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Introduction

In this thesis I collect some of the most important mathematical discoveries
of a recent quantization algorithm for gauge theories and, in particular, for
gravity. My original contributions in both the canonical and the covariant
formulations will be underlined throughout the manuscript.

Starting from a reformulation of general relativity as a constrained gauge
theory with symmetry group SU(2) or SL(2,C) − depending on which kind
of signature, respectively, Euclidean or Lorentzian, is chosen to formulate the
theory − then one operates a compactification of the classical configuration
space A/G of gauge field theories in order to get a quantum configuration
space A/G that can be embedded with a natural diffeomorphism and gauge-
invariant measure µ0.

The Hilbert space L2(A/G, µ0) servers as the space of quantum kine-
matical states, the true (physical) states are selected by imposing operator
equations that implement the classical constraints.

By using techniques of group theory it is possible to find out an orthonor-
mal basis of this Hilbert space, this is given by the so-called spin-network
states and it serves to define the fundamental quantum observables of area
and volume operators.

The analysis of the spectra of these observables shows that the texture
of the spacetime at the ultramicroscopic scale is discrete and composed of
minimal quanta of area and volume, proportional to the Planck area and
volume, respectively.

These results are obviously important but are obtained in the canonical
formulation at ‘frozen time’, in fact the evolution appears in form of a very
difficult constrain, the Hamiltonian constraint, that is not yet well under-
stood.

To overcome this difficulty in the latest years an explicitly covariant for-
mulation has been developed. This formulation mixes techniques derived
from topological field theories and from canonical loop quantum gravity.
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Chapter 1

Principal bundles, gauge
theories and gravity

1.1 Introduction

The principal aim of this chapter is to illustrate the mathematical framework
of field theories and, in particular, of gauge theories.

The natural mathematical formalism needed to describe any field theory
in a rigorous and exhaustive fashion is that of fiber bundles. A particular
subclass of fiber bundles is given by the principal fiber bundles, these ones
provide the natural framework for an important subclass of field theories
called gauge theories.

Since we will need the concept of manifold, to avoid a boring proliferation
of the term ‘smooth’ we make the following

Assumption: unless otherwise indicated the manifolds considered in
this chapter will be assumed to be ordinary, i.e. smooth, connected, para-
compact and finite dimensional, the maps between them will be assumed to
be smooth, i.e. C∞.

1.2 Field theories and fiber bundles

1.2.1 Definition of a fiber bundle

The main reference of this section is [36].
By a physical point of view a field is an entity which assigns to every

point x of a manifoldM , representing space or spacetime, a point f of another
manifold F , representing the value assumed by the field in x.
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A configuration of a field on an open subset U of the spacetime M is
thus a map ϕ : U ⊂M → F . Such a map is completely defined by its graph,
i.e. by the set

Graph(ϕ) := {(x, f) ∈ U × F | f = ϕ(x)}

or equivalently by the map ϕ̂ : U → U × F , x 7→ (x, ϕ(x)).
It is quite natural to think at U × F as the local model of a more com-

plicated geometric structure obtained by ‘gluing together’ these cartesian
products (in a suitable way). This structure is precisely what is called a fiber
bundle over M with standard fiber F . Hence, naively, a fiber bundle can
be seen as a generalization of the concept of a manifold, now modelled on a
cartesian product instead of an Euclidean space.

Quoting [36]: ‘the mathematical formulation of the field theories in terms
of the fiber bundles is an empirical consequence of the physical manifestation
of a field’.

Rigorously, the definition of a fiber bundle is the following

Def. 1.2.1 A fiber bundle is a quadruple B ≡ (B,M, π;F ) consisting of:

• a manifold B, called total space;

• a manifold M, called base space;

• a manifold F, called standard fiber;

• a surjective submersion π : B → M called projection with the
property of local triviality, i.e. there exists an open covering {Uα} of
M and diffeomorphisms

tα : π−1(Uα)→ Uα × F

such that the following diagram commute:

π−1(Uα)
tα−−−→ Uα × F

π

y ypr1
Uα Uα

i.e. pr1 ◦ tα = π, ∀α, where pr1 is the projection onto the first Cartesian
factor.

Every couple (Uα, tα) is called a local trivialization of B or, in the
physical language, ‘choice of a gauge’. The whole collection {(Uα, tα)} is
called a trivialization of B.

If there exists a global trivialization (M, t) then B 'M ×F and the fiber
bundle is called trivial.
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The diagram above is required to commute as a natural compatibility con-
dition between the trivializing maps tα and the projection π.

Note, from the very definition, that if one restricts the trivializing maps
tα to the inverse-image of a specific point x ∈ Uα via π, then the restricted
map tα(x) := tα|π−1(x),

tα(x) : π−1(x) −→ F

is a (non-canonical) diffeomorphism onto F .
The set Px ≡ π−1(x) ⊂ B is called the fiber over x ∈ Uα and it is

given by the elements of B which project onto x via π, hence fibers over
different points are disjoint. Moreover, since π is a surjective submersion,
each fiber is a submanifold of B (this is the reason why π is required to
have that property). After the choice of a trivialization of B every fiber
can be identified with the standard fiber F (which must be thought as an
intrinsically structured manifold on its own), however the identification is
not canonical because it depends on the chosen trivialization.

Fixed a trivialization {(Uα, tα)} of B we write Uαβ to indicate the (possibly
empty) intersection Uα ∩ Uβ.

Supposing that Uαβ 6= ∅, one can define on the following maps:

gαβ : Uαβ −→ Diff(F )

x 7→ gαβ(x) := tα(x) ◦ tβ(x)−1

which are called the transition functions of B w.r.t. the chosen trivializa-
tion.

By definition the maps gαβ satisfy the so-called cocycle identities:

1. gαα(x) = idF ;

2. gαβ(x) = gβα(x)−1;

3. gαβ(x) ◦ gβγ(x) ◦ gγα(x) = idF ;

for every α and β. Note that, by using 2., the property 3. can be written as
gαβ(x) ◦ gβγ(x) = gαγ(x).

The whole collection {(gαβ, Uαβ)} is called a Diff(F )−valued cocycle
on M .

A fundamental result is that the knowledge ofM,F and of the Diff(F )−valued
cocycle on M is exhaustive for the knowledge of the entire structure of B
modulo fiber bundle isomorphisms, as the following theorem states.

Theorem 1.2.1 Let F and M be manifolds, let {Uα} be an open covering
of M and finally let {(gαβ, Uαβ)} be a Diff(F )−valued cocycle on M .

Then there is a fiber bundle B ≡ (B,M, π;F ) which has gαβ as transition
functions, moreover this bundle is unique up to a fiber bundle isomorphism.
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The proof is constructive: one defines the total space B as the quotient
space of the disjoint union ∐

α

Uα × F

modulo the equivalence relation

(α, x, f) ∼ (β, x′, f ′) :=

{
x = x′

f = gαβ(x)(f ′)

and the local trivializations as the natural maps

tα : π−1(Uα) −→ Uα × F
[x, f ]α 7→ (x, f)

where [x, f ]α denote an equivalence class in B.
The essential uniqueness of this construction refers to the concept of ‘fiber

bundle isomorphism’, which is defined below.

Def. 1.2.2 Given two fiber bundles B ≡ (B,M, π;F ) and B′ ≡ (B′,M ′, π′;F ′),
a fiber bundle morphism between them is a couple (Φ, φ) of maps Φ : B →
B′, φ : M →M ′ making the following diagram commutative:

B
Φ−−−→ B′

π

y yπ′
M −−−→

φ
M ′

i.e. π′ ◦ Φ = φ ◦ π.
In particular the morphism (Φ, φ) is said to be a fiber bundle isomor-

phism if it is invertible, i.e. if there exist Φ−1 : B′ → B and φ−1 : M ′ →M
such that the morphism (Φ−1, φ−1) is the inverse of (Φ, φ).

The commutativity of the diagram is equivalent to the ask that Φ maps
the fiber π−1(x) in the fiber π′−1(φ(x)), in fact: suppose that b belongs to
the fiber on x in B, i.e. b ∈ π−1(x), then π(b) = x and the commutativity
of the diagram is equivalent to π′(Φ(b)) = φ(π(b)) = φ(x) if and only if Φ(b)
belongs to the fiber over φ(x) in B′.

If the map φ : M →M ′ is a diffeomorphism then the morphism (Φ, φ) is
called strong. In particular, if B and B′ have the same base M and φ ≡ idM
then the morphism is called vertical and it is written simply Φ : B → B′.

The collection of all fiber bundles and their morphisms form a category,
so that the terminology and the results of the category theory can be applied
to fiber bundles and fiber bundle morphisms.
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Now, turning to the issue of the essential uniqueness of the fiber bundle
constructed by a cocycle, notice that if two fiber bundles B and B′ with the
same base M and the same standard fiber F have also the same transition
functions w.r.t. the same open covering, then they are globally isomorphic.

1.2.2 Sections and local sections in a fiber bundle

Def. 1.2.3 A map σ : U → π−1(U) which makes the following diagram
commutative:

π−1(U) π−1(U)

σ

x yπ
U −−−→

idU
U

i.e. π ◦ σ = idU , is called a local section of B. If U coincides with M then
σ is a global section, or simply a section, of B.

Note that, by definition, for every x ∈ U one has π(σ(x)) = x, hence a
section always maps a point in the base in a point in the total space belonging
to the fiber over it.

Every fiber bundle has always local sections: in fact, fixed a trivialization
{(Uα, tα)}, every map ϕ : Uα → F induces a section σϕ defined by:

σϕ : Uα −→ π−1(Uα)
x 7→ σϕ(x) := tα

−1(x, ϕ(x)) ≡ [x, ϕ(x)]α,

the map ϕ is called the local representative of the section.
The existence of global sections instead is strongly subordinated to the

topology of the fiber bundle.
The set of the local sections of B is usually indicated by ΓU(π), while the

(possibly empty) set of the global sections of B by Γ(B).
Obviously for trivial bundles Γ(B) is always non empty, moreover

Γ(B) ' C∞(M,F ) (B trivial)

because every (global) section is completely individuated by its (global) rep-
resentative ϕ ∈ C∞(M,F ). Thus here a change of trivialization is simply a
composition of ϕ with a diffeomorphism of Diff(F ).

There is a simple way to understand if two or more sections can be glued
together to form a section defined on the union of their domains, in fact
suppose that the local sections σα and σβ are defined as

σα(x) := [x, f(x)]α, σβ(x) := [x, h(x)]β

9



for two maps f : Uα → F and h : Uβ → F . The only way to define a section
on Uα ∪ Uβ from σα and σβ is to put

σ : Uα ∪ Uβ → π−1(Uα ∪ Uβ), x 7→ σ(x) =

{
σα if x ∈ Uα;
σβ if x ∈ Uβ;

and this definition is well posed only when the two sections agree on the over-
lap of their domains, but this happens if and only if the local representatives
f and h are related by gαβ(x) ◦ f = h(x), ∀x ∈ Uαβ, in fact this condition
assures that the classes [x, f(x)]α and [x, h(x)]β agree on the overlap.

Notice that, since fibers over any two different points x, y ∈ Uα are dis-
joint, the value taken by the local section σϕ in x and y will be a certain
‘quote’ in the respective fiber, thus the collection of these ‘quotes’ can be
thought as a surface embedded in the product manifold Uα × F . By a phys-
ical point of view this surface contains the values taken by the physical field
ϕ in the points of the portion Uα of the spacetime.

1.2.3 Fiber coordinates

Given a point b ∈ B and fixed a trivialization (Uα, tα) such that tα(b) =
(x, f) ∈ Uα × F , if the coordinates of x in the chart domain Uα are xµ and
those of f in an open neighborhood contained in F are f i, then b can locally
be written as

b = (xµ, f i), µ = 1, . . . , dim(M), i = 1, . . . , dim(F ).

These coordinates are called the fibered coordinates of b, they depend on
the local trivialization chosen and form a system of local coordinates for B.

Notice that:

• Greek indexes as µ, ν, λ, γ, etc. label coordinates in the spacetime
(base) manifold M ;

• Latin indexes as i, j, a, b, etc. label coordinates in standard fiber F .

As an example, the expression of a fiber bundle morphism (Φ, ϕ) in fiber
coordinates is the following: {

x′µ = φµ(x);

f ′i = Φi(x, f).
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1.2.4 Affine and vector bundles

Def. 1.2.4 A fiber bundle (B,M, π;A) is called an affine bundle if the
standard fiber A is an affine space and if there is (at least) a trivializa-
tion whose transition functions take values in the affine subgroup GA(A) ⊂
Diff(A).

According to this definition it is natural to call a morphism between affine
bundles an affine morphism if it is an affine map when it is restricted to
the fibers.

Def. 1.2.5 A fiber bundle (B,M, π;V ) is called a vector bundle if the stan-
dard fiber V is a vector space and if there is (at least) a trivialization whose
transition functions take values in the linear subgroup GL(V ) ⊂ Diff(V ).

As for affine bundles, it is natural to call a morphism between vector bundles
a vector morphism if it is a linear map when it is restricted to the fibers.

If dim(V ) = k then the vector bundle is said to be of rank k. Obviously
dim(B) = dim(M) + dim(V ).

In the particular case in which the rank k is 1 or 2 the vector bundle is
called a line bundle or a plane bundle, respectively, over M .

Theorem 1.2.2 Affine bundles and vector bundles always admit global sec-
tions.

Proof. We give the proof only for vector bundle, for affine bundles see [36].
The key fact to prove the existence of global sections in a vector bundle is the
presence of a ‘special’ point in the standard fiber, i.e. the zero of the vector
space. If we fix it then, in every trivializing domain, the following section

σ0
α : Uα → π−1(Uα), x 7→ tα

−1(x, 0)

is well defined. Since the transition functions are linear, they preserve the
zero of each fiber, hence the local zero sections satisfy the compatibility con-
dition and can be glued together to give a global zero section σ0. Starting
from that, one can construct infinitely many global sections simply by de-
forming the zero section σ0 on a compact support by a linear isomorphism.
2

The fibered coordinates of an affine or vector bundle morphism are par-
ticular simple, in fact:
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• fibered coordinates in affine bundles: by choosing (global) Carte-
sian coordinates P i on the standard fiber A, the local expression of an
affine morphism is{

x′µ = φµ(x)

P ′i = Aij(x)P j + T i(x) (affine transformation);

• fibered coordinates in vector bundles: by choosing Cartesian co-
ordinates vi on the standard fiber V , the local expression of a morphism
is {

x′µ = φµ(x)

v′i = Aij(x)vj (linear transformation).

1.3 Principal bundles

Def. 1.3.1 A bundle (B,M, π;G) is a principal bundle if the standard
fiber is a Lie group G and there is (at least) one trivialization whose transition
functions act on G by left translation Lg ∈ Diff(G), Lg(h) := gh.

For a principal bundle the commutativity of the diagram

π−1(Uα)
tα−−−→ Uα ×G

π

y ypr1
Uα Uα

implies that the trivializing diffeomorphism tα has the form:

tα(p) = (π(p), φα(p)) ∀p ∈ π−1(Uα)

where
φα : π−1(Uα)→ G

is a G-equivariant map, i.e. : φα(p.g) = φα(p)g, ∀g ∈ G.
One of the most important differences between vector bundles and princi-

pal bundles is that in the former class of bundles the fibers have a canonical
structure of vector spaces, while in the latter the fibers do not carry a canon-
ical structure of Lie77 groups, but rather many non-canonical (trivializing-
depending) group structures. The reason is that the transition functions of
vector bundles are linear maps and hence they preserve the zero of the fiber,
while the left translation is not a group homomorphism, so that there is no
preferred point in any fiber which is fixed by the transition functions to be
selected as identity.
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The concise definition given above shows that a principal bundle is a very
particular case of fiber bundle, but for the later purposes it will be useful
to give another (of course, equivalent) definition, which uses explicitly the
action of the group G on the total space.

Def. 1.3.2 A principal fiber bundle is denoted usually as P ≡ P (M,G) or
π : P →M and it is a fiber bundle in which the standard fiber is a Lie groups
G, called structure group from mathematicians and gauge group from
physicists, which is required to act on P with a right action

R : P ×G→ P, (p, g) 7→ R(p, g) ≡ p.g

everywhere free and transitive on the fibers of P .

From the fact that R is everywhere free and transitive on the fibers it
follows that, fixed an arbitrary point p0 in an assigned fiber, for every other
point p belonging to the same fiber there exists one and only one g ∈ G such
that p = p0.g .

It follows immediately that the p-reduced of the right action, i.e. the map

Rp : G→ P, g 7→ Rp(g) := p.g

is a diffeomorphism between G and the fiber over π(p), for every p, hence all
the fibers of P are set-theoretically isomorphic to G.

Furthermore the g-reduced of R, i.e. the map

Rg : P → P, p 7→ Rg(p) := p.g

is a diffeomorphism of P into itself for every g ∈ G.
The transition functions of P (M,G) are the maps:

gαβ : Uα ∩ Uβ → G
π(p) 7→ gβα(π(p)) := φα(p)(φβ(p))−1

∀p ∈ π−1(Uα ∩ Uβ).
It can be proved that a principal bundle doesn’t possess globally defined

sections, unless it is trivial, but it always possess local sections. The local
sections of P (M,G) w.r.t. the locally trivializing collection {(Uα, tα)} are
the following maps:

σα : Uα → π−1(Uα)
x 7→ σα(x) := t−1

α (x, e)

where e is the unit of G.
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Hence to define a local section one only has to consider a local trivi-
alization and to use the fact that the standard fiber G admits a ‘special’
element, i.e. the unit e, then the inverse of the reduced diffeomorphism
tα : Uα × e −→ π−1(Uα) is the only other thing that works. From this
observation is evident that a local section individuates and it’s completely
individuated by a local trivialization, for this reason physicists are used to
identify a local section with the choice of a gauge.

The concepts of transition functions and local sections will be used in
section 1.6 to write down an important transformation rule.

We want to end this section with a result that will is very useful for the
purposes of canonical loop quantum gravity.

Theorem 1.3.1 Let P (M,G) be a principal bundle. If G = SU(2) and
dim(M) = 3 then P is a trivial bundle.

1.4 Associated bundles

Let P (M,G) be a principal bundle, F be any manifold and λ : G× F → F
a left action of G on F .

With these ingredients it is possible to define a new fiber bundle with the
same base space M and the same standard fiber F but whose total space,
denoted by P ×λ F , is the quotient of the product manifold P ×F w.r.t. the
equivalence relation:

(p, f) ∼ (p′, f ′) ⇔ ∃g ∈ G :

{
p.g = p′;
f = λ(g, f ′).

The equivalence classes in P ×λ F will be indicated with [p, f ]λ.
If we define a projection πλ : P ×λ F →M by:

πλ : P ×λ F −→ M
[p, f ]λ 7→ π(p)

then the quadruple (P ×λ F,M, πλ;F ) is a fiber bundle with standard fiber
F called the associated bundle via λ.

Given a local trivialization of P , or equivalently a local section σα, one can
define the corresponding local trivialization of the associated bundle P ×λ F
as follows:

t
(λ)
α : πλ

−1(Uα) −→ Uα × F
[σα(x).g, f ]λ 7→ (x, λ(g, f).

By definition of associated bundle, the correspondence between σα and t
(λ)
α

is one to one.
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As an (important) example of associated bundle consider the adjoint
action of G on itself:

Ad : G×G −→ G
(g, h) 7→ Adg(h) := ghg−1

then, following the prescription above, one can construct the fiber bundle
P ×Ad G, usually denoted by Ad(P ), which is not, in general, a principal
bundle.

Remember now that a linear representation of the structure group G
supported on a vector space V induces (in a unique way) a left action of G
on V , hence we have that every linear representation of G gives rise to a
(vector) bundle associated to the principal bundle P (M,G).

A fundamental example of vector bundle associated to a principal bundle
via a linear representation of the gauge group G is constructed by considering
the adjoint representation of G onto its Lie algebra g, i.e.

ad : G −→ Aut(g)
g 7→ ad g := (Adg)∗

where (Ad g)∗ is the push forward of the inner automorphism of G given by
Adg.

The vector bundle P ×ad g is usually denoted by ad(P ) and plays a fun-
damental role in the applications to gauge theories.

There is a very useful correspondence between certain maps on P and the
sections of an associated bundle: denote with EqvG(P, F ) the space of the
equivariant maps from P to F , i.e.

EqvG(P, F ) := {f : P → F | f(p.g) = λ(g−1, f(p)),∀g ∈ G},

then a function f ∈ EqvG(P, F ) induces a section σf ∈ Γ(P ×λ F ) defined
by

σf (π(p)) := [p, f(p)]λ.

One can easily show that the correspondence

EqvG(P, F ) −→ Γ(P ×λ F )
f 7→ σf

is one to one, in other words there is a bijection between G-equivariant maps
of a principal bundle and (global) sections of every associated vector bundle.
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1.5 Gauge transformations in a principal bun-

dle

The most connatural transformations with the structure of a principal bun-
dle are the gauge transformations, to define them it is necessary to start
introducing the concept of automorphism of a principal bundle.

Def. 1.5.1 An automorphism of P (M,G) is a G-equivariant diffeomorphism
Φ : P → P , i.e. Φ(p.g) = Φ(p).g ∀ p ∈ P , ∀g ∈ G.

The automorphisms of a principal bundle form a group w.r.t. functional
composition, this group is indicated by Aut(P ).

Every Φ ∈ Aut(P ) induces in a unique way a diffeomorphism Ψ : M →M
of the base space by:

Ψ(π(p)) := π(Φ(p)) ∀p ∈ P (1.1)

well defined because π is a surjection. The map:

[ : Aut(P ) −→ Diff(M)
Φ 7→ [(Φ) = Ψ

is a group homomorphism.

Def. 1.5.2 The gauge transformations of P (M,G) are the vertical auto-
morphisms of P , i.e. those Φ ∈ Aut(P ) that induce the identity diffeomor-
phism on M .

Directly from the definition it follows that the set of the gauge transfor-
mations of P (M,G) is precisely Ker([), hence it is a normal subgroup of
Aut(P ). Such a group is usually denoted by Gau(P ) or by G and for trivial
bundles it can be shown to agree with the space of smooth functions from
M to G:

G ' C∞(M,G) P trivial.

Geometrically the gauge transformations are often described by saying
that they leave untouched the point on the base space and move the elements
of the fiber over that point.
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1.6 Connections in a principal bundle

The tangent bundle T (P ) of the total space P of a principal fiber bundle
always possess, in a natural way, a sub-bundle indicated with Ver(P ) and
called vertical sub-bundle, whose fiber in the generic point p ∈ P is:

VpP := Tp(Pπ(p))

i.e. the subspace of TpP given by the tangent vectors to the elements of the
fiber to which p belongs.

However a principal bundle doesn’t possess in a natural way a sub-bundle
which is supplementary to the vertical one. The presence of such a sub-bundle
would be very useful, because in this situation T (P ) would be decomposed
into a direct sum of sub-bundles.

A principal connection is exactly the instrument which generates this
decomposition, as one can immediately see from its formal definition.

Def. 1.6.1 A principal connection Γ on P (M,G) is a smooth G-equivariant
assignment of a sub-bundle Hor(P ) of T (P ) supplementary to V er(P ), i.e.
this assignment satisfies:

1) T (P ) ' V er(P )⊕Hor(P );

2) Hp.gP = (Rg)∗HpP ∀p ∈ P, ∀g ∈ G.
where HpP is the fiber of Hor(P ) to which p belongs and (Rg)∗ is the push-
forward of Rg.

Hor(P ) is called the horizontal sub-bundle of P (M,G).

The request 2) is introduced to have compatibility between the vertical vs.
orthogonal decomposition of T (P ) and the right action of G on P .

Under the topological assumption of paracompactness for the manifolds
involved (as assumed since the beginning) one can prove that every prin-
cipal bundle admits a principal connection.

Since the connections considered in the sequel will always be principal,
this adjective will be omitted.

Thanks to the presence of a connection one can define the vertical and
horizontal vector fields and 1-forms on P :

Def. 1.6.2 Let P (M,G) be a principal bundle with a fixed connection Γ. A
vector field X on P is said to be vertical (resp. horizontal) if Xp ∈ VpP (resp.
Xp ∈ HpP ), ∀p ∈ P .

Analogously a 1-form on P is said vertical (resp. horizontal) if it takes
identically zero values when it is calculated on the horizontal (resp. vertical)
vector fields of P .
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From the splitting induced by a fixed principal connection, it follows that
every vector field X on P can be decomposed in a unique way as the orthog-
onal sum of its vertical component Xv and its horizontal component
Xh.

The concept of connection as defined above is important to understand
the geometrical consequences induced on a principal bundle by its presence,
but, as will be discussed in the last section of this chapter, in the applications
to gauge theories it is more useful to work with a 1-form closely related to
the connection and for this reason called connection 1-form.

To introduce the connections 1-form it is necessary to define the funda-
mental vector fields on P .

Def. 1.6.3 For every vector field Y on G, the vector field Ỹ on P defined
by:

Ỹp := (Rp)∗Y

is called the fundamental vector field associated to Y , which, by converse, is
called the generator of Ỹ .

The fundamental vector fields are easily seen to be vertical vector fields
on P , moreover the next theorem holds.

Theorem 1.6.1 The following map between g, the Lie algebra of G, and the
space of the vertical vector field on P ,

g → Ver(P)

Y 7→ Ỹ

is a bijection.

Indicated with Λ(P ; g) the set of all the g-valued 1-forms on P the defi-
nition of a connection 1-form can be stated as below.

Def. 1.6.4 A g-valued 1-form A ∈ Λ(P ; g) which has these properties:

a) A(Ỹ ) = Y ∀Y ∈ g ;

b) (Rg)
∗A = Adg−1A ∀g ∈ G .

is called a connection 1-form.

The request a) means that A reproduces the generators of the fundamental
vector fields, while b) express the equivariance of A.

The correlation between the connections on a principal bundle and the
connection 1-forms is contained in the following theorem.
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Theorem 1.6.2 There is a bijection between the set of the connections on
P and the set of the connection 1-forms on P .

Thanks to the bijection expressed in the above theorem, it is common to
call simply connections the connection 1-forms, in the sequel this convention
will be adopted.

The set of all connections A has the structure of an affine manifold and
the typical symbol used to indicate it is A.

The local expressions of a connection A are obtained by taking the pull-
back of A w.r.t. the local sections σα of P (M,G). This operation gives rise
to g-valued 1-forms locally defined on M :

Aα := σα
∗A ∈ Λ(Uα; g)

for every choice of gauge (Uα, ψα), or of a local section σα.
To understand the behavior of Aα under a change of gauge it is necessary

to introduce a natural g-valued 1-form on the gauge group G:

Def. 1.6.5 The Maurer-Cartan 1-form Θ ∈ Λ(G; g) is defined by:

Θ(X) := (Lg−1)∗(X) g ∈ G, X ∈ TgG

where Lg−1 is the left translation in G by the element g−1.

By taking the pull-back of Θ w.r.t. the transition functions gαβ of P (M,G)
one gets g-valued 1-forms locally defined on M , precisely:

Θαβ := gαβ
∗Θ ∈ Λ(Uα ∩ Uβ; g)

for every overlapping couple of local trivialization (Uα, ψα), (Uβ, ψβ).
The next theorem is one of the most important in the applications of the

theory of connections to gauge theories.

Theorem 1.6.3 The transformation law of the local 1-forms Aα on the in-
tersection Uα ∩ Uβ is:

Aβ = Adg−1
αβ
Aα + Θαβ. (1.2)

By converse, if the family {Aα} ⊂ Λ(Uα; g) satisfies(1.2) then it exists one
and only one connection A which has Aα as local expressions, i.e.

Aα = σα
∗A.
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It is worth noting that (1.2) is an affine transformation, so that Aα
doesn’t define a tensorial quantity.

The (left) action of the group of the gauge transformations G of a fixed
principal bundle on the affine manifold of the connections A (on the same
principal bundle) is defined by:

G × A → A
(Φ, A) 7→ Φ∗A := A′

where: Φ∗A(X) := A(Φ∗X), for every vector field X on P .

Def. 1.6.6 A′ is called the gauge-transformed connection of the connec-
tion A. Moreover A and A′ are said to be gauge-equivalent connections.

The gauge-equivalence of connections is really an equivalence relation in A
and the space of gauge-equivalent connections is indicated by A/G.

Let’s now introduce the fundamental concept of curvature of a connection.

Def. 1.6.7 Let
h : T (P ) −→ Hor(P )

X 7→ h(X) := Xh

be the projector operator on the subspace of horizontal vector fields on P , then
the exterior covariant exterior derivative of a p-form ω is the (p + 1)-
form given by Dω := dω ◦ h, i.e.

Dω(X1, . . . , Xp+1) := dω(Xh
1 , . . . , X

h
p+1),

being d the exterior differential and X1, . . . , Xp+1 any set of vector fields on
P .

In particular, the exterior covariant differential of a connection A is the 2-
form F ∈ Λ2(P, g), called curvature of the connection A. It can be
proved that the curvature F of a connection A can be pulled down to M
obtaining a 2-form, also indicated with F , with values in the vector bundle
ad(P ): F ∈ Λ2(M,ad(P )).

The important relation between a connection and its curvature is the
contained in the Maurer-Cartan structural relation:

F (X, Y ) = dA(X, Y ) + [A(X), A(Y )]

for any couple of vector fields X, Y on P . The bracket is obviously taken in
g, the Lie algebra of G.

Finally, the exterior differential covariant differential of the curvature F
of a connection is always zero by means of the Bianchi identity:

DF = 0.
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1.6.1 A/G, gauge fixing and Gribov ambiguity

Fixed a principal bundle P (M,G), the space A of smooth connections on
P is an infinite-dimensional affine manifold with underlying vector space
Λ1(M,ad(P )), in fact, fixed a reference connection A0, then

A ' {A0 + π∗A | A ∈ Λ1(M,ad(P ))}.

The space G of smooth gauge transformations instead is a Schwartz-Lie
group, i.e. a Lie group modelled on a Schwartz space, whose Lie algebra
consists of the compactly supported sections of the bundle ad(P ).

When we give to the orbit space A/G the quotient topology, it becomes
a Hausdorff topological space, but since, in general, the action of G on A is
not free, A/G fails to be a manifold.

Let us consider now the infinite-dimensional principal bundle A(A/G,G)
with natural projection p : A → G. The choice of a gauge in this bundle
amounts to the choice of a section σ : A/G → A, but this is equivalent to
fix a ‘preferred’ connection (or gauge potential, see next section for details)
A ∈ A in each gauge-equivalence class [A] ∈ A/G, this is the reason why this
choice is called a gauge fixing.

The procedure of gauge fixing is essential in certain quantization proce-
dures, such as the Faddeev-Popov algorithm in the context of the Feynman
quantization of gauge theories.

Unfortunately, there is a big problem with this procedure, in fact Gribov
has shown that the bundle A(A/G,G) doesn’t possess global sections for
almost every physical relevant case, this lack of existence of global gauge
fixing is commonly called the Gribov ambiguity.

1.7 Gauge theories

The principal bundles provide a natural mathematical setting for gauge the-
ories, the interested reader can find a wide discussion of this in [65].

A gauge theory can be defined as a field theory whose configuration space
is A/G, i.e. whose states are parameterized by gauge-equivalence classes of
connections on a principal fiber bundle, i.e. by points of A/G.

The physical meaning of the objects which compose a principal bundle is
the following:

• M can represent a Cauchy hypersurface embedded in the spacetime of
the theory or the spacetime itself; the first choice corresponds to the
canonical formulation, while the second choice corresponds to the
covariant formulation of the gauge theory;
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• G is the group of the internal symmetries of the theory;

• P is a super-imposed structure, an auxiliary space containing the fibers
over the points of M (copies of G).

In 1950 Ehresman developed in [34] the theory of connections in a fiber
bundle with gauge group SU(2), in 1954 Yang and Mills defined in [98] the
first non-Abelian gauge theory with gauge group SU(2) to describe nuclear
interaction (suddenly seen to be incomplete), without knowing the work of
Ehresman. The deep relation between gauge theories and the theory of con-
nections on principal bundles has not been discovered until the early seven-
ties, for this reason both physicists and mathematicians have developed their
own language and symbology. It’s then worthwhile to link the mathematical
objects of principal bundle to their corresponding physical entities of gauge
theories:

• a principal connection ω on P is called a gauge connection;

• a global section σ ∈ Γ(P ) is called a (choice of a) global gauge, or
simply a gauge;

• a gauge potential A on M in the gauge σ is the pull back connection
A := σ∗(ω) ∈ Λ1(M, g) (remember that such an object exists if and only
if the principal bundle is trivial);

• analogously, a local section σα ∈ Γ(Uα, P ) of P is called a (choice of
a) local gauge, the pull back connection Aα := σα

∗ω ∈ Λ1(Uα, g) is
called a gauge potential in the local gauge σα (such objects always
exist!);

• the curvature 2-form Ω := Dω ∈ Λ2(P, g) of the gauge connection ω
is called the gauge field strength on P , analogously the associated
2-form F ∈ Λ2(M,ad(P )) is called the gauge field strength on M
corresponding to the given gauge connection. The gauge field strength
is always globally defined even though, in general, there is no corre-
sponding globally defined gauge potential on M .

The gauge potentials and field strengths acquire physical significance only
after one postulates the equations to be satisfied by them. There is (at the
time of writing) no natural mathematical method for assigning field equations
to gauge fields, hence these equations must be postulated in order to fit the
experimental results involving the fields under analysis.

The prototype of all gauge theories is the Maxwell theory of electromag-
netism: it is well known that the classical electromagnetic phenomena can be
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described in terms of the so called tetravector electromagnetic poten-
tial Aµ, µ = 0, . . . , 3, which, geometrically speaking, defines a connection on
a trivial principal bundle with gauge group U(1) over the Minkowski space,
i.e. R4 endowed with the metric ηµν = diag(−1, 1, 1, 1).

The field strength of the Maxwell field is then encoded in the cur-
vature F = Fµνdx

µdxν of the connection Aµ, which is the 2-form given by
Fµν = (DA)µν = ∂µAν − ∂νAµ. Note that the term containing the bracket is
zero since u(1), the Lie algebra of U(1), is Abelian.

The Maxwell equations can be written in the so-called covariant (or geo-
metric) form, i.e. : {

dF = 0 Bianchi identity
?(d ? F ) = J

where J is the current, ?F is called the dual of F and ? is the Hodge star
operator.

If (M, g) is a n-dimensional oriented pseudo-Riemannian manifold, the
Hodge star operator is the unique linear operator ? : Λp(M) → Λn−p(M)
such that ω ∧ ?ω̃ = g(ω, ω̃)dv, for all ω, ω̃ ∈ Λp(M), where g(ω, ω̃) is the
inner product of the two p-forms and dv :=

√
|det(gµν)|dx1∧ . . .∧dxn, is the

volume form.
The crucial fact to stress is now that if Aµ satisfies Maxwell equations then

even any other potential which differs from Aµ by a gauge transformation
satisfies the same equations.

Hence the physically distinct electromagnetic configurations are described
by gauge-equivalence classes of connections on a principal bundle with struc-
ture group U(1), this makes the electromagnetism an Abelian gauge theory.

In their work of 1954, Yang and Mills constructed non-Abelian gauge
theories by replacing U(1) with the compact semisimple non-Abelian Lie
group SU(2). By generalization, every gauge theory constructed as a theory
of connections on a principal bundle with structure group U(N) or SU(N)
is called a Yang-Mills theory. As in the electromagnetic case, the gauge
potentials of the Yang-Mills theories are connections, whose local expressions
have components given by Aµ : U ⊂ M → g, µ = 0, . . . , dim(M) (the local
index α has been suppressed from A and U to get a clearer notation).

The fields equations which generalize the Maxwell equations to the non-
Abelian case are the Yang-Mills equations:{

DF = 0
?(D ? F ) = J.

The most important difference between the Abelian and non-Abelian case
([13], [14]) is that the curvature F of A has a non-linear dependence on
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the gauge potential itself, in fact the Maurer-Cartan structural equation in
local coordinates (obtained by the commutator of the covariant derivative
Dµ = ∂µ + Aµ, see [53]) is:

Fµν = [Dµ, Dν ] = ∂µAν − ∂νAµ + [Aµ, Aν ]

where the commutator [Aµ, Aν ] is taken in g and so it doesn’t vanish because
of the non-Abelian nature of the gauge group.

This extra term in the curvature has a dramatic consequence on the
Yang-Mills equations: due to this term these equations, unlike the Maxwell
equations, are non-linear. By a physical point of view this non-linearity
corresponds to the presence of self-interactions in the physics of non-Abelian
gauge theories. This fact is, for example, responsible of the fact that photons
(the quanta of the electromagnetic field) don’t carry electric charge (the
sources of the electromagnetic field), while the gluons (the quanta of the
strong nuclear field), carry color (the sources of this field).

An important feature of gauge theories to stress is that there are quantum-
like experimental evidences, as the Aharonov-Bohm effect ([21] pages 130-
140), which show that there can be physically observable effects of the gauge
fields even where the curvature of the connection is zero, thus the interpre-
tation of the curvature of a connection as the strength of the gauge field is
physically consistent only locally and it can’t represent the global configura-
tion of the gauge field. This is a consequence of the fact that the curvature of
a connections is not a gauge-invariant quantity. For this reason we are forced
to parameterize the configurations of the gauge fields with gauge-equivalence
classes of connections and not with their curvatures!

Finally I’d like to remember that the gauge theories are exactly the theo-
ries contemplated in the standard model of the nuclear and electromagnetic
interactions.

In this model the particles interact by exchanging quanta of the gauge
fields representing the force which makes them interact.

Precisely:

• the quantum chromodynamics (QCD), which describes the strong nu-
clear interactions, is a quantized Yang-Mills theory with gauge group
SU(3);

• the electromagnetic and the weak interactions are unified in the so
called electro-weak theory, a quantized Yang-Mills theory with gauge
group SU(2) × U(1). The decoupling between the weak interactions
and the electromagnetic ones is described by a mechanism called spon-
taneous symmetry breaking.
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The only other force in nature, the gravity, is described by Einstein’s
general relativity, to which is dedicated the following section.

1.8 Ashtekar’s formulation of general relativ-

ity

Einstein’s general relativity is the physical theory which describes how the
distribution of matter and energy curves the geometry of the spacetime in
which it is immersed. The way it happens is expressed by the Einstein
equations.

This equations relate the stress-energy tensor, a symmetric (0, 2) ten-
sor (Tµν in local coordinates) which express the flow of energy and momentum
through a given point of spacetime, with the curvature of the Levi-Civita
connection ∇ associated to the metric gµν of the spacetime manifold.

This curvature is expressed by means of the Riemann tensor, defined
by: R(X, Y )Z := (∇X∇Y −∇Y∇X −∇[X,Y ])Z, or, in local coordinates:

Rµ
νλγ = ∂νΓ

µ
λγ − ∂λΓ

µ
νγ + ΓσλγΓ

µ
νσ − ΓσνγΓ

µ
λσ

where the Γ’s are the Christoffel symbols, related to the the partial derivatives
of the coordinate of the metric in this way:

Γµνλ =
1

2
gµσ(∂νgλσ + ∂λgνσ − ∂νgνλ).

The trace of this tensor gives rise to the Ricci tensor: Rµν = Rσ
µσν and the

contraction of the Ricci tensor gives the scalar curvature R = Rµ
µ.

This objects appear, with the metric itself, in the Einstein equations:

Gµν = Rµν −
1

2
Rgµν = 8πTµν

in units where Newton’s gravitational constant is fixed to be 1.
Gµν are the components of a symmetric (0, 2) tensor named Einstein’s

tensor.
Due to the symmetries of the Ricci tensor, the Einstein equations are

10 second order hyperbolic non-linear equations in the components
of the metric tensor for every 4-dimensional spacetime.

If one imposes the Cauchy problem on these equations suddenly under-
stand that not all of them are evolution equations, in fact 4 equations are
constraints and the remaining 6 equations are evolution equations.

The reason why this happens is better understood if one consider the
variational formulation of general relativity.
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For the sake of simplicity, the next discussion of the actions for gravity
will be focused only in the vacuum, i.e. Tµν = 0.

The first action for gravity is the Einstein-Hilbert action, i.e. a functional
S on the space Lor(M) of all Lorentzian metrics on a 4-D spacetime M given
by:

S(g) :=

∫
M

Rdv

where dv is the volume form induced by g, which can be written, in local
coordinates, as dv =

√
|det(g)|dx0 ∧ . . . ∧ dx3.

The variation of S is minimized precisely when the Einstein vacuum equa-
tions hold.

The important thing to note is that this action is invariant under the
action of the orientation preserving diffeomorphisms φ of M , i.e.:∫

M

(φ∗R)φ∗dv =

∫
M

Rdv.

In general, the presence of such local symmetries implies that the Euler-
Lagrange equations variationally deduced from the action (in this case the
vacuum Einstein equations) are not independent and the theory, both in
the Lagrangian and in the Hamiltonian formulation, is submitted to con-
straints.

Let’s see what is the form of these constraints in the Hamiltonian formu-
lation of general relativity, which is encoded in the ADM (Arnowitt-Deser-
Misner) formulism.

In the ADM formulation one assumes that the spacetime M is diffeo-
morphic to the cartesian product R × Σ, where Σ is a 3-D spacelike slice
embedded in M . This assumption is called a splitting of the spacetime M .

Roughly speaking, in the ADM formalism, general relativity becomes a
theory which says how the curvature of Σ evolves in time.

To make this assertion rigorous one has to define the so-called extrinsic
curvature K of Σ, which is the (0, 2) symmetric tensor given by

K(u, v) := −g(∇uv, n)

where u, v are tangent vectors on Σ, ∇u is the covariant derivative defined
by g, n is a unit time-like vector normal to Σ, i.e.:

g(n, n) = −1, g(n, v) = 0 ∀v ∈ TpΣ.

K says how much Σ is curved in the way it sits in M , since it measures how
much the unit normal vector n rotates in the direction v when it is parallel
translated in the direction u.
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In this formalism one can derive the so-called Gauss-Codazzi equations:

G0
0 = −1

2
(3Rm

ijk +KjkK
m
i −KikK

m
j ) = 0

G0
i = 3∇iKjk − 3∇jKik = 0, i = 1, . . . , 3

which says that 4 Einstein’s equations are indeed constraints involving the
extrinsic metric.

The objects which appear with the left suffix 3 are constructed by the
intrinsic metric of Σ, i.e. the restriction of the metric g of M on Σ, usually
written 3g.

By introducing the shift vector field ~N and the lapse function N one
can show that the remaining 6 equations are evolutory equations which says
how Σ evolves in time, in fact they contain second order time derivatives of
the intrinsic curvature 3g of Σ.

The constraints written above are very difficult to handle because they
have a non-polynomial character and they are not closed under Poisson brack-
ets.

The most important consequence of Ashtekar’s formulation of general
relativity [4] at a classical level is the simplification of the these constraints,
which become polynomial, closed under Poisson brackets and functionally
simpler. Moreover, at a quantum level, we can give a description of grav-
ity in which these constraints are (at a kinematical level) solved, this is the
celebrated loop representation initiated by Rovelli and Smolin [81]. The
framework of loop representation of quantum gravity, or briefly ‘loop quan-
tum gravity’ will be described in wide detail in chapter 4.

Ashtekar’s work is deeply related to the Palatini formalism, in which
one consider a parallelizable oriented 4-D manifold M , i.e. it assumes that
there exists a vector bundle isomorphism

e : τ ≡M × R4 → TM

inducing the identity on M . R4 here is called the internal space and capital
letters I, J, . . . are used to denote its coordinates.

If {ξI}I=0,...,3 is the standard base of sections of τ then the corresponding
base of vector fields on M is {eI ≡ e ◦ ξI}I=0,...,3 and eI is locally expressed
as: eI = eαI ∂α.

The Minkowski metric on each fiber defines on τ the so-called internal
metric η.

In general the map e is called a frame and if the basis {eI} is orthonormal
w.r.t. a given Lorentzian metric g on M , i.e. if g(eI , eJ) = ηIJ , then the map
e is called a tetrad or a vierbein for g.
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Conversely, e defines a metric g on M by the formula above.
The inverse map e−1 : TM →M ×R4 has local coordinates eαI satisfying

eαI e
J
α = δJI and is called a cotetrad.
The important thing to stress now is that if M is parallelizable then its

principal frame bundle RM is also trivializable and every frame generates a
trivialization by

T : M ×GL(4) −→ RM
(x,G) 7→ T (x,G) := {GJ

I e
I(x)}.

By considering in particular the sub-bundle M ×SO(3, 1) one can construct
the (first order) Palatini action:

S(e, A) :=

∫
M

eαI e
β
JF

IJ
αβ dv(e)

where e is a vierbein, A is a principal connection on M × SO(3, 1), F is its
curvature and dv(e) is the volume form defined by the Lorentzian metric g
expressed as a function of e, i.e. gαβ = ηIJe

I
αe

J
β .

Thus the Palatini action is a functional of a connection A and a frame
e and it can be shown that varying S, with respect to both A and e, the
equation δS = 0 implies that the metric gαβ satisfies Einstein’s vacuum
equations.

The Palatini formulation of general relativity has the remarkable charac-
teristic to encode this theory in the framework of gauge theories, the price to
pay is that now there are both gauge and diffeomorphism constraints, due to
the invariance of S(e, A) under both gauge transformations and diffeomor-
phisms.

Even though the form of these constraints is much simpler than in the
Einstein-Hilbert approach (since they have a polynomial character), these
constraints are not closed under Poisson brackets and this creates many dif-
ficulties in the canonical quantization of the theory.

Roughly speaking, Ashtekar has discovered that the Palatini action is
built by using too much degrees of freedom than strictly necessary, in fact
only the so-called self-dual part of F contains the geometrical information
which lead to the Einstein equations. The most important consequence of
the substitution of the self-dual part of F in the Palatini action is that the
functional expression of the constraints simplifies and they become closed
under Poisson brackets.

The starting point of Ashtekar’s work is the recognition that, on the
4-dimensional Minkowski space M , the linear endomorphism given by the
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Hodge star operator ∗ :
∧2M →

∧2M defined on the antisymmetric (0, 2)
tensors as:

∗FIJ =
1

2
εKLIJ FKL

doesn’t admit eigenvalues, but if one complexifies the theory by taking TM '
M × C4, the Hodge star operator has eigenvalues ±i and the space

∧2 C4

decomposes into the direct sum of its self-dual and antiself-dual subspaces:

2∧
C4 =

2∧
(C4)+ ⊕

2∧
(C4)−

which are the eigenspaces relatives to the eigenvalues ±i.
The important thing to observe now is that there is an isomorphism∧2 C4 ' so(3, 1) ⊗ C and, thanks to the existence of the double cover

ρ : SL(2,C) → SO0(3, 1), the above splitting of
∧2(C4) into self-dual and

antiself-dual part corresponds to the splitting of so(3, 1)⊗C into direct sum
of sl(2,C) with itself. The situation is clarified in this diagram:∧2 C4 '−−−→

(∧2 C4
)+ ⊕

(∧2 C4
)−

'
y y'

so(3, 1)⊗ C −−−→
'

sl(2,C)⊕ sl(2,C)

Since a Lorentz connection A on M × C4 is just an so(3, 1) ⊗ C-valued 1-
form on M , the self-dual part of this connection, written usually as +A, is a
sl(2,C)-valued 1-form on M .

