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In this paper, we address a variant of the vehicle routing problem called the vehicle routing problem with
time windows and multiple routes. It considers that a given vehicle can be assigned to more than one
route per planning period. We propose a new exact algorithm for this problem. Our algorithm is iterative
and it relies on a pseudo-polynomial network flow model whose nodes represent time instants, and
whose arcs represent feasible vehicle routes. This algorithm was tested on a set of benchmark instances
from the literature. The computational results show that our method is able to solve more instances than
the only other exact method described so far in the literature, and it clearly outperforms this method in
terms of computing time.

� 2011 Elsevier B.V. All rights reserved.
1. Introduction VRP with Backhauls, the Multi Period VRP or the Split Delivery
The vehicle routing problem (VRP) is a combinatorial optimiza-
tion problem that has been widely studied in the literature, ever
since it was formulated for the first time in [9], and later in [7].
Generally speaking, it is the problem of scheduling a fleet of vehi-
cles to visit a set of customers, to whom they must deliver or from
whom they must collect a demanded quantity of goods. The prob-
lem consists of finding the best set of routes, according to a given
objective function, such that all operational constraints of the vehi-
cles are respected, and the set of customers is covered. This objec-
tive function can be the minimization of all traveling costs, the
maximization of the number of served customers, or some combi-
nation of these or other factors. It can be seen as a generalization of
another well known combinatorial problem, the traveling sales-
man problem, which can be described as a VRP with one vehicle,
no depot, no vehicle capacities and no customer demands. The
VRP is well-known to be NP-hard, and so are most of its variants.
Its solution methods include several heuristic and metaheuristic
approaches, as well as some exact methods, mainly based on
branch-and-bound techniques. The classical version of the VRP is
commonly called the Capacitated vehicle routing problem, as the
vehicles in the fleet have limited capacities. There are several vari-
ants of this problem. In [8,21], the authors describe the VRP and
some of its main variants, like the Pickup and Delivery VRP, the
ll rights reserved.
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VRP. Recently, the combination of the VRP with other problems
also deserved some attention. For example, some authors com-
bined the problem of selecting routes with the problem of loading
the vehicles that perform them [10,12–14].

A very known and studied variant of the classical VRP is the VRP
with time windows. For this problem, there is a time period associ-
ated to each customer, and also to the depot. All customers must be
served within their established period of time, and all routes must
be performed within the depot’s time window. Along with the dis-
tances between all customers and depot, it is also necessary to con-
sider traveling and service times. Surveys on the vehicle routing
problem with time windows are presented in [5,6], where the
authors describe heuristic and metaheuristic solution methods
from the literature. Another interesting variant of the VRP has been
approached by some authors. It considers that a vehicle can be as-
signed to more than one route per planning period and has been de-
noted as the Multi Trip vehicle routing problem or vehicle routing
problem with multiple routes. It was first approached in [11]. Some
heuristic solution methods [1,4,15–17,20] are described in the sur-
vey provided in [18]. All these main variants can be combined with
further versions of the problem. Just to state a few, there can be
multiple or single depots, homogeneous or heterogeneous fleets,
customers can have stochastic or deterministic demands, the prob-
lem can be static or dynamic. In this paper, we address the vehicle
routing problem with time windows and multiple routes
(MVRPTW). Despite its apparent practical relevance (delivering
perishable goods, for example), this variant of the classical VRP
has not been the subject of a large number of studies. In what con-
cerns exact methods, to our knowledge there is only one contribu-
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tion in the literature [3]. It is a generalization of a previous method
[2], which considered the same problem but with a single vehicle
available. It is a branch-and-price algorithm, with a master problem
that is a set-covering problem with variables representing work-
days, i.e., sequences of routes assigned to one vehicle for one plan-
ning period. The pricing problem is an elementary shortest path
problem with resource constraints, formulated in a graph whose
nodes represent vehicle routes. The vehicle routes are generated a
priori. This is possible because there is an additional constraint in
what concerns their duration, which makes the number of feasible
routes decrease drastically. With this exact solution method, the
authors were able to solve instances with up to 40 customers.

In this paper, we present a new exact solution approach for the
MVRPTW. As in [3], we consider the additional route duration con-
straint and generate all feasible vehicle routes a priori. We propose
a new algorithm that is based on a pseudo-polynomial network
flow model, whose nodes represent discrete time instants and
whose solution is composed of a set of paths, each representing a
workday. An issue of this model is that its size depends on the dura-
tion of the workdays. The time instants we consider in the model
are integer, and so, when non integer traveling times occur, we
use rounding procedures that allow us to obtain a (strong) lower
bound. Our model is then embedded in an exact algorithm that iter-
atively adds new time instants to the network flow model, and re-
optimizes it, until the solution found is proved to be feasible. Prac-
tically speaking, the number of iterations is generally rather small
(one in most of the cases). We tested our algorithm on the bench-
mark used in [3] to compare our results with theirs. Our method
outperforms the column-generation based algorithm of [3] in many
cases. In the cases where the two methods find a solution, our
method drastically reduces the computational time needed.

