P U, w PW u “ U `W Ă L. Hence, U `W is contained in all the vector subspaces
of V that contain U YW and so it is the smallest one with this characteristic. 2

1Notice how important are the properties of associativity and commutativity of the sum!
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The sum of vector subspaces can of course be iterated to more than two of them, if Wj ,
j P J are all vector subspaces of V , then we write their sum as:

W “
ă

jPJ

Wj “
ÿ

jPJ

Wj ,

both symbols are used in the mathematical literature.
In the following definition we single out a special type of sum of subspaces.

Def. 1.2.4 (Direct sum of vector subspaces) Let V be a vector space and U and W two
vector subspaces of V . We say that the sum of U and W is direct if U XW “ t0u. We write:

U ‘W.

More generally, if W1, . . . ,Wn are vector subspaces of V such that Wi XWj “ t0u for all
couple of indices i ‰ j, then we say that their sum is direct and we write

n
à

j“1

Wj .

Since direct sums are subjected to a constraint, we expect them to have stronger properties
than ‘normal’ sums, the following theorem confirms that this is actually the case.

Theorem 1.2.4 Every vector v P U ‘W can be written uniquely as v “ u ` w, where u
and w are two specific vectors of U and W , respectively, i.e. there are no other vectors than u
and w such that their sum reconstructs v.

Proof. Suppose that the two expressions v “ u ` w and v “ u1 ` w1 hold, then, since v is
the same vector in both expressions, we have u ` w “ u1 ` w1, i.e. u ´ u1 “ w1 ´ w, but
u´ u1 P U and w1 ´ w PW , so the equality between these vectors means that they belong to
the intersection between U and W !

However, by definition of direct sum, this intersection is reduced to the null vector, so
u´ u1 “ 0, i.e. u “ u1 and, similarly, w1 “ w. Hence, any vector of the direct sum admits a
unique decomposition. 2

Example 1.2.3 Consider the following subspaces of V “ R3:

U :“ tpx, y, 0q : x, y P Ru and W :“ tp0, w, zq : w, z P Ru,

it is easy to recognize in U the Cartesian plane XY and in W the Cartesian plane YZ, hence
U XW is the entire Y axis, and so the sum of and U and W is not direct.

We can verify that the decomposition of a vector v P R3 as sum of one vector of U and one
of W is not unique by considering, for example, v “ p2, 3,´1q, which can be written both as

v “ p2, 1, 0q ` p0, 2,´1q,

with p2, 1, 0q P U and p0, 2,´1q PW , and also as

v “ p2, 4, 0q ` p0,´1,´1q,

with p2, 4, 0q P U and p0,´1,´1q PW .
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1.2.2 The span of a subset of a vector space

We have seen that the sum is the smallest vector subspace that contains the union of at least
two vector subspaces. A natural question that can be asked is the following: imagine that we
have one subset S of a vector space V that is not a vector subspace. Of course, there is for
sure a vector subspace of V that contains S and it is the trivial subspace given by V itself.
However, V is the largest subspace that contains S, what about the smallest one? Does it
exist? If so, can we characterize it in a simple way?

The answer to both questions is affirmative and is contained in the following definition
and theorem.

Def. 1.2.5 (Span of a subset of a vector space) Let S be a subset of a vector space V
over the field F. Then

spanpSq :“

#

n
ÿ

j“1

λjvj : vj P S, λj P F, n P N finite

+

,

i.e. the span of S is simply the set of all the linear combinations of vectors of S.

Since the condition that must be verified by a subset of a vector space to be a vector subspace
is to be stable with respect to linear combinations, it is self-evident that spanpSq is a vector
subspace of V , being built exactly by linear combinations of vectors!

However, spanpSq has a finer property, as the following theorem states.

Theorem 1.2.5 Let V be a vector space over F and S a subset of V . Then, spanpSq is the
smallest vector subspace of V that contains S.

Proof. Clearly, spanpSq contains S because every v P S can be written as the trivial linear
combination v “ 1v P spanpSq. Moreover, every vector subspace Wj of V which contains the
vectors of S contains also every linear combination of these vectors, i.e. spanpSq ĎWj for all
j P J , hence spanpSq Ď

Ş

jPJ

Wj . However, since spanpSq is itself a vector subspace of V , and
Ş

jPJ

Wj is the smallest vector space of V we have that
Ş

jPJ

Wj Ď spanpSq. The two opposite

improper inclusions imply that spanpSq “
Ş

jPJ

Wj and so it is the smallest vector subspace of

V containing S. 2

If spanpSq is the smallest vector subspace of V that contains S and V is the largest vector
subspace of V that contains S, we can ask ourselves what happens when the two coincide, i.e.
when spanpSq “ V . This is a particularly important condition that deserves a specific name.

Def. 1.2.6 (Family of generators of a vector space) The subset S Ă V of a vector space
V is called a family of generators of V if

spanpSq “ V.

V is finitely generated if it admits a family of generators with a finite number of vectors.
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By making the definition of spanpSq explicit, we see that S is a family of generators of V if
every v P V can be written as a linear combination of vectors of S, i.e. if for all v P V there
exist a finite number n P N of scalars λ1, . . . , λn and of vectors v1, . . . , vn P S such that

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn “
n
ÿ

j“1

λjvj .

A family of generators always exists, in fact V is, by definition of vector space, a family of
generators of itself. Of course, this is the largest family of generators that one can imagine and
it would be interesting to find out if there is a minimal family of generators without redundant
vectors.

To have a simple example at hand, consider again the real plane R2, then

S1 “ tw1 “ p1, 0q, w2 “ p0, 1qu

is a family of generators of R2. To see why, consider the generic linear combination of w1 and
w2 with scalars µk P R, k “ 1, 2, i.e.

2
ÿ

k“1

µkwk “ pµ1, 0q ` p0, µ2q “ pµ1, µ2q.

Then, given a arbitrary vector v “ px, yq P R2, we have that the vector equation

v “ px, yq “ pµ1, µ2q

is satisfied by µ1 “ x and µ2 “ y.
Consider now the family

S2 “ tu1 “ p1, 0q, u2 “ p2, 0q, u3 “ p0,´1qu,

let us prove that also S2 is families of generators of R2: λj P R, j “ 1, 2, 3 and µk P R, k “ 1, 2,
the linear combination of the vectors of S2 gives rise to the vector

3
ÿ

j“1

λjuj “ pλ1, 0q ` p2λ2, 0q ` p0,´λ3q “ pλ1 ` 2λ2,´λ3q

and the vector equation
v “ px, yq “ pλ1 ` 2λ2,´λ3q

can be re-written as the following system of linear equations
#

x “ λ1 ` 2λ2

y “ ´λ3
(1.7)

which admits not only a solution, but actually an infinite amount of them. An explicit example
will help understand why.

Consider v “ p1,´1q, then the linear system (1.7) with x “ 1, y “ ´1 becomes

#

1 “ λ1 ` 2λ2

´1 “ ´λ3
,
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which is solved when λ3 “ 1 and λ1 ` 2λ2 “ 1, i.e. λ1 “ 1 ´ 2λ2, one equation with two
variables that has infinite solutions, e.g. λ1 “ 1 and λ2 “ 0 or λ1 “ 1{2 and λ2 “ 1{4, just to
quote two possibilities.

S1 is a family of 2 vectors and S2 a family of 3 vectors, so the latter has a redundant vector
with respect to the former.

The practical consequence of this redundancy manifests itself through the multiple choices
of the scalars λj in the reconstruction of the same vector. This is not the case for the family
of vectors S1, where every reconstruction is unique.

If we consider a family of 4 or more vectors, we have even more freedom in the choice of
the scalars to reconstruct the vectors of R2 via linear combination, so also for families of 4 or
more vectors we will lack the uniqueness.

Let us see what happens if we consider a family given by only one vector, e.g. S3 “ tpa, bqu,
with a, b P R fixed. In this case it is impossible to generate the whole R2, because the only
linear combination that we can perform is the multiplication of the vector pa, bq by a real
scalar λ and the result is a vector that has the same direction of pa, bq, so all the other vectors
of R2 with different direction will never be written as λpa, bq!

Let us recap:

• a family with just 1 vector of R2 cannot generate R2

• a family of 2 vectors of R2 can2 generate R2 and, if it does, the decomposition of any
vector of R2 as a linear combination of the vectors of this family is unique

• a family of 3 or more vectors of R2 can generate R2 but, if it does, the decomposition of
any vector of R2 as a linear combination of the vectors of this family is non-unique.

This suggests that the minimal number of vectors of a family of generators is related to the
uniqueness of the decomposition of a vector as a linear combination of the generators.

This intuition is actually correct and, in the following section, we will investigate what is
the condition that guarantees this uniqueness.

Important remark. Confirming what stated at the beginning of section 1.1, we have
shown that the investigation of the theory of vector spaces leads naturally to linear
equations!

2S1 generates R2, but, for example, the family tp1, 0q, p2, 0qu cannot generate R2, it is an instructive exercise
to work out explicitly why.
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1.3 Linear dependence and independence of vectors

Let us consider two non-null vectors v and w of the real plane R2.

• If v and w are collinear, i.e. they lie on the same straight line, then there exists λ P R,
λ ‰ 0, such that w “ λv, which can be written also as w ´ λv “ 0. On the left-hand
side of the last equation we have a linear combination of v and w with coefficients ´λ
and 1, respectively, and on the right-hand side we have the null vector. This means that
two collinear vectors can give rise to 0 through a linear combination with coefficients
which are non-null.

• Let us suppose now that v and w are not collinear and let us see what happens when
we impose a generic linear combination of them with non-null coefficients to be the null
vector:

λv ` µw “ 0 ðñ µw “ ´λv ðñ w “ ´
λ

µ
v, (1.8)

but the last equation means that v and w are collinear with a coefficient of proportionality
given by ´λ{µ and this contradicts the hypothesis that v and w are not collinear.

The consequence is that a linear combination of two non-collinear vectors gives rise to
the null vector if and only if the coefficients of the linear combination are both null.

If we now increase of one dimension and we consider the real space R3, then, repeating the
same reasoning, we discover that the linear combination of three non-null vectors u, v, w P R3

can give rise to 0 with coefficients which are not all null if and only if the three vectors belong
to the same plane, i.e. if there exist λ, µ P R such that w “ λu` µv. Otherwise, the only way
to give rise to 0 with a linear combination of u, v, w is to use all null coefficients.

R2 and R3 allow us to have a nice geometrical representation in terms of collinearity
and coplanarity. However, when we consider an abstract vector space V this geometric
interpretation is lost, but the algebraic properties that we have highlighted remain intact and
we can use them to define the concepts of linearly dependent and independent vectors.

Def. 1.3.1 (Linear dependence and independence) Let V be a vector space over the
field F. A family of vectors S “ tv1, . . . , vnu Ă V is said to be free and the vectors are said to
be linearly independent if the vector equation

λ1v1 ` . . . λnvn “ 0

has λ1 “ ¨ ¨ ¨ “ λn “ 0 as only solution. Otherwise, if at least one of the coefficients λj is non
null, the vectors are said to be linearly dependent.

Notice that if S is composed only by one vector v, then the only linear combination that we
can write is λv and saying that λv “ 0 is solved only by λ “ 0 means that v is not null. So, a
one-vector family is free if and only if the vector is non null.

Moreover, the null vector cannot appear in a family of linearly independent vectors because
we can multiply the null vector by any scalar obtaining again the null vector! As a consequence,
a family of vectors containing the null vector is always linearly dependent.

A family of linearly dependent vectors can be characterized as described in the following
theorem.
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Theorem 1.3.1 A set of vectors v1, . . . , vn of V is linearly dependent if and only if there is
at least one vector that can be written as a linear combination of the others.

Proof.

ùñ : suppose that v1, . . . , vn are linearly dependent, we must prove that at least one of
them can be written as a linear combination of the others. By hypothesis, we can write

λ1v1 ` λ2v2 ` ¨ ¨ ¨ ` λnvn “ 0

with at least one of the coefficients λj ‰ 0. For the sake of simplicity, we can reorder the
indices so that the non-null coefficients is λ1, then we can write

v1 “ ´
λ2
λ1
v2 ´ ¨ ¨ ¨ ´

λn
λ1
vn,

hence v1 is written as a linear combination of the other n´ 1 vectors.

ðù : up to a permutation of the indices, we can still concentrate our attention on just one
vector, which we choose again to be v1. Suppose that v1 that is written as a linear combination
of the other vectors, i.e.

v1 “ λ2v2 ` ¨ ¨ ¨ ` λnvn,

then
0 “ ´v1 ` λ2v2 `` ¨ ¨ ¨ ` λnvn,

and the coefficients of v1 is ´1 ‰ 0, so we can reconstruct 0 with a linear combination of
vectors in which at least one of the coefficients is non null, hence v1, . . . , vn is a linearly
dependent family. 2

We can now state and prove the link between the linear independence and the uniqueness
of a linear combination.

Theorem 1.3.2 Let v1, . . . , vn be linearly independent vectors of the vector space V over the
field F. If v P V can be written as a linear combination of v1, . . . , vn, i.e.

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn,

then the scalars λ1, . . . , λn P F are uniquely determined.

Proof. Suppose that we can write the linear combination in two ways:

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn and v “ µ1v1 ` ¨ ¨ ¨ ` µnvn,

with of course µ1, . . . , µn P F, then, since v is the same vector we have

λ1v1 ` ¨ ¨ ¨ ` λnvn “ µ1v1 ` ¨ ¨ ¨ ` µnvn ðñ pλ1 ´ µ1qv1 ` ¨ ¨ ¨ ` pλn ´ µnqvn “ 0,

but v1, . . . , vn are linearly independent, so λj ´ µj “ 0, i.e. λj “ µj for all j “ 1, . . . , n. 2
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1.4 Bases of a vector space

Consider a family of vectors S “ tv1, . . . , vnu in a vector space V over the field F. In the
previous section we have discussed two concepts related to S:

1. S can be a family of generators of V

2. S can be a free family, i.e. the vectors of S can be linearly independent.

We can naturally ask ourselves what happens if we mix the two concepts together, i.e. if S is a
free family of generators of V . By definition of family of generators we have that every vector
v P V can be written as a linear combination of the vectors of S. Moreover, from Theorem
1.3.2, we get that the linear combination in uniquely determined. We can resume this by
saying that if S is a free family of generators, then every v P V can be uniquely written as

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn,

i.e. the scalars λ1, . . . , λn are uniquely associated to v once the family S is specified.
In the sequel, we will see that the order of the vectors in S is important, for this reason, in

the following definition we explicitly add the request of ordering.

Def. 1.4.1 (Basis of a vector space) A basis of a vector space V is an ordered family of
vectors B which has the property of being free and to generate V .

To distinguish between a non-ordered set of vectors and an ordered one, in the literature it is
usual to replace the notation tv1, . . . , vnu with pv1, . . . , vnq, i.e. the curly brackets denote a
non-ordered set, while the parenthesis indicate an ordered one.

A basis B of V is then an ordered family of linearly independent vectors pv1, . . . , vnq that
generate all the vectors of V through linear combinations. Every vector of V has its own set
of scalars appearing in the combination: given v, w P V , v ‰ w, we have

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn and w “ µ1v1 ` ¨ ¨ ¨ ` µnvn,

with pλ1, . . . , λnq ‰ pµ1, . . . , µnq. It is convenient to have a precise name for these scalars.

Def. 1.4.2 (Components of a vector with respect to a basis) The scalar appearing in
the linear combination that expresses a vector v in terms of the vectors of a basis B are called
components of v with respect to B.

The easiest and one of the most used example of basis of a vector space is the so-called
canonical basis of Fn, F “ R or C, which is given by the vectors

$

’

’

’

’

&

’

’

’

’

%

e1 :“ p1, 0, 0, . . . , 0q

e2 :“ p0, 1, 0, . . . , 0q
...

en :“ p0, 0, 0, . . . , 1q

so, the coordinates of the j-th vector of the canonical basis of Fn are all zero, except for the
one at the position j, whose value is 1.
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To avoid cumbersome computations, let us consider R3 and show that every vector of this
space can be written uniquely as a linear combination of the vectors of the basis

B “ pe1 “ p1, 0, 0q, e2 “ p0, 1, 0q, e3 “ p0, 0, 1qq

and that two different vectors have a distinct decomposition on B. Notice that e1, e2, e3 are
nothing but the unit vectors of the axes X,Y, Z of the Cartesian diagram of Figure 1.8.

Let us indicate with v “ px, y, zq a generic vector of R3, with x, y, z P R, then the vector
equation

v “ px, y, zq “ λ1e1 ` λ2e2 ` λ3e3 “ pλ1, 0, 0q ` p0, λ2, 0q ` p0, 0, λ3q “ pλ1, λ2, λ3q,

is clearly solved for λ1 “ x, λ2 “ y, λ3 “ z. Hence, the components of a vector with respect to
the canonical basis are nothing but the Cartesian coordinates of that vector.

Let us now consider the basis

B1 “ pe3 “ p0, 0, 1q, e2 “ p0, 1, 0q, e1 “ p1, 0, 0qq,

obtained by exchanging the first and the last vector of the canonical basis of R3. In this case
we have

v “ px, y, zq “ µ1e3 ` µ2e2 ` µ3e1 “ p0, 0, µ1q ` p0, µ2, 0q ` pµ3, 0, 0q “ pµ3, µ2, µ1q,

which is solved for µ1 “ z, µ2 “ y, µ3 “ x. This shows that the order of the vectors in a basis
matters.

Let us now examine an example with a less simple basis of R3, e.g.

B2 “ pu1 “ p1, 1, 0q, u2 “ p1, 0, 1q, u3 “ p0, 2, 0qq.

First of all, we have to verify that B2 is indeed a basis for R3, i.e. that u1, u2, u3 are linearly
independent and they generate R3.

We start with the linear independence: by definition, we have to show that

au1 ` bu2 ` cu3 “ 0 ðñ a “ b “ c “ 0.

We have

au1`bu2`cu3 “ pa, a, 0q`pb, 0, bq`p0, 2c, 0q “ pa`b, a`2c, bq “ p0, 0, 0q ðñ

$

’

&

’

%

a` b “ 0

a` 2c “ 0

b “ 0

,

introducing b “ 0 in the first equation we find a “ 0 and introducing a “ 0 in the second
equation we get 2c “ 0, i.e. c “ 0. So, a linear combination of the vectors of B2 can be the
null vector if and only if all the coefficients of linear combination are 0, thence B2 is free.

Now we must prove that B2 is a family of generators, i.e. that, given a generic vector
v “ px, y, zq P R3 there exist λ1, λ2, λ3 P R such that v “ λ1u1`λ2u2`λ3u3. Taking advantage
of the calculation just made we have

px, y, zq “ pλ1 ` λ2, λ1 ` 2λ3, λ2q,
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which corresponds to the linear system of equations
$

’

&

’

%

λ1 ` λ2 “ x

λ1 ` 2λ3 “ y

λ2 “ z

ðñ

$

’

&

’

%

λ2 “ z

λ1 ` z “ x

λ1 ` 2λ3 “ y

ðñ

$

’

&

’

%

λ2 “ z

λ1 “ x´ z

x´ z ` 2λ3 “ y

ðñ

$

’

&

’

%

λ1 “ x´ z

λ2 “ z

λ3 “
y´x`z

2

.

It is a good exercise to verify that the linear combination of the vectors of B2 with the
coefficients just found gives back the generic vector v “ px, y, zq of R3:

λ1u1 ` λ2u2 ` λ3u3 “ px´ zqp1, 1, 0q ` zp1, 0, 1q `
y ´ x` z

2
p0, 2, 0q

“ px´ z, x´ z, 0q ` pz, 0, zq ` p0, y ´ x` z, 0q

“ px´ �z ` �z,�x ´ �z ` y ´�x ` �z, zq

“ px, y, zq

“ v.

(1.9)

This shows that B2 is indeed a basis for R3. Let us compute, for instance, the components of
the vector v “ p1, 2,´1q with respect to B2. We already know that the components of v with
respect to the canonical basis B are its Cartesian coordinates, i.e. a “ 1, b “ 2 and c “ ´1, in
that order. To verify that each decomposition of a vector on a basis is unique, we must find at
least a different component or a different order.

Using (1.9) we have that

p1, 2,´1q “ λ1u1 ` λ2u2 ` λ3u3 ðñ

$

’

&

’

%

λ1 “ 1´ p´1q “ 2

λ2 “ ´1

λ3 “
2´1´1

2 “ 0

,

hence, the components of the vector v “ p1, 2,´1q with respect to the basis B2 are λ1 “ 2,
λ2 “ ´1 and λ3 “ 0. Let us verify that:

2u1 ´ u2 ` 0u3 “ p2, 2, 0q ` p´1, 0,´1q ` p0, 0, 0q “ p2´ 1, 2,´1q “ p1, 2,´1q “ v.

Notice that the components of v with respect to B2 are different than the components of v
with respect to the canonical basis, as highlighted below

$

’

&

’

%

a “ 1

b “ 2

c “ ´1

vs.

$

’

&

’

%

λ1 “ 2

λ2 “ ´1

λ3 “ 0

.

At this point, a natural question may be asked: since it is immediate to find the components
of a vector of Rn with respect to its canonical basis, why do we have to bother investigating
other kind of bases? The answer is that, as we will see later on, when we will deal with linear
maps and matrices, there exist bases different than the canonical one, with respect to which
the expression of a linear map, and the shape of the corresponding matrix, is particularly
simple to analyze.

The bases B,B1 and B2 are all composed by 3 vectors. We may wonder if this is a
coincidence or if it is a general property of bases and if this feature is shared also by other
vector spaces than R3. The answer to these questions is affirmative and it consists in the most
important result regarding the bases of a finitely generated vector space.
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Theorem 1.4.1 Let V a finitely generated vector space, then:

• all the bases of V have the same number of vectors

• a family with less vectors than those of a basis can be free but cannot generate V

• a family with more vectors than those of a basis can generate V but cannot be free.

The proof of this theorem, even though not complicated, is too long to be reported in an
introductory course on linear algebra.

Thanks to this theorem, the following definition is well-posed.

Def. 1.4.3 (Dimension of a finitely generated vector space) The dimension of a finitely
generated vector space V , denoted dimpV q, is the number of vectors belonging any basis of V .

Examples.

• dimpRnq “ n because, for example, the canonical basis has exactly n vectors

• The dimension of FnrXs, the vector space over F of polynomials of degree ď n in an
indeterminate X with coefficients in F has dimension n`1. The analogue of the canonical
basis of Rn for FnrXs is

$

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

%

e0rXs :“ 1

e1rXs :“ X

e2rXs :“ X2

...

enrXs :“ Xn

.

In fact, every polynomial p P FnrXs can be written as a linear combination of theses
polynomials with coefficients aj P F, j “ 0, 1, . . . , n:

ppXq “ a01` a1X ` a2X
2 ` ¨ ¨ ¨ ` anX

n.

• Consider a vector space V and its null vector subspace defined by the sole null vector
N :“ t0u. We have that dimpNq “ 0 for all V and N is the only vector space with zero
dimension. To understand why observe that a basis of N can contain at best the null
vector of V , but we know the family t0u is not free, so it cannot be a basis of N and the
only alternative that remains is the empty set H.

Let us show that H is a basis for N . H is a free subset of V because there are no
vectors that we can multiply by a non-null scalar to obtain 0! To see why H can be
considered a family of generators of N we use Theorem 1.2.5 to identify spanpHq as the
smallest subspace of V that contains the empty set, i.e. the smallest subspace of V at
all, which we know to be N . So, by Def. 1.2.6, H generates N . To recap, H is a free
family of generators of N , i.e. a basis of N , with 0 vectors, so dimpNq “ 0.

• An example of non finitely-generated vector space is provided by F , the space of functions
f : X Ñ F, where X is a non empty set and F is a field.

Functional spaces are actually among the most interesting and important infinite-
dimensional vector spaces of mathematics and, for example, quantum mechanics could
not be formulated without this kind of spaces.
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Let us now just quote without proof two important theorems.

Theorem 1.4.2 Let V be a vector space of dimension n and v1, . . . , vn a family of n vectors
of V . Then:

• if v1, . . . , vn are linearly independent, then they are also a family of generators for V ,
i.e. they are a basis for V

• if v1, . . . , vn generate V , then they are also linearly independent, i.e. they are a basis for
V .

The consequence of this theorem is that when we have a family of vectors of V whose number
equals that of the dimension of V , we have a strong advantage in the task of determining if
those vectors form a basis for V : we can either check if they are linearly independent or if
they generate V , without having to check both of them.