Thus Ashtekar modifies Palatini’s formalism by introducing:

• the vector bundle Cτ = M × C4;

• the complexified tangent bundle CTM =
∐

x∈M C⊗ TxM ;

• complex frame fields, i.e. vector bundle isomorphisms e : Cτ → CTM ;

and then defines an action, the so-called Ashtekar’s self-dual action for
gravity simply by taking the complexified Palatini action written in terms
of the self-dual connection +A and the complex vierbein e:

S(e, +A) :=

∫
M

eαI e
β
J

+F IJ
αβdv(e)

quite miraculously, by varying S both w.r.t. e and +A, one gets again the
vacuum Einstein equations for the complex valued metric gαβ = ηIJe

I
αe

J
β .

To obtain the usual (real) gravitation one has two following possibilities:
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1. to impose reality conditions on the complex frame fields in terms of
which the metric is expressed;

2. to start from an Euclidean self-dual action, defined by a volume form
dv(e) on R4 induced by the (real) Riemannian metric

gαβ = δIJe
I
αe

J
β

and su(2)-valued self-dual connections +A. By using the fact that
su(2) is the compact real form of sl(2,C), one obtains again the (real)
Einstein’s equations. The relation between the Euclidean formulation
and the Lorentzian formulation is then obtained with a generalized
Wick transform, called coherent state transform, constructed from
Ashtekar and his collaborators in [12].

The Euclidean self-dual action is invariant both under orientation pre-
serving diffeomorphisms and under SU(2)−gauge transformations and, as
will be explained in chapter 4, it constitutes the most important example
of constrained gauge field theory to which the procedure of canonical loop
quantization applies.

We want to conclude this chapter by showing which is the Hamiltonian
formulation of gravity in terms of Ashtekar’s variables and the corresponding,
simplified, form of the constraints.

Since all SU(2) bundles over three-manifolds Σ are trivial, we can fix a
trivialization and regard each connection A as an su(2)-valued one-form on
Σ. If xa are local coordinates on Σ, a, b, . . . = 1, 2, 3 and i, j, . . . = 1, 2, 3
are indices of su(2), the components of the connection are given by A(x) =
A(x)dxa = Aia(x)τidx

a, where (τi)i=1,2,3 is a basis of su(2). The ‘conjugate
momenta’ are non-degenerate vector densities Ea

i of weight +1 with values
in su(2). These momenta, often called densitized triads1, are related to the
frame fields by this formula:

Ea
i =

√
det(qab)e

a
i

where qab is the inverse matrix of the contravariant, positive definite metric
tensor qab = eai e

b
jk
ij, being kij the Cartan-Killing tensor of su(2): k(τi, τj) =

−2Tr(τiτj). In terms of these Riemannian structures, the area of a 2-
dimensional surface S and the volume of a region R of Σ (covered, for sim-
plicity, by a single chart) are given, respectively by:

AS =

∫
S

√
Ea
i E

b
inanb dx

1 ∧ dx2;

1Some authors use to put a tilde sign over E to emphasize that E is a densitized object,
we do not use this convention to have a clearer notation.
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VR :=

∫
R

√
det(Ea

i ) dx1 ∧ dx2 ∧ dx3;

where nA is the normal to the surface S.
In the so-called triad formulation of ADM formalism for general relativ-

ity, the fields (Ea
i , K

i
a) on the slice Σ, where Ki

a is the extrinsic curvature
introduced before, are assumed to be the canonical variables.

Then one jumps into Ashtekar’s formalism by making a canonical trans-
formation to a new pair of canonical variables (Aia, E

a
i ), where Aia := Γia +

βKi
a, being Γia the spin connection of Ea

i , defined by ∂[ae
i
b] = Γi[aeb]. β is a

free factor called Immirzi parameter.
The Poisson bracket between Aia and Ea

i is the one we expect from a
canonical pair:

{Aia(x), Ajb(y)} = {Ea
i (x), Eb

j (y)} = 0, {Aia(x), Eb
j (y)} = δijδ

b
aδ(x, y).

After this canonical transformation Eb
j re-scales of a factor 1

β
and the

constraints of general relativity in terms of the canonical pair (A,E) become

(1) DaE
a
i = 0;

(2) Ea
i F

i
ab = 0;

(3) εijkE
a
i E

b
jF

k
ab + 2

(1 + β2)

β
Ea
i E

b
j (A

i
a − Γia)(A

j
b − Γjb) = 0;

where Da is the covariant derivative relative to the connection Aia, F
i
ab is the

curvature of Aia and εijk is the Levi-Civita density.
(1) is called ‘Gauss constraint’, (2) ‘diffeomorphism constraint’ and

(3) ‘Hamiltonian constraint’. The polynomial nature of the first two con-
straints is clear, while the third is non-polynomial due to the presence of the
Γ’s, unless we choose to fix the Immirzi parameter β to be −ι, the imaginary
unit, then the second term disappears and the Hamiltonian constraint be-
comes polynomial too. This was Ashtekar’s choice of the Immirzi parameter.
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Chapter 2

Group representation theory

The technology of group representation theory will be essential to construct
certain (very important) gauge-invariant states of quantum gravity (the ‘spin
network states’). Moreover the abstract theory of direct integral decomposi-
tion of the Hilbert space of square-integrable functions on a semisimple Lie
group will be used to derive and generalize an important covariant quantiza-
tion procedure (the ‘Barrett-Crane model’) in the last chapter.

Here we are going to introduce, in particular, the Peter-Weyl theorem,
its consequences on the structure of compact groups and the representation
theory of the non-compact group SL(2,C).

2.1 Terminology and basic results

Given a group G, a unitary representation of G is given by a group
homomorphism

ρ : G→ U(V ), g 7→ ρ(g) ≡ ρg

being U(V ) the group of the automorphisms of a Hilbert space V , which is
called the support of ρ. The dimension of V is called the dimension of the
representation and so, if V is not finite dimensional, we talk about infinite
dimensional representations.

Here, unless otherwise stated, we will deal only with topological groups
which are, at least, locally compact and we will consider only continuous
representations w.r.t. the strong topology of the unitary operators on V ,
this means that the map g → ‖ρgv‖ is continuous for every g ∈ G and every
v ∈ V . We do not require the continuity w.r.t the operator norm because
this would be a too restrictive condition in many situations. It is worthwhile
to notice that, since the weak and strong topology coincide on U(V ), one can
equivalently ask only the weak continuity. Moreover the support space of
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the representations will always be a complex (finite or infinite dimensional)
Hilbert space.

Equivalently a unitary representation of G supported on V can be defined
as a left action of G on V :

G× V → V, g 7→ g.v

such that the operator ρg : V → V , ρg(v) := g.v is a unitary operator. From
the properties of an action, one has that ρe = idV (being e the unit of G)
and ρg ◦ ρh = ρgh, for every g, h ∈ G, so that ρg is actually an automorphism
of V and ρg

−1 = ρg−1 .
When V is finite dimensional, with dimension d, it is isomorphic to Cd

and it also has the same (Euclidean) topology, by virtue of the Tychonov
theorem on the equivalence of the inner products of finite dimensional vector
spaces. In that case U(V ) is the group of the unitary matrices of order d and
the representation is called a matrix representation.

Given two representations ρ and ρ′ of G, supported on V and V ′, re-
spectively, an intertwining operator1, or briefly an intertwiner, between
them is a linear operator I : V → V ′ such that, for every g ∈ G, the following
diagram is commutative:

V
I−−−→ V ′

ρg

y yρ′g
V −−−→

I
V ′

i.e. I ◦ ρg = ρ′g ◦ I. In particular, an intertwiner between a representation
and itself is called an invariant of the representation.

If ρ and ρ′ admit an intertwiner I which is also an isometric isomorphism
between V and V ′, then they are said to be equivalent, and one writes
ρ ∼ ρ′. Obviously two equivalent representations have the same dimension.

If one regards the representations ρ and ρ′ as actions of G on V and V ′,
respectively, then it is obvious that the intertwining property traduces on
the G-equivariance, i.e. the linear map I from V to V ′ is an intertwiner if
and only if it satisfies the relation: I(g.v) = g.I(v).

The vector space generated by the intertwiners between ρ and ρ′ is indi-
cated with Int(V, V ′) and its dimension is called the multiplicity or inter-
twining index of the representation ρ supported on V into the representa-
tion ρ′ supported on V ′ .

1This name is due to G.W.Mackey.
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A representation ρ supported on V is called irreducible if there are no
proper and non-trivial subspaces E ⊂ V invariant under ρ, i.e.

ρgv ∈ E ∀g ∈ G, ∀v ∈ E

otherwise it is called reducible.
To simplify the terminology in the sequel we will call an irreducible rep-

resentation simply irrep.
Standard results about irreps are the following.

Theorem 2.1.1 The following facts hold:

• Schur’s lemma: if ρ and ρ′ are irreps of G then an intertwiner between
them can be only the 0 operator or an isomorphism (in this case ρ ∼ ρ′);
moreover the only invariant operators of an irrep are the multiples of
the identity: λI, λ ∈ C;

• all the irreps of an Abelian group are 1-dimensional;

• let ρ be a unitary representation of a compact group G with support
on the Hilbert space V . If ρ is irreducible then V is finite dimensional.

The theorem implies that every unitary irrep of a compact group can be
implemented as a matrix representation.

The set of the equivalence classes of unitary irreps of a group G plays a
fundamental role in the representation theory, it’s called the dual object of
G and it’s denoted with Ĝ. This space can be a group (as it happens for
Abelian group) or, in general, simply a set. To denote its elements we use
these notations:

• λ ∈ Ĝ: equivalence class of unitary irreps of G;

• ρλ ∈ λ: arbitrary representative of λ.

2.2 Schur’s orthogonality relations

Peter-Weyl’s theory of compact groups begins with the celebrated Schur’s
orthogonality relations between the matrix element functions and the char-
acters of irreps, which are defined below.
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Def. 2.2.1 Let ρ be a unitary matrix representation of dimension d of the
group G. The matrix element functions of ρ are the complex-valued
functions on G defined in this way:

ρij : G → C
g 7→ ρij(g) := (ρgej | ei)

being ( | ) the Euclidean inner product and (ei), i = 1, . . . , d, the canonical
basis of Cd.

The d2 complex numbers ρij(g) are simply the matrix elements of position
(i, j) of the unitary matrix ρg, for every g ∈ G.

The characters of ρ are obtained simply by saturating the matrix element
functions on the same index.

Def. 2.2.2 The character of the representation ρ is the complex-valued
function on G given by:

χρ : G → C
g 7→ χρ(g) :=

∑d
i=1 ρii(g).

It’s immediate to notice that, for every g ∈ G,

χρ(g) = Tr(ρg)

where Tr(ρg) denotes the trace of the unitary matrix ρg, and so, thanks to
the well known cyclic property of the trace, the characters are constant on
the conjugation classes of G:

χρ(hgh
−1) = χρ(g) ∀h ∈ G.

In general, a complex-valued function which is constant on the conjugation
classes of G is called a class (or) central function.

The definition of a character of a representation ofGmust not be confused
with that of a character of G, this last one is a non-zero homomorphism
from G to the group U(1). The two definitions coincide if G is an Abelian
group, since the irreps of an Abelian group are 1-dimensional and so the trace
reduces to the identity operator.

The properties of the matrix element functions and the characters of the
representations of the compact groups are very important, the first to find out
these properties was Schur, in the context of the finite groups, then Burnside
extended them dropping out the finiteness condition.
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Before stating these properties it is worth remembering that on every
locally compact group G there exists a positive regular Borel measure2 dg,
called the Haar measure, which is invariant under left translations, i.e.
dg(xB) = dg(B), for every x ∈ G and every Borel subset B of G.

For some groups the Haar measure can be invariant under both left and
right translation and under the inversion, these ones are called unimodular
groups. It can be shown that all compact groups and all Abelian groups are
unimodular, but there are many other groups which are neither compact nor
Abelian (for example SL(2,C)) that share this property.

The Haar measure is unique up to multiplication by a positive real con-
stant c ∈ R+ and it is finite if and only if G is compact. In this case one
normalizes the Haar measure by fixing the multiplicative constant to be the
inverse of the volume of the entire G, i.e. c ≡ 1

dg(G)
.

When G is finite dg is simply the counting measure of G, which assigns
the number 1 to every element of G, in this case the normalization is c = 1

|G| ,

| G |:= card(G), so that for a finite group the normalized Haar integrations
are just means.

Thanks to the Riesz-Markov representation theorem, to dg is uniquely
associated a positive linear functional I on Cc(G) (continuous functions on
G with compact support) called the Haar integral:

I(ψ) =

∫
G

ψ(g)dg ψ ∈ Cc(G), g ∈ G.

The space L2(G) ≡ L2(G, dg) is the Hilbert space of the ‘a.e.’-equivalence
classes of square-Haar integrable functions ψ : G → C,

∫
G
| ψ |2 dg < ∞

with inner product and square norm given by:

(ψ | φ) :=

∫
G

ψ(g)φ(g)dg, ‖ψ‖2 :=

∫
G

|ψ(g)|2dg,

or

(ψ | φ) :=
1

| G |
∑
g∈G

ψ(g)φ(g)

for finite groups.
Let now fix our attention on the compact groups.

2Remember that a positive Borel measure µ : Bor(G) → [0,+∞] on a topological
group G is a measure defined on the Borel σ-algebra Bor(G) of G, i.e. the smallest σ-
algebra generated by the open subsets of G, which assigns finite values to every compact
subset of G, moreover a Borel measure is called regular if for every Borel subset B of
G one has µ(B) = supK⊂B µ(K) = infB⊂O µ(O), where K and O are any compact and
open, resp., subsets of G.
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The matrix element functions and the characters of the unitary irreps of
a compact group G belong to L2(G) since they are continuous and bounded
functions, being the modulus of any element of a unitary matrix a finite real
number. But we can say more!

Theorem 2.2.1 (Schur’s orthogonality relations) Given two unitary ir-
reps ρ and ρ′ of the compact group G, their matrix element functions ρij, ρ

′
kl,

respectively, satisfy:

(ρij | ρ′kl) =

{
1
d
δikδjl if ρ ∼ ρ′

0 otherwise

being d the (same) dimension of ρ and ρ′ in case of equivalence. As a conse-
quence their characters χρ and χρ′, respectively, satisfy these orthonormal-
ity relations:

(χρ | χρ′) =

{
1 if ρ ∼ ρ′

0 otherwise

The orthonormality of the characters is a trivial consequence of the orthog-
onality of the matrix element functions, in fact

(χρ | χρ′) = (
d∑
i=1

ρii |
d∑

k=1

ρ′kk) =
d∑
i=1

(ρii |
d∑

k=1

ρ′kk) =

=
d∑

k=1

(ρ11 | ρ′kk) + · · ·+
d∑

k=1

(ρdd | ρ′kk) =
1

d
(δ11δ11 + · · ·+ δddδdd) = 1

if ρ ∼ ρ′ and the inner product is obviously zero otherwise.

2.3 Peter-Weyl’s theorem

From the results of the previous section we see that the matrix element func-
tions can be normalized by multiplying them by the square root of the di-
mension dλ of the representations ρλ ∈ Ĝ. What we obtain is an orthonormal
system of vectors in L2(G), the most important theorem of the representa-
tion theory of compact groups, the Peter-Weyl theorem (see [73] for the very
original article) states that this system is complete.

Theorem 2.3.1 (F.Peter-H.Weyl) Let G be a compact group, then the
family

{
√
dλ ρ

λ
ij | λ ∈ Ĝ ; i, j = 1, . . . , dλ}

is a complete orthonormal system (briefly an orthonormal basis) for L2(G),
called the Peter-Weyl orthonormal basis.
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Since the characters of the representations of G born from the matrix
element functions, the Peter-Weyl theorem has consequences even on them,
as stated in the next theorem.

Theorem 2.3.2 Let G be a compact group, then:

• the family {χρλ | λ ∈ Ĝ} is an orthonormal basis for the subspace
L2
class(G) ⊂ L2(G) given by the class functions of L2(G);

• the dimension of ρ equals the value of χρ in e, the unit element of G:
χρ(e) = d(ρ);

• a finite dimensional unitary representation ρ of G is irreducible if and
only if (χρ | χρ) = 1, i.e. iff the norm of its character is 1;

• two unitary irreps ρ and ρ′ of G are equivalent if and only if their
characters coincide: ρ ∼ ρ′ ⇔ χρ = χρ′.

From the general theory of Hilbert spaces we know that, given an or-
thonormal basis of a Hilbert space, one can always construct a Fourier series
over it, let us see how to do so with the Peter-Weyl (PW from now on)
orthonormal basis.

Theorem 2.3.3 Let G be a compact group. For every f ∈ L2(G) the fol-
lowing expansion holds:

f =
∑
λ∈Ĝ

dλ

dλ∑
i,j=1

f̂λij ρ
λ
ij

where f̂λij are the Fourier coefficients of f w.r.t. the PW orthonormal basis,
i.e.

f̂λij := (f | ρλij) =

∫
G

f(g)ρλij(g)dg .

The convergence of the Fourier series is meant in the L2(G)-norm, i.e. :
limλ∈Ĝ ‖f −

∑
λ dλ

∑dλ
i,j=1 f̂

λ
ij ρ

λ
ij‖2 = 0.

The norm of f ∈ L2(G) is given by the Parseval-Plancherel identity:

‖f‖2
2 =

∑
λ∈Ĝ

dλ∑
i,j=1

| f̂λij |2

notice that this formula relates a series with an integral, thus enabling to
compute one by the knowledge of the other!
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An analogous result holds for the functions belonging to L2
class(G), but

now the Fourier series is over the orthonormal basis of characters of the
unitary irreps of G: for every f ∈ L2

class(G) one has that

f =
∑
λ∈Ĝ

f̂λχρλ

where f̂λ = (f | χρλ) =
∫
G
f(g)χρλ(g)dg.

Let’s end the list of the consequences of the Peter-Weyl theorem by show-
ing how the Fourier transform can be extended to any compact topological
group by using the PW orthonormal basis.

First of all remember that ‖ ‖HS is the Hilbert-Schmidt norm, defined
on the space of the matrices A ∈M(n,C) by3:

‖A‖2
HS =

n∑
i,j=1

| aij |2= Tr(AA†)

being A† ≡ tĀ.
With the dual Ĝ of the compact group G let’s build the Hilbert space

L2(Ĝ) given by the operator-valued functions ψ : Ĝ → ∪∞n=1M(n,C)
satisfying:

• ψ(λ) ∈M(dλ,C), ∀λ ∈ Ĝ;

•
∑

λ∈Ĝ dλ‖ψ(λ)‖2
HS <∞

and endowed with the inner product

(ψ | φ) =
∑
λ∈Ĝ

dλ Tr(ψ(λ)φ(λ)†) .

The extension of the Fourier transform to the compact groups is possible
by means of the following theorem.

Theorem 2.3.4 (Plancherel theorem) The operator:

F : L2(G) → L2(Ĝ)

f 7→ f̂

3To prove the equality
∑n
i,j=1 | aij |2= Tr(AA†) remember that the matrix element

cik of the product matrix C = AB it’s cik =
∑n
j=1 aijbjk, hence Tr(C) =

∑n
i=1 cii =∑n

i=1

∑n
j=1 aijbji, thus, if B = A†, bji = aij (transposition and conjugation) and so

Tr(AA†) =
∑n
i,j=1 |aij |2.
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where f̂(λ) ∈ M(dλ,C) is the matrix whose entries are the Fourier coeffi-
cients w.r.t. the PW basis, i.e.

f̂(λ) :=

∫
G

f(g)ρλg−1dg =

(
f̂λij :=

∫
G

f(g)ρλij(g)dg

)
i,j=1,...,dλ

is a surjective isometry called Fourier-Plancherel transform.

In terms of the Fourier-Plancherel transform the expansion of an element
f ∈ L2(G) and the Parseval-Plancherel identity can be re-written (by direct
substitution) as follows:

f(g) =
∑
λ∈Ĝ

dλTr(f̂(λ)ρλg )

and
‖f‖2

2 =
∑
λ∈Ĝ

dλ‖f̂(λ)‖2
HS.

When applied to the torus the Peter-Weyl theory gives back the Fourier
theory of harmonic oscillations, in fact if G = U(1) then Ĝ = Z, ρg−1 =
ρg = e−iθ and the Fourier-Plancherel transform reduces to the ‘classical’
Fourier transform (see [88] for details). This is the reason why the Peter-
Weyl theory is considered the natural generalization of the Fourier theory
to compact non-Abelian groups, where the unitary irreps of compact
groups generalize the role that the harmonic oscillations eiθ have
in the Fourier expansion of the plane waves.

2.4 Other formulations of the Peter-Weyl the-

orem

The exposition of the Peter-Weyl theory given in the previous section has
the advantage to put in a evidence the correlation between this theory and
the Fourier one. However, for the purposes of quantum gravity, precisely for
the construction of spin networks states, a more abstract (but equivalent)
formulation of the Peter-Weyl theory is best suited.

The alternative formulation starts with the simple consideration that
among all representations of a compact group G there are two very natu-
ral ones: the right and left regular representations.

These representations are natural in the sense that their support is the
Hilbert space L2(G) and they act simply as a translation in G.
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Rigorously, the right regular representation of G is defined by

R : G −→ U(L2(G))
g 7→ Rg,

(Rg f)(h) := f(hg),∀f ∈ L2(G).
Analogously, the left regular representation of G is defined by

L : G −→ U(L2(G))
g 7→ Lg,

(Lg f)(h) := f(g−1h),∀f ∈ L2(G).
The representations R and L are unitary since the Haar measure of a

compact group is invariant under right and left translations and under inver-
sion.

The importance of the left and right regular representations is that they
can be used to decompose the Hilbert space L2(G) into a direct sum of
finite-dimensional subspaces which are invariant under the representations
themselves.

Before showing how this decomposition can be realized let’s remember
the concept of direct sum and tensor product of representations.

A Hilbert space V is the direct sum of a collection {Vi} of its subspaces
if they are mutually orthogonal (i.e. Vi ⊥ Vj, whenever i 6= j) and if their

span is dense in V (i.e. span(
⋃
i Vi) = V ). If this is the case then one writes

V =
⊕

i Vi.
If every Vi is ρ-invariant under the representation ρ of G, i.e. v ∈ Vi

implies ρg(v) ∈ Vi for every g ∈ G, then ρ is said to be the direct sum of
the sub-representations

ρ(i) : G −→ U(Vi)

g 7→ ρ
(i)
g := ρg|Vi

and one writes ρ =
⊕

i ρ
(i).

The matrix realization of a direct sum representation is given by the block
diagonal matrix in which every block represents the matrix realization of the
corresponding sub-representation.

One can easily verify that if ρ is the direct sum of the representations
ρ(i), i = 1, . . . , n, then the projection operator from V to Vi is an intertwiner
between ρ and ρ(i), for every i = 1, . . . , n.

Now remember that, given two linear spaces V and V ′, their tensor prod-
uct is isomorphic to the space of the linear operators from the dual of V ′ to V ,
i.e. V ⊗ V ′ := Hom((V ′)∗, V ). Moreover, if A ∈ End(V ) and B ∈ End(V ′),
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then the tensor product operator A ⊗ B belongs to End(V ⊗ V ′) and it is
defined by:

A⊗B : V ⊗ V ′ −→ V ⊗ V ′
X 7→ (A⊗B)(X) := A ◦X ◦B†.

Given two representations ρ and ρ′ of the group G, their tensor product
ρ⊗ ρ′ is the representation of G supported on V ⊗ V ′ defined by:

ρ⊗ ρ′ : G −→ Aut(V ⊗ V ′)
g 7→ (ρ⊗ ρ′)(g) := ρg ⊗ ρ′g

for every g ∈ G.
The matrix realization of a tensor product representation ρ⊗ ρ′ is given

by the Kronecker product of the matrix corresponding to the representations
ρ and ρ′. Explicitly:

(ρ⊗ ρ′)ik,jl(g) := ρij(g)ρ′kl(g)

where i, j = 1, . . . , n ≡ dim(V ) and k, l = 1, . . . , n′ ≡ dim(V ′).
It is interesting to see what is the explicit form of an intertwiner between

two tensor product representations of a group: let ρ1, . . . , ρk, . . . , ρN be N
representations of the group G, supported on the spaces V1, . . . , Vk, . . . , VN ,
respectively, then an intertwiner between

⊗k
i=1 ρi and

⊗N
j=k+1 ρj is a tensor

I ∈
N⊗

j=k+1

Vj ⊗
k⊗
i=1

V ∗i ' Hom

(
k⊗
i=1

Vi,
N⊗

j=k+1

Vj

)

whose components I
nk+1···nN
n1···nk satisfy:

Ink+1···nN
n1···nk = ρk+1(g)nk+1

mk+1
· · · ρN(g)nNmN I

mk+1···mN
m1···mk ρ1(g−1)m1

n1
· · · ρk(g−1)mknk

where the Einstein convention has been used.
Now observe that to every fixed λ ∈ Ĝ there correspond dλ Hilbert spaces,

precisely the subspaces Mλ
i of L2(G) spanned by the rows (or, equivalently,

the columns) of the matrix element functions of the irreducible representa-
tions of G, i.e.

Mλ
i := {

dλ∑
j=1

cjρ
λ
ij | cj ∈ C} i = 1, . . . , dλ.

It can be easily proven that the spaces Mλ
i are R-invariant and the re-

striction of R to these subspaces coincides with ρλ, i.e. Rg|Mλ

i

is the realized

by the same matrix as ρλg , for every λ ∈ Ĝ.
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Now it’s immediate to observe that the Peter-Weyl theorem it equivalent
to say that:

L2(G) '
⊕
λ∈Ĝ

dλ⊕
i=1

Mλ
i

and
R '

⊕
λ∈Ĝ

dλ · ρλ,

i.e. every ρλ appears exactly dλ times in the direct decomposition of the
right-regular representation R of G.

Since all these spaces Mλ
1 , . . . ,M

λ
dλ

are finite-dimensional, they are all

isomorphic with Cdλ , for this reason the subscript i will be omitted in the
sequel and the above decomposition will be shortly written as

L2(G) '
⊕
λ∈Ĝ

dλ ·Mλ .

Analogous results hold for the left regular representation, i.e.

L2(G) '
⊕
λ∈Ĝ

dλ ·Mλ

where the Hilbert spaces Mλ are those spanned by the rows (or, equivalently,
the columns) of the complex-conjugated of the matrix element functions of
the irreducible representations of G. They are invariant under the left-regular
representation L of G and this one is decomposed as

L '
⊕
λ∈Ĝ

dλ · ρλ.

For later purposes it is also useful to decompose a unitary representation
of the product group G × G supported again on L2(G) that can be cooked
up from the left and the right regular representations. Notice in fact that
the associative group law guarantees that the operators Rg and Lh commute
for every g, h ∈ G, i.e. RgLh = LhRg, hence the right and left regular
representations can be combined to give the so-called two-sided regular
representation defined by:

τ : G×G −→ U(L2(G))
(g, h) 7→ τ(g, h) := RgLh = LhRg,

(τ(g, h) f)(k) := f(h−1kg),∀f ∈ L2(G).

43



τ is a unitary representation of G×G thanks to the bi-invariance of the
Haar measure.

The Peter-Weyl decomposition of L2(G) in terms of the representation τ
is:

L2(G) '
⊕
λ∈Ĝ

Mλ ⊗Mλ;

τ '
⊕
λ∈Ĝ

ρλ ⊗ ρλ.

2.4.1 The projection on the intertwiners

The main reference of this section is [28]. Let ρ : G→ U(V ) be a representa-
tion of the compact group G and denote with Fixρ(V ) the subspace of fixed
points of V under the action of ρ(G), i.e.

Fixρ(V ) := {v ∈ V | ρg(v) = v,∀g ∈ G}.

Then the operator

p : V −→ Fixρ(V )
v 7→ p(v) :=

∫
G
ρg(v)dg

is a projector.
First of all let us verify that p(v) =

∫
G
ρg(v)dg belongs to Fixρ(V ): for

every h ∈ G, ρh(
∫
G
ρg(v)dg) =

∫
G
ρhg(v)dg, but thanks to the invariance

of the Haar measure this integral is the same as
∫
G
ρg(v)dg, so that p(v) is

unaffected by the action of G.
Moreover let’s check that p is a projector, i.e. that it is idempotent:

p2(v) = p(p(v)) =
∫
G
ρh(
∫
G
ρg(v)dg)dh =

∫
G
p(v)dg = p(v)

∫
G
dg = p(v),

since dg is normalized to 1.
Now consider two representations ρ : G → U(V ) and ρ′ : G → U(V ′) of

the same group G, then it’s easy to construct a representation of G supported
on Hom(V, V ′) in this way:

η : G −→ U(Hom(V, V ′))
g 7→ ηg,

ηg(A) := ρ′g ◦A◦ρg−1 : V → V ′, for every A ∈ Hom(V, V ′). This definition is
conveniently visualized with the help of the following commutative diagram:

V
A−−−→ V ′

ρg

y yρ′g
V −−−→

ηg(A)
V ′
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The action of G on Hom(V, V ′) corresponding to the representation η is
obviously the following:

G×Hom(V, V ′) −→ Hom(V, V ′)
(g, A) 7→ g ◦ A,

g ◦ A : V −→ V ′

v 7→ (g ◦ A)v := g.A(g−1.v).

It will be interesting to know which are the fixed points of Hom(V, V ′) w.r.t.
the representation η. First of all observe that the projector on the fixed
points w.r.t. the representation η is

p : Hom(V, V ′) −→ Fixη(Hom(V, V ′))
A 7→ p(A) :=

∫
G
ηg dg =

∫
G
ρ′g ◦ A ◦ ρ−1

g dg.

Moreover we can prove the following theorem.

Theorem 2.4.1 The space of fixed points of Hom(V, V ′) w.r.t. the repre-
sentation η of G agrees with the space spanned by the intertwiners between
the representations ρ and ρ′, i.e.

Fixη(Hom(V, V ′)) = Int(V, V ′).

Proof.

• Fixη(Hom(V, V ′)) ⊆ Int(V, V ′): one has to verify that(∫
G

ρ′g ◦ A ◦ ρg−1 dg

)
◦ ρh = ρ′h ◦

(∫
G

ρ′g ◦ A ◦ ρg−1 dg

)
i.e. ∫

G

ρ′g ◦ A ◦ ρg−1h dg =

∫
G

ρ′hg ◦ A ◦ ρg−1 dg.

Using again the invariance of the Haar measure, one can substitute hg
to g and g−1h−1 to g−1 in the left hand side obtaining the same integral,
i.e.

∫
G
ρ′g◦A◦ρg−1hdg =

∫
G
ρ′hg◦A◦ρg−1h−1hdg =

∫
G
ρ′hg◦A ◦ ρg−1dg. This

proves that the intertwining relation holds for every A ∈ Hom(V, V ′).

• Int(V, V ′) ⊆ Fixη(Hom(V, V ′)): it has to be verified that ηg ◦ I = I
whenever I is an intertwining operator, but this is immediate since
ηg ◦ I := ρ′g ◦ I ◦ ρg−1 = I since I is an intertwiner.
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In chapter 5 we will use these results to construct the spin network states of
loop quantum gravity by specializing the representations ρ and ρ′ to be the
left and right regular representations of G and mixing the Peter-Weyl theory
with the machinery of canonical loop quantum gravity the we will develop in
chapter 4.

2.5 Unitary irreducible representations of SU(2)

First of all remember that SU(2) := {A ∈ SL(2,C) | A† = A−1}.
The only thing we must know to apply the Peter-Weyl theory is the

classification of the unitary irreps of SU(2).
In this classification plays a fundamental role the space Cn[z1, z2] of the

homogeneous polynomials4 of degree n in the complex variables z1, z2.
Every element of this space has the form

P (z1, z2) =
n∑
k=0

akz1
n−kz2

k

thus every homogeneous polynomials of degree n can be written as a linear
combination of the n+ 1 monomials of degree n

Q(z1, z2) ≡ zn−k1 z2
k, k = 0, . . . , n

for this reason dim(Cn[z1, z2]) = n+ 1.
Cn[z1, z2] is a vector space with the usual operations of sum and multi-

plication by a complex constant and becomes a Hilbert space when endowed
with this inner product:

(
n∑
k=0

akz1
n−kz2

k |
n∑
k=0

bkz1
n−kz2

k) :=
n∑
k=0

k!(n− k)!akbk.

The numbers k!(n− k)! are suitable normalization coefficients.
Let now n ∈ N ≡ {0, 1, 2, . . .} and consider the following (n+1)-dimensional

representation of SU(2):

Un : SU(2) → U(Cn[z1, z2])
A 7→ UA

n

4Remember that a polynomial is said to be homogeneous if all its terms have the same
degree.
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where UA
n is defined on the basis of monomials Q(z1, z2) in this way

(UA
nQ)(z1, z2) := Q((z1, z2).A)

and it’s extended by linearity to every homogeneous polynomial P (z1, z2).
(z1, z2).A means the right action5 of a matrix A ∈ SU(2) on a row vector

(z1, z2) ∈ C2; if we use the Cayley-Klein parameterization of A ∈ SU(2), i.e.

A =

(
a b
−b̄ ā

)
with a, b ∈ C, | a |2 + | b |2= 1, we find that (UA

nQ)(z1, z2) = Q((z1, z2)A) =
Q(az1 − b̄z2, bz1 + āz2), and so

(Un
AQ) (z1, z2) = (az1 − b̄z2)n−k(bz1 + āz2)k.

Theorem 2.5.1 (Classification of the unitary irreps of SU(2)) The rep-
resentations Un defined above are unitary and irreducibles. Moreover any
other unitary irrep of SU(2) is equivalent to Un, for a certain n ∈ N. Thus

ŜU(2) ' N.

From the Peter-Weyl theory it follows immediately that, for every A ∈
SU(2) and every f ∈ L2(SU(2)):

f(A) =
∞∑
n=0

(n+ 1)Tr(f̂(n)UA
n), f̂(n) =

∫
SU(2)

f(g)UA−1
ndA .

The proof of the last theorem is very technical, but the irreducibility of
the representations Un can be easily worked out by computing the characters
χUn and verifying (by virtue of theorem 2.3.2) that they have norm 1.

To calculate the L2(SU(2))-norm of the characters χUn the first thing to
do is to find out the normalized Haar measure on SU(2).

For this scope let’s identify SU(2) with the sphere S3, i.e. the hyper-
surface of R4 given by S3 := {(x1, x2, x3, x4) ∈ R4 |

∑4
i=1 xi

2 = 1}; the
homeomorphic identification between S3 and SU(2) is realized by:

S3 → SU(2)

(x1, x2, x3, x4) 7→
(
x1 + ix2 x3 + ix4

−x3 + ix4 x1 − ix2

)
5Of course we could have used the left action of SU(2) on C2, putting (UA

nQ)

(
z1
z2

)
:=

Q

(
A−1.

(
z1
z2

))
.
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Hence, if we identify R4 with the quaternionic field H via the isomorphism
(x1, x2, x3, x4)→ x1 + ix2 + jx3 +kx4 then the previous map gives an isomor-
phism between the multiplicative group Sp(1) of the quaternions of norm 1
and SU(2).

Now let’s seek for a convenient parameterization of S3: since on S3 we
have x1

2 + x2
2 + x3

2 + x4
2 = 1, then −1 ≤ x1 ≤ 1 and so, thanks to the

bijection performed by the function cos restricted to [0, π]:

cos : [0, π] → [−1, 1]
θ 7→ cos θ

we have that there exists only one θ ∈ [0, π] such that x1 = cos θ, but
then cos2 θ + x2

2 + x3
2 + x4

2 = 1 and so, by the fundamental theorem of
trigonometry, x2

2 + x3
2 + x4

2 = sin2 θ. This shows that the triple (x2, x3, x4)
is a point of the 2-dimensional sphere in R3 of ray sin θ.

Using the spherical coordinates we can write:
x2 = sin θ cosϕ
x3 = sin θ sinϕ cosψ
x4 = sin θ sinϕ sinψ

with ϕ ∈ [0, π] and ψ ∈ [0, 2π].
With this parameterization of S3 ' SU(2) the normalized Haar integral

of a function f ∈ C(S3) is given by

1

2π2

∫ π

0

∫ π

0

∫ 2π

0

f(θ, ϕ, ψ) sin2 θ sinϕdθ dϕ dψ .

Within this parameterization, the coefficient 1
2π2 is the correct normalization6

of the integral, since, taken f ≡ 1 one has∫ π

0

∫ π

0

∫ 2π

0

sin2 θ sinϕdθ dϕ dψ = 2π

∫ π

0

sin2 θ dθ

∫ π

0

sinϕdϕ

and an integration by parts gives 2π · [1
2
(θ − sin θ cos θ)]π0 · [− cosϕ]2π0 = 2π ·

π
2
· 2 = 2π2.

6If we had used the parameterization: u ∈ SU(2),

u = cos
α

2
− i sin

α

2
~n · ~σ

where ~n is the unit vector of the rotation axis individuated by u, α is the angle of rotation
and ~σ = (σ1, σ2, σ3) are the Pauli matrices, then the normalized Haar measure would be:
1

8π2 sin2 α
2 sin θ dα dθ dϕ, and so the normalization coefficient would be 1

8π2 .
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In [88] (page 53) it’s proven that the Haar integral of central functions
reduces simply to

2

π

∫ π

0

f(θ) sin2 θ dθ f ∈ Cclass(SU(2)) .

At this point the only thing that remains to do is to compute in an explicit
way the characters χUn . Notice however that every matrix of SU(2) is con-
jugated to a diagonal matrix and so, being the characters central functions,
it’s enough to compute them on the diagonal matrices D of SU(2), which
are easily recognized to be all of this form:(

eiθ 0
0 e−iθ

)
for θ ∈ R, hence, by direct computation:

χUn(D) =


sin(n+1)θ

sinθ
if θ 6= mπ m ∈ Z;

n+ 1 if θ = mπ m ∈ Z,m even;
(−1)n(n+ 1) if θ = mπ m ∈ Z,m odd;

being the second option corresponding to the matrix D = I2 and the third
to the matrix D = −I2.

Since Z is countable, the contribution of the points θ = mπ, m ∈ Z in
the computation of the integral (χUn | χUn) is zero and so:

(χUn | χUn) =
2

π

∫ π

0

sin2(n+ 1)θ

sin2 θ
sin2 θ dθ =

1

π

∫ π

0

(1−cos(2(n+1)θ)) dθ = 1

thus ‖χUn‖ = 1 for every n ∈ N and the representations Un are irreducible.
In the physical literature it is custom to label the unitary irreps of SU(2)

with the non-negative half integers j ≡ n
2
, n ∈ N, instead of the natural

numbers n, this is correct since the correspondence n ↔ j is obviously one-
to-one.

It is well known that everyone of the non-negative half integers j =
0, 1

2
, 1, 3

2
, 2, . . ., is called the spin of the representation. Obviously a spin-

j representation has dimension 2j + 1.
We conclude this section by remembering a well known decomposition of

the tensor product of two irreps of SU(2).

Theorem 2.5.2 (Clebsch-Gordan decomposition) Let j1 and j2 be the
spins of two irreps of SU(2), then

j1 ⊗ j2 ' |j1 − j2| ⊕ · · · ⊕ (j1 + j2).
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Thus, for example
1

2
⊗ 1

2
' 0⊕ 1

as one can verify also with dimensions: the representation spin-1
2

has dimen-
sion 2, so 1

2
⊗ 1

2
has dimension 4, instead the representations spin-0 and spin-1

have dimensions 1 and 3, respectively, thus 0⊕ 1 has dimension 4 too.

2.6 Casimir operators

We present here a brief exposition of the Casimir operators and we compute
them for the group SU(2). This will be important for the calculation of the
spectrum of the volume and area operators in chapter 5.

Let g be a Lie algebra over a field K and let T (g) be the tensor algebra
of g, i.e. the algebra whose underlying vector space is

T (g) =
⊕
n∈N

n⊗
g

(with
⊗0 g := K) and with product defined, for every couple of integers

p, q ≥ 0, by the following formula:

(v1 ⊗ · · · ⊗ vp) · (vp+1 ⊗ · · · ⊗ vp+q) := v1 ⊗ · · · ⊗ vp+q if p, q > 0;

k · (v1 ⊗ · · · ⊗ vq) := k(v1 ⊗ · · · ⊗ vq) if p = 0, k ∈ K;

and extended on the whole T (g) by multilinearity.
Let I be the two-sided-ideal of T (g) generated by the set

{X ⊗ Y − Y ⊗X − [X, Y ] | X, Y ∈ g}

then the quotient algebra
U(g) := T (g)/I

is called the universal enveloping algebra of g.
The universality of U(g) is described in the next theorem.

Theorem 2.6.1 Let g be a Lie algebra, A an associative algebra over K
and let H ∈ Hom(g, A), then there exists H̃ ∈ Hom(U(g), A) such that the
following diagram commutes

U(g)
H̃−−−→ A

π

x xH
g g

where π is the restriction to g of the natural projection of T (g) onto U(g).
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Corollary 2.6.1 If g = Lie(G), i.e. g is the Lie algebra of a Lie group G,
then the following assertions hold:

1. π is injective, hence every X ∈ g can be identified with π(X) ∈ U(g);

2. U(g) is isomorphic to the Lie algebra of all differential operators on G
commuting with the right translations and to the convolution algebra of
distributions supported on {eG}.

The universal enveloping algebra is particularly useful when g is semisimple,
i.e. when the Killing form7 B is non-degenerate.

In this case, in fact, chosen a basis of g, (Xi)i=i,...,n, n = dim(g), the
matrix defined by

gij := B(Xi, Xj)

has an inverse gij := (gij)
−1 and we can define the Casimir element or

Casimir operator of g (when U(g) is identified with the algebra of differ-
ential right-invariant operators on G) as

Ω :=
n∑

i,j=1

gijXiXj ∈ U(g).

The definition is well posed thanks to the next theorem.

Theorem 2.6.2 Ω is independent from the choice of the basis (Xi)i=1,...,n of
g. Moreover Ω ∈ Z(U(g)), i.e. Ω commutes with every differential operators
on G commuting with the right translations.

When we specialize g to be su(2) we have these important result.

Theorem 2.6.3 The Casimir operator of su(2) is

Ω =
1

2
(X2

1 +X2
2 +X2

3 )

and when the identification with the algebra of right-invariant differential
operators on G is done, Ω is easily seen to be proportional to the Laplace
operator:

Ω =
1

2
∇2.

Moreover the matrix element functions ρjkl, where j is the spin of the repre-
sentation, are eigenfunctions of the differential operator Ω with eigenvalues
j(j + 1):

Ω(ρjkl) = j(j + 1)ρjkl.
7The Killing form is the symmetric bilinear form B : g × g → K, B(X,Y ) :=

Tr(adX adY ), where adX : g→ g, adX(Y ) = [X,Y ].
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2.7 SL(2, C): intrinsic structure and repre-

sentations

The theory of compact groups, especially SU(N), N ≥ 2, is of paramount
importance for the canonical formulation of loop quantum gravity, but to
build up the covariant algorithm one has to handle the more complicated
non-compact groups. Fortunately, the most important symmetry group of
covariant loop quantum gravity is SL(2,C), the group of the unimodular
2×2 matrices with complex entries, i.e.

SL(2,C) := {A ∈ GL(2,C) | det(A) = 1}

whose intrinsic structure and whose representations are well known. This
section contains the most important information about this group. The main
reference is [58].

SL(2,C) is:

1. a complex Lie group of dimension 3;

2. locally compact;

3. unimodular (the left and the right Haar measures agree);

4. simply connected;

5. reductive, i.e. A ∈ SL(2,C) ⇒ A† ∈ SL(2,C);

6. semisimple (i.e. it’s free from non-trivial and non-discrete Abelian sub-
groups, or, equivalently, its Lie algebra is free from non-trivial Abelian
ideals, or, again, its Killing form is non-degenerate);

7. of finite center: ZSL(2,C) = {I2,−I2}.

Its Lie algebra is the semisimple Lie algebra of the 2×2 traceless matrices
with complex entries

sl(2,C) := {X ∈ gl(2,C) ≡M(2,C) | Tr(X) = 0}.

A base of sl(2,C) is given by the matrices

h :=

(
1 0
0 −1

)
, e :=

(
0 1
0 0

)
, f :=

(
0 0
1 0

)
,

with brackets: [h, e] = 2e, [h, f ] = −2f , [e, f ] = h.
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Remember now that, if gp,q denotes the metric on Rp+q of signature p+ q
defined by

gp,q : Rp+q × Rp+q → R
(x, y) 7→ gp,q(x, y) := x1y1 + · · ·+ xpyp − xp+1yp+1 − · · · − xp+qyp+q,

then the pseudo-orthogonal group of rank (p, q) is defined to be the sub-
group O(p, q) of GL(p + q,R) given by the matrices O that preserves this
metric, i.e. such that

gp,q(Ox,Oy) = gp,q(x, y) ∀x, y ∈ Rp+q.

There is an algebraic relation that encodes this feature, namely

tOIp,q = Ip,qO−1,

where

Ip,q :=

(
Ip 0
0 −Iq

)
.

The intersection O(p, q)∩SL(p+ q,R) is indicated by SO(p, q). When p ≡ 3
and q ≡ 1 one obtains SO(3, 1), a non-connected group whose connected
component to the identity, SO0(3, 1), is the famous Lorentz group.

The relation between SL(2,C) and the Lorentz group is well known:
SL(2,C) is the universal covering group of the Lorentz group SO0(3, 1).

The two real forms of SL(2,C) are SL(2,R) and SU(2), this latter is the
compact real form and plays a fundamental role in the decompositions of
SL(2,C).

We will discuss the Iwasawa decomposition in the last chapter, here we
recall only that the Cartan decomposition of SL(2,C) is given by the
following diffeomorphism:

SU(2)×MH(2) −→ SL(2,C)
(k,H) 7→ k exp(H)

where: MH(2) is the space of the 2×2 hermitian matrices, A ∈ GL(2,C)
such that A† = A, i.e.

MH(2) =

{(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
, xi = 0, . . . , 3 ∈ R

}
and, if one considers the metric on MH(2) induced by the determinant,

det

(
x0 + x3 x1 + ix2

x1 − ix2 x0 − x3

)
= x0

2− x1
2− x2

2− x3
2, one immediately sees that

it can be identified with M4, the (4-dimensional) Minkowski spacetime,
hence SL(2,C) is, topologically and differentially speaking, the product of
the real 3-sphere and the Minkowski spacetime:

SL(2,C) ∼ SU(2)×M4.
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2.8 Finite-dimensional representations of SL(2,C)
Let us begin by listing the finite-dimensional representations of SL(2,C).

An important class of finite-dimensional representation of this group is
supported on the space Cn[z1, z2] of the homogeneous polynomials of degree
n ∈ N in the complex variables z1 and z2.

These representations ρn are defined as below:

ρn : SL(2,C) → Aut(Cn[z1, z2])(
a b
c d

)
7→ ρn

(
a b
c d

)
with

ρn

(
a b
c d

)
P

(
z1

z2

)
:= P

((
a b
c d

)−1(
z1

z2

))
≡ P

(
−bz2 + dz1

az2 − cz1

)
.

Theorem 2.8.1 The representations ρn described above are irreducible and
they are the only holomorphic irreps of SL(2,C) up to equivalence.

However the representations ρn are not unitary and one can show that
there aren’t finite-dimensional unitary representations of SL(2,C)!
This is a big difference with respect to the representation theory of compact
groups, where, as we’ve seen before, the finite-dimensional unitary irreps play
a fundamental role in the analysis of the structure of that kind of groups.

Being SL(2,C) simply connected there is a bijection between the set of
its finite-dimensional representations and that of its Lie algebra sl(2,C): one
passes from one to another simply by taking the tangent at the identity.