The paper is organized as follows. In Section 2, we define our
problem, along with its notation, and briefly recall some integer
programming models from the literature. We contribute to the res-
olution of this problem with a new network flow formulation,
where variables represent feasible vehicles routes. This model is
described in Section 3, as well as some reduction criteria to elimi-
nate some of the vehicle routes, in order to improve its efficiency.
The network flow model is embedded in an exact solution algo-
rithm that is thoroughly described in Section 4. This algorithm
was tested on a set of benchmark instances from the literature.
In Section 5 we present the results of those computational tests. Fi-
nally, some conclusions are drawn in Section 6.

2. Integer programming models for the MVRPTW

In this Section, we define the problem we are addressing and
briefly describe two different formulations from the literature,
both approached in [3]. The first one is a compact formulation
for this problem and the second one is a set partitioning formula-
tion, corresponding to the master problem of a column generation
framework proposed by the authors.

2.1. Problem definition and notation

In the MVRPTW, there is a single depot, denoted by o, which is
the beginning and the end of all the vehicle routes. The fleet of
vehicles is homogeneous. All the vehicles have a capacity of Q
units. It is assumed that there are K available vehicles in the fleet.

The set of customers is represented by N = {1, . . . ,n}. There is a
distance, dij, and a traveling time, tij, associated to every pair i,
j 2 N [ {o}. Each customer i has a demand qi, a revenue gi, a service
time si and a time window [ai,bi], where ai is the earliest time and
bi the latest time to start the service at customer i. This means that
if a vehicle arrives at customer i earlier than ai, it must wait. We as-
sume, without loss of generality, that a vehicle starts the service at a
customer as soon as possible. The service time for the depot is de-
fined as so = 0, and all the vehicle routes must respect the depot’s
time window, [ao,bo], which means that no vehicle can leave the de-
pot before ao, nor access it after bo. This time window represents the
duration W of a workday. We assume that bi + si + di0 6 b0, "i 2 N.

Each vehicle can perform several routes during a workday. It
means that it can perform one route, reload at the depot and leave
to the following route, until the end of the workday. A route r is de-
fined by a sequence of visits to a subset of customers Nr # N. It is
feasible if the sum of the demands of all customers that belong to
Nr does not exceed the vehicle capacity and if its sequence of visits
is such that it is possible to visit every customer within its time
window. We also consider that the service of all customers in the
route cannot start later that tmax time units after the route begins.
We denote by R the set of all feasible routes. For each route, there is
also a setup time to consider. Before leaving the depot to perform
route r, the vehicle needs b

P
i2Nr

si time units to load, with b 2 Rþ.
Note that it may not be possible to visit all customers due to the

limitation on the number of available vehicles. However, it is al-
ways desirable to visit as many customers as possible.

2.2. A compact formulation for the MVRPTW

The problem can be formulated in a complete directed graph
G = (V,A), being V = N [ {o} its set of nodes and A = {(i, j) : i, j 2 V}
its set of arcs. This compact formulation, where binary variables as-
sign customers to routes and define consecutive pairs of routes, is
proposed in [3]. Its binary variables xr

ij and yr
i define, respectively, if

arc (i, j) and customer i belong to route r, whereas the binary vari-
ables zrs define if there is a vehicle that performs route r followed
by route s in its workday. Notation r < s means that a same vehicle
is assigned to perform route s after having performed route r. Vari-
ables tr

i represent the starting instant of service at customer i, if it is
served by route r, and tr

o and t0ro represent the starting and ending
times of route r, respectively. Let M be a sufficiently large number.
This formulation states as follows.

min
X
r2R

X
ði;jÞ2A

dijxr
ij � a

X
r2R

X
i2N

giy
r
i ð1Þ

s:t:
X
j2V

xr
ij ¼ yr

i ; 8i 2 N; 8r 2 R; ð2Þ
X
r2R

yr
i 6 1; 8i 2 N; ð3Þ

X
i2V

xr
ih �

X
j2V

xr
hj ¼ 0; 8h 2 N; 8r 2 R; ð4Þ

X
i2V

xr
oi ¼ 1; 8r 2 R; ð5Þ

X
i2V

xr
io ¼ 1; 8r 2 R; ð6Þ

X
i2N

qiy
r
i 6 Q ; 8r 2 R; ð7Þ

tr
i þ si þ tij �Mð1� xr

ijÞ 6 tr
j ; 8ði; jÞ 2 A; 8r 2 R; ð8Þ

aiyr
i 6 tr

i 6 biyr
i ; 8i 2 N; 8r 2 R; ð9Þ

tr
o P b

X
i2N

siyr
i ; 8r 2 R; ð10Þ

tr
i 6 tr

o þ tmax; 8i 2 N; 8r 2 R; ð11Þ
ts

o þMð1� zrsÞP t0ro þ b
X
i2N

siys
i ; 8r; s 2 R; r < s; ð12Þ

X
r2R

X
s2Rjr<s

zrs P jRj � K; ð13Þ

xr
ij 2 f0;1g; 8ði; jÞ 2 A; 8r 2 R; ð14Þ

yr
i 2 f0;1g; 8i 2 N; 8r 2 R; ð15Þ

zrs 2 f0;1g; 8r; s 2 R; r < s; ð16Þ
tr

i P 0; 8i 2 N; r 2 R: ð17Þ
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The objective function (1) translates the fact that it is always desir-
able to visit as many customers as possible. Note that for the model
to be valid, constant a has to be set to a value that ensures that.
Constraints (4)–(6) are flow conservation constraints, and (7) and
(13) define the vehicles’ capacity and the size of the fleet, respec-
tively. The fact that the visits to customers must respect their time
windows is expressed in (9). Every two clients with consecutive vis-
its in a same route must have compatible visit times (8), the same
happening with two consecutive routes performed by a same vehi-
cle (12). Finally, the setup time for every route must always be con-
sidered (10), (12).