Recall now that we have analyzed the concept of vector subspace, so we can ask ourselves
what can we say about its dimension. In the following theorem we give some information
about that.

Theorem 1.4.3 Let V a vector space and W,W1,W2 vector subspaces of V .

• If W is strictly contained in V , i.e. there are vectors of V that do not belong to W , then
dimpW q ă dimpV q.

• Grassmann’s formula:

dimpW1 `W2q “ dimpW1q ` dimpW2q ´ dimpW1 XW2q.

The Grassmann formula is actually quite intuitive: if we sum the vectors of a basis of W1 with
those of a basis of W2 without taking off those belonging to the intersection between W1 and
W2, then we count them twice!

By definition of direct sum, Grassmann’s formula implies

dimpW1 ‘W2q “ dimpW1q ` dimpW2q.
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1.5 The first practical application of linear algebra: the space
of perceived colors

The earliest applications of the concept of linear combination was provided by Grassmann
himself in 1854. In order to describe it, we must recall that the human visual system is not
sensible to all the electromagnetic spectrum, but only to a very tiny portion of it. In fact,
only the electromagnetic waves oscillating within a certain range of frequencies rνmin, νmaxs

are perceived as visual signals.
In general, it is preferred to discuss wavelengths λ instead of frequencies ν, using the

relation
ν “

c

λ
,

where c is the speed of light. The range of wavelengths corresponding to the visible spectrum
is the very small interval

Λ :“ r380, 780snm,

where nm means ‘nanometer’, i.e. 10´9m, or one billionth of a meter.
As shown in Figure 1.10, light with different wavelengths is perceived with different colors,

from red to violet.

Figure 1.10: Spectral colors from red to violet.

The intensity of a generic luminous signal, however, does not depend only on one single
wavelength, but on all wavelengths of Λ and can be modeled as a function like this, called
light spectrum:

L : Λ ÝÑ p0,`8q
λ ÞÝÑ Lpλq.

If our color perception would be based solely on the physics of light spectra, then the
space of perceivable colors will be the functional space of light spectra. As we have seen in
this chapter, functional spaces are infinite-dimensional space. If that were the case, then color
pictures, cinema, TV and printing would probably be impossible to realize, or at least much
more difficult than they actually are.
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However, the photoreceptors in human retina that respond to light to produce colors are
not sensitive to all the wavelength is the same way. In fact, they can be categorized in three
types: those with a sensitivity peak on the long (L), middle (M) and short (S) wavelengths,
see Figure 1.11.
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1.0

400 450 500 550 600 650 700

S M L

Figure 1.11: The average spectral sensitivity curves of the daylight photoreceptors in the
human retina.

This sort of ‘physiological flaw ’ is actually very welcome, because, perceptually speaking,
it has the effect of reducing the infinite-dimensional space of light spectra to a 3-dimensional
one.

Grassmann was the first one to discuss this huge dimensional reduction in terms of his
invention, linear algebra, pointing out that the space of perceivable colors must be contained
in a vector space of dimension 3 instead of infinite dimensions.

If you approach (very close) an old TV screen, you will see three little squares or rectangles
side-by-side which appear having red, green and blue color with different intensities. The
reason is that the first colorimetric standard for color TV, proposed in 1953 and called NTSC
for ‘National Television System Committee’, was called RGB, for red, green and blue, where
RGB are monochromatic light wave with wavelengths

• 700nm for R

• 546.1nm for G

• 435.8nm for B,

chosen with these values because they were experimentally found to be linearly independent,
and also due to the technological limitations of that time.

The RGB model must be considered as a useful way to reproduce color stimuli, but it is
not the end of the story: color perception is a very complicated phenomenon and the research
about it is still ongoing.

However, the fact that Grassmann, the creator of linear algebra, contributed to provide
such a useful insight of his theory only 12 years after the publication of his treatise should
already make you realize the important linear algebra is in real-life applications. We
will discuss other interesting examples in the following chapters.
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1.6 The link between the theory of vector spaces and that of
linear maps between them

In the following chapter we are going to study particular transformations between vector
spaces called linear. We can understand why the study of such transformations is natural by
analyzing the what happens to the components of a vector if we multiply it by a scalar or if
we sum two vectors.

Theorem 1.6.1 Let V be a vector space of dimension n over the field F and B a basis of
V . If λ1, . . . , λn and µ1, . . . , µn are the components of the vectors v and w of V , respectively,
then:

• the components of v ` w are λ1 ` µ1, . . . , λn ` µn

• the components of av, where a P F, are aλ1, . . . , aλn.

The proof of this theorem is an easy, but very tedious, direct computation, and it is omitted.
Maintaining the notations of this last theorem, the fact that the components are uniquely

associated to a vector once the basis B is chosen induces naturally a function between V and
Fn represented as follows

fB : V ÝÑ Fn
v ÞÝÑ fBpvq “ pλ1, . . . , λnq,

(1.10)

i.e. fB is the function that associates v to the vector of Fn built with the components of v
with respect to the basis B (this is the reason why B appears as a subscript of f).

Thanks to Theorem 1.6.1, we can immediately establish two properties of the function fB:

1. fBpavq “ apλ1, . . . , λnq “ afBpvq, for all a P F

2. fBpv ` wq “ pλ1 ` µ1, . . . , λn ` µnq “ fBpvq ` fBpwq, for all v, w P V .

Properties 1 and 2 constitute precisely what defines a linear map! So, we see that the
study of linear maps is connatural with the study of vector spaces.
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1.7 Questions about chapter 1

In order to check if you have understood the concepts that have been introduced in this
chapter, it is of paramount importance that you are able to give a correct and precise answer
to the following questions. If you are not able to respond, it means that you need to review
the concepts that you have forgotten or misunderstood. An optimal (and nicer) way to check
this is to test each other. We will not repeat this disclaimer for the next chapters, but of
course the previous suggestions will remain valid for them too.

1. Why, in general, a linear equation y “ ax ` b cannot be solved if the coefficients a, b
belong to the set of natural numbers N or to that of the integer numbers Z? What is
the mathematical name to describe numerical sets as Q,R,C?

2. What are the two algebraic operation that every vector space must equipped with?
Write them explicitly.

3. What is the defining property of the null vector of a vector space? And that of the
opposite of a vector?

4. How can be characterized the vector subspace W of a vector space V ?

5. What is a linear combination of vectors of a vector space?

6. What is the smallest non-trivial vector subspace of a vector space?

7. Given a subset S (not a vector subspace) of a vector space, what is the smallest vector
subspace that contains S?

8. What is the difference between the sum and the direct sum of two vector subspaces?

9. What is a family of generators of a vector space?

10. When n vectors are linearly independent? and linearly dependent?

11. What is the characteristic of a vector written as a linear combination of linearly inde-
pendent vectors?

12. How is it defined a basis of a vector space?

13. What does it mean that a vector space is finitely generated?

14. What is a basis of a finitely generated vector space?

15. Quote the Grassmann formula and deduce from it the dimension of the direct sum of
two subspaces.

16. How does linear maps between vector spaces emerge naturally from the study of vector
spaces and their bases?
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1.8 Exercises of chapter 1

The following exercises have the aim of testing the comprehension of the most important
concepts that have been introduced in chapter 1.

1. Let E be the set of all polynomials with real coefficients in the indeterminate X with
degree equal to n P N, n ě 1. Is E a real vector space with respect to the polynomial
sum and multiplication by a real scalar?

2. In the functional vector space of functions f : RÑ R, determine if the vectors given by
f1pxq “ sinpxq, f2pxq “ sinp2xq, f3pxq “ sinp3xq are linearly independent.

3. Establish if this family of vectors

B “ pp1, 1, 1q, p3, 0,´1q, p´1, 1,´1qq

is a basis for R3.

4. Establish if the sum of these vector subspaces of R4 is direct:

U “ spanpp1, 0, 1, 0q, p1, 2, 3, 4qq, V “ spanpp0, 1, 1, 1q, p0, 0, 0, 1qq.
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1.8.1 Solutions of the exercises of chapter 1

The reader is strongly encouraged not to look at the solution of the exercises proposed in the
previous page before trying to solve them.

1. No, it is not, because it is not stable with respect to the sum. As an example, consider
the polynomials of degree n given by ppXq “ 2Xn ´ 1 and qpXq “ ´2Xn ` 2, then
ppXq ` qpXq “ 2Xn ´ 1 ´ 2Xn ` 2 “ 1, which is a polynomial of degree 0 because
1 “ 1 ¨X0, so it has not degree n ě 1.

2. To determine if the given vectors are linearly independent we have to write a generic
linear combination of them and equate it to the null vector of the vector space of
functions f : RÑ R, which is the null function 0 : RÑ R, x ÞÑ 0. Thus, given a, b, c P R
we have to check if

af1pxq ` bf2pxq ` cf3pxq “ a sinpxq ` b sinp2xq ` c sinp3xq “ 0 @x P R,

implies that a “ b “ c “ 0. Since a, b, c are constants, their value is independent of the
choice of x P R, so we can choose particular values of x that suit our scope, for instance:

x “
π

2
: a ¨ 1` b ¨ 0` c ¨ p´1q “ 0 ðñ a´ c “ 0 ðñ a “ c

x “
π

3
: a ¨

?
3

2
` b ¨

?
3

2
` c ¨ p0q “ 0 ðñ

?
3

2
pa` bq “ 0 ðñ a “ ´b

x “
π

4
: a ¨

?
2

2
` b ¨ 1` c ¨

?
2

2
“ 0 ðñ

?
2

2
pa` cq “ 0 ðñ a “ ´c.

But a “ c and a “ ´c can be simultaneously true if and only if a “ c “ 0, so, since
a “ ´b, it follows that also b “ 0, so all three constants are 0 and thus the three functions
are linearly independent.

3. We have 3 vectors and the dimension of R3 is 3, since all the bases of R3 thanks to
Theorem 1.4.2, if we prove that they are either linearly independent or that they generate
R3, then they constitute a basis. We choose arbitrarily to check if they are linearly
independent. Setting

ap1, 1, 1q ` bp3, 0,´1q ` cp´1, 1,´1q “ p0, 0, 0q

we have to find that a “ b “ c “ 0. The previous vector equation is equivalent to the
system of linear equations

$

’

&

’

%

a` 3b´ c “ 0

a` c “ 0

a´ b´ c “ 0

ðñ

$

’

&

’

%

a “ ´c

2a` 3b “ 0

2a´ b “ 0

subtracting both sides of the second and the third equation we find 4b “ 0, i.e. b “ 0, so,
eliminating the terms with b in either the second or the third equation we find a “ 0, so
c “ ´a “ 0, thence the vectors are linearly independent and so they are a basis for R3.
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4. A sum is direct if and only if the intersection of the two vector subspaces is reduced to
the null vector of R4, i.e. 0 “ p0, 0, 0, 0q. A vector w P R4 belongs to the intersection
of U and V if and only if it can be written both as a linear combination of the vectors
generating U and of those generating V , i.e. if there exist a, b, c, d P R such that

w “ ap1, 0, 1, 0q ` bp1, 2, 3, 4q “ cp0, 1, 1, 1q ` dp0, 0, 0, 1q,

a vector equation which corresponds to the system of linear equations given by

$

’

’

’

’

&

’

’

’

’

%

a` b “ 0

2b “ c

a` 3b “ c

4b “ c` d

ðñ

$

’

’

’

’

&

’

’

’

’

%

a “ ´b

c “ 2b

a` 3b “ 2b ðñ a “ ´b

4b “ 2b` d ðñ d “ 2b

ðñ

$

’

&

’

%

a “ ´b

b P R
c “ d “ 2b

Let us choose the simplest possible non zero value for b: b “ 1, then a “ ´1 and
c “ d “ 2, then

p´1, 0,´1, 0q ` p1, 2, 3, 4q “ p0, 2, 2, 4q

and
p0, 2, 2, 2q ` p0, 0, 0, 2q “ p0, 2, 2, 4q

thus w “ p0, 2, 2, 4q P U X V , so the sum U ` V is not direct.
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Chapter 2

Linear maps and matrices

In this chapter we will develop the theory of linear maps between two vector spaces. We will
introduce the concept of matrix and describe the tight link that exists between matrices and
linear maps. The most important results of matrix theory will be discusses.

2.1 Linear maps

Disclaimer. In the mathematical literature, the word map, function, application, transfor-
mation and operator are used as synonyms. It must be kept in mind that they all refer to the
same thing, i.e. a correspondence between a domain and a codomain which relates all the
elements of the domain to one and only one element of the codomain. In linear algebra of
finite-dimension vector spaces, it is custom to use the words map or application, instead, when
infinite-dimensional vector spaces are involved, the word operator is more common. Finally,
the word function is more frequent in real analysis. In this notes, I have chosen to use map
for brevity.

Linear maps are the functions that ‘passes through’ linear combinations, let us see what
this means. Consider two vector spaces V and W , not necessarily different but both defined
over the same field F, and the linear combination

v “ λ1v1 ` ¨ ¨ ¨ ` λnvn “
n
ÿ

j“1

λjvj ,

λj P F and vj P V , for all j “ 1, . . . , n.
Consider then a map f : V ÑW and apply it to v:

fpvq “ f

˜

n
ÿ

j“1

λjvj

¸

,

since f acts of vectors, the only way in which f can ‘pass through’ the linear combination
is that we can exchange the position of the sum and of the scalars λj with that of f , i.e. f
passes through the linear combination if it happens that

f

˜

n
ÿ

j“1

λjvj

¸

“

n
ÿ

j“1

λjfpvjq. (2.1)
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By expanding the sum, the last equality can be written as

fpλ1v1 ` ¨ ¨ ¨ ` λnvnq “ λ1fpv1q ` ¨ ¨ ¨ ` λnfpvnq, (2.2)

the defining features of this equality can be understood by considering two special cases:

1. suppose n “ 1, then (2.2) gives fpλ1v1q “ λ1fpv1q, a feature called homogeneity of f

2. suppose n “ 2 and λ1 “ λ2 “ 1, then (2.2) gives fpv1 ` v2q “ fpv1q ` fpv2q, a feature
called additivity of f .

The following definition formalized what just discussed.

Def. 2.1.1 (Linear map) Let V and W be two, not necessarily different, vector spaces over
the same field F. A map f : V ÑW is said to be linear if

1. f is additive: fpv1 ` v2q “ fpv1q ` fpv2q for all v1, v2 P V

2. f is homogeneous: fpλvq “ λfpvq, for all λ P F and v P V .

Together, the two properties of a linear map lead to formula (2.1) by extending the sum and
the product with a scalar to a linear combination of vectors of V with coefficients in F.

Let us immediately see what is the behavior of a linear map when it is applied to the null
vector 0V of V : since, for every v P V , we have that v “ v`0V , by the additivity of f we have

fpvq “ fpv ` 0V q “
additivity

fpvq ` fp0V q,

but fpvq “ fpvq ` fp0V q if and only if fp0V q is the null vector 0W of the vector space W
(recall that f sends any vector of V , and so also the null vector 0V to vectors of W !). Hence:

fp0V q “ 0W ,

i.e., a linear map transforms the null vector of its domain vector space to the null vector of its
codomain vector space.

We have concluded the first chapter by showing that the properties of a basis B of a vector
space V lead naturally to consider a linear map, that we have defined in (1.10). Let us now
show that this map is not only linear, but it has the property defined below.

Def. 2.1.2 If a linear map f : V Ñ W is one-to-one1 and onto2, then it is called an
isomorphism3 between V and W , which are said to be isomorphic via f .

Theorem 2.1.1 Fixed a basis B of a vector space V of dimension n over the field F, the
linear map fB defined in (1.10), i.e.

fB : V ÝÑ Fn
v ÞÝÑ fBpvq “ pλ1, . . . , λnq,

is an isomorphism.

1one-to-one means that, if v ‰ w, then fpvq ‰ fpwq.
2onto means that, for all w PW it exists at least a v P V such that w “ fpvq.
3thus, an isomorphism is a linear map linear f : V ÑW such that, for all w PW it exists one and only one

v P V such that w “ fpvq.
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Notice that Fn is always the same independently of V , for this reason we say that Fn is the
prototype of any vector space over the field F of dimension n.

So, Rn and Cn are the prototypes of all real and complex, respectively, vector spaces of
dimension n. However, it is important to highlight that the isomorphism with Fn is subjected
to the choice of a basis of V , hence it is not a ‘canonical’ isomorphism.

Despite not being canonical, the isomorphism established by fB, when B is chosen once
and for all, allows us to transfer the analysis of any vector space to that of Fn, which is the
easiest non trivial vector space, explains the particular interest dedicated to this kind of vector
space in linear algebra.

Proof. We have already stated in chapter 1 that the function fB is linear. We now prove that,
thanks to the fact that B is a basis, fB is both one-to-one and onto.

fB is one-to-one because every v can be uniquely written as a linear combination of the
basis vectors with coefficients that are not shared with any other vector different than v. This
follows from the fact that the basis vectors are linearly independent and so theorem 1.3.2 can
be applied.

fB is onto because a basis is also a family of generators and so V “ spanpBq, thus each
different ordered sequence of scalars pλ1, . . . , λnq defines a different vector v P V , hence, as v
varies in V , fBpvq represents all possible n-tuple of scalars of F. 2

The previous theorem has a very important consequence. Before discussing it, we must
recall the concept of composition and inversion of functions. Given any two sets X and
Y and f1 : X Ñ Y , f2 : Y Ñ Z, we write their composition as the function f2 ˝ f1 : X Ñ Z
(notice the order!) as follows

f2 ˝ f1 : X ÝÑ Z
x ÞÝÑ pf2 ˝ f1qpxq :“ f2pf1pxqq,

with makes perfect sense because y “ f1pxq P Y and f2 is defined on Y , so z “ f2pyq belongs to
Z. The composite function f2 ˝ f1 allows us to skip the intermediate transformations X Ñ Y
and Y Ñ Z and it does it in just one shot X Ñ Z as depicted in Figure 2.1.

Figure 2.1: Composition of functions.

Example 2.1.1 Consider

• f1 : RÑ r1,`8q, x ÞÑ y “ f1pxq :“ 1` x2

• f2 : r1,`8q Ñ r0,`8q, y ÞÑ z “ f2pyq :“ logpyq, substituting the explicit expression of
y “ 1` x2 we find z “ logp1` x2q

• Then, the composite function is f2 ˝ f1 : RÑ r0,`8q, xÑ pf2 ˝ f1qpxq “ logp1` x2q.
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If a function f : X Ñ Y is one-to-one and onto, then we can construct its inverse function
f´1 : Y Ñ X defined in this way: for all y P Y , f´1pyq “ x, where x P X is the only element
of X such that fpxq “ y. x exists because f is onto and x is unique because f is one-to-one.

The composition between f and f´1 has a special name: f´1 ˝ f : X Ñ X is called
identity function on X and indicated with idX , while f ˝ f´1 : Y Ñ Y is called identity
function on Y and indicated with idY . Both identity function leave all the elements of the set
on which they are defined unchanged.

Let us see why analyzing for instance f´1 ˝ f : X Ñ X:

f´1 ˝ f : X ÝÑ Y ÝÑ X
x ÞÝÑ y “ fpxq ÞÝÑ f´1pyq “ x,

thus, the global action of f´1˝f on any x P X is to leave it as it is, for this reason f´1˝f “ idX .

Example 2.1.2 Consider:

• f : RÑ R, x ÞÑ y “ x3

• f´1 : RÑ R, y ÞÑ 3
?
y

• f´1 ˝ f : RÑ R, x ÞÑ 3
?
y “

3
?
x3 “ x.

Having recalled these concepts, we can now state and prove the following consequence of the
previous theorem.

Corollary 2.1.1 Two vector spaces V and W defined over the same field F are isomorphic if
and only if they have the same dimension.

Proof. Suppose dimpV q “ dimpW q “ n, fix a basis B1 of V and a basis B2 of W and then
consider the following diagram:

V W

Fn

fB1
fB2

„

f´1
B1

f´1
B2

We can build two isomorphisms between V and W : the first is

fV,W “ f´1B2
˝ fB1 : V ÝÑ W

v ÞÝÑ fV,W pvq “ f´1B2
pfB1pvqq

while the second is:

fW,V “ f´1B1
˝ fB2 : W ÝÑ V

w ÞÝÑ fW,V pwq “ f´1B1
pfB2pwqq

Both are isomorphisms because they are built by composition of isomorphisms. 2

The last result is the reason why in many books about linear algebra it is said that the
only important information to know about a vector space are its dimension and the field that
contains its scalars. Indeed, once we know that, up to an isomorphism, the vector space V
can be identified with FdimpV q.
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2.2 Kernel and image of a linear map

In this section we introduce and analyze two extremely important vector subspaces related to
a linear map.

Def. 2.2.1 Let f : V ÑW be a linear map.

• The kernel4 of f is the subset of V given by

kerpfq :“ tv P V : fpvq “ 0W u.

• The image of f is the subset of W given by

Impfq :“ tw PW : Dv P V such that w “ fpvqu.

Recalling that a linear map f : V ÑW transforms 0V into 0W , we have that kerpfq is never
empty because, at least, it contains 0V . The opposite situation is when f is the null map, in
this case all the vectors of V are mapped to 0W , so kerpfq “ V .

Theorem 2.2.1 Given the linear map f : V Ñ W , kerpfq is a vector subspace of V and
Impfq is a vector subspace of W .

Proof. Recall that, in order to prove that a subset of a vector space is a vector subspace, we
must prove that a generic linear combination of elements of the subset remains in the subset.

Let us start with the kernel. Let v1, v2 P kerpfq, which means that fpv1q “ fpv2q “ 0W ,
λ1, λ2 P F and apply f to the linear combination λ1v1 ` λ2v2: using the linearity of f we find

fpλ1v1 ` λ2v2q “ λ1fpv1q ` λ2fpv2q “ λ10W ` λ20W “ 0W ,

so fpλ1v1 ` λ2v2q “ 0W and then, by definition, λ1v1 ` λ2v2 P kerpfq.
Now we consider the image. Let w1, w2 PW such that w1 “ fpv1q and w2 “ fpv2q, with

v1, v2 P V , then, by applying first the homogeneity and then the additivity of the linear map
f we have

λ1w1 ` λ2w2 “ λ1fpv1q ` λ2fpv2q “ fpλ1v1q ` fpλ2v2q “ fpλ1v1 ` λ2v2q,

so λ1w1 ` λ2w2 “ fpλ1v1 ` λ2v2q, hence λ1w1 ` λ2w2 P Impfq. 2

Since kerpfq and Impfq are subspaces, it makes sense to talk about their dimensions, which
have specific names.

Def. 2.2.2 (Nullity and rank) Given the linear map f : V ÑW ,

• dimpkerpfqq ď dimpV q is called nullity of f and indicated with nullpfq

• dimpImpfqq ď dimpW q is called rank of f and indicated with rankpfq.

It turns out that the nullity and rank of f characterize its properties as a one-to-one and
onto linear map, respectively.

4certain authors prefer null space instead of kernel.
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Theorem 2.2.2 The linear map f : V Ñ W is onto if and only if Impfq “ W , i.e. if and
only if its rank is maximal: rankpfq “ dimpW q.

It is because of this theorem that an onto linear map is also called full-rank.

Proof. f is onto if and only if every w PW can be written as w “ fpvq for a certain v P V , so
Impfq “W . In this case rankpfq “ dimpImpfqq “ dimpW q. 2

Theorem 2.2.3 The linear map f : V ÑW is one-to-one if and only if kerpfq “ t0V u, i.e.
if and only if its nullity is 0.

Proof.

ùñ : suppose f is one-to-one, then, since we already know that 0V P kerpfq, and so
fp0V q “ 0W , no other vector is mapped into 0W other than 0V , hence kerpfq “ t0V u.

ðù : suppose kerpfq “ t0V u, then, if v1, v2 P V are such that fpv1q “ fpv2q we have
fpv1q ´ fpv2q “ 0W , but, thanks to the linearity of f , this implies fpv1 ´ v2q “ 0W , i.e.
v1 ´ v2 P kerpfq “ t0V u, so v1 ´ v2 “ 0V , which means that v1 “ v2. If follows that f is
one-to-one. 2

Since a linear map is an isomorphism when it is one-to-one and onto, the previous two
theorems imply immediately the next result.

Corollary 2.2.1 The linear map f : V ÑW is an isomorphism if and only if it has full rank
and zero nullity.

The following theorem relates the dimension of the domain of a linear map with its nullity
and rank.