Moreover remember that sl(2,R) and su(2) are the real forms of sl(2,C),
i.e.

sl(2,C) = sl(2,R)⊕ isl(2,R) = su(2)⊕ isu(2)

and the relation between them is stated in the following theorem due to Weyl.

Theorem 2.8.2 (Weyl’s unitary trick) There is a bijection which pre-
serves the invariant subspaces and the equivalence among:

1. smooth representations of SL(2,R);

2. smooth representations of SU(2);

3. holomorphic representations of SL(2,C);

4. linear representations of sl(2,R);
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5. linear representations of su(2);

6. complex linear representations, of sl(2,C)

where all the representations listed above are implicitly meant to be finite-
dimensional and supported on the same complex vector space.

As a consequence if follows that every holomorphic finite-dimensional
representation of SL(2,C) is a direct sum of irreducible representations.

It can be proven that sl(2,C)C := sl(2,C)⊕isl(2,C), the complexification
of sl(2,C), is C−isomorphic to sl(2,C)⊕ sl(2,C), which is the complexifica-
tion of su(2)⊕ su(2), the Lie algebra of SU(2)× SU(2).

As a consequence of Weyl’s unitary trick and of the representation theory
of SU(2), one gets that the finite-dimensional holomorphic representations
of SL(2,C) are direct sum of irreducible representations labelled by a couple
of natural numbers (m,n) ∈ N2 with support space realized by the space of
homogeneous polynomials of degree m in the variables (z1, z2) and of degree
n in the variables (z̄1, z̄2) and action given by

ρm,n

(
a b
c d

)
P

(
z1

z2

)
:= P

((
a b
c d

)−1(
z1

z2

))
.

2.9 Infinite-dimensional representations of SL(2,C)
The only unitary non-trivial representations of SL(2,C) are available as
infinite-dimensional representations.

Fix a couple of numbers of the type (k, iv), with k ∈ Z and v ∈ R, then
the map ℘k,iv : SL(2,C) −→ U(L2(C)),

℘k,iv
(
a b
c d

)
f(z) := | − bz + d|−2−iv

(
−bz + d

| − bz + d|

)−k
f

(
az − c
−bz + d

)
for f ∈ L2(C), with respect to the Lebesgue measure on C, is a representation
of SL(2,C), moreover the following theorem holds.

Theorem 2.9.1 For every couple (k, iv), k ∈ Z and v ∈ R, the correspond-
ing representation ℘k,iv is a unitary irrep of SL(2,C). Furthermore there is
the following unitary equivalence:

℘−k,−iv ' ℘k,iv.
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It is common to call the family of representations ℘k,iv the unitary prin-
cipal series of SL(2,C).

Besides the unitary principal series there is a family of non-unitary rep-
resentations of SL(2,C) labelled by the couple (k, w), where:

• k ∈ Z, k 6= 0;

• w = u+ iv ∈ C, u 6= 0;

and defined by:

℘k,w
(
a b
c d

)
f(z) := | − bz + d|−2−w

(
−bz + d

| − bz + d|

)−k
f

(
az − c
−bz + d

)
where f ∈ L2(C, (1 + |z|2)<(w)dxdy).

It can be shown that the ℘k,w’s, in the hypothesis above, are not unitary.
The family of these representations is called the non-unitary principal
series of SL(2,C).

However the are particular values of the parameters for which the repre-
sentations ℘k,w are unitary: in fact when u = 0 ℘k,iv reduces to ℘k,iv.

When k = 0 and w ∈ R, 0 < w < 2, then the representation ℘k,w is
unitary when one consider the inner product in L2(C) given by

(f |g) :=

∫
C

∫
C

f̄(z)g(ζ)

|z − ζ|2−w
dzdζ

this family of representation is called the complementary series.
The theorem of classification of the irreducible unitary representations of

SL(2,C) is the following.

Theorem 2.9.2 Modulo the equivalences ℘−k,−iv ' ℘k,iv, the trivial repre-
sentation, the unitary principal series and the complementary series are the
unique irreducible unitary representations of SL(2,C).

Finally it can be verified that all the irreducible finite-dimensional rep-
resentations of SL(2,C) are contained in the non-unitary principal series as
sub-representations: ρm,n ⊂ ℘n−m,−2−m−n.

2.10 Plancherel formula for SL(2,C)
The Plancherel theorem, already stated for compact groups, is also valid for
a wider class of groups, in this section (following [55]) we will state it for a
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class to which SL(2,C) belongs and (following [58]) we will explicitly show
the Plancherel formula of this group.

Consider a locally compact unimodular connected semisimple group G,
fix a Haar measure dg on it and a function f ∈ L1(G, dg), then, as for
compact groups, it’s possible to construct the operator-valued function f̂ on
Ĝ defined by the formula

f̂(λ) :=

∫
G

f(g)ρλg−1dg

where, again, ρλ is a generic representative of the class λ ∈ Ĝ. If the support
space Hλ of the representation ρλ is finite-dimensional, then f̂(λ) is simply
the analogue of the matrix of the Fourier coefficients which appears in the
PW theory of compact groups, but if Hλ is infinite-dimensional, then the
operator f̂(λ) cannot be represented as a matrix.

However, in our hypothesis for G, every Hλ is separable and the operator
f̂(λ) is a Hilbert-Schmidt operator on Hλ and so the operator f̂(λ)f̂(λ)† is a
trace class operator8 on the same Hilbert space with Hilbert-Schmidt norm
given by:

‖f̂(λ)‖2
HS = Tr(f̂(λ)f̂(λ)†).

Theorem 2.10.1 (General Plancherel theorem) Let G be a locally com-
pact unimodular connected semisimple or nilpotent group. Then there exists
a measure on Ĝ, called the Plancherel measure, such that∫

G

|f(g)|2dg =

∫
Ĝ

Tr(f̂(λ)f̂(λ)†)dµ(λ)

or, shortly,

‖f‖2 =

∫
Ĝ

‖f̂(λ)‖2
HS dµ(λ)

for all f ∈ L1(G, dg) ∩ L2(G, dg).
Moreover, defined L2(Ĝ, dµ) to be the Hilbert space of µ-square-integrable

operator-valued functions on Ĝ such that the value at each point λ ∈ Ĝ is a
Hilbert-Schmidt operator on the support space of the representation, the corre-
spondence f → f̂ can be extended to a surjective isometry between L2(G, dg)
and L2(Ĝ, dµ).

8In general an operator A on a separable Hilbert space H is called a trace class
operator if, for every orthonormal basis {hn} of H, the series Tr(A) :=

∑
n(Ahn|hn)

converges to a finite value, called the trace of A, which is independent from the choice of
the orthonormal basis.
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The Plancherel formula for SL(2,C) is (see [58] for a derivation)∫
SL(2,C)

|f(g)|2dg = c
+∞∑

k=−∞

∫ +∞

−∞

∥∥∥∥∫
G

f(g)℘k,iv(g)dg

∥∥∥∥2

HS

(k2 + v2) dv,

or, using the general Plancherel theorem,

‖f‖2 = c

+∞∑
k=−∞

∫ +∞

−∞

∥∥∥f̂(k, v)
∥∥∥2

HS
(k2 + v2) dv

for every f ∈ L2(SL(2,C), dg), the constant c ∈ R depends on how the
Plancherel measure is normalized.

The important fact to stress is that in the Plancherel formula for
SL(2,C) only the unitary principal series appears and not the com-
plementary series.

2.11 Direct integral decompositions

The Plancherel formula for SL(2,C) shows that when we deal with non-
compact groups we have to expect not only a discrete part (labelled by the
integer parameter k in the previous formula) of the Plancherel measure, but
also a continuous part (labelled by the real parameter v). Consequently, the
decomposition of the correspondent L2-space will involve not only an infinite
direct sum of Hilbert spaces but, roughly speaking, a continuous analogous of
this procedure. This idea is formalized in the concept of direct integral and
in this section we collect the most important features of this construction.

The theory of direct integrals is originally due to von Neumann [92], in
this paper we will follow the beautiful exposition contained in [40].

Let’s start defining what we mean by a direct integral of a family of
Hilbert spaces {Hλ}λ∈L w.r.t. a measure µ on the parameter space L.

Roughly speaking, the direct integral of this spaces should be a Hilbert
space given by functions f defined on L such that f(λ) ∈ Hλ for each λ and∫
L
‖f(λ)‖2

λdµ(λ) <∞, where ‖ ‖λ is the norm of Hλ.
To come up with a workable definition of such a space we assume that the

parameter space L is a measurable space with measure µ and we introduce
some terminology:

• a sheaf9 of Hilbert spaces over L is a family of nonzero separa-
ble Hilbert spaces {Hλ}λ∈L, with inner product ( | )λ and norm ‖ ‖λ,
indexed by L;

9Some authors use the term ‘field’ instead of sheaf.
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• a section of this sheaf is a map f : L→
⋃
λ∈LHλ such that f(λ) ∈ Hλ

for each λ ∈ L;

• a measurable sheaf of Hilbert spaces over L is defined to be a
couple

({Hλ}λ∈L, {en}n∈N)

given by a sheaf of Hilbert spaces {Hλ}λ∈L together with a countable
set {en}n∈N of sections satisfying the following properties:

1. the functions λ 7→ (en(λ)|em(λ))λ are measurable for all n,m ∈ N;

2. the linear span of {en(λ)}n∈N is dense in Hλ for each λ.

The sections {en}n∈N are said to constitute a fundamental collection of
sections of the sheaf. An elementary example of sheaf that will be important
for the later purposes is the constant sheaf of a separable Hilbert space H
with orthonormal basis {un}, this is defined by Hλ = H and en(λ) = un for
every λ.

Another easy example is given when L is discrete, i.e. measurable w.r.t.
the σ-algebra P(L), the set of all subsets of L, and µ is the discrete measure;

written d(λ) := dim(Hλ), given an orthonormal basis {en(λ)}d(λ)
n=1 for eachHλ,

if we set en(λ) = 0 when n > d(λ), then {en(λ)}n∈N becomes a fundamental
collection of sections for the sheaf {Hλ}λ∈L, which, consequently, becomes a
measurable sheaf of Hilbert spaces.

Given a measurable sheaf of Hilbert spaces ({Hλ}λ∈L, {en}n∈N), we say
that the section f is measurable if the function

L −→ C
λ 7→ (en(λ)|f(λ))λ

is measurable for every en of the fundamental collection.
Moreover, two sections f and g are said to be equivalent is they agree

µ-almost everywhere in L.
For the purposes of the direct decompositions, the more interesting sec-

tions are the Hilbert sections, i.e. those measurable sections f such that10∫
L

‖f(λ)‖2dµ <∞.

10Note that we write ‖f(λ)‖ and not ‖f(λ)‖λ because f(λ) ∈ Hλ and so it is obvious
(and tacitely assumed) which norm we are considering. The same consideration applies
for the inner products.
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The space of the equivalent sections can be endowed with a natural structure
of inner product space with these operations:

(f + g)(λ) := f(λ) + g(λ), ∀λ ∈ L;

(kf)(λ) := kf(λ), k ∈ C,∀λ ∈ L;

(f |g) :=

∫
L

(f(λ)|g(λ))dµ.

It can be proved (see, e.g., [33]) that this space is complete w.r.t. the norm
generated by the inner product, hence it is an Hilbert space; in particular it
is the Hilbert space we were looking for, namely it’s the direct integral of
the sheaf ({Hλ}λ∈L, {en}n∈N) w.r.t. the measure µ and its symbol is:∫ ⊕

L

Hλ dµ.

The generic element of
∫ ⊕
L
Hλ dµ defined by the section λ 7→ f(λ) will be

denoted with
∫ ⊕
L
f(λ)dµ.

It can also be proved (see again [33]) that, if L is a locally compact 2nd-
countable Hausdorff space and µ is a positive Borel measure, then the direct
integral

∫ ⊕
L
Hλ dµ is a separable Hilbert space.

In particular, in the case of a constant sheaf Hλ ≡ H for every λ ∈ L, the
Hilbert sections identify with the measurable functions f : L→ H such that∫
L
|f |2dµ < ∞, the Hilbert space they compose is denoted by L2(L, µ;H),

hence: ∫ ⊕
L

Hλ dµ = L2(L, µ;H).

If a direct integral
∫ ⊕
L
Hλ dµ of a sheaf of Hilbert spaces {Hλ}λ∈L is

separable, then we define an orthonormal basis of sections of
∫ ⊕
L
Hλ dµ

to be a countable11 collection of measurable sections {un}n∈N such that:

• if dim(Hλ) = ℵ0, then {un(λ)}n∈N is an orthonormal basis of Hλ for
every λ ∈ L;

• if dim(Hλ) < ℵ0, then {un(λ)}n=1,2,...,dim(H(λ)) is an orthonormal basis
for Hλ and un(λ) = 0 for n > dim(Hλ).

It can be proved that orthonormal bases of sections of a direct integral of
Hilbert spaces always exist and that they have the same role as the usual

11Remember that in a separable Hilbert space all the orthonormal basis are countable.
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orthonormal bases of Hilbert spaces. In particular, for every f, g ∈
∫ ⊕
L
Hλ dµ

the following expansions hold:

f =

∫ ⊕
L

∑
n∈N

(un(λ)|f(λ))un(λ) dµ ;

(f |g) =

∫ ⊕
L

∑
n∈N

(f(λ)|un(λ)) (un(λ)|g(λ)) dµ .

2.11.1 Direct integral of operators on Hilbert spaces

Let ({Hλ}λ∈L, {en}n∈N) be a measurable sheaf of Hilbert spaces on L, then
a sheaf of operators O(λ) ∈ B(Hλ), for every λ ∈ L, will be called mea-
surable if, for every measurable section f of the sheaf Hλ, the section

L −→ Hλ

λ 7→ O(λ)f(λ)

is measurable.
Moreover a sheaf of operators O(λ) ∈ B(Hλ), for every λ ∈ L, will be

called essentially bounded if the measurable function

L −→ R
λ 7→ ‖O(λ)‖

is essentially bounded12.
If L 3 λ 7→ O(λ) ∈ B(Hλ) is a measurable and essentially bounded

sheaf of operators and f is a Hilbert section, then the section g defined
by g(λ) := O(λ)f(λ) is also a Hilbert section and so the measurable and
essentially bounded sheaf of operators

L −→ B(Hλ)
λ 7→ O(λ)

induces an bounded linear operator O on the direct integral
∫ ⊕
L
Hλ dµ, which

we denote with ∫ ⊕
L

O(λ)dµ

12Given a measurable space X, a measurable function ϕ : X → R is called essentially
bounded if there exists a real constant M > 0 such that |ϕ(x)| ≤M almost everywhere in
X.
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and which we define in a obvious way as:[(∫ ⊕
L

O(λ)dµ

)
f

]
(λ) := O(λ)f(λ) ∀λ ∈ L.

Elementary algebraic properties of the direct integral of operators are:∫ ⊕
L

O(λ)dµ+

∫ ⊕
L

O′(λ)dµ =

∫ ⊕
L

(O +O′)(λ)dµ ;(∫ ⊕
L

O(λ)dµ

)(∫ ⊕
L

O′(λ)dµ

)
=

∫ ⊕
L

(OO′)(λ)dµ ;(∫ ⊕
L

O(λ)dµ

)†
=

∫ ⊕
L

O†(λ)dµ .

Moreover it can be proved that∥∥∥∥∫ ⊕
L

O(λ)dµ

∥∥∥∥ = ess supλ∈L‖O(λ)‖ <∞.

A simple but important case of direct integral of operators arises when the
operators O(λ) of the sheaf are all scalar multiples of the identity, i.e. when
there is a function13 ϕ ∈ L∞(L, µ) such that the the sheaf satisfies Oϕ(λ) ≡
ϕ(λ)1(λ). Such operators on

∫ ⊕
L
Hλ dµ are called diagonal operators. In

particular, if the function ϕ belongs to C0(L), i.e. is a continuous function
which vanishes at infinity, then the previous operator is called continuously
diagonal.

Notice that the diagonal operators on
∫ ⊕
L
Hλ dµ are bounded multipli-

cations operators on this space, these constitute the generalization of the
bounded multiplications operators on the Hilbert spaces of kind L2(M, µ),
where M is a measurable space.

The generalization of the unbounded multiplication operators on such
a spaces is realized following the same construction as above and dropping
out the condition of essential boundness on ϕ, i.e. by requiring only its
measurability.

The set of the diagonal operators and the continuously diagonal opera-
tors, under the obvious algebraic operations, is an Abelian ∗-subalgebra14 of

13L∞(L, µ) is the Banach space of the essentially bounded measurable functions on X
with norm given by

‖ϕ‖∞ := ess sup(ϕ) ≡ Inf{M > 0 such that ϕ is essentially bounded on X}.

14For the theory of ∗-algebras, C∗-algebras and von Neumann algebras see the next
chapter.
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B(
∫ ⊕
L
Hλ dµ) and it can be proved that they are ∗-isomorphic to L∞(L, µ)

and C0(L), respectively.
Both these ∗-algebras are closed w.r.t. the operator-norm topology and

so they are Abelian C∗-subalgebras of B(
∫ ⊕
L
Hλ dµ). Furthermore it can be

proved that the C∗-algebra of the diagonal operators on
∫ ⊕
L
Hλ dµ is always

unital weakly closed, i.e. it’s closed w.r.t. the weak topology of B(
∫ ⊕
L
Hλ dµ).

It follows that the diagonal operators on
∫ ⊕
L
Hλ dµ form an Abelian

von Neumann algebra.
The direct integral of operators finds important applications in the theory

of the diagonalization of normal operators on a Hilbert space.

2.11.2 Direct integral of representations and Plancherel
decomposition

Fix G to be a given locally compact group and denote with ρλ a generic
unitary representation of G on the Hilbert space Hλ.

If, for each λ ∈ L and each g ∈ G, the map L 3 λ 7→ ρλ(g) ∈ B(Hλ) is
a measurable sheaf of operators, then the family {ρλ(g)}λ∈L will be called a
measurable sheaf of representations of G.

If this is the case then, since the unitary operators ρλ(g) have norm 1,
the sheaf is uniformly bounded and so we can form the direct integral

ρ(g) :=

∫ ⊕
L

ρλ(g)dµ

which is obviously called the direct integral of the representations ρλ

and it can be easily proved to be a unitary representation of G on the Hilbert
space

∫ ⊕
L
Hλ dµ:

ρ : G −→ U(
∫ ⊕
L
Hλdµ)

g 7→ ρ(g) :=
∫ ⊕
L
ρλ(g) dµ.

The following theorem asserts, among other things, that every unitary
representation of a wide class of locally compact groups is equivalent to a
direct integral of representations of the same group.

Theorem 2.11.1 Let G be a 2nd-countable locally compact group, let ρ be
a unitary representation of G on a separable Hilbert space H and let A be
a weakly closed Abelian C∗-subalgebra of Int(ρ)15. Then there is a standard

15With Int(ρ) we denote the von Neumann algebra generated by the intertwiners be-
tween the representation ρ on H and itself.
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measure space (L,M, µ), a measurable sheaf of Hilbert spaces {Hλ} and a
unitary map U : H →

∫ ⊕
L
Hλ such that:

1. U ρλ U−1 =
∫ ⊕
L
ρλ(g)dµ ∀g ∈ G;

2. UAU−1 is the algebra of the diagonal operators on
∫ ⊕
L
Hλ dµ.

The rest of this section is dedicated to the explicit decomposition of
L2(G), whereG is a fixed locally compact, 2nd-countable, unimodular, semisim-
ple, connected group G as a direct integral of irreducible representations.

In this decomposition will play a fundamental role the right and left
regular representations of G on L2(G) (w.r.t. a given Haar measure), re-
member that these representations are defined by: (Rg f)(h) := f(hg), and
(Lg f)(h) := f(g−1h),∀f ∈ L2(G). Remember also that they can be com-
bined to give the two-sided regular representation, a unitary representation
of G×G on L2(G) defined by: (τ(g, h) f)(k) := f(h−1kg),∀f ∈ L2(G).

We are now ready to apply the results of the direct integral decompo-
sitions to obtain a Plancherel decomposition. First of all we identify the
measurable space L over which we take the direct integral with the dual
object Ĝ of G, we denote again its elements (equivalence classes of unitary
irreps of G) with λ and we write ρλ for a generic representative of the class
λ.

Since the unitary irreps of the locally compact groups need not to be
finite-dimensional, as happens for compact groups, we must remember that,
if the support space Hλ of a representation is infinite-dimensional, then the
tensor product space Hλ⊗Hλ is a proper subspace16 of B(Hλ) which consists
of the Hilbert-Schmidt operators on Hλ, i.e.

Hλ ⊗Hλ ' BHS(Hλ).

Define now, for a function f ∈ L1(G) its Fourier transform as a mea-
surable sheaf of operators on Ĝ given by these operator-valued integrals:

f̂(λ) :=

∫
G

f(g)ρλ(g−1)dg

which can be proved to belong to BHS(Hλ) for every λ.
With these notations we have the following important theorem essentially

due to Segal [87].

Theorem 2.11.2 (Plancherel direct decomposition) Fixed a Haar mea-
sure on G, there exists a unique measure µ, called the Plancherel measure,
on Ĝ with the following properties:

16In the finite dimensional case the two spaces agree.
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1. the Fourier transform extends to a unitary map

F : L2(G) −→
∫ ⊕
Ĝ
Hλ ⊗Hλ dµ

f 7→ f̂

2. the Fourier transform is an intertwining operator for the two-sided regu-
lar representation τ and the direct integral representation

∫ ⊕
Ĝ
ρλ⊗ρλdµ.

We can summarize the theorem with these two unitary equivalences:

L2(G) '
∫ ⊕
Ĝ

Hλ ⊗Hλ dµ ;

τ '
∫ ⊕
Ĝ

ρλ ⊗ ρλdµ .

Segal’s theorem is immediately seen to be a generalization of the classical
Plancherel theorem and the Peter-Weyl theorem for locally compact Abelian
groups and compact groups, respectively. For locally compact Abelian groups
the classical Plancherel theorem implies that the Plancherel measure is noth-
ing but the Haar measure (conveniently normalized) on the dual group. For
compact groups the Peter-Weyl theorem implies that the Plancherel measure
relative to the normalized Haar measure on G is the measure that assigns to
each class λ ∈ Ĝ the mass dim(λ).

Apart from the presence of the direct integral, the very big difference
between the locally compact Abelian groups (or the compact groups) and the
locally compact ones is the fact that the support of the Plancherel measure,
for these kind of groups, can be a proper subset of Ĝ, indicated by Ĝr and
called the reduced dual of G.

There is a class of locally compact groups for which the reduced dual Ĝr

agrees with the whole Ĝ, they are called amenable groups. It’s known
that the non-compact semisimple groups are not amenable, so, for example,
SL(2,C) is not amenable and in fact its Plancherel measure has support only
on the unitary principal series and not on the complementary series, which

constitute a subset of zero Plancherel measure in ̂SL(2,C).
Harish-Chandra was able to determine the Plancherel measure on every

connected semisimple Lie groups even though in many cases the full dual
object of these groups is not precisely characterized, but, of course, the ‘un-
known’ representations form a set of Plancherel measure zero.

Some further results related to the Plancherel theorem are afforded by
the following theorem due again to Segal [86].
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Theorem 2.11.3 Let G be a unimodular locally compact group with regular
representations R and L and let R and L be the von Neumann algebras in
B(L2(G)) generated by {Rg | g ∈ G} and {Lg | g ∈ G}, respectively. Then:

1. R = Int(L) and L = Int(R);

2. an operator T ∈ B(L2(G)) commutes with every element of Int(R) iff
T ∈ Int(L), and viceversa;

3. Int(τ) is precisely the common center of Int(R) and Int(L).
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Chapter 3

Theory of Abelian C*-algebras

3.1 Introduction: basic definitions

Together with the theory of fiber bundles, group representations and direct
decompositions, the theory of Abelian C∗-algebras is of vital importance in
many steps of the algorithm of canonical loop quantization of gravity, in this
chapter we present the most important information about C∗-algebras that
we will use in the following chapter to build up the framework of canonical
loop quantum gravity.

Let us begin by remembering some terminology and basic facts about
algebras.

An algebra A over the field K is a vector space A over K endowed with
an internal binary operation, called product and indicated simply by jux-
taposing the elements of A, which is compatible with the linear structure of
A, i.e. this operation is bilinear:

1. a(b+ c) = ab+ ac;

2. (a+ b)c = ac+ bc;

3. k(ab) = (ka)b = a(kb);

∀a, b, c ∈ A and ∀k ∈ K.

CONVENTION: In what follows we will be interested only in the analysis
of complex algebras, i.e. those for which K ≡ C, thus ‘algebra’ will always
be intended to be over the complex field.

A first qualification of algebras can be given by analyzing the properties
of the product, as listed below.

Let A be an algebra.
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• If the product of A is associative, i.e.:

a(bc) = (ab)c ∀a, b, c ∈ A,

then A is said to be an associative algebra. All the algebras consid-
ered in the following will be tacitly assumed associative;

• If there exists an element u ∈ A such that ua = au = a, ∀a ∈ A, then
u is said to be the unity of A, which is called an unital algebra (or
algebra with unit u). Another symbol widely used to denote the unity
of an algebra is e, because it reminds the German word ‘Einselement’,
which means ‘unit element’;

• If ab = ba, ∀a, b ∈ A, then A is an Abelian or commutative algebra;

• a homomorphism of algebras, A and B, is a linear map ϕ : A→ B
which is multiplicative:

ϕ(ab) = ϕ(a)ϕ(b);

• let’s also remember the substructures of an algebra: given an algebra
A, a subalgebra of A is a vector subspace A′ of A stable w.r.t. the
restriction of the product of A to the elements of A′. A left (resp. right)
ideal I of A is a subalgebra of A with the stronger property that:

if a ∈ A and b ∈ I ⇒ ab ∈ I (resp. ba ∈ I).

If I is, at the same time, a left and right ideal of A, then it is called a
bilateral ideal, or simply ideal, of A;

• given the algebra A and an ideal I, it’s possible to construct the quo-
tient algebra A/I in this way:

– A/I, as a set, is the set of equivalence classes of elements of A
w.r.t. the equivalence relation:

a ∼ b ⇔ ∃c ∈ I such that: a = b+ c.

We denote the class to which a belongs with (a+ I);

– the linear structure of A/I is:{
(a+ I) + (b+ I) := ((a+ b) + I);
k(a+ I) := (ka+ I);
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– finally the algebraic structure of A/I is given by the product:

(a+ I)(b+ I) := (ab+ I) ;

• If A, as a vector space, is normed with a norm ‖ ‖ satisfying the ‘sub-
multiplicative condition’:

‖ab‖ ≤ ‖a‖ · ‖b‖ ∀a, b ∈ A

then A is said to be a normed algebra. The submultiplicative con-
dition assures that the product (a, b)→ ab in jointly continuous w.r.t.
the topology generated by the norm, in fact, thanks to the triangular
inequality we have

‖ab− a′b′‖ = ‖a(b− b′)− (a− a′)b′‖ ≤ ‖a‖‖b− b′‖+ ‖a− a′‖‖b′‖ → 0

if a→ a′, b→ b′;

• if A is a normed algebra with unit, then it’s always possible to find a
norm equivalent to the starting one (i.e. inducing the same topology)
such that ‖u‖ = 1. For this reason it’s custom to assume this condition
as implicit in the definition of a normed algebra with unit;

• A is a Banach algebra if it is a normed algebra and if, as normed vec-
tor space, is complete in the topology generated by its norm (i.e. every
Cauchy sequence in A is also convergent in A w.r.t. that topology).

EXAMPLES.
The following are the most important examples of Banach algebras of

functions. In every example, unless otherwise stated, the algebraic operations
are pointwise defined.

1. If X is any topological space, then Cb(X), the space of complex-valued
bounded continuous functions on it, is an Abelian Banach algebra w.r.t.
the norm ‖f‖∞ := supx∈X |f(x)|;

2. C0(X), the space of the complex-valued continuous functions on a lo-
cally compact Hausdorff topological space X that vanish at infinity is
a very important example of Abelian Banach algebra (w.r.t. ‖ ‖∞),
their characteristic property is the following:

∀ε > 0 ∃Kε (compact in X) such that: | f(x) |< ε ∀x ∈ Kε
c .

C0(X) is a subalgebra of Cb(X) and it has unit if and only if X is
compact, in that case C(X) = Cb(X) = C0(X) and the unit is the
constant function equal to 1;
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3. If (M,µ) is any measure space, then L∞(M,µ), the space of complex-
valued essentially bounded on M , i.e. satisfying |f(x)| ≤ c, for a certain
c ∈ R+, µ-almost everywhere in M , is an Abelian Banach unital algebra
w.r.t. the norm ‖f‖∞ := Inf{c}, where c is any number satisfying the
previous inequality;

4. If G is any locally compact topological group, then it admits a Haar
measure µH and we can consider the Banach space L1(G, µH), this is
an Abelian Banach algebra w.r.t. the convolution

(f ∗ g)(x) :=

∫
G

f(y−1x)g(y)dµH(y).

It has unit if and only if G is discrete, in that case the unit is the
characteristic function of the identity of G.

If an algebra is not unital, one can always embed it into a unital algebra
by following this standard procedure:

UNITALIZATION OF AN ALGEBRA.
Let A be an algebra without unit, we want to build an algebra Ã with

unit that contains A as subalgebra:

• as vector space it is Ã := A⊕ C;

• its multiplication is

Ã× Ã −→ Ã
((a, λ), (b, η)) 7→ (ab+ λb+ ηa, λη)

• the unit element of Ã is (e, 1), where e is the unit of A viewed as vector
space;

• the embedding of A in Ã is given by the homomorphism

A −→ Ã
a ↪→ (a, 0);

• if A is a Banach algebra w.r.t. the norm ‖ ‖ then Ã is also a Banach
algebra w.r.t. the norm (a, λ) := ‖a‖+ |λ|.

For example, one can verify that the unitalization of C0(X), where X is a
locally compact Hausdorff space, gives C∞(X), i.e. the Banach algebra of
continuous functions on X that admit limit at infinity.

The next key step toward the analysis of C∗-algebras is to mix consistently
the normed structure of a Banach algebra with a ∗-structure. Precisely, let
A be an algebra, then:
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• A is said to be a ∗-algebra if there exists a map

∗ : A→ A

satisfying the following conditions:

1. (a+ b)∗ = a∗ + b∗;

2. (ka)∗ = k̄a∗;

3. (ab)∗ = b∗a∗;

4. a∗∗ = a;

∀a, b ∈ A and ∀k ∈ C. The application ∗ is called involution;

• a ∈ A is self-adjoint if: a∗ = a;

• the most connatural maps with the ∗-algebraic structure are the so-
called ∗-homomorphisms: given two ∗-algebras A and B, then an
algebraic homomorphism ϕ : A→ B is called ∗-homomorphism if:

ϕ(a∗) = [ϕ(a)]∗,

where the ∗ at the left hand side is the involution of A and the one
that appears at the right hand side is the involution of B.

• if an ∗-algebra A is normed with norm ‖ ‖ and the condition:

‖a∗‖ = ‖a‖ ∀a ∈ A

holds, then A is called a normed ∗-algebra;

• if A is a normed ∗-algebra and, at the same time, a Banach algebra,
then A is called a Banach ∗-algebra.

There is an apparently ‘innocent’ condition that relates the norm and
the ∗-operation in a Banach ∗-algebra that has powerful consequences on its
structure, this is the condition that defines a C∗-algebra: a Banach ∗-algebra
A satisfying the condition:

‖a∗a‖ = ‖a‖2 ∀a ∈ A

is called a C∗- algebra.
Let’s see some examples of C∗-algebras.

• C is an Abelian C∗-algebra with unit, involution given by the complex
conjugation and norm given by the usual Euclidean norm on C;
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• B(H), the algebra of all bounded (alias continuous) linear operator on
a Hilbert space H, is a C∗-algebra with unit (the identity operator),
in general non-Abelian, with involution given by the adjoint operation
and operator norm:

‖T‖ := sup
x 6=0
{‖Tx‖
‖x‖

} T ∈ B(H);

• C(X), X compact Hausdorff space, is an Abelian C∗-algebra with unit,
the involution is given by the complex conjugation pointwise defined
for every map f ∈ C(X) and the norm is ‖f‖∞;

• Cb(X), X locally compact Hausdorff space, is an Abelian C∗-algebra
without unit. The involution and the norm are the same as those of
C(X).

3.2 General results on Abelian Banach alge-

bras

In the analysis of the structure of the Banach algebras with unit u it has a
great importance the concept of spectrum of an element a of A; this is
the subset of C defined by

σ(a) := {λ ∈ C | λu− a is not invertible}.

This is a well known concept if we think at the algebra of the N × N ma-
trices with complex entries, where the spectrum of a matrix is the set of its
eigenvalues.

The complementary set of the spectrum of a is called the resolvent of
a: Res(a) := C \ σ(a).

With techniques analogues to the ones used in the particular case of B(H),
one can prove the following theorem.

Theorem 3.2.1 If A is a Banach algebra with unit and a ∈ A, then:

1. σ(a) is a closed subset of the closed disk of ray ‖a‖ in C, hence Res(a)
is an open set in C;

2. the map
Res(a) −→ A
λ 7→ (λu− a)−1

is holomorphic.
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We can now state the most significative results about Banach algebras
with unit, which shows that C is the prototype of an entire class of such
algebras.

Theorem 3.2.2 (Gelfand-Mazur) Let A be a Banach algebra with unit u,
then:

1. σ(a) 6= ∅;

2. if every non zero element of A has an inverse, then A is isomorphic to
C.

We can now reach more results about the structure of Banach algebras if
we define the concept of the spectrum of the whole algebra.

Let then A be a Banach algebra. First of all define a character of A as a
non-identically zero linear functional φ on A such that:

φ(ab) = φ(a)φ(b) ∀a, b ∈ A.

The spectrum of an Banach algebra is the set of all its characters. The
symbol used to denote it is σ(A).

The next theorem contains the most important features about the char-
acters of an Abelian Banach algebra with unit. Let’s begin with a useful
technical lemma.

Lemma 3.2.1 Let A be an Abelian Banach algebra with unit u and let I be
a maximal ideal of A, i.e. a bilateral ideal not contained in any other ideal
of A. Then:

• I is closed;

• the quotient A/I is an Abelian unital Banach algebra with norm

‖(a+ I)‖ := inf
b∈I
‖a+ b‖.

Moreover it satisfies the hypothesis of the Gelfand-Mazur theorem, thence:

A/I = C(u+ I).

Theorem 3.2.3 Let A be an Abelian Banach algebra with unit u and let φ
be a character of A. Then:

1. φ is bounded and has unit norm: ‖φ‖ = 1;
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2. σ(A) is a compact Hausdorff space in the w∗-topology1 relativized to it,
usually called Gelfand topology;

3. denoted with Max(A) the set of the maximal ideals of A, the map

σ(A) −→ Max(A)
φ 7→ Ker(φ)

is a bijection;

4. ∀a ∈ A, σ(a) = {φ(a) | φ ∈ σ(A)}, hence if we know the spectrum of A
we can calculate the spectrum of each element of A...this is obviously
the reason for the name ‘spectrum of A’.

If A doesn’t have unit, then it can be proved that its spectrum σ(A) is a
locally compact Hausdorff space in the Gelfand topology.

Given an Abelian Banach algebra A, the map

ˆ : A → C0(σ(A))
a 7→ â,

where
â ≡ eva : A −→ C

φ 7→ â(φ) := φ(a)

is called Gelfand transform and the function â ∈ C0(σ(A)) is said to be
the Gelfand transform of a ∈ A.

Theorem 3.2.4 The Gelfand transform is a norm-decreasing, hence con-
tinuous, homomorphism from the Abelian Banach algebra A to the Abelian
Banach algebra C0(σ(A)), i.e.

‖â‖∞ ≤ ‖a‖.

If A is a Banach algebra with unit, then the range of the Gelfand trans-
form is contained in C(σ(A)).

If the Gelfand transform is an isomorphism, then the Abelian Banach
algebra A is called semisimple.

Since an Abelian C∗-algebra is, in particular, an Abelian Banach algebra,
all the results above still hold for such C∗-algebras.

1The w∗ ‘weak-star’ topology on the dual of a Banach algebra A is the topology in
which a sequence of functionals {τn}n∈N is convergent if and only if, for every a ∈ A, the
sequence of complex numbers {τn(a)}n∈N is convergent.
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3.3 Gelfand theory of Abelian C∗-algebras

For Abelian C∗-algebras the Gelfand transform has more powerful properties
than for Abelian Banach algebras, in fact it becomes an isomorphism which
enables to find an identification of every Abelian abstract C∗-algebra as the
C∗-algebra of complex-valued continuous functions on its spectrum, which is
then the prototype of these kind of C∗-algebras.

Theorem 3.3.1 (Gelfand-Naimark) If A is an Abelian C∗-algebra with
unit then the Gelfand transform ˆ is an isometric ∗-isomorphism from A to
C(σ(A)). If A doesn’t have a unit, then the Gelfand transform is an isometric
∗-isomorphism from A to C0(σ(A)).

Corollary 3.3.1 Every compact Hausdorff space X arises as the spectrum
of an Abelian unital C∗-algebra, specifically C(X):

X = σ(C(X)).

The easy proof is left to the reader.
This result is very important, because it says that a compact Hausdorff

space can be reconstructed from its Abelian unital C∗-algebra of continuous
functions by calculating its spectrum. This is the starting point for general-
izations to non-commutative topological spaces (see [30]).

Let’s end this section by citing the link between these results on C∗-algebras
and the Stone-Cech compactification.

Theorem 3.3.2 If X is a Hausdorff space for which the Urysohn lemma
holds, then the map

X −→ σ(C(X))
x 7→ φx, φx(f) := f(x)

is a homeomorphism with its image, which is dense in the compact Hausdorff
space σ(C(X)). This last is called the Stone-Cech compactification of X.

3.4 GNS representation of C∗-algebras

It’s often useful to treat the elements of a C∗-algebra as operators on a Hilbert
space, the correct way to do this is to consider a Hilbert representation, or
simply representation, of the C∗-algebra.
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Precisely, a representation of a C∗-algebra A is a couple (H, ϕ) given
by a Hilbert space H and a ∗-homomorphism:

ϕ : A→ B(H).

In particular the representation is said faithful if ϕ is injective.
In the theory of representations of C∗-algebras an important role is played

by certain functionals, specifically: a positive linear functional on A is a
linear functional satisfying

ϕ(aa∗) ∈ R+ ∀a ∈ A.

The elements of the kind aa∗ are called the positive elements of A, hence we
can say that a positive functional on A maps the positive elements of A in
positive real numbers.

In particular we define a state of a C∗-algebra to be a positive functional
on A of unit norm.

It’s easy to see that the characters are states.

Theorem 3.4.1 The positive functionals on a C∗-algebra A are always con-
tinuous.

The relation between positive linear functionals and representations of
C∗-algebras is given by the GNS construction, so called in honor of Gelfand,
Naimark and Segal, the mathematicians that built it, that enables to asso-
ciate in a unique way a representation to a positive functional on a C∗-algebra.

Let’s begin with this theorem.

Theorem 3.4.2 Fixed a positive functional τ on a C∗-algebra A, the map

A× A → C
(a, b) 7→ τ(b∗a)

is a sesquilinear positive-definite form on A.

To get an inner product from this form induced by τ we miss only the
non-degeneracy, to get it let’s define the ‘null set’ of τ :

Nτ := {a ∈ A | τ(a∗a) = 0}

this is easily seen to be a left ideal of A and so it’s possible to take the
quotient of A on Nτ . Then the map

A/Nτ × A/Nτ → C
(a+Nτ , b+Nτ ) 7→ τ(b∗a)
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is a well defined inner product on A/Nτ , which can be completed to a Hilbert
space which we indicate with Hτ .

Let’s define, ∀a ∈ A, an operator ϕ(a) ∈ B(A/Nτ ) as below:

ϕ(a)(b+Nτ ) = ab+Nτ .

This operator is bounded and so it can be extended in a unique way to a
bounded operator of B(Hτ ) denoted with ϕτ (a).

Finally one can prove that the map:

ϕτ : A → B(Hτ )
a 7→ ϕτ (a)

is a ∗-homomorphism.
So, starting from a positive functional τ , the GNS procedure has given

us two objects: a Hilbert space Hτ and a ∗-homomorphism ϕτ , with these
ones we can construct a representation of A.

Specifically we call the representation (Hτ , ϕτ ) the GNS representation
of A associated to the positive functional τ , which is called the generator
of the representation (Hτ , ϕτ ).

If we take the direct sum of the GNS representations w.r.t. all the positive
functionals of A we get the so-called universal representation of A:

(
⊕
τ

Hτ ,
⊕
τ

ϕτ ).

The importance of the universal representation is contained in the follow-
ing result.

Theorem 3.4.3 (Gelfand-Naimark) The universal representation of a non
empty C∗-algebra is faithful.

Thanks to the Gelfand-Naimark theorem one has that every C∗-algebra
A can be identified with a C∗-subalgebra of B(H), this is one of the
reasons for the great attention reserved to the C∗-algebra of bounded linear
operators on a Hilbert space.

3.5 States of a C∗-algebra and probability mea-

sures on its spectrum

There is a faithful correspondence between states of an Abelian unital C∗-algebra
and probability measures on its spectrum. This correspondence relies on the
well known Riesz-Markov theorem [78].
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Theorem 3.5.1 (Riesz-Markov) To every positive linear functional L on
C(X), X compact Hausdorff space, there corresponds a unique positive regular
Borel measure µ on X such that:

L(f) =

∫
X

f dµ ∀f ∈ C(X).

Moreover ‖ L ‖= ‖ µ ‖.

If we use the Gelfand isomorphism to identify A with C(σ(A)), then the
Riesz-Markov theorem implies that there is an isomorphism between positive
linear functionals on A and positive regular Borel measures on σ(A).

The representation of the positive linear functional ϕµ associated to the
positive regular Borel measure µ is given by:

ϕµ(a) =

∫
σ(A)

â dµ .

The isometric behavior of the Riesz-Markov isomorphism can be understood
easily by observing that ‖ϕµ‖ = ϕµ(1) =

∫
σ(A)

1 dµ = µ(σ(A)), but µ is

positive, hence µ(σ(A)) = |µ|(σ(A)) = ‖µ‖, thus ‖ϕµ‖ = ‖µ‖.
The considerations above prove that the states of A are in bijection

with the probability measures on σ(A).
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Chapter 4

Canonical loop quantum
gravity

4.1 Introduction

In this chapter I will describe the mathematical framework that relies at the
basis of canonical loop quantum gravity.

This quantization procedure, if compared with other ones − for example
superstring theory − is very conservative, in fact no new symmetries of na-
ture (as supersymmetry or other non yet observed symmetries) and no new
structures (as strings or branes) are postulated. Instead one tries to remain
as close as possible to the very basic ideological foundations of quantum
mechanics and general relativity.

This means that canonical loop quantum gravity describes states as rays
in a suitable Hilbert space and physical observables as self-adjoint operators
on the Hilbert space of states, as quantum mechanics prescribes, and it does
this in a manifest background-independent (or diffeomorphism-invariant)
way, i.e. without relying on a manifold with fixed geometry, thus respecting
Einstein’s equivalence principle, the basic principle of general relativity.

Since quantum gravity is expected to describe effect at the Planck scale
`P =

√
hG/c3 ≈ 10−35 m, or 1019 GeV, and since with the most powerful

accelerator of the world, the LHC, we can scan only distances of 10−13 m
(namely we can produce only energies of 103 GeV), unfortunately there are no
experimental data to fit at the Planck scale, thus the only reasonable way to
construct a quantum theory of gravity is to mix the peculiarities of quantum
mechanics and general relativity guided by mathematical consistency. This
may seem ‘a walk in the dark’, but, even though we are far from reaching
the energies of the Planck scale with accelerators, there is a hope to discover
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indirect consequences of the quantum structure of spacetime at the Planck
scale, e.g. by the calculations of the black holes entropy and maybe other
phenomena in the near future.

In every step of the quantization algorithm of loop quantum gravity there
is a strong insistence on background-independence: this is a very big differ-
ence w.r.t. the techniques used in the standard model of electroweak and
strong nuclear interactions, in fact the main tools of the standard model are
the Feynman diagrams, which − for short − amount to operate some pertur-
bations on a distinguished, externally prescribed structure: the Minkowski
space! Even though the standard model describes in a spectacular way all the
interactions except gravity, the manifest violation of the equivalence principle
(which, mathematically speaking, is contained in the diffeomorphism invari-
ance of Einstein’s equations) is clearly unacceptable when the force of gravity
becomes as important as the other forces. This is the physical reason why
people working on loop quantum gravity reserve so much importance on the
background-independence of the whole formalism.

Before starting to describe in detail the framework of canonical loop quan-
tum gravity I present a short chronological account of the most important
steps in the construction of this theory.

4.2 A brief history of loop quantum gravity

Two classical references for the chronological evolution of canonical loop
quantum gravity are [42] and [90].

1986 Historically, the very beginning of canonical loop quantum gravity re-
lies of the fundamental article of Ashtekar [4] of 1986, in which, as
already said in the first chapter, he discovered that only the self-dual
part of the connection appearing in the Palatini action is necessary to
derive, with variational techniques, the Einstein equations describing
gravity at a classical level. In term of Ashtekar’s ‘new variables’ (as
it was custom to say at that time) the constraints of general relativity
greatly simplify, becomes closed under Poisson bracket and function-
ally easier than in every other formalism. This fact attracted many
researchers in the attempt to canonically quantize gravity;

In the same year Gambini and Trias pointed out in a systematical way
in [43] the usefulness of Wilson loop functions in the non-perturbative
quantization of gauge theories. The Wilson functions appeared the
first time in the physical literature in a pioneering article of Wilson
[96] about quark confinement in quantum chromodynamics. Inspired
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by an article of Giles [44] of 1981, Gambini and Trias showed that, for
Yang-Mills theories with compact gauge group, the Wilson functions
capture the full gauge-invariant information of connections (we will be
more rigorous and clear later about this very important argument);

1990 Rovelli e Smolin rediscovered the ideas of Gambini and Trias and ap-
plied them to construct (formal) diffeomorphism-invariant states of
canonical quantum gravity with the help of a generalization of the
Fourier transform called ‘loop transform’;

1992 This year is fundamental for loop quantum gravity. In fact Ashtekar
and Isham in [6] constructed the first prototype of quantum configura-
tion space for gravity by extending the concept of smooth connection to
a distributional object called ‘generalized connection’. To obtain this
result they used powerful techniques of C∗-algebras theory, this was a
great intuition, because in the following development of loop quantum
gravity the C∗-algebraic formalism has been proved to be very helpful;

1994-1995 In these years Ashtekar, Lewandowski, Marold and Mourão man-
aged to construct in a rigorous way a faithful probability measure on
the quantum configuration space proposed by Ashtekar and Isham with
the help of projective techniques: [7], [66]. This is one of the most
important results on the mathematical side of loop quantum gravity,
since with that measure the authors were able to endow with an in-
ner product the quantum configuration space, thus constructing the
Hilbert space of kinematical states of quantum gravity. Moreover, the
measure turned out to be invariant under both gauge transformations
and spatial diffeomorphisms, this lead to the construction of (rigor-
ously defined) diffeomorphism-invariant states with the help of a (no
more formal) loop transform. Finally the projective techniques were
used also to endow the quantum configuration space with a differential
structure, which enabled to perform differential and integral calculus
on it; see [8], [9];

1995 The fundamental role of Wilson functions in a non-perturbative quan-
tization program were firmly clear. The major problem with these
functions was their non-independence (overcompleteness), because of
Mandelstam identities. Rovelli and Smolin, inspired by a pioneering
work of Penrose [74], were able to find out independent functionals of
connections, later called spin network states. Baez then showed in [16]
and [17] that spin network states are enough to form an orthonormal
basis of the Hilbert space of kinematical states of quantum gravity;
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1995-1996-1997 Rovelli and Smolin derived in [82] volume and area opera-
tors for quantum gravity, showing that they have a discrete spectrum,
i.e. area and volume, at the Planck scale, are quantized! This out-
standing result was successively confirmed by the works of Loll [62]
Ashtekar and Lewandowski [10], [11].

