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Preface

Color is a very difficult yet fascinating perceptual feature to analyze. Color
is inherently interdisciplinary since it is induced by a very complex chain of
mechanisms:

1. A source of visible electromagnetic energy generates a ray of light
that reaches our eyes either directly or after the interaction (diffusion,
transmission or reflection) with another medium;

2. The light passes through the eyes and it is transduced into electric
impulses by the retinal cells (photoreceptors: cones and rods);

3. The optical nerve sends this signal to the brain through complicated
(and not yet totally understood) neural mechanisms;

4. The brain interprets the signal carried by the neurons and give us color
perception.

So, in order to have a proper comprehension of the models and tools of color
image processing, we must first present at least a concise and necessarily
simplified overview on the four items listed above. For this reason, these
notes will be structured as follows:

• Chapter 1 will deal with the nature of light : how it can be produced
and it interacts with matter before reaching our eyes;

• Chapter 2 will introduce the interaction between light and matter ;

• Chapter 3 will present the eyes physiology and the photometric units;

• Chapter 4 will concentrate of the retina;

• Chapter 5 will deal introduce CIE colorimetry, the standard way to
represent and measure color;
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• Chapter 6 will give a very concise introduction to neuron dynamics,
higher brain features and contrast perception;

• Chapter 7 will discuss histograms of color images and modern (varia-
tional) ways to equalize them, mathematically and perceptually;

• Chapter 8 will introduce high dynamic range (HDR) images and the
related problem of tone mapping.

The author.

2



Contents

1 The nature of light and radiometry 6
1.1 What is light? . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.2 Radiometric units . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.3 Black body radiation . . . . . . . . . . . . . . . . . . . . . . . 15

2 Interaction between light and matter 18
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.2 Interaction between light and surfaces . . . . . . . . . . . . . 19

2.2.1 Reflectance and transmittance . . . . . . . . . . . . . 21

3 Physiology of the eyes and photometric units 23
3.1 The human eye . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.1.1 The cornea . . . . . . . . . . . . . . . . . . . . . . . . 24
3.1.2 The lens . . . . . . . . . . . . . . . . . . . . . . . . . . 25
3.1.3 The humors . . . . . . . . . . . . . . . . . . . . . . . . 26
3.1.4 The iris . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.5 The retina . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.1.6 The fovea . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.1.7 The macula . . . . . . . . . . . . . . . . . . . . . . . . 30
3.1.8 The optical nerve . . . . . . . . . . . . . . . . . . . . . 30

4 The retina 32
4.1 Rods and cones . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.1.1 Experiments to measure spectral luminous efficiency
functions . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.1.2 Photo-electrical response of cones and rods . . . . . . 40
4.2 Radiometric vs Photometric units: Luminous intensity and

luminance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Radiometers and Photometers and Spectrophotometers 44

3



5 CIE colorimetry and illuminants 46
5.1 Viewing conditions . . . . . . . . . . . . . . . . . . . . . . . . 47
5.2 Additive and subtractive color mixing. Color matching ex-

periments and standard CIE observers . . . . . . . . . . . . . 48
5.2.1 The CIE 1931 standard colorimetric observer . . . . . 54
5.2.2 The CIE 1964 supplementary standard colorimetric

observer . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.3 Color spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.3.1 The RGB color space . . . . . . . . . . . . . . . . . . 56
5.3.2 The XYZ color space . . . . . . . . . . . . . . . . . . . 57
5.3.3 CIE chromaticity diagram . . . . . . . . . . . . . . . . 59
5.3.4 Non uniformity of the CIE chromaticity diagram . . . 60

5.4 Light sources and illuminants . . . . . . . . . . . . . . . . . . 61
5.4.1 Artificial light sources . . . . . . . . . . . . . . . . . . 62
5.4.2 Features of artificial light sources . . . . . . . . . . . . 69
5.4.3 CIE illuminants . . . . . . . . . . . . . . . . . . . . . . 72
5.4.4 White balance in digital images: the von Kries trasfor-

mation . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Beyond light acquisition: neurophysiological and phenomeno-
logical properties of the human visual system 78
6.1 The other retinal cells, receptive fields and brain vision areas 79
6.2 Phenomenological mechanisms of color vision . . . . . . . . . 82

6.2.1 Trichromatic theory . . . . . . . . . . . . . . . . . . . 83
6.2.2 Hering’s opponent-colors theory . . . . . . . . . . . . . 83
6.2.3 Color vision deficiencies . . . . . . . . . . . . . . . . . 85
6.2.4 Adaptation mechanisms . . . . . . . . . . . . . . . . . 86

6.3 Visual Mechanisms Impacting Color Appearance . . . . . . . 92
6.3.1 Physical and perceived contrast: Weber-Fechner’s and

Stevens’ laws . . . . . . . . . . . . . . . . . . . . . . . 92

7 Histograms of color images: variational equalization and
perceptually inspired contrast enhancement 97
7.1 Classical histogram equalization processing . . . . . . . . . . 98
7.2 Variational principles in digital imaging . . . . . . . . . . . . 102
7.3 Histogram equalization through variational techniques . . . . 106

7.3.1 Interpretation of the variational histogram equalization 109
7.4 Perceptually-inspired color enhancement of digital imaging . . 111

4



8 High Dynamic Range (HDR) imaging and the tone mapping
problem 116
8.1 Radiance maps generation . . . . . . . . . . . . . . . . . . . . 116
8.2 Tone mapping . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

5



Chapter 1

The nature of light and
radiometry

1.1 What is light?

The nature of light has always been a debated topic throughout the history of
science because it has the puzzling property of behaving like a wave in some
circumstances and like a particle in others. This duality can be understood
within the framework of quantum field theory.

For the purpose of this course it is not necessary to enter in the com-
plicated models of quantum physics, it is enough to say that the light is a
particular electromagnetic wave1 produced by a non static electric or mag-
netic field: when an electric or magnetic field varies in time, it induces a non
static magnetic or electric field, respectively, so that the process propagates
to form a wave in which the electric field, the magnetic field and the direc-
tion of propagation of the wave are orthogonal, as depicted in Figure 1.1.
The energy of an electromagnetic wave is not continuous, but is distributed
in quanta of energy called photons.

Very important attributes of waves are:

• The wavelength λ, which is the Euclidean distance between two con-
secutive points of the wave characterized by the same intensity and the
same first derivative (e.g. two consecutive maxima or minima), it is
measured in meters (m) and its prefixes, which are recalled in Figure

1The electromagnetic theory was developed by James Clerk Maxwell (British physicist
1831-1879).
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Figure 1.1: An electromagnetic wave.

1.2. A cycle is a complete vibration of a wave between two arbitrary
points separated by a distance given by the wavelength.

• The period T which is the time needed by the electromagnetic wave
to perform one complete cycle and it is measured in seconds (s);

• The frequency ν, which is the inverse of the period: ν = 1
T and it is

measured in hertz (Hz);

• The speed of propagation of the wave, measured in m/s and indi-
cated in general with v. Mechanical waves need a medium to prop-
agate, but electromagnetic wave can also travel in vacuum, in which
case the speed is denoted with c and it is a fundamental constant of
nature: c = 299.792, 458 km/s.

The relationship among λ, ν and v is the following:

λ =
v

ν
, λ =

v

ν
.

Depending on the frequency or, equivalently, on the wavelength, an elec-
tromagnetic wave interacts with matter in very different ways, as can be
seen in Figure 1.3. We call light the electromagnetic radiation that falls
in the visible part of the whole electromagnetic spectrum, between 380 and
780 nm, where nm is a nanometer: 10−9m, or, equivalently, between 400
and 800 T Hz, where T Hz is a tera hertz: 1012Hz (of course one must
use the relation ν = c/λ to pass from the visible wavelength to the visible
frequency).

We call monochromatic light a visible electromagnetic radiation char-
acterized by the presence of only one wavelength (or frequency) and not by
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Figure 1.2: The prefixes used in the SI (International System of units).

the superposition of many waves with different wavelengths (or frequencies).
If a monochromatic light reaches our eyes, it produces a color sensation that
can be distinguished as in Figure 1.4.

By far, the greatest amount of light that arrives on the Earth is produced
by the nuclear reactions within the core of our Sun.

The core starts from the center and extends outward to encompass 25
percent of the sun’s radius. Its temperature is greater than 15 million degrees
kelvin. At the core, gravity pulls all of the mass inward and creates an
intense pressure. The pressure is high enough to force atoms of hydrogen
to come together in nuclear fusion reactions (something we are trying to
emulate here on Earth). Two atoms of hydrogen are combined to create
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Figure 1.3: The electromagnetic spectrum.

Figure 1.4: Monochromatic colors as a function of wavelength and frequency.

helium-4 and energy in several steps:

• Two protons combine to form a deuterium atom (hydrogen atom with
one neutron and one proton), a positron (similar to electron, but with
a positive charge) and a neutrino;

• A proton and a deuterium atom combine to form a helium-3 atom
(two protons with one neutron) and a gamma ray;

• Two helium-3 atoms combine to form a helium-4 atom (two protons
and two neutrons) and two protons.

These reactions account for 85 percent of the sun’s energy. The remaining
15 percent comes from the following reactions:
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• A helium-3 atom and a helium-4 atom combine to form a beryllium-7
(four protons and three neutrons) and a gamma ray;

• A beryllium-7 atom captures an electron to become lithium-7 atom
(three protons and four neutrons) and a neutrino;

• The lithium-7 combines with a proton to form two helium-4 atoms.

The helium-4 atoms are less massive than the two hydrogen atoms that
started the process, so the difference in mass is converted to energy as de-
scribed by Einstein’s theory of relativity E = mc2, being m the mass dif-
ference, E the energy produced in the reaction and c the speed of light
(see later for its value). The energy is emitted in various forms of light:
ultraviolet light, X-rays, visible light, infrared, microwaves and radio waves.

The sun also emits energized particles (neutrinos, protons) that make
up the solar wind. This energy strikes Earth, where it warms the planet,
drives our weather and provides energy for life. We aren’t harmed by most
of the radiation or solar wind because the Earth’s atmosphere protects us.

In fact, the atmosphere strongly reduces the amount of dangerous and
highly energetic ultraviolet (UV) and gamma rays, so that the majority of
Sun radiation that reaches the surface of our planet penetrating the atmo-
sphere is within the radio and visible part (sunlight) of the spectrum, with
a small amount of microwave and infrared (IR) waves.

The sunlight is composed with all the wavelengths between 380 and 780
nm, but not in a uniform way: as can be seen in Figure 1.5, the maximum
intensity of the sunlight with respect to the wavelength is reached in the
‘green’ region, around 510 nm. Sources of light like the Sun, i.e. that
emit light throughout the visible spectrum are called heterochromatic
or equienergetic, even if this last adjective is quite misleading because it
could give the impression of a uniformly distributed spectrum of intensities
with respect to frequencies.

To each monochromatic electromagnetic wave of frequency ν we can
associate a photon that vibrates with the same frequency. The energy carried
by the photon is given by Planck’s formula:

E = hν

where h is the universal constant of Planck: h = 6, 628 · 10−34Js, where J
is the unit of measure of energy, the joule.

The greater the frequency of an electromagnetic wave, the more intense
is its energy, so radio waves have very low energy and UV and gamma rays
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Figure 1.5: The intensity of sunlight relative to the wavelength.

are very energetic, for this reason they are dangerous for human beings and
living creatures in general.

Infrared radiation is often improperly called thermal radiation. Thermal
radiation is electromagnetic radiation produced by everything that has a
temperature greater than the absolute zero (0 K (kelvin) = -273,15 oC),
it is produced by the movement and interaction of charged particles and
molecules. If the body temperature doesn’t reach the incandescence level,
its thermal radiation falls typically in the infrared region, that is the reason
why the two radiations are often identified.

1.2 Radiometric units

The SI, International System of units, has defined a set radiometric units
that are very useful when we deal with light. Table 1.6 recaps these quan-
tities and their meaning. The suffix e stays for energetic, in contrast to the
suffix V , which stays for visual, that will be used to define the photomet-
ric units. Radiometric units are defined without taking into account the
interaction with the human eyes, which instead is considered to define the
photometric ones, as we will see later in section 4.2.

A particularly important unit is radiance Le, the power of an electro-
magnetic wave per unit of solid angle and surface orthogonal to the light
direction, it is measured in W

srm2 , sr being the steradian (dimensionless), the
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Figure 1.6: SI Radiometric units.

unit of measure of solid angle. Let us recall that a solid angle is a portion
of the three-dimensional Euclidean space included between two intersecting
planes. A solid angle of 1 sr is such that the spherical sector defined by the
solid angle divided by the square of the sphere radius is 1, as in Figure 1.7.
Since the area of the spherical surface is 4πr2, we have that the total solid
angle is 4πr2

r2
= 4π.
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Figure 1.7: Solid angle geometry.

The radiance is usually defined starting from an infinitesimal value:

dLe =
d2Φe

dA cos θdΩ

where the quantities involved in the definition are defined in Figure 1.8. The
infinitesimal radiance is defined as the ratio between the power of the light
(optical power) incident on a surface A through an infinitesimal solid angle
dΩ, divided by dΩ itself and the projected infinitesimal area dAp (where
the projection is meant in the direction orthogonal to the ray of light), i.e.
dAp = dA cos θ. The use of the second derivative symbol d2Le is just a formal
consequence of Leibnitz’s notation and some authors write dΦe instead of
d2Φe.

The total radiance Le is obtained by integrating dLe on the projected
section Ap and into the solid angle Ω.

The importance of radiance is that it is invariant in geometric optics.
This means that for an ideal optical system in air, the radiance at the
receiver is the same as the source of the radiation2. This is some-
times called conservation of radiance and it depends on the fact that the
projected area and the solid angle compensate each other. As an example, if
we form a demagnified image with a lens, the optical power is concentrated
into a smaller area, so the irradiance Ee is higher at the image. The light

2For real, passive, optical systems, the receiver radiance is at most equal to the source
radiance.
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Figure 1.8: Geometry of radiance definition 2D (above), 3D (below).

at the image plane, however, fills a larger solid angle so the radiance comes
out to be the same assuming there is no loss at the lens.

As we will see later, the acquisition of light through the eyes can be
modeled as a geometric optical system, so that the radiance of a light source
is the same radiance that hits our eyes.

On the contrary, the irradiance of en electromagnetic radiation3 Ee de-

3The symbol Ee is used because the irradiance is proportional to | ~E|2, the square of
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cays as the square of the distance to the source:

Ee = Le
A

d2
(1.1)

A being the area of the electromagnetic source and d being the distance to
the receiver.

1.3 Black body radiation

For later purposes, namely defining the so-called correlated color tempera-
ture (CCT), it is necessary to introduce the concept of black body radiation.
A black body is an idealized physical body that absorbs all incident electro-
magnetic radiation, regardless of frequency or angle of incidence4. A black
body in thermal equilibrium, i.e. at a constant temperature, emits electro-
magnetic radiation called black body radiation. The radiant intensity is
emitted according to Planck’s law5:

I(ν) ∝
1

e
hν
kT − 1

where ∝ means proportionality up to suitable constants, k is the universal
Boltzmann constant 1.38 ·10−23J/K, ν is the frequency of the radiation and
T is the temperature of the black body.

It can be seen that the spectrum of radiant intensity of a black body
is determined solely by its temperature and not by the body’s shape or
composition. Figure 1.9 shows the radiant intensity spectrum emitted by a
black body depending on its temperature.

Experimentally, it can be seen that the wavelength corresponding to the
maxima of each curves has an inverse proportionality with respect to the
temperature, this is called Wien’s law:

λmax =
b

T
,

the modulus of the electric field.
4In opposition to a black body one defines a white body as a body whose surface

reflects all incident rays completely and uniformly in all directions.
5Max Planck (German physicist 1858-1947) received the Nobel prize in Physics in 1918

for his work on quantum physics, notably for postulating that the energy of electromag-
netic radiation is packed in quanta of energy E = hν, thanks to which he was able to
predict with great precision the black body radiative spectrum, that is impossible with
Maxwell’s classical electromagnetic theory.
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Figure 1.9: The radiant intensity spectrum emitted by a black body depend-
ing on its temperature.

b is called Wien’s displacement constant: b = 2.8977685 · 10−3mK. Of
course, if we considered νmax = c

λmax
we would find a linear relationship

with the temperature: νmax = aT , a = 1
b .

An approximate realization of a black body surface is a hole in the wall of
a cavity: any light entering the hole is reflected indefinitely or absorbed in-
side and is unlikely to re-emerge, making the hole a nearly perfect absorber,
see Figure 1.10.

Figure 1.10: Realization of a black body as a cavity with a hole.
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Stars are approximate black bodies: Figure 1.11 shows a highly schematic
cross-section of a star to illustrate the idea. The photosphere of the star
where the emitted light is generated is idealized as a layer within which the
photons of light interact with the material in the photosphere and achieve a
common temperature T that is maintained over a long period of time. Some
photons escape and are emitted into space, but the energy they carry away
is replaced by energy from within the star, so that the temperature of the
photosphere is nearly steady. Changes in the core of the star lead to changes
in the supply of energy to the photosphere, but such changes are slow on the
time scale of interest here. Assuming these circumstances can be realized,
the outer layer of the star is somewhat analogous to the example of a cavity
with a small hole in it, with the hole replaced by the limited transmission
into space at the outside of the photosphere. With all these assumptions
in place, the star emits black-body radiation at the temperature T of the
photosphere. Using this model the effective temperature of stars is es-
timated, defined as the temperature of a black body that yields the same
surface flux of energy as the star. If a star were a black body, the same
effective temperature would result from any region of the spectrum. The
Sun has an effective temperature of 5780 K, which can be compared to the
temperature of the photosphere of the Sun (the region generating the visible
light), that is approximatively 5000 K at the outer boundary.

Figure 1.11: Very schematic idealization of the cross-section of a star.

Roughly speaking, nuclear physics predicts that young stars have λmax

in the region of blue, while old stars have λmax in the region of red, this
explains why stars appear differently colored in the sky.
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Chapter 2

Interaction between light
and matter

2.1 Introduction

Non self-luminous objects are those that don’t emit autonomously light, so
that they can be seen only if they are illuminated. We can distinguish among
three types of non self-luminous objects:

1. Transparent: those bodies that light can pass right through without
being diffused;

2. Translucent: semitransparent bodies that can transmit light diffus-
ing it;

3. Opaque: they don’t let light pass by, they reflect it and/or absorb it.

When opaque materials are hit by light, they partially reflect and par-
tially absorb it. Reflected light permits us to view objects.