Theorem 2.2.4 (Nullity+rank) Given the linear map f : V ÑW we have

dimpV q “ dimpkerpfqq ` dimpImpfqq.

At first glance, the thesis of this theorem can be surprising because the dimension of W does
not play any role. Only by looking at the proof one can understand why is that, however, the
proof is a bit technical and it would take too much time to discuss it properly, for this reason
we omit it. Instead, we prefer to analyze an important consequence of this theorem on linear
maps for which domain and codomain coincide. These maps bear a special name.

Def. 2.2.3 A linear map f : V Ñ V , i.e. for which V “W , is called endomorphism.

Theorem 2.2.5 Let f : V Ñ V be an endomorphism. f one-to-one ùñ f also onto.
Vice-versa, f onto ùñ f also one-to-one. So, for an endomorphism to be an isomorphism it
is enough to be either one-to-one or onto.

Proof. The proof relies solely on the nullity+rank theorem. . . try to figure out why. . . 2
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Example 2.2.1 Determine if the following linear map is one-to-one, onto or an isomorphism.

f1 : R2 ÝÑ R2

v “ px, yq ÞÝÑ f1pvq “ f1px, yq :“ px´ y, x` yq.

First of all notice that f1 acts on the components of v through linear combinations, so it is
indeed linear.

To determine if f1 is one-to-one let us study its kernel by imposing

f1px, yq “ p0, 0q ðñ px´ y, x` yq “ p0, 0q ðñ

#

x´ y “ 0

x` y “ 0
,

the first equation implies that x “ y, which, introduced in the second, implies 2y “ 0, i.e.
y “ 0 and so also x “ 0. It follows that px, yq is nullified by f1 if and only if it is 0 “ p0, 0q, so
f1 is one-to-one.

To study if f1 is also onto would be redundant, because we recognize that the domain and
codomain of f1 are the same, hence f1 is an endomorphism, so the fact that it is one-to-one
implies that it also onto and, in turn, that f1 is an isomorphism of R2 with itself.

Example 2.2.2 Determine if the following linear map is one-to-one, onto or an isomorphism.

f2 : R2 ÝÑ R2

v “ px, yq ÞÝÑ f2pvq “ f2px, yq :“ px´ y, x´ yq.

Let us study again the kernel of f2 by we imposing

f2px, yq “ p0, 0q ðñ px´ y, x´ yq “ p0, 0q ðñ

#

x´ y “ 0

x´ y “ 0
,

this time both equations are the same and they imply that x “ y. This means that all the
vectors of R2 written as follows v “ px, xq, with x P R are nullified by f2. Hence, f2 is not
one-to-one and so it cannot be an isomorphism.

Let us check if f2 is at least onto. We have to check if, for all w “ pa, bq P R2 there exists
v “ px, yq P R2 such that pa, bq “ f2px, yq:

pa, bq “ f2px, yq ðñ pa, bq “ px´ y, x´ yq ðñ

#

a “ x´ y

b “ x´ y
.

We see quite easily that f2 cannot be onto: in fact it is enough to consider a ‰ b to see that
the previous system cannot be solved, in fact two different numbers cannot be equal to the
same number x´ y.

So, f2 provides us the example of an endomorphism which is neither one-to-one nor onto.
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2.3 Linear maps and bases

In this section we study the relation between linear maps and bases of vector spaces. We start
with this fundamental theorem.

Theorem 2.3.1 Let f : V Ñ W be a linear map and B “ pv1, . . . , vnq a basis for V . Then
tfpv1q, . . . , fpvnqu is a family of generators (in general non-free) for Impfq. So, linear maps
transform bases of their domains into families of generators of their images.

Proof. For every w P Impfq there exists v P V such that w “ fpvq, since B is a basis,

v “
n
ř

j“1
λjvj , hence, by the linearity of f , w “ fpvq “

n
ř

j“1
λjfpvjq.

This means that every w P Impfq can be written as a linear combination of the vectors
belonging to the family tfpv1q, . . . , fpvnqu, so, by definition, this family generates Impfq. 2

We now show that a linear map f : V ÑW is completely determined by the knowledge of
the images of the vectors of a basis of V , which can be arbitrarily chosen in W .

Theorem 2.3.2 (Generic expression of a linear map) Let f : V ÑW be a linear map
and let B “ pv1, . . . , vnq be a basis of V .

1. f is uniquely determined by the way it transforms the vectors of B, i.e. by the knowledge
of the vectors of W given by fpv1q, . . . , fpvnq.

2. Once n vectors w1, . . . , wn are arbitrarily chosen in W , there exists a unique linear map
f : V ÑW such that wj “ fpvjq, j “ 1, . . . , n.

f is uniquely associated to the basis B, so, if another basis is chosen, then f changes.

Proof.

1. Consider any vector v P V , then we know that there exist unique scalars λj , j “ 1, . . . , n,
such that

v “
n
ÿ

j“1

λjvj .

By linearity, f acts on v as follows

fpvq “
n
ÿ

j“1

λjfpvjq. (2.3)

Since the scalars are uniquely determined by v and the basis, the only action that is
left to f is the way in which it transforms the basis vectors. Hence, once we know the
vectors fpvjq, j “ 1, . . . , n, we automatically know the action of f .

2. Define the linear map f on the basis vectors as follows fpvjq :“ wj , then for every v P V

there is a unique set pλjq
n
j“1 such that v “

n
ř

j“1
λjvj so, by linearity, fpvq “

n
ř

j“1
λjfpvjq.

Thanks to the statement of item 1., this defines f uniquely.

2
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We can highlight the results of this last theorem as follows.

Practical method to extend a linear map f : V ÑW from the knowledge of its
action on the vector of a basis of V to the whole space V

1. Let the basis of V be B “ pv1, . . . , vnq

2. Suppose fpv1q, . . . , fpvnq are known

3. Decompose any v on B: v “
n
ř

j“1
λjvj

4. Then, the action of f on v is

fpvq “
n
ÿ

j“1

λjfpvjq . (2.4)

Practical method to built a linear map f : V ÑW from the random choice of
n “ dimpV q number of vectors of W

1. Fix arbitrarily the vectors w1, . . . , wn of W

2. Fix a basis B “ pv1, . . . , vnq of V

3. Define fpv1q :“ w1, . . . , fpvnq :“ wn

4. Decompose any v on B: v “
n
ř

j“1
λjvj

5. Then, the action of f on v is

fpvq “
n
ÿ

j“1

λjwj . (2.5)

The expressions (2.4) (2.5) reveal that all linear maps are written as linear combi-
nations of vectors belonging to their codomain.

Example 2.3.1 Let V “W “ R3 and consider the canonical basis of R3. Let f : V ÑW be
the linear map that transforms the canonical basis vectors as follows:

$

’

&

’

%

fpp1, 0, 0qq “ p1, 1, 2q

fpp0, 1, 0qq “ p0, 0,´1q

fpp0, 0, 1qq “ p´1, 2, 0q

. (2.6)

To find the expression of f on the general vector v “ px, y, zq P R3, we use the first practical
method. Since we have fixed the canonical basis, the decomposition of v on it is simply

v “ xp1, 0, 0q ` yp0, 1, 0q ` zp0, 0, 1q “ px, y, zq,
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then, using formula (2.4) we have

fppx, y, zqq “ xfpp1, 0, 0qq ` yfpp0, 1, 0qq ` zfpp0, 0, 1qq

“ xp1, 1, 2q ` yp0, 0,´1q ` zp´1, 2, 0q

“ px, x, 2xq ` p0, 0,´yq ` p´z, 2z, 0q “ px´ z, x` 2z, 2x´ yq.

So, the extension of f on the whole R3 is

fppx, y, zqq “ px´ z, x` 2z, 2x´ yq, x, y, z P R.

Example 2.3.2 Consider now the basis of R3 examined in exercise 3. of chapter 1, i.e.

B “ pp1, 1, 1q, p3, 0´ 1q, p´1, 1,´1qq

and define the linear map g : R3 Ñ R3 by imposing that the vectors of B are mapped to the
same vectors as in (2.6), i.e.

$

’

&

’

%

gpp1, 1, 1qq “ p1, 1, 2q

gpp3, 0,´1qq “ p0, 0,´1q

gpp´1, 1,´1qq “ p´1, 2, 0q

. (2.7)

g maps different vectors than those of the canonical basis of R3 to the same vectors used to
define f in (2.6), so, by the uniqueness property established by Theorem 2.3.2, g cannot be
the same linear map as f , we will verify that this is indeed the case.

This time, since we are not using the canonical basis, in order to find the expression of the
general vector v “ px, y, zq P R3 with respect to B, we have to write the vector equation

px, y, zq “ ap1, 1, 1q ` bp3, 0,´1q ` cp´1, 1,´1q “ pa` 3b´ c, a` c, a´ b´ cq,

which can be equivalently expressed by the following system of linear equations
$

’

&

’

%

a` 3b´ c “ x p1q

a` c “ y p2q

a´ b´ c “ z p3q

ðñ
p1qÞÑp1q´p3q

$

’

&

’

%

4b “ x´ z

a “ y ´ c

y ´ c´ b´ c “ z

ðñ

$

’

&

’

%

b “ x
4 ´

z
4

a “ y ´ c

2c “ y ´ px4 ´
z
4q ´ z

so,
$

’

&

’

%

b “ x
4 ´

z
4

a “ y ´ c

c “ y
2 ´

x
8 ´

3z
8

ðñ

$

’

&

’

%

a “ y
2 `

x`3z
8

b “ x´z
4

c “ y
2 ´

x`3z
8

. (2.8)

Thus

px, y, zq “

ˆ

y

2
`
x` 3z

8

˙

p1, 1, 1q `

ˆ

x´ z

4

˙

p3, 0,´1q `

ˆ

y

2
´
x` 3z

8

˙

p´1, 1´ 1q,

and so

gppx, y, zqq “

ˆ

y

2
`
x` 3z

8

˙

gpp1, 1, 1qq `

ˆ

x´ z

4

˙

gpp3, 0,´1qq `

ˆ

y

2
´
x` 3z

8

˙

gpp´1, 1´ 1qq

“

ˆ

y

2
`
x` 3z

8

˙

p1, 1, 2q `

ˆ

x´ z

4

˙

p0, 0,´1q `

ˆ

y

2
´
x` 3z

8

˙

p´1, 2, 0q

“

ˆˆ

y

2
`
x` 3z

8
,
y

2
`
x` 3z

8
, y `

x` 3z

4

˙

`

ˆ

0, 0,
z ´ x

4

˙

`

ˆ

x` 3z

8
´
y

2
, y ´

x` 3z

4
, 0

˙˙

“

ˆ

x` 3z

4
,

3

2
y ´

x` 3z

8
, y ` z

˙

,
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so the extension of g on the whole R3 is:

gppx, y, zqq “

ˆ

x` 3z

4
,
3

2
y ´

x` 3z

8
, y ` z

˙

, x, y, z P R.

Let us check that this expression is coherent with the vectors assigned in (2.7):
$

’

&

’

%

gpp1, 1, 1qq “
`

1`3
4 , 32 ´

1`3
8 , 1` 1

˘

“ p1, 1, 2q

gpp3, 0,´1qq “
`

3´3
4 , 0´ 3´3

8 , 0´ 1
˘

“ p0, 0,´1q

gpp´1, 1,´1qq “
`

´1´3
4 , 32 ´

´1´3
8 , 1´ 1

˘

“ p´1, 2, 0q

.

Example 2.3.3 This example is about the second practical method to build a linear map.
We select arbitrarily three vectors of W “ R3, for instance:

w1 “ p0, 1, 2q, w2 “ p1, 1, 1q, w3 “ p2, 0, 0q.

We can fix for instance the canonical basis of V “ R3 and define the linear map ϕ : R3 Ñ R3

to verify these equations:
$

’

&

’

%

ϕpp1, 0, 0qq “ w1 “ p0, 1, 2q

ϕpp0, 1, 0qq “ w2 “ p1, 1, 1q

ϕpp0, 0, 1qq “ w3 “ p2, 0, 0q

.

We know that the decomposition of the generic vector v “ px, y, zq P R3 on the canonical basis
of R3 is v “ px, y, zq, so, using eq. (2.5), the action of ϕ on v is

ϕppx, y, zqq “ xw1 ` yw2 ` zw3 “ xp0, 1, 2q ` yp1, 1, 1q ` zp2, 0, 0q“ py ` 2z, x` y, 2x` yq.

To highlight the dependence on the choice of the basis, let us now chose, instead of the
canonical basis of R3, the basis B of Example 2.3.2 to build a linear map, which we already
know that it will be different than ϕ, so that we denote it with ψ:

$

’

&

’

%

ψpp1, 1, 1qq “ w1 “ p0, 1, 2q

ψpp3, 0,´1qq “ w2 “ p1, 1, 1q

ψpp´1, 1,´1qq “ w3 “ p2, 0, 0q

.

From Example 2.3.2 we know that the decomposition of the generic vector v “ px, y, zq P R3

on B is:
px, y, zq “ ap1, 1, 1q ` bp3, 0,´1q ` cp´1, 1,´1q

with a “ y
2 `

x`3z
8 , b “ x´z

4 , c “ y
2 ´

x`3z
8 . Hence, this time eq. (2.5) implies that the action

of ψ on v is

ψppx, y, zqq “

ˆ

y

2
`
x` 3z

8

˙

w1 `

ˆ

x´ z

4

˙

w2 `

ˆ

y

2
´
x` 3z

8

˙

w3

“

ˆ

y

2
`
x` 3z

8

˙

p0, 1, 2q `

ˆ

x´ z

4

˙

p1, 1, 1q `

ˆ

y

2
´
x` 3z

8

˙

p2, 0, 0q

“

ˆ

x´ z

4
` y ´

x` 3z

4
,
y

2
`
x` 3z

8
`
x´ z

4
, y `

x` 3z

4
`
x´ z

4

˙

“

ˆ

y ´ z,
y

2
`

3x` z

8
, y `

x` z

2

˙

.

As expected, ϕ and ψ are different linear maps.
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Since f : V ÑW is completely determined by its action on the vectors v1, . . . , vn of any fixed
basis of V , it comes with no surprise that the properties of f can be studied by the properties
of the family of vectors fpv1q, . . . , fpvnq.

Theorem 2.3.3 Let f : V ÑW be a linear map and B “ pv1, . . . , vnq a basis for V .

1. f is one-to-one if and only if tfpv1q, . . . , fpvnqu is a free family in W

2. f is onto if and only if tfpv1q, . . . , fpvnqu is a family of generators of W

3. f is and isomorphism if and only if tfpv1q, . . . , fpvnqu is a basis of W .

Proof.

1. We will prove the two opposite implications separately.

ùñ : let us suppose that f is one-to-one, then we know that kerpfq “ 0V . We have to
prove that fpv1q, . . . , fpvnq is a family of linearly independent vectors of W , i.e. that if a
linear combination of these vectors is 0W , then all the scalars of the linear combination are 0.
Let us write this linear combination as

λ1fpv1q ` ¨ ¨ ¨ ` λnfpvnq “ 0W ðñ

n
ÿ

j“1

λjfpvjq “ 0W ðñ
f linear

f

˜

n
ÿ

j“1

λjvj

¸

“ 0W ,

remember now that we are under the hypothesis that kerpfq “ 0V , which implies that
řn
j“1 λjvj “ 0V , but the vectors v1, . . . , vn are a basis of V , so they are linearly independent,

which means that λj “ 0 for all j “ 1, . . . , n, and so tfpv1q, . . . , fpvnqu is a free family in W .

ðù : now we suppose that tfpv1q, . . . , fpvnqu is a free family in W and we must prove that
this implies that f in one-to-one, i.e. that kerpfq “ 0V . Consider a generic vector v P kerpfq
and decompose it on the basis B:

v “
n
ÿ

j“1

λjvj ùñ
f linear

fpvq “
n
ÿ

j“1

λjfpvjq “ 0W because v P kerpfq.

However, fpv1q, . . . , fpvnq is a family of linearly independent vectors of W , so λj “ 0 for all
j “ 1, . . . , n, i.e. v “

řn
j“1 0vj “ 0V and thus kerpfq “ t0V u, i.e. f is one-to-one.

2. Recall that f is onto if and only if Impfq “ W and recall from Theorem 2.3.1 that if
B “ pv1, . . . , vnq is a basis for V , then tfpv1q, . . . , fpvnqu is a family of generators for Impfq.
So, f is onto if and only if tfpv1q, . . . , fpvnqu is a family of generators for the whole W .

3. By mixing together 1. and 2. we have that f is both one-to-one and onto, i.e. it is an
isomorphism, if and only if tfpv1q, . . . , fpvnqu is both free and it generates W , i.e. if and only
if tfpv1q, . . . , fpvnqu is a basis of W . 2
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Example 2.3.4 Let us consider the linear maps ϕ and ψ of 2.3.3. In both cases, the images
of the vectors of either the canonical basis of R3 or of the basis pp1, 1, 1q, p3, 0,´1q, p´1, 1,´1qq
are w1 “ p0, 1, 2q, w2 “ p1, 1, 1q, w3 “ p2, 0, 0q.

Let us determine if these vectors are linearly independent, a family of generators or a basis
of R3. Since we are dealing with three vectors of a vector space of dimension 3, by Theorem
1.4.2, it is enough to establish, for instance, if w1, w2, w3 are linearly independent to assure
that they are also a family of generators and so a basis of R3. If this is the case, then, by
virtue of Theorem 2.3.3, both ϕ and ψ are isomorphisms.

To check if w1, w2, w3 are linearly independent, we write as usual

aw1`bw2`cw3 “ 0 ðñ pa, a, aq`p3b, 0,´cq`p´a, b,´cq “ 0 ðñ pa`3b, a`b, a´2cq “ 0,

which corresponds to the system of linear equations

$

’

&

’

%

a` 3b “ 0

a` b “ 0

a´ 2c “ 0

ðñ

$

’

&

’

%

a “ ´b

´b` 3b “ 0 ùñ b “ 0

´b´ 2c “ 0

ðñ

$

’

&

’

%

a “ 0

b “ 0

c “ 0

.

So w1, w2, w3 are linearly independent and, thank to the argument discussed above, both ϕ
and ψ are isomorphisms.

Corollary 2.3.1 Let f : V ÑW be a linear map and dimpV q ă dimpW q, then f cannot be
onto.

Proof. By item 2. of Theorem 2.3.3, we have that f is onto if and only if the images of the
vectors of a basis of V form a family of generators of W . By the number of vectors in a basis
of V is exactly dimpV q, hence also the number of images of these vectors via f will be dimpV q.
Thus, if dimpV q ă dimpW q, we do not have enough vectors to generate W and so f cannot
be onto. 2
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2.4 The matrix associated to a linear map

This section is one of the most important of the entire course.

We have seen that, given two vector spaces V and W over the same field F, of dimension
dimpV q “ n and dimpW q “ m, once a basis

BV “ pv1, . . . , vnq “ pvjq
n
j“1

of V is fixed, we can uniquely know the action of a linear map f : V ÑW on all the vectors
of V if we know how f transforms the vectors of the basis BV .

The vectors fpv1q, . . . , fpvnq belong to W , so, we can wonder what happens if we fix also
a basis

BW “ pw1, . . . , wmq “ pwiq
m
i“1

of W . The most natural thing that we can do is to expand the vectors fpv1q, . . . , fpvnq on the
basis BW . Let us write the first two expansions:

fpv1q “
m
ÿ

i“1

aiwi,

fpv2q “
m
ÿ

i“1

biwi,

we immediately recognize that using the letters ai, bi, . . . is not a smart choice: in fact, if n is
larger than the number of letters of the alphabet that we want to use, at some point we will
have to introduce other symbols. It is a much better strategy to fix just one letter with the
sum suffix i, for example ai, and replace the following letters by adding another suffix to a
represented by a natural number. With such a choice, there is no possibility to exhaust the
natural numbers, and so one letter with two natural indices is a much wiser choice.

Let us see how the previous expansions of fpv1q and fpv2q will become if introduce scalars
with a double index:

fpv1q “
m
ÿ

i“1

ai1wi,

fpv2q “
m
ÿ

i“1

ai2wi,

and so on. The generic j-th vector fpvjq will have the following expansion on the vectors of

the basis BW :

fpvjq “
m
ÿ

i“1

aijwi “ a1jw1 ` ¨ ¨ ¨ ` amjwm, (2.9)

• the suffix i “ 1, . . . ,m “ dimpW q represents the index that runs over the vectors of the
basis BW

• the suffix j “ 1, . . . , n “ dimpV q represents the index that runs over the vectors of the
basis BV .
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These indices can be arranged in an ordered tabular array, called matrix, which can be
explicitly written as follows:

A :“

¨

˚

˝

a11 . . . a1n
...

. . .
...

am1 . . . amn

˛

‹

‚

.

As always, having a more compact notation comes in handy and one usually writes:

A “ paijq
i“1,...,m
j“1,...,n .

Three features must be highlighted:

1. A can be represented by rows, i.e.

A “

¨

˚

˝

ÐÝ R1 ÝÑ
...

ÐÝ Rm ÝÑ

˛

‹

‚

or by columns, i.e.

A “

¨

˝

Ò Ò

C1 ¨ ¨ ¨ Cn
Ó Ó

˛

‚.

2. A has m rows, as the dimension of the codomain of f , which are vectors of n components
belonging to Fn, labeled by the row index i “ 1, . . . ,m:

R1 “ pa11, . . . , a1nq
...

Rm “ pam1, . . . , amnq.

The generic i-th row is

Ri “ pai1, . . . , ainq P Fn, i “ 1, . . . ,m.

3. Analogously, A has n columns, as the dimension of the domain of f , which are vectors
of m components belonging to Fm, labeled by the column index j “ 1, . . . , n:

C1 “

¨

˚

˝

a11
...

am1

˛

‹

‚

, ¨ ¨ ¨ , Cn “

¨

˚

˝

a1n
...

amn

˛

‹

‚

.

The generic j-th column is

Cj “

¨

˚

˝

a1j
...

amj

˛

‹

‚

P Fm, j “ 1, . . . , n,

Cj has a very important meaning: if we compare the elements of Cj with eq. (2.9), we
can see that Cj contains the components of the expansion of the vector fpvjq
on the basis BW .
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Practical method to associate a matrix to a linear map f : V ÑW w.r.t. two
bases BV and BW

• Fix a basis BV “ pv1, . . . , vnq of V and a basis BW “ pw1, . . . , wmq of W

• Apply f to all the vectors of BV , obtaining n vectors of W

• Expand fpv1q, . . . , fpvnq as linear combinations of vectors of the basis BW

• Place the coefficients of the j-th linear combination in the j-th column of the matrix.

Theorem 2.4.1 Given a linear map f : V ÑW , once bases BV and BW of the vector spaces
V and W , respectively, are arbitrarily chosen, the association between f and its matrix A is
unique.

Proof. The uniqueness follows from the fact that both the coefficients that compose A and
their ordering are uniquely determined by the choice of the bases BV and BW . 2

Because of this theorem, the matrix A should be more rigorously written as ABW
BV
pfq,

because A depends on f , BV and BW . However, when it is not strictly needed to avoid
confusion, we will simply write the symbol A.

Remark on the importance of matrices in linear algebra

In general, in mathematics, when an object appears naturally in a theory, that object is the
source of many useful information. The matrix A associated to a linear map f through the
choice of bases is no exception to this non-written rule: in fact, we can more easily study the
properties of f through its associated matrix: for instance, we can establish if f is one-to-one,
onto or an isomorphism by studying A. More generally, matrix theory is fundamental to solve
efficiently systems of linear equations or to characterize algebraically geometric transformations
as, e.g., rotations. These are among the most important reasons why linear algebra of finitely
generated vector spaces is so tightly related to matrices.

Let us immediately see examples of how we can associate a linear map to a matrix and
how the choice of different bases affects the matrix.
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Example 2.4.1 Let f : R3 Ñ R2 be the linear map defined as follows

fppx, y, zqq “ px` y, x´ zq.

We know that the matrix A associated to f with respect to any choice of the bases of R3 and
R2 will have 2 rows given by vectors with 3 components and 3 columns given by vectors of 2
components. The entries of this matrix, instead, will depend on the choice of the bases.

For this first example, let us fix for simplicity the canonical basis C3 of R3 and C2 of R2.
Following the rules of how to associate a matrix to a linear map, the first thing to do is to
transform the 3 vectors of the canonical basis of R3:

$

’

&

’

%

fpp1, 0, 0qq “ p1` 0, 1´ 0q “ p1, 1q

fpp0, 1, 0qq “ p0` 1, 0´ 0q “ p1, 0q

fpp0, 0, 1qq “ p0` 0, 0´ 1q “ p0,´1q.