2000 As already said, in absence of direct measurements of the quantum
nature of spacetime at the Planck scale, one of the possible tests of
quantum gravity is the computation of Hawking-Bekenstein black holes
entropy. This calculation was done in [5] and shown to be in agreement
with the known result of Hawing-Bekenstein entropy, thus giving the
first indication that loop quantum gravity can be physically consistent.

The items above describe only some of the most important results in the
construction of canonical loop quantum gravity, the quoted works correspond
to the knowledge and the taste of the author. Obviously many other non-
quoted works are important as well and the research in canonical quantum
gravity is still under investigations in many areas.

Now we want to explore in a systematic way each of the steps presented
above. Since we have already described Ashtekar’s formulation of gravity, the
next step is the introduction of the Wilson loop functions to develop a non-
perturbative quantization of gauge theories. The researches on loop quantum
gravity have shown that the structure of the loops to which the Wilson
functions correspond have a dramatic consequence on the whole theory, for
this reason it is worthwhile to start with a wide discussion of the various
loops and loop groups available in literature.

4.3 Loops, paths and graphs embedded in a

manifold

In this section P (M,G) will denote a principal bundle in which the base
manifold M is taken to be an ordinary manifold of dimension dim(M) > 1
equipped with a fixed real analytic structure. The choice of this structure is
due to the fact that, at the time of writing, the most important results in
the developments of the loop quantization necessitate the use of piecewise
analytic loops in M . An investigation of the pure smooth case has been
performed in [22], [23] and [60]. Anyway the relation between the smooth
and the real-analytic differential structures is as nice as possible: every ordi-
nary smooth manifold admits a real analytic structure unique up to smooth
diffeomorphisms.
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It is worth remembering some terminology about paths and loops: a path
in M is a continuous and piecewise C1 map of the form:

γ : [a, b]→M

[a, b] ⊂ R is called domain of parameterization of γ.
A closed path in M , i.e. a path for which γa = γb, is commonly called

loop in M .
γ is said to be analytic on [a, b] if it is the restriction of an analytic map

defined on an open set containing [a, b].
γ∗ will indicate the image of the path γ, that is the subset of M given by

{γt ∈M | t ∈ [a, b]}.
An arc of γ is any subset γ∗i ⊂ γ∗ such that γ∗i is the image of an analytic

restriction γi : [ti, ti+1]→M of γ.
The composition of two paths, say γ1 : [a, b]→M and γ2 : [c, d]→M ,

is subjected to two conditions, in fact it can be defined only when b = c and
γ1(b) = γ2(c); if this is the case then the composed path is γ1γ2 : [a, d]→M ,
defined by

γ1γ2(t) :=

{
γ1(t) t ∈ [a, b]
γ2(t) t ∈ [c, d]

thus γ1γ2 is simply the path obtained travelling first the path written on the
left and then the path written on his right. Observe that this convention is
opposed to that commonly used to define composition of functions!
For this reason the composition of functions will be indicated by the symbol
◦ and the composition of paths will be denoted simply by juxtaposing the
paths in the order shown above.

The composition of many paths is defined in an analogous fashion.
The inverse path γ−1 is simply the path γ travelled in the opposite

direction, that is

γ−1 : [a, b]→M, γ−1(t) := γ(a+ b− t) .

The set Path given by the whole collection of paths in M equipped with
the composition law defined above is a groupoid, that is, roughly speaking,
a semigroup with composition law not always defined. More rigorously a
groupoid is defined to be a set Λ endowed with a binary operation (indicated
with the juxtaposition of its elements) satisfying the following properties:

• for every element λ ∈ Λ there exists an element λ−1 ∈ Λ, called its
inverse, such that r(λ) := λλ−1 and l(λ) := λ−1λ exist and are the
right and the left unit of λ, respectively;
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• for every λ, η ∈ Λ, the product λη is defined if and only if r(η) = l(λ);

• when defined, the product is associative.

If U(Λ) denotes the set of the units of Λ, i.e. the collection of all the elements
of the form λλ−1, for some λ ∈ Λ, it is obvious that a groupoid Λ is a group
if and only if U(Λ) is a singleton.

There is an important concept concerning the parameterization of a path:
given two paths γ and η in M with domains [a, b] and [c, d], respectively, if
there exists a diffeomorphism τ : [a, b]→ [c, d] such that

M M

γ

x xη
[a, b] −−−→

τ
[c, d]

i.e. γ(t) = η(τ(t)), ∀t ∈ [a, b], then the paths γ and η are said to be one the
reparameterization of the other. It is obvious that two reparameterized
paths have identical image, but the same point on the common image is
reached for different values of the parameter t.

Since τ is a real diffeomorphism, it must be monotone and this leads to
the following classification:

• if τ is a growing function then γ and η are said to have the same
orientation;

• if τ is a decreasing function then γ and η are said to have opposite
orientation.

It is easy to see that the relation “orientation-preserving reparameteriza-
tion” is an equivalence relation in the set of all path in M , thus it is well
posed the following definition.

Def. 4.3.1 An oriented path in M is an equivalence class of paths in M
w.r.t. the equivalence relation “orientation-preserving reparameterization”.

For oriented paths it is usual to choose as domain of parameterization
the real closed interval [0, 1], this choice is possible by virtue of the diffeo-
morphism

[a, b] −→ [0, 1]
t 7→ t−a

b−a .

There is a natural equivalence relation on the set of oriented paths which
will be very useful in the sequel. Its definition necessitates the introduction
of the concept of immediately retraced path.

84



Def. 4.3.2 A path γ is said to be immediately retraced if it can be written
as γ =

∏
i γiγi

−1, for some paths γi in M .

The following equivalence relation on the set of oriented paths in M was first
introduced by Chen.

Def. 4.3.3 Two oriented path γ1, γ2 are said to be elementary equiva-
lent, γ1 ∼el γ2, if one is obtained from the other by composition with an
immediately retraced path γ, i.e. γ1 = γ2γ.

It is worth noting that in every elementary class of paths there is only one
representative free from immediate retracing, this representative is the path
for which the immediately retraced path γ is the constant path in the ending
point of the path itself (for all the other representatives γ is not trivial). This
path is taken to be the canonical representative of the elementary equivalence
class to which it belongs.

For the purposes of the loop quantization it will be seen that it is very
important to have at one’s hand the definition of finite graph embedded in a
manifold, or simply graph, this needs the concepts of edge and vertex, which
are introduced below.

Def. 4.3.4 An edge in M is a continuous map e : [0, 1]→ M such that its
restriction ẽ ≡ e|(0,1) is an analytic embedding1 of (0, 1) in M .

The vertexes of an edge are its starting and ending point, that is e(0) ≡
s(e) and e(1) ≡ t(e), also called source and target, respectively. A vertex
is called n-valent if there are n edges meeting in it. Obviously n is called
the valence of the vertex itself.

It is not possible to define the vertexes of an edge without choosing a
parameterization because every representative in the class has, in general,
different source and target, due to the reparameterization.

Def. 4.3.5 A graph in M is the union of a finite family of images of edges
intersecting only in their vertexes. A graph is said to be connected if the
source of every edge is the target of another one.

The usual symbol to denote a graph is Γ; the number of edges and vertexes
of Γ will be indicated by EΓ and VΓ, respectively.

The following result is of essential importance:

1This means that ẽ is analytic and injective, with injective tangent map and ẽ∗ is a
submanifold of M w.r.t. the topology inherited by M .
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Theorem 4.3.1 For any piecewise analytic path (resp. loop) γ in M , its
image γ∗ is a graph (resp. connected graph) in M .

Proof. Suppose first that γ is globally analytic, then its tangent map is injec-
tive but, at least, in a finite number of points, thus γ is a local embedding.

Moreover [0, 1] is compact and γ is continuous, thus γ∗ is also compact
and so it can be covered by a finite number of open analytic submanifolds
of M given by some opportune arcs γi

∗. The easiest way to obtain these
arcs is to chose a partition of [0, 1] and to consider the restriction of γ to the
subintervals.

Thanks to the assumption of analyticity, the arcs γi
∗ intersect only in a

finite number of point or they agree, hence the covering of γ∗ can be refined
by taking all the arcs which intersect themselves only in the extreme points.

This arcs clearly become the edges of the graph γ∗ and their points of
intersections become its vertexes.

If γ is only piecewise analytic, then the arguments above work again on
every piece on which the path is analytic. 2

In the proof of the theorem it has been shown that the graph associated
to a piecewise analytic path is not uniquely defined, in fact it depends on the
partition of [0, 1] which leads to the covering of γ∗. Obviously the graph is
fixed when this partition is chosen.

The result just proved will be very useful in the sequel, hence we make
the following: the paths considered in the sequel will always assumed
to be piecewise analytic. The developing of a theory which uses piecewise
smooth paths, instead of the analytic ones, is still under investigation.

Now we leave the generic paths and we put our attention on the loops,
which will be indicated with α, β, . . . . All the loops will be based on the
same point ? ∈M , unless otherwise specified.

The first fact to stress is that one can easily define a law of composition
between two loops α and β in this way

(αβ)(t) :=

{
α(2t) if t ∈ [0, 1

2
]

β(2t− 1) if t ∈ [1
2
, 1]

but this law doesn’t give to the set of loops the structure of a group, in fact
the composition between a loop α and its “inverse”

α−1 : [0, 1] −→ M
t 7→ α−1(t) := α(1− t)

is an immediately retraced loop, but it doesn’t agree with the constant loop
?, which is obvious to take as the unit loop. Hence the set of all loops in M
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based on ? with the composition law defined above is a semigroup with unit
?, usually denoted with Ω?(M), and not a group.

It is obvious that to give the group structure to the set of loops one has
to take the quotient w.r.t. an equivalence relation which puts the loops of
the type αα−1 in the same class of the unit loop ?.

A natural equivalence relation to get this is the already defined elementary
equivalence, in fact αα−1 ∼el ? ⇔ ∃ γ, immediately retraced path, such that
αα−1 = ?γ, but such γ do exists and it is simply αα−1!

Thanks to this arguments the following definition has perfectly sense.

Def. 4.3.6 The set of all classes of elementary equivalence of loops in M
based on ? with composition law given by [α]el[β]el := [αβ]el is a group called
the group of loops and it is denoted by L?(M).

Obviously the unit of L?(M) is [?]el and the inverse of [α]el is [α−1]el. For
shortness the class [α]el will be identified with its canonical representative α.

The next step is to define the concepts of independent and simple loops.

Def. 4.3.7 An oriented arc l of a path γ is said to be simple if t1 6= t2
implies l(t1) 6= l(t2), ∀t1, t2 ∈ [0, 1], i.e. l doesn’t intersect itself (equivalently,
the set l−1(x) is a singleton ∀x ∈ l∗).

α ∈ L?(M) is said to be a simple loop if in its elementary equivalence
class there exists a representative which admits a simple arc.

A finite family {βi}(i = 1, . . . , n) ⊂ L?(M) is said to be independent
if every βi admits a simple arc li such that li ∩ βj∗ = ∅ ∀i 6= j, i.e. every
loop of the family has a simple arc which doesn’t intersect the images of the
other loops of the same family. The βi’s are said to be independent loops.

A very easy example of independent family of loops is the following: take
M ≡ R2 and take γ+,γ− to be the upper and the lower half unit circle in R2,
respectively. It is obvious that {γ+, γ−} is an independent family. Instead
the family {γ, γ+, γ−}, with γ ≡ S1, is not independent, because every arc of
γ intersect γ+ or γ− or both of them.

The importance of the notion of independence between loops is motivated
by the next theorem.

Theorem 4.3.2 Every α ∈ L?(M) is the composition of a finite family of
simple independent loops.

Proof. For simplicity fix the canonical representative α of an elementary class
of loops in L?(M) and a finite partition of [0, 1]:

0 ≤ a1 < b1 < . . . < ai < bi < ai+1 < bi+1 . . . < am < bm ≤ 1
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such that α|[ai,bi] ≡ li is an edge of the graph α∗ and every edge of α∗ is
obtained in this way (we know that such a partition exists by the previous
theorem).

For any fixed edge li, 1 < i < m, take:

• a real analytic path qi− connecting ? with α(ai), the source of li;

• a real analytic path qi+ connecting ? with α(bi), the target of li.

Take also q1
− ≡ ?, qm+ ≡ ? and qi−1

+ ≡ qi−, i = 2, . . . ,m.
Then the collection {βli := qi−li(q

i
+)−1}(i = 1, . . . ,m) is a finite family

of simple independent loops, in fact every arc properly contained in each li
doesn’t intersect any other edge lj, j 6= i, by definition of edge.

For every fixed i one has

· · · βli−1
βli βli+1

· · · = ? · · · li−1 (qi−)−1 qi− li (q
i+1
−)−1 qi+1

− li+1 · · · ?

hence the composition of powers of the loops βli reconstructs α up to im-
mediately retraced loops, i.e. it belongs to the same elementary equivalence
class of α and so the theorem is proved. 2

An easy, but useful, generalization of the last theorem is the following.

Corollary 4.3.1 Given a finite family {α1, . . . , αr} ⊂ L?(M), every loop
of the family can be written as composition of loops belonging to a simple
independent family {β1, . . . , βs} ⊂ L?(M), for a certain integer s ≥ r.

Proof. To every loop αj associate a graph Γj with edges {lji} with the prop-
erty that the edges of two different graphs intersect themselves only in their
vertexes or they coincide (we know that this is always possible by refining
the parameterization of the loops). Now for every loop αj define the simple
independent loops βji as in the proof of the theorem above, then the theorem
follows from the same considerations. 2

By iterating the arguments of the proofs above one has that if the family
{α1, . . . , αr} ⊂ L?(M) is extended to a family {α1, . . . , αr, αr+1, . . . , αr′} ⊂
L?(M) then there is another (in general different) family of simple inde-
pendent loops {β′1, . . . , β′s′} ⊂ L?(M) which decomposes every loop of the
extended family and every loop of the independent family β1, . . . , βs.

Fixed a generic α ∈ L?(M), the more general decomposition of α as a
product of powers of independent loops β1, . . . , βm can be written as:

α = β1
n1,1 · · · βmnm,1β1

n1,2 · · · βmnm,2 · · · β1
n1,k · · · βmnm,k
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where ni,j ∈ Z, for every i = 1, . . . ,m, j = 1, . . . , k. This decomposition will
be used many times in the sequel.

If the elementary equivalence is the most natural, there are two other
important equivalence relations between loops:

1. the thin equivalence;

2. the holonomic equivalence.

The first has a topological nature while the second has a geometrical char-
acter.

The quotient of the group of loops w.r.t. these relations gives rise to other
groups and the structural relations between these groups are very interesting
and useful.

The definition of thin equivalence relies on the concept of thin loop.

Def. 4.3.8 A loop α ∈ L?(M) is said to be thin if it is homotopic to the
constant loop ? with a homotopy having image entirely contained in α∗.

The definition is well posed because the immediately retraced loops are ob-
viously thin, hence there is independence from the particular choice of the
representative in the class [α]el.

Def. 4.3.9 α,β ∈ L?(M) are said to be thin equivalent, α ∼th β, if there
exists a thin loop γ such that α = βγ.

The set of all thin loops is easily recognized to be a normal subgroup of
L?(M) and so it is defined the quotient group L?(M) := L?(M)/Thin?(M) =
{βγ | γ thin, β ∈ L?(M)}.

The definition of holonomic equivalence of loops requires the geometrical
notion of holonomy, to which is entirely dedicated the following section.

4.4 Holonomy and holonomic equivalence of

loops

In this section are presented the definitions and results which lead to the fun-
damental concept of holonomy. This one is then used to define the holonomic
equivalence of loops.

A horizontal lift of a path γ : [0, 1] → M is a path γ̂ : [0, 1] → P
satisfying the following conditions:
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1. lift condition: the following diagram is commutative:

P
π

""
[0, 1]

γ̂

OO

γ
//M

i.e. π(γ̂t) = γt, for every t ∈ [0, 1];

2. horizontal condition: ˙̂γt ∈ Hγt(P ), for every t ∈ [0, 1].

The notion of horizontal lift of a curve is closely related to that of a vector
field, in fact if the vector field X̂ on P is the horizontal lift of a vector field
X on M , i.e. π∗X̂ = X, then the integral curve of X̂ which starts in p0 ∈ P
is the horizontal lift of the integral curve of X which starts in π(p0).

The most remarkable fact about horizontal lift of paths is expressed in
the next theorem.

Theorem 4.4.1 Let (P,M,G, π,R) be a principal fiber bundle and let γ be
a smooth path in M . Then, fixed an arbitrary point p0 ∈ π−1(γ0), there exists
one and only one horizontal lift γ̂ of γ which starts in p0.

Proof. Let us start with the hypothesis that the bundle is trivial, then
P = M × G and a lift of γ which starts in p0 is suddenly individuated
in the path ηt := (γt, e). In fact, thanks to the global trivialization, one has
π(ηt) = pr1(γt, e) = γt, furthermore η0 = (γ0, e) = p0.

If γ̂ is another lift of γ which starts from p0, then the lift condition implies
that γ̂t, ηt ∈ π−1(γt), for every t ∈ [0, 1], hence, since the action of G on P is
free and transitive on the fibers, γ̂ must be of the form γ̂t = ηt.gt, ∀t ∈ [0, 1],
where t→ gt is a path in G starting from e. This initial condition is due to
the fact that γ̂0 = p0 = η0.g0.

Observe now that γ̂t = ηt.gt ≡ R(ηt, gt), ∀t ∈ [0, 1], thus one can consider
γ̂ as the following composition of maps:

[0, 1] −→ P ×G −→ P

t
(η×g)7→ (ηt, gt)

R7→ ηt.gt

so that γ̂ = R ◦ (η × g).
The generalized Leibnitz rule enables to decompose the push-forward of

this map as follows:

(R ◦ (η × g))∗(η̇t, ġt) = (Rgt)∗(η̇t) + (Rηt)∗(ġt).
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Now, γ̂ is a horizontal lift of γ if and only if A(γ̂∗(η̇t, ġt)) = 0, for every
t ∈ [0, 1], i.e. if and only if

0 = A((Rgt)∗(η̇t)) + A((Rηt)∗(ġt)),

but, thanks to the equivariance of A, the first term on the right hand side is
precisely Adgt−1A(η̇t).

Even the second term can be re-written in a more useful way, the func-
torial property of the push-forward implies (Rηt)∗ = (Rηt.gt)∗ ◦ (Lgt−1)∗, and
so

A((Rηt)∗(ġt)) = A((Rηt.gt)∗(Lgt−1)∗(ġt)) = (Lgt−1)∗(ġt)

where the last equality follows from the property of A to reproduce the
generators of the fundamental vector fields.

The quantity (Lgt−1)∗(ġt) is called logarithmic derivative and the map-
ping t 7→ (Lgt−1)∗(ġt) is a curve in g because (Lgt−1)∗(ġt) ∈ Tgt−1gtG = TeG '
g.

The horizontal condition for the lift γ̂ can now be re-written as

0 = Adgt−1A(η̇t) + (Lgt−1)∗(ġt)

or, more explicitly, using the fact that G is supposed to be a matrix group,

0 = gt
−1A(η̇t)gt + gt

−1ġt

i.e.
ġt = −A(η̇t)gt

which is a non-autonomous first-order ordinary linear differential equation in
G, written in the normal form.

The non-autonomy of the equation depends on the fact that A(η̇t) is an
explicitly t-dependent (left-invariant) vector field on G.

Since the path t 7→ gt must satisfy the initial condition g0 = e, the
horizontal condition for γ is actually equivalent to this Cauchy problem:{

ġt = −A(η̇t)gt
g0 = e

hence the theorem of existence and uniqueness guarantees that this problem
admits a unique solution.

If (P,M,G, π,R) is not trivial, then it is locally trivial, hence, fixed a
gauge by the choice of a local section σα, an obvious lift of γ starting from p0 is
γ̂ := σα◦γ, in fact, by definition of section, π(γ̂t) = π(σα(γt)) = idUα(γt) = γt,
for every t ∈ [0, 1].
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It follows that ˙̂γt = (σα)∗(γ̇t) and so γ̂t is horizontal if and only if A( ˙̂γt) =
A((σα)∗(γ̇t)) = σα

∗A(γ̇t) = Aα(γ̇t) = 0.
Hence the differential equation reached in the trivial case projects on Uα

to give the differential equation:

ġt = −Aα(γ̇t)gt.

When the image of the path γ is not contained in a single fibered chart Uα
then it necessitates to consider a collection of fibered charts which cover the
entire image of γ and to operate the same construction as above.

The solutions of the differential equations one reaches fit smoothly in the
intersection of the charts, this is a consequence of the already cited transfor-
mation rule of the local connections for different choice of gauge, i.e.

Aα = Adgαβ(x)−1Aβ + gαβ(x)−1(gαβ)∗ ∀x ∈ Uα ∩ Uβ

from which it follows that Aα(γ̇t) = 0, i.e ġt = −Aα(γ̇t)gt, if and only if
0 = Adgβα(x)−1Aβ(γ̇t) + gβα(x)−1(gαβ)∗, ∀x ∈ Uα ∩ Uβ, and so, in particular,

this relation holds when gαβ(x) = gt, for every value of the parameter t such
that γt ∈ Uα ∩ Uβ, thus

0 = gt
−1Aβ(γ̇t)gt + gt

−1ġt

i.e. ġt = −Aβ(γ̇t)gt. In conclusion, the two differential equations are the
same, or, equivalently, the left-invariant vector fields Aα(γ̇t) and Aβ(γ̇t) are
the same for every t such that γt ∈ Uα ∩ Uβ, which was the last thing to
proof. 2

4.4.1 Parallel transport in a principal fiber bundle

By varying the point p0 in the fiber π−1(γ0), one obtains a map from the
fiber π−1(γ0) to the fiber π−1(γ1), defined obviously by

℘γ,A : π−1(γ0) −→ π−1(γ1)
p 7→ ℘γ,A(p) := γ̂1

being γ̂ the unique horizontal lift of γ which starts in p.
The map ℘γ,A is called the parallel transport relative to the con-

nection A along the path γ and it depends both on A and γ.
The most important properties of the parallel transport are listed below.
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Theorem 4.4.2 Let A be a principal connection on a principal fiber bundle
(P,M,G, π,R) and let γ be a smooth path in M , then the parallel transport
induced by A along γ has the following properties:

1. ℘γ,A is unaffected by orientation preserving reparameterizations of γ;

2. ℘γ,A is equivariant, i.e. it commutes with Rg for every g ∈ G:

℘γ,A ◦Rg = Rg ◦ ℘γ,A, ∀g ∈ G

more explicitly

℘γ,A(p.g) = ℘γ,A(p).g ∀p ∈ P, ∀g ∈ G;

3. ℘γ,A is a diffeomorphism of fibers and its inverse is given by the parallel
transport induced by A along γ−1:

℘γ,A
−1 = ℘γ−1,A;

4. whenever the composite path γη is defined, ℘γη,A = ℘η,A ◦℘γ,A (the rea-
son for the inversion of the order of γ and η is the opposite convention
to compose paths and maps).

Proof.
1. This follows from the fact that in the proof of the existence and

uniqueness of the horizontal lift γ̂ of γ starting from a fixed point only the
direction of γ̇t, as tangent vector, has been used;

2. The equivariance of the parallel transport follows from this general
feature of horizontal lifts:

Lemma 4.4.1 If γ̂′ and γ̂′′ are two arbitrary horizontal lifts of γ : [0, 1] →
M , then it exists a fixed g ∈ G such that

γ̂′′t = γ̂′t.g,

in particular, if γ′ and γ′′ starts in the same point, then g ≡ e.

Proof. In the proof of the theorem 4.4.1, η was an arbitrary lift of γ which
started in the same point of the horizontal lift γ̂, now, instead, γ̂′ and γ̂′′ are
both horizontal lifts of γ, but they doesn’t necessary start in the same point.

By the way, the lift condition imposes again that there must be a path
t 7→ gt in G such that γ̂′′t = γ̂′t.gt, ∀t ∈ [0, 1], hence to prove the thesis of the
lemma it suffices to prove that t 7→ gt is a constant map.
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But this is very easy, in fact by using the generalized Leibnitz rule to the
identity γ̂′′t = γ̂′t.gt and applying the connection A to both members one gets:

A( ˙̂γ′′t ) = Adgt−1A( ˙̂γ′t) + (Lgt−1)∗(ġt)

but γ̂′ and γ̂′′ are both horizontal, thus A( ˙̂γ′′t ) = A( ˙̂γ′t) = 0, for every t ∈ [0, 1],
hence

(Lgt−1)∗(ġt) = 0.

Now, (Lgt−1)∗ is a linear isomorphism and so it vanishes only on the null
tangent vector, i.e. ġt = 0 ∀t ∈ [0, 1] and so t 7→ gt is a constant path in G.
2

Thanks to this result the proof of the equivariance of the parallel transport
is very easy, in fact it suffices to specialize γ̂′ to be the horizontal lift of γ
which starts in p0 ∈ π−1(γ0) and γ̂′′ to be the horizontal lift of γ which starts
in p0.g ∈ π−1(γ0), then

p0.g = γ̂′′0 = γ̂′0.g = p0.g

and, thanks to the lemma, γ̂′′1 = γ̂′1.g (the same g).
By definition ℘γ,A(p0.g) = γ̂′′1 = γ̂′1.g = ℘γ,A.g .
3. First of all it has to be proved that ℘γ,A is a bijection with inverse

given by ℘γ−1,A. This is trivial, in fact γ̂−1
0 = γ̂1 and γ̂−1

1 = γ̂0 thus

℘γ−1,A(℘γ,A(p0)) = ℘γ−1,A(γ̂1) = ℘γ−1,A(γ̂−1
0 ) = γ̂−1

1 = γ̂0 = p0

where in the third passage it has been used the definition of the parallel
transport along γ−1.

Analogously one proves that ℘γ,A(℘γ−1,A(p0)) = p0.
This shows that ℘γ,A is a bijection between fibers, furthermore it is con-

structed by smooth horizontal lifts of smooth curve and so it is itself smooth
with smooth inverse, i.e. a diffeomorphism.

4. As a consequence of our definition of composition of paths, γ̂η0 = γ̂0 ≡
p0 ∈ π−1(γ0), γ̂η1 = η̂1 ∈ π−1(η1), γ1 = η0 and γ̂1 = η̂0, hence, by definition,
℘γη,A(p0) = η̂1.

Furthermore, ℘η,A(℘γ,A(p0)) = ℘η,A(γ̂1) = ℘η,A(η̂0) := η̂1.
Thus ℘γη,A(p0) = η̂1 = ℘η,A(℘γ,A(p0)), for every fixed p0 ∈ π−1(γ0). 2

4.4.2 Holonomy and holonomy groups

If, instead of generic paths, one fixes the attention on loops, always denoted
as α or β in the sequel, then the concept of holonomy arises naturally.
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In fact, for a loop α ∈ Ω?(M), the starting and the ending point are both
?, thus the parallel transport ℘α,A is an automorphism of the fiber π−1(?).

By varying the loop α in Ω?(M) one gets the set

H? := {℘α,A | α ∈ Ω?(M)}

which, thanks to the properties of the parallel transport examined above,
becomes a group when it is endowed with the composition law

℘α,A ◦ ℘β,A = ℘βα,A

so that ℘α,A
−1 = ℘α−1,A and the unity is ℘?,A.

The group H? is called the holonomy group of the connection A in
the point ?.

If Ω0
?(M) denotes the set of the loops homotopic to the constant loop ?

in M , then the subgroup of H? defined by

H0
? := {℘α,A | α ∈ Ω0

?(M)}

is called the restricted holonomy group of the connection A in the
point ?.

Obviously, if M is simply connected then H? ≡ H0
?.

The following discussion will be focused only on the holonomy group,
analogous results holds even for the restricted holonomy groups.

The first remarkable fact about the holonomy group is that it can be
conveniently represented as a subgroup of the structural group G.

Theorem 4.4.3 Let H? be the holonomy group of a connection A on a
principal fiber bundle P (M,G) in the point ? ∈ M . Then, fixed a point
p ∈ π−1(?), the map

jp : H? −→ Hp ⊂ G
℘α,A 7→ jp(℘α,A) := HA(α)

with HA(α) defined by the equation

℘α,A(p) := p.HA(α)−1

is a group isomorphism.

Proof. Since ℘α,A is a diffeomorphism of π−1(?) into itself and since π−1(?) is
a homogeneous space for G, then it exists one and only one g ∈ G such that
℘α,A(p) = p.g, in the thesis of the theorem this g is indicated by HA(α)−1.
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This observation proofs the bijective nature of jp and so to prove the
theorem it remains only to show that jp preserves the group structures of H?

and G, i.e. that
jp(℘αβ,A) = HA(α)HA(β).

This is very easy, in fact

℘αβ,A(p) = (℘β,A ◦ ℘α,A)(p) = ℘β,A(℘α,A(p))

= ℘β,A(p.HA(α)−1) = ℘β,A(RHA(α)−1(p))

= (℘β,A ◦RHA(α)−1)(p) = (equivariance of ℘β,A)

= (RHA(α)−1 ◦ ℘β,A)(p) = RHA(α)−1(℘β,A(p))

= RHA(α)−1(p.HA(β)−1) = (RHA(α)−1 ◦RHA(β)−1)(p)

= RHA(α)−1HA(β)−1(p) = R(HA(β)HA(α))−1(p)

= p.(HA(α)HA(β))−1

2

From the proof of this last theorem it is obvious that the inversion of
HA(α) in the relation ℘α,A(p) := p.HA(α)−1 is essential in order to make
jp into a isomorphism of groups, if one doesn’t invert HA(α) in the above
relation then jp becomes an anti-isomorphism of groups.

The image of jp in G is called the holonomy group of the connection
A in the point p ∈ P and it is denoted by Hp, in particular the element
HA(α) ∈ G is called the holonomy of A with respect to the loop α.

Alternatively on can define H? to be the image of the map which sends
every loop α in the holonomy of A with respect to it, i.e.

HA : Ω?(M) −→ G
α 7→ HA(α).

Even though HA(αβ) = HA(α)HA(β), for every couple of loops α and
β, HA is not a group homomorphism because Ω?(M) is not a group! It
becomes a group homomorphism when Ω?(M) is quotiented with respect to
an equivalence relation which doesn’t affect the parallel transport. This topic
will be discussed later in this chapter.

Note also that the map

℘A : Ω?(M) −→ H?

α 7→ ℘α,A
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is the only one which makes the following diagram

Ω?(M)

℘A

��

HA

##
H? jp

//Hp

commutative.

4.4.3 Computation of holonomies

Remember the holonomies born as solutions in the ending value of the pa-
rameter t = 1 of the differential equation

ġt = A(α̇t)gt

i.e. HA(α) = g1 (and not g−1 because we have changed the sign to the
equation!). Here A is identified with one of its local expressions to have a
clearer notation.

It has already been remarked that the differential equation above is a
non-autonomous first-order linear differential equation, luckily there is a well
established theory to solve this kind of equations, in the sequel are presented
the most important features of this theory.

Let E be a Banach space with norm ‖ ‖ and let A ∈ B(E), where B(E)
denotes the algebra of the bounded linear operators from E into itself. By
virtue of the inequality ‖An‖ ≤ ‖A‖n, for every n ∈ N, the series

+∞∑
n=0

An

n!

is absolutely convergent in B(E) and thus defines a bounded linear operator
on E which is called the exponential of A:

eA :=
+∞∑
n=0

An

n!

because it agrees with the usual exponential when E ≡ R or C.
A well known property of the exponential of A is that, as the ordinary

real exponential, it satisfies:

d

dt
(etA) = AetA ∀t ∈ [0, 1]
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hence the solution of the Cauchy problem for the curve ξ : [0, 1]→ E defined
by {

d
dt

(ξt) = A(ξt) t ∈ [0, 1]
ξ0 = x

is given by ξt = etAx, ∀t ∈ [0, 1].
Since the operator A is fixed in B(E), the differential equation appearing

in the Cauchy problem above is autonomous.
If one consider instead of a fixed A ∈ B(E) an operator-valued curve,

denoted again with A for simplicity, A : [0, 1]→ B(E), then the equation

d

dt
(ξt) = Atξt t ∈ [0, 1]

becomes non autonomous and its solution is no more given by the exponen-
tial of A but by the so-called temporary-ordered exponential or path-
ordered exponential of the operator-valued curve A.

To easily define this object it’s convenient to put the attention of the
case in which t 7→ At is a step function, i.e. there exists a finite partition
0 = t0 < . . . < tn = 1 of [0, 1] such that A|(ti−1,ti) is constant ∀i = 1, . . . , n,
i.e., ∀t ∈ (ti−1, ti) At ≡ Ai, fixed operator of B(E), for every i = 1, . . . , n.

By defining the norm of the step function A as

‖A‖ := sup
i=1,...,n

‖Ai‖

it can be proved that the completion of the space of these step function with
respect to the topology induced by the norm above, the so-called space of
the regulated functions, contains in particular all the continuous (and
hence all the smooth) curves from [0, 1] to B(E).

Thus if one defines the temporary-ordered exponential for the step func-
tions, then the definition can easily be extended to all the continuous or
smooth maps from [0, 1] to B(E) via uniform limit.

Now, given a step function A : [0, 1] → B(E), its temporary-ordered
exponential is the operator of B(E) defined as follows:

T exp

∫ 1

0

Atdt := e4tnA
n · · · e4t1A1

where 4ti := ti − ti−1, i = 1, . . . , n.
Observe that every factor which appears on the right hand side is the

usual exponential of operators, since Ai is a fixed operator in the interval
(ti−1, ti).
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The reason for the name ‘temporary-ordered exponential’ is obviously due
to the fact that the first operator which acts (i.e. the one at the right) is that
relative to the smallest value of the parameter t, the subsequent operators
follows by increasing values of t, chronologically.

The inequality

‖T exp

∫ 1

0

Atdt− T exp

∫ 1

0

Btdt‖ ≤ emax{|A‖,‖B‖}‖A−B‖

holds whenever A and B are step functions from [0, 1] to B(E), hence the

mapping A → T exp
∫ 1

0
Atdt is uniformly continuous on every bounded

subset of step functions and so it is uniquely extendible to the space of the
regulated functions from [0, 1] to B(E) via uniform limit: if {An}(n ∈ N)
is a sequence of step functions uniformly convergent to the continuous (or
smooth) operator-valued curve A, then

T exp

∫ 1

0

Atdt := lim
n→+∞

T exp

∫ 1

0

An(t)dt.

The most important properties of the T exp are listed below:

1.
(
T exp

∫ 1

0
Atdt

)−1

= T exp
∫ 0

1
Atdt;

2.
(
T exp

∫ 1

s
Atdt

) (
T exp

∫ s
0
Atdt

)
= T exp

∫ 1

0
Atdt, observe the order,

consistent with the chronological growth of t;

3. if t 7→ At is a continuous curve in B(E), then the Cauchy problem for
the path ξ : [0, 1]→ E given by{

ξ̇t = At(ξt)
ξ0 = x

is solved in a unique way by ξt =
(
T exp

∫ t
0
Asds

)
x, for every t ∈ [0, 1].

Finally let us specialize this dissertation to the computation of holonomies:
the Cauchy problem for the curve t 7→ gt given by{

ġt = (A(α̇t))gt
g0 = I

(where now t 7→ A(α̇t) is a curve in g), is solved in a unique way by

gt =

(
T exp

∫ t

0

A(α̇s)ds

)
I
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and so the holonomy of A along the loop α can be written as

g1 = HA(α) = T exp

∫ 1

0

A(α̇s)ds

where we have omitted I, the identity matrix. By expanding the operator
exponentials appearing in the expression of T exp in power series, one reaches
a formula which is very useful for approximated calculus of the holonomies,
often used in gauge theory on lattice:

HA(α) = I +
∫ 1

0
At1dt1 +

∫ 1

0
dt1
∫ t1

0
At2At1dt2 + . . .+

+
∫ 1

0
dt1
∫ t1

0
dt2 · · ·

∫ tn−1

0
Atn · · ·At1dtn + . . . ,

or, equivalently:

HA(α) =
+∞∑
n=0

∫
0≤t1≤...≤tn≤1

Atn · · ·At1dt1 · · · dtn.

In the relativistic theories can be misleading to interpret t as the time-
parameter, hence the time-ordered exponential in such theories is more pre-
cisely called path-ordered exponential and it is indicated with P exp, so
that the holonomy HA(α) is denoted with

HA(α) = P exp

∮
α

A.

4.4.4 The holonomy map

From the properties 1. and 3. of the theorem 4.4.2 it follows that the
holonomy of every loop belonging to the same elementary equivalence class
is the same, so that is well defined the map which assigns to α ∈ L?(M) its
holonomy w.r.t. a fixed connection A, i.e.:

HA : L?(M) −→ G
α 7→ HA(α)

this is called holonomy map.
From the property 3. and 4. of the theorem 4.4.2 one gets the following

properties of the holonomy map:

1. HA(αβ) = HA(α)HA(β) “factorization property” ;

2. HA(α−1) = HA(α)−1.
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Furthermore if A is a flat connection then HA(α) = e, for every α ∈ L?(M).
From the factorization property it follows that the holonomy map is

a homomorphism from the group of loops to the gauge group.
Thus, for unitary gauge theories, where the gauge group G is a sub-

group of the unitary group U(N), HA realizes an unitary representation
of L?(M).

Now the third equivalence relation on the set of loops can be introduced.

Def. 4.4.1 Two loops α and β are said to be holonomy equivalent if they
have the same holonomy w.r.t. every connection, i.e.

HA(α) = HA(β) ∀A ∈ A .

The holonomic equivalence will be indicated by α ∼hol β and a class of
holonomic equivalence of loops will be called hoop.

The quotient of L?(M) w.r.t. the holonomic equivalence gives rise to a
group called the hoop group and indicated with

H?(M,G) ≡ L?(M)/ ∼hol .

The term “hoop” is the abbreviation of “holonomic equivalence class of
loops”. By definition, to every representative of a given hoop there corre-
sponds the same holonomy, hence the holonomy map factorizes to a homo-
morphism between H?(M,G) and G by the position: HA|H?(M,G) ([α]hol) :=
HA(α), for an arbitrary representative α in the hoop [α]hol.

For simplicity, the notation [α]hol will be abbreviated by α.
The relations between the three groups L?(M), L?(M) and H?(M,G) is

based on the simple observation that the elementary and thin equivalence
have a topological nature, hence they are independent from the choice of the
gauge group, instead the holonomic equivalence has geometrical character,
thus it can depend on the choice of the gauge group, and in fact, as will be
proved later, it does. This is the reason why in the symbol chosen to denote
the hoop group it appears G.

A second trivial observation is that the elementary equivalence implies
both the thin and the holonomic equivalence, the problem is to understand
if, or under what conditions, the converse is true.

A key step in the analysis of this problem is given by this theorem, see
[1] or [77] for a proof.

Theorem 4.4.4 For every finite family {g1, . . . , gn} ⊂ G, there is a finite
independent family of loops {β1, . . . , βn} ⊂ L?(M) and a connection A such
that

gi = HA(βi) i = 1, . . . , n.

This fact will be called interpolation property.
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Corollary 4.4.1 For every homomorphism H : L?(M)→ G and every finite
family of loops {α1, . . . , αn} ⊂ L?(M) there exists a connection A such that

H(αi) = HA(αi) i = 1, . . . , n .

In other words, the action of an algebraic homomorphism from L?(M) to G
on a finite family of loops is identical to that of a certain holonomy map.

Proof. It is sufficient to factorize every loop of the finite family {α1, . . . , αn}
as the product of certain independent loops {βj}. In fact, by defining
gj := H(βj) and applying the last theorem there exists a connection A ∈ A
such that HA(βj) = gj for every j. As a consequence of the factorization
property of the holonomy map it follows that H(αi) = HA(αi) i = 1, . . . , n.
2

The theorem that describes the relations between the loop groups can be
stated as follows.

Theorem 4.4.5 The following assertions hold:

1. if G contains a subgroup isomorphic to SU(2) then H?(M,G) is iso-
morphic to L?(M);

2. L?(M) and L?(M) are always isomorphic.

I stress that the theorem contemplates the gauge theories with G =
SU(N) (and so the Yang-Mills theories), but not the case G = U(1) (or,
generally, G Abelian) and in fact L?(M) 6= H?(M,U(1)) because the last
group is Abelian, while the first and the second aren’t.

4.5 The role of the holonomy in gauge theory:

Kobayashi’s representation theorem

In this chapter is investigated the equivalence between gauge-equivalence
classes of connections and conjugation classes of holonomy maps, this equiv-
alence will show the great importance of the holonomies in the modern for-
mulation of gauge theories.

The representation theorem deals with this problem: is it possible to
know the connection which induces a holonomy map by knowing only the
action of this map on the group of loops? The answer is negative for a
single connection, what is true is that there is a one-to-one correspondence
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between holonomies and the set of connections modulo some special kinds of
gauge transformations. More important, the conjugation classes of holonomy
maps are in one to one correspondence with the gauge equivalence classes of
connections, as proved for the first time by Kobayashi [56] in 1954 (see also
[70] for a modern review of Kobayashi’s work).

To make this assertions precise let us introduce the normal subgroup G?
of G given by the gauge transformations on P which act as the identity on
the fiber over the point ? ∈M .

The first result which leads to Kobayashi’s reconstruction theorem is the
following.

Lemma 4.5.1 Let P ≡ P (M,G) and P ′ ≡ P ′(M,G) be two principal bun-
dles with the same base and gauge group but not necessary equal total spaces.
Let also A and A′ be two connections of P and P ′, respectively. Finally fix a
point ? ∈M and two arbitrary points p0 ∈ P?, p′0 ∈ P ′?.

Then HA = HA′ if and only if there exists a G-equivariant isomorphism
ϕ : P → P ′ which induces the identity on M and such that:{

ϕ∗A′ = A
ϕ(p0) = p′0 .

Proof.
⇐ : suppose that there exists an isomorphism ϕ with the required prop-

erties, then it would map A-horizontal paths in P into A′-horizontal paths
in P ′ making the following diagram:

P ′?
℘α,A′−−−→ P ′?

ϕ

x xϕ
P? −−−→

℘α,A
P?

commutative, i.e. ϕ(℘α,A(p0)) = ℘α,A′(ϕ(p0)) for every fixed point p0 in P?.
Moreover, by definition of parallel transport and thanks to the equivari-

ance of ϕ one would have ϕ(℘α,A(p0)) = ϕ(p0.HA(α)−1) = ϕ(p0).HA(α)−1 =
p′0.HA(α)−1.

Furthermore ℘α,A′(ϕ(p0)) = ℘α,A′(p
′
0) = p′0.HA′(α)−1.

The commutativity of the diagram implies that p′0.HA(α)−1 = p′0.HA′(α)−1,
and so, because of the freedom of the action, HA′(α) = HA(α), for every
α ∈ L?(M), hence HA = HA′ .

⇒ : suppose now that HA = HA′ , then one has to show that it exists a
G-equivariant isomorphism with the properties listed in the thesis.
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First of all observe that, for every g ∈ G, the map

ϕ? : P? −→ P ′?
p0.g 7→ ϕ?(p0.g) := p′0.g

is a G-equivariant diffeomorphism, thanks to the fact that the action of G is
free and transitive on the fibers.

Remember also that, fixed an arbitrary path γ starting in ? and ending
in any other fixed point x ∈ M , the parallel transport along γ associated
to every connection is also a G-equivariant diffeomorphism, hence the map
ϕx : Px → P ′x, ϕx := ℘γ,A′ ◦ ϕ? ◦ ℘γ,A−1 is the composition of G-equivariant
diffeomorphisms and so it is a G-equivariant diffeomorphism itself.

The construction is resumed by the following commutative diagram

Px
ϕx−−−→ P ′x

℘γ,A

x x℘γ,A′
P? −−−→

ϕ?
P ′? .

ϕx is independent from the choice of the path γ, in fact the contribution
of γ is contained only in the parallel transports ℘γ,A′ and ℘γ,A

−1 but these
produces two elements in G which are one the inverse of the other, because
we are working in the hypothesis that HA = HA′ .

It follows that the map ϕ : P → P defined by ϕ |Px := ϕx, ∀x ∈ M , is a
G-equivariant isomorphism ϕ : P → P which projects on the identity of M
through the relation 1.1, this follows immediately from the fact that every ϕx
has domain and range in a fiber over the same point x (although in different
total spaces).

By construction ϕ ◦ ℘α,A = ℘α,A′ ◦ ϕ and, thanks to the properties of the
parallel transport, ϕ∗A′ = A.

Hence ϕ has all the properties required in the thesis of the theorem. 2

If, in particular, one chooses P ′ = P , then one has to fix only the point
p0 ∈ P? and so ϕ acts as the identity on the fiber P?. Hence the lemma just
proven asserts that HA = HA′ if and only if A and A′ are related each other
by a gauge transformation ϕ ∈ G?, hence:

A/G? ' HomP (L?(M), G),

where HomP (L?(M), G) denotes the subset of Hom(L?(M), G) given by the
holonomy maps, thus the orbits of A w.r.t. G? are faithfully represented by
their corresponding holonomy maps.

As an immediate corollary one has the following result.
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Corollary 4.5.1 A choice of a trivialization in a given point ? ∈M enables
the identification of a connection with its holonomy map along a loop based
in ?; analogously, a trivialization in the starting and the ending point of a
path in M enables the identification of a connection with its parallel transport
along the path.

The previous result can be refined as stated below.

Lemma 4.5.2 Let the hypothesis of the previous lemma be satisfied, then
it exists a G-equivariant isomorphism ϕ : P → P ′ inducing the identity on
M and satisfying ϕ∗A′ = A if and only if both the following conditions are
satisfied:

1. there exists a G-equivariant map ϕ? : P? → P ′?;

2. HA′(α) = Adg−1HA(α), ∀α ∈ L?(M), where g is the only element of G
such that: p′0 = ϕ(p0).g .

Proof.
⇒ : first of all observe that, by definition of holonomy, ℘α,A(p0) =

p0.HA(α)−1, hence ℘α,A(p0).HA(α) = p0.HA(α)−1HA(α) = p0. Suppose now
that there exists a map ϕ with the required properties, then ϕ? can be defined
simply as the restriction of it to the fiber P? and

p′0 := ϕ(p0).g = ϕ(℘α,A(p0).HA(α)).g = ϕ(℘α,A(p0)).HA(α)g

but, as in the proof of the previous lemma, one finds that ϕ(℘α,A(p0)) =
℘α,A′(ϕ(p0)), hence

p′0 = ℘α,A′(ϕ(p0)).HA(α)g = ℘α,A′(p
′
0.g
−1).HA(α)g =

= ℘α,A′(p
′
0).g−1HA(α)g = p′0.HA′(α)−1g−1HA(α)g .