Sometimes the photons absorbed allow surface particles to change their
energetic state to a higher unstable one, so that they decay to a lower en-
ergy level and emit a photon that always has a wavelength greater or equal
to that of the incoming light (so the emitted photon always has lower or
at most equal frequency than the one absorbed, and so is less energetic by
virtue of Planck’s formula). This phenomenon is generally called photolu-
minescence, in particular we talk about fluorescence if this phenomenon
ceases immediately after the illumination and about phosphorescence if
the phenomenon of light emission by the object continues for an appreciable
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amount of time after the external excitation of the material. Reflection and
fluorescence are, by far, more probable than phosphorescence.

2.2 Interaction between light and surfaces

The starting event that generates the phenomenon of vision is always the
same: a flux of photons entering the eyes. However, this optical flux can
reach our eyes in two different ways:

1. it can come directly from a source of light;

2. it can arrive to the eyes after being reflected by a surface.

In both cases there can be scattering (or diffusion) by a medium, typically
the air molecules, that can interact with the photons of the optical flux
modifying their direction of propagation.

We say that a light source, a reflecting surface or a scatterer are Lam-
bertian1 or isotropic if they emit, reflect or scatter, respectively, the same
amount of radiant flux Φe in every direction, without privileging a particular
one.

If we observe or measure the radiant intensity of a Lambert source,
reflecting surface or scatterer at an angle θ with respect to the normal vector
to the area of emission, reflection or scatter, respectively, then we find the
following expression called Lambert’s cosine law:

Iθe = I0
e cos θ

where I0
e is the radiant intensity in the direction of the normal vector, as

shown in Figure 2.1.
Lambertian reflection from surfaces is typically accompanied with spec-

ular reflection (gloss), where the surface luminance is highest when the
observer is situated at the perfect reflection direction and falls off sharply.
This is simulated in computer graphics with various specular reflection mod-
els such as Phong, Cook-Torrance.

A black body is an example of a Lambertian radiator. We know that black
bodies are idealized objects and, in fact, a perfect Lambertian condition is
never fulfilled in nature.

1Johann Heinrich Lambert (1728-1777), swiss mathematician, physicist, philosopher
and astronomer. Besides his studies on light, he is best known for being the first one to
prove the irrationality of the number π!
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Figure 2.1: Lambert’s law.

As an example, the moon is not a Lambertian scatterer. If it were so, one
would expect to see its scattered brightness appreciably diminish towards its
perimeter due to the increased angle at which sunlight hit the surface. The
fact that it does not diminish illustrates that the moon is not a Lambertian
scatterer, and in fact tends to scatter more light into the oblique angles than
would a Lambertian scatterer.

The emission of a Lambertian radiator does not depend upon the amount
of incident radiation, but rather from radiation originating in the emitting
body itself. For example, if the sun were a Lambertian radiator, one would
expect to see a constant brightness across the entire solar disc. The fact
that the sun exhibits limb darkening in the visible region illustrates that it
is not a Lambertian radiator.

The atmospheric scattering is not Lambertian: the so-called Rayleigh
scattering between sunlight and the atmosphere particles is such that the
spectral radiant intensity Ie,λ of the sunlight that reaches the surface of
the Earth is proportional to 1/λ4, so that the long (reddish) wavelengths
are strongly attenuated by the Rayleigh scattering, in favor of the short
(bluish) wavelengths and this influences the scattering of the optical flux in
the different directions. During sunset and sunrise the angle between the
sunlight and the Earth is such that there is only a small fraction of long
wavelength in the sunlight, so that the resulting color is more reddish than
during the rest of the day.
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2.2.1 Reflectance and transmittance

Let us start this section by first recalling Snell’s law. When a ray of light
propagates from one isotropic transparent medium to another, the direction
of propagation of light changes, as shown in Figure 2.2.

Figure 2.2: Schematization of Snell’s law.

With respect to the angles θ1, θ2 made with the normal vector to the
discontinuity surface we can express Snell’s law as follows:

sin θ1

sin θ2
=
v1

v2
,

where vi is the speed of propagation of the light in the i-th medium. If we
define the index of refraction as n = c

v , i.e. the fraction between the the
speed of light in vacuum and that in the medium under analysis, we have
that, of course n > 1 for every material and Snell’s law can be reformulated
as follows:

sin θ1

sin θ2
=
n2

n1
.

Let us now define two important parameters of a material:

• the spectral reflectance ρ(ξ, λ) at the point ξ and the wavelength λ
is the ratio between the reflected and incident optical flux in ξ and at
the fixed wavelength λ:

ρ(ξ, λ) =
Φreflected
e,λ (ξ)

Φincident
e,λ (ξ)

;
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• the spectral transmittance τ(s, λ) of a material with thickness s
and the wavelength λ is the ratio between the transmitted and incident
optical flux at the fixed wavelength λ:

τ(s, λ) =
Φtrasmitted
e,λ (s)

Φincident
e,λ

.

In case of total reflection we have ρ(ξ, λ) = 1 and τ(s, λ) = 0 for every λ.
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Chapter 3

Physiology of the eyes and
photometric units

The main reference for this chapter is M.D. Fairchild’s ‘Color appearance
models’, Chapter 1 ‘Human color vision’, John Wiley and Sons, Second
Edition, 2005.

3.1 The human eye

The human eyes are an extraordinary product of evolution. First of all,
since sight and sound are the most fundamental senses for humans, nature
has placed eyes and ears on the head, so that the stimuli they catch from
the outside world can arrive as quickly as possible to the brain.

Our visual perception is initiated and strongly influenced by the anatom-
ical structure of the eye. Figure 3.1 shows a schematic representation of the
optical structure of the human eye with some key features labeled. The
human eye lies within a bulb of around 2.4 cm and acts as a powerful opti-
cal system of around 60 dioptrics. The cornea and lens act together like a
camera lens to focus an image of the visual world on the retina at the back
of the eye, which acts like the film or other image sensor of a camera. These
and other structures have a significant impact on our perception of color.

Our visual field is:

• 90 degrees towards the temple;

• 60 degrees towards the nose;

• 70 degrees above;
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Figure 3.1: A simplified representation of the human eye.

• 80 degrees below.

The light that enters in our eyes, before reaching the photoreceptors of
the retina, passes through the cornea, the aqueous humor, the pupil, the
crystalline lens and the vitreous humor. In the next subsections we will
briefly explain the behavior of all these parts. Finally, in the next chapter,
we will analyze in more detail the film of our natural camera: the retina.

3.1.1 The cornea

The cornea is the transparent outer surface of the front of the eye through
which light passes. It serves as the most significant image-forming element
of the eye since its curved surface at the interface with air represents the
largest change in index of refraction in the eye’s optical system, by virtue of
Snell’s law this corresponds to a deviation of the rays of light.

The cornea is avascular, receiving its nutrients from marginal blood ves-
sels and the fluids surrounding it. Refractive errors, such as nearsightedness
(myopia), farsightedness (hyperopia), or astigmatism, can be attributed to
variations in the shape of the cornea and are sometimes corrected with laser
surgery that reshapes the cornea.
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3.1.2 The lens

The crystalline biconvex lens serves the function of accommodation: it
focuses the parallel rays of light coming from relatively distant objects to
the retina, in order to have a sharp (reduced and upsidedown!) view.

However, as we approach an object to a small distance, the rays of light
incoming from this object are not parallel and the lens focuses the rays of
light behind the retina, so that we see a blurred image.

Whenever the image upon the retina becomes blurred, the brain auto-
matically causes the ciliary muscles to contract or to relax until the crys-
talline lens has obtained just the right shape to restore a sharp and defined
image upon the retina.

The analogy with a camera here doesn’t work, because in a common
camera the lens remains fixed, while the focus is moved (manually or auto-
matically) to adapt to difference distance views. When we gaze at a nearby
object, the lens becomes ‘fatter ’ and thus has increased optical power to
allow us to focus on the near object. When we gaze at a distant object, the
lens becomes ‘flatter ’ resulting in the decreased optical power required to
bring far away objects into sharp focus.

As we age, the internal structure of the lens changes resulting in a loss
of flexibility. Generally, when an age of about 50 years is reached the lens
has completely lost its flexibility and observers can no longer focus on near
objects (this is called presbyopia, or ‘old eye’). It is at this point that most
people need reading glasses or bifocals.

Concurrent with the hardening of the lens is an increase in its optical
density. The lens absorbs and scatters short-wavelength (blue and violet)
energy. As it hardens, the level of this absorption and scattering increases.
In other words, the crystalline lens becomes more and more yellow with age.
Various mechanisms of chromatic adaptation generally make us unaware of
these gradual changes.

However, we are all looking at the world through a yellow filter that
not only changes with age, but is significantly different from observer to
observer. The effects are most noticeable when performing critical color
matching or comparing color matches with other observers. The effect is
particularly apparent with purple objects.

Since an older lens absorbs most of the blue energy reflected from a
purple object, but does not affect the reflected red energy, older observers
will tend to report that the object is significantly more red than reported
by younger observers.

The crystalline is a layered, flexible structure that varies in index of
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refraction. It is a naturally occurring gradient index optical element with
the index of refraction higher in the center of the lens than at the edges.
This feature serves to reduce some of the aberrations that might normally
be present in a simple optical system.

Finally, let us comment the phenomenon of chromatic aberration: as
can be seen in Figure 3.2, the long wavelengths are deflected by the lens
more closely to the retina than the short wavelengths, this is why the red
appears closer to other colors, this is one of the phenomena used to form a
3D illusion in cinema.

Figure 3.2: Chromatic aberration.

3.1.3 The humors

The volume between the cornea and lens is filled with the aqueous humor,
which is essentially water. The region between the lens and retina is filled
with vitreous humor, which is also a fluid, but with a higher viscosity, similar
to that of gelatin.

Both humors exist in a state of slightly elevated pressure (relative to air
pressure) to assure that the flexible eyeball retains its shape and dimensions
in order to avoid the deleterious effects of wavering retinal images. The
flexibility of the entire eyeball serves to increase its resistance to injury. It
is much more difficult to break a structure that gives way under impact than
one of equal ‘strength’ that attempts to remain rigid.

Since the indices of refraction of the humors are roughly equal to that
of water, and those of the cornea and lens are only slightly higher, the rear
surface of the cornea and the entire lens have relatively little optical power.
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3.1.4 The iris

The iris is the sphincter muscle that controls pupil size. The iris is pigmented,
giving each of us our specific eye color. Eye color is determined by the
concentration and distribution of melanin within the iris.

The pupil, which is the hole in the middle of the iris through which light
passes, defines the level of illumination on the retina. Pupil size is largely
determined by the overall level of illumination, but it is important to note
that it can also vary with non-visual phenomena such as arousal.

This effect can be observed by enticingly shaking a toy in front of a cat
and paying attention to its pupils. Thus it is difficult to accurately predict
pupil size from the prevailing illumination.

In practical situations, pupil diameter varies from about 3 mm to about
7 mm. This change in pupil diameter results in approximately a fivefold
change in pupil area, and therefore retinal illuminance.

The change in pupil diameter alone is not sufficient to explain excellent
human visual function over prevailing illuminance levels that can vary over
10 orders of magnitude.

3.1.5 The retina

The retina is actually considered a part of the optical nerve and not of the
eye. The optical image formed by the eye is projected onto the retina.

The retina is a thin layer of cells, approximately the thickness of tissue
paper, located at the back of the eye and incorporating the visual system’s
photosensitive cells and initial signal processing and transmission ‘circuitry’.
These cells are neurons, part of the central nervous system, and can appro-
priately be considered a part of the brain. The photoreceptors, rods and
cones, serve to transduce the information present in the optical image into
chemical and electrical signals that can be transmitted to the later stages of
the visual system.

These signals are then processed by a network of cells and transmitted
to the brain through the optic nerve. More detail on the retina will be
presented in the next section.

Behind the retina is a layer known as the pigmented epithelium. This
dark pigment layer serves to absorb any light that happens to pass through
the retina without being absorbed by the photoreceptors. The function
of the pigmented epithelium is to prevent light from being scattered back
through the retina, thus reducing sharpness and contrast of the perceived
image.
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Nocturnal animals give up this improved image quality in exchange for
a highly reflective tapetum that reflects the light back in order to provide
a second chance for the photoreceptors to absorb the energy. This is why
the eyes of a deer, or other nocturnal animal, caught in the headlights of an
oncoming automobile, appear to glow!

3.1.6 The fovea

One of the most important structural area on the retina is the fovea. The
fovea has a diameter of around 0.1 mm and it allows the best spatial and
color vision for an angle of about 2 degrees (called foveal vision).

When we look at, or fixate, an object in our visual field, we move our
head and rotate our eyes so that the image of the object falls on the fovea.

We call visual axis the straight line that connects the center of the
fovea with the point that we are looking at. Notice that this, in general, it
differs from the eye’s optical axis, as show in Figure 3.3.

Figure 3.3: Visual vs. optical axis .

As you are reading this text, you are moving your eyes to make the vari-
ous words fall on your fovea as you read them. To illustrate how drastically
spatial acuity falls off as the stimulus moves away from the fovea, try to read
preceding text in this paragraph while fixating on the period at the end of
this sentence.

It is probably difficult, if not impossible, to read text that is only a few
lines away from the point of fixation! The fovea covers an area that subtends
about 2 degrees of visual angle in the central field of vision. To visualize 2
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degrees of visual angle, a general rule is that the width of your thumbnail,
held at arm’s length, is approximately 1 degree of visual angle.

Eye saccadic movements

The importance of foveal vision is also stressed by the so-called saccadic
eye movements. Saccades are quick, involuntary, simultaneous movements
of both eyes in the same direction performed by humans and many other
animals (as opposed to most birds).

Our eyes make jerky saccadic movements and stop several times in the
so-called fixations, moving very quickly between each stop. We process
the entire light information acquired during the fixations, while during the
saccades we attenuate the importance of low spatial frequencies and only
process high spatial frequency, a phenomenon called saccadic masking.

The reason for this behavior is twofold:

• It allow foveal (high resolution) view of interesting parts of the scene
to build up a mental, three-dimensional map;

• The foveal vision corresponds to the resolution of a digital camera
of roughly 1 Mega pixel, if cones had the foveal density throughout
the rest of the retina, we would have the resolution of 1 Giga pixel,
which is too much information to handle at once for the optical nerve.
So saccadic movements are a brilliant way that nature chose to save
‘computational space’: instead of having an immediate high resolution
vision of the world around us, we see sequences of sharp parts of it
and then the brain ‘links together’ these information.

Of course, in order to have the impression of a continuous vision, saccades
must be quick, and in fact they are the fastest movements produced by
the human body: typical saccadic movements while we are reading are of
the order of 20-30 ms. This is possible thanks to the fact that they are
generated by a neuronal mechanism that bypasses time-consuming circuits
and activates the eye muscles more directly.

Using eye trackers to follow the saccadic movements, researchers have
built and studied saliency maps, i.e. descriptions of gazes and point where
the eyes insist looking at. Even if the interpretation of saliency maps is still
debated, there is a general agreement about the fact that strong edges are
the first ones to catch the attention, suggesting that first of all our visual
system creates a ‘rough’ depiction of the contours of what we’re watching,
filling in the finer details in a second part of a multi-scale processing.
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3.1.7 The macula

The fovea is also protected by a yellow filter known as the macula. The
macula serves to protect this critical area of the retina from intense exposures
to short-wavelength energy. It might also serve to reduce the effects of
chromatic aberration that cause the short-wavelength image to be rather
severely out of focus most of the time.

Unlike the lens, the macula does not become more yellow with age.
However, there are significant differences in the optical density of the mac-
ular pigment from observer to observer and in some cases between a single
observer’s left and right eyes. The yellow filters of the lens and macula,
through which we all view the world, are the major source of variability in
color vision between observers with normal color vision.

The humors and the macula contribute to strongly reduce the con-
trast of luminance that hit the retinal cells, forcing light towards an
average gray level.

The CIE (Commission International de l’Éclairage - International Com-
mission of Illumination) has measured the Glare Spread Function (GSF)
provoked by the optical system of the eyes as a function of the angle of light
acquisition, age and race.

3.1.8 The optical nerve

A last key structure of the eye is the optic nerve. The optic nerve is made
up of the axons (outputs) of the ganglion cells, the last level of neural pro-
cessing in the retina. It is interesting to note that the optic nerve is made
up of approximately one million fibers, carrying information generated by
approximately 130 million photoreceptors. Thus there is a clear compres-
sion of the visual signal prior to transmission to higher levels of the visual
system. A one-to-one ‘pixel map’ of the visual stimulus is never available
for processing by the brain’s higher visual mechanisms.

Since the optic nerve takes up all of the space that would normally be
populated by photoreceptors, there is a small area in each eye in which
no visual stimulation can occur. This area is known as the blind spot.
The structures described above have a clear impact in shaping and defining
the information available to the visual system that ultimately results in the
perception of color appearance.

The action of the pupil serves to define retinal illuminance levels that,
in turn, have a dramatic impact on color appearance. The yellow-filtering
effects of the lens and macula modulate the spectral response of our visual
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system and introduce significant inter-observer variability.
The spatial structure of the retina serves to help define the extent and

nature of various visual fields that are critical for defining color appearance.
The neural networks in the retina reiterate that visual perception in general,
and specifically color appearance, cannot be treated as simple point-
wise image processing problems.

Several of these important features are discussed in more detail in the
following chapters.
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Chapter 4

The retina

Figure 4.1 illustrates a cross-sectional representation of the retina.

Figure 4.1: Composition of retinal layers.

The retina includes several layers of neural cells, beginning with the pho-
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toreceptors, the rods and cones. Figure 4.1 provides only a slight indication
of the extent of these various interconnections between retinal cells.

The specific processing that occurs in each type of cell is not completely
understood and is beyond the scope of this notes. However, it is important
to realize that the signals transmitted from the retina to the higher levels of
the brain via the ganglion cells are not simple point-wise representations of
the receptor signals, but rather consist of sophisticated combinations of the
receptor signals.

To envision the complexity of the retinal processing, keep in mind that
each synapse between neural cells can effectively perform a mathematical
operation (add, subtract, multiply, divide) in addition to the amplification,
gain control, and nonlinearities that can occur within the neural cells. Thus
the network of cells within the retina can serve as a sophisticated image
computer. This is how the information from 130 million photoreceptors can
be reduced to signals in approximately 1 million ganglion cells without loss
of visually meaningful data.

It is interesting to note that light passes through all of the neural ma-
chinery of the retina prior to reaching the photoreceptors. This has little
impact on visual performance since these cells are transparent and in fixed
position, thus not perceived. It also allows the significant amounts of nu-
trients required and waste produced by the photoreceptors to be processed
through the back of the eye.

4.1 Rods and cones

Figure provides a representation of the two classes of retinal photoreceptors,
rods and cones.

Rods and cones derive their respective names from their prototypical
shape. Rods tend to be long and slender while peripheral cones are conical.
This distinction is misleading since foveal cones, which are tightly packed
due to their high density in the fovea, are long and slender, resembling
peripheral rods.