Now we should express these vectors as a linear combination of the basis vectors of R2 and
place the components on the columns of A. However, since we have selected the canonical
basis, the components that we get are exactly those appearing in the vectors. To convince
ourselves of this fact, let us consider, for instance, the third vector p0,´1q:

p0,´1q “ a13p1, 0q ` a23p0, 1q “ pa13, a23q,

so a13 “ 0 and a23 “ ´1.
Hence, in the particular case in which W is Fn and the basis BW is the canonical basis,

we can simply place the vectors of BV transformed by f on the columns of A (this is not true
for other vector spaces and other bases!). So,

A “

ˆ

1 1 0
1 0 ´1

˙

.

Example 2.4.2 Let f : V ÑW , V “ R3 and W “ R3 be the linear map of Example 2.3.1 of
section 2.3, i.e.

fppx, y, zqq “ px´ z, x` 2z, 2x´ yq.

We saw that, if we fix BV to be the canonical basis of R3, denoted with C3, then the images of
the basis vectors of C3 via f are:

$

’

&

’

%

fpp1, 0, 0qq “ p1, 1, 2q “ w1

fpp0, 1, 0qq “ p0, 0,´1q “ w2

fpp0, 0, 1qq “ p´1, 2, 0q “ w2

.

If we fix the basis BW to be again the canonical basis C3 of R3, then, as we know, the
components of w1, w2, w3 with respect to C3 will not change, hence the matrix associated to f
with respect to the canonical basis of R3, chosen both for the domain and the codomain of f ,
will simply be the matrix whose columns are given by the components of w1, w2, w3, in that
order, i.e.

AC3
C3pfq “

¨

˝

1 0 ´1
1 0 2
2 ´1 0

˛

‚.
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Example 2.4.3 Consider now the basis BV “ pp1, 1, 1q, p3, 0´1q, p´1, 1,´1qq of R3 examined
in Example 2.3.2 of section 2.3 and the linear map g : R3 Ñ R3 defined by imposing that the
vectors of BV are mapped to the same vectors as in the previous example:

$

’

&

’

%

gpp1, 1, 1qq “ p1, 1, 2q “ w1

gpp3, 0,´1qq “ p0, 0,´1q “ w2

gpp´1, 1,´1qq “ p´1, 2, 0q “ w3

.

In Example 2.3.2 we saw that the extension of g on the whole R3 was

gppx, y, zqq “

ˆ

x` 3z

4
,
3

2
y ´

x` 3z

8
, y ` z

˙

. (2.10)

If we fix the basis BW to be the canonical basis C3 of R3, then, as before, the components of
w1, w2, w3 with respect to C3 will not change, and so the matrix associated to g with respect
to the basis BV of V and C3 of W is

AC3
BV
pgq “

¨

˝

1 0 ´1
1 0 2
2 ´1 0

˛

‚.

It can be seen that AC3
C3pfq “ AC3

BV
pgq in spite of the fact that f and g are two different linear

maps, this is of course possible because of the fact that the matrices are written with respect
to different choices of the bases.

To verify this claim, let us write the matrix associated to g with respect to the bases
BV “ BW “ C3, as we did for the matrix associated to f . Since f ‰ g and, this time, the
choice of the basis is the same, we must find a different matrix.

Using the expression of g given by eq. (2.10) we find that the images of the vectors of the
canonical basis C3 are

$

’

&

’

%

gpp1, 0, 0qq “ p14 ,´
1
8 , 0q “ w11

gpp0, 0, 1qq “ p34 ,
3
2 , 1q “ w12

gpp0, 0, 1qq “ p34 ,´
3
8 , 1q “ w13

,

so

AC3
C3pgq “

¨

˚

˚

˝

1
4

3
4

3
4

´1
8

3
2 ´3

8

0 1 1

˛

‹

‹

‚

.

Coherently with what expected, we see that AC3
C3pfq ‰ AC3

C3pgq and that AC3
C3pgq ‰ AC3

BV
pgq.

Example 2.4.4 . Let us now compute the matrix associated to g when we fix the bases
BV “ BW “ B “ pp1, 1, 1q, p3, 0´ 1q, p´1, 1,´1qq. In this case we have to expand the vectors

$

’

&

’

%

gpp1, 1, 1qq “ p1, 1, 2q “ w1

gpp3, 0,´1qq “ p0, 0,´1q “ w2

gpp´1, 1,´1qq “ p´1, 2, 0q “ w3

.

on the basis B in order to find out the coefficients that will place in the matrix columns.

p1, 1, 2q “ a11p1, 1, 1q ` a21p3, 0,´1q ` a31p´1, 1,´1q “ pa11 ` 3a21 ´ 3a31, a11 ` a31, a11 ´ a21 ´ a31q,
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which corresponds to the system of linear equations

$

’

&

’

%

a11 ` 3a21 ´ 3a31 “ 1

a11 ` a31 “ 1 ùñ a11 “ 1´ a31

a11 ´ a21 ´ a31 “ 2

ðñ

$

’

&

’

%

a11 “ 1´ a31

a31 “
3
4a21

a21 “ ´
2
5

ðñ

$

’

&

’

%

a11 “
13
10

a21 “ ´
2
5

a31 “ ´
3
10

,

so, the first column of ABBpgq will be

C1 “

¨

˚

˚

˝

13
10

´2
5

´ 3
10

˛

‹

‹

‚

.

To compute the other two columns we have to solve the remaining two vector equations

p0, 0,´1q “ a12p1, 1, 1q` a22p3, 0,´1q` a32p´1, 1,´1q “ pa12` 3a22´ 3a32, a12` a32, a12´ a22´ a32q,

p´1, 2, 0q “ a13p1, 1, 1q` a23p3, 0,´1q` a33p´1, 1,´1q “ pa13` 3a23´ 3a33, a13` a33, a13´ a23´ a33q,

transforming them into systems of linear equations and solving them with respect to the
unknown coefficients. This task is left as a (very useful!) exercise and you can check that the
result is the following matrix:

ABBpgq “

¨

˚

˚

˝

13
10 ´ 3

10
11
10

´2
5

2
5

1
5

´ 3
10

3
10

9
10

˛

‹

‹

‚

.

Notice two things: the first is that, as it should be, ABBpgq ‰ AC3
B pgq ‰ AC3

C3pgq. The second
is that the canonical basis simplifies dramatically the computations, however, the matrix
associated to the canonical basis may not be the easiest one to deal with.

So, there is a sort of trade-off : associating a matrix to a linear map between Fn and Fm
with respect to their canonical bases is computationally very easy, however, there may be
other bases of Fn and Fm with respect to which the matrix associated to the same linear map
has an easier expression, e.g., it has many zeros.

Example 2.4.5 Every matrix can be identified with a matrix associated to a linear
map. Here we reverse the direction of the previous examples and we show how, given any
matrix, two vector spaces and the choice of a basis for each of them, we can recover the linear
map uniquely associated to the matrix.

Consider again V “W “ R3, the canonical bases on both spaces and the matrix

A “

¨

˝

1 1 2
0 1 0
0 0 3

˛

‚,

what if the linear map f : R3 Ñ R3 such that A “ AC3
C3pfq?
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To answer this question we have to recall that, having chosen the canonical basis of R3

interpreted as the range vector space of f , the entries of each columns of A are the images of
the canonical basis vectors by f , i.e.

$

’

&

’

%

fpp1, 0, 0qq “ p1, 0, 0q

fpp0, 1, 0qq “ p1, 1, 0q

fpp0, 0, 1qq “ p2, 0, 3q

.

Thus, we explicitly have the information about how f transforms the vectors of a basis (in
this case the canonical one), which, as we know, it is enough to find the expression of f on the
generic vector of the whole space.

Again, the coefficients of the generic vector v “ px, y, zq P R3 on the canonical basis are
px, y, zq, so

px, y, zq “ xp1, 0, 0q`yp0, 1, 0q`zp0, 0, 1q ùñ fppx, y, zqq “ xfp1, 0, 0q`yfp0, 1, 0q`zfp0, 0, 1q,

i.e. fppx, y, zqq “ xp1, 0, 0q ` yp1, 1, 0q ` zp2, 0, 3q “ px` y ` 2z, y, 3zq.
It is interesting to put A and f side-by-side:

fppx, y, zqq “ px` y ` 2z, y, 3zq vs. A “

¨

˝

1 1 2
0 1 0
0 0 3

˛

‚.

Think about how the coefficients appearing in the expression of f and in the matrix A are
related when the canonical basis is chosen in the domain and codomain of f. . .

If the bases are not the canonical ones, the computations are of course more complicated.
Let us choose the basis B of the Example 2.4.4 for both the domain and the codomain of
f . Then, by definition of A, we have that the elements of each column are the scalars that
appear in the decomposition of the vectors of B transformed by f as a linear combination of
the same vectors of B (because B is chosen as basis for both V and W !). Hence:

$

’

&

’

%

fp1, 1, 1q “ 1p1, 1, 1q ` 0p3, 0,´1q ` 0p´1, 1,´1q “ p1, 1, 1q

fp3, 0,´1q “ 1p1, 1, 1q ` 1p3, 0,´1q ` 0p´1, 1,´1q “ p4, 1, 0q

fp´1, 1,´1q “ 2p1, 1, 1q ` 0p3, 0,´1q ` 3p´1, 1,´1q “ p´1, 5´ 1q

.

Now we know the action of f on the vectors of the basis B, we extend f by linearity on the
whole R3 as usual. Using (2.8) we have:

px, y, zq “

ˆ

y

2
`
x` 3z

8

˙

p1, 1, 1q `
x´ z

4
p3, 0,´1q `

ˆ

y

2
´
x` 3z

8

˙

p´1, 1,´1q

so

fpx, y, zq “

ˆ

y

2
`
x` 3z

8

˙

fp1, 1, 1q `
x´ z

4
fp3, 0,´1q `

ˆ

y

2
´
x` 3z

8

˙

fp´1, 1,´1q

“

ˆ

y

2
`
x` 3z

8

˙

p1, 1, 1q `
x´ z

4
p4, 1, 0q `

ˆ

y

2
´
x` 3z

8

˙

p´1, 5,´1q

“

ˆ

5x´ z

4
, 3y ´

x` 7z

4
,
x` 3z

4

˙

.

This confirms that the same matrix can correspond to very different linear maps depending
on the basis with respect to which it is associated.
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2.5 Operations on linear maps and their matrix representa-
tions

As we have seen, given a linear map f : V ÑW an fixed arbitrarily a basis of V and a basis of
W , the association between f and its matrix A is natural: after all, only linear combinations
of suitable vectors appear in this association, and there is no more natural operation in linear
algebra than a linear combination!

Due to this remark, we expect that operations on linear maps can be easily translated into
analogous operations on the associated matrices. We are going to see that this is exactly what
happens, but to do that we need to define the vector space where linear maps live.

For this, we need to recall one of the first examples of vector spaces that we have introduced
in section 1.1.1, i.e. the infinite-dimensional functional space FpX,Eq, that is the set of all
functions from a set X to a vector space E endowed with the point-wise linear structure
defined by eqs. (1.5), (1.6).

A linear map f is a particular example of function, characterized by two facts:

• both its domain and range are vector spaces

• f has the property of passing through linear combinations in the sense that we have
defined.

So, linear maps constitute a subset of the vector space FpV,W q. Thanks to the linear behavior,
it is very easy to check that the set of linear maps is not only a subset of FpV,W q, but it is
actually a vector subspace of FpV,W q. To underline the linearity of the maps contained in
this vector subspace the letter F is changed to L, as formalized in the next definition.

Def. 2.5.1 (The vector space of linear maps) Given two vector spaces V and W over
the same field F, we indicate with LpV,W q the vector space given by all the linear maps
f : V ÑW endowed with the point-wise linear structure, i.e., if f, g P LpV,W q and λ P F,

f ` g : V ÑW, pf ` gqpxq :“ fpxq ` gpxq, for all x P V

λf : V ÑW, pλfqpxq :“ λfpxq, for all x P V.

Remarkably, the request of linearity for the functions living in LpV,W q reduce the dimension
of this vector space from infinity to a very precise finite number specified in the following
result.

Theorem 2.5.1 (Dimension of LpV,W q) It holds that

dimpLpV,W qq “ dimpV q ¨ dimpW q.

To resume, given two vector spaces V and W over the same field, we can always construct
another vector space, LpV,W q, whose dimension is the product of the dimensions of the vector
spaces V and W .

Let us now see how the operations of the linear structure of LpV,W q can be translated on
the matrices associated to the linear maps that belong to LpV,W q. As said at the beginning,
we expect a straightforward relation, and we will find exactly that.
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We start with the sum: consider

• f, g P LpV,W q

• dimpV q “ n, dimpW q “ m

• BV “ pvjq
n
j“1 is a basis of V and BW “ pwiq

m
i“1 is a basis of W

• A “ paijq and B “ pbijq are the matrices associated to the linear maps f and g,
respectively, with respect to the bases BV and BW .

If we apply the sum of f and g to the j-th vector of the basis BV we have, by definition of A
and B,

pf ` gqpvjq “ fpvjq ` gpvjq “
m
ÿ

i“1

aijwi `
m
ÿ

i“1

bijwi “
m
ÿ

i“1

paij ` bijqwi,

this computation implies that if we define the sum of the two matrices A and B as follows:

A`B :“ paij ` bijq
i“1,...,m
j“1,...,n ,

then A`B becomes the matrix associated to the linear map f ` g with respect to the bases
BV and BW ! The matrix A`B is obtained simply by adding together the entries of A and B
which have the same position, i.e. the same row and column. For instance:

A “

¨

˝

5 1 0
´1 0 1
0 ´3 1

˛

‚, B “

¨

˝

´4 0 2
´1 1 1
2 2 0

˛

‚ ùñ A`B “

¨

˝

1 1 2
´2 1 2
2 ´1 1

˛

‚.

Clearly, the zero element for the matrix sum is the null matrix, i.e. the matrix mˆ n with
all 0. So, the opposite matrix of A “ paijq

i“1,...,m
j“1,...,n is the matrix ´A “ p´aijq

i“1,...,m
j“1,...,n .

Repeating the same argument, it is easy to check (and it is a good exercise to actually do
it!) that if we define the product of a scalar λ P F by the matrix A as follows:

λA :“ pλaijq
i“1,...,m
j“1,...,n ,

then λA becomes the matrix associated to the linear map λf with respect to the bases BV
and BW . The matrix λA is obtained simply by multiplying by λ all the entries of A. For
example:

A “

¨

˝

5 1 0
´1 0 1
0 ´3 1

˛

‚ ùñ ´3A “

¨

˝

´15 ´3 0
3 0 ´3
0 9 ´3

˛

‚.

Now that we have the definition of the two linear operations, sum and product by a scalar,
on the set of matrices, we can ask ourselves if this set is a vector space with respect to these
operations. The answer is affirmative and it is convenient to introduce a special symbol for
this vector space.
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Def. 2.5.2 Given n,m P N, n,m ě 1,

Mm,npFq :“ tA : A is a mˆ n matrix with entries in Fu,

i.e., A has m rows, n columns and the scalars that appear in it belong to the field F.

• If F “ R, the matrix is said to be real, if F “ C, the matrix is said to be complex.

• If n “ m “ 1, then the matrix is just a scalar in F.

Theorem 2.5.2 Mm,npFq is a vector space over F of dimension n ¨m. Thus, given two vector
spaces V,W over F of dimension n and m, respectively, Mm,npFq is isomorphic to LpV,W q.

In particular, the vector space of endomorphisms of V , i.e. LpV q :“ LpV, V q is isomorphic
to MnpFq :“Mn,npFq, as they both have dimension n2.

Mm,npFq can be endowed with a special basis which is the analogous of the canonical
basis for matrices. This basis is given by the matrices Eij , which have all null entries,
except for the one with position pi, jq, i.e. belonging to the row i and the column j, whose
value is 1. For instance, in the vector space M5,4pRq, the matrix E2,3 is

E2,3 “

¨

˚

˚

˚

˚

˝

0 0 0 0
0 0 1 0
0 0 0 0
0 0 0 0
0 0 0 0

˛

‹

‹

‹

‹

‚

,

in fact, it is a matrix with 5 rows and 4 columns with all null entries, except for the entry
of position p2, 3q located at the intersection between the second row and the third column,
whose value is 1.

By direct computation, we have that

A “
m
ÿ

i“1

n
ÿ

j“1

aijEij .

Let us show explicitly this equality for a matrix of M2,2pRq:

A “

ˆ

a11 a12
a21 a22

˙

,

in this case the basis is given by:

E11 “

ˆ

1 0
0 0

˙

, E12 “

ˆ

0 1
0 0

˙

, E21 “

ˆ

0 0
1 0

˙

, E22 “

ˆ

0 0
0 1

˙

,

so

2
ÿ

i“1

2
ÿ

j“1

aijEij “
2
ÿ

j“1

a1jE1j `

2
ÿ

j“1

a2jE2j “ a11E11 ` a12E12 ` a21E21 ` a22E22

“

ˆ

a11 0
0 0

˙

`

ˆ

0 a12
0 0

˙

`

ˆ

0 0
a21 0

˙

`

ˆ

0 0
0 a22

˙

“

ˆ

a11 a12
a21 a22

˙

“ A.
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2.6 The matrix product

In this subsection we investigate the possibility to associate a matrix operation to the compo-
sition between linear maps. This is indeed possible and it will gives rise to the definition of
matrix product.

Besides this theoretical motivation, there is also a practical motivation to study matrix
product: this is the most important operation that is involved in the functioning of neural
networks, which are the building blocks of artificial intelligent systems.

Let us consider:

• three vector spaces U , V and W over the same field F

• dimpUq “ r, dimpV q “ n and dimpW q “ m

• BU “ pu1, . . . , urq “ pujq
r
j“1: basis of U

• BV “ pv1, . . . , vnq “ pvkq
n
k“1: basis of V

• BW “ pw1, . . . , wmq “ pwiq
m
i“1: basis of W

• f : V ÑW , g : U Ñ V , f ˝ g : U ÑW : linear maps

• we visualize the previous objects as follows:

Bases: BU BV BW

Vector spaces and linear maps: U V W
g

f˝g

f

• A: matrix associated to f with respect to BV and BW , A “ paikq
i“1,...,m
k“1,...,n PMm,npFq

• B: matrix associated to g with respect to BU and BV , B “ pbkjq
k“1,...,n
j“1,...,r PMn,rpFq

• C: matrix associated to f ˝ g with respect to BU and BW , C “ pcijq
i“1,...,m
j“1,...,r PMm,rpFq.

By definition, the matrix elements of A appear in the linear combination of the images via f
of the basis vectors belonging to BV with respect to BW , i.e.

fpvkq “
m
ÿ

i“1

aikwi, k “ 1, . . . , n,

instead, the matrix elements of B appear in the linear combination of the images via g of the
basis vectors belonging to BU with respect to BV , i.e.

gpujq “
n
ÿ

k“1

bkjvk, j “ 1, . . . , r.

Finally, the matrix elements of C appear in the linear combination of the images via f ˝ g of
the basis vectors belonging to BU with respect to BW , i.e.

pf ˝ gqpujq “
m
ÿ

i“1

cijwi, j “ 1, . . . , r.
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However,

pf ˝ gqpujq “ fpgpujqq “ f

˜

n
ÿ

k“1

bkjvk

¸

“
f linear

n
ÿ

k“1

bkjfpvkq

“

n
ÿ

k“1

bkj

m
ÿ

i“1

aikwi pwe can rearrange the finite sums as follows . . . q

“

m
ÿ

i“1

˜

n
ÿ

k“1

aikbkj

¸

wi

“

m
ÿ

i“1

cijwi, j “ 1, . . . , r

Notice that the coefficients cij of the matrix C associated to the linear map f ˝ g are expressed
as a sum of products of coefficients belonging to the matrices A and B, associated to the
linear maps f and g. It is therefore natural to define the matrix C as the product of A and B,
because, in this way, the matrix product will be automatically associated to the composition
of linear maps.

Def. 2.6.1 (Matrix product) Given the matrices

• A “ paikq
i“1,...,m
k“1,...,n PMm,npFq

• B “ pbkjq
k“1,...,n
j“1,...,r PMn,rpFq,

their product is the matrix C “ pcijq
i“1,...,m
j“1,...,r PMm,rpFq, where the coefficients are defined by

the formula

cij “
n
ÿ

k“1

aikbkj , i “ 1, . . . ,m, j “ 1, . . . , r. (2.11)

Theorem 2.6.1 If A P Mm,npFq and B P Mn,rpFq are the matrices associated to the linear
maps f : V ÑW and g : U Ñ V with respect to some fixed bases, then their product C “ AB
is the matrix associated to the linear map f ˝ g : U ÑW with respect to the same bases chosen
for U and W .

The matrix product is often called rows times columns product, let us see why. To
compute the matrix element cij , located at the intersection between the row i and the column
j of the matrix C, we must select:

• the row i from the matrix A, i.e. pai1, . . . , ainq

• the column j from the matrix B, i.e.

¨

˚

˝

b1j
...
bnj

˛

‹

‚

and the ‘multiply’ that row and that column as indicated in formula (2.11), i.e. adding the
product of the elements of the row and the column with the same explicit index, from 1 to n:

cij “ pai1, . . . , ainq

¨

˚

˝

b1j
...
bnj

˛

‹

‚

“ ai1b1j ` ¨ ¨ ¨ ` ainbnj .
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Notice that the matrix product makes sense if and only if the length of the rows of
A coincides with the length of the columns of B. If we think in terms of composition
of linear maps this is obvious: it is not possible to compose two functions unless the codomain
of the first coincides with the domain of the second!

The resulting product matrix C “ AB will then have a number of rows equal to that of
the matrix A and a number of columns equal to that of the matrix B.

In the mathematical jargon, when we have a behavior like the following

pmˆ nqpnˆ rq “ mˆ r,

we say that the intermediate index n is saturated.

Example 2.6.1 Multiply the matrices

A “

¨

˝

1 0 1 ´2
0 ´2 1 0
´1 0 ´1

2 3

˛

‚, B “

¨

˚

˚

˝

3 1
0 0
1 ´1
1
2 ´3

˛

‹

‹

‚

.

First of all we notice that the product can be computed because A is 3ˆ 4 and B is 4ˆ 2, so
C “ AB will be 3ˆ 2.

We will detail the computation only for two matrix elements and leave the others as useful
exercise:

c11 “
`

1 0 1 ´2
˘

¨

˚

˚

˝

3
0
1
1
2

˛

‹

‹

‚

“ 1 ¨ 3` 0 ¨ 0` 1 ¨ 1´ 2 ¨
1

2
“ 3,

c32 “
`

´1 0 ´1
2 3

˘

¨

˚

˚

˝

1
0
´1
´3

˛

‹

‹

‚

“ ´1 ¨ 1` 0 ¨ 0´
1

2
¨ p´1q ` 3 ¨ p´3q “ ´

19

2
,

calculating all the other entries, we find

C “

¨

˝

3 6
1 ´1
´2 ´19

2

˛

‚.

Since matrix product is associated to composition of linear functions, which is not a
commutative operation, i.e. it is not always true that f ˝g “ g˝f , whenever this composition
makes sense, it would be not coherent if the matrix product were commutative, i.e. if AB “ BA
for all matrices A and B for which the product makes sense.

Consider, for example, the linear maps f, g : R2 Ñ R2, fpv, wq “ p2v ` w, v ´ 3q and
gpx, yq “ px´ 1, y ` 1q, we have that their compositions give

pf ˝gqpx, yq “ fpgpx, yqq “ fpv “ x´1, w “ y`1q “ p2px´1q`py`1q, px´1q´3q “ p2x`y´1, x´4q

and

pg ˝ fqpv, wq “ gpfpv, wqq “ gpx “ 2v`w, y “ v´ 3q “ pp2v`wq´ 1, pv´ 3q` 1q “ p2v`w´ 1, v´ 2q,
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we can see that the second component of f ˝ g and g ˝ f are not the same, so f and g do not
commute. Accordingly, if we compute the matrices A and B associated to f and g, respectively,
with respect to the canonical basis of R2, to minimize the calculations, we find:

A “

ˆ

2 1
1 ´3

˙

, B “

ˆ

0 ´1
1 2

˙

,

and

AB “

ˆ

1 0
´3 ´7

˙

, BA “

ˆ

´1 3
4 ´5

˙

,

so, coherently with the fact that f ˝ g ‰ g ˝ f , we have confirmed that AB ‰ BA.