2.3. A column generation model

In [3], the authors propose a branch-and-price algorithm to
solve the MVRPTW. The master problem of the column generation
scheme is a set covering model, where each column represents a
vehicle’s workday, w. A workday is a sequence of routes assigned
to a vehicle, to be performed during the stipulated planning period.

Let X be the set of feasible workdays, dw and gw the total trav-
eled distance and revenue of workday w 2X, respectively, and aiw

a binary coefficient that indicates whether or not customer i is
served in workday w. Binary variables xw define if workday
w 2X belongs to the solution, and the formulation of [3] states
as follows.

min
X
w2X
ðdw � agwÞxw ð18Þ

s:t:
X
w2X

aiwxw 6 1; i 2 V ; ð19Þ
X
w2X

xw 6 K; ð20Þ

xw 2 f0;1g; w 2 X: ð21Þ

The objective function (18) must ensure that a customer may only
not be visited if it is not possible due to time or vehicle constraints.
Parameter a must be set to a value that guarantees that. Constraints
(19) state that each customer is visited at most once. The number of
workdays in a solution can never exceed the number of available
vehicles in the fleet (20).

The pricing problem generates feasible workdays, and it is for-
mulated as an elementary shortest path problem with resource
constraints, defined in a graph whose nodes represent vehicle
routes, and whose arcs represent pairs of consecutive routes. This
means that all feasible routes must be generated a priori.
3. A new pseudo-polynomial network flow model

In this section, we present a new network flow model for the
MVRPTW, whose variables represent feasible vehicle routes. As in
[3], all vehicle routes are previously generated. The integer model
is then solved with a commercial software (CPLEX), explicitly con-
Fig. 1. First and last beginning an
sidering all its variables. Because the nodes of the graph represent
time instants, a discretization of time is required. The discretiza-
tion will be discussed in the next section.

3.1. Vehicle routes generation

A route r 2 R may remain feasible when it begins at different
time instants. Therefore, for every route r, we consider that there
are several routes rt, one for each possible departure instant t.
The duration of a route r, rr, may be different for different depar-
ture instants, as the waiting times to serve customers may vary.

Let ði1; . . . ; ijNr jÞ be the sequence of customers visited in route
r 2 R. The first possible time instant to end route r is T 0�r ¼
hr

ijNr j
þ sijNr j

þ tijNr jo
, being hr

ijNr j
the first possible instant to start

service at last customer ijNr j in route r. It is possible to recursively
calculate T 0�r , considering that hr

ih
¼maxfhr

ih�1
þ sih�1

þ tih�1 ih ; aihg
for h 2 {1, . . . , jNrj} with hr

i0
¼ ao. As illustrated in Fig. 1, this means

that beginning route r at any instant t�r 6 T�r ¼ hr
i1
� toi1 implies

ending it at instant T 0�r . Therefore, it is clear that such a route is
dominated by the route r that begins at instant T�r , and thus it
may not be considered.

Similarly, the last possible time instant to end route r is
T 0þr ¼ /r

ijNr j
þ sijNr j

þ tijNr jo
, being /r

ijNr j
the last possible instant to start

service at customer ijNr j in route r and /r
ih
¼ minf/r

ih�1
þ

sih�1
þ tih�1 ih ; bihg, for h 2 {1, . . . , jNrj} with /r

i0
¼ bo. This means that

beginning a route in any instant after Tþr ¼ /r
i1
� toi1 implies that

the route is not feasible, as it does not respect at least one of the
customers’ time windows.

Note that if route r begins within the time interval ½T�r ; T
þ
r �, it

will have the minimum duration, as the waiting times are
minimized.

For each r 2 R, the interval ½T�r ; T
þ
r � is computed as described.

The number of different feasible routes we consider is, therefore,
equal to

P
r2R

Tþr �T�r þ1
U

l m
, being U the time unit. We consider U = 1.

3.2. A flow model for the MVRPTW

In our network flow model, every workday corresponds to a
path in an acyclic directed graph P = (D,W). Its set of vertices
D = {0,1, . . . ,W} represents discrete time instants from 0 to the
workday length W and W ¼ fðu;vÞr : 0 6 u < v 6W;u 2 ½T�r ; T

þ
r �;

v ¼ uþ rr ; r 2 Rg
S
fðu;vÞo : 0 6 u < v 6W;v ¼ uþ 1g represents

its set of arcs. Arcs correspond either to feasible vehicle routes or
to waiting time periods (unit arcs). These waiting time arcs repre-
sent the instants of time, in a workday, that are spent by the vehi-
cle at the depot. Note that in this model, we adjust the beginning
time instant of each route r 2 R to b

P
i2Nr

si time instants before,
in order to consider the loading time of the vehicle.

The model is formulated as a minimum flow problem. The num-
ber of constraints is polynomial in the size of W and the number of
variables is polynomial in the size of W and the number of feasible
routes, which is limited by a constant that depends on parameter
d ending instants of route r.
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tmax. Therefore, the model has a pseudo-polynomial number of
variables and constraints.