Writing p′0 = p′0.e one has: p′0.e = p′0.HA′(α)−1g−1HA(α)g it follows that
e = HA′(α)−1g−1HA(α)g, but then HA′(α) = g−1HA(α)g for every loop.
⇐ : suppose that there exists a G-equivariant map ϕ? : P? → P ′? and that

HA′(α) = g−1HA(α)g for every loop, then, for any path γ such that γ(0) = ?
and γ(1) = x, define ϕx : Px → P ′x , ϕx = ℘γ,A′ ◦ ϕ? ◦ ℘γ,A−1. Following the
same arguments of the proof of the previous lemma one easily obtains the
thesis. 2

As a particular case of the last lemma one can take P ≡ P ′, then ϕ
becomes a gauge transformation Φ and the next, important, theorem follows
immediately.
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Theorem 4.5.1 (Representation theorem) Let A and A′ be two connec-
tions on a principal fiber bundle P (M,G), then it exists a gauge transforma-
tion Φ of P such that

A = Φ∗A′ (i.e. A and A′ are gauge-equivalent connections)

if and only if there exists g ∈ G such that HA′(α) = Adg−1HA(α), ∀α ∈
L?(M).

The representation theorem can be synthetically symbolized as:

A/G ' HomP (L?(M), G)/AdG .

As discussed in chapter 1., A/G is the configuration space of the gauge
theories, thus the representation theorem shows the remarkable fact that

the physically distinct configurations of the classical gauge
theories are in one-to-one correspondence with the conjugation

classes of holonomy maps.

4.6 The Wilson functions

A step of paramount importance for the development of the loop quantization
of gauge theories is the recognition of a separating set of gauge-invariant
functions of connections.

If the gauge group of a gauge theory is U(N) or SU(N), this functions
happen to be the Wilson functions, also known in lattice gauge theory as
Wilson’s loop. The reason of this name relies in the fact that every Wil-
son function Tα is labelled by a loop α in M and it is defined to be the
complex valued function on A/G which maps a gauge-equivalence class of
connections [A] into the normalized trace of the holonomy HA(α), where A
is any representative of [A], i.e.

Tα : A/G −→ C
[A] 7→ Tα([A]) := 1

N
Tr(HA(α))

where Tr means the trace operator taken in the fundamental representation
of the gauge group G.

The definition of Tα is well posed because, if A and A′ are two gauge-
equivalent connections, then the representation theorem assures that there
exist an element g ∈ G such that HA′(α) = g−1HA(α)g, but, thanks to
the cyclic property of the trace, one gets Tr(HA′(α)) = Tr(g−1HA(α)g) =
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Tr(gg−1HA(α)) = Tr(HA(α)). This property is summarized by saying that
the Wilson functions are gauge-invariant.

Since the Wilson functions are labelled by loops, it is worth remembering
that we are dealing with piecewise analytic loops. The regularity of the
loops has many remarkable consequences in the development of the loop
quantization. The analysis of the piecewise smooth regularity is still under
investigation.

Notice that the definition is well posed for loops α belonging to L?(M) ≡
L?(M) and also for loops α belonging to H?(M,G), in fact:

• suppose α ∼el β then there exists an immediately retraced loop γ =∏
i γiγi

−1 such that α = βγ, applying HA and using his factorization
property one has HA(α) = HA(β)

∏
iHA(γi)HA(γi)

−1 = HA(β), hence
Tα = Tβ;

• suppose now α ∼hol β, then, by definition, HA(α) = HA(β) for every
A ∈ A, thus Tα = Tβ.

Observe also that, since the holonomy maps are unitary representations of
the loop group, the Wilson functions induce, by duality, the maps

T [A] : L?(M) −→ C
α 7→ T [A](α) := Tα([A])

which are the normalized characters of the unitary representations of the
loop group given by the holonomy maps.

The Wilson functions belong to Cb(A/G), the continuity follows obviously
from the continuity of the trace and the boundness follows from the fact that
Tr is invariant under the choice of the base w.r.t. the matrix HA(α) is
represented, thus one can choose the base in which HA(α) is diagonal, in this
case Tr(HA(α)) is the sum of the eigenvalues of the matrix, which are all
bounded in absolute value by 1 thanks to the fact that, for any n×n unitary
matrix U , one has U †U = I, i.e.

∑n
k=1 uikujk = δij, hence |Tr(HA(α))| ≤ N

and
‖Tα(A)‖∞ := sup

[A]∈A/G
|Tα([A])| ≤ 1

thanks to the normalization factor.
A very important fact about Wilson functions is that they are subjected

to the so-called Mandelstam identities of the first and the second kind.
The Mandelstam identities of the first kind hold for every gauge group

and they are a simple consequence of the cyclic property of the trace:

Tαβ = Tβα
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for every couple of loops α and β.
The proof is very easy: by using the factorization property of the holon-

omy maps and the already mentioned cyclic property of the trace one has,
for every [A] ∈ A/G, one has:

Tαβ([A]) = 1
N
Tr(HA(αβ)) = 1

N
Tr(HA(α)HA(β))

= 1
N
Tr(HA(α)HA(β)HA(β)−1HA(β))

= 1
N
Tr(HA(β)HA(α)HA(β)HA(β)−1)

= 1
N
Tr(HA(β)HA(α)) = 1

N
Tr(HA(βα))

= Tβα([A]) .

An immediate consequence of the Mandelstam identities of the first kind is
that the Wilson functions are not independent, in fact, although the
loops γ := αβ and η := βα are different, the Wilson functions they induce
are the same.

To discuss the Mandelstam identities of the second kind one has to dis-
tinguish between the monodimensional case, when G = U(1), and the other
situations.

When G = U(1) the Mandelstam identities of the second kind simply
reflect the property that the trace reduces to the identity operator, thus the
factorization property of the holonomy maps extends to the Wilson functions:

Tαβ = TαTβ if G ≡ U(1)

for every loop α and β.
WhenN > 1, the Mandelstam identities of the second kind instead follows

from combinatorial arguments strongly depending on the group structure,
these arguments are quite technical and not very useful for the later purposes,
the only important thing to mention here is that the Mandelstam identities
of the second kind relative to any subgroup of SL(N,C) allow to write down
the product of the traces of N special matrices as a linear combination of
the traces of N − 1 special matrices, see [42] or [43] for the proof.

In particular this result implies that the product of the traces of a finite
number of 2 × 2 special matrices can be written as a linear combination of
the traces of these matrices.

The immediate consequence is that, when G is a subgroup of SL(2,C),
the algebra generated by the Wilson functions agrees with their linear span.

As an example the Mandelstam identities of the second kind for SU(2)
are:

TαTβ =
1

2
(Tαβ + Tαβ−1) if G ≡ SU(2)
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for every loop α and β, as one can easily verify by direct computation using
the Cayley-Klein parameterization of a generic SU(2)-matrix, i.e.(

a b
−b̄ ā

)
where a and b are complex numbers such that |a|2 + |b|2 = 1.

This parameterization also shows that, when G = SU(2), the Wil-
son functions are real-valued, in fact the normalized trace of the generic
SU(2)-matrix above is precisely <(a).

To conclude this section dedicated to the Wilson functions it is worth re-
membering that these ones has been introduced in the mathematical-physics
literature in 1974 by Kenneth Wilson in a pioneering article [96] in which he
used the traces of the holonomy to construct a manifestly gauge-invariant
action of a hyper-cubic lattice gauge theory in the Minkowski space-time
exhibiting the confinement of a static couple of quark and anti-quark.

The confinement of quarks is the name used by physicists to describe the
phenomenon that the quarks never show themselves in a free state, but they
are always observed mixed in the adrons, i.e. composites of quarks with null
color charge.

Wilson studied a couple of quark and antiquark created at the instant
t = 0 at distance R and annihilating at the instant t = τ .

The situation is described, on a hypercubic lattice in Minkowski space-
time, by the so-called Wilson action:

S :=
1

Ng0
2

∑
α

Sα

where α is a rectangle in the lattice of vertexes i, j, k, l and where:

Sα := −tr(UijUjkUklUli)

being g0 the coupling constant of the interaction quark-antiquark and Uij the
parallel transport matrix (w.r.t. a fixed gauge potential Aaµ) relative to the
segment starting in i and ending in j (analogous for the other matrices).

The vacuum expectation value of the Wilson functions in this theory is
given by:

< Tα >:=

∫
1
N
tr(
∏

α Ukl) e
−S ∏

α dµH∫
e−S

∏
α dµH

where:

109



•
∏

α Ukl symbolizes the ordered product of the matrices associated to
the segments composing the loop α in the lattice (the discrete version
of the path-ordered exponential);

•
∏

α dµH represents the product Haar measure (a Haar measure for every
segment which appear in the loop α).

The computation of the binding energy E(R) of the static couple of quark
and antiquark in the strong-coupling approximation (g0 → ∞) and for long
times (τ →∞) within this model is the following:

E(R) ∼ Rlog(g0
2).

This formula shows that the confining potential energy of the couple grows
linearly with the distance R between the particles thus prohibiting their
macroscopic disjoining.

To get more information about the development of this important topic
the interest reader is referred to [61] and [99].

4.7 The overcompleteness of the Wilson func-

tions

In this section it will be proved the overcompleteness of the Wilson functions
by using the abstract theory of topological groups and their representations,
this proof strongly depends on the fact that the gauge group is chosen to be
a unitary (or special unitary) matrix group.

In literature one speaks of overcompleteness to describe the fact that the
Wilson functions can separate the classical degrees of freedom of the gauge
theories, i.e. the elements of A/G, but they are not independent.

Since the Wilson functions induce the normalized characters T [A] of the
representations of the loops groups given by the holonomy maps, if the loop
group was compact then the completeness of the Wilson functions would be
immediate since, for compact groups, the characters are in bijection with the
equivalence classes of representations.

However the loop group is a rather complicated non-compact group, hence
the proof of the completeness of Wilson functions is a non-trivial result.

Let G be an arbitrary group and let U : G → U(H) denote a unitary
representation of G into the group U(H) of the unitary operators on a Hilbert
space H of finite dimension N .
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To every such representation U one can associate its normalized char-
acter, i.e. the map:

τU : G −→ C
g 7→ τU(g) := 1

N
Tr(U(g)).

Two representations U, Ũ of G are said to be equivalent if there exists an
invertible intertwining operator A on H between them, i.e. an invertible
operator A such that Ũ(g) = AU(g)A−1, for every g ∈ G.

From the cyclic property of the trace it follows that two equivalent rep-
resentations U, Ũ have the same normalized character: τU = τŨ .

An equivalence class of unitary representations of G will be indicated by
λ, one of its representative by Uλ and the normalized character of one of its
representatives by τλ.

It is an important fact that, for unitary representations, equivalence
classes and unitary equivalence classes agree, as stated in the following the-
orem.

Theorem 4.7.1 Two unitary representations U and Ũ of G belong to the
same equivalence class if and only if they belong to the same unitary equiva-
lence class.

Proof.
⇐: U and Ũ belong to the same unitary equivalence class if there exists

an unitary intertwining operator A such that Ũ(g) = AU(g)A−1, for every
g ∈ G. The unitary operators are invertible, hence the implication ⇐ is
obvious.
⇒: now assume U and Ũ to be equivalent representations of G with

intertwining operator given by the invertible operator A.
By taking the adjoint of both sides of the intertwining relation one has:

Ũ(g)† = (A−1)†U(g)†A† = (A†)−1U(g)†A†.
Since U(g) and Ũ(g) are unitary operators they satisfy the identities

U(g)† = U(g)−1 and Ũ(g)† = Ũ(g)−1 thus the previous relation can be writ-
ten as: Ũ(g)−1 = (A†)−1U(g)−1A†.

By taking the inverse of both sides one obtains Ũ(g) = (A†)−1U(g)A†,
which, conjugated by AA†, transforms into AA†Ũ(g)(AA†)−1 = AU(g)A−1 =
Ũ(g) so that Ũ(g) commutes with AA†.

Thanks to the spectral theorem this also implies that |A| :=
√
AA† com-

mutes with Ũ(g), hence the polar decomposition of the invertible operator A
can be written as: A = |A|B, where B is a unitary operator.

By substituting this expression of A in the intertwining relation one
gets Ũ(g) = |A|BU(g)(|A|B)−1, i.e. Ũ(g) = |A|BU(g)B−1|A|−1, that is
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|A|−1Ũ(g)|A| = BU(g)B−1. But [Ũ(g), |A|] = 0 hence |A|−1Ũ(g)|A| =
|A|−1|A|Ũ(g) = Ũ(g).

Since B is unitary, the relation Ũ(g) = BU(g)B−1 proves that U(g) and
Ũ(g) are unitary equivalent. 2

Now it is worth introducing the concept of the compact group associated
to any topological group: let G be a topological group and let B(G) be the
space of the bounded complex-valued functions on G.

The left translation by the element g ∈ G defines an action of G on B(G)
given by:

G× B(G) −→ B(G)
(g, f) 7→ Lgf

where Lgf : G→ C, Lgf(h) := f(g−1h), for every h ∈ G.
This action is also well defined, by restriction, on Cb(G), the space of

bounded continuous complex-valued functions on G.
B(G) and Cb(G) are Abelian C∗-algebras w.r.t. the ‖ ‖∞-norm and the

correspondence f → Lgf is an isometry for both of them.

Def. 4.7.1 The left orbit of a function f ∈ B(G) is the closure of the set
{Lgf | g ∈ G} w.r.t. the ‖ ‖∞-norm. It is denoted by Xf .

If Xf is a compact set then f is said to be almost periodic. The set of
all almost periodic functions on G is denoted by A(G).

Standard examples of almost periodic functions are the characters of the
continuous representations of a compact group.

It is obvious that the left translations carry A(G) into itself and acts
isometrically on every orbit Xf , hence the closure of the group of the left
translations in the topology of the punctual convergence, denoted by χ(G),
is a closed subgroup of

∏
f∈A(G) Iso(Xf ), where Iso(Xf ) is the group of the

isometries of Xf , which is a compact Hausdorff group in the topology of
punctual convergence by a standard theorem of topology.

It follows that also χ(G) is a compact Hausdorff group (w.r.t. the in-
duced topology) and it is called the compact group associated to the
topological group G.

It can be proved that the map

χ : G −→ χ(G)
g 7→ χ(g)

where χ(g) := {Lg|Xf , f ∈ A(G)}, is a continuous homomorphism with

dense range.
Furthermore χ(G) has the following universal property ([54]):

112



Theorem 4.7.2 If Φ : G → K is a continuous homomorphism from the
topological group G into the compact group K, then it always exists a con-
tinuous homomorphism ϕ : χ(G)→ K such that the following diagram

χ(G)
ϕ−−−→ K

χ

x xΦ

G G

commutes, i.e. ϕ ◦ χ = Φ.

This results allows to extend a well known theorem involving unitary repre-
sentations of compact groups to unitary representations of every topological
groups.

Theorem 4.7.3 Let G be an arbitrary topological group. Let also U and Ũ
be two continuous unitary representations of G with normalized characters
τU and τŨ . If τU = τŨ , then U and Ũ belong to the same unitary equivalence
class.

Proof. Thanks to the universal property of the compact group associated to
G one can extend every continuous unitary representation U : G → U(N)
of G to the unique continuous unitary representation V : χ(G) → U(N) of
χ(G) that makes the following diagram

χ(G)
V−−−→ U(N)

χ

x xU
G G

commute, i.e. U = V ◦χ. The same considerations holds for Ũ with analogous
notations.

Let TV be the normalized character of V , then ( 1
N
Tr)◦U = ( 1

N
Tr)◦V ◦χ,

i.e. τU = TV ◦ χ and the same thing holds for the normalized character TṼ
of Ṽ .

Thanks to the fact that G is dense in χ(G), τU = τŨ implies TV = TṼ , but
these are the normalized character of continuous representations of compact
groups, hence V and Ṽ are equivalent for a well known result (see for instance
[28] or [88]).

Thanks to the commutativity of the last diagram, this implies that also
U and Ũ are equivalent, hence, by theorem 4.7.1, it follows that V and Ṽ
belong to the same unitary equivalence class. 2

The previous theorem can be generalized to every group G.
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Corollary 4.7.1 Let G be an arbitrary group. Let also U : G → U(N) and
Ũ : G→ U(N) be two unitary representations with normalized characters τU
and τŨ . If τU = τŨ , then U and Ũ belong to the same unitary equivalence
class.

Proof. Endow G with the topology induced by all the unitary representations
G→ U(N) (i.e. the smallest topology which makes them continuous). Then
G becomes a topological group to which the previous theorem applies. 2

The abstract theory developed until now can be specialized to the case
in which the group is one of the loop groups, its unitary representations are
the holonomy maps and their normalized characters are the functions T [A]

induced by duality from the Wilson functions.
With these choices one immediately obtains that every function T [A] uni-

vocally characterizes a conjugation class of holonomy maps, i.e. a point in
HomP (L?(M), G)/AdG, i.e. a gauge equivalence class of connections, hence
the correspondence [A] 7→ T [A] is bijective.

Note, however, that the set {Tα | α ∈ L?(M)} is bigger than the set
{T [A] | [A] ∈ A/G}, because the Mandelstam identities implies that to dif-
ferent loops can correspond identical Wilson functions, hence the first set
contains redundant copies of the same Wilson functions.

An immediate mathematical consequence of the bijection established above
is that for unitary gauge theories, the Wilson functions are separat-
ing on A/G, i.e. [A1], [A2] ∈ A/G, [A1] 6= [A2] implies that there exists at
least a Wilson function Tα such that Tα([A1]) 6= Tα([A2]).

As remarked at the begin of this section, this behavior is often summa-
rized by saying that the Wilson functions form an overcomplete set
of gauge invariant functions.

4.8 The holonomy C∗-algebra Hol(M,G) and

its spectrum A/G
By taking all the linear combinations of finite products of Wilson functions
one gets an unital Abelian algebra w.r.t. punctual multiplication and with
unit element given by the Wilson function associated to the unit loop ? ∈
L?(M), this is the constant function T?([A]) ≡ 1, ∀[A] ∈ A/G.

This is also a ∗-algebra, indicated by hol(M,G), w.r.t. complex conjuga-
tion and it is easy to see that

Tα
∗ = Tα−1 .
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The completion of this ∗-algebra w.r.t. the topology induced by the ‖ ‖∞
norm gives rise to a unital Abelian C∗-algebra called holonomy C∗-algebra
and denoted by Hol(M,G) because it depends both on M and G, but not on
the principal bundle P (M,G), as will be proved later. More rigorously this
is the analytic holonomy C∗-algebra because the loops taken into account are
assumed to be piecewise analytic.

Now it’s useful to remember from chapter 3 that the states of an
Abelian C∗-algebra A are in bijection with the probability mea-
sures on its spectrum σ(A) and that, to every positive measure µ on σ(A)
(alias to every positive functional ϕµ on A) one can associate the so-called
GNS representation, which is given by the correspondence a 7→Mâ, where
Mâ is the multiplication operator on L2(σ(A), µ) defined by Mâψ := âψ, for
every a ∈ A and ψ ∈ L2(σ(A), µ).

From a physical point of view the GNS construction relates the C∗-algebraic
approach to quantum physics to the standard one based on Hilbert spaces.

The abstract results of C∗-algebras theory apply to the holonomy C∗-algebra
Hol(M,G), whose compact Hausdorff spectrum σ(Hol(M,G)) is usually
written A/G for reasons that will be cleared in the next section.

Denoting by Ā the elements of A/G, the Gelfand isomorphism specialized
to the holonomy C∗-algebra can be written as:

ˆ: Hol(M,G) −→ C(A/G)

f 7→ f̂ , f̂(Ā) := Ā(f).

The isometric isomorphism Hol(M,G) ' C(A/G) will be used many times
in the sequel.

In particular note that the Gelfand isomorphism implies that every func-
tion f ∈ Hol(M,G), which is defined on A/G, can be extended in a unique
way to the continuous function f̂ on A/G.

4.9 The dense injection of A/G in A/G and its

algebraic characterization

The results presented in this section has been first discussed by Ashtekar
and Lewandowski in [7], then Baumgärtel encoded their arguments in a more
abstract and rigorous setting (see [26]).

We will follow Baumgärtel’s construction, but working directly on the
concrete objects of the gauge theories instead of treating the problem ab-
stractly.
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Theorem 4.9.1 The map

T : A/G ' HomP (L?(M), G)/AdG −→ σ(Hol(M,G))
[A] 7→ T ([A]) := T[A]

where T[A] is the linear functional on Hol(M,G) defined by

T[A] : Hol(M,G) −→ C
f 7→ T[A](f) := f([A])

is a dense injection of A/G into σ(Hol(M,G)), the spectrum of the holonomy
C∗-algebra.

Proof. The map T is well defined, in fact Hol(M,G) is an algebra un-
der pointwise multiplication, thus T[A](fh) = (fh)([A]) = f([A])h([A]) =
T[A](f)T[A](h), f, h ∈ Hol(M,G). Furthermore it is evident that T[A] is
continuous since it acts as the evaluation map, hence it is a character of
Hol(M,G).

T is injective: if, by absurd, [A], [A]′ ∈ A/G, [A] 6= [A]′, but T[A] = T[A]′ ,
then by definition f([A]) = f([A]′) ∀f ∈ Hol(M,G), but this is absurd
since the Wilson functions are separating on A/G and so there is at least a
Tα ∈ Hol(M,G) such that Tα([A]) 6= Tα([A]′).

Finally, T is dense: if, by absurd, T (A/G) wasn’t dense in σ(Hol(M,G))
then, thanks to Urysohn’s Lemma, there would exist a continuous func-
tion, say F , on σ(Hol(M,G)) which takes the value 1 on some point out-
side T (A/G) and vanish on the entire T (A/G). But this is absurd since
f ∈ C(σ(Hol(M,G))) and f + F would be two different extensions of same
function on A/G, against the fact that the Gelfand transform is an isomor-
phism. 2

Once established this fact one would obviously like to find a simple char-
acterization of the spectrum of the holonomy C∗-algebra. This turns to be
possible, in fact σ(Hol(M,G)) is precisely the set of all algebraic homomor-
phisms H : L?(M) → G, i.e. the set of the generalized connections modulo
AdG-conjugation, in the terminology introduced in 3.2 .

Theorem 4.9.2 Fixed any character ϕ ∈ σ(Hol(M,G)), there is one and
only one AdG-class of algebraic homomorphisms [H]ϕ ∈ Hom(L?(M), G)/AdG
such that: ϕ(Tα) = 1

N
Tr([H]ϕ(α)) ∀α ∈ L?(M), i.e. the map

σ(Hol(M,G)) −→ Hom(L?(M), G)/AdG
ϕ 7→ [H]ϕ,

is an injection.

116



The proof of this theorem is quite technical, the interest reader is referred
to [1].

There are no indications that the injection from the spectrum σ(Hol(M,G))
to Hom(L?(M), G)/AdG established in the previous theorem is also onto,
however, thanks to the interpolation property of the holonomies one can
prove that the correspondence in exam is also surjective.

Theorem 4.9.3 The interpolation condition is a sufficient condition for the
surjectivity of the map σ(Hol(M,G)) ↪→ Hom(L?(M), G)/AdG, which is
actually a bijection.

Proof. The only thing to prove is that, if the interpolation property holds,
then to every element of Hom(L?(M), G)/AdG there correspond a character
on Hol(M,G).

First of all remember that every element of the Wilson algebra hol(M,G)
is a finite sum of the form

p = p0 +
∑
j1

pj1Tαj1 +
∑
j1,j2

pj1,j2Tαj1Tαj2 + . . .

which is called a ‘Wilson polynomial’.
For any given representative H of [H] ∈ Hom(L?(M), G)/AdG, define a

functional ϕH on the set of Wilson functions as:

ϕH(Tα) :=
1

N
Tr(H(α)) ∀α ∈ G

and extend it to the Wilson algebra hol(M,G) by posing:

ϕH(p) := p0 +
∑
j1

pj1ϕH(Tαj1 ) +
∑
j1,j2

pj1,j2ϕH(Tαj1 )ϕH(Tαj2 ) + . . .

To verify that this definition is well posed observe that any given Wilson
polynomial p depends only on a finite number of elements α1, . . . , αr in G,
hence, as a consequence of the interpolation property, there exists a connec-
tion A (in general depending on p) such that

ϕH(Tαk) = ϕHA(Tαk) =
1

N
Tr(HA(αk)) = Tαk(A) k = 1, . . . , r.

Since the Wilson functions are well defined on equivalence classes of connec-
tions (or, equivalently, on unitary classes of holonomy maps), every functional
ϕH is well defined.

The next step is to prove that ϕH is multiplicative and bounded.
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Fix an arbitrary couple p1, p2 of Wilson polynomials and use again
the interpolation property to choose a connection A such that ϕH(αl) =
1
N
Tr(HA(αl)) = Tαl(A) for every αl ∈ G from which p1 and p2 depend.

From the multiplicative character of HA one easily obtains ϕH(p1p2) =
p1(HA)p2(HA) = ϕH(p1)ϕU(p2), thus ϕH is multiplicative.

Furthermore |ϕH(p)| = |p(HA)| ≤ ‖p‖, hence ϕH is also bounded, alias
continuous, so it can be extended in a unique way to a bounded multiplica-
tive functional ϕ on the C∗-algebra obtained by the completion of hol(M,G),
but then ϕ belongs to σ(Hol(M,G)) and the theorem is proved. 2

It is worth noting that Hom(L?(M), G)/AdG is endowed with any partic-
ular topology, this one can be induced from that of σ(Hol(M,G)) only after
their set-theoretical identification through the theorem just proved.

The results just proved can be resumed in the following important theo-
rem.

Theorem 4.9.4 (Ashtekar-Lewandowski-Baumgärtel) Whenever G is
U(N) or SU(N), the spectrum of the holonomy C∗-algebra Hol(M,G) can be
algebraically characterized as the space of all homomorphism from the group
of loops L?(M) to G modulo conjugation:

σ(Hol(M,G)) ' Hom(L?(M), G)/AdG .

Because of the fact that A/G is densely embedded in σ(Hol(M,G)), in lit-
erature it has been chosen the symbol A/G to shortly denote the spectrum
of the holonomy C∗-algebra, so that:

A/G := σ(Hol(M,G)) ' Hom(L?(M), G)/AdG

the elements of A/G will be denoted by Ā and called generalized connec-
tions.

A generalized connection hence can be thought as a character of the
holonomy C∗-algebra or as an algebraic homomorphisms from the group of
loops to the gauge group modulo AdG-equivalence.

Since every connection on every PFB with base M and structure group G
induces a holonomy map which happens to be a homomorphism from L?(M)
to G, the Ashtekar-Lewandowski-Baumgärtel theorem implies that to every
connection on every principal fiber bundle over M with structural
group G corresponds a point in A/G!

Even though this space seems to be ‘too big’ to be interesting, it is ‘small
enough’ to be endowed with a natural probability measure and a rich dif-
ferential structure, these are two of the most important reason which makes
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A/G a natural candidate to the role of quantum configuration space of a
gauge theory.

The algebraic characterization of A/G has this important corollary.

Corollary 4.9.1 Whenever the gauge group G is U(N) or SU(N), Hol(M,G)
doesn’t depend on the principal fiber bundle P (M,G) but only on M and G.

Proof. Since the spectrum A/G of Hol(M,G) is characterized as the set
Hom(L?(M), G)/AdG, it depends only on M and G, because this is the only
dependence of an element of the last space.

The Gelfand isomorphism now reads:

ˆ: Hol(M,G) −→ C(A/G)

f 7→ f̂ ,

f̂(Ā) := Ā(f), thus even Hol(M,G) doesn’t depend on P (M,G) but only on
M and G, since it is isomorphic to C(A/G) which obviously depends only on
M and G. 2

The function f which appear in the previous proof is a Wilson function
or a uniform limit of a sequence of Wilson functions. If f happens to be
a Wilson functions Tα, for a certain loop α ∈ L?(M), then it is possible
to write down the explicit action of its Gelfand transformed T̂α ∈ C(A/G),
T̂α(Ā) := Ā(Tα).

In fact it is sufficient to remember that, as shown in the proof of the
theorem 4.9.3, the character Ā ∈ σ(Hol(M,G)) is in bijection with a AdG-
equivalence class [H] ∈ Hom(L?(M), G)/AdG such that Ā(Tα) = 1

N
Tr(H(α)),

for every fixed representative H ∈ [H], hence:

T̂α(Ā) =
1

N
Tr(H(α)) .

In the sequel, when there won’t be risk of confusion, I shall omit the hat
symbol and denote the functions of Hol(M,G) and their Gelfand transformed
− which are elements of C(A/G) − with the same symbol.

4.10 Projective and inductive limits

Now we examine the projective characterization of A/G. This is a very useful
(and elegant) identification of the spectrum of the holonomy C∗-algebra with
a projective limit.
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This result has clarified the structure of A/G and, most important, has
enabled to construct a non-trivial measure on it, the so-called uniform mea-
sure, which is indispensable for the procedure of quantization of gauge the-
ories that will be described in the following chapter.

Before developing the projective characterization of A/G we give the most
important definitions and results about projective and inductive limits.

The basic definition about projective limits of topological spaces is the
following (for a wider and more complete discussion on projective limits the
interest reader is referred to [35]).

Def. 4.10.1 A projective family of topological Hausdorff spaces is a triple
{Ωj, πij, J} where:

• Ωj is a topological Hausdorff space for every j ∈ J .

• J is a directed set of indexes, i.e. it is endowed with a partial order
relationship ≤ such that

∀i, j ∈ J ∃k ∈ J such that i ≤ k and j ≤ k.

• if i ≤ j then the maps πij : Ωj → Ωi are continuous surjective projec-
tions such that:

1. πjj = idΩj ∀j ∈ J ;

2. if i ≤ j ≤ k then πij ◦ πjk = πik (“consistency relation”).

An element {ωj}j∈J of the cartesian product
∏

j∈J Ωj is called wire if it
satisfies the condition

πijωj = ωi ∀i < j

i.e. if every element of the ordered sequence is obtained from one of the
previous via projection.

The projective limit of {Ωj, πij, J} is the subset of the cartesian product∏
j∈J Ωj given by all its wires, this space is indicated by

Ω ≡ lim←−j∈JΩj .

The maps
πj : Ω −→ Ωj

{ωi}i∈J 7→ πj({ωi}i∈J) := ωj

are called the projections of Ω.
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The projective limit Ω carries a natural topology, called initial topology,
which is the smallest topology w.r.t. the projections πj of Ω are continuous.

A base of this topology is given by the sets
∏

j∈J Uj, where Uj ∈ Ωj is an
open set such that Uj = Ωj ∀j ∈ J but for a finite number of indexes.

In the initial topology the projections are open maps and the projective
limit is closed.

It is easy to proof that if I is a cofinal subset of J , i.e. ∀j ∈ J ∃i ∈ I
such that j ≤ i, then

lim←−j∈JΩj = lim←−i∈IΩi .

Furthermore, if the spaces Ωj are all compact then the projective limit Ω
is a non-empty compact Hausdorff space.

There is a very important class of functions associated to the projective
limit of topological spaces, the class of the cylindrical functions.

Def. 4.10.2 The space Cyl(Ω) of the cylindrical functions on the projec-
tive limit Ω of the family {Ωj, πij, J} is the quotient of the disjoint union∐

j∈J C(Ωj) modulo the equivalence relation defined by: f ∈ C(Ωj), g ∈
C(Ωj′), f ∼ g if there exists an index j′′ such that πjj′′(f) = πj′j′′(g).

Note that, in particular, the cylindrical functions are continuous, by con-
verse it can be easily proved that a continuous function f on Ω is cylindrical
if and only if there exists a function fj ∈ C(Ωj) such that f = fj ◦ πj, if this
is the case then f is said to be cylindrical w.r.t. the index j and one writes
f ∈ Cylj(Ω). Obviously

Cyl(Ω) =
∐
j∈J

Cylj(Ω) .

The map
i : Cyl(Ω) −→ C(Ω)

fj 7→ i(fj) := fj ◦ πj
is an injective homomorphism which embeds Cyl(Ω) in C(Ω).

The final result I want to cite about projective limits is the celebrated
A.Weil’s theorem (see [94]).

Theorem 4.10.1 Every compact group is the projective limit of compact Lie
groups.

The dual construction of the projective limit is the inductive limit. For
the later purposes it is worth introducing the definition of inductive limit
directly on C∗-algebras, the same definition extends to general linear spaces
and algebras. Here the reference is [64].
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Def. 4.10.3 An inductive family of C∗-algebras is a triple {Aα, iβα, A}
where Aα are C∗-algebras and A is a directed set of indexes such that, for
every α ≤ β, there exist continuous injective inclusions iβα : Aα → Aβ

satisfying:

1. iαα = idAα;

2. iγβ ◦ iβα = iγα, whenever α ≤ β ≤ γ.

The inductive limit of {Aα, iβα, A} is, set-theoretically, the quotient of
the disjoint union

∐
α∈AAα modulo the following equivalence relation: a ∈

Aα, b ∈ Aβ, a ∼ b if there exists γ ≥ α, β such that iγα(a) = iγβ(b).
The symbol used to represent the inductive limit is

A ≡ lim−→α∈AAα .

The canonical inclusion of Aα, α fixed in A, in the disjoint union defines, by
quotient, the inclusion map in the inductive limit A, iα : Aα ↪→ A, which
satisfies iβ ◦ iβα = iα for every α ≤ β.

To endow A with an algebraic structure it is necessary to use the following
lemma.

Lemma 4.10.1 Let {Aα, iβα, A} be an inductive family of C∗-algebras with
inductive limit A. Then, fixed n elements {a1, . . . , an} ⊂ A, there exist an
index β and n elements {b1, . . . , bn} ⊂ Aβ such that

ai = iβ(bi) i = 1, . . . , n.

Thanks to the previous lemma one can define the ∗-algebraic structure of
A using that of the ∗-algebras appearing in the family:

λa := iβ(λb)
a1 + a2 := iβ(b1 + b2)
a1a2 := iβ(b1b2)
a∗ := iβ(b∗)

where λ ∈ C, a, a1, a2 ∈ A and b, b1, b2 ∈ Aβ satisfy iβ(b) = a, iβ(b1) = a1

and iβ(b2) = a2.
By endowing A of the finest locally convex topology which makes the ho-

momorphisms iα continuous, called final topology, A becomes a topological
∗-algebra.

It is worth noting that an inductive family of C∗-algebras always
induces a projective family, in fact if {Aα, iβα, A} is such a family then a
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projective family is obtained by associating to every Aα its spectrum σ(Aα)
and to every inclusion iβα, α ≤ β, the restriction of its transposed map to
the spectrum of Aβ, παβ ≡ tiβα|σ(Aβ), where:

tiβα : Aβ
∗ −→ Aα

∗

ϕ 7→ tiβα(ϕ),

is defined in the usual way, i.e. (tiβα(ϕ))(a) := ϕ(iβα(a)), a ∈ Aα.
It is easy to verify that the family {σ(Aα), παβ, A} is a well defined pro-

jective family.
If the Aα are also unital and Abelian then the spectra σ(Aα) are compact

Hausdorff spaces, hence the projective limit lim←−α∈AAα is a non-void compact
Hausdorff space.

The most remarkable fact about this family, which will be used in the
next section to obtain the projective characterization of A/G, is expressed
by the following theorem (Th. 3.43 of [64]).

Theorem 4.10.2 Let {Aα, iβα, A} be an inductive family of Abelian C∗-algebras
with unit. Then its inductive limit A is an Abelian topological algebra with
unit (in the final topology) whose spectrum σ(A) is a compact Hausdorff space
homeomorphic to the projective limit of {σ(Aα), πβα, A}:

A = lim−→α∈AAα ⇒ σ(A) ' lim←−α∈Aσ(Aα) .

4.11 The projective characterization of A/G
In this section it will be shown how A/G can be identified with a projective
limit.

First of all fix the directed set of indexes to be the set of all graphs Γ
in M ordered w.r.t. the natural inclusion and denote it by L. This set is
directed because if Γ and Γ′ belong to L then also Γ ∪ Γ′ belongs to L and
Γ ≤ Γ ∪ Γ′, Γ′ ≤ Γ ∪ Γ′.

Now the idea is to use this directed set to construct an inductive family
of C∗-algebras whose inductive limit is dense in the holonomy C∗-algebra,
then, by using theorem 4.10.2, the desired result will be reached.

To every graph Γ associate the unital Abelian C∗-algebra A(Γ) generated
by the Wilson functions Tα such that α∗ ⊂ Γ for, at least, one representative
loop in [α]el ∈ L?(M).

It is obvious that if f ∈ A(Γ) then f ∈ A(Γ′) for every Γ′ ≥ Γ so that the
inclusions iΓ′Γ are naturally defined by:

iΓ′Γ : A(Γ) ↪→ A(Γ′)
f 7→ iΓ′Γ(f) := f .
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This inclusions satisfy the consistency relations: iΓ′′Γ′ ◦ iΓ′Γ = iΓ′′Γ for every
Γ′′ ≥ Γ′ ≥ Γ.

Moreover the inclusion iΓ : A(Γ) ↪→ Hol(M,G), iΓ(f) := f , satisfies
iΓ = iΓ′ ◦ iΓ′Γ.

Hence {A(Γ), iΓ′Γ, L} is an inductive family of unital Abelian C∗-algebras
whose inductive limit is continuously included in Hol(M,G).

By comparing the definition of inductive limit of the A(Γ) ⊂ C(A/G)
and the definition of the algebra of the cylindrical functions on A/G one
immediately recognizes that the two algebras agree:

lim−→Γ∈LA(Γ) = Cyl(A/G) .

Observe now that the polynomial algebra W generated by the Wilson
functions is contained in Cyl(A/G) hence:

Cyl(A/G) = Hol(M,G) .

If σ(Γ) denotes the (compact, Hausdorff) spectrum of A(Γ), then the theorem
4.10.2 implies that

lim←−Γ∈Lσ(Γ) = σ(Cyl(A/G))

where the projective limit is referred to the family {σ(Γ), πΓΓ′ , L}, with
πΓΓ′ := tiΓ′Γ|σ(Γ′).

The last step before the theorem of characterization ofA/G as a projective
limit is given by the next theorem.

Theorem 4.11.1 The following assertions hold.

1. Let ϕ be a continuous linear functional on Hol(M,G), then its restric-
tion ϕΓ := ϕ|A(Γ) is a continuous linear functional on A(Γ) and the
family {ϕΓ}(Γ ∈ L) satisfies the following conditions:

i) ϕΓ′|A(Γ) = ϕΓ ∀Γ′ ≥ Γ;

ii) the collection {‖ϕΓ‖}(Γ ∈ L) admits a finite maximum.

The property i) is called consistency, the property ii) instead expresses
the uniform boundness of the family {ϕΓ}(Γ ∈ L);

2. If ϕ is a state of Hol(M,G), then ϕΓ is a state of A(Γ), for every
Γ ∈ L;

3. If ϕ is a character of Hol(M,G), then ϕΓ is a character of A(Γ), for
every Γ ∈ L;
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4. By converse, a family {ϕΓ}(Γ ∈ L) of continuous linear functionals
(resp. states, characters) of the C∗-algebras A(Γ) satisfying the condi-
tions i) and ii) of 1. defines a continuous linear functional ϕ (resp. a
state, a character) on Hol(M,G) whose restriction to A(Γ) is precisely
ϕΓ, for every Γ ∈ L.

Proof. 1. The consistency is obvious, the uniform boundness is shown simply
by the observation that for every Γ ∈ L one has:

‖ϕΓ‖ = sup
f∈A(Γ),‖f‖=1

|ϕ(f)| ≤ ‖ϕ‖ < +∞.

2. The norm of the state ϕ is ‖ϕ‖ = ϕ(1) = 1, thus every restriction ϕΓ

is a positive linear functional on A(Γ) and also ϕΓ(1) = ϕ(1) = 1, i.e. ϕΓ is
a state of A(Γ).

3. Obvious, the characters are the multiplicative states.
4. Consider first the polynomial algebra W generated by the Wilson

functions and define on it the functional:

ϕ0 : W −→ C
p 7→ ϕ0(p) := ϕΓ(p)

where Γ is any graph containing all the images of the loops which label the
Wilson functions generating the polynomial

p = p0 +
∑
j1

pj1Tαj1 +
∑
j2

pj1,j2Tαj1Tαj2 + . . . .

The functional ϕ0 is well defined, in fact, thanks to the consistency of the
family {ϕΓ}(Γ ∈ L), if Γ′ is another graph containing the images of the loops
above, then ϕΓ(p) = ϕΓ∩Γ′(p) = ϕΓ′(p).

ϕ0 is linear, in fact if p, q ∈ W then it certainly exists a graph Γ such
that p+ q ∈ A(Γ), hence, thanks to the linearity of ϕΓ on A(Γ):{

ϕ0(p+ q) = ϕΓ(p+ q) = ϕΓ(p) + ϕΓ(q) = ϕ0(p) + ϕ0(q);
ϕ0(λp) = ϕΓ(λp) = λϕΓ(p) = λϕ0(p), λ ∈ C.

ϕ0 is bounded, this follows from the boundness of ϕΓ:

|ϕ0(p)| = |ϕΓ(p)| ≤ ‖ϕΓ‖‖p‖

for every p ∈ W .
Being W dense in Hol(M,G), thanks to the theorem of bounded exten-

sion of bounded linear functionals, ϕ0 can be extended to a unique bounded
linear functional ϕ on Hol(M,G) whose restriction to every A(Γ) is ϕΓ.
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To prove that ϕ is a state when the functionals ϕΓ are states it is pre-
viously necessary to observe that if the functionals ϕΓ are positive for every
Γ then also ϕ is positive. In fact, since W ⊂ Cyl(A/G), then ϕ(p) ≥ 0 for
every p ≥ 0, p ∈ W , thanks to the positivity of the states ϕΓ. Moreover every
f ∈ Hol(M,G), f ≥ 0, is the uniform limit of a sequence of positive polyno-
mials, this is easy to verify by taking the square root

√
f of f (it certainly

exists because f is positive!) and by writing it as the uniform limit of Wilson
polynomials:

√
f = limn pn. By definition of square root, f = limn pn

∗pn and
pn
∗pn ≥ 0 for every n ∈ N, thus ϕ(f) = limn ϕ(pn

∗pn) ≥ 0 by virtue of the
theorem of persistence of the signum.

Now, if {ϕΓ}(Γ ∈ L) is a family of states of the C∗-algebras A(Γ), then ϕ
is a state of Hol(M,G), in fact the states are positive and so ϕ is positive (for
what just shown), hence its norm is the value assumed in the unit element
of the algebra: ‖ϕ‖ = ϕ(1) = ϕΓ(1) = 1, for all Γ ∈ L.

Finally if the functionals ϕΓ are characters of the algebras A(Γ), then ϕ0

is multiplicative on W and so, written the functions f, g ∈ Hol(M,G) as
f = limn pn, g = limn qn, with {pn}, {qn}(n ∈ N) ⊂ W , one has:

ϕ(fg) = lim
n
ϕ0(pnqn) = lim

n
ϕ0(pn)ϕ0(qn) = lim

n
ϕ(pn)ϕ(qn)

because ϕ and ϕ0 act in the same way on W .
Thanks to the continuity of ϕ it follows that:

ϕ(fg) = ϕ(lim
n
pn)ϕ(lim

n
qn) = ϕ(f)ϕ(g)

showing that ϕ is a character. 2

Theorem 4.11.2 (Projective characterization of A/G) The spectrum of
Hol(M,G) is homeomorphic to the projective limit of the family {σ(Γ), πΓΓ′ , L}
w.r.t. the initial topology:

A/G ' lim←−Γ∈Lσ(Γ) .

Proof. First of all observe that there is a set-theoretical bijection between
A/G and lim←−Γ∈Lσ(Γ) because Cyl(A/G) is dense in Hol(M,G), hence the

characters of Cyl(A/G) can be univocally extended to characters ofHol(M,G)
and, by converse, the characters ofHol(M,G) reduces to characters of Cyl(A/G)
simply by restriction, thus these C∗-algebras have the same spectrum.

But then, from 3.and 4.of the previous theorem and from theorem 4.10.2,
it follows that lim←−Γ∈Lσ(Γ) = σ(Cyl(A/G)) = σ(Hol(M,G)), set-theoretically.
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Since the Wilson functions generate Hol(M,G), the topology on its spec-
trum A/G is the initial topology defined as the smallest topology in which
the (Gelfand transformed of the) Wilson functions are continuous.

For the same reason the spectra σ(Γ) have the initial topology defined as
the smallest topology in which the Wilson functions Tα, with α∗ ⊂ Γ, are
continuous.

By remembering that a projective limit of compact Hausdorff spaces in-
herits the initial topology the theorem follows. 2

Pictorially, the duality between the inductive family of C∗-algebras A(Γ)
and the projective family of their spectra σ(Γ) can be represented as follows:

. . . ⊆ A(Γ) ⊆ . . . ⊆ A(Γ′) ⊆ . . . −→ lim−→Γ∈LA(Γ) ≡ Cyl(A/G)

. . . ⊇ σ(Γ) ⊇ . . . ⊇ σ(Γ′) ⊇ . . .←− lim←−Γ∈Lσ(Γ) ≡ A/G .

4.11.1 The characterization of the spectra σ(Γ)

The spectra σ(Γ) can be explicitly characterized in a useful way by using a
few topological results.

Let Γ be a connected graph and ? a fixed point of Γ, then its fundamental
group, or first homotopy group, π1(Γ, ?), is the group of the homotopy
classes of loops based on ? with image contained in Γ.

Since Γ is assumed to be connected, the choice of the (fixed) base-point
? is irrelevant in the definition of the fundamental group, thus I shell denote
it simply by π1(Γ).

It is well known (see for instance ch.14 of [41]) that π1(Γ) is a free group
with nΓ generators, where nΓ is the connectivity of Γ, i.e. the integer:

nΓ = EΓ − VΓ + 1

being EΓ the number of edges of Γ and VΓ the number of its vertexes; nΓ is
a topological invariant of the graph Γ which represents the highest number
of edges that can be deleted from the graph without it fails to be connected.

Denote with L?(Γ) the subgroup of L?(M) given by the loops containing
at least a representative α with α∗ ⊂ Γ.

Theorem 4.11.3 For every graph Γ the following assertions hold.

1. The group L?(Γ) is isomorphic to π1(Γ);

2. The generators β1, . . . , βnΓ
of π1(Γ) form an independent family of loops

in L?(M);
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3. For every fixed graph Γ the following spaces are homeomorphic:

σ(Γ) ' Hom(L?(Γ), G)/AdG ' GnΓ/AdG .

The proof of this theorem can be found in [1], here the only important
thing is that the explicit form of the isomorphism in 3. is given by the
following map:

φ~β : GnΓ/AdG −→ Hom(L?(Γ), G)/AdG
[g1, . . . , gnΓ

] 7→ φ~β([g1, . . . , gnΓ
]) := [H~g]

where ~β ≡ {β1, . . . , βnΓ
} is a fixed family of generators of π1(Γ) and H~g(βi) :=

gi, i = 1, . . . , nΓ, ~g = (g1, . . . , gnΓ
). It is easy to see that φ~β is invertible

and that its inverse is the evaluation map in the generators of π1(Γ), i.e.
φ−1
~β

= ev(β1, . . . , βnΓ
).

Since the evaluation map is certainly continuous, the only thing that
remains to do is to prove that φ~β is continuous.

Remember that, if [H̃] is a fixed element of Hom(L?(Γ), G)/AdG, then a
base of open neighborhoods of [H̃] is given by:

U := {[H] :
1

N
|Tr(H(αi))− Tr(H̃(αi))| < ε, i = 1, . . . , k}

for a given finite set of loops αi, i = 1, . . . , k.
The proof of the continuity of φ~β is equivalent to the proof that φ−1

~β
(U)

is open.
This fact certainly holds when αi = βi, i = 1, . . . , k, in fact in this

situation Tr(H~g(αi)) = Tr(H~g(βi)) = Tr(gi), and, being Tr a continuous
function, the set of the (g1, . . . , gn) such that |Tr(gi)− λi| < ε is an open set
in GnΓ for every λi ∈ C.