The most important distinction between rods and cones is in visual func-
tion. Rods serve vision at low luminance1 levels (e.g., less than 10−3 cd/m2)
while cones serve vision at luminance levels higher than 10 cd/m2, in the
intermediate range both rods and cones work, but with less ability.

1We will introduce in section 4.2 the photometric units, for now, the only information
that matters is that luminance is a sort of ‘perceived radiance’ and it is measured in
cd/m2, cd being the candela, SI unity of measure of the luminous intensity.
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Figure 4.2: Prototypical shape of rods (left) and cones (right).

Thus the transition from rod to cone vision is one mechanism that allows
our visual system to function over a large range of luminance levels. At
high luminance levels (e.g., greater than 10 cd/m2) the rods are effectively
saturated and only the cones function. In the intermediate luminance levels,
both rods and cones function and contribute to vision. Vision when only
rods are active is referred to as scotopic vision (luminance < 10−3 cd/m2).
Vision served only by cones is referred to as photopic vision and the term
mesopic vision is used to refer to vision in which both rods and cones are
active.

Rods and cones also differ substantially in their spectral sensitivities
as illustrated in Figure 4.3, the curves are the CIE spectral luminous
efficiency functions for scotopic, V ′(λ), and photopic, V (λ) vision wave-
lengths (see subsection 4.1.1 to know how these curves have been obtained).

There is only one type of rod receptor with a peak spectral responsivity
for V ′ at 510 nm. V ′(λ) is identical to the spectral responsivity of the rods
and depends on the spectral absorption of rhodopsin, the photosensitive
pigment in rods that bleaches when light is absorbed.

Instead, there are three types of cone receptors with peak spectral re-
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Figure 4.3: The Purkinje shift.

sponsivities spaced through the visual spectrum induced by three slightly
different rhodopsin molecular structures, see Figure 4.4.

The difference in peak spectral sensitivity between scotopic and pho-
topic vision means that with scotopic vision we are more sensitive to shorter
wavelengths. This effect, known as the Purkinje shift, can be observed
by finding two objects, one blue and the other red, that appear the same
lightness when viewed in daylight. When the same two objects are viewed
under very low luminance levels, the blue object will appear quite bright
while the red object will appear nearly black because of the scotopic spec-
tral sensitivity function.

The three types of cones are most properly referred to as L, M, and S
cones. These names refer to the long-wavelength, middle-wavelength, and
short wavelength sensitive cones, picked at 560 nm, 530 nm and 420 nm,
respectively. Sometimes the cones are denoted with other symbols such as
RGB, suggestive of red, green, and blue sensitivities. As can be seen in
Figure 4.4, this concept is erroneous (in particular because the L cones are
picked in the region of monochromatic green-yellow, not red!) and the LMS
names are more appropriately descriptive.

The V (λ) function represents the overall sensitivity of the cone system
with respect to the perceived brightness of the various wavelengths, i.e. a
combination of the three types of cone signals rather than the responsivity
of any single cone type. V (λ) has a pick at 555 nm.

Note that the spectral responsivities of the three cone types are broadly
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Figure 4.4: Spectral responsivities of L,M and S cones.

overlapping ; a design that is significantly different from the ‘color separation’
responsivities that are often built into physical imaging systems. Such sensi-
tivities, typically incorporated in imaging systems for practical reasons, are
the fundamental reason that accurate color reproduction is often difficult, if
not impossible to achieve.

The three types of cones clearly serve color vision. Since there is only one
type of rod, the rod system is incapable of color vision. This can easily be
observed by viewing a normally colorful scene at very low luminance levels.

Another important feature about the three cone types is their relative
distribution in the retina.

It turns out that the S cones are relatively sparsely populated throughout
the retina and completely absent in the most central area of the fovea. There
are far more L and M cones than S cones and there are approximately twice
as many L cones as M cones.

The relative populations of the L:M:S cones are approximately 12:6:1.
These relative populations must be considered when combining the cone re-
sponses. (plotted with individual normalizations in Figure 4.4) to predict
higher level visual responses. Figure 4.5 provides a schematic representation
of the foveal photoreceptor mosaic with false coloring to represent a hypo-
thetical distribution with the L cones in red, M cones in green, and S cones
in blue. Figure 4.5 is presented simply as a convenient visual representation
of the cone populations and should not be taken literally.
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Figure 4.5: Each colored dot represents a particular type of cone (L,M or
S) in the retina. Notice that there are no S cones or rods in the fovea.

There are no rods present in the fovea. This feature of the visual system
can also be observed when trying to look directly at a small dimly illumi-
nated object, such as a faint star at night. It disappears since its image
falls on the foveal area where there are no rods to detect the dim stimulus.
Figure 4.6 shows the distribution of rods and cones across the retina.

Figure 4.6: Distribution of rods an cones across the retina.

Several important features of the retina can be observed in Figure 4.6.
First, notice the extremely large numbers of photoreceptors. In some reti-
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nal regions there are about 150 000 photoreceptors per square millimeter
of retina! Also notice that there are far more rods (around 130 million per
retina) than cones (around 7 million per retina). This might seem somewhat
counterintuitive since cones function at high luminance levels and produce
high visual acuity while rods function at low luminance levels and produce
significantly reduced visual acuity (analogous to low-speed fine-grain photo-
graphic film vs high-speed coarse-grain film).

The solution to this apparent mystery lies in the fact that single cones
feed into ganglion cell signals while rods pool their responses over hundreds of
receptors (feeding into a single ganglion cell) in order to produce increased
sensitivity at the expense of acuity. This also partially explains how the
information from so many receptors can be transmitted through one mil-
lion ganglion cells. Figure 4.6 also illustrates that cone receptors are highly
concentrated in the fovea and more sparsely populated throughout the pe-
ripheral retina while there are no rods in the central fovea.

Rods become denser and denser as we move far away from the fovea. The
fact that they are distributed on the lateral parts of the retina and respond
quicker than cones to visual stimuli is proven, for example, by looking at a
TV monitor in dim light conditions with the back of our eyes and noticing
the flickering given by the fact that the TV signal is not continuous but
pulsed: this can deceive our cones, but not our rods! This anisotropic
distribution is, again, a remainder of our evolution: primitive men had to
defend themselves from the attack of fierce creatures during the night, that
typically attack from the side, and this favored the selection of human beings
with a prevailing number of rods in the lateral part of the retina.

A final feature to be noted in Figure 4.6 is the blind spot. This is the
area, 12−150 from the fovea, where the optic nerve is formed and there is no
room for photoreceptors. One reason the blind spot generally goes unnoticed
is that it is located on opposite sides of the visual field in each of the two
eyes. However, even when one eye is closed, the blind spot is not generally
noticed.

Figure 4.6 provides some stimuli that can be used to demonstrate the
existence of the blind spot and the filling in phenomena.

To observe your blind spot, close your left eye and fixate the cross in
Figure 4.7(a) with your right eye. Then adjust the viewing distance of the
figure until the spot to the right of the cross disappears when it falls on
the blind spot. Note that what you see when the spot disappears is not a
black region, but rather it appears to be an area of blank paper. This is an
example of a phenomenon known as filling in. Since your brain no longer
has any signal indicating a change in the visual stimulus at that location, it
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Figure 4.7: Experiment to prove the existence of the blind spot and the
filling in phenomena.

simply fills in the most probable stimulus, in this case a uniform white piece
of paper. The strength of this filling in can be illustrated by using 4.7(b)
to probe your blind spot. In this case, with your left eye closed, fixate the
cross with your right eye and adjust the viewing distance until the gap in the
line disappears when it falls on your blind spot. Amazingly the perception is
that of a continuous line since that is now the most probable visual stimulus.
If you prefer to perform these exercises using your left eye, simply turn the
book upside down to find the blind spot on the other side of your visual
field.

The filling in phenomenon goes a long way to explain the function of the
visual system. The signals present in the ganglion cells represent only local
changes in the visual stimulus. Effectively, only information about spatial
or temporal transitions, i.e. edges, is transmitted to the brain. Perceptually
this code is sorted out by examining the nature of the changes and filling
in the appropriate uniform perception until a new transition is signaled.
This coding provides tremendous savings in bandwidth to transmit the signal
and can be thought of as somewhat similar to run-length encoding that is
sometimes used in digital imaging.

4.1.1 Experiments to measure spectral luminous efficiency
functions

There are various techniques to measure the spectral luminous efficiency
functions V (λ) and V ′(λ). The CIE curves for V (λ) and V ′(λ) shown in
Figures 4.3 and 4.4 are obtained by averaging the results of different labo-
ratories that used the technique of mono and heterochromatic adjustment.

This technique consists in separating the visual field in two parts illumi-
nated by two light of different intensity. If we use two monochromatic lights,
then, by changing the light intensity we will arrive at a point in which the
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separation between the two fields is imperceptible. The sensitivity to inten-
sity variation is different for each wavelength selected in the monochromatic
illuminant. This is called monochromatic adjustment.

In heterochromatic adjustment instead we take as reference the lu-
minous efficiency of the monochromatic adjustment for a light of 555 nm
and we measure the relative efficiency by fixing this light in one part of the
field and using lights with other wavelengths in the other part. Of course in
this case there won’t be a perfect intensity match, so that the edge between
the two parts will still be visible and match will correspond to the minimal
contour visibility.

4.1.2 Photo-electrical response of cones and rods

We have already said that the humors and macula strongly reduce the range
of luminance hitting the retina. When the photo-chemical transduction
from light to electric impulses performed by the photoreceptors occurs, we
have another range reduction. In fact, it has been measured that when a
photoreceptor absorbs a luminance L, the electric potential of its membrane
changes accordingly to the empirical law known as Michaelis-Menten’s
equation or Naka-Rushton’s equation when n = 1:

r(L) =
∆V

∆Vmax
=

Ln

Ln + LnS
, (4.1)

where ∆Vmax is the highest difference of potential that can be generated,
n is a constant (measured as 0.74 for the rhesus monkey) and LS is the
luminance at which the photoreceptor response is half maximal, called the
semisaturation level, and which is usually associated with the level of adap-
tation. Each type of cone is most sensitive over a particular waveband and
the semisaturation constant depends on the amount of light in the particular
waveband that reaches it, not on the global luminance of the light source.

In Figure 4.8 we show the compressive effect of this behavior in arbitrary
units for rods and cones.

It is interesting to note that these functions show characteristics simi-
lar to those found in all imaging systems. At the low end of the receptor
responses there is a threshold, below which the receptors do not respond.
There is then a fairly linear portion of the curves, followed by response sat-
uration at the high end. Such curves are representations of the photocurrent
at the receptors and represent the very first stage of visual processing. These
signals are then processed through the retinal neurons and synapses until a
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Figure 4.8: Compressive effect of Michaelis-Menten’s equation in arbitrary
units.

transformed representation is generated in the ganglion cells for transmission
through the optic nerve.

We will consider again eq. (4.1) in the light adaptation process.

4.2 Radiometric vs Photometric units: Luminous
intensity and luminance

We conclude this chapter by relating radiometric and photometric units.
Radiometric units describe physical attributes of light, while photometric
unities take into account the eyes’ response to light stimuli.

As we have seen, the response of photoreceptors to light stimuli is differ-
ent in each wavelength, the spectral luminous efficiency functions V (λ) and
V ′(λ) of cones and rods, respectively, quantify this response.

Given a generic radiometric unit Xe, we define the corresponding pho-
tometric unit XV (the suffix V stays for ‘visual’) multiplying Xe by the
adimensional weight given by V (λ) or V ′(λ) (depending if the visual con-
dition is photopic or scotopic) and integrating over the visual spectrum,
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i.e.

XV = Km

∫ 780nm

380nm
Xe(λ)V (λ) dλ Photopic conditions;

XV = K ′m

∫ 780nm

380nm
Xe(λ)V ′(λ) dλ Scotopic conditions,

where Km and K ′m are two constants whose value is Km = 683 lm/W and
K ′m = 1700 lm/W , they are called luminous efficiency in photopic and
scotopic condition, respectively. Mesopic conditions are still a matter of
research and no commonly accepted definition is available. In practice, the
integration is never performed and one considers a finite sum with a small
step in wavelength, typically of the order of units of nanometers. Of course,
for a monochromatic radiation of wavelength λ, there is no need to consider
any integration.

The table in Figure 4.9 provides the list of photometric units.

Figure 4.9: SI photometric units.

Notice that

• The luminous energy QV is the photometric equivalent of the radiant
energy Qe;

• The luminous flux ΦV , measured in lumen, lm = cd · sr, is the pho-
tometric equivalent of the radiant flux Φe;

• The luminous intensity IV is the photometric equivalent of the radiant
intensity Ie;
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• The luminance LV , measured in cd/m2, is the photometric equivalent
of the radiance Le and so it is conserved in geometric optical
systems;

• The illuminance EV , measured in lux, lx = lum/m2, is the photomet-
ric equivalent of the irradiance Ee;

• The luminous emittance MV is the photometric equivalent of the ra-
diant emittance Me.

To understand why the Km and K ′m constants are introduced we need
to talk about the definition of one of the 7 fundamental units of the SI, the
luminous intensity, and its unit of measure, the candela. In 1979, the SI
defined 1 cd as the luminous intensity IV , in a given direction, of a source
which emits a monochromatic radiation of wavelength 540·1012Hz with a
radiant intensity Ie in that direction of 1/683 W/sr. The name refers to the
fact that the luminous intensity of 1 cd is approximatively that produced by
a real candle.

Three parameters of the definition must be explained:

1. The SI has chosen a frequency ν of 540·1012Hz because the correspond-
ing wavelength λ = v/ν, being v the speed of light in standard air, is
555 nm, which corresponds to the peak of V (λ), so such a monochro-
matic radiation is chosen to minimize the radiant energy needed to
produce the same luminous intensity;

2. To define 1 cd a radiant intensity of 1/683 W/sr is needed because,
being V (555nm) = 1, we have

IV = 683 lm/W
1

683
W/sr = 1 lm/sr = 1 cd.

The value Km = 683 lm/W has been chosen simply to maintain co-
herence with the value of the candela defined in 1948 by stating that
‘the luminous intensity of a black body radiator at the solidification
temperature of the platinum is 60 cd/cm2’. The definition has been
changed because of the difficulty in creating a perfect black body ra-
diator and thanks to the advances in laser so that a monochromatic
radiation of 555 nm that propagates in a well specified direction can
be produced without major efforts.

3. Similarly, the value K ′m = 1700 lm/W allows equivalence with the
former definition of candela in scotopic conditions.
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Examples of luminous intensities:

• Fission bomb right after the explosion: 1012 cd;

• Lightning: 1010 cd;

• Sun from the surface of the Earth: 109 cd;

• Full moon: 103 cd;

• 25W isotropic fluorescent bulb: 135 cd;

• Standard candle: 1 cd;

• LEDs can range from 10−3 to 101 cd (ultra bright leds).

The candela is the only SI unit in which the interaction between a physi-
cal quantity (radiant intensity) and humans is explicitly taken into account.

4.2.1 Radiometers and Photometers and Spectrophotome-
ters

Radiometers are instruments that can measure radiant units (as radiance,
irradiance and so on), the most precise radiometer available nowadays is the
so-called cryogenic radiometer which capitalizes the fact that at tem-
peratures close to the absolute zero (0 K = -273,15 0C) it is possible to
establish a very precise correspondence between optical power and electric
power, that can be measured with great precision (0.01%). Less precise,
but most frequently used, radiometers use photoresistors, photodiodes, pho-
tomultipliers or photon counters, whose description is beyond the scope of
these notes.

Photometers are instruments that can measure photometric units (as
luminance, illuminance and so on) because the are able to perform the op-
erations to pass from radiometric to photometric units. An example of
photometer is shown in Figure 4.10.

Spectrophotometers can analyze the photometric propertied of the
different wavelengths of light by using a monochromator, which is an op-
tical device that transmits a mechanically selectable narrow band of wave-
lengths of light chosen from a wider range of wavelengths available at the
input. A monochromator can use either the phenomenon of optical disper-
sion in a prism, or that of diffraction using a diffraction grating, to spatially
separate the wavelengths of light. It usually has a mechanism for directing
the selected wavelength to an exit slit.
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Figure 4.10: A photometer.

Once luminous intensity, luminance or illuminance are measured, one
can pass from one to another by using their definitions, e.g. the relation
between luminance Le and illuminance Ee is

Le = Ee
d2

A
,

where A is the area of the emitter and d is the distance between emitter and
receiver.
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Chapter 5

CIE colorimetry and
illuminants

As we have already said, the CIE is the Commission International de l’Éclairage
(International Commission on Illumination) is the international authority on
light, illumination, color, and color spaces. It was established in 1913 as a
successor to the Commission Internationale de Photométrie and is today
based in Vienna, Austria.

CIE colorimetry is the metrology of the psychophysical color stim-
ulus. In its very fundamental form CIE colorimetry is based on so-called
Class-A observations or color matching experiments (invented by the
German polymath Hermann Grassmann (1809-1877) around 1853): if two
stimuli with unequal physical characteristics produce, under identical exte-
rior circumstances, the same sensation, then we regard them to be equiva-
lent.

Color metrology (the science of defining quantitative measures and met-
rics) is possible because, despite the fact that color is a subjective and non
conveyable perception and it strongly depends on the context, some fun-
damental rules can be elaborated, in particular there are experimental evi-
dences that a vast majority of people agree about color differences. Since
a metric is nothing but a meaningful ‘distance’ between two values of a
quantity, this fact turns color into a measurable entity.

More advanced descriptions of psychophysical phenomena, for example,
the determination of the brightness of a stimulus in a complex context
composed with different colored lights, is beyond the realms of basic CIE
colorimetry, and the determination of its physical correlates is part of ad-
vanced colorimetry. Items belonging to this later group are, for example,
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color appearance models. Such phenomena are called Class B obser-
vations and will be dealt later.

5.1 Viewing conditions

Various aspects of the viewing field impact on the color appearance of a light
stimulus. colorimetry needs conventions. Such conventions are necessary
because two colour stimuli looking similar under one viewing condition might
look different when seen under other conditions (field of view, adaptation,
direction of viewing, etc.). Hence accurate definitions and descriptions of
the components of the viewing field as shown in Figure 5.1 are necessary for
the development and correct use of a color experiment. Here we follow the
definitions given by two of the most important researchers in color science:
Hunt and Fairchild.

• Stimulus is a color element for which a measure of color appearance
is required. Typically, the stimulus is taken to be a uniform patch
of about 20 angular subtense to be consistent with foveal vision;

• A proximal field is the immediate environment of the color element
considered, extending typically for about 20 from the edge of that color
element in all or most directions;

• The background is defined as the environment of the color element
considered, extending typically for about 100 from the edge of the
proximal field in all, or most directions. When the proximal field is
the same color as the background, the latter is regarded as extending
from the edge of the color element considered;

• A surround is a field outside the background. In practical situations,
the surround can be considered to be the entire room or the environ-
ment in which the image is viewed. For example, printed images are
usually viewed in an illuminated (average) surround, projected slides
in a dark surround, and domestic television displays in a dim surround;

• An adapting field is the total environment of the color element con-
sidered, including the proximal field, the background, and the sur-
round, and extending to the limit of vision in all directions.
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Figure 5.1: Components of the adaptive field.