2.6.1 Particular cases of matrix product

We discuss here particular cases of matrix product which can help us highlighting some
important features of linear algebra and introducing new interesting objects.

1. Matrix product AB of the type pmˆ nqpnˆ 1q, i.e. r “ 1. In this case the matrix B
coincides with a column vector v with n rows belonging to Fn, the resulting matrix
C “ AB is of type pmˆ 1q, hence it is again a column vector w, but this time with m
rows and so it belongs to Fm:

AB “

¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

¨

˚

˝

v1
...
vn

˛

‹

‚

“ w “

¨

˚

˝

w1
...
wm

˛

‹

‚

.

2. Matrix product AB of the type p1 ˆ nqpn ˆ rq, i.e. m “ 1. In this case the matrix A
coincides with a row vector v with n columns belonging to Fn, the resulting matrix
C “ AB is of type p1ˆ rq, hence it is again a row vector w, but this time with r columns
and so it belongs to Fr:

AB “ pv1, . . . , vnq

¨

˚

˝

b11 . . . b1r
...

...
bn1 . . . bnr

˛

‹

‚

“ w “ pw1, . . . , wrq.

3. Matrix product AB of the type p1ˆ nqpnˆ 1q, i.e. m “ r “ 1. In this case, applying
the rules of the matrix product, we obtain a scalar, in fact:

AB “ pa1, . . . , anq

¨

˚

˝

b1
...
bn

˛

‹

‚

“ a1b1 ` . . . anbn P F.

This particular scalar is called the scalar product of the two vectors and it will be
studied in the course of Euclidean spaces. Notice that the matrix product allows us to
make sense, via the scalar product, of the product of two vectors, an operation otherwise
impossible to define. This shows another reason why it is interesting and useful to study
matrices!
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Important remark. The case (1.), i.e. the product of a matrix A P Mm,npFq times a
column vector v P Fn, deserves a particular attention. In fact, we have seen that this product
gives rise to a vector w P Fm and so it defines following the linear map

fA : Fn ÝÑ Fm
v ÞÝÑ fApvq :“ Av “ w.

As a nice and straightforward exercise, it can be checked that the matrix associated to fA
w.r.t. the canonical bases of Fn and Fm respectively, is exactly A!

In the following, we will assume that, in these circumstances, we can write equivalently:

fpvq “ w “ Av .

2.6.2 Transposition of a matrix

Another important operation on matrices is the swap between rows and columns, which bears
a particular name.

Def. 2.6.2 (Transpose of a matrix) Given the matrix A “ paikq
i“1,...,m
k“1,...,n P Mm,npFq, its

transpose is the matrix At “ pakiq
k“1,...,n
i“1,...,m PMn,mpFq in which the role of rows and columns of

A has been exchanged.

Explicitly:
¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

t

“

¨

˚

˝

a11 . . . am1
...

...
a1n . . . amn

˛

‹

‚

.

The properties of transposition are listed below.

Theorem 2.6.2 Let A,B PMm,npFq and λ P F, then:

1. the transposition is an involution: pAtqt “ A

2. the transposition is a linear operation:

pA`Bqt “ At `Bt, pλAqt “ λAt

3. if A PMm,npFq and B PMn,rpFq, then

pABqt “ BtAt,

so, the transposed of a matrix product is the product of the transposed matrices in the
reverse order, so it has dimension pr ˆ nqpnˆmq “ r ˆm.

Regarding the third property, notice that, dimensionally, the product of the transposed
matrices would not have matched because the inner dimensions do not agree: pnˆmqpr ˆ nq.
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2.7 The nullity and rank of a matrix

We recall that in section 2.2 we have defined the rank of a linear map f : V ÑW , dimpV q “ n
and dimpW q “ m, as the dimension of its image Impfq, which is the vector subspace of W
given by the images fpvq of the all the vectors v P V via f .

If we fix bases BV of V and BW of W , then we can associate f to a matrix A PMm,npFq
and we can transform any vector v P V into a column vector belonging to Fn whose entries
are the components of v P V with respect to the basis BV .

The vector fpvq “ w PW can be decomposed on the basis BW and its components form a
column vector w that coincides with the matrix product Av:

fpvq “ w PW ðñ Av “

¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

¨

˚

˝

v1
...
vn

˛

‹

‚

“ w P Fm.

For this reason, we define the image of A as follows.

Def. 2.7.1 (Image and rank of a matrix) The image of a matrix A PMm,npFq is

ImpAq “ tw P Fm : Dv P Fn : Av “ wu.

The rank of A, written rankpAq, is the dimension of ImpAq.

We are now going to show that the image of A can be characterized in a more explicit way.
The key to do that is contained in the following computation:

Av “

¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

¨

˚

˝

v1
...
vn

˛

‹

‚

“

¨

˚

˝

a11v1 ` . . .` a1nvn
...

am1v1 ` . . .` amnvn

˛

‹

‚

“

¨

˚

˝

a11v1
...

am1v1

˛

‹

‚

` . . .`

¨

˚

˝

a1nvn
...

amnvn

˛

‹

‚

“

¨

˚

˝

a11
...

am1

˛

‹

‚

v1 ` . . .`

¨

˚

˝

a1n
...

amn

˛

‹

‚

vn

“ C1v1 ` ¨ ¨ ¨ ` Cnvn,

where, for all j “ 1, . . . , n, Cj represents the j-th column of A:

Cj “

¨

˚

˝

a1j
...

amj

˛

‹

‚

, Cj P Fm.

To resume, we have proven that

Av “ C1v1 ` . . .` Cnvn,

i.e., the image of a vector v via A can be written as a linear combination of the columns of A
with coefficients given by the components of the vector v itself. So, by letting v vary in V , we
can reconstruct ImpAq through linear combinations of the columns of A. We formalize what
we have found in the following theorem.
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Theorem 2.7.1 ImpAq “ spanpC1, . . . , Cnq.

So, the rank of pAq, i.e. the dimension of ImpAq, is the number of linearly independent
columns of A. The following theorem, that we report without proof, says that this number
characterized the rank of the linear map associated to A.

Theorem 2.7.2 The rank of a linear map f : V ÑW coincides with the number of linearly
independent columns of the matrix A associated to f with respect to any choice of bases of V
and W .

Since for a matrix A PMm,npFq the number of columns is n, rankpAq ď n. However, we can
give a more precise information about the rank of A thanks to the following theorem, which
states a very surprising property of matrices.

Theorem 2.7.3 Given a matrix A PMm,npFq, the number of its linearly independent rows is
equal to the number of its linearly independent columns, hence

rankpAq ď mintm,nu.

The proof of this theorem would take us too much time, so we omit it, but it is worthwhile
highlighting how counter-intuitive this result is: if a matrix has 109 columns and 3 rows, then
it has at best 3 linearly independent columns!

Since the transpose matrix At is A with row and columns exchanged, the next result
follows immediately.

Corollary 2.7.1 Given a matrix A PMm,npFq, rankpAq “ rankpAtq.

Inspired by how we have defined the rank of a matrix, we define its kernel and nullity
analogously.

Def. 2.7.2 (Kernel and nullity of a matrix) Given a matrix A PMm,npFq, its kernel and
nullity are

kerpAq :“ tv P Fn : Av “ 0Fmu, nullpAq :“ dimpkerpAqq.

The following theorem guarantees that this definition is coherent with that of kernel of a linear
map.

Theorem 2.7.4 Given a matrix A PMm,npFq, kerpAq and kerpfq are isomorphic, where f is
any linear map associated to A, independently of the choice of the bases of Fn and Fm. Hence,
nullpAq “ nullpfq.

Thanks to this result, the nullity`rank theorem can be applied on matrices: given A PMm,npFq,

n “ nullpAq ` rankpAq.

So,

• if n ď m and rankpAq “ n, then nullpAq “ 0 and A represents a one-to-one linear map

• if n “ m and rankpAq “ n, i.e. A is full rank, then nullpAq “ 0 and rankpAq “ n, so A
represents an isomorphism.

The case n “ m is that of a matrix A associated to an endomorphisms f : V Ñ V . A is called
a square matrix because the table of its scalar entries forms a square.
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Example 2.7.1 The matrix

A “

¨

˚

˚

˝

1 2 3
0 1 4
0 0 1
2 0 0

˛

‹

‹

‚

belongs to M4,3pRq and so it represents a linear map f : R3 Ñ R4 with respect to any bases of
R3 and R4 that we may choose.

The nullity`rank theorem applied to A gives

3 “ nullpAq ` rankpAq,

and we can already say that rankpAq is at best 3 because A has 3 columns. Let’s check if the
columns are linearly independent or not. Given α, β, γ P R, the generic linear combination of
the column vectors is

αp1, 0, 0, 2q ` βp2, 1, 0, 0q ` γp3, 4, 1, 0q “ pα` 2β ` 3γ, β ` 4γ, γ, 2αq.

The vector equation
pα` 2β ` 3γ, β ` 4γ, γ, 2αq “ p0, 0, 0, 0q

is equivalent to the system

$

’

’

’

’

&

’

’

’

’

%

α` 2β ` 3γ “ 0

β ` 4γ “ 0

γ “ 0

2α “ 0

ðñ α “ β “ γ “ 0,

this shows the three column vectors are linearly independent and so rankpAq “ 3. By the
nullity`rank theorem we have that nullpAq “ 0, and so every linear map f : R3 Ñ R4 whose
associated matrix is A will be one-to-one but not onto.
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2.8 Square matrices associated to endomorphisms

Endomorphisms play a particularly important role in linear algebra, so it is worth underlying
some of their features. Let f, g : V Ñ V , dimpV q “ n, be two endomorphisms and A,B their
associated matrices, respectively, with respect to any bases of V .

• We denote with MnpFq “Mn,npFq the vector space of square matrices with n rows and
columns and we say that n is the order or dimension of the square matrix.

• All the elements of A PMnpFq of the type ajj , j “ 1, . . . , n, form the diagonal of A.

• The matrix products AB and BA are always defined for all A,B PMnpFq, in fact the
inner dimensions always match, because pnˆ nqpnˆ nq, so AB,BA PMnpFq.

• The null element of MnpFq with respect to the operation of sum is the zero matrix 0n,
which has all null entries. It represents the null linear map f : V Ñ V , v ÞÑ 0V .

• The unit element of MnpFq with respect to the operation of matrix product is the
so-called identity matrix:

In :“

¨

˚

˚

˚

˚

˝

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

˛

‹

‹

‹

‹

‚

,

so In has 0 everywhere and all 1 along its diagonal. It represents the identity map idV ,
in fact, for all v P Fn

Inv “

¨

˚

˚

˚

˚

˝

1 0 . . . 0

0 1
. . .

...
...

. . .
. . . 0

0 . . . 0 1

˛

‹

‹

‹

‹

‚

¨

˚

˝

v1
...
vn

˛

‹

‚

“

¨

˚

˝

1 ¨ v1 ` 0 ¨ v2 ` ¨ ¨ ¨ ` 0 ¨ vn
...

0 ¨ v1 ` 0 ¨ v2 ` ¨ ¨ ¨ ` 1 ¨ vn

˛

‹

‚

“

¨

˚

˝

v1
...
vn

˛

‹

‚

“ v.

• If we multiply the identity matrix by a scalar λ P F we obtain a so-called scalar matrix:

λIn “

¨

˚

˚

˚

˚

˝

λ 0 . . . 0

0 λ
. . .

...
...

. . .
. . . 0

0 . . . 0 λ

˛

‹

‹

‹

‹

‚

,

λIn corresponds to the endomorphism fpvq “ λv for all v P Fn with respect to the
canonical bases of Fn, these endomorphisms play a crucial role in linear algebra.

• More generally, we call A PMnpFq a diagonal matrix if the only non-null entries of A
are located on its diagonal and we write

A “ diagpa11, . . . , annq,

so In and λIn are special diagonal matrices with all 1 or λ, respectively, on the diagonal.
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• The identity matrix and all scalar matrices commute with all other matrices.

• Any two diagonal matrices commute with each other, but it is not true that diagonal
matrices commute with any other matrix, e.g.

ˆ

0 2
1 ´1

˙ˆ

2 0
0 ´1

˙

“

ˆ

0 ´2
2 1

˙

, but

ˆ

2 0
0 ´1

˙ˆ

0 2
1 ´1

˙

“

ˆ

0 4
´1 1

˙

.

• A matrix A P MnpFq is called upper triangular or lower triangular if it has the
following form, respectively:

A “

¨

˚

˚

˚

˝

a11 a12 . . . a1n
0 a22 . . . a2n
...

. . .
. . .

...
0 . . . 0 ann

˛

‹

‹

‹

‚

,

A “

¨

˚

˚

˚

˚

˝

a11 0 . . . 0

a21 a22
. . .

...
...

. . .
. . . 0

an1 . . . ann´1 ann

˛

‹

‹

‹

‹

‚

,

i.e. if the only non-null elements of A are those contained in its diagonal and in the
entries above it (upper triangular), or below it (lower triangular).

• In R and C the cancellation law holds: the product of two real or complex scalars a, b is
0 if and only if one of them, or both of them, is 0. For matrices this is not guaranteed:
given two matrices A,B P MnpFq it may happen that AB “ 0n, but neither A nor B
are the null matrix! For instance, by performing the matrix product of the following two
matrices (do it. . . ), we obtain:

ˆ

2 ´1
´4 2

˙ˆ

1 3
2 6

˙

“

ˆ

0 0
0 0

˙

“ 02.

Thus, MnpFq does not have the cancellation law! Non-null matrices A,B PMnpFq that
satisfy AB “ 0n are called divisors of zero.

• Another peculiar behavior of square matrices is that there may be non-null matrices
which become null when elevated to a certain power r (i.e. when they are multiplied by
themselves r times), something that cannot happen in R or C.

If A PMnpFq is such that Ar “ 0n, then A is called nilpotent of order r. For instance

A “

¨

˝

0 1 0
0 0 1
0 0 0

˛

‚, A2 “

¨

˝

0 0 1
0 0 0
0 0 0

˛

‚, A3 “ 03 ùñ A : nilpotent of order 3.

• Importantly, for a square matrix it makes sense to talk about its inverse: to introduce
the concept of matrix inversion, let us recall that if a P R, a ‰ 0, then the inverse of a is
the real number b such that ab “ ba “ 1, and we write b “ a´1 “ 1{a.
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Since the unit with respect to the matrix product is In we say that a matrix B PMnpFq
is the inverse of a non-null matrix A PMnpFq if

AB “ BA “ In,

and we write B “ A´1. Differently from R, not all square matrices admit an inverse. In
fact, A PMnpFq represents an endomorphism and not all endomorphisms are invertible
because only one-to-one and onto endomorphisms, i.e. isomorphisms, have an inverse!

A class of matrices that do not admit inverse is given by divisors of zero. To understand
why, suppose that two non-null matrices A,B PMnpFq, are divisors of zero, i.e. AB “ 0n.
If there exists A´1 PMnpFq such that A´1A “ In, then

B “ InB “ pA
´1AqB “ A´1pABq “ A´10n “ 0n,

which contradicts the fact that B ‰ 0n, so A cannot be invertible. We can repeat the
same argument by exchanging A with B and we find that also B cannot be invertible.
We deduce that divisors of zero cannot be invertible.

• An endomorphism f : V Ñ V which is also an isomorphism is called an automorphism
of V . The set of automorphisms of a vector space V is denoted with AutpV q.

• The set of invertible matrices of MnpFq is denoted with GLpn,Fq and it is called the
general linear group5.

• Thanks to the nullity`rank theorem, A P MnpFq belongs to GLpn,Fq if and only if it
has full rank, i.e. if rankpAq “ n.

For square matrices, one can define a very important quantity called determinant, which plays
a fundamental role in the analysis of endomorphisms and systems of linear equations. We will
dedicate the next section to this concept.

5The reason why it is called in this way is that GLpn,Fq forms a group with respect to matrix product. In
general, a group is set G endowed with an associative operation called product, ¨ : GˆGÑ G, for which it
exists a neutral element e P G, i.e. e ¨g “ g ¨ e “ g for all g P G, and an inverse element g´1, i.e. g´1

¨g “ g ¨g´1,
for all g P G.
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2.9 The determinant of a square matrix and its properties

The determinant of a square matrix A “ paijqi,j“1,...,n PMnpFq is a scalar that belongs to F,
written either as detpAq or |A|, that can be defined through a very general, yet very abstract
formula which deals with permutations, i.e. one-to-one and onto maps over a set of indices.

This definition is computationally useless because, even with modern days computers, one
would need years to compute the determinant of even a very small matrix by translating that
formula into an algorithm. Plus, when the size of the matrix increases, the computational
time becomes soon enormous (literally. . . for a matrix of order 30, the time needed to compute
its determinant using the algorithm corresponding to the defining formula would be around
10000 times the age of the universe, which is «13.7 billion years!).

Why then even bother considering such a formula? The answer is that, thanks to this
formula, it is relatively easy to prove several important properties of the determinant. So, even
though it is never used in practice, it is of great theoretical importance.

We do not have the time to go through the proofs of the determinant properties, hence we
will do not introduce its defining formula (because we would also need to spend time discussing
permutations). What we will do instead is to redefine the determinant through a formula,
due to the French polymath Pierre Simon de Laplace (1749-1827), which is computationally
much more useful, and then we will just quote its properties, replacing their proofs by concrete
examples.

We need a few definitions that will make our next discussion much easier.

Def. 2.9.1 Consider a square matrix A “ paijqi,j“1,...,n PMnpFq.

• Aij is the matrix belonging to Mn´1pFq, obtained from A by removing the i-th row and
the j-th column

• detpAijq “ |Aij | is called the pi, jq-minor of the matrix A. In the particular case of
Aij PM1pFq we set detpAijq “ Aij

• p´1qi`j detpAijq “ p´1qi`j |Aij | is called the cofactor of the element aij P A. The
matrix whose entries are the cofactors of the elements of A is called cofactor matrix
and it is indicated with C:

C “ pcijqi,j“1,...,n, cij “ p´1qi`j |Aij |.

Example 2.9.1 Given the matrix

A “

¨

˝

1 0 4
0 ´2 1
´1 0 0

˛

‚

the matrix A23 is obtained from A by removing the second row and the third column, i.e.

A “

¨

˝

1 0 4
0 ´2 1
´1 0 0

˛

‚ ùñ A23 “

ˆ

1 0
´1 0

˙

.

We cannot write neither the p2, 3q-minor of A nor the cofactor of the element a23 and the
cofactor matrix because we need to know how to compute the determinant. The following
theorem gives a the most used way to calculate the determinant of a matrix.
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Theorem 2.9.1 (Laplace development along a row or a column) The determinant of
A PMnpFq is the scalar detpAq P F which can be computed as follows:

detpAq “
n
ÿ

k“1

p´1qi`kaik|Aik|

or as follows:

detpAq “
n
ÿ

k“1

p´1qk`jakj |Akj |

The former formula is called Laplace development of the determinant along the i-th row, the
latter is called Laplace development of the determinant along the j-th column.

In words, Laplace theorem says that the determinant of a square matrix can be computed:

• by adding all the cofactors of the elements aik, where i is a fixed row index and k is the
sum index, running from column 1 to column n, each one multiplied by aik

• by adding all the cofactors of the elements akj , where j is a fixed column index and k is
the sum index, running from row 1 to row n, each one multiplied by akj .

Of course, if aik, or akj , is null, there is no need to compute the minor associated to it, because,
independently of its value, the corresponding term in the sum will be 0. Thanks to this
observation we have this golden rule for the optimal application of the Laplace formulae: it
is convenient to compute the determinant by performing a Laplace development
along either the row or the column which has the largest amount of zeros in it!

In the next explicit examples we show how to use the Laplace formula for a square matrix
of order 2,3 and 4, this should be enough to understand how to use it in general.

Example 2.9.2 Determinant of a 2 ˆ 2 generic matrix. Let us consider the generic 2 ˆ 2
matrix

A “

ˆ

a11 a12
a21 a22

˙

,

we develop the determinant of A along, e.g., the first row

detpAq “ p´1q1`1a11|A11| ` p´1q1`2a12|A12| “ a11|A11| ´ a12|A12|.

|A11| is the determinant of the matrix p2´ 1q ˆ p2´ 1q “ 1ˆ 1 obtained from A by deleting
its first row and first column, i.e. |A11| “ a22.

Likewise, |A12| is the determinant of the matrix 1ˆ 1 obtained from A by deleting its first
row and second column, i.e. |A12| “ a21.

So,
detpAq “ a11a22 ´ a12a21,

i.e. the determinant of a 2ˆ 2 matrix is obtained by multiplying together the elements of the
diagonal and then subtracting the product of the off-diagonal elements.

In order to have a numerical example, consider

A “

ˆ

2 ´1
3 1

2

˙

ùñ detpAq “ 2 ¨
1

2
´ p´1q ¨ 3 “ 1` 3 “ 4.
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Example 2.9.3 Determinant of a 3ˆ 3 generic matrix. The generic 3ˆ 3 matrix is

A “

¨

˝

a11 a12 a13
a21 a22 a23
a31 a32 a33

˛

‚,

this time, we arbitrarily choose to develop the determinant along the first column:

detpAq “ p´1q1`1a11|A11| ` p´1q2`1a21|A21| ` p´1q3`1a31|A31|

“ a11|A11| ´ a21|A21| ` a31|A31|,

but

|A11| “ det

ˆ

a22 a23
a32 a33

˙

“ a22a33 ´ a23a32,

|A21| “ det

ˆ

a12 a13
a32 a33

˙

“ a12a33 ´ a13a32,

|A31| “ det

ˆ

a12 a13
a22 a23

˙

“ a12a23 ´ a13a22,

so

detpAq “ a11a22a33 ´ a11a23a32 ´ a21a12a33 ` a21a13a32 ` a31a12a23 ´ a31a13a22.

In order to have a numerical example, consider

A “

¨

˝

´1 2 0
3 4 1
0 ´2 0

˛

‚

following the golden rule provided above, it is convenient to develop the determinant either
along the third row or the third column, let us do both so we can confirm that the result is
the same.

Development along the third row:

detpAq “ p´1q3`2p´2q|A32| “ 2|A32| “ 2

ˇ

ˇ

ˇ

ˇ

´1 0
3 1

ˇ

ˇ

ˇ

ˇ

“ 2p´1 ¨ 1´ 0 ¨ 3q “ ´2.

Development along the third column:

detpAq “ p´1q2`3 ¨ 1 ¨ |A23| “ ´|A23| “ ´

ˇ

ˇ

ˇ

ˇ

´1 2
0 ´2

ˇ

ˇ

ˇ

ˇ

“ ´pp´1q ¨ p´2q ´ 2 ¨ 0q “ ´2.

Example 2.9.4 Determinant of a 4ˆ 4 numerical matrix. Consider the matrix

A “

¨

˚

˚

˝

2 0 1 1
´1 3 0 2
0 2 ´3 0
1 4 ´1 0

˛

‹

‹

‚

,
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it is convenient to develop the determinant either along the third row or along the fourth
column, we choose arbitrarily to do it along the third row:

detpAq “ p´1q3`2 ¨ 2 ¨ |A32| ` p´1q3`3p´3q|A33| “ ´2

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1
´1 0 2
1 ´1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

´ 3

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 0 1
´1 3 2
1 4 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

,

we develop the first minor along the second column, which has only unitary coefficients:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 1 1
´1 0 2
1 ´1 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p´1q1`2 ¨ 1 ¨

ˇ

ˇ

ˇ

ˇ

´1 2
1 0

ˇ

ˇ

ˇ

ˇ

` p´1q3`2p´1q

ˇ

ˇ

ˇ

ˇ

2 1
´1 2

ˇ

ˇ

ˇ

ˇ

“ ´p´2q ` 5 “ 7,

we develop the second minor along the first row:

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

2 0 1
´1 3 2
1 4 0

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

“ p´1q1`1 ¨2¨

ˇ

ˇ

ˇ

ˇ

3 2
4 0

ˇ

ˇ

ˇ

ˇ

`p´1q1`3 ¨1¨

ˇ

ˇ

ˇ

ˇ

´1 3
1 4

ˇ

ˇ

ˇ

ˇ

“ 2p´8q`1¨p´7q “ ´16´7 “ ´23,

in conclusion
detpAq “ ´2 ¨ 7´ 3 ¨ p´23q “ ´14` 69 “ 55.