Now decompose every αi as

αi = β1
mi1,1 · · · βnΓ

minΓ,1β1
mi1,2 · · · βnΓ

ninΓ,2 · · ·

then
Tr(H~g(αi)) = Tr(g1

mi1,1 · · · gnΓ

minΓ,1g1
mi1,2 · · · gnΓ

ninΓ,2 · · · )
since H~g is a homomorphism and so factorizes as the loops.

The continuity of the trace implies again that the set of the (g1, . . . , gnΓ
)

such that |Tr(g1
mi1,1 · · · gnΓ

minΓ,1g1
mi1,2 · · · gnΓ

ni
n(Γ,2) · · · ) − λi| < ε is open in

GnΓ for every λi ∈ C.
Hence, taking in particular λi = Tr(H̃(αi)), for every i = 1, . . . , k, one

has the thesis.
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Finally, the homeomorphism between Hom(L?(Γ), G)/AdG and σ(Γ) is
just a consequence of the results discussed in 4.4 applied to the C∗-algebras
A(Γ) instead of the holonomy C∗-algebra Hol(M,G). 2

As an immediate corollary of the previous theorem one obtains this ex-
plicit and useful projective characterization of A/G:

A/G ' lim←−Γ∈LG
nΓ/AdG .

4.12 Cylindrical measures on A/G
The references for this sections are [63] and [97].

First of all remember that a probability space is a triple (Ω,Σ, p), where Ω
is a non-empty measurable space, Σ is a σ-algebra on Ω and p is a probability
measure on Ω: p(Ω) = 1.

If T is any index set, one can consider the family {(Ωt,Σt, pt}(t ∈ T )
of measurable spaces and define the product σ-algebra

∏
t∈T Σt on the carte-

sian product
∏

t∈T Ωt to be the smallest σ-algebra containing the cylindrical
subsets

∏
t∈T Mt ⊂

∏
t∈T Ωt, where

∏
t∈T Mt is said to be cylindrical if

1. Mt ∈ Σt, ∀t ∈ T ;

2. Mt = Ωt but for a finite subset of indexes in T .

This σ-algebra is the smallest which makes the projections pr :
∏

t∈T Ωt → Ωr

measurable maps, for every fixed r ∈ T ; one says shortly that this is the σ-
algebra generated by the projections.

The probability measure p defined on the cylindrical subsets by:

p(
∏
t∈T

Mt) :=
∏
t∈T

pt(Mt)

is called, for obvious reasons, cylindrical measure and it always extends
to a measure defined on the entire product σ-algebra.

Now take, in particular, a directed set J and suppose that the family of
probability spaces {Ωj}(j ∈ J) has measurable projections πjj′ , defined for
every j ≤ j′ and satisfying the axioms of a projective family, then the triple
{Ωj, πjj′ , J} is said to be a projective family of probability spaces.

Suppose now to have a measure µ on the projective limit Ω of this family,
then the push-forward of µ via the canonical projection πj : Ω → Ωj, i.e.
µj := πj∗µ ≡ µ ◦ πj, is a measure on Ωj, for every j ∈ J .
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Furthermore the family of measures {µj}(j ∈ J) satisfies the consistency
condition

µj = (πjj′)∗µj′ = µj′|Ωj ◦ πjj′

which guaranties that there is no ambiguity when a portion of Ωj is measured
directly by µj or by the restriction of µj′ to Ωj.

A family of measures {µj}(j ∈ J) satisfying the consistency condition is
said to be a promeasure.

A classical problem of measure theory is to study when it is possible to
construct a measure µ on Ω starting by a promeasure, i.e. when it is possible
to obtain a representation theorem for measures on projective limits, since
the inverse process is always possible, as just discussed.

When the index set J is numerable this representation theorem is available
every time the spaces Ωj are σ-compact metric spaces and the promeasure is
Borel-like.

However the request of numerability of the index set J is quite restrictive,
luckily when the probability spaces of the projective family are compact the
extension of a promeasure to a measure on the projective limit is always
possible.

Before formalizing this assertion in a theorem it is worth remembering
once again that, when the spaces Ωj of a projective family are compact
Hausdorff spaces, the projective limit Ω is a non-empty compact Hausdorff
space itself; furthermore, in this situation, the algebra of the cylindrical
functions on Ω satisfies the hypothesis of the Stone-Weierstrass theorem and
so it is dense in the algebra of the continuous complex-valued functions on
Ω:

Cyl(Ω) = C(Ω) (if Ω is compact).

To simplify the notation in the sequel a regular Borel probability measure
will be simply called “probability measure”.

Theorem 4.12.1 Let {Ωj, πjj′ , J} be a projective family of compact Haus-
dorff spaces with projective limit Ω.

Then there is a bijective correspondence between probability measures on
Ω and probability promeasures {µj}(j ∈ J).

All such measures are cylindrical.

Proof. It has to be proved that a probability promeasure {µj}(j ∈ J) univo-
cally defines a probability measures on Ω.

Define the linear functional

F :
∐

j∈J C(Ωj) −→ C
fj 7→ F (fj) :=

∫
Ωj
fj dµj

130



∀fj ∈ C(Ωj).
Thanks to the consistency condition of the measures appearing in the

promeasure, F factorizes to Cyl(Ω) in a natural fashion.
Being bounded, F admits a unique extension to a bounded linear func-

tional F̄ on the closure of Cyl(Ω), i.e. on C(Ω).
Thanks to the Riesz-Markov theorem it exists a unique probability mea-

sure µ on Ω which represents the functional F̄ in the usual way, i.e. F̄ (f) :=∫
Ω
f dµ, ∀f ∈ C(Ω).
The measure µ is obviously cylindrical. 2

This result can be specialized to the projective family of the compact
Hausdorff spaces {σ(Γ)}(Γ ∈ L), which gives rise to the the compact Haus-
dorff space A/G, to obtain the following important result.

Corollary 4.12.1 There is a bijection between the probability measures on
A/G and the probability promeasures {µΓ}(Γ ∈ L) on the spectra σ(Γ).

Thanks to the characterization σ(Γ) ' GnΓ/AdG an explicit (and natural)
promeasure which gives rise to a probability measure on A/G is given by
the family of the normalized Haar measures dgnΓ on the groups GnΓ , which
are AdG-invariant (thanks to the assumption of compactness for G) and thus
projects unaffected to the quotient GnΓ/AdG.

The probability measure obtained from the promeasure {dgnΓ}(Γ ∈ L) is
called the uniform measure on A/G and denoted by µ0.

If a function f ∈ Hol(M,G) ' C(A/G) is cylindrical w.r.t. the index-
graph Γ, i.e. it exists fΓ ∈ C(GnΓ/AdG) such that f = fΓ ◦ πΓ, then its
explicit integral w.r.t. the uniform measure is given by:∫

A/G f(Ā) dµ0(Ā) =

∫
GnΓ

fΓ(g1, . . . , gnΓ
) dgnΓ(g1, . . . , gnΓ

) .

Thanks to the density of Cyl(A/G) in C(A/G), the formula above extends
(by uniform limit) to all the functions of C(A/G).

J.Baez has found in [15] a way to construct (in general non-faithful) mea-
sures on A/G starting from random variables, his work contemplates the
uniform measure as a particular case.

4.12.1 Diffeomorphism invariant measures on A/G
Now I put the attention on the invariance of the measures on A/G under
diffeomorphisms.
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Let Diff0(M) be the group of the analytical diffeomorphisms of M homo-
topic to the identity map.

The action of Diff0(M) on Hol(M,G) is defined in the following way:

Hol(M,G)×Diff0(M) −→ Hol(M,G)
(Tα,Ψ) 7→ Ψ∗Tα,

(Ψ∗Tα)([A]) := TΨ◦α([A]), for every [A] ∈ A/G.
This action is well defined because the Wilson functions generateHol(M,G).
Observe that Ψ◦α is precisely the loop α deformed by the diffeomorphism

Ψ.
It is useful to reformulate this action using the structure of principal fiber

bundle.
In the chapter 1. we have seen that there is an injective homomorphism

[ : Aut(P ) −→ Diff(M)
Φ 7→ [(Ψ) = Ψ

whose range contains Diff0(M), thus the action of Diff0(M) on the Wilson
functions can be reformulated as follows

Ψ∗Tα([A]) = TΨ◦α([A]) = Tα(Φ∗([A]))

where Φ∗ is the pull-back of the automorphism Φ ∈ Aut(P ) such that [(Φ) =
Ψ.

This action naturally extend to the Wilson polynomials p by the position
Ψ∗p([A]) := p(Ψ∗([A])).

Observe that the deformation of the loop α doesn’t affect the norm of
the Wilson functions, since the holonomy of the loop α is invariant under
the diffeomorphisms of Diff0(M). This property also extends to the Wilson
polynomials: ‖Ψ∗p‖ = ‖p‖.

Since the Wilson polynomials are dense in Hol(M,G), the action of
Diff0(M) can be extended to an isometric action on the entire Hol(M,G),
i.e., using the same symbol

Ψ∗ : Hol(M,G) −→ Hol(M,G)
f 7→ Ψ∗f := limn Ψ∗pn

where {pn}(n ∈ N) ⊂ W , f = limn pn.
This fact gives the possibility to define a representation of Diff0(M) in

isometries of Hol(M,G):

ρ : Diff0(M) −→ Aut(Hol(M,G))
Ψ 7→ ρ(Ψ) := Ψ∗.
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Def. 4.12.1 A positive linear functional ϕ ∈ Hol(M,G)∗ is said to be in-
variant under diffeomorphisms if

ϕ(Ψ∗f) = ϕ(f) ∀f ∈ Hol(M,G), ∀Ψ ∈ Diff0(M).

A probability measure on A/G is called invariant under diffeomorphisms if
its corresponding state ϕµ possesses this invariance.

If Ψ∗µ denotes the measure corresponding to the functional ϕµ ◦Ψ∗ then the
invariance of the measure µ is written symbolically as: Ψ∗µ = µ.

Since A/G is compact, fixed a positive regular Borel measure µ on it,
one has that L2(A/G, µ) ⊂ L1(A/G, µ), hence the Radon-Nykodim theorem
implies that, for every f ∈ L2(A/G, µ), there exists one and only one measure
µf which is absolutely continuous w.r.t. µ and such that f can be written as

the Radon-Nykodim derivative: f =
dµf
dµ

.

This enables to construct a unitary representation of Diff0(M) supported
by L2(A/G, µ) and labelled by the positive regular Borel measure µ, this
representation is defined by:

U : Diff0(M) −→ U(L2(A/G, µ))
Ψ 7→ UΨ

where
UΨ : L2(A/G, µ) −→ L2(A/G, µ)

f 7→ UΨ(f) := Ψ∗µf .

An element f ∈ L2(A/G, µ) will be called invariant under diffeomorphisms if
the corresponding measure µf has this property, i.e. if Ψ∗µf = µf , for every
Ψ ∈ Diff0(M).

Finally consider again the family of functionals {ϕΓ}(Γ ∈ L) of the pre-
vious section and define the so-called covariance condition as:

ϕΓ′ ◦Ψ∗ = ϕΓ whenever ϕ(Γ) = Γ′.

As the same, one says that the family of probability measures {µΓ}(Γ ∈ L)
satisfies the covariance condition if the corresponding family of functionals
does.

It is straightforward to see that if the condition of covariance is satisfied
by a promeasure, then the cylindrical measure induced on A/G is invariant
under diffeomorphisms. This assertion is formalized in the next theorem.

Theorem 4.12.2 There is a bijection between the diffeomorphism invariant
probability measures on A/G and the probability promeasures {µΓ}(Γ ∈ L)
satisfying the covariance condition.
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I stress that

the uniform measure µ0 is invariant under diffeomorphisms.

In fact the only possible dependence of µ0 on the diffeomorphisms of M
is contained in the connectivity nΓ, but this is a topological invariant and
so it is unaffected by them, hence the covariance condition is automatically
satisfied.

Furthermore note that µ0 is also gauge-invariant since the Haar mea-
sures on the compact gauge groups are bi-invariant.

The properties of µ0 has been widely studied by D.Marolf and J.Mourão
in [66]; the most remarkable results obtained in that work are the following:

• µ0 is faithful, i.e. f ∈ C(A/G), f ≥ 0 and
∫
A/G f dµ0 = 0 implies

f ≡ 0;

• µ0 is concentrated on the generalized connections, i.e.{
µ0(A/G) = 0;

µ0(A/G) = 1.

4.13 Alternative construction of A/G and L2(A/G)
We want to present another, equivalent, construction of the quantum config-
uration space A/G. Two very clear references are [37] and [90].

The algebraic characterization of A/G shows that one of its fundamental
characteristic is that the connections and the gauge transformations that
gives rise to this space are ‘generalized’ in the sense that they are objects
satisfying only the algebraic rules of connection and gauge transformations
and dropping out all the topological and differential ones.

Remembering that a (smooth) connection A is uniquely determined by
its parallel transport (or holonomy map), i.e. by a (smooth) homomorphism
HA from the groupoid Path of piecewise analytic paths in M into the gauge
group G, it is quite natural define a generalized connection simply as such a
homomorphism, but without the smoothness condition!

Thus the space of generalized connections becomes

A := Hom(Path,G).

The very important fact is that, whenever G is a semisimple compact
connected Lie group, A is densely embedded in A and the latter space can
be endowed with a natural measure.
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In fact also A is homeomorphic to a projective limit:

A ' lim←−Γ
AΓ, AΓ := Hom(PathΓ, G)

where Γ is a graph in M and PathΓ is the subgroupoid of Path freely gen-
erated by the edges of Γ.

It turns out that, for every graph Γ with EΓ edges and VΓ vertexes, AΓ is
homeomorphic with GEΓ via the evaluation map in the edges of the graph:

eve1,...,eEΓ
: Hom(PathΓ, G) −→ GEΓ

HΓ 7→ eve1,...,eEΓ
(HΓ) = (HΓ(e1), . . . , HΓ(eEΓ

)).

A generic element of A will be indicated with Ā and one of AΓ with ĀΓ.
By means of the projective characterization of A and of the identification

AΓ ' GEΓ , a natural probability measure on A is constructed by taking the
projective limit of the normalized Haar measures appearing at every step
of the limit. The resulting measure is called again uniform measure and
indicated with µ0.

Now, remembering that the set of gauge transformations of a trivial prin-
cipal bundle is isomorphic to C∞(M,G) and remembering also that canon-
ical loop quantum gravity deals with SU(2)-principal bundles over a 3-
dimensional base space, which are all trivial as stated in chapter 1, one
defines the set of the generalized gauge transformations of the principal fiber
bundle P (M,G) as the set of all maps from M to G, i.e.

G := Maps(M,G) ≡ GM .

It can be shown that G is homeomorphic to the following projective limit:

G ' lim←−Γ
GΓ, GΓ := Maps(VΓ, G) ≡ GVΓ .

A generic element of G will be denoted with ḡ, and one of GΓ with ḡΓ.
If g(γt) denotes the element of G individuated by the parallel transport

HA : Path → G relative to the connection A ∈ A and calculated in the
point γt, then the parallel transport HA′ relative to a connection A′ ∈ A,
obtained by A after a gauge transformation, is related to HA by the following
expression:

HA′(γ) = g(γ0)−1HA(γ)g(γ1) ∀γ ∈ Path.

Then, fixed a graph Γ, it is natural to define the (right) action of GΓ on
AΓ, as:

AΓ × GΓ −→ AΓ

(ĀΓ, ḡΓ) 7→ ĀΓ ◦ ḡΓ,
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(ĀΓ ◦ ḡΓ)(γ) := ḡΓ(γ0)−1ĀΓ(γ)ḡΓ(γ1), for every γ ∈ PathΓ, and extend it to
a right action of G on A by using their projective characterizations, i.e.

A× G −→ A
(Ā, ḡ) 7→ Ā ◦ ḡ,

(Ā ◦ ḡ)(γ) := {(ĀΓ ◦ ḡΓ)(γ)}Γ.
By defining A/GΓ := AΓ/GΓ, it can be shown that the space of the

generalized connections modulo generalized gauge transformations, i.e. A/G,
can be homeomorphically characterized as follows:

A/G ' lim←−Γ
A/GΓ ≡ A/G.

The result of dense injection of A in A for compact connected semisimple
G can be easily extended to the space of the gauge orbits, i.e. A/G is densely
embedded in A/G.

Moreover, since the generalized gauge transformations act as translations
on the generalized connections and since the normalized Haar measure of a
compact group is invariant under translations, the uniform measure µ0 on A
projects naturally on A/G.

The Hilbert space L2(A/G) with respect to the uniform measure can be
also viewed as the subspace of the elements of L2(A) that are invariant under
the induced action of G on it.

This action is defined, for every Γ, as:

GΓ × L2(AΓ) −→ L2(AΓ)
(ḡΓ, ψΓ) 7→ ḡΓ ◦ ψΓ,

(ḡΓ ◦ ψΓ)(ĀΓ) := ψΓ(ḡ−1
Γ ◦ ĀΓ) (the inversion of ḡΓ is necessary to obtain a

left action from the right action of GΓ on AΓ).
The action on the projective limits is obviously defined as follows:

G × L2(A) −→ L2(A)
({ḡΓ}Γ, {ψΓ}Γ) 7→ {ḡΓ ◦ ψΓ}Γ.

To this action there corresponds a unitary representation of G supported on
L2(A) in the usual way and it can be easily seen that the subspace of L2(A)
invariant under this action can be identified with L2(A/G).

4.14 The algorithm of the loop quantization

One of the greatest obstacle in the canonical quantization of a gauge theory
on a general spacetime is the absence of a measure on the classical configura-
tion space of the theory itself. The reason is that this space, typically denoted
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with A/G, is given by (smooth) connections modulo (smooth) gauge trans-
formations on the principal fiber bundle underlying the theory, this one is
an infinite-dimensional non-linear space with a highly non-trivial topological
structure, so that one cannot apply the known procedures to endow it with
a genuine measure.

The loop quantization overcomes this problem by densely embeddingA/G
in a compact space, denoted with A/G, which is composed by generalized
connections modulo generalized gauge transformations. These generalized
objects are obtained by dropping out all the topological and differential reg-
ularity required on the connections and the gauge transformations and by
maintaining only the algebraic ones.

The convenience of this embedding is that the space A/G, unlike A/G,
can be endowed with a natural probability measure, the so-called uniform
measure µ0, which turns out to be invariant both under gauge transforma-
tions and under diffeomorphisms of the base space M .

For this and other reasons, the space A/G is taken to be the quan-
tum configuration space of a gauge theory. Consequently, the Hilbert space
L2(A/G, µ0) is a natural candidate to play the role of the quantum state
space.

The loop canonical quantization is a program of non-perturbative quan-
tization of gauge theories. This program is quite recent and it is still far
from having a complete formulation, in particular at a dynamical level.

The first important assumption in the program relies in the choice of a
manifestly gauge-invariant description of gauge theories: the configuration
space of these theories is taken to be A/G and not A.

With this choice the invariance under gauge transformations is solved at a
classical level, being encoded in the configuration space itself, and it doesn’t
need to be implemented as a constraint in the quantum theory.

However this advantage is paid by a remarkable complication in the math-
ematical structure: A/G is a non-flat space with a highly non-trivial topology,
for many interesting theories it isn’t a manifold and, most important, there
are several obstructions to construct measures on it.

These problems explain why, in the usual Hamiltonian quantization of
gauge theories, the configuration space is always taken to be A. The invari-
ance under gauge transformations is then introduced as a constraint (the
Gauss constraint) by means of several procedures as ghosts, gauge fixing,
projections and so on, see [48] for a more complete discussion on these topics.

Nevertheless the lattice gauge theory suggested a way to avoid these prob-
lems by using the techniques related to the Wilson functions, this suggestion
is sensed because, as shown in chapter 4, the gauge invariant information of
the connections is fully encoded in the Wilson functions, hence one is nat-
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urally leaded to assume the holonomy algebra as the algebra of the
classical observables of gauge theories.

The quantization is then performed by means of the C∗-algebraic for-
malism: the self-adjoint elements of the holonomy algebra are promoted to
self-adjoint linear operators on a certain Hilbert space containing the kine-
matical states of the quantum theory.

About this Hilbert space it is useful to remember that what usually hap-
pens in the quantization of gauge theories (see [45] or [66]) is that on the
classical configuration space, denoted generically with X, there is a cylindri-
cal but not σ-additive measure µ which enables to construct the pre-Hilbert
space L2

cyl(X,µ) of the square-integrable cylindrical functions on X; if µ
admits an extension to a Borel measure µ̄ on X then the completion of
L2
cyl(X,µ) leads to the Hilbert space L2(X, µ̄).

However, if this extension is not available, the quantum theory is imple-
mented by extending (on the base of physical and/or mathematical consid-
erations) the classical configuration space X to a wider space X̄ on which
a genuine measure ν is available, in order to construct the Hilbert space
L2(X̄, ν).

The space X̄ is called the quantum configuration space and the
Hilbert space L2(X̄, ν) is taken to be the space of the quantum kine-
matical states of the theory.

This is precisely what happens in the loop quantization of gauge theories:
the lack of a measure on A/G leads to search an extension of this space, the
major candidate to the role of quantum configuration space is A/G for the
following reasons:

• first of all A/G is injectively and densely embedded in A/G, hence the
classical theory is contained in the quantum theory without anomalies;

• A/G is an infinite-dimensional compact Hausdorff space endowed with
a natural probability measure, the uniform measure µ0. Associated to
this (faithful) measure there is one and only one faithful representation
of the holonomy C∗-algebra Hol(M,G) supported by the Hilbert space
L2(A/G, µ0), i.e. the GNS representation:

Hol(M,G) −→ B(L2(A/G, µ0))
f 7→ Mf̂

Mf̂ (ψ) := f̂(Ā)ψ(Ā), ∀ψ ∈ L2(A/G, µ0), f̂ ∈ C(A/G) ⊂ L2(A/G, µ0)
is the Gelfand transformed of f . Hence the elements of the holon-
omy C∗-algebra are promoted to bounded multiplication operators on
the Hilbert space L2(A/G, µ0), they are bounded because the Wilson
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functions (which generate Hol(M,G)) are bounded and the Gelfand
isomorphism is isometric. The real part of the Wilson functions are
thus promoted to bounded self-adjoint operators on L2(A/G, µ0), i.e.
observables in the quantum theory. It is worth noting that the real
parts of the Wilson functions generate the same C∗-algebra thanks to
the identity Tα

∗ = Tα−1 ;

• while the previous are mathematically rigorous motivations for the
choice of A/G as the quantum configuration space, there is a further
motivation based on a physical intuition. Since, as proved in chapter
3, gauge-equivalence connections are in one-to-one correspondence to
conjugation classes of holonomies, in a lattice gauge theory based on
a graph Γ, the configuration space is GnΓ/AdG, hence, being A/G the
projective limit of the family {GnΓ/AdG}Γ, a gauge field theory which
has A/G as quantum configuration space is suitable to be interpreted
as the continuous limit of the lattice gauge theories corresponding to
every fixed graph, which are approximated (or regularized) theories.
The fact that the set of all graphs is closed under diffeomorphisms is of
essential importance when the diffeomorphism invariance is taken into
account. For the reasons discussed above, a graph Γ is interpreted in
the formalism of the loop quantization as a floating lattice in M .

The compactification of the configuration space is not a characteristic of
this procedure, but it often appears in the quantization of the systems with an
infinite number of degrees of freedom, such as field theories. For example in
the quantization of the scalar field in d-dimensions the classical configuration
space, i.e. the Schwartz space S(Rd), is substituted by S ′(Rd), the space of
the tempered distributions on Rd, in which it is densely embedded.

I stress that the compactification A/G ↪→ A/G is highly non-trivial, since
the uniform measure µ0 restricted to A/G is the null measure. This fact has
put in evidence the important role of the generalized connections in the loop
quantization.

Finally, let’s remember the general algorithm of canonical quantization:

1. Pick a Poisson algebra of classical quantities;

2. Represent these quantities as quantum operators acting on a Hilbert
space of quantum states;

3. Implement any constraint of the theory as a quantum operator equation
and solve it to get the physical states;

4. Construct an inner product on physical states;
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5. Develop a semiclassical approximation and compute expectation values
of physical quantities.

When the theory we want to quantize is gravity the Poisson algebra is
generated by the pairs (Aia, E

b
j ), where A is a connection and E is the canon-

ical moment associated to it.
The classical configuration space is taken to be A/G and it is densely

embedded in the quantum configuration space A/G.
A/G carries the gauge and diffeomorphism invariant uniform measure µ0

that enables to construct the Hilbert space of kinematical states L2(A/G, µ0).
The gauge-invariant information of the connection is contained in the Wil-

son functions, these are promoted to multiplication operators on the carrier
space L2(A/G, µ0):

Tα ; T̂α(ψ) := T̃α(Ā)ψ(Ā)

where ψ ∈ L2(A/G, µ) and Tα has to be interpreted as its Gelfand transform,
which lies in C(A/G) ⊂ L2(A/G, µ0).

As usual in canonical quantization, the conjugate momenta are promoted
to a derivative operator-valued distribution:

Ea
i (x) ; −i δ

δAia
(x).

The Wilson loop operators T̂α are bounded self-adjoint operators on
L2(A/G, µ) for every µ. It is the requirement that the momentum opera-
tors must be self-adjoint that restricts the measure, i.e. they satisfy self-
adjointness if and only if µ = µ0. A similar situation occurs already in non-
relativistic quantum mechanics: while the position operator Q̂ is self-adjoint
on L2(R, f(x)dx) for any (regular) function f : R → R, the momentum op-
erator P = −i d

dx
is self adjoint if and only if f is a constant. Thus, it is the

self-adjointness of the explicitly defined momentum operators that singles
out the Lebesgue measure dx.

As said before, the assumption of A/G as classical configuration space
solve already at the classical level the Gauss constraint generated by the
invariance under gauge transformations.

Hence we can say that the kinematical (gauge-invariant) configuration
space of loop quantum gravity is selected only by two essential inputs:

1. it must carry a representation of the C∗-algebra of classical gauge-
invariant configuration observables, i.e. the holonomy C∗-algebra. This
leads to L2(A/G, µ).

2. it must be such that the momentum operator is self-adjoint, and this
singles out the measure µ to be µ0.
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We stress that both these assumptions seem natural from a mathematical
physics perspective.

The diffeomorphism constraint instead is imposed at the quantum level
by selecting a suitable subspace of the kinematical state space L2(A/G, µ0)
given by the states satisfying this constraint.

In the canonical quantization one operates the splitting of the space-time
in space+time, hence there are two kind of constraints generated by the
invariance under diffeomorphism: the constraint depending on the spatial
part and that depending on the temporal evolution, called Hamiltonian
constraint.

There is an important instrument to construct spatial diffeomorphism
invariant states called loop transform, this is a linear operator that en-
ables to pass from the quantum representation described above, called con-
nection representation (because the states are functions of generalized
connections), to the so-called loop representation, where the states are
functions of loops.

The importance of the loop representation is that this representation
carries topological invariants, exhibited by the loop transform and called
generalized knot-invariants, which naturally satisfy the diffeomorphism
constraint. To see this notice that the diffeomorphism constraint maps a
Wilson function Tα to a Wilson function Tφ◦α relative to the loop α deformed
by a spatial diffeomorphism φ, hence it is immediate to understand that
knot invariants should play an important role in solving the diffeomorphism
constraint.

Rovelli and Smolin were the first ones to construct (formal) solution to
the diffeomorphism constraint in [81] starting from the next consideration:
it is well known that, in ordinary quantum mechanics, the Fourier transform
enables to pass from the position representation, in which the states are
functions of the generalized coordinates qi, to the momentum represen-
tation, in which the states are functions of the momentum coordinates pj.
The Fourier transform is a unitary operator from L2(R3) into itself, thus
the momentum and the position representation are two physically equivalent
description of the quantum 3-D world since unitary operators preserve the
scalar brackets and then the expectation values of the observables. The use-
fulness of the unitary correspondence between ‘position states’ and ‘momen-
tum states’ induced by the Fourier transform is due to the fact that in many
situations of physical and mathematical interest the equations of quantum
mechanics are much more easily solved in the momentum representation.

Rovelli and Smolin proposed in the already quoted article a formal trans-
form, called loop transform and deeply related to the Fourier transform,
to pass from the ‘connection representation’, in which the states are the nor-
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malized vectors |ψ >∈ L2(A/G, µ0), to a ‘loop representation’, in which the
states are functions of loops.

The advantage is that it is easier to find out diffeomorphism invariant
functions of loops instead of diffeomorphism invariant functions of connec-
tions.

The proposal of Rovelli and Smolin was only formal in 1990, but after
the construction of the uniform measure on A/G the expression of the loop
transform can be written rigorously as

L2(A/G, µ0) 3 ψ ; `ψ(α) :=
∫
A/G Tα(Ā)ψ(Ā)dµ0(Ā)

well defined after one identifies the Wilson function Tα with its Gelfand
transform, which belongs to C(A/G) ⊂ L2(A/G, µ0).

As a consequence of the diffeomorphism invariance of µ0, if φ is an ori-
entation preserving diffeomorphism of M , then `ψ(α) = `ψ(φ ◦ α), i.e. `ψ
assumes the same value on every loop obtained by a fixed loop through a
diffeomorphic deformation. Thus the states `ψ satisfy the diffeomorphism
invariance in a natural manner.

While the (spatial) diffeomorphism constraint can be controlled into the
arena of loop representation of quantum gravity, the solution to the Hamilto-
nian constraint remains the main open problem of canonical quantum gravity.

For this reason the researches in quantum gravity, starting from the late
nineties, has switched to the covariant formulation, where there is no splitting
of spacetime into space+time and the Hamiltonian constraint doesn’t appear.

The covariant formulation of quantum gravity is contemplated in the so-
called ‘spin foam models’. We will describe these models in the last two
chapters. In the next chapter instead we present the spin network states, an
orthonormal basis of the kinematical space L2(A/G, µ0) which is very useful
to construct important physical observables such as the area and volume
operators of slices of space at ‘frozen’ time.

4.14.1 Inductive construction of the loop transform

In [2] was shown how to derive the loop transform from an inductive limit of
Fourier transforms on tori for Abelian gauge theories.

Here we generalize the inductive construction to the more general case of
non-Abelian compact gauge theories, i.e. when the group G is fixed to be of
the type U(N) or SU(N), N > 1.

Let’s fix the notation:

• the index set J is the set of the subgroups L of L?(M) generated by
a finite independent family of loops. By L ≤ L′ we mean that L is a
subgroup of L′; J is a directed set with respect to this order;
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• to every L ∈ J we associate Hom(L,G)/AdG, that we write A/GL for
simplicity;

• if L ≤ L′ we define the projection πLL′ : A/GL′ → A/GL simply by
taking the restrictions of the homomorphisms H ∈ Hom(L′, G) to the
subgroup L in each AdG-equivalence class.

The spectrumA/G ofHol(M,G) is the projective limit of the family {A/GL}L∈J
so that, explicitly:

A/G = lim←−L∈J A/GL ≡ lim←−L∈J Hom(L,G)/AdG .

For a given independent family of loops (α1, ..., αn) the evaluation map
ev(α1,...,αn) : Hom(L,G)→ Gn, defined by

ev(α1,...,αn)(H) = (H(α1), ..., H(αn))

is an isomorphism and factorizes to a homeomorphism from Hom(L,G)/AdG
to Gn/AdG.

We want to construct the loop transform as an inductive limit of Fourier-

Plancherel transforms from L2(Hom(L,G)/AdG) onto L2
Ad

(
̂Hom(L,G)

)
2.

To simplify the notation we write the former spaces as L2(A/GL) and the

latter spaces as L2

(
Â/GL

)
, this is only a symbolic notation because A/GL

is not a group and so Â/GL doesn’t refer to its dual object.
The scheme of the inductive construction is expressed in the following

diagram:
...

...
...

L2(A/GL)
FL−→ L2

(
Â/GL

)
↓ iL′L

... ↓ jL′L
L2(A/GL′)

FL′−→ L2

(
Â/GL′

)
...

...
...

↓ ↓ ↓

lim−→L
L2(A/GL)

L−→ lim−→L
L2

(
Â/GL

)
.

2For every group G, L2
Ad(Ĝ) is the Hilbert subspace of L2(Ĝ) generated by the

Fourier-Plancherel transforms of the characters χρ, i.e. L2
Ad(Ĝ) := span{F̂χρ, ρ ∈ Ĝ}.

The restriction of the Fourier-Plancherel transform to L2(G/AdG) is a unitary operator

F : L2(G/AdG)→ L2
Ad(Ĝ).
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To make the diagram concrete we have to construct the inclusions iL′L and
jL′L.

If L ≤ L′, then we put, for every ψ ∈ L2(A/GL):

iL′Lψ(H ′) := ψ(πLL′(H
′)) H ′ ∈ A/GL′

this inclusions are obviously linear and satisfy the consistency conditions.
They are also isometric maps, in fact if L and L′ are the free groups generated
by the independent families {α1, . . . , αn} and {β1, . . . , βn′}, respectively, then
every loop of L can be decomposed in a suitable product of loop of L′ in this
way: 

α1 = β1
k1,1 . . . βn′

kn′,1

...

αn = β1
k1,n . . . βn′

kn′,n

with kr,s ∈ Z, r = 1, . . . , n′ and s = 1, . . . , n.
So, if

ev(β1,...,βn′ )
(H ′) = (g1, . . . , gn′)

then

ev(α1,...,αn)(πLL′(H
′)) = (g

k1,1

1 · · · gkn′,1n′ , . . . , g
k1,n

1 · · · gkn′,nn′ ) ≡ (g̃1, . . . , g̃n′) .

By composing the evaluation maps with the inclusions iL′L one gets the inclu-
sions in′n : L2(Gn/AdG)→ L2(Gn′/AdG), where in′n(ψ) := ψ′ ∈ L2(Gn′/AdG)
acts just like ψ on the first g̃1, . . . , g̃n arguments and it is constant on the
other n′ − n ones. Moreover, since we are dealing with normalized and the
bi-invariant Haar measures, we have:

‖ψ′‖n′2 =
1

vol(G)n′

∫
G

|ψ′(g̃1, . . . , g̃n′)|2dg̃1 · · · dg̃n′

=
1

vol(G)n′

∫ 2π

0

|ψ(g̃1, . . . , g̃n)|2dg̃1 · · · dg̃n
∫
G

dg̃n+1 · · ·
∫
G

dg̃n′

=
vol(G)n

′−n

(vol(G))n′

∫
G

|ψ(g̃1, . . . , g̃n)|2dg̃1 · · · dg̃n

=
1

(vol(G)n

∫
G

|ψ(g̃1, . . . , g̃n)|2dg̃1 · · · dg̃n

= ‖ψ‖n2.

This computation shows that the inclusions in′n, and hence also the inclusions
iL′L, are isometric maps.
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The inclusions jL′L are defined by means of the following commutative
diagram:

L2(A/GL′)
FL′−→ L2

(
Â/GL′

)
↑iL′L ↑jL′L

L2(A/GL)
FL−→ L2

(
Â/GL

)
They are obviously isometric maps since they are compositions of isometries,
furthermore, with such a definition, the consistency condition holds both for
the inclusions jL′L and the Fourier-Plancherel transforms FL.

Now that we have constructed the inductive families of Hilbert spaces
and isometric transforms between them we have to investigate their inductive
limits.

We will make use of the following important property of the inductive
limits, which we specialize to the case of interest for us:

Theorem 4.14.1 (Universality of the inductive limit) Let (Hµ, iνµ, J)
be an inductive family of Hilbert spaces with inductive limit H. If there exists
an Hilbert space H̃ and isometric linear maps iµ : Hµ → H̃, µ ∈ J , such that
iµ = iν ◦ iνµ for every µ ≤ ν then there is an unique isometric linear map i
such that iµ = i ◦ iµ for every µ. Furthermore, if the ranges of the maps iµ
span a dense set in H, then H̃ = H.

Theorem 4.14.2 The following assertions hold.

1. The inductive limit of {L2(A/GL), iL′L}L∈J is L2(A/G, µ0);

2. The inductive limit of {FL}L∈J is a unitary map L whose image is the

inductive limit of

{
L2

(
Â/GL

)
, iL′L

}
L∈J

.

Proof. We use the universality property stated above. Define the inclusion
iL : L2(A/GL)→ L2(A/G, µ0) as the pull-back of the projection πL : A/G →
A/GL:

(iL ψL)(HL) := ψL(πL(HL)) ψL ∈ L2(A/GL)

for every L. The proof that iL is an isometry is easy if we make use of the
cylindrical nature of the uniform measure µ0: for every ψL ∈ L2(A/GL), the

function ψ := iL ψL is a cylindrical function of L2(A/G, µ0) w.r.t. the index
L, so that:

‖ψ‖2 =

∫
A/G
| ψ |2 dµ0 =

∫
A/GL

| ψL |2 dµL = ‖ψL‖2 .
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Suppose now that a function ψ ∈ L2(A/G, µ0) is orthogonal to all the pull-
backs iL ψL, ψL ∈ L2(A/GL), then ψ is orthogonal to all the cylindrical

functions of L2(A/G, µ0), but they form a dense subset of L2(A/G, µ0) so the
orthogonality of ψ extends to all the functions of L2(A/G, µ0) and then ψ
must be the zero function.

The inclusions jL : L2

(
Â/GL

)
→ L2

(
Â/G

)
are defined by means of

the following diagram

L2(A/G)
L−−−→ L2

(
Â/G

)
iL

x xjL
L2(A/GL) −−−→

FL
L2

(
Â/GL

)
being L := lim−→L∈J FL. Repeating the considerations above on the inclusions
jL and applying the consequences of the Peter-Weyl theorem on the maps
FL, the remaining part of the theorem is fully proven. 2

Def. 4.14.1 We call the unitary map L defined in the previous theorem the
‘inductive loop transform’.

In [2] it was proven that the image of the inductive loop transform for
gauge theories with symmetry group U(1), as the electromagnetic theory, is
the Hilbert space L2(H?(M)) w.r.t the discrete measure, where H?(M) is the
hoop group, i.e. the loop group L?(M) modulo its commutator subgroup.
Unfortunately, in the compact non-Abelian case such a characterization is
not available due to the fact that the Ad-equivalence is not trivial.

Finally notice that the inductive loop transform constructed here is uni-
tarily equivalent to the spin network transform introduced by Thiemann in
[90], this follows again from the Peter-Weyl theorem by remembering that
the spin network states constitute an orthonormal basis for L2(A/G) (see
next chapter). Therefore, the loop representation defined by the inductive
loop transform and the spin network representation that will be exposed in
the following chapter are physically indistinguishable.
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Chapter 5

Spin network states, area and
volume operators

In this chapter we present the very elegant construction of an orthonormal
basis of L2(A/G, µ0) due to Baez [16], [17]. This basis is given by the so-called
spin network states, introduced for the first time in loop quantum gravity by
Rovelli and Smolin in [83], inspired by an old idea of Penrose [74].

The spin network states solve the problem of overcompleteness of the
Wilson functions and, at the same time, enables to write down the explicit
form of the volume and area operators, the two fundamental observables of
loop quantum gravity. We will give a brief account of this fact in the second
section, after the rigorous introduction of the spin network states.

5.1 Construction of the spin network states

Fix a principal bundle P (M,G) with M ' R × Σ, where Σ is a spacelike
hypersurface and G = SU(2).

Then take a graph Γ in Σ and consider the Hilbert space L2(AΓ). Since
AΓ ' GEΓ , this space can be written as:

L2(AΓ) '
⊗
e∈EΓ

L2(G).

Now one can apply the Peter-Weyl theorem to decompose L2(G), obtaining:

L2(AΓ) '
⊗
e∈EΓ

⊕
λ∈Ĝ

Mλ ⊗Mλ.

The decomposition above can be re-written in a more convenient form: let
ĜEΓ be the set of all the labelling of the edges of Γ with irreducible unitary
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representations of G, then, by using the distributivity of the tensor product
with respect to the direct sum, it follows that L2(AΓ) is isomorphic to:

L2(AΓ) '
⊕
λ∈ĜEΓ

⊗
e∈EΓ

Mλ ⊗Mλ.

Now, if S(v) is the set of edges of Γ having source in the vertex v and T (v)
is the set of edges of Γ having target in the vertex v, then:

L2(AΓ) '
⊕
λ∈ĜEΓ

⊗
v∈VΓ

⊗
e∈S(v)

Mλ ⊗
⊗
e∈T (v)

Mλ

 .

The convenience of this last decomposition is that, being all the representa-

tions unitary, all the spaces Mλ are ([28]) isomorphic with (Mλ)∗, hence the
last decomposition can be written as:

L2(AΓ) '
⊕
λ∈ĜEΓ

⊗
v∈VΓ

Hom

 ⊗
e∈T (v)

Mλ,
⊗
e∈S(v)

Mλ

 .

Now remember from chapter 2 that, given two representations ρ : G →
Aut(V ) and ρ′ : G → Aut(V ′) of the group G, one can always construct a
representation of G supported on Hom(V, V ′) in this way:

η : G −→ Aut(Hom(V, V ′))
g 7→ ηg,

ηg(A) := ρ′g ◦ A ◦ ρg−1 , for every A ∈ Hom(V, V ′).
In the situation under analysis the representation ρ can be specialized to

be
⊗

e∈T (v) L|Mλ and ρ′ to be
⊗

e∈S(v) R|Mλ , where L and R are the regular
left and right representations of G, respectively.

Finally observe that for every fixed vertex v of the graph Γ, the action of

GΓ on Hom
(⊗

e∈T (v) M
λ,
⊗

e∈S(v) M
λ
)

identifies with the action η (with the

specializations above) of the group G on the same space, hence, as proved in
chapter 2, its gauge-invariant subspace is given precisely by the linear span
of the intertwining operators between the indicated representations, thus:

L2(A/GΓ) '
⊕
λ∈ĜEΓ

⊗
v∈VΓ

Int

 ⊗
e∈T (v)

Mλ,
⊗
e∈S(v)

Mλ

 .

Now the definitions of spin network and spin network state can be stated.
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Def. 5.1.1 A spin network is a triple (Γ, ~ρ, ~I) consisting of:

• a graph Γ in M ;

• a labelling ~ρ of each edge e of the graph Γ with a nontrivial irreducible
representation ρe of G;

• a labelling ~I of each vertex of Γ with an intertwining operator Iv from
the tensor product of the representations ρe associated to the edges e
incoming in v to the tensor product of the representations ρe associated
to the edges e outgoing from v.

Given a spin network (Γ, ~ρ, ~I), the spin network state based on it is the
function on A/G constructed as follows:

ψ(Γ,~ρ,~I) : A/G −→ C
[A] 7→ ψ(Γ,~ρ,~I)(A) := [

⊗
e ρe(HA(e))] · [

⊗
v Iv]

where A ∈ [A] and the dot ‘·’ stands for contracting, at each vertex v of
the graph Γ, the upper indices of the matrixes corresponding to the incoming
edges in v, the lower indexes of the matrixes assigned to the outgoing edges
in v, and the corresponding upper and lower indices of the intertwiners Iv.

A spin network state ψ(Γ,~ρ,~I) is a gauge-invariant cylindrical function of
connections since it depends only on a finite number of holonomies and,
obviously, the Wilson functions are particular cases of spin network states.

Being the space of cylindrical functions an Abelian C∗-algebra with unit,
we know that, thanks to the Gelfand isomorphism, we can extend in a unique
way the spin network states to cylindrical functions on A/G.

Since L2(A/GΓ) is the completion of CylΓ(A/G) and since⋃
Γ

L2(A/GΓ) = L2(A/G)

the spin network states, as Γ varies, span L2(A/G).
Moreover the previous decomposition of L2(A/G) shows that they are

orthonormal by construction and Baez shown in [16] that they satisfy the
consistency conditions to form and inductive family.

All these considerations lead to the following final result.

Theorem 5.1.1 The spin network states {ψ(Γ,~ρ,~I)}Γ form a complete or-

thonormal system for L2(A/G).
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Notice that, in standard quantum field theory, a spin-network-like com-
putation gives rise to the celebrated Feynman diagrams. In fact we com-
pute transition amplitudes between quantum states as sums or integrals over
graphs with edges labelled by irreducible unitary representations of the rel-
evant symmetry group. Typically this group is the product of the Poincaré
group and some internal symmetry group, so the edges are labelled by mo-
menta, spins and certain internal quantum numbers. To compute the tran-
sition amplitude from one basis state to another, we sum over graphs going
from one set of points labelled by representations (and vectors lying in these
representations) to some other such set.

The contribution of any graph to the amplitude is given by a product
of amplitudes associated to its vertices and edges. Each vertex amplitude
depends only on the representations labelling the incident edges, while each
edge amplitude, or propagator, depends only on the label of the edge itself.

5.1.1 An example of spin network: the ‘theta’

We want to give an example of calculation of a spin network state considering
the so-called ‘theta’ spin network (the name is due to the particular form of
the graph underlying the spin network, as can be seen in figure below).

ι
v
1

ι
v

1

2

ρ
e

ρ
e

ρ
e
3

2c d

a

e f

b

Figure 5.1: An example of spin network: the Θ.
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In this spin spin network there are three edges e1, e2, e3 and two vertices
v1, v2.

We draw arrows on the edges to indicate their orientation. For any con-
nection A ∈ A the spin network state associated to the spin network above
is given by:

ψ(Θ,~ρ,~ι)(A) = ρe1(HA(e1))ab ρe2(HA(e2))cd ρe3(HA(e3))ef (ιv1)ace (ιv2)bdf .

In other words, we take the holonomy along each edge of the Θ−graph, think
of it as a group element, and put it into the representation labelling that edge.

Picking a basis for this representation we think of the result as a matrix
with one superscript and one subscript. We use the little letter near the
beginning of the edge for the superscript and the little letter near the end of
the edge for the subscript.

In addition, we write the intertwining operator for each vertex as a tensor.
This tensor has one superscript for each edge incoming to the vertex and
one subscript for each edge outgoing from the vertex. Note that this recipe
ensures that each letter appears once as a superscript and once as a subscript!

Finally, using the Einstein summation convention we sum over all re-
peated indices and get a number, which of course depends on the connection
A. This is ψ(Θ,~ρ,~ι)(A).

5.2 Area and volume operators and their spec-

tra

Since the spin network states are an orthonormal basis for L2(A/G, µ0), we
can use them to define the action of the operators on this Hilbert space.

In particular we are interested in the operators that correspond to area
and volume, because they will give us the picture of the space at the Planck
scale!

Here we only want to present a sketch of the quantization procedure of
the area of a surface S and the volume V of a region R in Σ. At a classical
level, as we have seen in chapter 1, area and volume are given by:

AS =

∫
S

√
Ea
i E

b
inanb dx

1 ∧ dx2;

VR :=

∫
R

√
det(Ea

i ) dx1 ∧ dx2 ∧ dx3;

where nA is the normal to the surface S.
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The first calculation of the area and volume operators in loop quantum
gravity was done by Rovelli and Smolin in [82]. A more rigorous construc-
tion, that uses a different quantization scheme, was given by Ashtekar and
Lewandowski in [10], [11]. Here we follow the simplified derivation of the
area operator that can be found in [84].

For simplicity assume that S is defined by x3 = 0 and the coordinates x1

and x2 parameterize it, then the area becomes

AS =

∫
S

√
E3
iE

3i dx1 ∧ dx2.