5.2 Additive and subtractive color mixing. Color
matching experiments and standard CIE ob-
servers

There are two fundamental methods of producing color stimuli: additive
and subtractive color mixing:

• In additive color mixing lights are mixed in a so-called photometric
sphere (often called Ulbricht sphere) and viewed via the exit port of
the sphere, or superimposed on the same spot of a reflective screen or
emitted separately but closely and fused in our eyes, as in color TV
displays, where the color sensation in our eye is produced by the addi-
tive mixture of tiny red, green, and blue lights, where the single spots
are so near to each other that our eye is unable to resolve them spa-
tially and we see the mixture of the lights. By changing the intensity
of the single spots, different mixed colors can be produced;

• In subtractive color mixing, pigments remove some part of the visible
spectrum. Superposing several colorants of different concentrations on
each other will change the color of the reflected light.

Basic colorimetry is the description of the results of color matching ex-
periments, is built on additive color mixing because the laws of additive color
mixing (called Grassmann’s laws) are simpler than those of subtractive color
mixing.

A color matching experiment consists typically in a human tester,
embedded in a dark room and adapted to dim light conditions, placed in
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front of a so-called bipartite field: one part of the field is characterized by
the light of a reference test stimulus, the other by three lights that can be
varied in order to match the reference stimulus.

In Figure 5.2 we can see the apparatus typically used to create a bipartite
field: the three matching stimuli are mixed in a photometer sphere (often
called Ulbricht sphere) and viewed via the exit port of the sphere. A
mirror blends the light coming from the test stimulus into one half of the
viewing angle field needed for the experiment. A black light trap absorbs the
light of the test lamp not hitting the white reflecting plate. Two light baffles
in the sphere (not shown in the figure) secure that no direct light from the
sources or the mixture field reaches the observer.

Figure 5.2: Above: schematic drawing of the principles a visual colorimeter.
Below: superposition of projected lights
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One may ask why exactly three light sources are used. The answer is that
it has been proven experimentally that three independent lights (i.e. none of
them can be obtained by mixing the other twos) are necessary and enough to
obtain the match, this fact suggested to the polymaths Thomas Young (En-
glish 1773-1829) and Hermann Helmholtz (German, 1821-1894) the idea
of the existence of three independent photoreceptors in our eyes a century
before their physiological discovery! Their theories are nowadays part of the
so-called trichromatic theory of color vision. This theory only describes
in a successful way the very first part of the visual cascade of events and
must be complemented with models of higher vision mechanisms to explain
many phenomena, as we will see later.

Let us now mathematically model the color matching experiments: let
i = 1, 2, 3, then

• Si(λ) denotes the spectral sensitivity distributions of the three types
of retinal cones (Figure 4.4);

• C(λ) is the spectral optical energy of a test stimulus;

• Λ = [380, 780]nm is the interval of visible wavelengths.

As showed in Figure 5.3, after the photons that compose C(λ) have been
absorbed by the cones, the cascade of events that induces the color sensation
will be started by these three analysis coefficients or cone activation
coefficients:

αi(C) =

∫
Λ
Si(λ)C(λ) dλ. (5.1)

Figure 5.3: Schematic drawing of the principles a visual colorimeter.

A fundamental property of human vision is metamerism, which can be
explained as follows: suppose we have two color stimuli C1(λ) and C2(λ)
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such that
αi(C1) = αi(C2) ∀i = 1, 2, 3,

then the analysis coefficients of the two color stimuli are exactly the same
and they produce the same color sensation even if the spectral distribution
of the two stimuli is different.

Metamerism is a direct consequence of the fact that our eyes perform
an additive mixing of light instead of responding to each monochromatic
radiation separately (as, e.g. ears do with sound of different frequency).

Metamerism is fundamental in colorimetry because it allows color re-
production, without metamerism TV’s and projectors would be useless
and, more in general, we wouldn’t be able to reproduce color.

Since, instead, experiments shows that we can reproduce the same color
sensation of a given stimulus by adding three synthesize lights, let us con-
sider three light sources, that we will call primaries, with optical energy
distribution given by Pi(λ), i = 1, 2, 3 that must be independent, in the
sense that none of the primaries can be matched by the additive mixture of
the other two primaries. The inventor of modern linear algebra, Grassmann,
used the color primaries as one of the first practical examples of basis of a
linear space.

The synthesis of the three primaries will be obtained by a generic linear
combination, in particular we are interested in the linear combination with
coefficients βk, k = 1, 2, 3 such that:

αi(C) =

∫
Λ

[
3∑

k=1

βkPk(λ)

]
Si(λ) dλ, i = 1, 2, 3,

because in this case the mix of the three primaries will be metameric to the
test color stimulus C. We can rearrange the previous formula in this way

αi(C) =
3∑

k=1

βk

∫
Λ
Pk(λ)Si(λ) dλ, i = 1, 2, 3,

let us write

aik =

∫
Λ
Pk(λ)Si(λ) dλ, i = 1, 2, 3,

so that

αi(C) =

3∑
k=1

aikβk =

∫
Λ
Si(λ)C(λ) dλ, i = 1, 2, 3, (5.2)
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which are three equations called ‘color matching equations’.
In practice, for reasons that will be explained in section 5.4, it is conve-

nient to calibrate the primaries Pk against a reference source of light consid-
ered ‘white’ (reference white from now on) and with known optical energy
distribution W (λ).

Let us denote with wk the matching coefficients needed to match the
primaries to W , i.e. those numbers such that

αi(W ) =
3∑

k=1

wk

∫
Λ
Pk(λ)Si(λ) dλ i = 1, 2, 3.

Given a test color stimulus C(λ), a white reference W (λ), the three primaries
Pi(λ) and their matching coefficients βk to C(λ) and wk to W (λ), we define
the tristimulus values of C with respect to the primaries Pk and
the reference white W as follows:

Tk(C) =
βk
wk

, k = 1, 2, 3.

We can see that the tristimulus values of a color stimulus can be interpreted
as the components of C with respect to the basis given by the three pri-
maries Pk, normalized with respect to the reference white W , which can be
considered as a sort of ‘unit color’ since its tristimulus values are obviously
1:

Tk(W ) =
wk
wk

= 1, k = 1, 2, 3.

So the tristimulus values of a color stimulus C are the quantities of each
primary (relative to the reference white) that one must use to metamerically
match C with a superposition of the primaries Pk.

Among all color stimuli there are monochromatic optical radiations. A
monochromatic stimuli of spectral optical energy 1 can be expressed by the
Dirac delta C(λ) = δ(λ̄ − λ) and its tristimulus values are usually denoted
by Tk(λ̄).

For a monochromatic stimulus eq.(5.1) becomes

αi(δ(λ̄− λ)) =

∫
Λ
Si(λ̄)δ(λ̄− λ) dλ̄ = Si(λ),

where Si is the sensitivity of the i-th cone. Eq. (5.2) becomes

3∑
k=1

aikβk = Si(λ), k = 1, 2, 3.
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but Tk(λ) = βk/wk, so that βk = wkTk(λ) and thus

3∑
k=1

aikwkTk(λ) = Si(λ) , ∀λ ∈ Λ, k = 1, 2, 3.

Since Si(λ), aik and wk can be computed, this equation allows us to calculate
the value of Tk(λ) for every λ ∈ Λ and so to construct the so called

Color matching functions

Tk : Λ −→ R
λ 7−→ Tk(λ).

Since the values Tk(λ) are the tristimulus values of a monochromatic light
δ(λ̄ − λ), the tristimulus values of any other color stimulus C(λ) will be
obtained by integrating the color matching functions multiplied by C(λ):

Tristimulus of C in terms of color matching functions

Tk(C) =

∫
Λ
C(λ)Tk(λ) dλ .

Experimentally, it can be seen that the luminance of C(λ) can be ob-
tained by summing the luminances of its components:

LV (C) = Km

3∑
k=1

Tk(C)wk

∫
Λ
Pk(λ)V (λ) dλ,

where Km is the luminous efficiency coefficient and V (λ) is the photopic
luminous efficiency function.

The luminance of a color contributes, together with its saturation (which
measures the distance between pure colors and white) and hue (the domi-
nant wavelength that defines the overall chroma of the color) define three
alternative coordinates for describing color.

In many situations, it is useful to fix the luminance value and consider
the so-called chromaticity coordinates, given by:

tk =
Tk

T1 + T2 + T3
, k = 1, 2, 3,

where, of course t1 + t2 + t3 = 1, so that it is necessary to specify only two
chromaticity coordinates, since the third one is just 1 minus the sum of the
other two. As we will see, the chromaticity coordinates are directly related
to saturation and hue of a color.
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5.2.1 The CIE 1931 standard colorimetric observer

To be able to repeat an additive color match precisely the observation con-
ditions have to be standardized. For the CIE 1931 standard colorimetric
observer a 20 foveal field of observation and a dark surround was chosen.

The CIE 1931 standard colorimetric observer was derived from the re-
sults of two experimental investigations, conducted by W. D. Wright and
J. Guild. The two investigations used different primaries, but when trans-
forming the results to a common system the agreement was surprisingly
good, despite the fact that the number of observers was only 7 in Guild’s
work and only 10 in Wright’s!

To be able to define a standard observer the spectral compositions and
the luminances of the primaries have to be specified. Single wavelengths
were used: 700 nm for the red, 546.1 nm for the green, and 435.8 nm for
the blue primary. The red stimulus was selected using an interference filter
in order to be in the part of the spectrum where the sensation of red changes
very slowly with respect to wavelength. The green and blue stimuli were
chosen to coincide with the emission lines of of a mercury discharge lamp as
it facilitated the wavelength calibration.

The ‘unit intensity’ of the primaries was defined by stating their lumi-
nances. The requirement the matching between the three primaries specified
above and a test stimulus with equienergetic spectrum, i.e. a light with
the same radiant energy for each wavelength. The results have shown that if
1 cd/m2 of red light was used, then 4.5907 cd/m2 of green and 0.0601 cd/m2

blue light was needed to match the color of a stimulus with equienergetic
spectrum, see Figure 5.4. The mixture of them matches the equienergetic
white stimulus of 5.6508 cd/m2.

Figure 5.4: CIE 1931 primaries.

As we have seen, we can obtain the color matching functions by fixing
a monochromatic light from 380 nm to 780 nm and then modifying the
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intensities of the primaries chosen above to obtain a match. The color
matching functions in the CIE 1931 system are written r̄(λ), ḡ(λ), b̄(λ) and
they depicted in Figure 5.5.

The negative lobes of the red curve need an explanation. The observa-
tions have shown that at 520 nm green stimulus couldn’t be matched by
any combination of the three matching stimuli. Exact match could only be
obtained if some red light was mixed to the test stimulus, i.e. the color
mixture of given amounts of the green and blue matching stimuli will match
the mixture of the test and red stimuli. Mathematically, the fact that from
one of the primaries light is mixed with the light of the test stimulus is writ-
ten with a negative sign for that stimulus (which, of course, doesn’t mean a
‘negative light’, which does not make any sense).

Figure 5.5: CIE 1931 (r̄, ḡ, b̄) color matching functions.

5.2.2 The CIE 1964 supplementary standard colorimetric
observer

The CIE 1931 trichromatic system is recommended only for small, 10-40

size, stimuli. We need, however, the description of larger stimuli as well,
where the stimulus falls on a larger area of the retina than the one covered
by the macula lutea, or where we see the stimulus partly out of fovea. For
that purpose the CIE standardized a large field colorimetric system, based
on the visual observations conducted on a 100 visual field. A 100 visual field
represents a diameter of about 9cm at a viewing distance of 0.5 m.
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The researches that developed the experiments were Stiles, Burch and
Speranskaya. The primaries used are R (645.2 nm), G (526.3 nm), and B
(444.4 nm). The new color matching functions are similar to those of the
20 visual fields, but not identical, and they are represented in Figure 5.6.

Figure 5.6: CIE 1964 (r̄, ḡ, b̄) color matching functions.

5.3 Color spaces

Color spaces allow a numerical specification of color stimuli, which is very
useful for practical purposes.

5.3.1 The RGB color space

In the RGB color space the tristimulus values of a color stimulus of radiance
C(λ) are written as R,G and B and are obtained with the r̄, ḡ and b̄ CIE
color matching functions:

R =

∫
Λ
C(λ)r̄(λ) dλ,

G =

∫
Λ
C(λ)ḡ(λ) dλ,

B =

∫
Λ
C(λ)b̄(λ) dλ,

with ∫
Λ
r̄(λ) dλ =

∫
Λ
ḡ(λ) dλ =

∫
Λ
b̄(λ) dλ,

because the equienergetic stimulus has identical components.
The tristimulus values of the reference white are R = G = B = 1.
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The primaries of the RGB color space are the monochromatic radiations
chosen to define the standard colorimetric observer: 700 nm for the red,
546.1 nm for the green, and 435.8 nm for the blue primary.

Mixing these fixed primaries we can obtain only a portion of all visible
colors, called gamut, which is the triangular region that can be seen in
Figure 5.7. This doesn’t mean that the other colors can never be represented,
it just means that they cannot be represented with this particular choice of
primaries. Other primaries can represent a different gamut. No practical set
of three primaries has been found that can reproduce the whole perceivable
color gamut.

Figure 5.7: Gamut of visible colors versus RGB gamut.

A plane has been drawn where the primaries have unit values, this is
called Maxwell plane. On the Maxwell plane the chromaticity coordinates
r = R/(R+G+B) and g = G/(R+G+B) are drawn.

Many times, in particular for computer applications, the RGB color
space is represented as a cube, as in Figure 5.8.

5.3.2 The XYZ color space

When the CIE trichromatic system was built it was felt that the manip-
ulation with negative values in the color matching functions may lead to
calculation errors, so a set of fictitious (non-physical) non-negative color
matching functions x̄, ȳ and z̄ has been built (both for the 20 and for the
100 observer).
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Figure 5.8: RGB cube.

The tristimulus values with respect these new set of color matching func-
tions are

X =

∫
Λ
C(λ)x̄(λ) dλ,

Y =

∫
Λ
C(λ)ȳ(λ) dλ = Luminance,

Z =

∫
Λ
C(λ)z̄(λ) dλ,

and x̄, ȳ, z̄ were built in such a way that the new Y tristimulus value
would give the luminance of the color stimulus, chosen due to the already
remarked importance of the luminance in optical systems.

The x̄, ȳ and z̄ color matching functions are depicted in Figure 5.9.
Also here, the tristimulus values of the reference white are X = Y =

Z = 1.
The chromaticity coordinates in this system are x, y, z:

x =
X

X + Y + Z

y =
Y

X + Y + Z

z =
Z

X + Y + Z

x+ y + z = 1.
We stress that the XYZ tristimulus coordinates don’t have a direct phys-

ical interpretation, since they have been built for mathematical convenience,

58



Figure 5.9: The 20 and 100 fictitious CIE XYZ color matching functions.

however they are related to the RGB tristimulus coordinates through the
following linear transformation:XY

Z

 =

0.490 0.310 0.200
0.177 0.813 0.011
0.000 0.010 0.990

RG
B


5.3.3 CIE chromaticity diagram

The CIE considered, as in Figure 5.10 a projection of the XYZ color reference
to form the so called XYZ chromaticity diagram, or ‘CIE flag’, shown in
Figure 5.11.

The CIE chromaticity diagram must be interpreted as follows:

• The curved portion of perimeter represents monochromatic colors (the
wavelengths are indicated) with highest saturation;

• The straight part of the perimeter is called the ‘purple line’;

• The horizontal chromaticity coordinate is proportional to the amount
of red;

• The vertical chromaticity coordinate is proportional to the amount of
green;
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Figure 5.10: Projection of the CIE XYZ chromaticity space.

• The saturation decreases as we approach the barycenter of the dia-
gram.

•

In Figure 5.12 we show the typical gamuts of monitors and printers inside
the chromaticity diagram.

There are many other color spaces, that will be discussed in the lab
classes.

5.3.4 Non uniformity of the CIE chromaticity diagram

The CIE chromaticity diagram has been built only with information given
by the first stages of human vision taken in controlled conditions. Moreover,
no interaction from the context of a scene is taken into account.

It is not surprising that the CIE chromaticity diagram, even if very useful
for industrial purposes, doesn’t give a faithful color representation. One of
the first signals of this drawbacks was singled out by the experiments of Mac
Adam (early 40’s of the twentieth century), which have shown the so-called
not uniformity of the CIE diagram, as shown in Figure 5.13.

The so-called MacAdam ellipses (10-times magnified in Figure 5.13) de-
fine areas in which colors are visually identical. The CIE chromaticity dia-
gram is not uniform: the ellipses are much bigger in the green region than
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Figure 5.11: The CIE chromaticity diagram.

in the red region. To remedy this problem the CIE tried to ‘stretch’ the
chromaticity diagram in such a way that Mac Adam ellipses are evenly dis-
tributed, creating a plethora of almost uniform color spaces called CIELAB,
CIELUV, etc.

5.4 Light sources and illuminants

As we have seen, the tristimulus coordinates of the white reference are
(1, 1, 1). Changing reference white produces a color shift, so the reference

61



Figure 5.12: Triangular area: gamut of a standard R,G,B monitor. Irregular
area: typical gamut of a printer.

white must be chosen with care. In order to know how to properly select
the reference white it is essential to introduce some basic information about
light sources and illuminants.

5.4.1 Artificial light sources

The most common artificial light sources are:

• Incandescent lamps (traditional, halogen, dichroic);

• Gas discharge (or florescent) lamps;

• Solid state lighting (LEDs).

62



Figure 5.13: MacAdam ellipses 10-times enlarged.

Incandescent lamps

Incandescent lamps emit electromagnetic radiation by the Joule effect,
which is the heating of a conductive material induced by the flow of electric
current. The heating (typically infrared radiation) is accompanied with
visible light and a small component of ultraviolet radiation. In Figure 5.14,
we can see the typical incandescence light bulb.

The conductive filament generally used is given by tungsten and it was
developed by George Coolidge of the General Electric Company (USA) in
1908 (before that time a very inefficient carbon filament was used).

During its functioning, the atoms of the filament sublimate (passing
from solid to vapor state) and so the filament tails off becoming thinner
and thinner until it breaks. For this reason, in the bulb it is introduced an
inert gas, typically argon or krypton, to delay the filament evaporation
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Figure 5.14: Traditional incandescent bulb.

and reduce the blackening of the bulb due to the deposit of tungsten vapors.
The spectrum of the traditional incandescent lamp is depicted in Figure
5.15. In can be seen that the long wavelengths are prevailing with respect
to the middle and short ones, this is the reason why traditional incandescent
lamps produce a light that is considered ‘warm’ (reddish).