It can be seen in the previous examples that the signs to put in front of the minors in order
to create the cofactors have a regular pattern. Since we will not consider square matrices of
order greater than 4, we hereby show this pattern for 4ˆ 4 matrices and we will implicitly use
it from now on:

¨

˚

˚

˝

` ´ ` ´

´ ` ´ `

` ´ ` ´

´ ` ´ `

˛

‹

‹

‚

.

The pattern show above can be used to also for matrices 2ˆ 2 and 3ˆ 3 just by considering
the first two (three) rows and columns (respectively).

Let us immediately state the relation between the determinant of the matrix associated to
an endomorphism and its inversibility, so that we can understand why the determinant is so
important in linear algebra.

Theorem 2.9.2 The endomorphism f : V Ñ V is invertible if and only the matrix A
associated to f with respect to any choice of bases of V is invertible and this happens if and
only if detpAq ‰ 0.

Recalling that a matrix A PMnpFq is inversible if and only if it has full rank, the following
corollary follows immediately.

Corollary 2.9.1 A matrix A PMnpFq has full rank if and only if detpAq ‰ 0.

We collect in the following theorem the most important properties of the determinant, which
will be very useful in the the theory of systems of linear equations.
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Theorem 2.9.3 (Properties of the determinant) Let A,B PMnpFq and λ, µ P F.

1. detpAq “ detpAtq.

2. If A is an upper or lower triangular matrix, and so, in particular, if it is a diagonal
matrix, then

detpAq “ a11a22 ¨ ¨ ¨ ann.

3. detpλAq “ λn detpAq, so the determinant is not a linear function of matrices because it
is not homogeneous. Moreover, in general, the determinant it is not additive either, i.e.
detpA`Bq ‰ detpAq ` detpBq.

4. The only linear behavior of det is with respect to linear combinations of rows or columns,
i.e., if the k-th row Rk of A is written as Rk “ λRi ` µRj, i, j P t1, . . . , nu, then

detpAq “ λ det

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

R1

R2
...
Ri
...
Rn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

` µdet

¨

˚

˚

˚

˚

˚

˚

˚

˚

˝

R1

R2
...
Rj
...
Rn

˛

‹

‹

‹

‹

‹

‹

‹

‹

‚

.

Analogously, if the k-th column Ck of A is written as Ck “ λCi ` µCj, i, j P t1, . . . , nu,
then

detpAq “ λ det
´

C1 C2 ¨ ¨ ¨ Ci ¨ ¨ ¨ Cn

¯

`µdet
´

C1 C2 ¨ ¨ ¨ Cj ¨ ¨ ¨ Cn

¯

.

5. If the matrix B is obtained by A by exchanging two rows or two columns, then we have
detpBq “ ´ detpAq.

6. From the previous property, it follows that if A has two identical rows or two identical
columns, then detpAq “ 0 pin fact, if we exchange the identical rows por columnsq, the
matrix remains the same, but the determinant switches sign, so detpAq “ ´detpAq,
which implies detpAq “ 0q.

7. If A has at least a null row or a null column, then detpAq “ 0.

8. The determinant of A does not change if we sum to a row por a columnq of A a linear
combination of the remaining ones, i.e. if we replace the generic row Ri, i P t1, . . . , nu,
with this one

R1i “ Ri `
ÿ

kPt1,...,nu, k‰i

λkRk, λk P F

or the generic column Cj, j P t1, . . . , nu, with this one

C 1j “ Cj `
ÿ

kPt1,...,nu, k‰j

λkCk, λk P F.
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9. The previous two properties imply immediately that if A has two linearly dependent rows
(or two columns), then detpAq “ 0.

In fact, suppose that Rj “ λRi, λ ‰ 0, then using 8. we have that detpAq does not
change if we replace Ri with the row

R1i “ Ri ´
1

λ
Rj `

ÿ

kPt1,...,nu, k‰i,j

0 ¨Rk “ Ri ´Ri “ 0,

so, 7. implies detpAq “ 0 because one row is null. Of course, an analogous argument
can be repeated for columns.

10. Binet’s theorem:
detpABq “ detpAq detpBq.

11. If A is invertible, then

detpA´1q “
1

detpAq
.

12. If B is invertible, then
detpBAB´1q “ detpAq,

the operation BAB´1 is called conjugation of the matrix A by the matrix B, so
the previous property established the invariance of the determinant with respect to
conjugation.

2.9.1 Inversion of a matrix

Since the non-nullity of determinant determines when a matrix is invertible, it is not so
surprising that the determinant appears also in the formula for computing the inverse of a
matrix. Before giving the formula we need a definition.

Def. 2.9.2 (Adjugate matrix) Given A P MnpFq, its adjugate matrix, indicated with
adjpAq, is the transpose of the cofactor matrix, i.e.

adjpAq “ Ct, adjpAqij “ pp´1qi`j |Aij |q
t
i,j “ pp´1qi`j |Aji|qi,j

For example, given a generic 2ˆ 2 matrix:

A “

ˆ

a11 a12
a21 a22

˙

,

the cofactors are
c11 “ `a22, c12 “ ´a21, c21 “ ´a12, c22 “ `a11,

so the cofactor matrix is

C “

ˆ

a22 ´a21
´a12 a11

˙

,

and thus the adjugate matrix is

adjpAq “ Ct “

ˆ

a22 ´a12
´a21 a11

˙

.
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The shape of the adjugate matrix 2ˆ 2 can be better visualized if we write the original matrix
as follows

A “

ˆ

a b
c d

˙

ùñ adjpAq “

ˆ

d ´b
´c a

˙

.

Let us now see how the inverse of a matrix with non null determinant can be computed.

Theorem 2.9.4 (Computation of the inverse of a matrix) Given a matrix A PMnpFq
with detpAq ‰ 0, its inverse is given by

A´1 “
adjpAq

detpAq
.

The computation of the inverse of a matrix is a very time consuming operation and, nowadays,
we perform it with computers. However, it must be kept in mind that, whenever it is possible,
it should be avoided to inverse a large order square matrix with and use different strategies.

Let us see an example of computation of the inverse of a 3ˆ 3 matrix to see how many
operations are involved. We consider a matrix that we have analyzed in the previous section:

A “

¨

˝

´1 2 0
3 4 1
0 ´2 0

˛

‚,

because we have already computed its determinant to be detpAq “ ´2 ‰ 0, so A can be
inverted. The cofactors of A are

c11 “ `det

ˆ

4 1
´2 0

˙

“ 2, c12 “ ´det

ˆ

3 1
0 0

˙

“ 0, c13 “ `det

ˆ

3 4
0 ´2

˙

“ ´6,

c21 “ ´det

ˆ

2 0
´2 0

˙

“ 0, c22 “ `det

ˆ

´1 0
0 0

˙

“ 0, c23 “ ´det

ˆ

´1 2
0 ´2

˙

“ ´2,

c31 “ `det

ˆ

2 0
4 1

˙

“ 2, c32 “ ´det

ˆ

´1 0
3 1

˙

“ 1, c33 “ `det

ˆ

´1 2
3 4

˙

“ ´10,

so

C “

¨

˝

2 0 ´6
0 0 ´2
2 1 ´10

˛

‚

and

A´1 “
Ct

detpAq
“ ´

1

2

¨

˝

2 0 2
0 0 1
´6 ´2 ´10

˛

‚“

¨

˝

´1 0 ´1
0 0 ´1

2
3 1 5

˛

‚.

As a useful exercise, you can check that AA´1 “ A´1A “ I3.

In the next chapter, we will exploit what we have learned about vector spaces and linear
maps to solve linear systems efficiently.
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2.10 A practical application of matrix theory: the early days
of cryptography

When we want to send a secret message to someone, we need to modify its content in order to
be readable only by the receiver.

In order to do that, since the English alphabet is composed by 26 letters, we start by
assigning to every letter of the alphabet an integer number between 0 and 25:

• A becomes 0

• B becomes 1

• . . .

• Z becomes 25.

The message then is encrypted by changing the number associated to each letter with other
one on the basis of any arbitrary rule.

For example, we can change the number n with n` 3, so A will be encrypted by 3, B by
4, and so on. There is of course a problem when we reach 23 because 23+3=26ą 25. We can
easily remedy this problem by using the convention that, if n` 3 ą 25, then we replace n` 3
by its cyclic extension, as depicted in Figure 2.2.

Figure 2.2: The cyclic extension.

To compute the cyclic extension corresponding to n`3 one can follow this very simple rule:
divide n` 3 by 26, then the remainder of the division is its cyclic extension. For example:

• X has position n “ 23, so n` 3 “ 26 and 26 “ 1 ¨ 26` 0, so X will be encrypted by 0

• Y has position n “ 24, so n` 3 “ 27 and 27 “ 1 ¨ 26` 1, so Y will be encrypted by 1

• Z has position n “ 25, so n` 3 “ 28 and 28 “ 1 ¨ 26` 2, so Z will be encrypted by 2.

With this encryption rule the word ‘HELLO’ will undergo this encryption:

7 4 11 11 14 ÞÝÑ 10 7 14 14 17,

which the received will read in letters as ‘KHOOR’. If the the receiver knows the encryption
code (or key), the reconstruction the original word will be operated by k ÞÑ k ´ 3 together
with the cyclic extension.
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Clearly, this encryption is very basic and simple to decipher, for this reason more refined
techniques have been developed. The standard nowadays consists in having to find the
decomposition of a very large number n into the product of prime numbers, something that
even for a supercomputer would take a huge amount of time.

Instead of entering in the quite complicated details of this encryption algorithm, we discuss
an intermediate one, which has the advantage of showing the usefulness of matrices.

Let us consider again the basic encryption algorithm discussed above and, instead of
considering each letter one by one, we join together two of them in a couple, with the
convention that if we remain with only one letter alone, we add Z to form a couple. So, for
example,

HELLO becomes HE LL OZ,

which, codified in numbers with the rule n ÞÑ n` 3 with cyclic extension becomes

7 4 11 11 14 2.

The reason why we take couple is to have the possibility to build column vectors using the
two numbers of the couple as follows

X1 “

ˆ

7
4

˙

, X2 “

ˆ

11
11

˙

, X3 “

ˆ

14
2

˙

,

The core of this encryption method is the selection of an invertible 2ˆ 2 matrix, e.g.

M “

ˆ

2 1
1 ´1

˙

, with inverse M´1 “
1

3

ˆ

1 1
1 ´2

˙

.

By matrix multiplication we can scramble the previous vectors, obtaining

X̃1 “MX1 “

ˆ

18
3

˙

, X̃2 “MX2 “

ˆ

33
0

˙

, X̃3 “MX3 “

ˆ

30
12

˙

,

and we use the cyclic extension to bring back to the set t0, . . . , 25u the numbers that fell out
of it6, so: 33 “ 1 ¨ 26` 7 and 30 “ 1 ¨ 26` 4, so

X̃1 “

ˆ

18
3

˙

, X̃2 “

ˆ

7
0

˙

, X̃3 “

ˆ

4
12

˙

.

Finally, we turn back to letters and the novel encryption of HELLO will be

PA EX BJ.

To decode the encrypted word and understand the original one that has been sent, the receiver
must first apply the inverse matrix M´1 to each pair, in fact, using the fact that X̃j “MXj

we get
Xj “M´1X̃j “M´1MXj “ I2Xj “ Xj .

Finally, the receiver must undo the original encryption with the operation k ÞÑ k ´ 3 and
using the cyclic extension if needed. This encryption method is more difficult to be deciphered
than the previous one and, of course, it becomes more and more efficient as we increase the
dimension of the matrix M , which, of course, implies also to adapt the convention of adding a
letter at the end of the word correspondingly to the new dimension of the matrix.

6If we had found a negative number, e.g. -15, that would not have been a problem, because in our case the
remainder is always a positive integer number between 0 and 25: ´15 “ p´1q ¨ 26` 11, so ´15 » 11.
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2.11 Questions about chapter 2

In the following questions, unless explicitly specified, f : V ÑW is a linear map between two
vector spaces V and W over the same field F.

1. What are the two properties that define a linear map f : V ÑW? What does it mean
that f passes through linear combinations?

2. What is the image of 0V via the linear map f?

3. What is the prototype of a vector space V over the field F? Can you write down the
isomorphism between V and its prototype?

4. Do you remember a necessary and sufficient condition for two vector spaces over the
same field to be isomorphic via a linear map?

5. What are the kernel and the image of f? Are they simply sets or something more?

6. Define the nullity and rank of f and relate them to the property of being one-to-one
and onto.

7. What does it mean that f is full-rank?

8. Quote the nullity+rank theorem.

9. When does f is an endomorphism?

10. When an endomorphism is also an isomorphism?

11. If B “ pv1, . . . , vnq is a basis of V , what is the set pfpv1q, . . . , fpvnqq?

12. How can a linear map be extended to the whole V by knowing a basis B “ pv1, . . . , vnq
and the set pfpv1q, . . . , fpvnqq?

13. How can a linear map f : V Ñ W be defined from the knowledge of a basis B “

pv1, . . . , vnq of V and a random set pw1, . . . , wnq of vectors of W?

14. If you had to describe with a simple sentence what is the explicit expression of a linear
map, what would you say?

15. Do you remember how to classify the property of a linear map of being one-to-one, onto
and an isomorphism on the basis of how it transforms the vectors of a generic basis of
its domain?

16. Do you recall how to associate a matrix to a linear map f : V ÑW once a basis BV of
V and a basis BW of W have been chosen? Moreover, can you tell why this association
is unique?

17. What is LpV,W q and how does it become a vector space? What is its dimension?

18. What is MmnpFq and how does it become a vector space? What is its dimension? How
is it related to LpV,W q?

19. What is the analogous of the canonical basis of Fn for Mm,npFq?
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20. Define the matrix product and specify when it makes sense. To what operation between
linear maps is it related?

21. What is the transpose of a matrix and what are its properties?

22. Is it possible to express the rank of a linear map in terms of a property verified by the
matrix associated to it with respect to any bases?

23. Define a matrix that is square, diagonal, upper and lower triangular, the identity and
the zero matrix.

24. What are the divisors of zero of MnpFq?

25. What does it mean that the matrix B PMnpFq is the inverse of A PMnpFq?

26. Tell two conditions on A PMnpFq to guarantee that A admits an inverse. What does
that imply for the linear map associated to A with respect a fixed choice of bases?

27. Define the pi, jq-minor of a matrix A PMnpFq, the cofactor of the element aij of A and
the cofactor matrix.

28. Write down the Laplace formula for the development of the determinant of a matrix
along a row and along a column.

29. What is the ‘golden rule’ to apply each time we want to use the Laplace formula to
compute the determinant of a matrix?

30. Is the determinant a linear function?

31. Can you quote Binet’s theorem?

32. Can you tell some conditions which assure that the determinant of a matrix is zero
without computing it?

33. What is the determinant of the inverse of a(n invertible) matrix A?

34. What is the adjugate of a matrix and how does it appear in the formula for the explicit
computation of the inverse of a(n invertible) matrix?
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2.12 Exercises of chapter 2

The following exercises have the aim of testing the comprehension of the most important
concepts that have been introduced in chapter 2.

1. Establish if the following linear map

f : R3 ÝÑ R4

px, y, zq ÞÝÑ fppx, y, zqq “ px´ y ´ z,´2x` z, y ´ 3z, x` y ` zq

is one-to-one, onto or an isomorphism.

2. Given the real matrix

A “

¨

˝

3 1 2
0 ´1 1
´6 ´2 ´4

˛

‚

find the linear map f associated to it with respect to the canonical bases of R3 and
establish if it is one-to-one or onto.

3. Given the endomorphisms

f : R3 Ñ R3, px, y, zq ÞÑ fppx, y, zqq “ px´ y,´z, x` y ` zq

g : R3 Ñ R3, pu, v, wq ÞÑ gppu, v, wqq “ pu´ v, w,´u´ v ´ wq

establish if they are one-to-one, onto or automorphisms of R3 using their associated
matrices. Are the endomorphisms g ˝ f and f ˝ g automorphisms of R3 or not?
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2.12.1 Solutions of the exercises of chapter 2

The reader is strongly encouraged not to look at the solution of the exercises proposed in the
previous page before trying to solve them.

1. Given the linear map f : R3 Ñ R4, fppx, y, zqq “ px´y´ z,´2x` z, y´3z, x`y` zq, it
cannot be an isomorphism because we know that there can be an isomorphism between
vector spaces if and only if they have the same dimension, which is not the case for us.
Moreover, dimpR3q “ 3 ă 4 “ dimpR4q, hence, by Corollary 2.3.1, f cannot be onto
either. For this reason, f can only be one-to-one.

We can check that property by using Theorem 2.3.3 which, applied to our case, says that
f is one-to-one if and only if the images of the vectors of a basis is a free family in R4.

To minimize the computations, we choose of course the canonical basis of R3 and we find

fpp1, 0, 0qq “ p1,´2, 0, 1q, fpp0, 1, 0qq “ p´1, 0, 1, 1q, fpp0, 0, 1qq “ p´1, 1,´3, 1q.

Now we impose that a linear combination of the three image vectors is 0R4 . f is
one-to-one if and only if the coefficients of the linear combinations are all 0:

ap1,´2, 0, 1q ` bp´1, 0, 1, 1q ` cp´1, 1,´3, 1q “ p0, 0, 0, 0q

or
pa´ b´ c,´2a` c, b´ 3c, a` b` cq “ p0, 0, 0, 0q,

i.e.
$

’

’

’

’

&

’

’

’

’

%

a´ b´ c “ 0 p1q

´2a` c “ 0 p2q

b´ 3c “ 0 p3q

a` b` c “ 0 p4q

ðñ

$

’

’

’

’

&

’

’

’

’

%

p2q ùñ c “ 2a

p3q ùñ b “ 3c “ 6a

p1q ùñ a´ 6a´ 2a “ 0 ùñ a “ 0

p4q ùñ a` 6a` 2a “ 0 ùñ a “ 0

ðñ

$

’

&

’

%

a “ 0

b “ 0

c “ 0

,

so f is indeed one-to-one.

2. The matrix

A “

¨

˝

3 1 2
0 ´1 1
´6 ´2 ´4

˛

‚PM3pRq,

can be associated only to an endomorphism f : R3 Ñ R3. Following the indication of
the exercise, the columns of A are the images via f of the vectors of the canonical basis
of R3, i.e.

fpp1, 0, 0qq “ p3, 0,´6q, fpp0, 1, 0qq “ p1,´1,´2q, fpp0, 0, 1qq “ p2, 1,´4q.

Now we must extend f to the whole R3 with the technique that we have learned in
section 2.3:

fppx, y, zqq “ xfpp1, 0, 0qq ` yfpp0, 1, 0qq ` zfpp0, 0, 1qq,

i.e.

fppx, y, zqq “ xp3, 0,´6q`yp1,´1,´2q`zp2, 1,´4q “ p3x`y`2z,´y`z,´6x´2y´4zq.
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Since we are dealing with an endomorphism, we can establish its properties by computing
the determinant of the associated matrix A. In fact, thanks to the nullity+rank theorem,
f is an isomorphism if and only if detpAq ‰ 0, and if detpAq “ 0 then f is neither
one-to-one nor onto.

By the property 9. of Theorem 2.9.3, we can immediately say that detpAq “ 0 because
the first and the third row are linearly dependent, in fact:

R3 “ ´2R1.

So f is neither one-to-one, nor onto.

In order to practice the Laplace formula, we can develop the determinant of A along the
second row, because it contains a 0, obtaining

detpAq “ ´det

ˆ

3 2
´6 ´4

˙

´ det

ˆ

3 1
´6 ´2

˙

“ 0.

3. Let us consider first

f : R3 Ñ R3, px, y, zq ÞÑ fppx, y, zqq “ px´ y,´z, x` y ` zq

and fix the canonical bases of R3, then

fpp1, 0, 0qq “ p1, 0, 1q, fpp0, 1, 0qq “ p´1, 0, 1q, fpp0, 0, 1qq “ p0,´1, 1q,

so the matrix A associated to f is

A “

¨

˝

1 ´1 0
0 0 ´1
1 1 1

˛

‚.

Its determinant can be computed using the Laplace development along the second row,
which has two zeros:

detpAq “ det

ˆ

1 ´1
1 1

˙

“ 2 ‰ 0,

so f is an automorphism of R3.

Now we consider

g : R3 Ñ R3, pu, v, wq ÞÑ gppu, v, wqq “ pu´ v, w,´u´ v ´ wq

and fix the canonical bases of R3, then

gpp1, 0, 0qq “ p1, 0,´1q, gpp0, 1, 0qq “ p´1, 0,´1q, gpp0, 0, 1qq “ p0, 1,´1q,

so the matrix B associated to g is

B “

¨

˝

1 ´1 0
0 0 1
´1 ´1 ´1

˛

‚.
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Using again the Laplace development along the second row, which has two zeros, we find

detpBq “ ´det

ˆ

1 ´1
´1 ´1

˙

“ 2 ‰ 0,

so, also g is an automorphism of R3.

The composition of automorphisms is again an automorphism, so also g ˝ f and f ˝ g
are automorphisms.

Coherently with that, the matrices associated to them with respect to the canonical
bases of R3 are BA and AB, respectively, and it can be checked as a useful exercise that
their determinant is different than 0.
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Chapter 3

Resolution of linear systems
through linear algebra techniques

In both applied science and pure mathematics, systems of linear equations frequently arise
very frequently. The next section shows why.

3.1 Motivations to study linear systems

In this section we provide both practical and theoretical reasons to study systems of linear
equations or, more briefly, linear systems.

3.1.1 Practical motivations

The following worked problems have been proposed by Prof. Joel Feldman of the University
of British Columbia, to whom I am very grateful.

Example 3.1.1 Consider the electrical network below.

Question: knowing that all of the all the resistors have an electric resistance of 10Ω (‘ohms’)
and both generators produce an electromotive force by creating a difference of electric potential
of 5V (‘volts’), what is the current flowing through the resistor R2?

Solution. To answer the question we must consider both the currents and the voltages in the
network.

The law of conservation of currents at a node says that the algebraic sum of currents at a
node is 0, i.e. the incoming currents into a node must be equal to the outgoing currents.
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If we consider the top node in the network we have:

i1 ` i2 ´ i3 “ 0. (3.1)

Kirchhoff’s voltage law says that in a closed path of the network the difference of electric
potential due the generators must be equal to the voltages through the resistors. The last
ones can be found thanks to Ohm law: V “ Ri.

In the network under analysis we have two closed paths: the one on the left in which we
have V1, R1, R2 and R3, and the one of the right composed by V2, R2, R4, hence we can write
the system

#

R1i1 `R2i3 `R3i1 “ V1

R2i3 `R4i2 “ V2
, (3.2)

having used the fact that the current flowing into a series of resistors is the same.
If we join eq. (3.1) with eqs. (3.2) and introduce the numerical data given in the exercise

statement, we find the following linear system with unknown currents:

$

’

&

’

%

20i1 ` 10i3 “ 5

10i3 ` 10i2 “ 5

i1 ` i2 ´ i3 “ 0

ðñ

$

’

&

’

%

i1 “ ´i2 ´ i3 p1q

´20i2 ` 30i3 “ 5 p2q

10i2 ` 10i3 “ 5 p3q

ðñ
p2qÞÑp2q`2¨p3q

$

’

&

’

%

i1 “ ´i2 ´ i3

50i3 “ 15

10i3 ` 10i2 “ 5

,

so
$

’

&

’

%

i3 “
3
10

i2 “
2
10

i1 “ ´
2
10

,

so the current flowing through R2, i.e. i3 is equal to 0.3A (‘ampères’).
Notice that the current i1 appears to be negative just for a convention of signs: since it is

flowing clockwise and i2, i3 are flowing counterclockwise and we were interested in finding i3,
we arbitrary selected the plus sign for currents flowing counterclockwise.

Example 3.1.2 In the process of photosynthesis plants use energy from sunlight to convert
carbon dioxide, CO2, and water, H2O, into glucose, C6H12O6, and oxygen, O2. The equation
of the chemical reaction is of the form

x1CO2 ` x2H2O ÞÑ x3O2 ` x4C6H12O6.

Question. What kind of values of xj , j “ 1, . . . , 4 make sense (taking into account the
conservation of mass)?