The naive substitution of the functional derivative −i δ
δAia

to the field Ea
i

gives an operator-valued distribution, so that, in order to have a well defined
operator, we have to ‘smear’ the distribution, i.e. to regularize it by an
opportune integration:

Êi(S) = −i
∫
S

dx1 ∧ dx2 εabc
∂ya

∂x1

∂yb

∂x2

δ

δAic(y(x))
.

The operator Êi(S) is well defined on the cylindrical functions. To see how
this may happen, consider its action on the spin network state ψΓ ≡ ψΓ,~ρ,~I .

We can think at the intersection points between the spin network Γ ≡ (Γ, ~ρ, ~I)
and the surface S as ‘punctures’. To begin with, let us consider the simplest
case in which the surface S and the spin network Γ intersect on single punc-
ture p, where p lies on (the interior of) the edge

γ : R→ S, t 7→ xa(t)

labelled by the spin j. A standard result to compute the action of the func-
tional derivative on the holonomies can be obtained by taking the first varia-
tion of the differential equation that defines the holonomy of the connection
A along γ, i.e. HA(γt) +A(γ̇t)HA(γt) = 0 (see chapter 4). The result is that
the derivative of the matrix HA(γ) in the spin-j representation is

δ

δAia(x)
j(HA(γ)) =

∫
γ

dt
dxa(t)

dt
δ3(γt, x)j(HA(γ0→t))X

i
(j)j(HA(γt→1))

where γ0→t and γt→1 denote the two segments in which the point with coor-
dinate t cuts γ and where X i

(j) are the generators of the spin-j representation

of SU(2).
Now, if we isolate j(HA(γ)) in the spin network state ψΓ, i.e. we write

ψΓ(A) = ψlmΓ−γ(A)j(HA(γ))lm
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then the action of the operator Êi(S) on ψΓ is

Êi(S)ψΓ(A) = −i
∫
S

dx1 ∧ dx2 εabc
∂ya

∂x1

∂yb

∂x2
ψlmΓ−γ(A)

δ

δAic(y(x))
j(HA(γ))lm.

Substituting the expression of the functional derivative obtained above we
arrive to

Êi(S)ψΓ(A) = −i
∫
S

dx1 ∧ dx2

∫
γ

dt εabc
∂ya

∂x1

∂yb

∂x2

dxc(t)

dt
δ3(γt, y(x)) ·

·ψlmΓ−γ(A)j(HA(γ0→t))X
i
(j)j(HA(γt→1)).

Remarkably, the three partial derivatives combine to produce the Jaco-
bian for the change of integration coordinates from (x1, x2, t) to (y1, y2, y3).
If this jacobian is non vanishing, we perform the change of integration coor-
dinates and then we can integrate away the delta function, obtaining

Êi(S)ψΓ(A) = −iψlmΓ−γ(A)
(
j(HA(γ0→t))X

i
(j)j(HA(γt→1))

)
lm
.

Thus, the effect of the operator Êi(S) on the spin network state
ψΓ(A) is simply the insertion of the matrix −ιX i

(j) in the point cor-
responding to the puncture. If, on the other hand, the Jacobian vanishes,
then the entire integral vanishes. This happens if the tangent to the edge
dxa(t)
dt

is tangent to the surface, in particular, for instance, this happens if the
edge lies entirely on the surface, in which case the puncture is not an isolated
point. Therefore only isolated punctures contribute to Êi(S)ψΓ(A).

The key result of the above computation is the analytical expression for
the (integer) intersection number I(S, γ) between a surface S and an edge γ,
i.e.

I(S, γ) = −i
∫
S

dx1 ∧ dx2

∫
γ

dt εabc
∂ya

∂x1

∂yb

∂x2

dxc(t)

dt
δ3(γt, y(x))

this integral is independent of the coordinates and yields an integer: the
(oriented)1 number of punctures.

Finally, it is easy to see what happens if the surface S and the spin
network Γ intersect in more than one puncture (along the same or different
edges): in this case Êi(S)ψΓ(A) is a sum of one term per puncture, each term
being given by the insertion of an X-like matrix.

Unfortunately, a bit more care is required for the computation of Êi(S)ψΓ(A)
when the punctures are also nodes of s, for a discussion of this feature see,
for instance, Appendix B of [84].

1The sign is determined by the relative orientation of surface and edge.
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Now let’s apply the square of the operator Êi(S) on a spin network state
ψΓ such that the edges of γ intersect S only in a puncture. We find:

Ê2(S)ψΓ(A) := Êi(S)Êi(S)ψΓ(A)

= −ψlmΓ−γ(A)
(
j(HA(γ0→t))X

i
(j)X

i
(j)j(HA(γt→1))

)
lm

= ψlmΓ−γ(A) (j(HA(γ0→t))j(j + 1)j(HA(γt→1)))lm
= j(j + 1)ψΓ(A)

where we have used the fact that X i
(j)X

i
(j) is (−1 times) the Casimir operator

in the spin-j representation of SU(2) and we have already seen in chapter 2
that this operator is a scalar operator with eigenvalues j(j + 1). Thus the

area operator

√
Êi(S)Êi(S) for a single puncture has this behavior:√

Êi(S)Êi(S)ψΓ(A) =
√
j(j + 1)ψΓ(A).

It is easy to extend the definition of the area operator to the case of many
punctures, in fact one can consider a sequence of increasingly fine partitions
of S in n small surfaces such that in everyone of them there is only one
puncture. The area operator generalizes to this situation as well as possible,
in fact one can quite easily show that the limit operator, denoted with A(S)
acts in this way of the spin network states:

A(S)ψΓ =

(∑
i∈Γ∩S

√
ji(ji + 1)

)
ψΓ

where the sum is taken over all points pi where an edge of the spin network
Γ intersects the surface S.

Moreover if we re-introduce the correct dimensions and constants G, c
and ~ we see that they combine to give the square of the Planck length `P ,
i.e. the Planck area `2

P !
This result is of huge importance: the area operator A(S) is diag-

onalized on the spin network basis and every spin network edge
that punctures S contributes with the integer multiple

√
j(j + 1)`2

P

of the Planck area to the area of the surface S, this means that the
area is a discrete entity which has as fundamental building block
the Planck area!.

This amazing result is considered the most important indication that, at
a very microscopical level, the universe is far from being a continuous smooth
structure.

As possible visualization of what just described we can draw this picture:
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Figure 5.2: Edges of a spin network puncturizing the surface S.

The computation of the area operator has been used by Ashtekar, Baez
and Krasnov to compute the entropy of certain black holes [5], the result
they found fits the previous result of Hawking and Bekenstein. This could
be and indication of the correctness of loop quantum gravity.

We want to conclude the discussion of the area operator by showing what
happens in the general case in which the punctures of the edges to the surface
S can be also nodes of the spin network Γ.

More precisely that p is an n-valent vertex, we must distinguish the edges
that meet in p in three classes, which we denote ‘up’, ‘down’ and ‘tangential’.
The tangential edges are the ones that overlap with S for a finite interval,
the others edges are naturally separated into two classes according to the
side of S they lie (which we arbitrarily label ‘up’ and ‘down’). We call ju,
jd and jt, respectively, the spins of these edges. Then one can show that the
area operator generalizes to a self-adjoint operator that diagonalizes on the
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spin network basis in this way:

A(S)ψΓ(A) =
`2
P

2

(∑
i∈Γ∩S

√
2ju(ju + 1) + 2jd(jd + 1) + jt(jt + 1)

)
ψΓ(A).

Finally let us say some few words about the volume operator: this op-
erator can be constructed in a rigorous way and it has been proven that it
possesses only discrete spectrum as the area operator, but the explicit form
of the whole spectrum is still not available. Naively we can say that the ver-
tices here play the role of the edges in the area operator, i.e. they contribute
to the computation of the volume of the region in which they lie, with an
integer multiple of the Planck volume `3

P .
The interested reader can find a rigorous discussion of the volume operator

in [11].
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Chapter 6

Covariant formulation of
quantum gravity: spin foam
models

This chapter is strongly inspired by the beautiful articles of Baez [18] and
[19].

6.1 Introduction: the need of a spin foam

models for a covariant quantization of grav-

ity

We have seen that, thanks to the theory of spin networks, loop quantum
gravity gives a description of the geometry of space at the very microscopical
level of the Planck scale, but not the geometry of spacetime. This happens
because loop quantum gravity is based on canonical quantization, in which
states describe the geometry of space at a frozen time. The dynamics en-
ters in the theory only in the form of the constraint called the Hamiltonian
constraint.

Unfortunately this constraint is still poorly understood and so, we have
no idea of what loop quantum gravity might say about the geometry of
spacetime.

To remedy this problem, it is natural to try to supplement loop quantum
gravity with an appropriate path-integral formalism. In ordinary quantum
field theory we calculate path integrals using Feynman diagrams. Copying
this idea, in loop quantum gravity we may try to calculate path integrals
using spin foams, which are a 2-dimensional analogue of Feynman diagrams.
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We have seen that spin networks are graphs with edges labelled by group
representations and vertices labelled by intertwining operators. Similarly, a
spin foam is a 2-dimensional complex built from vertices, edges and polygonal
faces, with the faces labelled by group representations and the edges labelled
by intertwining operators. Quoting [18]: ‘when the group is SU(2) and three
faces meet at each edge, this looks exactly like a bunch of soap suds with all
the faces of the bubbles labelled by spins hence the name spin foam’.

If we take a generic slice of a spin foam, we get a spin network. Thus we
can think of a spin foam as describing the geometry of spacetime, and any
slice of it as describing the geometry of space at a given time. Ultimately
we would like a spin foam model of quantum gravity, in which we compute
transition amplitudes between states by summing over spin foams going from
one spin network to another:

1/2
3/2

1/2

1/2
1/2

1/2 3/2
1

1/2

Figure 6.1: An example of spin foam.

At present this goal has been only partially attained. An important fact to
stress is that, while canonical loop quantum gravity starts from Ashtekar’s
formulation of general relativity, the spin foam models start from another
description of gravity: general relativity in 4 dimensions can be viewed as
a BF theory with extra constraints. Most work on spin foam models of
4-dimensional quantum gravity seeks to exploit this fact.

This is why we start by describing BF theory at the classical level and
then we show how it reduces to general relativity with the introduction of
suitable constraints. Next we propose how to generally construct a spin foam
model and finally we discuss one of the most promising approaches to the
spin foam model of quantum gravity: the Barrett-Crane model.
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6.2 BF theory and gravity

To set up BF theory, we take as our gauge group any semisimple Lie group
G whose Lie algebra g is equipped with an invariant non-degenerate bilinear
form < , >.

We take as our spacetime any n-dimensional oriented smooth manifold
M , and choose a principal G-bundle P over M . The basic fields in the theory
are then:

• a connection A on P ;

• an ad(P )-valued (n− 2)-form E on M .

Remember that ad(P ) is the vector bundle associated to P via the adjoint
action of G on its Lie algebra. The curvature of A is an ad(P )-valued 2-form
F on M . If we pick a local trivialization we can think of A as a g-valued
1-form on M , F as a g-valued 2-form, and E as a g-valued (n− 2)-form.

The Lagrangian density for BF theory is:

L = Tr(E ∧ F )

where Tr(E ∧ F ) is the n-form constructed by taking the wedge product of
the differential form parts of E and F and using the bilinear form < , > to
pair their g-valued parts.

The notation Tr refers to the fact that when G is semisimple the bilinear
form is the Killing form < X, Y >= Tr(adX, ad Y ).

We obtain the field equations by setting the variation of the action to
zero:

0 = δ

∫
M

L

=

∫
M

Tr(δE ∧ F + E ∧ δF )

=

∫
M

Tr(δE ∧ F + E ∧ dAδA)

=

∫
M

Tr(δE ∧ F + (−1)n−1dAE ∧ δA)

where dA stands for the exterior covariant derivative. In the second step we
used the identity δF = dAδA, while in the final step we did an integration
by parts. We see that the variation of the action vanishes for all δE and δA
if and only if the following field equations hold:

F = 0, dAE = 0.
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These equations suggest that BF theory is a topological field theory! In fact,
all solutions of these equations look the same locally, so BF theory describes
a world with no local degrees of freedom. To see this, first note that the
equation F = 0 says the connection A is flat. Indeed, all flat connections
are locally the same up to gauge transformations. The equation dAE = 0 is
a bit subtler, in fact it is not true that all solutions of this are locally the
same up to a gauge transformation in the usual sense, however BF theory
has another sort of symmetry. Suppose we define a transformation of the A
and E fields by

A 7→ A, E 7→ E + dAη

for some ad(P )-valued (n− 3)-form η. This transformation leaves the action
unchanged, in fact:∫

M

Tr((E + dAη) ∧ F ) =

∫
M

Tr(E ∧ F + dAη ∧ F )

=

∫
M

Tr(E ∧ F + (−1)nη ∧ dAF )

=

∫
M

Tr(E ∧ F )

where we used integration by parts and the Bianchi identity dAF = 0. This
transformation is a gauge symmetry of BF theory, in the more general sense
of the term, meaning that two solutions differing by this transformation
should be counted as physically equivalent. Moreover, when A is flat, any
E field with dAE = 0 can be written locally as dAη for some η; this is
an easy consequence of the fact that locally all closed forms are exact. Thus
locally, all solutions of the BF theory field equations are equal modulo gauge
transformations and transformations of the above sort.

General relativity in 3 dimensions is a special case of BF theory. To see
this, take n = 3, let G = SO(2, 1), and let < , > be minus the Killing form.
Suppose first that E : TM → ad(P ) is one-to-one. Then we can use it to
define a Lorentzian metric on M as follows: g(v, w) =< Ev,Ew > for any
tangent vectors v, w ∈ TxM . We can also use E to pull back the connection
A to a metric-preserving connection Γ on the tangent bundle of M .

The equation dAE = 0 then says precisely that Γ is torsion-free, so that
Γ is the Levi-Civita connection on M . Similarly the equation F = 0 implies
that Γ is flat, thus the metric is flat.

In 3 dimensional spacetime, the vacuum Einstein equations simply say
that the metric is flat.

Of course, many different A and E fields correspond to the same met-
ric, but they all differ by gauge transformations. So in 3 dimensions, BF
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theory with gauge group SO(2, 1) is really just an alternate formulation of
Lorentzian general relativity without matter fields at least when E is one-to-
one. When E is not one-to-one, the metric g defined above will be degenerate,
but the field equations of BF theory still make perfect sense. Thus 3-D BF
theory with gauge group SO(2, 1) may be thought of as an extension of the
vacuum Einstein equations to the case of degenerate metrics. If instead we
take G = SO(3), all these remarks still hold except that the metric g is
Riemannian rather than Lorentzian when E is one-to-one. This theory is
Riemannian general relativity.

We can also express general relativity in 3 dimensions as a BF theory by
taking the double cover Spin(2, 1) ' SL(2,R) or Spin(3) ' SU(2) as gauge
group and letting P be the spin bundle. This does not affect the classical
theory but it does affect the quantum theory. Nonetheless, it is very popular
to take these groups as gauge groups in 3-dimensional quantum gravity.

To determine the classical phase space of BF theory we assume spacetime
has the form M = R× Σ where the real line R represents time and Σ is an
oriented smooth (n − 1)-dimensional manifold representing space. This is
no real loss of generality, since any oriented hypersurface in any oriented
n-dimensional manifold has a neighborhood of this form. We can thus use
the results of canonical quantization to study the dynamics of BF theory
on quite general spacetimes. If we work in temporal gauge, where the time
component of the connection A vanishes, we see the momentum canonically
conjugate to A is

E :=
∂L
∂Ȧ

.

This is reminiscent of the situation in electromagnetism, where the electric
field is canonically conjugate to the vector potential. This is why we use the
notation ‘E’. Originally people used the notation ‘B’ for this field1, hence
the term ‘BF theory’, which has subsequently become ingrained. But to
understand the physical meaning of the theory, it is better to call this field
E and think of it as analogous to the electric field. Of course, the analogy is
best when G = U(1).

Let’s now see what is the relation between BF theory and gravity in 4
dimensions. The things here are quite different from the 3-dimensional case
since general relativity in 4 dimensions has local degrees of freedom!

Let’s remember very briefly from chapter 1 the Palatini formalism of
general relativity.

Let the spacetime be given by a 4-dimensional oriented smooth manifold

1Just because the other field is A, so that the couple of fields of the theory were the
first two letters of the alphabet!
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M . We choose a bundle T over M that is isomorphic to the tangent bundle,
but not in any canonical way.

This bundle, or any of its fibers, is called the ‘internal space’. We equip
it with an orientation and a metric η, either Lorentzian or Riemannian. Let
P denote the oriented orthonormal frame bundle of M . This is a principal
G-bundle, where G is either SO(3, 1) or SO(4) depending on the signature
of η. The basic fields in the Palatini formalism are:

• a connection A on P ;

• a T -valued 1-form e on M .

The curvature of A is an ad(P )-valued 2-form which, as usual, we call
F . Note however that the bundle ad(P ) is isomorphic to the second exterior
power

∧2 T . Thus we are free to switch between thinking of F as an ad(P )-
valued 2-form and a

∧2 T -valued 2-form. The same is true for the field e∧ e.
The Lagrangian density of the theory is

L = Tr(e ∧ e ∧ F ).

Let’s explain the meaning of the notation above: there we first take the wedge
products of the differential form parts of e ∧ e and F while simultaneously
taking the wedge products of their ‘internal’ parts, obtaining the

∧4 T -valued
4-form e∧e∧F . The metric and orientation on T give us an ‘internal volume
form’, that is, a nowhere vanishing section of

∧4 T . We can write e ∧ e ∧ F
as this volume form times an ordinary 4-form, which we call Tr(e ∧ e ∧ F ).

To obtain the field equations, we set the variation of the action to zero:

0 = δ

∫
M

L

=

∫
M

Tr(δe ∧ e ∧ F + e ∧ δe ∧ F + e ∧ e ∧ δF )

=

∫
M

Tr(2δe ∧ e ∧ F + e ∧ e ∧ dAδA)

=

∫
M

Tr(2δe ∧ e ∧ F − dA(e ∧ e) ∧ δA).

The field equations are thus

e ∧ F = 0, dA(e ∧ e) = 0.

These equations are really just an extension of the vacuum Einstein equation
to the case of degenerate metrics. To see this, first define a metric g on M
by

g(v, w) := η(ev, ew).

162



When e : TM → T is one-to-one, g is non-degenerate, with the same sig-
nature as η. The equation dA(e ∧ e) = 0 is equivalent to e ∧ dAe = 0, and
when e is one-to-one this implies dAe = 0. If we use e to pull back A to a
metric-preserving connection Γ on the tangent bundle, the equation dAe = 0
says that Γ is torsion-free, so Γ is the Levi-Civita connection of g. This lets
us rewrite e∧F in terms of the Riemann tensor. In fact, e∧F is proportional
to the Einstein tensor, so e ∧ F = 0 is equivalent to the vacuum Einstein
equation!

There are a number of important variants of the Palatini formulation
which give the same classical physics (at least for non-degenerate metrics)
but suggest different approaches to quantization. Most simply, we can pick
a spin structure on M and use the double cover Spin(3, 1) ' SL(2,C) or
Spin(4) ' SU(2) × SU(2) as gauge group. As we have seen in chapter 1,
a subtler trick is to work with the self-dual or ‘lefthanded’ part of the spin
connection. In the Riemannian case this amounts to using only one of the
SU(2) factors of Spin(4) as gauge group; in the Lorentzian case we need to
complexify Spin(3, 1) first, obtaining SL(2,C)× SL(2,C), and then use one
of these SL(2,C) factors.

The Palatini formulation of general relativity brings out its similarity to
BF theory. In fact, if we set E := e ∧ e, the Palatini Lagrangian density
looks exactly like the BF Lagrangian density:

LBF = Tr(E ∧ F );

LPal = Tr(e ∧ e ∧ F ).

The big difference, of course, is that not every ad(P )-valued 2-form E is of
the form e ∧ e. This restricts the allowed variations of the E field when
we compute the variation of the action in general relativity. As a result, the
equations of general relativity in 4 dimensions: e∧F = 0, dAE = 0 are weaker
than the BF theory equations: F = 0, dAE = 0. Another, subtler difference
is that, even when E is of the form e∧ e, we cannot uniquely recover e from
E. In the non-degenerate case there is only a sign ambiguity: both e and −e
give the same E. Luckily, changing the sign of e does not affect the metric.
In the degenerate case the ambiguity is greater, but we need not be unduly
concerned about it, since we do not really know the correct generalization of
Einsteins equation to degenerate metrics. The relation between the Palatini
formalism and BF theory suggests that one develops a spin foam model of
quantum gravity by taking the spin foam model for BF theory and imposing
extra constraints: quantum analogues of the constraint that E be of the form
e ∧ e!
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Let’s analyze how to impose this constraint in the Riemannian case, i.e.
when we pick a spin structure for spacetime and take the double cover Spin(4)
as our gauge group. Locally we may think of the E field as taking values in
the Lie algebra so(4), but the splitting so(4) ' so(3)⊕ so(3) lets us write E
as the sum of left-handed and right-handed parts E taking values in so(3).
If E = e ∧ e, the following constraint holds for all vector fields v, w on M :
‖E+(v, w)‖ = ‖E−(v, w)‖ where ‖ ‖ is the norm on so(3) coming from the
Killing form. This constraint is sufficient to guarantee that E is of the form
e ∧ e.

Now that we have finally written this constraint at the classical level, we
must describe the spin foam models of gravity and then show how to impose
this constraint in the quantum theory. We do this in the next sections.

6.3 Dynamical triangulations and spin foam

models for quantum gravity

In the previous chapters we have developed canonical quantization of gravity
by using the concept of graph. However there is another way to perform a
canonical quantization that can be thought as a ‘dual’ version of the pre-
vious one. This procedure is intimately connected to the triangulations of
manifolds and now the role played by the graph is played by an object called
piecewise linear cell complex.

We want to give a very brief presentation of the quantization via dynam-
ical triangulations, this will serve as a motivation to construct a spin foam
model starting from triangulations.

The reference is [3]. Let M be an n-dimensional, (n ≥ 2), manifold of
given topology. Very naively, to triangulate M corresponds to subdivide it
in a finite number of submanifolds Mn with (n− 1)-dimensional boundaries
Σk, k = 1, 2, . . . Let Riem(M), Lor(M) and Diff(M) respectively denote
the space of Riemannian (Lorentzian) metrics g on M , and the group of
diffeomorphisms on M .

To fix the ideas let’s stuck on the Riemannian case. In the continuum
formulation of quantum gravity the task is to perform a path integral over
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equivalence classes of metrics to get a partition function2:

Z(g,Σk) =
∑

Top(M)

∫
Riem(M)/Diff(M)

D[g]e−S(g,Σk)

where S(g,Σk) is the Einstein-Hilbert action associated with the Riemannian
manifold (M, g) in which there appear boundary terms depending on the
extrinsic curvature induced on the boundaries Σk. These terms are such
that, if we glue together any two manifolds (M1, g1) and (M2, g2) along a
common boundary Σ, we get S(g1,Σ)+S(g2,Σ) = S(g1 +g2,Σ). In this way,
the partition function satisfies the basic composition law which describes how
M can interpolate between two fixed boundaries Σ1 and Σ2 by summing over
all possible intermediate states.

The formal measure D[g] that characterizes such sort of path integration
should satisfy some basic properties, in particular it should be defined on the
space Riem(M)/Diff(M) to avoid counting as distinct any two Riemannian
metrics g1 and g2 which differ one from the other simply by the action of a
diffeomorphism of φ : M →M such that g2 = φ∗g1.

The hope behind the dynamical triangulation algorithm of quantum grav-
ity (or simplicial quantum gravity for reasons that will be cleared later) is
that some of the well known problems concerning the characterization of the
path-integral measure can be properly addressed, in a non-perturbative set-
ting, by approximating the path integration over inequivalent Riemannian
structures with a summation over combinatorially equivalent objects called
piecewise linear (PL in the following) manifolds.

The first attempt of using PL geometry in relativity dates back to the
pioneering work of Regge [80]. His proposal was to approximate Riemannian
structures by PL-manifolds in such a way as to obtain a coordinate-free
formulation of general relativity. The basic observation in this approach is
that parallel transport and the (integrated) scalar curvature have natural
counterparts on PL manifolds once one gives consistently the lengths of the
links of the triangulation defining the PL structure. The link length is the
dynamical variable in Regge calculus, and classically the PL version of the
Einstein field equations is obtained by fixing a suitable triangulation and by
varying the length of the links so as to find the extremum of the Regge action.
If the original triangulation is sufficiently fine, this procedure consistently
provides a good approximation to the smooth spacetime manifold which is
the corresponding smooth solution of the Einstein equations.

2The partition function in quantum field theory is a very important object, in fact
it enables to compute the transition amplitude between two quantum states, i.e. the
probability that a physical system transforms from a given state to another, see [31] for a
wider discussion, or [52] for the genesis of the partition function in statistical field theory.
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Now we list the mathematically rigorous definitions of the objects ap-
pearing in the theory of triangulations (the interested reader is referred to
[85] for a wider discussion).

Def. 6.3.1 A subset X ⊆ Rn is said to be a polyhedron if every point
x ∈ X has a neighborhood in X of the form

{αx+ βy | α, β ≥ 0, α + β = 1, y ∈ Y, Y ⊆ X, Y compact}.

A compact convex polyhedron X for which the smallest affine space containing
X is of dimension k is called a k-cell.

A k-cell X is oriented if X minus the union of its proper faces, thought
of as a k-dimensional manifold, is equipped with an orientation.

For example, Rn is a polyhedron and any open subset of a polyhedron is a
polyhedron. Cells, on the other hand, are more special. For example

• every 0-cell is a point;

• every 1-cell is a compact interval affinely embedded in Rn;

• every 2-cell is a convex compact polygon affinely embedded in Rn.

The ‘vertices’ and ‘faces’ of a cell X are defined as follows.

Def. 6.3.2 Given a point x ∈ X, let < x,X > be the union of lines L
through x such that L ∩X is an interval with x in its interior. If there are
no such lines, we define < x,X > to be {x} and call x a vertex of X. One
can show that < x,X > ∩X is a cell, and such a cell is called a face of X.

One can show that any cell X has finitely many vertices vi and that X is the
convex hull of these vertices, meaning that:

X =
{∑

αivi | αi ≥ 0,
∑

αi = 1
}
.

Similarly, any face of X is the convex hull of some subset of the vertices of
X. However, not every subset of the vertices of X has a face of X as its
convex hull. If the cell Y is a face of X we write Y ≤ X. This relation is
transitive, and if Y, Y ′ ≤ X we have Y ∩ Y ′ ≤ X.

Def. 6.3.3 A piecewise linear cell complex, or complex for short, is a
collection κ of cells in some Rn such that:

1. if X ∈ κ and Y ≤ X then Y ∈ κ;
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2. if X, Y ∈ κ, then X ∩ Y ≤ X, Y .

So, in particular, 2-dimensional complexes can be intuitively thought as a fi-
nite collection of polygons attached to the other along their edges. A complex
is k-dimensional if it has cells of dimension k but no higher. A complex is
oriented if every cell is equipped with an orientation, with all 0-cells being
equipped with the positive orientation. The union of the cells of a complex
κ is a polyhedron which we denote by |κ|.

Def. 6.3.4 An n-simplex σn ≡ (x0, . . . , xn) with vertices x0, . . . , xn is
the following subspace of Rd, (with d > n):{

n∑
i=0

λixi, x0, . . . , xn ∈ Rd, λi ≥ 0,
n∑
i=0

λi = 1

}
.

A face of a n-simplex σn is any simplex whose vertices are a subset of those
of σn and a simplicial complex K is a finite collection of simplices in Rd

such that if σn1 , σ
m
2 ∈ K then so are all of its faces, and if σn1 , σ

m
2 ∈ K then

σn1 ∩ σm2 is either a face of σn1 or is empty. The h-skeleton of K is the
subcomplex Kh ⊂ K consisting of all simplices of K of dimension ≤ h.

A piecewise linear manifold of dimension n is a polyhedron M = |κ|
each point of which has a neighborhood in M piecewise linear homeomorphic
to an open subset of Rn.

A triangulated manifold can be characterized as its underlying piece-
wise linear manifold.

The link between triangulation and canonical loop quantum gravity is
that every 1-dimensional oriented complex has an underlying graph,
that uniquely determines the 1-dimensional complex up to piece-
wise linear homeomorphisms.

Since spin networks are based on graphs, and since they describe 3-
quantum geometry, this result implies that 3-geometry can be also described
in terms of spin networks based on a 1-dimensional complex. But then one
can ‘grow up’ to dimension 4 to describe 4-quantum geometry by considering
a new object of the theory based on 2-dimensional complexes. This object is
precisely what we call a spin foam!

We now give the precise definitions of spin networks and spin foams in
terms of complexes.

First of all let’s fix the notations concerning 1-dimensional oriented com-
plexes. Such a complex has a set V of 0-cells or vertices, and also a set E of
oriented 1-cells or edges. The orientation on each edge e ∈ E picks out one
of its endpoints as its source s(e) ∈ V and the other as its target t(e) ∈ V .
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If v is the source of e we say e is outgoing from v, while if v is the target
of e we say that e is incoming to v.

Def. 6.3.5 (Spin network in terms of 1-dim. complexes) A spin net-

work Ψ is a triple (γ, ~ρ, ~I) consisting of:

1. a 1-dimensional oriented complex γ;

2. a labelling ~ρ of each edge e of γ by a unitary irreducible representation
ρe of G;

3. a labelling ~ of each vertex v of γ by an intertwiner:

Iv : ρe1 ⊗ · · · ⊗ ρen → ρe′1 ⊗ · · · ⊗ ρe′m

where e1, . . . , en are the edges incoming to v and e′1, . . . , e
′
m are the edges

outgoing from v.

Now we grow up in dimension and define the spin foams. A 2-dimensional
oriented complex has a finite set of vertices V , a finite set of edges E, and
finite sets of n-sided 2-cells or faces Fn for each n ≥ 3, with only finitely many
Fn being nonempty. As in a 1-dimensional oriented complex, the orientations
of the edges give maps

s, t : E → V

assigning to each edge its source and target. In addition, the orientation on
any 2-cell f ∈ Fn puts a cyclic ordering on its faces and vertices. Suppose we
arbitrarily choose a ‘first’ vertex for each 2-cell f of our complex. Then we
may number all its vertices and edges from 1 to n. It is convenient to think
of these numbers as lying in Zn. We thus obtain maps

ei : Fn → E, vi : Fn → V i ∈ Zn.

Note that for each f ∈ Fn either

s(ei(f)) = vi(f) and t(ei(f)) = vi+1(f) (6.1)

or
t(ei(f)) = vi(f) and s(ei(f)) = vi+1(f). (6.2)

If (6.1) holds, we say f is incoming to e, while if (6.2) holds, we say f is
outgoing from e. In other words, f is incoming to e if the orientation of e
agrees with the orientation it inherits from f , while it is outgoing if these
orientations do not agree.

First we define a special class of spin foams.
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Def. 6.3.6 A closed spin foam F is a triple (κ, ~ρ, ~I) consisting of:

1. a 2-dimensional oriented complex κ;

2. a labelling ~ρ of each face f of κ by an irreducible representation ρf of
G;

3. a labelling ~I of each edge e of κ by an intertwiner

Ie : ρf1 ⊗ · · · ⊗ ρfn → ρf ′1 ⊗ · · · ⊗ ρf ′m
where f1, . . . , fn are the faces incoming to e and f ′1, . . . , f

′
m are the faces

outgoing from e.

Next we turn to general spin foams. In general, a spin foam F : Ψ→ Ψ′ will
go from a spin network Ψ to a spin network Ψ′. It has ‘free edges’, the edges
of the spin networks Ψ and Ψ′, which are not labelled by intertwiners. It also
has edges ending at the spin network vertices, and the intertwiners labelling
these edges must match those labelling the spin network vertices. A closed
spin foam is just a spin foam of the form F : ∅ → ∅, where ∅ is the empty
spin network: the spin network with no vertices and no edges.

To make this more precise, suppose γ is a 1-dimensional oriented complex
and κ is a 2-dimensional oriented complex. Note that the product γ × [0, 1]
becomes a 2-dimensional oriented complex in a natural way. We say γ borders
κ if there is a one-to-one affine map c : |γ| × [0, 1]→ |κ| mapping each cell of
γ × [0, 1] onto a unique cell of κ in an orientation-preserving way, such that
c maps γ × [0, 1) onto an open subset of |κ|. Note that in this case, c lets us
regard each j-cell of γ as the face of a unique (j + 1)-cell of κ.

Each vertex v of γ is the source or target of a unique edge of κ, which we
denote by ṽ, and each edge e of γ is the edge of a unique face of κ, which we
denote by ẽ. It is easier to first define spin foams F : ∅ → Ψ and then deal
with the general case.

Def. 6.3.7 Suppose that Ψ = (γ, ~ρ, ~I) is a spin network. A spin foam F :
∅ → Ψ is a triple (κ, ρ̃, Ĩ) consisting of:

1. a 2-dimensional oriented complex κ such that borders κ;

2. a labelling ρ̃ of each face f of κ by an irreducible representation ρ̃f of
G;

3. a labelling Ĩ of each edge e of κ not lying in γ by an intertwiner

Ĩe : ρf1 ⊗ · · · ⊗ ρfn → ρf ′1 ⊗ · · · ⊗ ρf ′m
where f1, . . . , fn are the faces incoming to e and f ′1, . . . , f

′
m are the faces

outgoing from e;
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such that the following hold:

(·) for any edge e of γ, γ̃ẽ = ρe if ẽ is incoming to e, while γ̃ẽ = (ρe)
∗ if ẽ is

outgoing to e;

(· ·) for any vertex v of γ, Ĩẽ equals Ie after appropriate dualizations.

To define general spin foams, we need the notions of ‘dual’ and ‘tensor prod-
uct’ for spin networks. Suppose Ψ = (γ, ~ρ, ~I) is a spin network, then the
dual of is the spin network Ψ∗ with the same underlying 1-dimensional ori-
ented complex, but with each edge e labelled by the representation ρ∗e and
with each vertex v labelled by the appropriately dualized form of the the
intertwining operator Iv.

Suppose that Ψ = (γ, ~ρ, ~I) and Ψ′ = (γ, ~ρ′, ~I ′) are disjoint spin networks
in the same space Rn. Then the tensor product Ψ ⊗ Ψ′ is defined to be the
spin network whose underlying 1-dimensional oriented complex is the disjoint
union of γ and γ′, with edges and vertices labelled by representations and
intertwiners using ρ, ρ′ and I, I ′.

Def. 6.3.8 Given disjoint spin networks Ψ and Ψ′ in Rn a spin foam F :
Ψ→ Ψ′ is defined to be a spin foam F : ∅ → Ψ∗ ⊗Ψ′.

Now we would obviously like to implement the abstract spin foam model
presented above in an explicit way in order to reach a spin foam model of
quantum geometry. In the past years many of such implementations has been
proposed, but the most promising one seems to be the so-called Barrett-Crane
model.

We describe the Barrett-Crane model for Riemannian quantum gravity
in the next section and we reserve the discussion of the model for Lorentzian
quantum gravity in the next chapter, since it requires a more sophisticated
mathematical analysis.

6.4 Spin foams in lattice gauge theory

As we said many times, while spin networks describe states, spin foams de-
scribe ‘histories’: the path integral can be computed as a sum over spin foams.
In this context we work, not with the abstract spin networks of the previous
section, but with spin networks embedded in a manifold representing space.
Similarly, we work with spin foams embedded in a manifold representing
spacetime. Throughout the rest of the chapter we assume these manifolds
are oriented and equipped with a fixed triangulation.
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The triangulation specifies another decomposition of the manifold into
cells called the ‘dual complex’. There is a one-to-one correspondence between
k-simplices in the triangulation of an n-manifold and (n−k)-cells in the dual
complex, each k-simplex intersecting its corresponding dual (n− k)-cell in a
single point. Our spin networks and spin foams live in the appropriate dual
complexes. We need to work with oriented complexes, so we orient each cell
of the dual complex in an arbitrary fashion.

We begin by recalling how spin networks describe states in lattice gauge
theory. We fix a compact connected Lie group G as our gauge group, and
suppose S is an (n−1)-manifold representing space. We assume S is equipped
with a triangulation ∆ and a principal G-bundle P → S. Also, we choose
a trivialization of P over every 0-cell of the dual complex ∆∗. Remember
that the k-skeleton of a complex is the subcomplex formed by all cells of
dimension less than or equal to k.

In particular, the 1-skeleton of ∆∗ is a graph, and we can set up
gauge theory on this graph in the usual way: we represent parallel
transport along each edge of ∆∗ as an element of G, so we define the space
of connections3 AS by

AS :=
∏
e∈∆∗1

G

where ∆∗k denotes the set of k-cells in ∆∗.
Similarly, we represent a gauge transformation at each vertex of ∆∗ as an

element of G, so we define the group of gauge transformations

GS :=
∏
v∈∆∗0

G.

The group GS acts on AS, and the quotient space AS/GS is the space
of connections modulo gauge transformations in this setting. The space AS
has a measure on it given by a product of copies of Haar measures, and this
measure pushes forward to a measure on AS/GS.

Using this measure we are able to define the Hilbert space L2(AS/GS).
Suppose that Ψ = (γ, ρ, I) is a spin network4 in S, where γ is the 1-

skeleton of ∆∗. Then we know that it defines a state in L2(AS/GS), which
we also call Ψ. Moreover, such spin network states span L2(AS/GS). In
fact, we obtain an orthonormal basis of states as ρ ranges over all labellings
of the edges of ∆∗ by irreducible representations of G and I ranges over all
labellings of the vertices by intertwiners chosen from some orthonormal basis.

3In lattice gauge theory generalized connections and ordinary connections coincide.
The same is true for gauge transformations.

4For simplicity in this section we suppress the vector symbol over ρ and I.
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Next we turn to spin foams. For this, suppose S is a submanifold of some
n-manifold M representing spacetime. We assume that P →M is a principal
G-bundle over M that restricts to the already given bundle over S, and that
Θ is a triangulation of M that restricts to the already given triangulation of
S.

We wish to see how a closed spin foam in M determines a spin network
in S. Suppose that F = (κ, ρ̃, Ĩ) is a closed spin foam in M , that is, one for
which κ is the 2-skeleton of Θ∗.

Note that every k-cell X of Θ∗ is contained in a unique (k + 1)-cell X̃
of Θ∗. Since S and M are oriented, the normal bundle of S acquires an
orientation. Similarly, since X and X̃ are oriented, the normal bundle of the
interior of X in X̃ acquires an orientation. But this latter bundle can be
identified with the restriction of the normal bundle of S to the interior of X,
so we have two different orientations on the same bundle. We say that X̃ is
incoming to X if these orientations agree, and outgoing to X if they do not.

We thus obtain a spin network in S as follows.

Theorem 6.4.1 If F = (κ, ρ̃, Ĩ) is a closed spin foam in M , then there exists
a unique spin network F |S = (γ, ρ, I) in S such that:

1. γ is the 1-skeleton of ∆∗;

2. for any edge e of γ, ρ̃ẽ = ρe if ẽ is incoming to e, while ρ̃ẽ = (ρe)
∗ if ẽ

is outgoing to e;

3. if v is a vertex of γ, then Ĩẽ equals Ie after appropriate dualizations.

The proof is trivial but the physical idea is important: a history on space-
time determines a state on any submanifold corresponding to space
at a given time.

Any spin foam F : Ψ→ Ψ′ in M determines an operator from L2(AS/GS)
to L2(AS′/GS′), which we also denote by F , such that

< Φ′|FΦ >=< Φ′|Ψ′ >< Ψ|Φ >

for any states Φ,Φ′. The point is that the spin foam F represents a history
going from the initial state Ψ to the final state Ψ′, and the corresponding
operator does not depend on the behavior of this history at ‘intermediate
times’, that is, in the interior of M . We call the operator F a spin foam
operator.

Just as the space of states L2(AS/GS) is spanned by spin network states,
every operator from L2(AS/GS) to L2(AS′/GS′) will be a linear combination
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of spin foam operators if there is a spin foam F : Ψ → Ψ′ for every pair of
spin networks Ψ and Ψ′.

BF theory with gauge group SU(2) is 3-dimensional Euclidean quantum
gravity, and the lattice formulation of this theory is just the Ponzano-Regge
model [75]. When the cosmological constant Λ is nonzero, one obtains instead
the ’regularized’ model of Turaev-Viro [91], where the quantum group SUq(2)
takes the place of the gauge group SU(2), with the deformation parameter
q being a function of Λ. Even if the use of quantum groups provides a
regularization of many mathematical problems, the physical significance of a
theory formulated in terms of quantum groups is still obscure.

In the next section we concentrate on a more physical, but also more
complicated example, namely 4-dimensional Euclidean quantum gravity.

6.5 The Barret-Crane model for Riemannian

quantum gravity

We now turn to the question of how spin foams describe quantum 4-geometries.
Let M be a piecewise-linear 4-manifold equipped with a triangulation Θ. We
also assume there is a principal bundle P̃ →M with structure group Spin(4).
Using this bundle we can do lattice gauge theory over M as explained in the
previous section. In particular, we can consider a Spin(4) spin foam in M
and try to understand it as equipping M with a ‘quantum 4-geometry’.

We begin by fixing a particular spin foam in M and seeing how far we
can get. One can understand quite a bit about the geometry of a 4-manifold
by studying the geometry of 3-manifolds embedded in it. Thus we begin by
considering 3-dimensional submanifolds of M . Suppose we have an oriented
3-dimensional piecewise-linear submanifold S ⊂M with a triangulation ∆ ⊂
Θ.

Since the group Spin(4) is a product of two copies of SU(2), the bundle
P̃ is a product of ‘left-handed’ and ‘right-handed’ SU(2) bundles P+ and

P−. This implies that the space AS of connections on P̃
∣∣∣
S

can be written

as a product AS = A+
S ×A

−
S where A±S is the space of connections on P±|S,

and similarly
AS/GS = A+

S /G
+
S ×A

−
S /G

−
S

where G±S is the space of gauge transformations on P±|S. Thus we have

L2(AS/GS) ' L2(A+
S /G

+
S )⊗ L2(A−S /G

−
S )

where both the ‘left-handed’ and ‘right-handed’ factors in this tensor product
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are spanned by SU(2) spin networks in the dual 1-skeleton of S. In particular,
both factors are isomorphic.

In what follows we will arbitrarily choose to favor L2(A+
S /G

+
S ) in certain

constructions, influenced by the Ashtekar’s strategy of quantizing gravity
using the left-handed (or self-dual) spin connection. However, the physics is
independent of this choice.

We can define various geometrically interesting operators on the left-
handed Hilbert space L2(A+

S /G
+
S ). We can tensor these with the identity

on the right-handed Hilbert space to obtain corresponding operators on
L2(AS/GS). This allows us to interpret states in the latter space as quan-
tum 3-geometries. Moreover, as described previously, any spin foam F in
M determines a state F |S ∈ L2(AS/GS). Thus spin foams in M determine
quantum 3-geometries for S.

More concretely, note that a spin foam in M is a labelling of each 2-cell
in the dual complex Θ∗ by an irreducible representation of Spin(4) together
with a labelling of each 1-cell by an intertwining operator. The 1-cells and
2-cells in the dual complex correspond to tetrahedra and triangles in the
triangulation Θ, respectively. Moreover, any irreducible representation of
Spin(4) is of the form j+ ⊗ j− where j+ and j− are representations of the
left-handed and right-handed copies of SU(2). Thus if we pick a splitting
of each tetrahedron in Θ, a spin foam in M amounts to a labelling of each
triangle and each tetrahedron in Θ by a pair of spins.

As explained above, given any triangle f in the triangulation of S there
is an area operator Â+

f on L2(AS/GS) coming from the area operator on the

left-handed Hilbert space L2(A+
S /G

+
S ). We define the expectation value of

the area of f in the spin foam F to be

< F, Â+
f >=< F |S , Â

+
f F |S > .

Note that any triangle f in Θ lies in some submanifold S ⊆ M of the form
we are considering, and the above quantity is independent of the choice of S.
Thus the expectation value of the area of any triangle in M is well-defined
in the quantum 4-geometry described by any spin foam. The space S serves
only as a disposable tool for studying the geometry of the spacetime M . Note
that we can easily extend the above formula to formal linear combinations
of spin foams. This allows us to think of A+

f as an operator on the space
of formal linear combinations of spin foams. More generally, we can define
an area operator Â+

Σ for any 2-dimensional submanifold Σ ⊆ M built from
triangles in Θ by adding up the area operators for the triangles it contains.
Similarly, for every tetrahedron T in the triangulation of S there is a 3-
volume operator V̂ +

T on L2(AS/GS), and we can define the expectation value
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of the 3-volume of T in the spin foam F to be

< F |V̂ +
T F >=< F |S |V̂

+
T F |S > .

Again, the right-hand side is actually independent of S, since it depends
only on the data by which F labels the tetrahedron T and its faces. As with
the area of a triangle, we can also extend VT to an operator on the space
of formal linear combinations of spin foams. More generally, we can define
the volume operator V̂ +

S for any 3-dimensional submanifold S ⊆ M built
from tetrahedra in Θ to be the sum of volume operators for the tetrahedra
it contains.

So, where do we stand? We have seen that the spin foams endow each
such submanifold with a quantum 3-geometry. However, for these quantum
3-geometries to fit together to form a sensible quantum 4-geometry, it ap-
pears that certain constraints must hold. Following the ideas of Barrett and
Crane [24], we arrive at these constraints through a study of the ‘quantum
4-simplex’. Here we take S to be the boundary of a single 4-simplex in M .
A spin foam in M gives each of the ten triangles in S an area and each of
the five tetrahedra in S a volume. However, the geometry of a 4-simplex
affinely embedded in Euclidean R4 is determined by only ten numbers, e.g.,
the lengths of its edges. This suggests that some constraints must hold for
S to be the boundary of a ‘flat’ 4-simplex. We wish the 4-simplices in M
to be flat because we want a picture similar to that of the Regge calculus,
where spacetime is pieced together from flat 4-simplices, and curvature is
concentrated along their boundaries [80].

Interestingly, these constraints are the same that arise naturally from the
relationship between general relativity and BF theory as we have described
in section 6.2. In fact doing general relativity with the cotetrad field e (as in
Palatini formulation) is very much like describing 4-simplices using vectors
for edges, while doing general relativity with the E field constrained to be of
the form E = e ∧ e is very much like describing 4-simplices using bivectors5

for faces. Suppose we have a 4-simplex affinely embedded in R4. We can
number its vertices 0, 1, 2, 3, 4 and translate it so that the vertex 0 is located
at the origin. Then one way to describe its geometry is by the positions
e1, e2, e3, e4 of the other four vertices. Another way is to use the bivectors

Eab = ea ∧ eb ∈ Λ2R4

corresponding to the six triangular faces with 0 as one of their vertices.
However, not every collection of bivectors Eab comes from a 4-simplex this

5A bivector in n dimensions is simply an element of Λ2Rn.
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way. In addition to the obvious skew-symmetry Eab = −Eba, some extra
constraints must hold. The remarkable fact is that these constraints have
exactly the same form as the extra constraints that we need to
obtain general relativity from BF theory!

Barrett and Crane showed that these constraints take a particularly nice
form if we describe them in terms of bivectors corresponding to all ten tri-
angular faces of the 4-simplex. Quantizing these constraints, one obtains
conditions that a Spin(4) spin foam must satisfy to describe a quantum 4-
geometry built from flat quantum 4-simplices. Interestingly, these conditions
also guarantee that the quantum geometries for 3-dimensional submanifolds
obtained using the right-handed copy of SU(2) agree with those coming from
the left-handed copy!