Its variables kr
uv correspond to the flow in arc (u,v)r, i.e., to the

number of vehicles that go through route r, leaving the depot at in-
stant u and arriving at instant v of their workday. Variable z corre-
sponds to the total flow through the graph, and can be seen as the
return flow from vertex W to vertex 0. Coefficient dr represents the
cost of route r, i.e., the sum of the total traveled distance in r. The
model states as follows.

min
X

ðu;vÞr2W

dr � a
X
i2Nr

gi

 !
kr

uv ð22Þ

s:t:
X

ðu;vÞr2Wji2Nr

kr
uv 6 1; 8i 2 N; ð23Þ

�
X

ðu;vÞr2W

kr
uv þ

X
ðv;yÞs2W

ks
vy ¼

z; if v ¼ 0;
0; if v ¼ 1; . . . ;W � 1;
�z; if v ¼W;

8><
>: ð24Þ

z 6 K; ð25Þ
kr

uv P 0 and integer; 8ðu;vÞr 2 W; ð26Þ
z P 0 and integer: ð27Þ

The objective is to minimize the total traveled distance of all vehi-
cles during one workday (22). It may not be possible to visit all cus-
tomers due to the limited number of available vehicles (25). The
inequalities in constraints (23) express that. It is, however, always
desirable to visit as many customers as possible.

Constraints (24) are the flow conservation constraints of the
network. They ensure that the amount of flow that goes into a node
is equal to the amount of flow that goes out of it.

The following example illustrates the structure of our model.

Example 3.1. Consider an instance of MVRPTW with five custom-
ers (n = 5), two available vehicles (K = 2) with a capacity of Q = 10
units, tmax = 5 and b = 0.2. Table 1 describes the coordinates (xi,yi),
time window [ai,bi], demand qi and service time si for node
i 2 N = {1, . . . ,5}

S
{o}. The distance between two nodes i and j is

equal to the Euclidian distance between them. Table 2 lists all
feasible routes, their beginning intervals and durations, as
described in Section 3.1, and all arcs to consider in the model.
Fig. 2 represents the network flow graph generated for this
Table 2
Feasible routes (Example 3.1).

Route Customers Beginning interval

r ½T�r ; T
þ
r �

a (5) [5.99,10.99]
b (4) [3.44,5.44]
c (3) [12.36,15.36]
d (2) [10.60,13.60]
e (2,3) [10.20,12.79]
f (1) [3.60,4.60]

Table 1
Instance description (Example 3.1).

Customer Coordinates Time windows Demand Service time

i (xi,yi) [ai,bi] qi si

0 (0,0) [0,25] 0 0
1 (1,0) [5,6] 1 2
2 (0,1) [12,15] 7 2
3 (1,2) [15,18] 1 2
4 (3,1) [7,9] 2 2
5 (2,3) [10,15] 3 2
instance, and the corresponding optimal solution is shown in
Fig. 3. In this solution, z = 2 and thus two vehicles are required, K1

and K2. By looking at the solution graph (Fig. 3), we can say that
each of the vehicles has to perform two routes in its workday. One
of the vehicles, K1, would perform routes b and e, visiting
customers 4, 2 and 3. It would start loading to perform route b at
time instant 3.44, arrive at the depot at time instant 12.16, wait for
0.04 time instants, start loading for route e at time instant 12.20,
arriving at the depot at time instant 21.65, where it would remain
until the end of the workday. The second vehicle, K2, would
perform routes f and a, visiting customers 1 and 5. It would start
loading to perform route f at time instant 3.60, arrive at the depot
at time instant 8.00, wait for 2.99 time instants, start loading for
route a at time instant 10.99, arriving at the depot at time instant
20.60, where it would remain until the end of the workday. In this
solution, all customers are visited.
3.3. Reductions based on dominance rules

The variables represent feasible vehicle routes in our network
flow model. Clearly, reducing the number of arcs reduces the size
of the model, increasing its efficiency. The next four propositions
define dominance rules that allow us to discard some routes that
are never interesting when compared to some other one, and also
to reduce the number of different beginning instants for some of
the routes.

The first dominance rule states that if two routes serve the same
customers, a route can be dropped if it has a larger or equal cost
and if it does not begin after nor end before the other.

Proposition 1. Let r, s 2 R be two vehicle routes such that Nr = Ns. Let
t 2 ½T�r ; T

þ
r � and t0 2 ½T�s ; T

þ
s �. If dr P ds, t 6 t0 and t + rr P t0 + rs,

route st0 dominates route rt.
Proof. It is never better to consider route rt over route st0 , as the
first one does not begin after nor end before the second one, both
routes visit the same set of customers and the cost of r is not smal-
ler than the cost of s. h

The second dominance procedure states that if all replications
of a given route r end after the beginning of any other route, then
the latest replication of r dominates the other replications of r.

Proposition 2. Let r 2 R be a route such that T�r þ rr P
maxfTþs : s 2 R; s – rg. All routes rt; t 2 ½T�r ; T

þ
r ½, are dominated by

route rTþr
.