These traditional incandescent lamps are disappearing from the market
because of their high energetic cost in favor of halogen incandescent lamps,
see Figure 5.16. Their functioning principle is the same as the traditional,
what changes is the fact that the double spiral tungsten filament here
is introduced in a quartz bulb filled with halogens (iodine and bromine),
chemical elements that help the regeneration of the filament. In fact, after
the sublimation, the tungsten atoms react with the halogen atoms to create
halogen tungsten which then dissociates and deposits back to the filament,
thus regenerating it, even if not perfectly.

To have this kind of chemical reactions we need the temperature of the
filament to remain above 20000C, this is the reason why the transparent
bulb of halogen incandescent light sources is made of quartz and not simple
glass (which would be fused at that temperature).

The advantages of halogen incandescent lamps with respect to the tra-
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Figure 5.15: Traditional incandescent bulb spectrum.

Figure 5.16: Halogen incandescent bulb.

ditional ones is that they last for longer time, the bulb doesn’t blackens and
the light produced has a more uniform spectrum, as can be seen in Figure
5.17.

The disadvantages consist in the fact that, due to the fact that they work
at higher temperatures, they produce more energetic UV radiation, which,
however, can be reduced by suitably treating the quartz bulb.

The infrared radiations of halogen lamps are also significant and this can
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Figure 5.17: Halogen incandescent bulb spectrum.

create problems as, e.g. drying of materials. To reduce this problem, the
so-called dichroic halogen lamps have been developed, see Figure 5.18.

Figure 5.18: Halogen dichroic bulb.

The particular mirror configuration is able to scatter up to the 65%
of the infrared radiation to the back of the lamp. Some more advanced
dichroic lamps instead of scattering the infrared radiation to the back of the
lamp, scatter it directly in the direction of the filament, which increases its
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temperature and so it needs less electrical power to function.

Fluorescent lamps

A fluorescent lamp or fluorescent tube is a gas-discharge lamp that uses elec-
tricity to excite mercury vapor and argon, xenon, neon, or krypton. The
excited mercury atoms produce short-wave ultraviolet light that then causes
a phosphor to fluoresce, producing visible light. A fluorescent lamp converts
electrical power into useful light much more efficiently than incandescent
lamps. The scheme of a fluorescent lamp can be seen in Figure 5.19

Figure 5.19: Fluorescent tube.

The spectrum of a fluorescent light source is not continuous, as for the
incandescent light bulb, but is composed with spikes of radiations that clus-
ter around well defined wavelengths, as can be seen in Figure 5.20. This is
given by the fact that the photons produced have an energy that belongs to
well defined ranges (the level gaps of the gas and the fluorescent material).

The principal merit of fluorescent light sources is that they are less
energy-consuming than the incandescent sources and they do not produce
UV rays. The major drawback is the lack of a continuous spectrum and
the fact that they need more time than the incandescent sources to start
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generating light.

Figure 5.20: Fluorescent spectrum.

LEDs

LED is the acronym of Light Emitting Diode and it is based on the phe-
nomenon of electroluminescence. To explain it we must first explain what
is a diode, which requires the concept of semiconductor.

The most energetic electrons in solids occupy the so called valence and
conduction bands, as in Figure 5.21. The valence electrons are bound to
individual atoms, as opposed to conduction electrons (found in conductors
and semiconductors), which can move freely within the atomic lattice of the
material.

Figure 5.21: Valence and conduction bands in conductors, semiconductor
and insulators.

On a graph of the electronic band structure of a material, the valence
band is located below the conduction band, separated from it in insulators
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and semiconductors by a band gap. In metals, the conduction band has no
energy gap separating it from the valence band.

When a difference of potential is applied to a semiconductor, the valence
electrons can ‘win’ the energy gap and pass to the conduction band. This
passage is accompanied with the emission of a photon.

A diode is given by a p-n junction, i.e. an interface between two types
of semiconductor material, p-type and n-type, inside a single crystal of
semiconductor. It is created by doping a semiconductor creating an excess
(n-type) or a lack (hole) of electrons (p-type).

When a light emitting diode is switched-on, the electrons are able to
recombine with electron holes within the device, releasing energy in the
form of photons. The color of the light (corresponding to the energy of
the photon) is determined by the energy gap of the semiconductor.

The first diodes were able to produce only red and green/yellow light,
but nowadays technology is able to produce also blue light, so that they can
be combined, as in Figure 5.22, to produce different shades of white light,
whose typical spectrum is depicted in Figure 5.23

Figure 5.22: Joining a red, green and blue led we can nowadays produce
‘white’ light.

The major advantages of LEDs is that they require much less electrical
power to produce light than incandescent sources and that they can be built
in order to avoid the generation of ultraviolet and infrared electromagnetic
radiation. Their major drawback is their cost, which is still high.

5.4.2 Features of artificial light sources

The principal features of an artificial light source are:
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Figure 5.23: The typical spectrum of a ‘white’ light generated by a config-
uration of 3 LEDs.

• Color rendering index (CRI);

• Correlated color temperature (CCT);

• Luminous efficiency and average lifetime.

The color rendering index (CRI), sometimes called color rendition
index, is a quantitative measure of the ability of a light source to reproduce
the colors of various objects faithfully in comparison with an ideal or natural
light source. Light sources with a high CRI are desirable in color-critical
applications such as photography, cinematography and in museum lighting.
Its CIE definition is the following: ‘effect of an illuminant on the color
appearance of objects by conscious or subconscious comparison with their
color appearance under a reference illuminant ’.

To have a satisfying CRI the light source must have in its spectrum
all the visible wavelengths and they must be fairly homogeneously
distributed. The CRI of traditional incandescent and fluorescent lamps is
quite poor because they tend to privilege the red and the green/blue part
of the visual spectrum, respectively. The CRI of high temperature halogen
lamps and LEDs instead are more satisfying.

The correlated color temperature (CCT) of an artificial light source
is the temperature of an ideal black body radiator that radiates light of
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comparable hue to that of the light source. Color temperatures over 5000K
are called cool colors (blueish white), while lower color temperatures (2700-
3000 K) are called warm colors (yellowish white through red).

It must be stressed, however, that this is a psychological relation and it is
in contrast to the physical relation implied by Wien’s displacement law seen
in chapter 1, according to which the spectral peak is shifted towards shorter
wavelengths (resulting in a more blueish white) for higher temperatures.

In Figure 5.24 we can see the so-called Planckian locus, i.e. the color
that an incandescent black body would take in the CIE chromaticity diagram
as the black body temperature changes. It goes from deep red at low temper-
atures through orange, yellowish white, white, and finally bluish white at
very high temperatures. The straight segments represent points of constant
CCT.

Figure 5.24: The Planckian locus.

Finally, the luminous efficiency and average lifetime of an artificial
light source are economical features. The average lifetime is the number of
continuous hours of functioning after which the 50% of a high number (the
specification of this number may change) of light sources stop functioning.
LEDs and fluorescent lamps have a high average lifetime, halogen incan-
descent lamps have increased a lot their average lifetime, while traditional
incandescent lamps have the lowest lifetime.
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The luminous efficiency is the ratio between the total luminous flux emit-
ted by a device and the total amount of input electrical power it consumes.
It is measured in lm/W . The highest luminous efficiency is that of LEDs
and fluorescent lamps, then we have halogens and traditional lamps.

5.4.3 CIE illuminants

A standard illuminant is a theoretical source of visible light with a profile
given by its spectral power distribution. Standard illuminants provide a
basis for comparing images or colors recorded under different lighting and
they are published by the CIE.

A list of the most commonly used standard illuminants follows:

• Illuminant A: CIE standard illuminant A is intended to represent typ-
ical, domestic, tungsten-filament lighting. Its relative spectral power
distribution is that of a Planckian radiator at a temperature of approx-
imately 2856 K. CIE standard illuminant A is used in applications of
colorimetry involving incandescent lighting;

• Illuminants B and C are daylight simulators. They are derived from
Illuminant A by using a liquid filters. B served as a representative of
noon sunlight, with a correlated color temperature (CCT) of 4874 K,
while C represented average day light with a CCT of 6774 K. They
are poor approximations of any common light source and deprecated
in favor of the D series. The profile of spectral power distribution of
illuminants A,B and C is represented in Figure Rfig:abc;

• Illuminants D have been derived by Judd, MacAdam, and Wyszecki.
The D series of illuminants are constructed to portray natural daylight
illumination at open-air in different parts of the world. They repre-
sent a substantial improvement of the B and C series, in spite of being
difficult to physically produce artificially, but are easy to characterize
mathematically. In particular, the D65 (or D65corresponds roughly to
a midday sun in Western/Northern Europe, as any standard illumi-
nant is represented as a table of averaged spectrophotometric data, so
that any light source which statistically has the same relative
spectral power distribution can be considered a D65 light
source. There are no actual D65 light sources, only simulators. The
number 65 refers to the fact that the CCT of the D65 illuminant is
6500 K (as the CCT of the D50 y 5000 K, and so on). The spectral
power distribution of the D65 illuminant is depicted in Figure 5.26.
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In Figure 5.27 we can see the position of white points of the standard
illuminants in the CIE chromaticity diagram. Finally, in Figure 5.28
there’s the list of chromaticity coordinates and ‘color’ of the white
points of the standard illuminants.

Figure 5.25: The A,B,C CIE standard illuminant spectral power distribu-
tions.

5.4.4 White balance in digital images: the von Kries trasfor-
mation

The source of light (natural or artificial) that we use to illuminate a scene
directly affect the analogical or digital pictures that we take, as can be seen
in Figure 5.29.

The overall red and green hue on the second and the third picture of
Figure 5.29, respectively, is called color cast and it is due to the fact that
the incandescent and fluorescent light sources have a scarce color rendering
index. The first daylight picture instead doesn’t have any cast because
natural daylight has the highest color rendering index.

To (at least partially) eliminate the color cast, the easiest transformation
that can be implemented on a RGB image is the so-called von Kries trans-
formation, which simply consists in normalizing the tristimulus values over
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Figure 5.26: The D65 spectral power distributions.

Figure 5.27: White points of standard CIE illuminants in the chromaticity
diagram.

the maximum value found in the whole image, for each chromatic channel
separately:

Rvon Kries =
ROriginal

Rmax
, Gvon Kries =

GOriginal

Gmax
, Bvon Kries =

BOriginal

Bmax
,

so that the highest tristimulus values become unitary: Rmax = Gmax =
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Figure 5.28: Table of white points of standard illuminants.

Bmax = 1. The result of this trasformation can be seen in Figure 5.30.
Coherently with what just said, professional photographers use to shoot

the first picture of an indoor scene to a perfectly reflecting white paper: if
the sheet of paper is not white in the picture, then a suitable white balance
must be performed.

The von Kries transformation must be used carefully: in Figure 5.31 it
can be seen a negative effect of it (typical for low key images, i.e. pictures
taken in dim light conditions).
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Figure 5.29: Different sources of light and how they affect digital pictures.

Figure 5.30: Effect of von Kries trasformations.
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Figure 5.31: Nagative effect of von Kries trasformations. Left : original,
Right : von Kries transformed.
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Chapter 6

Beyond light acquisition:
neurophysiological and
phenomenological properties
of the human visual system

The neural processing of visual information is quite complex within the
retina and becomes enormously more complex at later stages. The aim
of this chapter is to provide a brief overview of the paths that some of this
information takes. It is helpful to begin with a general map of the steps along
the way. The optical image on the retina is first transduced into chemical
and electrical signals in the photoreceptors. These signals are then processed
through the network of retinal neurons: horizontal, bipolar, amacrine, and
ganglion cells.

The ganglion cell axons gather to form the optic nerve, which projects
to the lateral geniculate nucleus (LGN) in the thalamus. The LGN
cells, after gathering input from the ganglion cells, project to visual area
one called V1 in the occipital lobe of the cortex.

At this point, the information processing begins to become amazingly
complex. Approximately 30 visual areas have been defined in the cortex
with names such as V2, V3, V4, MT, etc. Signals from these areas project
to several other areas and vice versa. The cortical processing includes many
instances of feed-forward, feed-back, and lateral processing. Somewhere in
this network of information our ultimate perceptions are formed. There is
still much work to do in order to have a clear understanding of our visual
system.
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6.1 The other retinal cells, receptive fields and
brain vision areas

The electrical signal generated by rods and cones passes to horizontal, bipo-
lar, amacrine and ganglion cells before arriving to the optical nerve.

Horizontal and amacrine cells laterally interconnect in a very compli-
cated, and still not completely understood, way the output of photoreceptors
and bipolar cells, respectively.

Ganglion cells are among the most studied retinal cells and what we
know for sure up to now is that they spontaneously fire action potentials1

at a base rate while at rest. Excitation of retinal ganglion cells results in
an increased firing rate while inhibition results in a depressed rate of firing.
For this reason the magnitude of the signal is represented in terms of the
number of spikes of voltage per second fired by the cell rather than by the
voltage difference across the cell wall.

To represent the physiological properties of these cells, the concept of
receptive fields becomes useful. A receptive field is a graphical repre-
sentation of the area in the visual field to which a given cell responds. In
addition, the nature of the response (positive or negative) is typically indi-
cated for various regions in the receptive field. As a simple example, the
receptive field of a photoreceptor is a small circular area representing the
size and location of that particular receptor’s sensitivity in the visual field.
Figure 6.1 represents some prototypical receptive fields for ganglion cells.

Figure 6.1: Typical center-surround antagonistic receptive fields: (a) on-
center, (b) off-center.

They illustrate center-surround antagonism, which is characteristic
at this level of visual processing. The receptive field in Figure 6.1(a) illus-
trates a positive central response, typically generated by a positive input

1In physiology, an action potential is a short-lasting event in which the electrical mem-
brane potential of a cell rapidly rises and falls, following a consistent trajectory.
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from a single cone, surrounded by a negative surround response, typically
driven by negative inputs from several neighboring cones. Thus the response
of this ganglion cell is made up of inputs from a number of cones with both
positive and negative signs. The result is that the ganglion cell does not
simply respond to points of light, but serves as an edge detector (actually a
‘spot’ detector). Using a digital image processing analogy, we can think of
the ganglion cell responses as similar to the output of a convolution kernel
designed for edge detection.

Figure 6.1(b) illustrates that a ganglion cell response of opposite polarity
is equally likely. The response in Figure 6.1(a) is considered an on-center
ganglion cell while that in Figure 6.1(b) is called an off-center ganglion
cell.

Often on-center and off-center cells will occur at the same spatial loca-
tion, fed by the same photoreceptors, resulting in an enhancement of the
system’s dynamic range. This is a crucial step that works in opposition to
the glare and luminance contrast reduction provoked by the eye bulb.

Note that the ganglion cells represented in Figure 6.1 will have no re-
sponse to uniform fields given that the positive and negative areas, in
this case, would balance each other. This illustrates one aspect of the image
compression carried out in the retina: the brain is not bothered with redun-
dant visual information, only information about changes in the visual
world is transmitted!

These changes are magnified in a local way (local contrast enhance-
ment), as can be seen in the Mach bands effect shown in Figure 6.2 (left).
As we approach the vertical band on the right the gray level appears lighter,
as we approach the vertical band on the left the gray level appears darker,
in spite of that the luminance value in each vertical gray band is constant,
as can be seen in Figure 6.2 (right).

The excitation-inhibition processing can explain the Mach bands effect,
consider Figure 6.3: in the situation 1 excitation and inhibition fire signals
equally, so a uniform patch is perceived; in the situation 2 a part of the in-
hibition component of the receptive field is activated by a region of highest
luminance and so it prevails, generating a sensation of darker gray; on the
contrary, in the situation 3, a part of the inhibition component of the recep-
tive field is activated by a region of lowest luminance and so it is dominated
by the excitation component, which produces a sensation of lighter gray.

This spatial information processing in the visual system is the fundamen-
tal basis of the important impact of the background on color appearance.

Figure 6.4 shows that in addition to spatial opponency, there is often
spectral opponency in ganglion cell responses. Figure 6.4(a) shows a
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Figure 6.2: Left : Mach bands effect. Right : real and appearent luminance
pattern.

Figure 6.3: Excitation/inhibition explaination of the Mach band effect.

red-green opponent response with the center fed by positive input from an
L cone and the surround fed by negative input from M cones. Figure 6.4(b)
illustrates the off-center version of this cell.

Figure 6.4: Examples of (a) red-green and (b) green-red spectrally and spa-
tially antagonistic receptive fields.

Thus, before the visual information has even left the retina, processing
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has occurred with a profound affect on color appearance, as we will see in
the next sections.

As we said, when the visual signal reaches the lateral geniculate nucleus,
it is projected to the primary visual area in the brain called V1 and there
the visual path becomes enormously intricate. We just mention that the
areas involved in color processing are mainly the V1 and V4 (also used for
orientation and spatial frequency). A large part of these areas is dedicated to
the process of the foveal signal, proving again the significance of foveal vision
over extra-foveal one. Figure 6.5 shows the area dedicated to processing of
the visual signal in the brain.

Figure 6.5: The visual cortex.

We conclude this section with the very schematic description of the visual
path presented in Figure 6.6.

Figure 6.6: Simplified Human Visual System model.

6.2 Phenomenological mechanisms of color vision

Historically, there have been many theories that attempt to explain the
function of color vision and its phenomenological features. In this chapter
we will present only the most important insights about color vision, some
of these will be developed in more detail in the next chapters.
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6.2.1 Trichromatic theory

In the later half of the 19th century, the trichromatic theory of color vision
was developed, based on the work of Maxwell, Young, and Helmholtz.
They recognized that there must be three types of receptors, approximately
sensitive to the red, green, and blue regions of the spectrum, respectively.
The trichromatic theory simply assumed that three images of the world were
formed by these three sets of receptors and then transmitted to the brain
where the ratios of the signals in each of the images was compared in order
to sort out color appearances. The trichromatic (three-receptor) nature of
color vision has been ‘reinforced’ by the so-called Retinex theory of Land
and McCann (1964).

6.2.2 Hering’s opponent-colors theory

At around the same time, Hering proposed an opponent-colors theory of
color vision based on many subjective observations of color appearance.
Hering noted that certain hues were never perceived to occur together.
For example, a color perception is never described as reddish-green or
yellowish-blue, while combinations of red and yellow, red and blue, green
and yellow, and green and blue are readily perceived.

This suggested to Hering that there was something fundamental about the
red-green and yellow-blue pairs causing them to oppose one another. Similar
observations were made of colored simultaneous contrast (Figure 6.7)
in which objects placed on a red background appear greener, on a green
background appear redder, on a yellow background appear bluer, and on a
blue background appear yellower.