Solution. The number of atoms of hydrogen, H, carbon, C, and oxygen, O, on the left-hand
side of the chemical reaction must equal that on the right-hand side. Thus, we must impose
the following system

$

’

&

’

%

H : 2x2 “ 12x4

C : x1 “ 6x4 ðñ x4 “ x1{6

O : 2x1 ` x2 “ 2x3 ` 6x4

ðñ

$

’

&

’

%

2x2 “ 2x1 ðñ x1 “ x2

6x4 “ x1

2x1 ` x1 “ 2x3 ` x1 ðñ x3 “ x1

,
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so, setting x4 “ n P N, because the number of atoms is of course a natural number, we have
!

x1 “ x2 “ x3 “ 6n ,

and the chemical reaction can be explicitly written as follows:

6nCO2 ` 6nH2O ÞÑ 6nO2 ` nC6H12O6, n “ 0, 1, 2, . . .

n “ 0 corresponds to the absence of molecules, while for n “ 1 we find the canonical chemical
reaction for photosynthesis

6CO2 ` 6H2O ÞÑ 6O2 ` C6H12O6,

which means that we plants need at least 6 molecules of carbon dioxide and 6 molecules of
water to perform photosynthesis, releasing 6 molecules of oxygen and 1 of glucose.

3.1.2 Theoretical motivation

Besides applied problems, we have also encountered many times in the first two chapters
systems of linear equations that pop out from the theoretical study of linear spaces and maps
between them. In particular, given two vector spaces V and W over the same field F, and a
linear map f P LpV,W q, we know that each time we fix a basis BV “ pv1, . . . , vnq of V and
BW “ pw1, . . . , wmq of W , then f is uniquely associated to a matrix A “ paijq

i“1,...,m
j“1,...,n with

coefficients in F such that, for all vector

v “
n
ÿ

j“1

λjvj P V

if we express fpvq as a linear combination of the vectors of BW , i.e.

fpvq “
m
ÿ

i“1

µiwi,

then we have
¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

¨

˚

˝

λ1
...
λn

˛

‹

‚

“

¨

˚

˝

µ1
...
µm

˛

‹

‚

.

Knowing the rules of matrix product, we can write the previous matrix equation as the
following system of linear equations:

$

’

’

&

’

’

%

a11λ1 ` ¨ ¨ ¨ ` a1nλn “ µ1
...

am1λ1 ` ¨ ¨ ¨ ` amnλn “ µm

.

In the previous chapters we had to deal only with systems of linear equations of small size,
typically with three equations, which are relatively easy to solve.

However, when the number of equations and that of variables increase, it is evident that
a more systematic method to solve a linear system, which can be turned into a computer
algorithm, is needed.

Linear algebra provides such methods and this will show a first application of how important
this branch of mathematics is both in theory and in practice.
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3.2 General information about linear systems

Def. 3.2.1 (Linear system) A system of linear equations, or a linear system, with m equa-
tions and n unknowns is written as follows

$

’

’

&

’

’

%

a11x1 ` ¨ ¨ ¨ ` a1nxn “ b1
...

am1x1 ` ¨ ¨ ¨ ` amnxn “ bm

and it can be rearranged in the so-called matrix form:

AX “ B,

where

A “

¨

˚

˝

a11 . . . a1n
...

...
am1 . . . amn

˛

‹

‚

PMm,npFq

is called coefficient matrix,

X “

¨

˚

˝

x1
...
xn

˛

‹

‚

P Fn

is called vector of unknowns, and

B “

¨

˚

˝

b1
...
bm

˛

‹

‚

P Fm

is called vector of known data. Setting B “ 0Fm , we obtain AX “ 0Fm , which is called the
homogeneous linear system associated to AX “ B.

Example 3.2.1 Given the linear system

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

3x` 2y ´ w ´ z “ 0

2y ` w “ 4

´x`´y ´ w ` 5z “ ´2

5w ´ z “ 1

x´ y ` w “ 3

can be written as AX “ B with

A “

¨

˚

˚

˚

˚

˝

3 2 ´1 ´1
0 2 1 0
´1 ´1 ´1 5
0 0 5 ´1
1 ´1 1 0

˛

‹

‹

‹

‹

‚

PM5,4pFq, X “

¨

˚

˚

˝

x
y
w
z

˛

‹

‹

‚

P F4, B “

¨

˚

˚

˚

˚

˝

0
4
´2
1
3

˛

‹

‹

‹

‹

‚

P F5.

By setting B “ 0F5 we find the homogeneous linear system AX “ 0F5 associated to AX “ B.
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Def. 3.2.2 (Resolution of a linear system) To solve a linear system AX “ B means
finding at least an explicit vector X, which, inserted into the matrix equation AX “ B,
transforms it into an identity, i.e. the vector AX P Fm coincides with the vector B P Fm.

If AX “ B has at least one solution, we say that it is solvable.

An explicit example may clarify this definition: the solution of the linear system

#

x´ y “ 2

2x` y “ 1
ðñ

ˆ

1 ´1
2 1

˙ˆ

x
y

˙

“

ˆ

2
1

˙

is the vector

X “

ˆ

1
´1

˙

,

in fact
ˆ

1 ´1
2 1

˙ˆ

1
´1

˙

“

ˆ

2
1

˙

.

Recalling the definitions of image and kernel of a matrix, Defs. 2.7.1 and 2.7.2, respectively,
the following theorem follows immediately.

Theorem 3.2.1 The following assertions hold.

• The linear system AX “ B has a solution if and only if B P ImpAq, i.e. if and only if
B is a linear combination of the columns of A.

• The solution of the associated homogeneous linear system AX “ 0Fm coincide with
kerpAq and so it is a vector subspace of Fn.

This theorem shows a first concrete example of why the investigation of the vector subspaces
of a given vector space is so useful in linear algebra.

It turns out that the solutions of the linear system AX “ B and of its associated homogeneous
one AX “ 0Fm are strictly related, as detailed in the following theorem.

Theorem 3.2.2 If X P Fn is a particular solution of the linear system AX “ B, then the set
containing all the solutions agrees with

X ` kerpAq :“ tX `K : K P kerpAqu.

In mathematical jargon, we say that the set of all solutions of a linear system is obtained by
translating kerpAq with any particular solution X.

So, in order to know all the solutions of AX “ B, it is enough to know just one of it and
all the solutions of the associated homogeneous linear system.

A generic solution of AX “ B will be expressed as X `K, for a suitable K P kerpAq.

90



Proof.

Ď : let us show that X `K, with any K P kerpAq, is a solution of AX “ B. For that, it is
sufficient to apply A to X `K and use the additivity to obtain:

ApX `Kq “ AX `AK “ B ` 0Fm “ B.

So, the kernel of A translated by a particular solution X of AX “ B is subset of the set of all
solutions of AX “ B.

Ě : conversely, suppose that X 1 is any solution of AX “ B, we must prove that X 1 can be
written as X 1 “ X `K. To this aim, we consider the difference X 1 ´X and we apply A to it,
obtaining:

ApX 1 ´Xq “ AX 1 ´AX “ B ´B “ 0Fm ,

hence X 1 ´X P kerpAq, i.e. it exists K P kerpAq such that X 1 ´X “ K, i.e. X 1 “ X `K, so
the set of all solutions of AX ` B is a subset of the kernel of A translated by a particular
solution of AX “ B.

“ : having proven the two opposite inclusions, we have shown that the sets coincide. 2

We can now give a famous characterization of solvability for linear system through a pure
matrix feature, thanks to which we can also determine whether the system has a unique
solution or not. To state the theorem in a clear way we need to introduce a definition first.

Def. 3.2.3 (Augmented (or complete) matrix) Let AX “ B be a linear system, then
we call augmented por completeq matrix of the system the mˆ pn` 1q matrix

p A B q “

¨

˚

˚

˚

˚

˝

a11 a12 ¨ ¨ ¨ a1n b1
a21 a22 ¨ ¨ ¨ a2n b2

...
...

. . .
...

...
am1 an2 ¨ ¨ ¨ amn bm

˛

‹

‹

‹

‹

‚

obtained by providing A with a novel column, at the position n` 1, given by the column vector
B containing the known data of the linear systems.

Theorem 3.2.3 (Rouché-Capelli) 1 Let AX “ B be a linear system of m equations in n
unknowns. AX “ B is solvable if and only if

rankpAq “ rankp A B q.

If AX “ B is solvable, then, denoted with r the common rank of A and p A B q, we have

1. if r “ n, then AX “ B has only one solution

2. if r ă n, then AX “ B has infinite solutions which depend on n´ r parameters2, free to
vary in F.

1Eugène Rouché 1832-1910, French mathematician; Alfredo Capelli 1855-1910, Italian mathematician.
2in the mathematical jargon, we say that AX “ B has 8n´r solution, which is just a compact symbolic

way to highlight how many free parameters the solutions have.
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From the theorem of Rouché-Capelli, it follows that a linear system has:

• 1) no solution

• 2) a unique solution

• 3) an infinite number of solutions.

Proof. We first prove the characterization of solvability through the equality of the rank of the
system matrix and the complete matrix.

ùñ : if AX “ B is solvable, then, thanks to the previous theorem, B is a linear combination
of the columns of A. We recall that the rank of a matrix is the number of linearly independent
columns. It follows that rankp A B q “ rankpAq, because enlarging a family C of vectors
(the columns of A) with a vector (B) that is a linear combination of the vectors of C does not
alter the number of linearly independent vectors in the family C.

ðù : if rankp A B q “ rankpAq, then it means that B is not linearly independent from
the column vectors of A, i.e. B is a linear combination of the columns of A and so, by the
previous theorem, AX “ B is solvable.

Now let us suppose that AX “ B is solvable, the common rank of A and p A B q “ rankpAq
is r and the number of unknown in n. Thanks to Theorem 3.2.2, the set of solutions of
AX “ B is given by a particular solution X of AX “ B plus the elements of kerpAq, hence
AX “ B has only one solution if and only if kerpAq “ t0Fnu. But the nullity+rank theorem
guarantees that

n “ r ` dimpkerpAqq,

so AX “ B if and only if n “ r.
Finally, if r ă n, then dimpkerpAqq “ n´ r, i.e. the elements of kerpAq can be obtained

through linear combinations of n´ r basis vectors. In such a combination there appear exactly
n´ r scalar coefficients, which can take any value in the field F. 2
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We hereby provide examples of the three possible cases that can happen when trying to
solve linear systems. We will not prove the our statements for the moment, postponing the
demonstrations to section 3.4 after learning the Gauss reduction method for solving linear
systems.

Example 3.2.2 (Non-solvable linear system)
$

’

&

’

%

2x´ 4y “ ´4

3x´ 6y ` 3z “ ´3

x´ 2y ´ z “ ´2

.

This linear system turns out to be not solvable.

Example 3.2.3 (Solvable linear system with a unique solution)
$

’

’

’

’

&

’

’

’

’

%

2x´ 2y ` 8z “ 5

2y ` 6z “ 1

x´ 2y ` 4z “ ´1

x` 10z “ 0

ðñ

$

’

&

’

%

x “ 10

y “ 7{2

z “ ´1

.

The solution shown is the unique one that the system has.

Example 3.2.4 (Solvable linear system with a infinite solutions)
$

’

&

’

%

2x` 5z “ 1

4x´ 3y ` 4z “ 5

2x´ y ` 3z “ 2

ðñ

$

’

&

’

%

x “ 1{2´ 5z{2

y “ ´1´ 2z

z free to vary in F.

This time, the system has 81 solutions: any value of z P F provides a solution. Let us check it
for just three values chosen arbitrarily: z “ 0 and z “ 1, z “ ´2.

If z “ 0, then x “ 1{2 and y “ ´1, so the system becomes
$

’

&

’

%

2p1{2q “ 1

4p1{2q ´ 3p´1q “ 5

2p1{2q ´ p´1q “ 2

,

all these equations are identities.
If z “ 1, then x “ ´2 and y “ ´3, so the system becomes

$

’

&

’

%

2p´2q ` 5 “ 1

4p´2q ´ 3p´3q ` 4 “ 5

2p´2q ´ p´3q ` 3 “ 2

,

all these equations are identities.
If z “ ´2, then x “ 11{2 and y “ 3, so the system becomes

$

’

&

’

%

2p11{2q ` 5p´2q “ 1

4p11{2q ´ 9` 4p´2q “ 5

2p11{2q ´ 3` 3p´2q “ 2

,

again, all there equations are identities.
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3.3 Reduction of matrices and computation of the rank

The Roché-Capelli theorem underlines once more the importance of being able to compute
the rank of a matrix. In this section, we show a technique, first used by Carl Friedrich Gauss
(1777-1855), the German polymath considered by many to be the greatest mathematician of
all times, which is an efficiently way solve linear systems and that later turned out to be also a
systematic method to compute the rank of a matrix. One of the great features of this method
is that it can be run by a computer and thus automatized.

We will present the method step-by-step and with several examples.

Def. 3.3.1 (Matrix reduced by rows) A matrix A “ paijq
i“1,...,m
j“1,...,n PMmnpFq is said to be

reduced by rows if, apart from the last row, in every non-null row there exists a non-null
element below which there are only zeros in the same column.

In mathematical language, we can restate this as follows: given i P t1, . . . ,m´1u, if the i-th
row is non-null, then there exists j P t1, . . . , nu such that aij ‰ 0 and api`1qj “ ¨ ¨ ¨ “ amj “ 0.

Every element of a non-null row with this property is called special. Every non-zero
element of the last row is special.

Example 3.3.1 The matrix

A “

¨

˚

˚

˝

0 3 2 1 0
0 0 0 0 0

1 0 3 0 1

0 0 1 0 2

˛

‹

‹

‚

is reduced by rows because a12 “ 3 and a14 “ 1 have only 0 below them (in their corresponding
columns), the second row is null and a31 “ 1 has only 0 below it in the same column.

The special element of the first row are a12, a14, the second row does not have special
elements because it is null, the only special element of the third row is a31 an the special
elements of the fourth row are a43, a45.

Example 3.3.2 On the contrary, the following matrix

B “

¨

˝

1 0 2
1 0 0
0 0 1

˛

‚

is not reduced by rows.

The rank of a matrix reduced by rows can be computed immediately thanks to the following
theorem.

Theorem 3.3.1 The non-null rows of a matrix A reduced by rows are linearly independent.
Hence, the rank of a matrix reduced by rows is the number of its non-null rows.

To show the power of this result, without performing a single calculation, we can say that
the rank of matrix of Example 3.3.1 is 3 because it is reduced by row and has 3 non-null rows.
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Proof. Let A be reduced by rows. Up to a re-ordering of the rows, which of course does not
affect the rank, we can suppose that the non-null rows of A are the first r ď m. We must
show that they are linearly independent, i.e. that the vector equation

λ1pa11, . . . , a1nq ` ¨ ¨ ¨ ` λrpar1, . . . , arnq “ 0 (3.3)

holds if and only if λ1 “ ¨ ¨ ¨ “ λr “ 0.
Let a1j1 be a special elements of the first rows. Then, since all the elements below it in

the same column are null, eq. (3.3) implies

λ1a1j1 ` λ2��
�*0

a2j1 ` ¨ ¨ ¨ ` λr��
�*0

arj1 “ 0 ðñ λ1a1j1 “ 0 ðñ
a1j1‰0

λ1 “ 0.

By repeating this exact argument for all special elements until the row r, we find that
λ1 “ ¨ ¨ ¨ “ λr “ 0, hence the non-null rows of a matrix reduced by rows are linearly indepen-
dent. 2

Def. 3.3.2 (Reduction of a matrix by rows) Let A P Mm,npFq. To reduce A by rows
means finding a matrix A1 PMm,npFq reduced by rows such that rankpAq “rankpA1q.

The reduction of a matrix by rows is highly non-unique and can be achieved through 3 kind
of operations called elementary transformations. The first kind is the most important
one, the other two help simplify the computations.

3.3.1 Elementary transformations on the rows of a matrix

Let A PMm,npFq and let R1, . . . , Rm P Fn be its rows.

Def. 3.3.3 (E1) The elementary transformations of the first kind on the rows of A consist
in adding to a row a different one multiplied by a non-null coefficient.

The notation for the E1 transformations is the following:

Ri ÞÑ Ri ` αRk, i, k P t1, . . . ,mu, i ‰ k, α P F, α ‰ 0.

Def. 3.3.4 (E2) The elementary transformations of the second kind on the rows of A consist
in exchanging one row with another.

The notation for the E2 transformations is the following:

Ri Ø Rk, i, k P t1, . . . ,mu, i ‰ k.

Def. 3.3.5 (E3) The elementary transformations of the third kind on the rows of A consist
in multiplying one row by a non null scalar α P F.

The notation for the E3 transformations is the following:

Ri ÞÑ αRi, i P t1, . . . ,mu, α P F, α ‰ 0.

While it is clear that E2 and E3 do not modify the linear independence of the rows, this fact
is not so trivial for E1 and it must be proven.
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Theorem 3.3.2 The E1 transformations do not modify the linear independence of the rows
of a matrix, i.e. the vector space generated by the original rows and the E1-transformed ones
is exactly the same.

Proof. Up to a reordering of the row indices, we can suppose that we modify R1 in R1 ` αR2,
α ‰ 0. We must prove that

spanpR1, R2, . . . , Rmq “ spanpR11, R2, . . . , Rmq,

where R11 “ R1 ` αR2. We will prove that the two opposite inclusions hold.

Ě : since R11 “ R1 ` αR2, R
1
1 is a linear combination of two rows belonging to the family

tR1, . . . , Rmu, hence R11 P spanpR1, R2, . . . , Rmq, so the vector space that R11, R2, . . . , Rm
generate cannot be larger than that generated by the family tR1, . . . , Rmu, thus:

spanpR11, R2, . . . , Rmq Ď spanpR1, R2, . . . , Rmq.

Ě : since R11 “ R1`αR2, R1 “ R11´αR2, so R1 is a linear combination of two rows belonging
to the family tR11, . . . , Rmu. Using the same argument as before we have that:

spanpR1, R2, . . . , Rmq Ď spanpR11, R2, . . . , Rmq.

As a consequence:
spanpR1, R2, . . . , Rmq “ spanpR11, R2, . . . , Rmq.

If other E1 transformations are performed, then the previous argument can be applied to
them and so, no matter how many of them are performed, the vector space generated by the
E1-transformed rows and the original ones will be the same. 2

Now we arrive to the most important property of the E1 transformations, which explains
why they are so vital for the procedure of matrix reduction.

Practical method to nullify the matrix entries below a special element with
E1 transformations

• Let aij a special element of the row Ri

• All the matrix entries below aij in the same column can be written as akj , k “ i`1, . . . ,m

• To nullify the entry akj , the following E1 transformation must be applied:

Rk ÞÑ Rk ´
akj
aij

Ri , k “ i` 1, . . . ,m.

In fact:

Rk ´
akj
aij

Ri “ pak1, ak2, . . . , akj , . . . , akmq ´
akj
aij
pai1, ai2, . . . , aij , . . . , aimq

“ pak1, ak2, . . . , akj , . . . , akmq ´

ˆ

akj
aij

ai1,
akj
aij

ai2, . . . ,
akj

��aij
��aij , . . . ,

akj
aij

aim

˙

“ pak1 ´
akj
aij

ai1, ak2 ´
akj
aij

ai2, . . . ,���
��:0

akj ´ akj , . . . , akm ´
akj
aij

aimq.
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Example 3.3.3 Consider the matrix

A “

ˆ

2 1
1 3

˙

.

A it is not reduce by rows, but we can apply the E1 transformation R2 ÞÑ R2 ´
1
2R1 obtaining

A1 “

ˆ

2 1
1´ 1

2 ¨ 2 3´ 1
2 ¨ 1

˙

“

ˆ

2 1
0 5

2

˙

,

with is reduced by rows and has 2 non-null linearly independent rows, hence its rank is 2.

Practical method to reduce a matrix by rows and compute its rank

• If the matrix A has null rows, then apply the E2 transformations to set all of them as
the final rows of a new matrix A1

• Choose a non-null element of the first row of A1 and nullify all the entries below it, in
the same column, by applying the E1 transformations as described before, obtaining
another matrix A2

• Choose a non-null element of the second row of A2 and nullify all the entries below it in
the same column, obtaining another matrix A3

• Iterate this process until it is possible. The non-null rows of the final matrix are linearly
independent and their number is the rank of A.

Example 3.3.4 Reduce by rows the matrix

A “

¨

˝

2 1 0
1 2 1
3 1 2

˛

‚.

There are no null rows. We choose 2 as special element of the first row, hence we apply the E1
transformations R2 ÞÑ R2 ´

1
2R1 and R3 ÞÑ R3 ´

3
2R1, this gives rise to the matrix

A1 “

¨

˝

2 1 0
1´ 1

2 ¨ 2 2´ 1
2 ¨ 1 1´ 1

2 ¨ 0
3´ 3

2 ¨ 2 1´ 3
2 ¨ 1 2´ 3

2 ¨ 0

˛

‚“

¨

˝

2 1 0
0 3

2 1
0 ´1

2 2

˛

‚.

As we have said before, the elementary transformations E2 and E3 can simplify the com-
putations, here we can use two times E3 to multiply the row R2 and R3 of A1 by 4 and 2,
respectively, thus obtaining

A2 “

¨

˝

2 1 0
0 6 4
0 ´1 4

˛

‚.

We have chosen those coefficients because now we can make the entry of position p2, 3q of A2

a special element of the second row by operation the E1 transformation R3 ÞÑ R3 ´R2:

A3 “

¨

˝

2 1 0
0 6 4
0 ´1´ 6 4´ 4

˛

‚“

¨

˝

2 1 0
0 6 4
0 ´7 0

˛

‚.

A3 is reduced by rows with 3 non-null rows, hence the rank of A is 3.
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Example 3.3.5 Reduce by rows the matrix

A “

¨

˝

1 2 0 1
1 1 1 1
1 0 2 1

˛

‚.

Here we show how we can combine the elementary transformations to achieve a reduction
more rapidly. We see that the entry of position p1, 2q of A has already one 0 below it in C2,
so it is convenient to nullify the entry immediately below it in C2. To do that we can multiply
R2 by 2 with a E3 transformation and then subtract R1 with a E1 transformation. So, in one
shot, we perform the transformation R2 ÞÑ 2R2 ´R1:

A1 “

¨

˝

1 2 0 1
2´ 1 2´ 2 2´ 0 2´ 1

1 0 2 1

˛

‚“

¨

˝

1 2 0 1
1 0 2 1
1 0 2 1

˛

‚.

Now we simply perform R3 ÞÑ R3 ´R2 in A1, obtaining:

A2 “

¨

˝

1 2 0 1
1 0 2 1
0 0 0 0

˛

‚.

A2 is reduced by row with only two non-null rows, thence the rank of A is 2.

Since the number of linearly independent rows equals that of linearly independent columns,
it should not be surprising that all we have said about matrices reduced by rows can be said
about matrices reduced by columns.

Def. 3.3.6 (Matrix reduced by columns) The matrix A is reduced by columns if At is
reduced by rows.

It follows that in a matrix reduced by columns there is always one non-zero element of a
non-null column at the right of which, in the same row, there are only zeros.

Mathematicians usually prefer to apply the row reduction, for this reason, if the number
of columns of A is considerably smaller than the number of rows, then consider At and reduce
it by rows.
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3.3.2 Reduction to row echelon form

The reduction to row echelon form is an improvement of the row reduction method, which, as
we will soon see, it speeds up the resolution of linear systems.

The name echelon comes from the French word ‘échelon’, which means ‘step of a staircase’,
in fact, as we are going to show, the non-null entries of a row echelon matrix form a staircase.
If the matrix is square, then the row echelon form coincides with an upper triangular matrix,
if not, is the most similar version of it. To reduce to row echelon form a matrix we

1. set all the null rows at the end of the matrix

2. create a special element, normalized to 1, in every nonzero row, called the pivot,
which is on the right (not necessarily the immediate right) of the pivot of the previous
row.

Example 3.3.6 Reduce to row echelon form the matrix

A “

¨

˝

2 ´4 0 ´4
3 ´6 3 ´3
1 ´2 ´1 ´2

˛

‚.

To have 1 at the position p1, 1q we can exchange the row R3 and R1:

A1 “

¨

˝

1 ´2 ´1 ´2
3 ´6 3 ´3
2 ´4 0 ´4

˛

‚.

Now we have to nullify the entries below 1 appearing in the first column of A1, we do it with
the E1 transformations R2 ÞÑ R2 ´ 3R1 and R3 ÞÑ R3 ´ 2R2:

A2 “

¨

˝

1 ´2 ´1 ´2
0 0 6 3
0 0 2 0

˛

‚.