Proof. Let T ¼ maxfTþs : s 2 Rg. No route can begin after time
instant T and route r will always end after time instant T. Conse-
quently, if route r belongs to a vehicle’s workday, it is always the
last one. Therefore, any route rt ; t 2 ½T�r ; T

þ
r ½, can be replaced by

the route rTþr
without losing the optimal solution, as t 6 Tþr and

no other route will be performed after r. h
Duration Arcs

rr {(u,v)r}
9.61 {(6,15)a; (7,16)a; (8,17)a; (9,18)a; (10,19)a; (11,20)a}
8.72 {(4,12)b; (5,13)b; (6,14)b}
6.88 {(13,19)c; (14,20)c; (15,21)c; (16,22)c}
4.40 {(11,15)d; (12,16)d; (13,17)d; (14,18)d}
9.45 {(11,19)e; (12,20)e; (13,21)e}
4.40 {(4,8)f; (5,9)f}



Fig. 2. Complete network flow graph (Example 3.1).

Fig. 3. Optimal solution (Example 3.1).
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The third dominance rule states that if no routes begin in the
interval of possible ends for a route s, then the latest replication
of s dominates the other replications of s.

Proposition 3. If
S

r2R½T
�
r ; T

þ
r �
T
½T�s þ rs; T

þ
s þ rs� ¼£, route sTþs

dominates all routes st, with t 2 ½T�s ; T
þ
s ½.
Proof. Let (k⁄,z⁄) be an optimal solution for the flow model of an
instance of MVRPTW, where the route s�t� (respectively sþtþ ) pre-
cedes (resp. follows) the route st, in the same workday. This means
that we have k�s

�

t� ;t0� ¼ k�st;t0 ¼ k�s
þ

tþ ;t0þ ¼ 1. Since the solution (k⁄,z⁄) is
feasible, Tþs P t P t0�. If

S
r2R½T

�
r ; T

þ
r �
T
½T�s þ rs; T

þ
s þ rs� ¼£, we

have that tþ > Tþs þ rs. Therefore, a solution (k0,z⁄), where k0 equals
k⁄ by changing only the two components k0st;t0 ¼ 0 and k0Tþs ;Tþs þrs

s ¼ 1,
remains feasible and has the same cost as (k⁄,z⁄), and thus is an
optimal solution. h

The fourth dominance rule is similar to the third. It states that if
no routes end in the interval of possible beginning of a route s, then
the earliest replication of s dominates the other replications of s.

Proposition 4. If
S

r2R½T
�
r þ rr ; T

þ
r þ rr �

T
½T�s ; T

þ
s � ¼£, route sT�s

dominates all routes st ; t 2�T�s ; T
þ
s �.
Proof. Let (k⁄,z⁄) be an optimal solution for the flow model of an
instance of MVRPTW, where the route s�t� (respectively sþtþ ) pre-
cedes (resp. follows) the route st, in the same workday. This means
that we have k�s

�

t� ;t0� ¼ k�st;t0 ¼ k�s
þ

tþ ;t0þ ¼ 1. Since the solution (k⁄,z⁄) is
feasible, T�s þ rs 6 t0 6 tþ. If

S
r2R½T

�
r þ rr ; T

þ
r þ rr�

T
½T�s ; T

þ
s � ¼£,

we have that t0� < T�s . Therefore, a solution (k0,z⁄), where k0 equal
to k⁄ by changing only the two components k0st;t0 ¼ 0 and
k0sT�s ;T�s þrs

¼ 1, remains feasible and has the same cost as (k⁄,z⁄),
and thus is an optimal solution. h
Example 3.2. Consider an instance of the MVRPTW for which eight
feasible vehicle routes, a, b, c, d, e, f, g and h, can be generated. The
first graph in Fig. 4 represents the complete graph with all the rep-
lications of those eight routes, as described in Section 3.1. In the
second graph, there are only the routes that need to be considered,
after the arc reduction criteria described in Section 3.3 are applied.

T sets represent the beginning time instants of the routes and T0

the ending time instants. Set Tb was reduced to its first point as it
does not intersect any ending set (Proposition 4). Sets Td and Te

were reduced to their last points, as all points in T 0d and T 0e are
greater than T (Proposition 2). Finally, Tg was also reduced to its
last point, as set T 0g does not intersect any beginning set (Propo-
sition 3).
4. Convergent iterative relaxation based on the discretization

Our approach to solve an instance of a MVRPTW problem con-
sists of enumerating all feasible routes, as described in Sections
3.1 and 3.3, and solving the corresponding network flow model.

The nodes of model (22)–(27) represent time instants. The dis-
tances (and thus the time) in the benchmarks we used are not inte-
ger, and thus we have two alternatives. Either we use a finely
grained discretization (for example, each time unit would be
0.01), or we use some rounding procedures to use an integer time
unit. The former alternative would lead to a network flow model
with a huge number of variables and constraints, and would not al-
low a fast solution. Consequently, we used the latter alternative.

We discuss in the following the different ways of rounding the
values. We chose a rounding strategy which slightly relaxes the
problem. In many cases, the solution found remains feasible. How-
ever, it may happen that the solution found by model (22)–(27) is
not feasible. Since our solution approach intends to be exact, we
developed an algorithm that iteratively refines the discretization.
It allows us to achieve the optimal value, despite our initial coarse
discretization of time.
4.1. Initial rounding strategy

Recall that an arc (u,v)r in model (22)–(27) is related to a route r
beginning at time u and ending at time v. Given that the set of ver-
tices of graph P is defined as a discrete set of values D = {0, . . . ,W},
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it might be necessary for some arcs (u,v)r 2W, to round u and v to a
value that belongs to set D. As mentioned before, we initially con-
sider time units equal to 1, i.e., D = {0,1,2, . . . ,W � 1,W}. Several
rounding procedures are possible, which are commented below.