Hering proposed that there were three types of receptors, but Hering’s
receptors had bipolar responses to light-dark, red-green, and yellow-
blue. At the time, this was thought to be physiologically implausible and
Hering’s opponent theory did not receive appropriate acceptance.

In the middle of the 20th century, Hering’s opponent theory enjoyed
a revival when quantitative data supporting it began to appear. Figure
6.8 illustrates that the first stage of color vision, the receptors, is indeed
trichromatic as hypothesized by Maxwell, Young, and Helmholtz. However,
contrary to simple trichromatic theory, the three ‘color-separation’ images
are not transmitted directly to the brain. Instead the neurons of the retina
(and perhaps higher levels) encode the color into opponent signals. The
outputs of all three cone types are summed (L + M + S) to produce an
achromatic response that matches the CIE V (λ) curve as long as the sum-
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Figure 6.7: Top: Colored simultaneous contrast. Bottom: Grayscale si-
multaneous contrast. In both pictures, the inner gray squares have exactly
the same physical luminance, however, their perceived luminance is very
different.

mation is weighted with the relative populations of the three cone types.
Differentiating the cone signals allows construction of red-green (L −

M + S) and yellow-blue (L + M − S) opponent signals. The transforma-
tion from LMS signals to the opponent signals serves to decorrelate the
color information carried in the three channels, thus allowing more effi-
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cient signal transmission and reducing difficulties with noise. The three
opponent pathways also have distinct spatial and temporal characteristics
that are important for predicting color appearance. The importance of the
transformation from trichromatic to opponent signals for color appearance
is reflected in the prominent place that it finds within the formulation of
many color appearance models. Figure 6.8 includes a schematic diagram of
the neural ‘wiring’ that produces opponent responses.

Figure 6.8: Schematic illustration of the encoding of cone signals into oppo-
nent colors signals in the human visual system.

6.2.3 Color vision deficiencies

Some color vision deficiencies are caused by the lack of a particular type of
cone photopigment. Since there are three types of cone photopigments, there
are three general classes of these color vision deficiencies, namely protanopia,
deuteranopia, and tritanopia.

• An protanope, is missing the L-cone photopigment and there-
fore is unable to discriminate reddish and greenish hues since the red-
green opponent mechanism cannot be constructed;

• A deuteranope is missing the M-cone photopigment and there-
fore also cannot distinguish reddish and greenish hues due to the lack
of a viable red-green opponent mechanism. Protanopes and deutera-
nopes can be distinguished by their relative luminous sensitivity since
it is constructed from the summation of different cone types. The
protanopic luminous sensitivity function is shifted toward shorter wave-
lengths;
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• A tritanope is missing the S-cone photopigment and therefore
cannot discriminate yellowish and bluish hues due to the lack
of a yellow-blue opponent mechanism.

Why the disparity between the occurrence of color vision deficiencies in
males and females? This can be traced back to the genetic basis of color
vision deficiencies. It turns out that the most common forms of color vision
deficiencies are sex-linked genetic traits.

The genes for photopigments are present on the X chromosome. Females
inherit one X chromosome from their mother and one from their father.
Only one of these need have the genes for the normal photopigments in
order to produce normal color vision. On the other hand, males inherit an
X chromosome from their mother and a Y chromosome from their father.

If the single X chromosome does not include the genes for the pho-
topigments, the son will have a color vision deficiency. If a female is color
deficient, it means she has two deficient X chromosomes and all male chil-
dren are destined to have a color vision deficiency. It is clear that the genetic
‘deck of cards’ is stacked against males when it comes to inheriting deficient
color vision. Knowledge regarding the genetic basis of color vision has grown
tremendously in recent years.

6.2.4 Adaptation mechanisms

It is not enough to consider the processing of color signals in the human
visual system as a static ‘wiring diagram’. The dynamic mechanisms of
adaptation that serve to optimize the visual response to the particular view-
ing environment at hand must also be considered. Thus an overview of the
various types of adaptation is in order. Of particular relevance to the study
of color appearance are the mechanisms of dark, light, and chromatic adap-
tation.

Dark adaptation

Dark adaptation refers to the change in visual sensitivity that occurs when
the prevailing level of illumination is decreased, such as when walking into a
darkened theater on a sunny afternoon. At first the entire theater appears
completely dark, but after a few minutes one is able to clearly see objects in
the theater such as the aisles, seats, and other people. This happens because
the visual system is responding to the lack of illumination by becoming more
sensitive and therefore capable of producing a meaningful visual response at
the lower illumination level.
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Figure 6.9: Images illustrating the color discrimination capabilities that are
missing from observers with various color vision deficiencies: (a) original
images, (b) protanope, (c) deuteranope, (d) tritanope.

Figure 6.10 shows the recovery of visual sensitivity (decrease in thresh-
old) after transition from an extremely high illumination level to complete
darkness. At first, the cones gradually become more sensitive until the
curve levels off after a couple of minutes. Then, until about 10 minutes have
passed, visual sensitivity is roughly constant. At that point, the rod system,
with a longer recovery time, has recovered enough sensitivity to outperform
the cones and thus the rods begin controlling overall sensitivity. The rod
sensitivity continues to improve until it becomes asymptotic after about 30
minutes.

The five-fold change in pupil diameter is not sufficient to serve vision
over the large range of illumination levels typically encountered. Therefore,
neural mechanisms must produce some adaptation.
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Figure 6.10: Dark-adaptation curve showing the recovery of threshold after
a bleaching exposure. The break in the curve illustrates the point at
which the rods become more sensitive than the cones.

Light adaptation

Light adaptation is essentially the inverse process of dark adaptation. How-
ever, it is important to consider it separately since its visual properties
differ. Light adaptation occurs when leaving the darkened theater and re-
turning outdoors on a sunny afternoon. In this case, the visual system must
become less sensitive in order to produce useful perceptions since there is
significantly more visible energy available.

The same physiological mechanisms serve light adaptation, but there
is an asymmetry in the forward and reverse kinetics resulting in the time
course of light adaptation being on the order of 5 minutes rather than 30
minutes. Figure 1.15 illustrates the utility of light adaptation.

As we have seen in Section 4.1.2, the retinal system has a limited out-
put dynamic range of about 2 orders of magnitude, say 100:1, available
for the signals that produce our perceptions, as we have seen discussing the
Michaelis-Menten’s equation (4.1). The world in which we function, how-
ever, includes illumination levels covering at least 10 orders of magnitude
from a starlit night to a sunny afternoon. Fortunately, it is almost never
important to view the entire range of illumination levels at the same time.

If a single response function were used to map the large range of stimulus
intensities into the visual system’s output, then only a small range of the
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available output would be used for any given scene. Such a response is shown
by the dashed line in Figure 6.11. Clearly, with such a response function, the
perceived contrast of any given scene would be limited and visual sensitivity
to changes would be severely degraded due to signal-to-noise issues.

Figure 6.11: Illustration of the process of light adaptation whereby a very
large range of stimulus intensity levels can be mapped into a relatively lim-
ited response dynamic range. Solid curves show a family of adapted re-
sponses. Dashed curve shows a hypothetical response with no adaptation.

On the other hand, light adaptation serves to produce a family of visual
response curves which represent the Michaelis-Menten retinal response to
light stimuli as illustrated by the solid lines in Figure 6.11. These curves map
the useful illumination range in any given scene into the full dynamic range
of the visual output, thus resulting in the best possible visual perception for
each situation. Light adaptation can be thought of as the process
of sliding the visual response curve along the illumination level
axis in Figure 6.11 until the optimum level for the given viewing
conditions is reached.

Light and dark adaptation can be thought of as analogous to an au-
tomatic exposure control in a photographic system.

Chromatic adaptation

Chromatic adaptation can be observed by examining a white object, such
as a piece of paper, under various types of illumination (e.g., daylight, flu-
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orescent, and incandescent). Daylight contains relatively far more short-
wavelength energy than fluorescent light, and incandescent illumination con-
tains relatively far more long-wavelength energy than fluorescent light. How-
ever, the paper approximately retains its white appearance under all three
light sources. This is because the S-cone system becomes relatively less
sensitive under daylight to compensate for the additional short-wavelength
energy and the L-cone system becomes relatively less sensitive under in-
candescent illumination to compensate for the additional long-wavelength
energy.

Chromatic adaptation is the largely independent sensitivity control of
the three mechanisms of color vision. This is illustrated schematically in
Figure 6.12, which shows that the overall height of the three cone spectral
responsivity curves can vary independently. While chromatic adaptation is
often discussed and modeled as independent sensitivity control in the cones,
there is no reason to believe that it does not occur in opponent and other
color mechanisms as well.

Figure 6.12: Conceptual illustration of the process of chromatic adaptation
as the independent sensitivity regulation of the three cone respon-
sivities.

Chromatic adaptation can be thought of as analogous to an auto-
matic white-balance in photo or video cameras. Figure 6.13 provides
a visual demonstration of chromatic adaptation in which the two halves
of the visual field are conditioned to produce disparate levels of chromatic
adaptation.
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Figure 6.13: A demonstration of retinally localized chromatic adaptation.
Fixate the black spot in between the uniform blue and yellow areas for about
30 seconds then shift your gaze to the white spot in the center of the barn
image. Note that the barn image appears approximately uniform because
we have adaptated to these new illumination conditions.
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6.3 Visual Mechanisms Impacting Color Appear-
ance

There are many important cognitive visual mechanisms that impact color
appearance. They include memory color, color constancy, discounting the
illuminant, and object recognition:

• Color memory refers to the phenomenon that recognizable objects
often have a prototypical color that is associated with them. For ex-
ample, most people have a memory for the typical color of green grass
and can produce a stimulus of this color if requested to do so in an
experiment. Interestingly, the memory color often is not found in the
actual objects. For example, green grass and blue sky are typically
remembered as being more saturated than the actual stimuli;

• Color constancy refers to the everyday perception that the colors
of objects remain unchanged across significant changes in illumination
color and luminance level. Color constancy is served by the mecha-
nisms of chromatic adaptation and memory color;

• Discounting the illuminant refers to an observer’s ability to auto-
matically interpret the illumination conditions and perceive the colors
of objects after discounting the influences of illumination color;

• Object recognition is generally driven by the spatial, temporal, and
light-dark properties of the objects rather than by chromatic proper-
ties.

There is no better phenomenon to show how color memory and ob-
ject recognition influence our perception as the famous (shocking) Adelson’s
chessboard optical illusion (Figure 6.14).

6.3.1 Physical and perceived contrast: Weber-Fechner’s and
Stevens’ laws

As we have seen, the eye’s optical system and the response of photoreceptors
strongly reduces the range of light intensity that can be processed. To
compensate this reduction the HVS has developed a system to enhance
contrast perception already in the retina with lateral inhibition and further
in the brain with higher perceptual features. For this reason it is necessary
to distinguish between physical and perceived contrast.
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Figure 6.14: Adelson’s chessboard: the squares A and B have exactly the
same luminance, but color memory, object recognition and spatial processing
make us perceive them as very different.

There are plenty of definitions of physical contrast, perhaps the most
used and simple is the Michelson definition of physical contrast: let
I1 and I2 be the luminous intensity coming from two adjacent areas, then
Michelson’s contrast is defined as the ratio between the absolute difference
among the two intensities and their arithmetic mean, i.e.

CM (I1, I2) =
|I1 − I2|
I1 + I2

,

sometimes a factor of 2 is introduced to restore a proper arithmetic mean at
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the denominator. Michelson’s definition is interesting because it defines the
contrast relative to the average intensity, which, as we will see in what fol-
lows, is much more important than the absolute difference among luminous
intensities. Also notice that we can define Michelson’s contrast as

CM (I1, I2) =
max(I1, I2)−min(I1, I2)

max(I1, I2) + min(I1, I2)
.

Psychophysics is the science that aims at modeling in a mathemat-
ically rigorous way the magnitude of human perception in response
of external stimuli. Typically, there is a high non-linear relationship be-
tween external stimuli and human response. Contrast perception of light
stimuli is a very important example of such relationships.

The German physicist Ernst Weber (1795-1878) in the second half of
the 19th century was one of the first scientists in history to develop some
psychophysical experiments to test contrast perception in a very constrained
setting: a dark-adapted human observer was put in a dim room in front of
a white screen on which a narrow beam of light was thrown in the center of
the visual field. The luminous intensity I of the beam was increased very
slowly and the observer was asked to tell whether he/she could perceive an
intensity change. Nowadays we call the least perceptible intensity change
∆I the JND for Just Noticeable Difference.

Weber found out that the JND increased proportionally with the lumi-
nous intensity2, i.e.

Weber’s law
∆I

I
= K ,

i.e. ∆I = K · I, and K ' 0.08 is called Weber’s constant. Weber’s law
says that, as we increase the background light I, the difference ∆I must
increase proportionally in order to be able to appreciate I + ∆I as different
from I. This partially explains why we are more sensitive to noise in dark
areas of a visual scene and thus why it is more important to perform a good
denoising in dark areas of digital images rather than in bright ones. This last
consideration is a practical application of a psychophysical phenomenon.

The founder of psychophysics, the German experimental psychologic
Gustav Fechner (1801-1887), gave the following interpretation of Weber’s
law: he introduced the adimensional quantity s(I) called light sensation

2Weber’s law is approximately valid not only for the visual sense, but also for all the
other senses, with different values of Weber’s constant.
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and stated that the difference of sensation ∆s(I) is proportional to a slightly
modified Weber’s ratio, i.e.

∆s(I) = k
∆I

n+ I

where k > 0 is a constant and n > 0 is a quantity often interpreted as
internal noise in the visual mechanism. Fechner transformed this finite
difference equation into a differential equation and integrated it to obtain
an analytical law for s:

ds(I) = k
dI

n+ I

integrating both sides from I0, the threshold above which luminous intensity
is perceivable, i.e. such that s(I0) = 0 and s(I0 + ε) > 0 for all ε > 0, to a
generic value of I, we obtain∫ I

I0

ds(I) = k

∫ I

I0

dI

n+ I
⇐⇒ s(I)− s(I0) = k[log(n+ I)− log(n+ I0)],

by using the properties of the logarithm and using the fact that s(I0) = 0
we get the so-called Weber-Fechner’s law:

s(I) = k log

(
n+ I

n+ I0

)
.

Weber-Fechner’s law says that the sensation of luminous differences,
in the very constrained context of Weber’s experiment, grows at the log-
arithm of the luminous intensity.

We must stress the limitations of Weber-Fechner’s law:

1. Firstly it is valid only for very simple visual scenes, as that consid-
ered by Weber in his experiment, because, as we will see soon, the
presence of a non-trivial context changes completely contrast
perception;

2. Secondly, even for very simple visual scenes, we must stress that Fech-
ner’s assumption that we can maintain the validity of Weber’s law
passing from finite to infinitesimal light intensity differences
is correct only for luminous intensities intermediate between the min-
imum and the maximum perceivable light. As we approach these
extreme situations, this assumption fails dramatically due to strong
non-linearities in the visual mechanism, so that Weber-Fechner’s law
doesn’t hold anymore.
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In 1957, the American psychophysicist Stanley Smith Stevens (1906-1973),
proposed a power-law to express sensation to external stimuli (not only
light). He collected magnitude estimation data from multiple observers,
averaged the data across subjects, and then fitted a power function to the
data. Because the fit was generally reasonable, he concluded a power law
such as the following was correct:

s(I) = kSI
γ Stevens’ law,

kS > 0 being a suitable constant and γ being a suitable exponent that
changes for every sense. For example, γ = 0.33 for a 5 degrees light stimuli
shown in a dark room and it changes if these conditions are changed.

Stevens’ methodology is different than Weber’s one. The principal meth-
ods used by Stevens to measure the perceived intensity of a stimulus were
magnitude estimation and magnitude production. In magnitude estimation
with a standard, the experimenter presents a stimulus called a standard and
assigns it a number called the modulus. For subsequent stimuli, subjects
report numerically their perceived intensity relative to the standard so as to
preserve the ratio between the sensations and the numerical estimates (e.g.,
a light perceived twice as bright as the standard should be given a number
twice the modulus). In magnitude estimation without a standard (usually
just magnitude estimation), subjects are free to choose their own standard,
assigning any number to the first stimulus and all subsequent ones with the
only requirement being that the ratio between sensations and numbers is
preserved. This procedure is criticized by many psychophysicists because it
ignores any individual differences that may obtain and indeed it has been
reported that the power relationship does not always hold as well when data
are considered separately for individual respondents.

It is worthwhile finishing this section by stating that both Weber-Fechner’s
and Stevens’ laws just give a rough average idea of how we perceive changes
in luminous intensity. In Weber’s experimental condition it is certain that
sensation is a concave monotonically increasing function of light stimulus,
such as logarithm or a power law with an exponent between 0 and 1.

However, it is very rare to find Weber’s experimental conditions
in real life, where the importance of the context, plays a fundamental role.
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Chapter 7

Histograms of color images:
variational equalization and
perceptually inspired
contrast enhancement

In this chapter we will recall the classical histogram equalization processing
and then introduce a variational version of this transformation. This will
give us the opportunity to discuss recent advances in perceptual contrast
enhancement of color images.

Before this discussion it is worthwhile introducing the notation that we
are going to use from now on to manipulate an RGB color image, i.e. an
image whose intensity in the three chromatic channels are related to the
tristimulus values RGB.

We will denote by Ω ⊂ Z2 its spatial domain, |Ω| the number of pixels
and by x ≡ (x1, x2) and y ≡ (y1, y2) the coordinates of two arbitrary pixels
in I. We will always consider a normalized dynamic range in [0, 1] (sim-
ply by dividing and multiplying for 255 before and after the computation,
respectively), so that a color image function will be denoted with

~I : Ω −→ [0, 1]× [0, 1]× [0, 1]
x 7→ (IR(x), IG(x), IB(x))

where each scalar component Ic(x) defines the intensity level of the pixel
x ∈ Ω in the Red, Green and Blue channel, respectively.

We stress that we will perform every computation on the scalar com-
ponents of the image, thus treating each chromatic component sepa-
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rately. Therefore, we will avoid the subscript c and write simply I(x) to
denote the intensity of the pixel x in a given chromatic channel.

7.1 Classical histogram equalization processing

Let us recall what is the histogram of a ‘continuous’ digital image: let
λ ∈ [0, 1] be a generic intensity level, then the normalized histogram of
I computed in λ, h(λ), is:

h(λ) =
1

|Ω|
Area{x ∈ Ω | I(x) = λ} λ ∈ [0, 1],

i.e. the occurrence probability of the level λ in the image, that is, how
many times the level λ appears in the image.

In Figure 7.1 we can see two examples of histograms.

Figure 7.1: Histograms of a low contrast (first column) high contrast (second
column) image.