The first row of A2 has a normalized pivot in the position p1, 1q, so now we start back from
the second row of A2 by dividing it by 6: R2 ÞÑ R2{6:

A3 “

¨

˝

1 ´2 ´1 ´2
0 0 1 1{2
0 0 2 0

˛

‚.

Finally, we perform R3 ÞÑ R3 ´ 2R2 on A3:

In the row echelon matrix above we have underlined the staircase and the two pivots.
The fact that a pivot is not necessarily at the immediate right of the pivot of the previous

row implies that the steps of the staircase are not necessarily of the same size.

99



Let us now use the computations of the previous example to show how easy it is to establish
if a linear system is solvable or not when its augmented matrix is reduced to row echelon form.

Example 3.3.7 Consider the following linear system:

$

’

&

’

%

2x´ 4y “ ´4

3x´ 6y ` 3z “ ´3

x´ 2y ´ z “ ´2

.

The matrices A, X and B are

A “

¨

˝

2 ´4 0
3 ´6 3
1 ´2 ´1

˛

‚, X “

¨

˝

x
y
z

˛

‚, B “

¨

˝

´4
´3
´2

˛

‚.

The augmented matrix of the linear system is

p A B q “

¨

˚

˝

2 ´4 0 ´4
3 ´6 3 ´3
1 ´2 ´1 ´2

˛

‹

‚

,

which coincides with the matrix examined in Example 3.3.6, so we can take advantage of the
row echelon form found in that example, which is

¨

˚

˝

1 ´2 ´1 ´2
0 0 1 1{2
0 0 0 ´1

˛

‹

‚

.

From this expression it follows that the rank of p A B q is 3, but the rank of A is just 2
because the last row of the ‘A part’ is null. So, the system is not solvable.

Another way to see this is to translate the last row of the augmented matrix into a linear
equation:

0 ¨ x` 0 ¨ y ` 0 ¨ z “ ´1 ðñ 0 “ ´1,

which is of course impossible and so the system cannot be solved.

What happens in the previous example is a specific instance of a general property.

Theorem 3.3.3 If the augmented matrix of a linear system is reduced to row echelon form
and its null rows coincide with the null rows of the A part, then rankpAq “ rankp A B q and
the system is solvable, otherwise, the system is not solvable.
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3.4 Solution of linear systems through the Gauss reduction
(or elimination) method

Now we can take advantage of the method described before to reduce a matrix to row echelon
form in order to efficiently solve linear systems.

In order to do that, we need a definition and a theorem.

Def. 3.4.1 (Equivalent linear systems) Two linear systems are said to be equivalent if
they have the same set of solutions, including the empty set, which means that the systems are
not solvable.

Theorem 3.4.1 If A1 is a reduced version of the matrix A, then the linear systems A1X “ B
and AX “ B are equivalent.

Notice that the row echelon form of a matrix is a particular form of reduction, so the previous
result holds also in that case.

The proof of the theorem is not difficult but quite long, so we prefer to omit it and show
immediately how to find the solutions of a linear system via the method described in the
examples that follow.

Example 3.4.1 Consider the following linear system:

$

’

’

’

’

&

’

’

’

’

%

2x´ 2y ` 8z “ 5

2y ` 6z “ 1

x´ 2y ` 4z “ ´1

x` 10z “ 0

,

A “

¨

˚

˚

˚

˝

2 ´2 8
0 2 6
1 ´2 4
1 0 10

˛

‹

‹

‹

‚

, X “

¨

˚

˝

x
y
z

˛

‹

‚

, B “

¨

˚

˚

˚

˝

5
1
´1
0

˛

‹

‹

‹

‚

, p A B q “

¨

˚

˚

˚

˝

2 ´2 8 5
0 2 6 1
1 ´2 4 ´1
1 0 10 0

˛

‹

‹

‹

‚

.

To reduce p A B q to row echelon form, we exchange R1 with R3 in order to start with 1:

¨

˚

˚

˚

˝

1 ´2 4 ´1
0 2 6 1
2 ´2 8 5
1 0 10 0

˛

‹

‹

‹

‚

,

then we operate the following E1 transformations: R3 ÞÑ R3 ´ 2R1, R4 ÞÑ R4 ´R1, obtaining

¨

˚

˚

˚

˝

1 ´2 4 ´1
0 2 6 1
0 2 0 7
0 2 6 1

˛

‹

‹

‹

‚

.
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We notice that R4 “ R2, so we perform the E1 transformations R3 ÞÑ R3´R2, R4 ÞÑ R4´R2,
obtaining

¨

˚

˚

˚

˝

1 ´2 4 ´1
0 2 6 1
0 0 ´6 6
0 0 0 0

˛

‹

‹

‹

‚

.

Finally, we divide R2 by 2 and R3 by ´6:

¨

˚

˚

˚

˝

1 ´2 4 ´1
0 1 3 1{2
0 0 1 ´1
0 0 0 0

˛

‹

‹

‹

‚

.

Since the null row of the echelon reduced augmented matrix agrees with that of its A part,
rankpAq “ rankp A B q “ 3 “ number of unknowns, the linear system is solvable and has a
unique solution.

To find it, we transform back the echelon reduced augmented matrix into a linear system
without writing the last equation (which gives the identity 0 “ 0), and we solve it with a
bottom-up strategy:

$

’

&

’

%

x´ 2y ` 4z “ ´1

y ` 3z “ 1{2

z “ ´1

ðñ

$

’

&

’

%

z “ ´1

y ` 3 ¨ p´1q “ 1{2 ðñ y “ 7{2

x´ 2 ¨ p7{2q ` 4 ¨ p´1q “ ´1 ðñ x “ 10

ðñ

$

’

&

’

%

x “ 10

y “ 7{2

z “ ´1

.

It should now be clear why we normalize the value of the pivot to 1 : in this way we can avoid
spurious coefficients in front of the variables and we save time.

Example 3.4.2 Consider the following linear system:

$

’

&

’

%

2x` 5z “ 1

4x´ 3y ` 4z “ 5

2x´ y ` 3z “ 2

.

The matrices A, X and B are

A “

¨

˝

2 0 5
4 ´3 4
2 ´1 3

˛

‚, X “

¨

˝

x
y
z

˛

‚, B “

¨

˝

1
5
2

˛

‚.

The augmented matrix of the linear system is

p A B q “

¨

˚

˝

2 0 5 1
4 ´3 4 5
2 ´1 3 2

˛

‹

‚

.
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By operating R2 ÞÑ R2 ´ 2R1 and R3 ÞÑ R3 ´R1, we find
¨

˚

˝

2 0 5 1
0 ´3 ´6 3
0 ´1 ´2 1

˛

‹

‚

.

Then we divide R1 by 2 and R2 by ´3, obtaining
¨

˚

˝

1 0 5{2 1{2
0 1 2 ´1
0 ´1 ´2 1

˛

‹

‚

.

Finally, we perform R3 ÞÑ R3 `R2 and we get
¨

˚

˝

1 0 5{2 1{2
0 1 2 ´1
0 0 0 0

˛

‹

‚

.

The linear system is again solvable because the null row of the reduced echelon form of the
augmented matrix coincides with the null row of the A part. The rank of A and that of the
augmented matrix are both equal to 2.

However, since the number of unknowns is 3, the system will have 81 solutions and the
nullity of A, i.e. dimpkerpAqq, will be exactly 1 by the nullity`rank theorem.

If we discard the final row of the last reduced echelon augmented matrix and we transform
it back to a linear system, we find three unknowns and just two equations:

#

x` 5z{2 “ 1{2

y ` 2z “ ´1
ðñ

#

y “ ´1´ 2z

x “ 1{2´ 5z{2
ðñ

$

’

&

’

%

x “ 1{2´ 5z{2

y “ ´1´ 2z

z free to vary in F.

We see that the solutions depend on the free parameter z.
We take this occasion to show how to compute kerpAq by studying the homogeneous system

associated to AX “ B, i.e. by considering
$

’

&

’

%

2x` 5z “ 0

4x´ 3y ` 4z “ 0

2x´ y ` 3z “ 0

.

In this case the augmented matrix is
¨

˚

˝

2 0 5 0
4 ´3 4 0
2 ´1 3 0

˛

‹

‚

.

By repeating the sequence of operations performed before of the augmented matrix of the
original linear system, we arrive to the row echelon matrix

¨

˚

˝

1 0 5{2 0
0 1 2 0
0 0 0 0

˛

‹

‚

,
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corresponding to the homogeneous linear system

#

x` 5z{2 “ 0

y ` 2z “ 0
ðñ

$

’

&

’

%

x “ ´5z{2

y “ ´2z

z P F
.

Hence, all the vectors belonging to kerpAq are of the form

p´5z{2,´2z, zq “ zp´5{2,´2, 1q,

if we let z vary in F, we see that all these vectors are proportional, i.e. collinear and so they
are linearly dependent. For this reason, it is sufficient to consider just one of them, typically by
choosing a (non zero!) value of z which makes the vector look ‘nice’, and this will constitute a
basis for kerpAq.

For example, we can choose z “ ´2, so that a basis of kerpAq is given by the vector
p5, 4,´2q and

kerpAq “ spanpp5, 4,´2qq,

but we can also choose, e.g. z “ ´1, thus obtaining the basis vector p5{2, 2,´1q.
In any case, since there is one non-null vector in the basis of kerpAq, we have that

dimpkerpAqq “ 1 “ nullpAq, confirming what we had previously deduced.

What we have learned in the two previous examples can be written in a general form.

Practical method to establish the solvability of the linear system AX “ B
and then to solve it

1. Reduce the augmented matrix p A B q to row echelon form.

2. Establish if the system is solvable using theorem 3.3.3.

3. If the system is solvable, then it can be solved by substitution starting from the last
equation of the linear system corresponding to the row echelon form of p A B q.

(a) First of all, the null equations are discarded.

(b) We solve the last equation with respect to one of the unknowns.

(c) We solve the penultimate equation with respect to one of the unknowns that do not
appear in the last equation and by introducing the value of the unknown previously
found

(d) We iterate the process until arriving to the first equation.

4. In the case of solvability, by the Roché-Capelli theorem,

• if rankpAq “number of unknowns, then the solution is unique

• if rankpAq ănumber of unknowns, then there are infinite solutions, precisely8nullpAq

solutions, where dimpkerpAqq “ nullpAq “ number of unknowns´rankpAq.
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3.4.1 The Cramer rule

The Cramer rule is a formula that allows us to compute the unique solution of a solvable
system of n equations with n unknowns, thus represented by a square coefficient matrix A.
Since A is square, we can compute its determinant, and it is thanks to detpAq that the Cramer
rule is expressed.

Theorem 3.4.2 (Cramer rule) Let AX “ B, with

A “

¨

˚

˝

a11 . . . a1n
...

...
an1 . . . ann

˛

‹

‚

, X “

¨

˚

˝

x1
...
xn

˛

‹

‚

, B “

¨

˚

˝

b1
...
bn

˛

‹

‚

,

be a system of n linear equations with n unknowns. If detpAq ‰ 0, then the system has a
unique solution given by

xi “
∆i

detpAq
, i “ 1, . . . , n,

where ∆i is the determinant of the matrix obtained by replacing the i´th column of A with B.

We omit the proof of this theorem in favor of an example that shows how to apply it and how
it compares to the Gauss method of reduction.

Example 3.4.3 Consider the linear system
$

’

&

’

%

x` 2z “ 9

2y ` z “ 8

4x´ 3y “ ´2

,

which can be written as AX “ B with

A “

¨

˝

1 0 2
0 2 1
4 ´3 0

˛

‚, X “

¨

˝

x
y
z

˛

‚, B “

¨

˝

9
8
´2

˛

‚.

We compute the determinant of A through the Laplace development along the first row:

detpAq “ det

ˆ

2 1
´3 0

˙

` 2 det

ˆ

0 2
4 ´3

˙

“ 3´ 16 “ ´13,

since detpAq ‰ 0, the system has a unique solution that we can find using the Cramer rule:

• ∆1 “ det

¨

˝

9 0 2
8 2 1
´2 ´3 0

˛

‚“ 2 det

ˆ

8 2
´2 ´3

˙

´ det

ˆ

9 0
´2 ´3

˙

“ 2p´24` 4q ´ p´27q “ ´13

• ∆2 “ det

¨

˝

1 9 2
0 8 1
4 ´2 0

˛

‚“ det

ˆ

8 1
´2 0

˙

` 4 det

ˆ

9 2
8 1

˙

“ 2` 4p9´ 16q “ ´26

• ∆3 “ det

¨

˝

1 0 9
0 2 8
4 ´3 ´2

˛

‚“ det

ˆ

2 8
´3 ´2

˙

`4 det

ˆ

0 9
2 8

˙

“ ´4`24`4p´18q “ 20´72 “ ´52,

so

x “
∆1

detpAq
“ 1, y “

∆2

detpAq
“ 2, z “

∆3

detpAq
“ 4.
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Let us compare this method with the Gauss reduction technique. The augmented matrix of
the system is

¨

˚

˝

1 0 2 9
0 2 1 8
4 ´3 0 ´2

˛

‹

‚

.

We apply R3 ÞÑ R3 ´ 4R1:
¨

˚

˝

1 0 2 9
0 2 1 8
0 ´3 ´8 ´38

˛

‹

‚

,

then we divide R2 by 2:
¨

˚

˝

1 0 2 9
0 1 1{2 4
0 ´3 ´8 ´38

˛

‹

‚

,

finally we apply R3 ÞÑ R3 ` 3R2:

¨

˚

˝

1 0 2 9
0 1 1{2 4
0 0 ´13{2 ´26

˛

‹

‚

,

which, converted back to a linear system, gives

$

’

&

’

%

x` 2z “ 9

y ` z{2 “ 4

´13z{2 “ ´26 ùñ z “ 4

ðñ

$

’

&

’

%

z “ 4

y ` 2 “ 4 ùñ y “ 2

y ` 8 “ 9 ùñ x “ 1

ðñ

$

’

&

’

%

x “ 1

y “ 2

z “ 4

.

Thus, for linear systems with equal number of unknowns and equations the Cramer rule and
the Gauss reduction methods are equivalent and one can use one or the other depending on
personal taste.

However, it is important to keep in mind that, for linear systems where the number of equations
and that of the unknown do not match, the Cramer rule cannot be applied anymore.

As a final note, recalling property 8. of Theorem 2.9.3 on the determinant, we have immediately
the following result.

Theorem 3.4.3 The determinant of a matrix is invariant under E1 transformations.

It is useful to keep in mind this property to compute the determinant of a matrix much more
easily by nullifying as many entries as possible.

Remark: the determinant is not invariant under E2 and E3 transformations, can you say
why by looking at the properties listed in Theorem 2.9.3?
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3.5 Questions about chapter 3

1. Can you invent a linear system and write the coefficient matrix, the vector of unknowns,
the vector of known data and the homogeneous linear system associated to it?

2. What does precisely mean to solve a linear system? And that a linear system is solvable?

3. Given AX “ B, can you quote a necessary and sufficient condition that involves B and
A that guarantees the solvability of the linear system?

4. Given the homogeneous system AX “ 0, can you characterize its solution space in terms
of A?

5. Imagine to know a solution X of AX “ B, how can you find all the other solutions?

6. What is the augmented matrix of a linear system?

7. Can you quote the Roché-Capelli theorem? What are the consequences of it on the
number of solutions of a linear system?

8. What does it mean for a matrix to be reduced by rows?

9. What’s so special about the rows of a matrix reduced by rows? What’s their relation
with the rank of the matrix?

10. Can you quote what are the three kinds of elementary transformations that permit to
reduce a matrix by rows?

11. What is the characteristic of a matrix reduced to row echelon form?

12. Do you remember the Cramer rule? What can it be applied?

13. Why does the Cramer rule is less general than the Gauss reduction method to solve
linear systems?
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3.6 Exercises of chapter 3

The following exercises have the aim of testing the comprehension of the most important
concepts that have been introduced in chapter 3.

1. Solve the following linear system

$

’

’

’

’

&

’

’

’

’

%

x1 ` 2x2 ` x3 ` 2x4` x5 “ 1

2x1 ` 4x2 ` 4x3 ` 6x4 ` x5 “ 2

3x1 ` 6x2 ` x3 ` 4x4 ` 5x5 “ 4

x1 ` 2x2 ` 3x3 ` 5x4 ` x5 “ 4

by first guessing how many solutions the system can have.

2. Use the Cramer rule to solve the linear system

$

’

&

’

%

2x1 ` x2 ` 3x3 “ 1

4x1 ` 5x2 ` 7x3 “ 7

2x1 ´ 5x2 ` 5x3 “ ´7

trying to make the computation of the determinants as easy as possible. . .

3. The following table gives the number of milligrams of vitamins A, B, C contained in one
gram of each of the foods F1, F2, F3, F4.

F1 F2 F3 F4

A 1 1 1 1

B 1 3 2 1

C 4 0 1 1

E.g., 1g of the food F2 contains 1mg of vitamin A, 3mg of vitamin B and no vitamin C.

A mixture is to be prepared containing precisely (for each gram):

• 14 mg of vitamin A

• 29 mg of vitamin B

• 23 mg of vitamin C.

What is the greatest amount of F2 that can be used in the mixture?
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3.6.1 Solutions of the exercises of chapter 3

The reader is strongly encouraged not to look at the solution of the exercises proposed in the
previous page before trying to solve them.

1. Solve the following linear system
$

’

’

’

’

&

’

’

’

’

%

x1 ` 2x2 ` x3 ` 2x4 ` x5 “ 1

2x1 ` 4x2 ` 4x3 ` 6x4 ` x5 “ 2

3x1 ` 6x2 ` x3 ` 4x4 ` 5x5 “ 4

x1 ` 2x2 ` 3x3 ` 5x4 ` x5 “ 4

First of all notice that: number of unknowns= 5, maximal rank =4, so there will surely
be at least 81 solutions, if the system is solvable.

Augmented matrix:

p A B q “

¨

˚

˚

˚

˝

1 2 1 2 1 1
2 4 4 6 1 2
3 6 1 4 5 4
1 2 3 5 1 4

˛

‹

‹

‹

‚

,

R2 ÞÑ R2 ´ 2R1, R3 ÞÑ R2 ´ 3R1, R4 ÞÑ R4 ´R1:

p A B q “

¨

˚

˚

˚

˝

1 2 1 2 1 1
0 0 2 2 ´1 0
0 0 ´2 ´2 2 1
0 0 2 3 0 3

˛

‹

‹

‹

‚

,

R3 ÞÑ R3 `R2, R4 ÞÑ R4 ´R2:

p A B q “

¨

˚

˚

˚

˝

1 2 1 2 1 1
0 0 2 2 ´1 0
0 0 0 0 1 1
0 0 0 1 1 3

˛

‹

‹

‹

‚

,

R2 ÞÑ R2{2, R3 Ø R4:

p A B q “

¨

˚

˚

˚

˝

1 2 1 2 1 1
0 0 1 1 ´1{2 0
0 0 0 1 1 3
0 0 0 0 1 1

˛

‹

‹

‹

‚

.

We can now ‘backsolve’ because the matrix is in row echelon form and the last equation
is an identity:
$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x5 “ 1

x4 ` 1 “ 3 ðñ x4 “ 2

x3 ` 2´ 1{2 “ 0 ðñ x3 “ ´3{2

x1 ` 2x2 ´ 3{2` 4` 1 “ 1 ðñ x1 “ ´5{2´ 2x2

x2 “ λ P F

ðñ

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

x1 “ ´5{2´ 2λ

x2 “ λ

x3 “ ´3{2

x4 “ 2

x5 “ 1

.

So, there are indeed 81 solutions.
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2. Use the Cramer rule to solve the linear system

$

’

&

’

%

2x1 ` x2 ` 3x3 “ 1

4x1 ` 5x2 ` 7x3 “ 7

2x1 ´ 5x2 ` 5x3 “ ´7

.

Coefficient matrix:

A “

¨

˝

2 1 3
4 5 7
2 ´5 5

˛

‚,

it has no zeros, let us make them appear by using E1 transformations, which do not
change the determinant. By performing R2 ÞÑ R2 ´ 2R1 and R3 ÞÑ R3 ´R1 we find

A1 “

¨

˝

2 1 3
0 3 1
0 ´6 2

˛

‚,

finally R3 ÞÑ R3 ` 2R2

A2 “

¨

˝

2 1 3
0 3 1
0 0 4

˛

‚,

so

detpAq “ detpA2q “ 2 det

ˆ

3 1
0 4

˙

“ 24 ‰ 0,

so A is invertible and we can use the Cramer rule.

• ∆1 “ det

¨

˝

1 1 3
7 5 7
´7 ´5 5

˛

‚ “
R2 ÞÑR2´7R1
R3 ÞÑR3`R2

det

¨

˝

1 1 3
0 ´2 ´14
0 0 12

˛

‚“ ´24

• ∆2 “ det

¨

˝

2 1 3
4 7 7
2 ´7 5

˛

‚ “
R2 ÞÑR2´2R1
R3 ÞÑR3´R1

det

¨

˝

2 1 3
0 5 1
0 ´8 2

˛

‚“ 36

• ∆3 “ det

¨

˝

2 1 1
4 5 7
2 ´5 ´7

˛

‚ “
R2 ÞÑR2´2R1
R3 ÞÑR3´R1

det

¨

˝

2 1 1
0 3 5
0 ´6 ´8

˛

‚“ 12.

In the computation of ∆i, i “ 1, 2, 3, we have used the Laplace development along the
first column at the end.

We have:

x “
∆1

detpAq
“ ´

24

24
“ ´1, y “

∆2

detpAq
“

36

24
“ 3{2, z “

∆3

detpAq
“

12

24
“ 1{2.
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3. This question may seem odd at first sight, but we will soon understand its meaning by
calling xj the amount of food Fj used in the mixture, j “ 1, . . . , 4. Since we have to use
all the foods in order to create the mixture, the data assigned requires that the following
linear system has to be solved

$

’

&

’

%

x1 ` x2 ` x3 ` x4 “ 14

x1 ` 3x2 ` 2x3 ` x4 “ 29

4x1 ` x3 ` x4 “ 23

.

Let us reduce in row echelon form the augmented matrix of the linear system:
¨

˝

1 1 1 1 14
1 3 2 1 29
4 0 1 1 23

˛

‚ ÞÑ
R2 ÞÑR1

R3 ÞÑR3´4R1

¨

˝

1 1 1 1 14
0 2 1 0 15
0 ´4 ´3 ´3 ´33

˛

‚ ÞÑ
R3 ÞÑR3`2R2

¨

˝

1 1 1 1 14
0 2 1 0 15
0 0 ´1 ´3 ´3

˛

‚,

the rank is 3 and the number of unknown is 4, so we have 81 solutions. To find them
we write:

$

’

&

’

%

x1 ` x2 ` x3 ` x4 “ 14

2x2 ` x3 “ 15

´x3 ´ 3x4 “ ´3

ðñ

$

’

’

’

’

&

’

’

’

’

%

x4 P R
x3 “ 3´ 3x4

2x2 ` 3´ 3x4 “ 15 ðñ x2 “ 6` 3
2x4

x1 ` 6` 3
2x4 ` 3´ 3x4 ` x4 “ 14 ðñ x1 “ 5` x4

2

,

hence the mathematical solutions of the system are
$

’

’

’

’

&

’

’

’

’

%

x1 “ 5` α
2

x2 “ 6` 3
2α

x3 “ 3´ 3α

x4 “ α P R

.

We have underlined that the ones above are the mathematical solutions of the system,
however, when we deal with real-world problems, we must always interpret the solutions
in a meaningful way. In our case, the amount of foods xj must be strictly positive, and
we see that, if α ą 0, then x1, x2 ą 0, but x3 may be negative, hence we must impose
the constraint

x3 “ 3´ 3α ą 0 ðñ x3 “ 3p1´ αq ą 0 ðñ α P p0, 1q,

since we are considering α ą 0.

So, the answer to the question is that the maximal amount of food F2 that can be used
in the mixture is

x2 Ñ
αÑ1

6`
3

2
“

15

2
“ 7.5mg.

Actually, in order to avoid x3 “ 0, we should use a little less of 7.5mg of F2. For example,
if we set α “ 0.99, our mixture would be

p5` 0.99{2qF1 ` p6` 3{2 ¨ 0.99qF2 ` p3´ 3 ¨ 0.99qF3 ` 0.99F4,

i.e. the required mixture with the largest amount of food F2 is:

5.495F1 ` 7.485F2 ` 0.03F3 ` 0.99F4.
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