� u = buc and v = dve. In this case, in the model, a route begins
slightly before and ends slightly after it actually does. It means
that we may miss some solutions, but each feasible solution of
(22)–(27) using this relaxation will be feasible for the initial
problem. Consequently, this relaxation leads to a heuristic.
� u = due and v = bvc. In this case, the model is slightly relaxed. It

may happen that the solution found is not feasible. However
it leads to a valid lower bound.
� (u = due and v = dve) or (u = buc and v = bvc). A lower bound is

also obtained.

In our algorithm, we used the second rounding procedure: con-
sidering u = due and v = bvc. We chose this technique for two rea-
sons: the relaxation is expected to be tight, and infeasibilities are
local and can be corrected, as we will explain below.

Note that infeasible solutions are only related to paths of the
flow model (workdays) including two consecutive routes r and r0

with one or less units of waiting time between them. For example,
if a replication of route r ends at time 15.35, and a replication of
route r0 begins at time 15.15, our rounding procedure will make
route r end at time 15 and route r0 start at time 16, allowing r
and r0 to belong to the same working day even though this is not
possible in the initial problem.

A first idea is to correct the solution by shifting route r back-
ward or route r0 forward to avoid this problem. If it makes the solu-
tion feasible, we prove the optimality, because the feasible solution
will have the same set of routes and thus a cost equal to the lower
bound. Practically speaking, after having obtained a solution x⁄, we
try to build a feasible solution, using the same routes found in solu-
tion x⁄.

The algorithm works as follows. For each workday, we try to
build a new path, only maintaining the sequence of routes. Let
(r1, . . . ,rp) be the sequence of routes in the workday, and Tri

the
new beginning and T 0ri
the new end of route ri, "i 2 {1, . . . ,p}. We

set Tri
¼ maxðT�ri

; T 0ri�1
Þ. If Tri

6 Tþri
; 8i 2 1; . . . ; p, the solution is fea-

sible. If not, we cannot prove feasibility, and another algorithm has
to be used.

4.2. Iteratively refining the discretization

Our solution approach consists in iteratively fixing the infeasi-
bilities due to discretization issues. At each step of the algorithm,
we detect all the time instants where infeasibilities occur. For each
of these time instants, we locally modify the discretization, adding
the fractional values needed to refine the relaxation entailed by the
initial discretization.

The initial relaxation can be seen as an aggregation of many
time instants into a unique integer one. Our refinement technique
is equivalent to a disaggregation of some nodes of the current
graph. For each pair of conflicting arcs (u,v)r and ðu0;v 0Þr

0
, we con-

sider the fractional values of v and u0 in order to correct the solu-
tion. Our solution approach is summarized in Algorithm 1.

The node disaggregation process works as follows. We check all
the arcs that belong to the solution. If there are at least two con-
flicting arcs (u,P)r, (P,v)s in the solution, we decompose the integer



Fig. 5. Node disaggregation (Example 4.1).
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node P. In order to do so, we check all arcs of the model
(w,z)r 2Wsuch that w = P or z = P (except the waiting arcs), setting
them to their original values w0 = P � 1 + na or z0 = P + nb, with
0 6 na, nb < 1. We also check for all arcs (x,y)r 2W such that
y = P � 1 or x = P + 1, setting them to their original values
y0 = P � 1 + nc or x0 = P + nd, with 0 6 nc, nd < 1. When all the new g
values are calculated, we sort them by their increasing values,
and add the new nodes Pq, q 2 {1, . . . ,g}, to the graph, always
respecting their order.

Example 4.1. Consider an instance of the MVRPTW with an
optimal solution with three incident arcs in node P, (a,b)r, (c,d)s,
(e, f)t with b = c = e = P, an arc (g,h)u with h = P � 1 and an arc (i, j)v

with i = P + 1. Let Pb, Pc, Pe, Ph and Pi be the original non rounded
values of b, c, e, h and i respectively. Fig. 5 illustrates the graph
transformation.

We also need to check if there are pairs of arcs in the solution,
(u,v)r and (x,z)s, such that v = P and x = P + 1 and their original non
rounded values v0 = P + nv and x0 = P + nx are such that nv > nx. In
Fig. 6. Node disaggrega
such cases, all beginning points incident in P + 1 or ending points
incident in P must be set to their non rounded values.

Example 4.2. Consider an instance of the MVRPTW for which arcs
(a,b)s and (c,d)t, with b = P and c = P + 1, belong to the optimal
solution. All ending points incident in P or beginning points
incident in P + 1 must be set to their original values. Fig. 6
illustrates the disaggregation procedure for this case.
5. Computational results

Our algorithm was tested and compared with the branch-and-
price algorithm described in [3]. In order to do so, we used the
same set of instances and the same values of parameters.

The comparisons are performed on the well known Solomon in-
stances for the VRP with time windows [19] that were used by [3].
The instances are divided into three different categories, RC with 8
instances, R with 11 instances and C with 8 instances, according to
the distribution of the customers’ locations. Each category is
tion (Example 4.2).



Table 4
Computational results for 25 customers and tmax 75 and 220.