The normalized cumulative histogram of I computed in λ, H(λ), is:

H(λ) =
1

|Ω|
Area{y ∈ Ω | I(x) ≤ λ} λ ∈ [0, 1],

i.e. the probability to find a pixel with intensity less than λ.
Of course, the relationship between h and H is:

H(λ) =

∫ λ

0
h(t) dt , H ′(λ) = h(λ) ,
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i.e. H is the integral function of h in the interval [0, 1] and the first
derivative of H in each level gives the histogram of that level.

It will be useful for later purposes to notice that the relationship H(λ) =∫ λ
0 h(t) dt can be re-written as follows

H(λ) =

∫ λ

0
h(t) dt =

∫ 1

0
sign+(λ− I(t)) dt

where

sign+(ξ) =

{
1 if ξ ≥ 0;

0 if ξ < 0.

and its ‘spatial version’

H(I(x)) =

∫
Ω

sign+(I(x)− I(y)) dy (7.1)

An image is said to be equalized if it has the same occurrence probability
for all levels, i.e. if h(λ) ≡ k, the value of k can be determined by integrating
h:

1 =
h is normalized!

∫ 1

0
h(λ) dλ =

∫ 1

0
k ds = k

∫ 1

0
ds = k,

which implies k = 1 (1 must not be interpreted as a probability of 100%,
but 100%

|Ω| since the histogram is normalized!).

The equalization condition on the histogram h(λ) ≡ 1 can be traduced to

the condition H(λ) =
∫ λ

0 dλ = λ on the cumulative histogram, as visualized
in Figure 7.2

Figure 7.2: Histogram and cumulative histogram of an equalized image.
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Considering the explicit discrete nature of a digital image, we can express
h and H as follows

h(λ) =
1

|Ω|
∑
x∈Ω

δ(λ− I(x)) λ ∈ [0, 1],

H(λ) =
1

|Ω|
∑
x∈Ω

sign+(λ− I(x)) λ ∈ [0, 1],

where

δ(t) =

{
1 if t = 0;

0 if t 6= 0.

Many times, an image does not have a balanced number of intensities
over the range [0, 1]: some values appear many times (where the histogram
has a peak), others less frequently and some level may never appear, see
Figure 7.3 (left column). However, if an image has equalized histogram, then
all the levels appear with the same frequency of occurrence, see Figure 7.3
(right column). It is evident that an image with equalized histogram carries
a larger amount of (quantitative, not necessarily qualitative) information.

Figure 7.3: A famous picture of Ansel Adams before (left) and after (right)
histogram equalization. Of course in the digital domain a perfect equaliza-
tion is almost never impossible to achieve, so that approximations must be
considered.

Classical histogram equalization is the transformation ϕ : [0, 1] →
[0, 1], r 7−→ ϕ(r) = s which modifies the level distribution of an image in
such a way that its histogram is as homogeneous as possible. To avoid the
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inversion among the order of level lines, one usually assumes ϕ′(r) ≥ 0 ∀r,
i.e. that ϕ is a non decreasing function.

To determine analytically ϕ it is useful to observe that, of course, the
total number of pixels must be conserved after the transformation. Trans-
lating this obvious consideration at an infinitesimal level we can say that
the number of pixels with levels that fall in the intensity range [r, r+ dr] of
the original image must be identical to the number of pixels with levels that
fall in the intensity range [s, s+ ds] of the final (equalized) image.

If we denote with hi (i=input) the normalized histogram of the original
image and with ho (o=output) the normalized histogram of the transformed
image, then what we have just said can be written analytically through the
equation: hi(r)dr = ho(s)ds. If we require the output image to be equalized,
i.e. ho(s) = 1 ∀s, then the previous infinitesimal equation can be re-written
as hi(r)dr = ds, but then, if we integrate both sides we find (recall that
s = ϕ(r), so the theorem of substitution of variable in integrals must be
used) ∫ r

0
hi(t)dt =

s=ϕ(r)

∫ s=ϕ(r)

ϕ(0)
ds = s− ϕ(0).

In classical histogram equalization one usually sets ϕ(0) = 0, so that∫ r

0
hi(t)dt = s,

but
∫ r

0 hi(t)dt = H(r), the normalized cumulative histogram of the original
image, and s = ϕ(r), hence the equalization transformation ϕ is nothing
but the integral function H:

r 7−→
ϕ

s = H(r) : Histogram equalization .

Thus, the intensity level transformation s = ϕ(r) realizes histogram equal-
ization when changes each level r of the original image into the value of the
normalized cumulative histogram corresponding to that same level.

When we try to implement this transformation on a digital image of
course we face the problem that, in the digital domain, it makes no sense to
consider infinitesimal ranges of intensity levels, so that we must not expect
equalization to be perfect (as can be seen in the histogram shown in the
second row to the right in Figure 7.3).

Notice that histogram equalization can produce nice results, at least in
terms of information content of an image, but can also destroy images. This
typically happens for low key images, in fact, in these case the cumulative
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histogram of dark levels is already close to 1, so that contrast of bright levels
can even be decreased by histogram equalization, as can be seen in Figure
7.4

Figure 7.4: Effect of histogram equalization (right) on a low key image (left).
Notice that the histogram of the ‘equalized’ image on the right starts exactly
at the level defined by the normalized cumulated histogram in the level 0 of
the original image.

What about histogram equalization in color images? In general, equal-
ization in the three independent chromatic channels can be dangerous, since
unnatural color can be generated by the unrelated stretching of the three
histograms, as can be seen in Figure 7.5 (right column), the equalization of
only the luminance channel in general avoids this problem Figure 7.5 (center
column).

As Figure 7.5, a ‘correct’ histogram equalization of color images is not
a trivial task to perform. The HVS automatically performs an equalization
of light information, so we could take advantages of the HVS properties to
implement a more sound histogram equalization. This can be performed
in many different ways, in these notes we will show how to do it through
the so-called variational techniques, but to do that we need to introduce
the basic definitions and results about variational principles and show how
histogram equalization can be interpreted in the variational framework.

7.2 Variational principles in digital imaging

Variational principles belong to one of the most important and useful fields
of pure and applied mathematics: Optimization. In this section we will

102



Figure 7.5: Left : original color image. Center : histogram equalization of
the luminance. Right : histogram equalization of the three independent chro-
matic channels.

introduce just the basic information about variational principles applied to
imaging.

One of the classical problems of ordinary calculus is finding the extremal
points of a function f : D ⊆ Rn → R. Fermat’s theorem states that, if f is
differentiable in D, then each extremal point x0 ∈ D of f must satisfy

∇f(x0) = 0 , Stationarity in terms of the gradient.

If f has a global minimum (maximum) in ~x0, then we say that ~x0 is the
argmin (argmax) of f in D:

~x0 = argminx∈D{f(x)} ⇐⇒ f(x0) = min
x∈D
{f(x)},

~x0 = argmaxx∈D{f(x)} ⇐⇒ f(x0) = max
x∈D
{f(x)}.

Let us recall that the gradient ∇f(x0) has a profound relationship with
Dvf(x0) directional derivatives of f in x0 along a given direction described
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by a unitary vector v, ‖v‖ = 1, expressed by

〈∇f(x0), v〉 = Dvf(x0),

where the directional derivative Dvf(x0) is defined as

Dvf(x0) = lim
h→0

f(x+ hv)− f(x)

h
≡ d

dh

∣∣∣∣
h=0

f(x+ hv),

and it’s the speed of variation of f along the direction defined by v when we
move out of x0. The previous formula implies that Dvf(x0) is given by the
scalar product of the gradient ∇f(x0) with v, i.e. by the projection of the
gradient in the v direction. Thanks to this, we can express the stationarity
condition for an extremal point in terms of directional derivatives:

Dvf(x0) = 0, ∀v ∈ Rn , Stationarity in terms of directional derivatives.

These results can be generalized from real-valued functions defined on Rn
to real-valued functions defined on functional spaces. We recall that a
functional space is a vector space whose elements are functions, e.g.

F = {f : D ⊆ R→ R}

FI ⊂ F = {f : D ⊆ R→ R, f injective}

FE ⊂ F = {f : D ⊆ R→ R, f exhaustive}

C1(Ω) = {f : Ω ⊆ Rn → R, f n times differentiable with continuity in D}

L2(Ω) = {f : Ω ⊂ Rn → R,
∫

Ω
|f(x)|2dx <∞}

L2(Ω) is called the Hilbert space of finite-energy functions on Ω, because
the integral that appears in its definition is called ‘energy’ of the function f
and its finite by definition.

Each continuous (normalized) I : Ω ⊂ R2 → [0, 1] or digital discrete
I : Ω ⊂ Z2 → {0, . . . , 255} image function can be seen as an element of
L2(Ω), since the image values are bounded and the image support Ω is finite.
Image functions can be seen as elements of more complicated functional
spaces, but for the purposes of this notes it is not necessary to go further
into this discussion.

Variational principles applied to imaging interpret image functions I as
variables of functions defined on L2(Ω) called energy functionals:

E : L2(Ω) −→ R
I 7−→ E(I) ≡ 〈E, I〉,
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where the notation 〈E, I〉 comes from the fact that if the energy functional E
is linear and continuous, then it can always be interpreted as a scalar product,
which in turn can be written as a suitable integral. This important result
is called Riesz representation theorem and explains why practically all
the functionals that are used in imaging are written as integrals (or sums,
in the discrete domain).

A variational principle in imaging starts with the proper selection of an
energy functional E, whose extremal points (maxima or minima, depending
on the problem) must satisfy some optimal conditions to solve (completely
or partially) a problem. The solution, i.e. the argmin or argmax of E is the
optimal image function I : Ω→ R that maximizes the property selected
to define the functional E. If we are dealing with RGB color images, then
we can apply the same reasoning on each scalar chromatic component Ic of
the image, c ∈ {R,G,B}.

Without enter in detail, we can say that a typical example is given by the
so-called denoising functional, whose argmin will be the image function with
the least possible noise with respect to certain parameters of the functional.

Variational principles are used throughout imaging and often give the
possibility to have a ‘view from above’ which allows to more profoundly
understand a problem and link together different algorithms designed to
solve it.

A natural question that arises when dealing with variational principles
is the following: is there any stationary condition that a functional must
satisfy in order to be able to find its extremal points? The answer is yes
and the stationary condition for a functional is the direct generalization of
the stationary condition of a function in terms of directional derivatives.

Let us call the Gateaux derivative or first variation of a functional
E in the image function I along another image function J the real number
defined as

δE(I, J) = lim
h→0

E(I + hJ)− E(I)

h
≡ d

dh

∣∣∣∣
h=0

E(I + hJ).

The stationary condition for a functional E can be stated by saying that,
if I is an extremal point of E, then

δE(I, J) = 0, ∀J , ‘Euler-Lagrange equations’.

Typically the Euler Lagrange equations are implicit or too difficult to be
solved, for this reason many numerical schemes have been invented to ap-
proximate the solution I of the Euler-Lagrange equations. Probably the
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most famous and used consists in the gradient-descent and gradient-
ascent methods:

∂tI = ±δE,

where, of course, the minus defines the descent and the plus the ascent, and
t is the step parameter of the scheme.

We summarize in the following table the similarities between the classical
and functional optimization.

Optimization in Rn Functional Optimization

To be optimized Function I : Ω ⊆ Rn → R Functional E : L2(Ω)→ R
Variable x ∈ Ω I ∈ L2(Ω)

Stationary condition ∇I = 0 δI = 0

Let us now show the first variations of two important functionals.

Theorem: Given the two functional

E1(I) =

∫
Ω
ψ(I(x)) dx;

E2(I) =

∫∫
Ω2

φ(I(x), I(y)) dxdy

where ψ is a differentiable function defined on the codomain of I and φ is a
differentiable function defined on the 2-th Cartesian power of the codomain
of I, then their first variations are:

δE1(I, J) =

∫
Ω

∂ψ

∂I

∣∣∣∣
I(x)

J(x)dx ≡
∫

Ω
ψ′(I(x)) J(x) dx (7.2)

and

δE2(I, J) =

∫∫
Ω2

(
∂φ

∂I

∣∣∣∣
I(x)

J(x) +
∂φ

∂I

∣∣∣∣
I(y)

J(y)

)
dxdy. (7.3)

In the next sections we will use these results to show how histogram equal-
ization can be written as a variational principle.

7.3 Histogram equalization through variational tech-
niques

In the paper

G. Sapiro, V. Caselles: Histogram modification via differential equations,
Journal of Differential Equations, Vol. 135(2), pp. 238–266, 1997
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the authors has proven that histogram equalization can be interpreted as
the minimization of an energy functional, as proven in the next theorem.

Theorem (Caselles-Sapiro): The image that minimizes the functional

EHist.Eq(I) = 2

∫
Ω

(
I(x)− 1

2

)2

dx− 1

|Ω|

∫∫
Ω2

|I(x)− I(y)| dxdy ,

i.e. the image
I∗ = argmin

I
(EHist.Eq(I))

has equalized histogram.

Proof. : by linearity, we can compute the first variation of the two terms
of the energy functional separately and then add the results. For that, it is
convenient to introduce these names:

D 1
2
(I) = 2

∫
Ω

(
I(x)− 1

2

)2

dx ;

C(I) =
1

|Ω|

∫∫
Ω2

|I(x)− I(y)| dxdy .

By virtue of formula (7.2), we have

δD 1
2
(I, J) =

∫
Ω

4

(
I(x)− 1

2

)
J(x) dx, (7.4)

and by virtue of formula (7.3), we have

δC(I, J) =
1

|Ω|

∫∫
Ω2

[sign(I(x)− I(y))J(x)− sign(I(x)− I(y))J(y)] dxdy

=
1

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(x) dxdy +

− 1

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(y) dxdy.

Now, interchanging the role of the ‘mute’ variables x and y in the second
integral of the last step, we have that

1

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(y) dxdy =
1

|Ω|

∫∫
Ω2

sign(I(y)− I(x))J(x) dydx

107



but then, using the oddness of the sign function,

1

|Ω|

∫∫
Ω2

sign(I(x)−I(y))J(y) dxdy = − 1

|Ω|

∫∫
Ω2

sign(I(x)−I(y))J(x) dydx.

Hence, we can write

δC(I, J) =
1

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(x) dydx +

+
1

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(x) dydx =

=
2

|Ω|

∫∫
Ω2

sign(I(x)− I(y))J(x) dydx

that can be conveniently rearranged as follows

δC(I, J) =

∫
Ω

(
2

|Ω|

∫
Ω

sign(I(x)− I(y)) dy

)
J(x) dx. (7.5)

Now, since δEHist.Eq(I, J) = δD 1
2
(I, J) − δC(I, J), by using formulas (7.4)

and (7.5) we have

δEHist.Eq(I, J) =

∫
Ω

4

(
I(x)− 1

2

)
J(x) dx−

∫
Ω

(
2

|Ω|

∫
Ω

sign(I(x)− I(y)) dy

)
J(x) dx

i.e.

δEHist.Eq(I, J) =

∫
Ω

[
4

(
I(x)− 1

2

)
− 2

|Ω|

∫
Ω

sign(I(x)− I(y)) dy

]
J(x) dx.

The stationary condition δEHist.Eq(I, J) = 0, ∀J , implies that the expression
in the square bracket must be zero, i.e.

δEHist.Eq(I, J) = 0 ⇐⇒ 4

(
I(x)− 1

2

)
− 2

|Ω|

∫
Ω

sign(I(x)−I(y)) dy = 0,

so that the Euler-Lagrange equation relative to the energy functional EHist.Eq

is the following implicit equation

2

(
I(x)− 1

2

)
− 1

|Ω|

∫
Ω

sign(I(x)− I(y)) dy = 0,

that can be suitably re-written as

1

|Ω|

∫
Ω

sign(I(x)− I(y)) dy = 2I(x)− 1. (7.6)
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Now, using the identity sign(t) = 2sign+(t)−1, we can express the left-hand
side of the Euler-Lagrange equation as

1

|Ω|

∫
Ω

(2sign+(I(x)− I(y))− 1) dy =
2

|Ω|

∫
Ω

sign+(I(x)− I(y)) dy −
∫

Ω dy

|Ω|
= 2H(I(x))− 1,

where we have used the fact that 1
|Ω|
∫

Ω sign+(I(x) − I(y)) dy is the spatial

version of the cumulative histogram H(I(x)), as noticed in eq. (7.1).
Thus, the Euler-Lagrange eq. (7.6) is equivalent to 2H(I(x)) − 1 =

2I(x)− 1, i.e. to H(I(x)) = I(x), but then

δEHist.Eq(I, J) = 0 ⇐⇒ H(I(x)) = I(x), ∀x ∈ Ω,

which means that the image function I which satisfies the Euler-Lagrange
equations of the functional EHist.Eq(I) has an equalizes histogram.

In the quoted paper, G.Sapiro and V.Caselles proof that the functional
EHist.Eq(I) has a global minimum when I is the solution of the Euler-
Lagrange equation, and that completes the proof of the fact that the image
I∗ = argmin

I
(EHist.Eq.(I)) has an equalized histogram. 2

7.3.1 Interpretation of the variational histogram equaliza-
tion

The interpretation of the energy functional EHist.Eq(I), whose argmin is an
image with equalized histogram, gives a first example of the power and
importance of variational principles.

To understand why, let us start the histogram equalization energy func-
tional is EHist.Eq(I) = D(I) − C(I), where the two functional terms D(I)
and C(I) are

D 1
2
(I) = 2

∫
Ω

(
I(x)− 1

2

)2

dx

and

C(I) =
1

|Ω|

∫∫
Ω2

|I(x)− I(y)| dxdy,

so the minimization of EHist.Eq(I) = D(I) − C(I) is achieved through the
minimization of D(I) and the maximization of C(I), because C(I) has
a minus sign in front of it, so it becomes more negative as we increase it!

Let us discuss the meaning of the two functional terms:
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• D 1
2
(I) is called global quadratic dispersion term around the middle

gray level 1/2 and it is minimized when I(x) = 1/2 for all x ∈ Ω, i.e.
the minimization of this term tends to turn the image I into a constant
gray image.

• C(I) = 1
|Ω|
∫∫

Ω2 |I(x)− I(y)| dxdy is called global contrast term be-
cause is built by integrating the absolute value of the intensity differ-
ences between two pixels, and we know that |I(x)−I(y)| is proportional
to the Michelson contrast among the pixels x and y. As said before,
to minimize E(I) we must maximize C(I), and this corresponds to
maximize the global Michelson contrast of the image I.

Thus, the image I∗ that minimizes E(I) is the image that realizes the opti-
mal balance between two opposite effects: from one side the minimization
of E(I) tries to set all the levels to the average gray 1/2 and, from
the other side, it tries to spread the intensity levels apart, as far as
possible from each other. The equilibrium among these two conflict-
ing actions, dispersion control and contrast enhancement, realizes histogram
equalization. This is a highly non intuitive result that is very difficult, if not
impossible, to achieve without variational principles.