To see how this works we begin by studying the geometry of an ordi-
nary classical 4-simplex in Euclidean R4. Let S be a 4-simplex with vertices
0, 1, 2, 3, 4. As said above, we can think of a 4-simplex in R4 with one vertex
at the origin as an affine map from S to R4 sending the vertex 0 to the origin.
Such a map is given by fixing vectors e1, e2, e3, e4 ∈ R4 corresponding to the
edges 01, 02, 03 and 04. These data amounts to a cotetrad, a linear map from
the tangent space of the vertex 0 of S to R4. Alternatively, we can describe
the 4-simplex by associating bivectors to its triangular faces. For any pair
a, b = 1, 2, 3, 4 we can define a bivector

Eab = ea ∧ eb
corresponding to the face 0̂ab. However, not every collection of bivectors
Eab is of the form ea ∧ eb for some vectors ea ∈ R4. In addition to the
obvious antisymmetry in the indices a and b, the following constraints are
also necessary:

Eab ∧ Ecd = 0 if {a, b} ∩ {c, d} 6= 0 (6.3)

and
E12 ∧ E34 = E13 ∧ E42 = E14 ∧ E23. (6.4)

The conditions (6.3) and (6.4) are not enough. In fact, in the generic case,
when the Eab (a < b) are linearly independent, it can be shown [29] that the
conditions above admit exactly three sorts of solutions in addition to those
of the form Eab = ea ∧ eb, for some basis ea of R4.

The first is to take
Eab = −ea ∧ eb,

for some basis ea, the second is to take

Eab =
4∑

a,b=1

εabcd ec ∧ ed,
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and the third is to take

Eab = −
4∑

a,b=1

εabcd ec ∧ ed.

If Eab can be written in any of these four ways, it can be written so uniquely
up to a parity transformation ea 7→ −ea. In what follows, we simply ignore
these subtleties and take any collection of bivectors Eab antisymmetric
in a, b and satisfying (6.3) and (6.4) as an adequate substitute for
a cotetrad.

Barrett and Crane make the all-important observation that conditions
(6.3) and (6.4) can be rewritten in a simpler way if we use bivectors for all
triangular faces of the 4-simplex, not just those having 0 as a vertex. For
this, it is convenient to set e0 = 0 and define

Eabc = (ec − eb) ∧ (eb − ea).

The bivector Eabc corresponds to the triangular face âbc; in particular, we
have E0̂bc = Ebc.

The bivectors Eabc satisfy three sorts of constraints:

1. first, Eabc is totally antisymmetric in the indices a, b, c;

2. second, the bivectors Eabc (0 ≤ a < b < c ≤ 4) satisfy five closure
constraints of the form:

Eabc − Eabd + Eacd − Ebcd = 0 a < b < c < d (6.5)

one for each tetrahedral face of S;

3. third, using these linear constraints, the conditions (6.3) and (6.4) can
be rewritten as the quadratic constraints

Eabc ∧ Ea′b′c′ = 0,

which hold whenever the triangles abc and a′b′c′ share at least one edge,
that is, when they either share one edge or are the same.

The quadratic constraints Eabc ∧Eabc = 0 have a particularly nice geometric
interpretation: they say the bivectors Eabc can be written as wedge products
of vectors in R4. Before attempting to quantize these constraints, we begin
by quantizing a single bivector in 4 dimensions.

Using a metric on R4 we identify Λ2R4 with so(4)∗, which as the dual of
a Lie algebra can be thought of as a classical phase space equipped with the
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Kirillov-Kostant Poisson structure in which the Poisson brackets of any to
such linear functionals f, g ∈ so(4)∗ is given by {f, g} := [f, g] (see [47] for
more details).

so(4) is isomorphic to so(3)⊕ so(3) and so(3) can be quantized following
the prescriptions of geometric quantization of Kirillov and Kostant; it turns
out that only the ‘integral’ coadjoint orbits contribute, that is, those for
which the symplectic 2-form divided by 2π defines an integral cohomology
class. These are spheres of radius j = 0, 1

2
, 1, . . ., so we when we quantize

the phase space so(4)∗ we obtain the Hilbert space of a quantum bivector in
four dimensions as:

H+ ⊗H− '
⊕
j+,j−

j+ ⊗ j−.

Note that this space is not a representation of SO(4), but only of its universal
cover, Spin(4). The Hilbert spaces H+ and H− correspond to the self-dual
and anti-self-dual parts of the quantum bivector, either of which can be
identified with a quantum bivector in three dimensions. To see this, recall
that given a metric and orientation on R4, we may define the Hodge star
operator ∗ : Λ2R4 → Λ2R4. The +1 and −1 eigenspaces of this operator are
called the spaces of self-dual and anti-self-dual bivectors, respectively:

Λ2R4 = Λ2
+R

4 ⊕ Λ2
−R

4.

This allows us to decompose a bivector E in 4 dimensions into a self-dual
part E+ and an anti-self-dual part E−. Under the isomorphism between
Λ2R4 and so(4)∗, this splitting corresponds to

so(4)∗ ' so(3)∗ ⊕ so(3)∗.

Thus when we quantize so(4)∗ with its Kirillov-Kostant Poisson structure,
we get a tensor product of Hilbert spaces corresponding to the self-dual and
anti-self-dual parts of the space of bivectors.

Now we turn to quantizing the constraints that say when ten bivectors
correspond to the faces of a flat 4-simplex. We would like to interpret the
closure constraints as imposing gauge-invariance. The closure constraints in
equation (6.5) have minus signs, the reason for these signs is obvious: in our
definition of the Eabc, we implicitly choose orientations so that two trian-
gular faces of each tetrahedron are oriented clockwise and two are oriented
counterclockwise.

To get all plus signs in the constraint we explode ∆ into a disjoint union of
five tetrahedra, thus doubling the number of triangles. We can then define a
bivector for each face, orienting all the faces counterclockwise. This amounts
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to working with 20 bivectors Ei(T ), where T ranges over the five tetrahedra
in ∆ and i = 0, 1, 2, 3 labels the faces of each tetrahedron.

In these terms the closure constraints become

E0(T ) + E1(T ) + E2(T ) + E3(T ) = 0.

To quantize the closure constraints this way, we start with a Hilbert space

⊗
T∈∆3

4⊗(
H+ ⊗H−

)
describing one quantum bivector for each face of the exploded complex. On
this space there are operators Epq

i (T ) (1 ≤ p, q ≤ 4) generating one so(4)
action for each face i = 0, 1, 2, 3 of each tetrahedron T . Then we pick out
states for which (

Ê0(T ) + Ê1(T ) + Ê2(T ) + Ê3(T )
)

= 0

for all T in ∆. With some technical calculations this gives the subspace⊗
T∈δ3

T + ⊗ T −

where
T :=

⊗
j0,j1,j2,j3

Inv(j0 ⊗ j1 ⊗ j2 ⊗ j3)

where j0, j1, j2, j3 range over all possible labellings by spins and ‘Inv’ denote
the subspace of vectors transforming under the trivial representation, is called
the Hilbert space of the quantum tetrahedron. T + and T − are left-handed
and right-handed copies of this Hilbert space.

If we define the left-handed and right-handed area operators by

Â±i (T ) =
1

2

√
(Ê±i (T ) · Ê±i (T ))

then the closure constraint implies that these two operators must act in the
same way, so we are lead to search a subspace of the previous Hilbert space
of vectors satisfying that property.

It turns out that, if ∂0T, ∂1T, ∂2T, ∂3T are the faces of a tetrahedron T in
∆ and ∆3 is the set of 3-simplices in ∆, this subspace is given by⊕

ρ

⊗
T∈∆3

Inv(ρ∂0T ⊗ ρ∂1T ⊗ ρ∂2T ⊗ ρ∂3T ),

179



where ρ ranges over all labellings of triangles in ∆ by representations of
Spin(4), or in other words, pairs of spins.

Finally we impose the quadratic constraints in the following quantized
form:

(Êi(T ) ∧ Êi(T ))ψ = 0.

States satisfying these constraints form Hilbert space of the quantum 4-
simplex. Barrett and Crane [24] explicitly describe this space with a re-
striction on the label ρ, i.e. they show that all the constraints are satisfied
for the vectors of L2(AS/GS) lying in the subspace⊕

ρ

⊗
T∈∆3

(Invρ∂0T ⊗ ρ∂1T ⊗ ρ∂2T ⊗ ρ∂3T ),

where ρ ranges only over labellings of triangles in ∆ by represen-
tations of the form j ⊗ j!

Thus the constraint ‘left area=right area’ imposes to label each trian-
gle with a representation of the form j ⊗ j and each tetrahedron with an
intertwiner of the form

Ij : Vj1 ⊗ Vj2 → Vj3 ⊗ Vj4

where Vjk is the support space of the representation jk and and j1, . . . , j4 are
the spins labelling the 4 triangular faces of the tetrahedron. More generally,
we can label the tetrahedron by any intertwiner of the form

∑
j cj(Ij⊗Ij) that

satisfy the property ‘left area=right area’ for every splitting of the tetrahedra.
Barrett and Crane found an intertwiner with this property:

I =
∑
j

(2j + 1)(Ij ⊗ Ij).

Later, Reisenberger [79] proved that this was the unique solution.
Hence, in the spin foam model proposed by Barrett and Crane, the tran-

sition amplitudes between a 4-geometry and another are given by a sum over
spin foams that depends on spin and intertwiners of the form written above.

We conclude the chapter with some few remarks.

1. Bivectors E with E∧E are called simple or balanced; these are precisely
the bivectors that can be written as a wedge product of two vectors in
R4. We may thus call

⊕
j Vj ⊗ Vj the Hilbert space of a simple quan-

tum bivectors. By the Peter-Weyl theorem, this space is isomorphic to
L2(SU(2));
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2. Freidel, Krasnov and Puzio [39] have found an abstract way to impose
the Barrett-Crane constraints that generalizes to the Lorentzian case.
We will analyze this in the next chapter;

3. even if the Barrett Crane model gives a specific proposal for a spin foam
model of quantum gravity, it relies on a fixed triangulation of spacetime.
Researches to find out an upgrade of the model that doesn’t depend
on any fixed triangulation are under examination.

181



Chapter 7

The Barrett-Crane model for
Lorentzian quantum gravity

7.1 Relativistic spin networks and Barrett-

Crane model

In this chapter we will deal with the formulation of covariant quantum gravity
with graphs instead of the dual picture presented in the previous chapter.
The reason is that, recently, Freidel, Krasnov e Puzio showed in [39] that
the constraints described before, applied on the labelling of the edges of the
graphs are satisfied if one labels them with some special representations of
G.

Precisely we define a ‘relativistic spin network’ to be a graph with edges
labelled by non-negative real numbers that parameterize the class of unitary
and irreducible representations of the connected component of the Lorentz
group, i.e. SO0(3, 1), or of its double cover SL(2,C) that appear in the direct
integral decomposition of L2(SL(2,C)/SU(2)).

Starting from the fact that SL(2,C)/SU(2) is a Riemannian symmetric
spaces of non-compact type and using the Plancherel decompositions for these
kind of spaces, due, among others, to Harish-Chandra and Helgason, we show
that the Barrett-Crane labelling of the edges of relativistic spin networks can
be thought as a special case of a more general situation in which SL(2,C)
is replaced by a non-compact semisimple Lie group of finite center G and
SU(2) is replaced with its maximal compact subgroup K.
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7.2 Abstract results on the Plancherel de-

composition of L2(G/K)

A general reference for what follows is [76] page 195.
Let G be a non-compact semisimple Lie group with finite center, such a

group is always unimodular, i.e. the left and the right Haar measure coincide.
Let K be a maximal compact subgroup of G.

For simplicity let’s denote the right coset space G/K by X and write with
x its elements, that are of the form gK := {gk | k ∈ K}, where g is a fixed
element of G.

There is a bijective correspondence between right-K-invariant func-
tions on G and functions on X, i.e. those satisfying f(gk) = f(g) for every
g ∈ G and k ∈ K.

In fact if FK(G) is any space of right-K-invariant functions on G, then
we can define the corresponding functional space on X by:

F(X) := {f ∈ FK(G) | f(gK) = f(g), g ∈ G}.
Conversely, from a function on X we can get a function on G with the help
of the natural projection of G onto X:

π : G −→ X
g 7→ π(g) := gK,

in fact, given f : X → C, we can compose f with π to get

f ◦ π : G −→ C
g 7→ f(π(g)) ≡ f(gK).

An important fact is that on the quotient space X there is a natural G-
invariant measure1 induced from the Haar measures of G and K. This mea-
sure can be defined by means of a theorem (see [49] page 91) which assures
that the linear map

Cc(G) −→ Cc(X)

f 7→ f̃ ,

f̃(x) :=
∫
K
f(gk)dk is onto2. Then it can be proved that X has a positive

measure dx unique up to scalar multiples and defined by:∫
X

f̃(x)dx ≡
∫
G/K

∫
K

f(gK)dk d(gK) :=

∫
G

f(g)dg f ∈ Cc(G).

1A G-invariant measure µ on X is a measure satisfying
∫
X
f(gx)dµ =

∫
X
f(x)dµ for

every g ∈ G.
2The function f̃ is well defined on X, in fact, for every k′ ∈ K, f̃(gk′) =∫

K
f(gk′k)d(k′k), but substituting k̃ ≡ k′k and using the invariance of the Haar mea-

sure on K we get f̃(gk′) =
∫
K
f(gk̃)dk̃ =

∫
K
f(gk)dk = f̃(gk).
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Since L2(G) is the completion of Cc(G) in the norm ‖f‖2 := (
∫
G
|f(g)|2dg)

1
2

and since ‖f̃‖2 ≤ ‖f‖2, for every f ∈ L2(G), the projection f � f̃ extends
(see [67] page 226) from Cc(G) to L2(G) and its image is precisely L2(X).

By identifying the Hilbert spaces L2(X) and L2(G) with their dual spaces
and taking the transposed map of the previous projection we obtain a one-
to-one injection from L2(X) to L2(G).

Remember now that the left regular representation L of G on L2(G), i.e.

L : G −→ U(L2(G))
g 7→ L(g),

L(g)f(h) := f(gh), f ∈ L2(G), h ∈ G, is a unitary representation that can
be decomposed in direct integral as

L '
∫ ⊕
Ĝ

mλλ dµ(λ)

where dµ is the Plancherel measure and mλ is the multiplicity of λ ∈ Ĝ.
The corresponding decomposition of L2(G) is:

L2(G) '
∫ ⊕
Ĝ

BHS(Hλ) dµ(λ)

where Hλ is the representation space of λ and BHS(Hλ) is the (Hilbert) space
of Hilbert-Schmidt operators on Hλ.

Let’s now see what happens when we consider the left regular represen-
tation LX of G on L2(X), i.e.

LX(g)f(x) := f(gx) f ∈ L2(X), g ∈ G, x ∈ X.

This is again a unitary representation of G thanks to the G-invariance of dx
and thus it admits a direct integral decomposition. It can be proved that in
this case only a particular class of representations can appear in this decom-
position. This class is given by the so-called K-spherical representations
(λ,HK

λ ) of G, i.e. those representations in Ĝ for which the space HK
λ of the

K-fixed vectors3 in Hλ is not trivial.
It’s known that, when the previous hypothesis on G and K are satisfied,

then HK
λ is a 1-dimensional subspace of Hλ for every λ, thus it is itself a

Hilbert space, and the multiplicity mλ is 1 for every K-spherical representa-
tion λ.

3i.e., explicitly, HKλ := {xλ ∈ Hλ | ρλ(k)xλ = xλ ∀k ∈ K}, where ρλ ∈ λ.
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If ĜK is the subset of Ĝ given by the equivalence classes of K-spherical
representations, then the Plancherel measure dµ appearing in the direct in-
tegral decomposition of L2(G/K) has support on ĜK .

Finally define the Fourier transform of a function f ∈ C∞c (X) as the
function f̂ on ĜK defined by

f̂(λ) :=

∫
X

f(x)ρ−1
λ (x)dx

where ρλ is an arbitrary representative of the class λ ∈ ĜK . It can be proved
that

f̂(λ) ∈ Hλ ⊗ (HK
λ )∗ ' Hλ ⊗ C ' Hλ.

Then we have the Plancherel theorem for L2(X).

Theorem 7.2.1 The Fourier transform f 7→ f̂ extends to a unitary equiva-
lence between L2(X) and

∫ ⊕
ĜK
Hλdµ(λ):

L2(G/K) '
∫ ⊕
ĜK

Hλ dµ(λ).

Moreover

L '
∫ ⊕
ĜK

λ dµ(λ).

The basic problems in making harmonic analysis on G/K concrete are two:
the explicit description of ĜK and the determination of the Plancherel mea-
sure dµ(λ).

Both these problems have been beautifully solved by the works of Harish-
Chandra and Helgason. They managed to parameterize the elements of ĜK

with certain roots of the Lie algebra of G and reduced the Plancherel measure
to an Euclidean measure! To describe their work we need to remind some
notations and results from abstract harmonic analysis on semisimple Lie
groups.

7.3 Tools from harmonic analysis on Rieman-

nian symmetric spaces

A very brief and clear reference for this section is [50] page 102.
Let’s describe the objects we are interested in.

• G is a non-compact connected semisimple Lie group with finite center
and with Lie algebra g;
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• The Killing form B : g× g→ C,

B(X, Y ) := Tr(adX adY )

(where adX : g → g, (adX)(Y ) := [X, Y ]) is a symmetric bilinear
non-degenerate form on g;

• A Cartan involution θ : g → g of g is an involutive (i.e. its square
is idg) automorphism of g such that the symmetric bilinear form given
by Bθ(X, Y ) := −B(X, θY ) is positive definite on g × g. A typical
example of Cartan involution is θ(X) = −X†, this holds for many Lie
algebras, e.g. su(n), so(n), sp(n), sl(n,C), sl(n,R), so(n,C), so(p, q),
su(p, q), n, p, q ≥ 1;

• If k and p are the eigenspaces of θ relative to the eigenvalues +1 and
−1, resp., then g can be decomposed into direct sum g = k⊕ p, so that

θ : k⊕ p −→ k⊕ p
T + P 7→ T − P

and thence k is the space of fixed points of θ. If Θ denotes the involutive
automorphism of G such that deΘ = θ, then the subgroup of G defined
by K := exp(k) agrees with the set of fixed points of Θ and it can
be proved to be a maximal compact subgroup of G. If the Cartan
involution on g is θ(X) = −X†, then Θ(g) = (g†)−1;

• G/K has a unique analytic manifold structure such that the map

p −→ G/K
X 7→ exp(X)K

is a diffeomorphism;

• Let a ⊂ p be a maximal Abelian Lie algebra contained in p and de-
fine A = exp(a). Denote with a∗ the real algebraic dual of a, i.e.
a∗ := HomR(a,R) and with a∗C its complexification, namely the space
of complex-valued R-linear functionals on a, i.e. a∗C := HomR(a,C);

• A (restricted) root of g w.r.t. a is a linear functional α ∈ a∗ for which
there exists X ∈ g \ {0} such that [H,X] = α(H)X, ∀H ∈ a, i.e. the
bracket between X and H is proportional to X by a constant which
depends linearly by H ∈ a. For every root α we put

gα := {X ∈ g | [H,X] = α(H)X, ∀H ∈ a}

this space is called the root space relative to α and its dimension
mα := dim(gα) is called its multiplicity;
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• Σ is the set of the roots of g and Σ+ is the set of positive roots w.r.t.
some given ordering;

• a′ is the open subset of a where all the roots are 6= 0, the connected
components of a′ are called the Weyl chambers. We fix the Weyl
chamber a+ to be:

a+ := {H ∈ a | α(H) > 0 ∀α ∈ Σ+}.

a∗+ is the subset of a∗ given by the dual elements of a+, A+ := exp a+

and A+ is its completion in A;

• Define the Lie algebra n '
⊕

α∈Σ+ gα and write N for its Lie group.
These are a nilpotent Lie algebra and Lie group, respectively;

• With these objects we can write two classical decompositions of G,
called, respectively the Cartan polar decomposition and the Iwa-
sawa decompositions:

G ' KA+K, G ' KAN ' NAK

i.e. the map K×A+×K 3 (k1, a(g), k2) 7→ k1a(g)k2 ∈ G is a diffeomor-
phism, and the same property holds for the Iwasawa decompositions.
The maps

A : G → a+ H : G → a+

nak 7→ A(g) := log(a) k′a′n′ 7→ H(g) := log(a′)

(where the symbol log obviously denotes the inverse map of exp) are
called Iwasawa projections. In terms of them every g ∈ G can be
written in a unique way as

g = neA(g)k ∈ NAK,

g = k′eH(g)n′ ∈ KAN.
The relation between the two Iwasawa projections is: A(g) = −H(g−1);

• It can be proved that the restriction of the Killing form B to a× a is a
symmetric bilinear positive-definite non-degenerate form. This implies
that we can use B as an inner product on a to write

< α, β >:= B(Hα, Hβ),

where Hα is the only element of a such that α(H) = B(H,Hα), for
every H ∈ a, and the same for Hβ;
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• ρ is the half sum of the positive roots counted with their multiplicity,
i.e. ρ := 1

2

∑
α∈Σ+ mαα;

• M is the centralizer of A in K, i.e. the compact subgroup of K con-
taining the elements which commute with every element of A:

M := {k ∈ K | kak−1 = a,∀a ∈ A};

• M ′ is the normalizer of A in K, i.e.

M ′ := {k ∈ K | kak−1 ∈ A, ∀a ∈ A};

• W is the Weyl group w.r.t. Σ, i.e. the finite group W := M ′/M
generated by the reflections of the roots. W acts on a∗ and a∗C by
(wλ)(H) = λ(w−1H) for H ∈ a, λ ∈ a∗C or λ ∈ a∗ and w ∈ W ;

• The element a(g) appearing in the Cartan polar decomposition is unique
if we require it to be in A+, but if we ask it to be just in A then it is
unique up to a Weyl transformation;

• Finally, the map
K/M × A+ −→ G/K

(kM, a) 7→ (ka)K

is a diffeomorphism onto a dense subset X+ ⊂ G/K.

Let’s now introduce the concept of symmetric space. A symmetric
space is a connected Riemannian manifoldM such that at each point p ∈M
there is an isometry4 sp :M→M that upsets the geodesic passing through
p, i.e., if γ is a geodesic such that γ(0) = p, then sp(γ(t)) = γ(−t), ∀t.

It can be proved that M is a symmetric space if and only if for every
point p ∈ M there is an involutive isometry sp different from the identity
which has p as the only fixed point.

The quotient G/K can be seen as a symmetric space in this way [89] page
269:

• call π : G→ G/K the canonical map π(g) := gK;

• introduce a Riemannian metric Q on G/K by translating the Killing
form on the space p:

QgK((dgπ)X̃g, (dgπ)Ỹg) ∀X, Y ∈ p

4i.e. , indicated with d the Riemannian metric ofM, d(sp(x), sp(y)) = d(x, y) for every
x, y ∈M
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where X̃ denotes the left invariant vector field corresponding to X ∈ p.
The metric Q is well defined because the Killing form is invariant under
Adk, k ∈ K. Moreover it is obvious that the metric is positive by
definition of p and it’s also easy to see that is G-invariant;

• consider the involutive automorphism Θ on G defined by deΘ = θ,
where θ is a Cartan involution;

• then the geodesic-reversing isometry sO at the origin O, which is ob-
viously the coset K in G/K, is obtained from the involutive automor-
phism Θ as follows:

sO : G/K −→ G/K
gK 7→ Θ(g)K;

• finally sO can be translated by elements ofG to obtain geodesic-reversing
isometries in every point of G/K.

An important class of functions on G are the bi-invariant functions on G,
i.e. those satisfying f(kgk′) = f(g), ∀k, k′ ∈ K, g ∈ G or the complex-valued
functions on K\G/K.

In the set of bi-invariant functions there are some particular functions
which play a fundamental role in the harmonic analysis on G/K, these are
the so-called spherical functions on G. A function f ∈ C∞(G) is said to
be spherical if

1. f is bi-invariant;

2. f(eG) = 1;

3. f is an eigenfunction of each differential operator D ∈ DK(G), where
DK(G) is the algebra of all left-invariant differential operators on G
which are also right-invariant under K, i.e. Df = cDf , with cD ∈ C,
for every D ∈ DK(G).

The spherical functions on G are in one-to-one correspondence with the ones
on G/K, which are defined as functions f ∈ C∞(G/K) satisfying:

1. f((kg)K) = f(gK) for every k ∈ K;

2. f(eGK) = 1;

3. f is an eigenfunction of each differential operator D ∈ D(G/K), where
D(G/K) is the algebra of G-left invariant operators on G/K.
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There is a simple characterization of spherical functions by means of an
integral equation, in fact it can be proved ([49] page 400) that f ∈ C(G), f 6=
0, is spherical if and only if∫

K

f(gkg′)dk = f(g)f(g′) g, g′ ∈ G, k ∈ K

where the integral is taken w.r.t. the normalized Haar measure dk on K.
The explicit realization of the spherical functions on G is possible thanks

to a theorem due to Harish-Chandra ([49] page 418).

Theorem 7.3.1 As λ varies in a∗C, the functions

φλ(g) :=

∫
K

e(iλ+ρ)(A(kg)) dk g ∈ G,

exhaust the class of the spherical functions on G. Moreover φλ = φλ′ if and
only if λ′ = wλ, for some w ∈ W , i.e. if and only if λ and λ′ are related by
a transformation of the Weyl group.

In the statement of the theorem A(kg) denotes the Iwasawa projection
associated to the element kg ∈ G, but of course we can use the other Iwasawa
projection, namely H, and remembering that A(g) = −H(g−1) we have
φλ(g) =

∫
K
e−(iλ+ρ)(H(g−1k)) dk, for every g ∈ G. But it is also true (same

reference as before) that

φ−λ(g) = φλ(g
−1) ∀g ∈ G, λ ∈ a∗C

thus the spherical functions can be written in two equivalent ways as:

φλ(g) =

∫
K

e(iλ+ρ)(A(kg)) dk =

∫
K

e(iλ−ρ)(H(gk)) dk g ∈ G, λ ∈ a∗C.

7.3.1 Helgason decomposition of L2(G/K)

The reference is [93] page 342 and [50] page 131.
For simplicity let’s denote with B the compact quotient K/M and with

db its K-invariant measure.
Given λ ∈ a∗ let Hλ denote the vector space

Hλ := {φλ : X → C | φλ(x) :=

∫
B

f(b)e(iλ−ρ)(H(gk)) db, with f ∈ L2(B)}.
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It can be shown that the correspondence L2(B) 3 f → ϕλ ∈ Hλ is one-to-one
and so Hλ inherits the structure of Hilbert space from L2(B) if we endow it
with the inner product

(φλ|ψλ) :=

∫
B

f(b)h(b) db

where obviously f and h are the functions in L2(B) uniquely associated to
ϕλ and ψλ. Hence each Hilbert space Hλ is isomorphic to L2(B). It can be
also proved that the left regular representations of G on Hλ, i.e.

Lλ : G −→ U(Hλ)
g 7→ Lλ(g), Lλ(g)φλ(x) := φλ(g

−1x)

are unitary and irreducible for every λ ∈ a∗ and constitute the building blocks
to decompose the left regular representation on G on L2(X), and thus L2(X)
itself, as proved by Helgason in the following theorem.

Theorem 7.3.2 Let LX denote the left regular representation of G on L2(X).
Then {Lλ}λ∈a∗ is equivalent to the set of K-spherical representations of the
unitary principal series of G. Also there exists a function c : a∗ → C,
called the Harish-Chandra c function, whose modulus is constant on the
conjugation classes of a∗ w.r.t. W such that the following direct integral
decompositions hold:

LX '
∫ ⊕
a∗+

Lλ|c(λ)|−2 dλ;

L2(X) '
∫ ⊕
a∗+

Hλ|c(λ)|−2 dλ.

In the case of a complex group G it can be proved that

c(λ) =

∏
α∈Σ+ < α, ρ >∏
α∈Σ+ < α, iλ >

.

More generally, for semisimple Lie groups the c-function can be written in
terms of the Gindikin-Karpelevic formula (see [49]).

7.4 Derivation of the Barrett-Crane model

for a 4-dimensional spacetime

References: [49] pages 432-433 and [89] page 311.
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In this section we show explicit realizations of the object discussed pre-
viously for the case G ≡ SL(2,C) and K ≡ SU(2). This will show how the
Barrett-Crane labelling of the edges of relativistic spin networks can be de-
rived from the structure of Riemannian symmetric space of SL(2,C)/SU(2).

First of all the quotient SL(2,C)/SU(2) is the three-dimensional real
hyperbolic space H3 and it’s a symmetric space of type IV in the Cartan
classification these kind of spaces.

The Iwasawa decomposition of SL(2,C) is realized with:

• K = SU(2);

• A =

{
At ≡

(
et 0
0 e−t

)
| t ∈ R

}
;

• N =

{(
1 x+ iy
0 1

)
| x, y ∈ R

}
.

A is a subgroup of the Cartan subgroup H of SL(2,C), which is

H =

{(
z 0
0 z−1

)
| z ∈ C

}
.

H is the image, via the exponential map, of the Cartan subalgebra

h =

{(
ζ 0
0 −ζ

)
| ζ ∈ C

}
.

The subalgebra a ⊂ h is

a =

{
at ≡

(
t 0
0 −t

)
| t ∈ R

}
.

The centralizer of A in K is

M =

{(
eit 0
0 e−it

)
, t ∈ R

}
,

this can be easily proved by considering the Cayley-Klein parametrization of

the matrices of SU(2): any such matrix can be written as

(
β γ
−γ̄ β̄

)
, with

β, γ ∈ C satisfying the constraint |β|2 + |γ|2 = 1; then the matrices of SU(2)
commute with all those of A if and only if the matrix(

β γ
−γ̄ β̄

)(
et 0
0 e−t

)
=

(
βet γe−t

−γ̄et β̄e−t

)
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equals the matrix (
et 0
0 e−t

)(
β γ
−γ̄ β̄

)
=

(
βet γet

−γ̄e−t β̄e−t

)
for every t ∈ R, but this is possible if and only if γ = 0 and, taking into
account the constraint |β|2 + |γ|2 = 1, β must be of the form eit for t ∈ R,
which proves that M has the form written above.

For SL(2,C), Σ+ consists only of the single root α given by α(at) = 2t
and its multiplicity is mα = 2.

Hence a∗ is a 1-dimensional real vector space and a∗C is a 1-dimensional
complex vector space, thus they can be identified with R and C, respectively:

a∗ ' R, a∗C ' C

also,
a∗+ ' R+ .

Let’s write λ ∈ a∗C in the form λ ≡ lα, with l ∈ C. Since the spherical
functions are bi-K-invariant, and thanks to the polar Cartan decomposition,
the spherical functions on SL(2,C) are determined by their values on the
matrices of A, that, for this purpose, can be more conveniently expressed as(
e
t
2 0

0 e−
t
2

)
, then

φlα

(
e
t
2 0

0 e−
t
2

)
=

sin(lt)

l sinh(t)
.

It also follows that the root ρ := 1
2

∑
α∈Σ+ mαα reduces simply to 1

2
·2α =

α and so the Harish-Chandra c-function can be written as:

c(λ) =
< α, α >

< α, ilα >
= −i

l
,

hence |c(λ)|−2 = l2 and the Harish-Chandra measure is c(λ)dλ = l2 dl.
Finally the Weyl group of SL(2,C) is the two-elements group Z2 and the

action of the non trivial element takes takes

(
z 0
0 z−1

)
into

(
z−1 0
0 z

)
.

We are now able to write down the integral decomposition of the Hilbert
space L2(SL(2,C)/SU(2)), in fact putting together all the explicit compu-
tations above we get that, if p ∈ R+, then

L2(SL(2,C)/SU(2)) '
∫ ⊕
R+

Hp p
2 dp.
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Since the representations satisfying the quantum version of the constraints
appearing in the Barrett-Crane state sum model are the SU(2)-spherical
representations (see e.g. [39]) and since these representations are precisely the
ones that appear in the direct integral decomposition of L2(SL(2,C)/SU(2))
(as remembered at the beginning of this paper), our discussion shows that
the labelling of the Barrett-Crane relativistic spin networks with positive real
numbers is a natural consequence of the intrinsic analytic structure of the
Riemannian symmetric space SL(2,C)/SU(2).

However our construction holds for more general groups G and K than
SL(2,C) and SU(2), respectively, and this could be used to propose an
extension of the Barrett-Crane construction of relativistic spin networks to
higher dimensions. We will give a proposal for an abstract model in the next
section.

Finally notice that the integral kernel of the evaluations of the relativistic
spin networks (see [20]) are nothing but the spherical functions labelled with
p, i.e.

Kp(r) =
sin(pr)

p sinh(r)

where r is the hyperbolic distance between two points in H3.
The behavior of the spherical functions is well known thanks to the

asymptotic expansion formulas of Harish-Chandra and others [49], this could
be used to evaluate the relativistic spin networks for more general groups.

7.5 SL(n,C)-Barrett-Crane relativistic spin net-

works

In the previous section we have shown how to derive the Barrett-Crane la-
belling of the edges of the 4-dimensional relativistic spin networks from the
structure of G/K, where G = SL(2,C) and K = SU(2), in fact, with these
choices, the set a∗+ identifies with R+ and one has the direct integral decom-
position of L2(SL(2,C)/SU(2)) written before.

By analogy, we give here an account of what happens if the gauge group
of the model is G = SL(n,C) and K is SU(n), n > 2. This is only an
abstract model, since the ‘true’ n-dimensional Barrett-Crane model is related
to the group SO0(n− 1, 1), but the harmonic analysis on such a group is too
difficult to handle here because the Plancherel decomposition admits both a
continuous and a discrete part, and this latter is not yet fully known!

The Iwasawa decomposition of SL(n,C) is realized with:

• K = SU(n);
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• A = {At ≡ diag(et1 , . . . , etn) | t1, . . . , tn ∈ R,
∑n

i=1 ti = 0};

• N is given by the n×n upper triangular matrices with complex entries
and with all 1 on the diagonal.

The algebra a is

a = {at ≡ diag(t1, . . . , tn) | t1, . . . , tn ∈ R,
n∑
i=1

ti = 0}.

The relation
∑n

i=1 ti = 0 gives a constraint so that dimR(a) = dimR(a∗) =
n− 1, dimC(a∗C) = n− 1, hence, as vector spaces a ' a∗ ' Rn−1, a∗C ' Cn−1.

The restricted roots of SL(n,C) can be constructed by means of the linear
functionals ei ∈ a∗ defined by

ei(diag(t1, . . . , tn)) := ti

in fact notice that, if Eij is the elementary matrix with 1 in the position (i, j)
and 0 in all the other entries, then

(ad at)Eij ≡ [at, Eij] = diag(t1, . . . , tn)Eij − Eijdiag(t1, . . . , tn) = (ti − tj)Eij

but ti− tj = (ei− ej)at and so [at, Eij] = (ei− ej)(at)Eij. It follows that the
restricted root system is

Σ = {ei − ej, i, j = 1, . . . , n, i 6= j}

the condition i 6= j guarantees that all the roots in Σ are different from zero.
With respect to the natural lexicographic ordering the positive restricted

roots are given by
Σ+ = {ei − ej, i < j}.

Now we want to find a simple characterization of the set

a+ = {at ∈ a | (ei − ej)(at) > 0 ∀ i < j}.

By iteratively applying the roots ei−ej, i < j, to at one obtains the condition
ti > tj for every i < j, which implies t1 > t2 > . . . > tn−1 > tn, moreover the
traceless condition on at implies that tn = −

∑n−1
i=1 ti, which is compatible

with the previous one if and only if t1, t2, . . . , tn−1 are all strictly greater than
zero, hence

a+ =

{
diag(t1, . . . , tn) | t1 > t2 > . . . > tn−1 > 0, tn = −

n−1∑
i=1

ti

}
,
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but then the elements of a+ are uniquely individuated by a strictly decreasing
string of n − 1 positive real numbers. The same thing can be said for the
elements of a∗+ because they are in one-to-one correspondence with those of
a+ thanks to the bijection induced by the Killing form.

This result is important for the purpose of the Plancherel decomposition
of L2(SL(n,C)/SU(n)), since the direct integral that realizes this decompo-
sition is performed over a∗+ and what shown above implies that this set can
be more conveniently represented as

Pn ≡ (P1,+∞)× (0, P2)× · · · × (0, Pn−1),

with P1, P2, . . . , Pn−1 ∈ R, P1 > P2 > . . . > Pn−1 > 0.
An explicit basis of a∗ is given by (δ1, . . . , δn−1), where δk := ek − ek+1,

k = 1, . . . , n − 1, hence the generic element λ ∈ a∗C can be written as λ =∑n−1
k=1 lkδk, lk ∈ C. This follows from the fact that the roots δk are n − 1

simple5 roots, which are known to be linearly independent.
Since ρ = 1

2

∑
i<j 2(ei−ej) =

∑
i<j ei−ej, the Harish-Chandra c-function

is given by6

c(λ) = −ι
∏

i<j < ei − ej,
∑

i<j ei − ej >∏
i<j < ei − ej,

∑n−1
k=1 lkδk >

if λ is written as
∑n−1

k=1 lkδk, lk ∈ C, k = 1, . . . , n− 1.
We now have all the elements to write down the Plancherel decomposition

of L2(SL(n,C)/SU(n)) as:

∫ ⊕
Pn
H(p1,...,pn−1)

( ∏
i<j < ei − ej,

∑n−1
k=1 pkδk >∏

i<j < ei − ej,
∑

i<j ei − ej >

)2

dp1 · · · dpn−1,

(p1, . . . , pn−1) ∈ Pn.
This implies that the labelling of the edges of the relativistic spin network

for an abstract Barrett-Crane model with gauge group SL(n,C) is given by
associating (n− 1) distinct positive real numbers to every edge7.

The inner products < ·, · > can be easily computed thanks to the formula

< ei − ej, er − es >= B(Hij, Hrs)

5A root α is called simple if it is positive and it doesn’t decompose as α = β1 + β2,
with β1 and β2 both positive roots.

6To avoid confusion we write the imaginary unit, i.e.
√
−1, with ι.

7In fact these ones can be suitably permutated to form a strictly decreasing string of
positive real numbers.
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where the element Hij ∈ a, uniquely associated to the restricted root ei− ej,
is given by the matrix

Hij =
1

2n
(Eii − Ejj)

and the same obviously holds for Hrs. Moreover the Killing form is given by

B(X, Y ) = 2nTr(XY ).

7.5.1 Explicit computations for n=3

To have an explicit example at hand we analyze the case of n = 3, i.e. the
symmetric space SL(3,C)/SU(3).

To calculate the Plancherel measure we have to find out the Harish-
Chandra c-function:

c(p1, p2) = −ι
∏

i<j < ei − ej,
∑

i<j ei − ej >∏
i<j < ei − ej,

∑
k=1,2 pkδk >

with i, j = 1, 2, 3 and p1, p2 ∈ P3.
The only thing that we have to do is to calculate the inner products that

appear in the previous formula. To avoid cumbersome notations let’s put
ei − ej ≡ eij.

At the numerator we have
∏

i<j < eij, ρ >= (1) · (2) · (3) where

(1) =< e12, e12 > + < e12, e13 > + < e12, e23 >=
1

3
+

1

6
− 1

6
;

(2) =< e13, e12 > + < e13, e13 > + < e13, e23 >=
1

6
+

1

3
+

1

6
;

(3) =< e23, e12 > + < e23, e13 > + < e23, e23 >= −1

6
+

1

6
+

1

3
;

hence
∏

i<j < eij, ρ >= 2
27

.
At the denominator instead we have

∏
i<j < eij,

∑
k=1,2 pkδk >= (I) ·

(II) · (III) where

(I) =< e12, p1e12 > + < e12, p2e23 >=
1

3
p1 −

1

6
p2;

(II) =< e13, p1e12 > + < e13, p2e23 >=
1

6
p1 +

1

6
p2;

(III) =< e23, p1e12 > + < e23, p2e23 >= −1

6
p1 +

1

3
p2;

thus
∏

i<j < eij,
∑

k=1,2 pkδk >= 1
54

(p1 − 1
2
p2)(p1 + p2)(p2 − 1

2
p1).
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Combining the calculations we find that the Plancherel decomposition for
n = 3 is:

L2(SL(3,C)/SU(3)) ' 16

∫ ⊕
P3

H(p1,p2)

[(
p1 −

1

2
p2

)
(p1 + p2)

(
p2 −

1

2
p1

)]2

dp1 dp2.

7.6 Barrett-Crane intertwiners for relativis-

tic spin networks

7.6.1 The Euclidean case

In their article [38], Freidel and Krasnov show how to write the Barrett-
Crane intertwiners for the n-dimensional Euclidean quantum gravity − cor-
responding to the gauge group SO(n) − as integrals over the homogenous
space SO(n−1)\SO(n), which can be identified with the (n−1)-dimensional
sphere Sn−1.

Their construction basically relies on a personal interpretation of the
Peter-Weyl theorem.

First of all they showed in [39] the key fact that the representations ρe
of SO(n) that label the edges of the relativistic spin networks appearing in
the Barrett-Crane model are those for which the representation spaces V ρe

contain non-trivial vectors invariant under the action of SO(n−1). They call
these representations ‘class-1 representations’ of SO(n), but they are better
known in the books of harmonic analysis as ‘SO(n − 1)-spherical represen-
tations’ and in the literature of quantum gravity as ‘simple (or balanced)
representations’.

More generally we can talk about K-spherical representations of the com-
pact semisimple group G, where K is a maximal closed (hence compact)
subgroup of G.

The collection of all K-spherical representations of G defines a subset of
the dual object Ĝ, indicated with ĜK and called the K-spherical dual of G.

One of the most important features of the K-spherical representations is
that the matrix elements of the unitary matrices they define can be written
as integrals over the homogeneous space X ≡ K\G, let’s see how this can be
done.

By using the notation and results of chapter 2, we remember here that
the matrix coefficient maps ρij : G → C, g 7→ ρij(g), are square-integrable
on G, moreover, fixed a row index i ≡ ῑ, the vector space Mρ generated by
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ρῑj, i.e.

Mρ := {
d(ρ)∑
j=1

cjρῑj, cj ∈ C ∀j = 1, . . . , d(ρ)}

can be proved to be a R-invariant subspace of L2(G), where R is the right-
regular representation of G. The Peter-Weyl theorem can be stated in terms
of the following direct sum decompositions of L2(G) and R:

L2(G) '
⊕
ρ∈Ĝ

d(ρ)Mρ;

R '
⊕
ρ∈Ĝ

d(ρ)ρ.

The right regular representation is not irreducible, but it can be restricted
to a subrepresentation Rρ on Mρ which is irreducible:

Rρ : G −→ U(Mρ)
g 7→ Rρ,

Rρ(g) := R(g)|Mρ
,∀g ∈ G.

This representation turns out to be equivalent to ρ, i.e. there exists a
unitary intertwiner I such that the following diagram commutes:

V ρ I−−−→ Mρ

ρ(g)

y yRρ(g)

V ρ −−−→
I

Mρ

for all g ∈ G.
Notice that this unitary equivalence enables to identify ρ(g) with a shift

operator Rρ(g) on Mρ, thus one can calculate the matrix elements of ρ(g)
dealing with the more convenient operator Rρ(g). In fact, if {ũρn}(n ∈ N) is
an orthonormal basis of Mρ, then

ρnm(g) = (Rρ(g)ũρm|ũρn) =

∫
G

ũρm(hg)ũρn(h)dh.

Thanks to the R-invariance of the spaces Mρ, the integral in the formula
above projects down to X = K\G and we reach the formula that expresses
the matrix elements of ρ(g) as integrals over X:

ρnm(g) =

∫
X

uρm(xg)uρn(x)dx
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where, uρn denotes the projection of ũρn on X with the help of the canonical
map π : G→ K\G, g 7→ Kg: ũρn =: uρn ◦ π.

Comparing the evaluation of a spin network written with these integral
expressions for the matrix elements with the evaluation expressed in the usual
way, Freidel and Krasnov were able to derive an integral formula valid for
the intertwiners that label the vertices of the spin networks under analysis.

If v is a k-valent vertex, with e1, . . . , ei edges having source in v and
ei+1, . . . , ek having target in v, then a general intertwiner labelling v is a
linear operator

ιv : V ρei+1 ⊗ · · · ⊗ V ρek −→ V ρe1 ⊗ · · · ⊗ V ρei

or, equivalently, a mixed tensor with components (ιv)
ni+1...nk
m1...mi

.
Since every V ρj , j = 1, . . . , k, is isomorphic to a space of the type Mρj , the

right-translation invariance of these spaces enables to write the components
of the intertwiner as integrals over X = K\G:

(ιv)
ni+1...nk
m1...mi

=

∫
X

(uρ1
m1(x) · · ·uρimi(x)) · (uρi+1(x)ni+1 · · ·uρk(x)nk) dx.

7.6.2 The Lorentzian case

Now let’s examine the case of Lorentzian gravity in 4-dimensions. The groups
G and K of the previous section have to be replaced by SL(2,C) and SU(2),
respectively. We know that the quotient space X is isomorphic to the three-
dimensional real hyperbolic space.

Due to the non-compactness of the groups in question, the decomposition
of L2(X) is not given by a direct sum anymore, but by a direct integral,
specifically:

L2(X) '
∫ ⊕
a∗+

Hλ |c(λ)|−2dλ,

where a∗+ ' R+, c(λ) is the Harish-Chandra c-function, that in this case is
given by c(p) = 1

p
, p ∈ R+, and the Hilbert spaces Hp are defined by

Hp := {ϕp : X → C | ϕp(x) :=

∫
B

f(b)e(iλ−ρ)(H(gk)) db, with f ∈ L2(B)}.

Remember that H : G → a+ denotes the Iwasawa projection, ρ is the half
sum of the positive roots weighted with their multiplicities and B := K/M ,
where M is the centralizer of A in K, being A the maximal Abelian subgroup
of G appearing its Iwasawa decomposition.
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M can be proved to be of the form

M =

{(
eiθ 0
0 e−iθ

)
, θ ∈ [0, 2π]

}
,

thus it is isomorphic to the torus group T ' U(1) and so

B ' SU(2)/U(1).

Moreover every Hilbert space Hp is isomorphic to L2(B) and so L2(X)
decomposes in fact in the direct integral of the constant field of Hilbert spaces
defined by: R+ 3 p 7→ Hp ' L2(B). Moreover the left and right regular
representations decompose in direct integral as well with decompositions:

L '
∫ ⊕
R+

Lp p
2 dp

where
Lp : G −→ U(Hp)

g 7→ Lp(g), Lp(g)ϕp(x) := ϕp(g
−1x)

and similar for R.
Thus the integral formula of Freidel and Krasnov that defines the inter-

twiner of a k-valent vertex seems to be generalizable to the present case by an
operator-valued integral of a suitable product of elements of an orthonormal
basis of Hpj ' L2(B), namely:

(ιv)
ni+1...nk
m1...mi

=

∫
X

(up1
m1(x) · · ·upimi(x)) · (upi+1(x)ni+1 · · ·upk(x)nk) dx.

The big difference with the compact case is that here the u’s can be identified
with elements of an orthonormal basis of a single Hilbert space: L2(B). The
reason is that here the representation spaces of the K-spherical irreps that
come into play are all infinite-dimensional separable Hilbert space and they
admit a sort of ‘standard copy’, i.e. L2(B).
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