Inst n tmax nit %Cust zIDA tIDA tAGP tRed (%)

RC201 25 75 1 100 988.2 0.3 3.1 91.29
RC202 25 75 1 100 881.6 37.2
RC203 25 75 1 100 749.26 54.2
RC204 25 75 1 100 744.83 171.0
RC205 25 75 1 100 840.47 1.6 28.8 94.48
RC206 25 75 1 100 761.14 2.0 7156.8 99.97
R201 25 75 1 100 762.53 0.5 68.3 99.22
R202 25 75 1 100 645.86 3.1 205.2 98.51
R203 25 75 1 100 622.04 10.6 1333.2 99.21
R204 25 75 1 100 579.75 106.2 30983.3 99.66
R205 25 75 1 100 634.17 1.5 354.1 99.59
R206 25 75 1 100 596.81 4.7 318.4 98.52
R207 25 75 1 100 585.81 19.4 2853.5 99.32
R208 25 75 1 100 579.75 66.0 9270.3 99.29
R209 25 75 1 100 602.47 4.9 262.6 98.12
R210 25 75 1 100 636.24 11.8 5094.1 99.77
R211 25 75 1 100 575.97 64.5 5648.6 98.86
C201 25 220 1 100 659.15 10.6 40361.2 99.97
C202 25 220 1 100 653.5 212.4
C203 25 220 1 100 646.51 233.9
C204 25 220 1 100 602.58 423.0
C205 25 220 1 100 636.52 34.7
C206 25 220 1 100 636.52 40.2
C207 25 220 1 100 603.34 29.5
C208 25 220 1 100 613.34 12.9

SolvedAF: 92.59% SolvedAGP: 55.56% Average tRed: 98.39%
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divided into two groups (1 and 2). We are only considering the sec-
ond group instances, as the first group ones have small time win-
dow, which would compromise the existence of workdays with
more than one route. Originally, each instance has 100 customers
but we only consider the n first ones, similarly to [3]. The value n
is specified for each set of computational results.

The algorithm was implemented in C++ and the network flow
model was solved with ILOG CPLEX 12.1. Note that the computa-
tional tests were run on a PC with a 2.66 GHz Quad-Core processor
and 4 GB of RAM, whereas the tests in [3] were run on an AMD
Opteron 3.1 GHz with 16 GB of RAM. Clearly, our machine is less
powerful than the machine of these authors. In fact, the perfor-
mance ratio between these two processors is at most equal to
0.94. This factor may be used as an estimation to convert our com-
puting times for the machine used in [3].

The tests were run for K = 2, a = 2maxi,j2Ndij + 1, b = 0.2, gi = 1,
"i 2 N and tij = dij, "i, j 2 V.

All instances were run considering the first 25 and 40 clients.
Each of these instances was tested for two different values of tmax.
First for a smaller one (75 for instances of groups RC and R, and 220
for group C) which results in less routes to consider, making the
problem easier to solve, and then for a larger one (100 for instances
of groups RC and R, and 250 for group C).

Table 3 shows the impact of the arc reduction described in
Section 3.3. Each line represents the average values of a group of
instances, belonging to one of the three different categories, RC,
R, or C, with n clients and a given tmax. The other columns represent
the following: jRj is the number of different routes and j!j is the
number of all routes for all their beginning instants, as described
in Section 3.1; jRredj and j!redj represent these same values, after
the reduction procedure has been applied; finally, DifR% ¼
jRj�jRred j
jRj % and Dif!% ¼ j!j�j!

red j
j!j %.

We were able to reduce approximately 29% of the number of
variables to include in the model.

We now report the results obtained by our algorithm on the in-
stances used by [3]. For these results, the reduction procedures are
applied before running the procedure. Tables 4–7 describe the
computational results for the instances that were solved to opti-
mality by at least one of the two methods tested. Several combina-
tions of the number of customers and values tmax are tested. We ran
the instances for a maximum time of 7200 s. The number of itera-
tions of the iterative disaggregation algorithm is represented by nit

and zIDA stands for the optimal value obtained with our approach.
Columns tIDA and tAGP show the time, in seconds, required to solve
the iterative disaggregation algorithm and the branch-and-price
algorithm in [3], respectively. The percentage of visited customers
is represented by % Cust, and the last column tRed represents
[(tAGP � tIDA)/tAGP]%.

We solved around 62% of all instances, whereas in [3] only
about 37% of the instances were solved to optimality. We were able
Table 3
Arc reduction.

Inst n tmax jRj j!j

RC 25 75 516.75 116631.13
R 25 75 702.64 216311.18
C 25 220 336.00 183614.25
RC 40 75 641.13 154921.25
R 40 75 3661.82 1247141.73
C 40 220 1530.63 1153261.75
RC 25 100 4463.88 746806.00
R 25 100 4705.91 1226177.91
C 25 250 1308.25 610079.88
RC 40 100 5648.88 1096099.38
R 40 100 5995.50 424145.00
C 40 250 2891.00 835131.67

Average 2700.20 667526.76
to solve 28 instances that were not solved by [3]. On the contrary,
one instance is solved by this latter method and not by ours. How-
ever, note that in [3] the authors need much more than 7200 sec-
onds to solve this instance. The difference in the number of
instances solved is larger for the instances with n = 40 and with
smaller tmax. For this set of instances, we were able to solve 16 in-
stances, whereas the method of [3] only solved 7 instances.