One practical consequence of this result is that, applying for example
the gradient descent technique (or another numerical scheme to minimize
EHist.Eq(I), we can stop the minimization process before reaching the com-
plete equalization, thus realizing a partial equalization that can nonetheless
be useful for someone’s purposes and avoiding the problems reported in
section 7.1.

However, for the purposes of color image processing, the most important
consequences of the theorem just proven are theoretical, in fact, as we will
see in the next section, we can modify the functional EHist.Eq(I) in such
a way that the basic principle of histogram equalization, i.e. the balance
between dispersion control and contrast enhancement, is preserved but we
can change the analytical form of the terms D(I) and C(I) on the basis
of human visual perceptual features, so that the argmin image I∗ of the
modified functional will optimally represent color perception in a suitable
sense.
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7.4 Perceptually-inspired color enhancement of dig-
ital imaging

In chapter 6 we have examined some HVS properties related to adaptation
and contrast perception. Let us very briefly recall the basic facts:

1. Adaptation: the Michaelis-Menten equation (4.1) describes the re-
sponse of photoreceptors to light stimuli and it shows that the HVS is
able to adapt to the average radiance level of any visual scene;

2. Weber-Fechner’s law of contrast perception: in Section 6.3.1 we
have seen that the response of the HVS to light changes is roughly
logarithmic because, for non-extreme light intensities, the ratio be-
tween the just noticeable difference JND among light intensities and
the average intensity is approximately constant;

3. Local contrast enhancement: phenomena as Mach bands of simul-
taneous contrast show that the HVS performs a contrast enhancement
that depends on the local information of light intensity around each
point of a visual scene;

4. Color constancy: is the ability to adapt to different color tempera-
tures of light sources in order to perceive colors almost constantly, a
feature that is vital for object recognition.

These four properties are considered the most fundamental phe-
nomenological features of color vision.

It must be noticed that adaptation and local contrast enhancement are
opposite features: adaptation happens mostly in the retina and can be re-
lated to the control of dispersion around an average radiance level; local
contrast enhancement is induced by neuron dynamics and interactions and
tends to magnify intensity differences on the basis of local information.

We have seen that this is exactly the same behavior underlying histogram
equalization, for this reason it can be inferred that the HVS implements
a (local and highly non linear) histogram equalization of the radi-
ance signal corresponding to each visual scene.

This means that one can search for a possible modification of the energy
functional related to histogram equalization to embed the fours fundamental
phenomenological properties of the HVS just commented into a variational
framework.

This has been achieved in the paper
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R. Palma-Amestoy, E. Provenzi, M. Bertalmı́o, V. Caselles: ‘A perceptually
inspired variational framework for color enhancement ’, IEEE Transactions

on Pattern Analysis and Machine Intelligence (PAMI), 31 (3), 458-474,
March 2009.

where the adaptation mechanism has been modeled with a dispersion term
written as

D(I) =

∫
Ω
d(I) dx

d being a differentiable real-valued function of I and local contrast enhance-
ment has been modeled as the functional term

Cw(I) =

∫∫
Ω2

w(x, y)c(I(x), I(y)) dxdy,

w : Ω × Ω → R+ being a spatial weight and c being a differentiable real-
valued function of two pixel intensities.

The global energy functional is the sum of these two terms:

E(I) = D(I) + Cw(I).

Of course there are infinitely many functionals that can be written like
that, however, in the paper the authors have proven that when the other
two properties, color constancy and Weber-Fechner’s law, are taken into
account, then there can be only one class of functionals that fulfill all the
four properties at once. In other words, the selection of D(I) and Cw(I) is
driven by the HVS properties and it turned out to be unique.

Without entering in the quite difficult details of this selection, we report
here the dispersion and contrast terms.

The dispersion term D(I) is given by the entropy around the average
value

µ =
1

|Ω|

∫
Ω
I(x)dx

of the image I, i.e.

D(I) =

∫
Ω

[
µ log

µ

I(x)
− (µ− I(x))

]
dx,

since entropy is a measure of disorder, minimizing D(I) means minimizing
the possibility to find intensity value other than µ, which is exactly what
we expect from the dispersion term.
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The contrast term instead is

Cw(I) =

∫∫
Ω2

w(x, y)ϕ

(
min{I(x), I(y)}
max{I(x), I(y)}

)
dxdy, ϕ′(t) > 0

to understand its action let us concentrate on the so-called perceptual con-
trast function

cϕ(I(x), I(y)) = ϕ

(
min{I(x), I(y)}
max{I(x), I(y)}

)
, ϕ′(t) > 0

which is minimized when

• min{I(x), I(y)} decreases;

• max{I(x), I(y)} increases,

hence, the minimization of cϕ indeed induces contrast enhancement. The
local nature of this enhancement is guaranteed by the weight factor w. Typ-
ically w is a Gaussian kernel with center in x, its standard deviation σ can
be decided by a user to increase or decrease the locality of contrast enhance-
ment. Very small values of σ push towards sharpening.

For the purposes of perceptually-inspired color enhancement one can also
add a coefficient α to have a degree of freedom and balance the action of
the two terms, thus considering this energy functional:

Eϕα,w(I) = αD(I) + Cw(I), α ∈ R+.

The Euler-Lagrange equations of Eϕα,w(I) are implicit equations that can-
not be solved directly. For this reason the functional is minimized through
a gradient descent w.r.t. log I. The continuous gradient descent equation
is:

∂t log I = −δE ϕ
w,α(I)

By discretizing the equation above one can generate an iterative algorithm
which converges to a fixed point image I∗, i.e. I∗= argmin(Eϕw,α(I)).

It is interesting to notice that this framework gives a sort of general house
for perceptually-inspired models of color correction: in fact, by varying ϕ, it
is possible to obtain variational formulations of two well known algorithms
of this type, namely Retinex and ACE, respectively:

C id
w (I) =

∫∫
Ω2

w(x, y)
min(I(x), I(y))

max(I(x), I(y))
dxdy,
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C log
w (I) =

∫∫
Ω2

w(x, y) log

(
min(I(x), I(y))

max(I(x), I(y))

)
dxdy.

The iterative equations in these cases are: Iterative equation from gra-
dient descent technique (ϕ ≡id):

Ik+1(x) =
Ik(x) + ∆t

(
αµ+R id

Ik
(x)
)

1 + ∆t(α)
,

where

R id
Ik(x) :=

∫
I
w(x, y)

Ik(y)

Ik(x)
sign+(Ik(x)− Ik(y)) dy

−
∫
I
w(x, y)

Ik(x)

Ik(y)
sign+(Ik(y)− Ik(x)) dy,

Ik: image at the k-th step, I0: original image, and, when ϕ ≡ log:

Ik+1(x) =
Ik(x) + ∆t

(
αµ+R log

Ik
(x)
)

1 + ∆t(α)
,

where

R log
Ik

(x) :=

∫
I
w(x, y) sign(Ik(x)− Ik(y))dy.

In Figure 7.6 we compare the action of these variational algorithms to
that of classical histogram equalization: it can be seen that the problems
related to the generation of unnatural colors and excessive contrast enhance-
ment are minimized by the perceptually inspired modification of histogram
equalization (the pictures correspond to the minimization of the functional
E id
α,w(I).
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Figure 7.6: Left : original image. Center : result of the perceptually-inspired
variational algorithm with ϕ =id. Right : histogram equalization of the three
independent chromatic channels.
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Chapter 8

High Dynamic Range (HDR)
imaging and the tone
mapping problem

High Dynamic Range images are a relatively recent way to store data pro-
portional to the radiance of a visual scene. In this chapter we will show how
to build these images and the so-called tone mapping problem, i.e. how to
compress them in order to be shown on a standard screen.

8.1 Radiance maps generation

In the SIGGRAPH conference of 1997, P. Debevec and J. Malik presented
the following paper

‘Recovering High Dynamic Range Radiance Maps from Photographs’
Paul E. Debevec and Jitendra Malik

Proceedings of the 24th annual conference SIGGRAPH conference, 1997,
Pages 369-378

downloadable at: http://debevec.org/Research/HDR/debevec-siggraph97.pdf,
presented the first fast, simple and robust method of recovering radiance
maps from a set of ordinary photographs taken with different exposures.

These radiance maps are somewhat improperly called High Dynamic
Range (HDR) Images, we say ‘improper’ because an HDR image is not
a digital image in the classical sense: it cannot be shown on a standard
screen since its range typically span more than the 2 orders of magnitude
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available in standard screens, it is more an array of pixels whose intensity
is proportional to the radiance of a visual scene.

In this section we will revise the work of Debevec and Malick. Let us
begin by recalling that, as seen in Section 1.2, the radiance Le is the optical
power per unit of solid angle and surface orthogonal to the light direction
and it is measured in W

srm2 , while the irradiance Ee is the optical power

incident on a surface and measured in W
m2 . We also recall that the radiance

information is important because, if we multiply it by the human spectral
sensitivity function V (λ) and integrate in the visible spectrum, we obtain
the luminance LV , which is the photometric quantity that starts the visual
process.

Figure 8.1 shows why it is so difficult to recover the radiance with a
single (analogical or digital) photo.

Figure 8.1: Image Acquisition Pipeline shows how scene radiance becomes
pixel values for both film and digital cameras. Unknown nonlinear map-
pings can occur during exposure, development, scanning, digitization, and
remapping.

Non-linear mechanisms as the typical sigmoidal response of a film or a
CCD, see Figure 8.2, makes it impossible to achieve a linear mapping of a
general scene radiance. However, whenever we fix an exposure, i.e. a time
in which the shutter of a camera remains open, there is an intermediate
range of radiance which is linearly transformed by a camera. If we change
the exposure, the linear response region will slide over the entire radiance
range. In Figure 8.3 we can see the effect of different exposure.

The basic idea of Debevec and Malick was to suitably ‘fuse’ the infor-
mation obtained by the linear response with different exposures in order
to have a global linear mapping of the scene radiance. They achieved that
through a constrained least-square model, let us see how.

They considered a camera fixed on a tripod, that takes pictures of a static
scene from a static vantage point with different exposure durations ∆tj ,
j = 1, . . . , P (P as pictures). They also assume that the camera resolution
is high enough to consider the irradiance values Ee(x) for each pixel x ∈ Ω
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Figure 8.2: Typical sigmoidal response of a camera to light stimuli, notice
that the behavior in the region bounded between B and C is approximately
linear.

Figure 8.3: From left to right, images taken with decreasing time exposure.
If ∆t is big, one can recover radiance details in dark areas of the scene, if
∆t is small, one can recover radiance details in bright areas of the scene.

as constant, Ω being the spatial support of the image taken, as usual. They
denoted pixel values by Zj(x), x ∈ Ω, j = 1, . . . , P . Finally, they define
the exposure X as the product of the irradiance Ee(x) at the camera sensor
in the pixel x and the exposure time, ∆t, Xj(x) = Ee(x)∆tj , measured in
J/m2.

The reciprocity assumption states that only the product Ee(x)∆t is
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important, i.e. halving Ee(x) and doubling ∆t will not change the result-
ing optical density. Under extreme conditions (very large or very low ∆t),
the reciprocity assumption can break down, a situation described as reci-
procity failure. In typical analogical films, reciprocity holds within the
range of 10−4-10 seconds. In the case of a CCD, reciprocity holds under the
assumption that each site of the CCD measures the total number of photons
it absorbs during the integration time.

Assuming that reciprocity holds, we can write the reciprocity equa-
tion as:

Zj(x) = f(Ee(x)∆tj)

where f is an yet unknown function given by the composition of the char-
acteristic sigmoidal curve of the CCD as well as all the nonlinearities intro-
duced by the later processing steps shown in Figure 8.1.

Debevec and Malick made the ‘reasonable assumption’ that the func-
tion f is smooth and monotonically increasing, so its inverse f−1 is well
defined. Knowing the exposure Xj(x) and the exposure time ∆tj , the ir-
radiance Ee(x) is recovered as Ee(x) = Xj(x)/∆tj . Knowing the relation
between radiance and irradiance expressed by eq. 1.1, one can reconstruct
the radiance Le in the scene. The objective function of Debevec and Malick
is thus f−1.

Observe that applying f−1 to both sides of the reciprocity equation we
obtain

f−1(Zj(x)) = f−1(f(Ee(x)∆tj)) = Ee(x)∆tj

taking the logarithm of both sides

log f−1(Zj(x)) = log(Ee(x)∆tj) = logEe(x) + log ∆tj

Denoting g ≡ log f−1, g : {Zmin, . . . , Zmax} ⊆ {0, . . . , 255} → R, we obtain
the following system of |Ω| ·P equations (|Ω| being, as usual, the number of
pixels of each image):

g(Zj(x)) = logEe(x) + log ∆tj , (8.1)

the exposure times ∆tj and the digital values Zj(x) are known, while the
|Ω| irradiance values Ee(x) and the Zmax − Zmin + 1 values taken by the
function g and are unknown, with the only assumption that g is monotonic
and smooth.

Debevec and Malick solved the previous equation in the function g and
the irradiances Ee(x) in a least-squared sense, i.e. they searched for the
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|Ω| irradiance values Ee(x) and the Zmax−Zmin +1 values taken by the func-
tion g that minimize the following constrained quadratic objective
function:

O =
∑
x∈Ω

P∑
j=1

{w(Zj(x)) [g(Zj(x))− logEe(x)− log ∆tj ]}2

+ λ

Zmax+1∑
z=Zmin+1

[
w(z)g′′(z)

]2
;

where:

• the first term ensures that the solution satisfies the set of equations
8.1 in a least squares sense;

• the second term is a smoothness term on the sum of squared values
of the second derivative of g to ensure that the function g is smooth,
in fact this term is minimized when g′′ is minimum and the second
derivative measures the acceleration of variation of g, so that low values
of g′′ correspond to the absence of singularities in the behavior of g.
In the discrete setting g′′(z) = g(z − 1)− 2g(z) + g(z + 1);

• The scalar λ weights the smoothness term relative to the data fit-
ting term and should be chosen appropriately for the amount of noise
expected in the measurements of the values Zj(x);

• Due to saturation, at the extreme values Zmin and Zmax of the dynamic
range, g(z) is typically less smooth. A weighting function w(z) is added
to emphasize the smoothness and fitting terms toward the middle of
the curve:

w(z) =

{
z − Zmin if z ≤ Zmid

Zmax − z if z > Zmid

as represented in Figure 8.4

The least-square problem above can be solved in a fast and robust way by
using the singular value decomposition (SVD) method. Given measurements
of |Ω| pixels in P photographs, we have to solve for |Ω| values of logE(x)
and Zmax − Zmin samples of g. Thus, the size of the system of equations
is of the order |Ω|P + Zmax − Zmin, which, even for small images, requires
very expensive calculations. To reduce the computation, we can consider
a random distribution of n << |Ω| pixel values that ensure a sufficiently
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Figure 8.4: Shape of the weighting functions used by Debevec and Malick.

overdetermined system, i.e. n(P − 1) > Zmax − Zmin. For the pixel value
range Zmax − Zmin = 255 and P = 11 photographs, Debevec and Malick
declare that a choice of n on the order of 50 pixels is adequate. The running
time is on the order of a few seconds on an ordinary PC.

The number of photographs needed to best recover the radiance
map, of course, strongly depends on the extension of the dynamic range of
the photographed scene: for a not too contrastated scene 3 pictures can be
enough, for a high contrastated scene 5 or 7 pictures are recommended.

Once found the values of g(z), the logarithmic radiance values can be
expressed as:

logEe(x) = g(Zj(x))− log ∆tj ,

however, for robustness, all the available exposures for a particular pixel are
used to compute its radiance, for this it is convenient to reuse the weighting
function w(z) to give higher weight to exposures in which the pixel’s value
is closer to the middle of the response function, where nonlinearities are less
probable, and perform the weighted sum:

logEe(x) =

∑P
j=1w(Zj(x))(g(Zj(x))− log ∆tj)∑P

j=1w(Zj(x))
.

Finally, an exponential is performed: Ee(x) = exp(logEe(x)) for each x ∈ Ω.
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8.2 Tone mapping

Once we have obtained the radiance map with the Debevec-Malick method,
it arises the problem of showing this image on an ordinary Low Dynamic
Range (LDR) screen or printer. To do that, we must process the HDR image
in order to reduce back its dynamic range to the 2 orders of magnitude of
LDR screens and printers.

This might seem a contradiction: we struggle to build an HDR image
from multiple exposures and then we turn back to a LDR image, why doing
that? The answer relies in the fact that the dynamic reduction must be
implemented in a clever way in order to preserve as much as possible the de-
tails contained in the HDR image and the appearance of colors of the visual
scene photographed. Such a transformation is called ‘tone mapping’.

Of course, tone mapping cannot be performed simply by a linear nor-
malization, i.e. the transformation

I(x) 7−→ I(x)− Imin

Imax − Imin
,

Imax and Imin being, respectively, the highest and lowest intensity of the
HDR image in a given chromatic channel, scales the HDR image intensities
to the range [0, 1], but the radiance ranges in an HDR are so different that
such a transformation would typically generate an output image that is black
all over, except for the pixels whose intensity has the same magnitude of the
brightest pixel, as can be seen in Figure 8.5

How can one perform a sound tone mapping? Once again, the HVS
properties can help us. In fact, the human visual system performs a very
efficient tone mapping in two opposed stages:

• firstly, intraocular veiling glare (caused by scattered light in the eye
bulb) reduces the luminance range on the retina, and retinal pho-
toreceptor response expressed by the Michaelis-Menten formula (4.1)
further reduces the range of the electric signal passed to the optical
nerve;

• secondly, neurophysiology of the visual system produces a physiolog-
ical simultaneous contrast which increases the differences in appear-
ances by comparing the responses from different part of the retinal
luminance image. Vision’s simultaneous contrast mechanism changes
dramatically any correlation of scene luminance and appearance.

The world that humans see is almost always one with nonuniform illumi-
nation and surround, and with dynamic ranges greater than the information
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Figure 8.5: Left : false color image showing the radiance levels of the Memo-
rial church image, the total radiance range is 106. Right : result of a linear
scaling on the HDR Memorial church image.

capacity of the optic nerve. It is highly probable that for this reason hu-
mans have evolved in order to produce the two opposite mechanisms quoted
above.

A tone mapping algorithm that implements these two stages has been
proposed in: S. Ferradans, M. Bertalmı́o, E. Provenzi, V. Caselles: ‘An anal-
ysis of visual adaptation and contrast perception for tone mapping ’, IEEE
Transactions on Pattern Analysis and Machine Intelligence (PAMI), 33(10),
2002-2012, October 2011. The first stage of that tone mapping algorithm
implements a version of the Michaelis-Menten equation (4.1) and the second
stage uses the variational contrast enhancement discussed in the previous
chapter. In Figure 8.6 we can see the results of this method compared to
those of a global logarithmic tone mapping transformation.
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Figure 8.6: Left: results of a global logarithmic tone mapping. Right: results
of the tone mapping proposed in the paper quoted above.124
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