If we consider the instances solved by both methods, ours
solved them in approximately 2% of the time reported in [3]. Our
method is faster for every case with a reduction of at least 91%, ex-
cept for two instances where the reduction is smaller, and the
notable exception of two other instances for which our method
is slower than the method of [3]. These two instances involve 40
customers and a tmax equal to 75. In one of these two instances,
the number of disaggregation iterations is 4, and in the other, the
model ran three times.

In what concerns the number of iterations of the algorithm, only
in six cases out of the sixty-seven solved was it necessary to run
the model more than once. The model was solved twice and thrice
in one case each and four times for four test cases. This means that
our algorithm always converged in four or less iterations.

As expected, when the number of customers increases it be-
comes harder to solve the problem to optimality. This also happens
jRredj j!redj DifR% Dif!%

419.13 71673.63 18.90 34.13
618.82 149259.09 12.64 28.89
318.86 128034.00 16.55 28.58
520.75 96329.75 19.07 33.44

3266.73 899976.00 11.36 25.62
804.57 313353.29 16.83 26.40

3374.88 411120.38 21.48 37.63
4154.18 816231.18 12.15 29.98
1237.29 452880.29 16.34 26.84
4357.13 614915.63 21.51 37.41
5057.50 342092.50 14.38 16.80
2291.83 576158.67 16.92 22.53

2201.80 406002.03 16.51 29.02



Table 6
Computational results for 25 customers and tmax 100 and 250.

Inst n tmax nit %Cust zIDA tIDA tAGP tRed (%)

RC201 25 100 1 100 849.45 2.0 46.3 95.7
RC202 25 100 1 100 679.95 11.6 1096.3 98.94
RC203 25 100 1 100 593.63 47.0
RC205 25 100 1 100 702.61 8.2 262.8 96.86
RC206 25 100 1 100 604.23 8.0 222.7 96.42
RC207 25 100 2 100 514.9 91.7
R201 25 100 1 100 698.26 1.3 43.6 96.95
R202 25 100 1 100 617.6 32.6 25249.9 99.87
R203 25 100 1 100 577.8 64.1 75729.3 99.92
R205 25 100 1 100 559.21 9.4 1202.3 99.22
R206 25 100 1 100 523.7 40.0 28498.1 99.86
R209 25 100 1 100 517.74 47.7 11173.9 99.57
R210 25 100 1 100 547.29 58.9 26690.2 99.78
C201 25 250 1 100 541.02 0.4 1.3 68.46
C202 25 250 1 100 533.55 167.9
C205 25 250 1 100 530.05 3.7 116.6 96.87
C206 25 250 1 100 527.95 20.7 1987.2 98.96
C207 25 250 1 100 525.57 44.2
C208 25 250 1 100 525.57 63.2

SolvedAF: 70.37% SolvedAGP: 51.85% Average tRed: 96.2%

Table 7
Computational results for 40 customers and tmax 100 and 250.

Inst n tmax nit %Cust zIDA tIDA tAGP tRed (%)

RC201 40 100 1 85 1157.65 3.6 77.8 95.36
RC202 40 100 4 97.5 1322.08 1013.8
RC205 40 100 1 95 1195.51 35.7 4733.3 99.25
R201 40 100 127424.0
C201 40 250 1 100 966.89 6.4 659.2 99.03
C205 40 250 1 100 921.37 88.5
C206 40 250 1 100 919.24 290.5
C208 40 250 1 100 915.61 491.5

SolvedAF: 25.93% SolvedAGP: 14.81% Average tRed: 97.88%

Table 5
Computational results for 40 customers and tmax 75 and 220.

Inst n tmax nit %Cust zIDA tIDA tAGP tRed (%)

RC201 40 75 4 77.50 1292.35 29.4 14.6 �50.37
RC202 40 75 1 92.50 1458.09 40.2 6823.2 99.41
RC205 40 75 3 85 1290.75 6992.6 1904.2 �72.77
R201 40 75 1 95 1130.73 2358.8 2979.5 20.83
R203 40 75 1 100 962.42 436.0
R205 40 75 4 100 1019.89 3263.7 244494.0 98.67
R206 40 75 1 100 931.94 209.9
R209 40 75 1 100 935.95 771.3
R210 40 75 4 100 963.45 1803.9
C201 40 220 1 100 1169.04 25.5 19978.9 99.87
C202 40 220 1 100 1111.34 79.4
C203 40 220 1 100 1089.24 342.3
C205 40 220 1 100 1084.02 63.6
C206 40 220 1 100 1081.57 109.3
C207 40 220 1 100 1055.24 659.0
C208 40 220 1 100 1072.22 112.7 3221.7 96.5

SolvedAF: 59.26% SolvedAGP: 25.93% Average tRed: 41.73%
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when we increase the value of tmax, as the bigger this parameter is,
the larger is the number of feasible routes, and thus variables, to
consider.

6. Conclusions

The MVRPTW is a variant of the classical vehicle routing prob-
lem that has received little attention in the literature. In this paper,
we described a new network flow model, and an exact solution
algorithm to solve this problem. We conducted computational
experiments on a set of benchmark instances from the literature.
Our approach proved to be much more efficient than other meth-
ods described in the literature.

One of the aspects that we will address as future work is related
to the development of efficient schemes for managing the number
of variables and constraints of the model. Indeed, the sometimes
huge number of arcs that it may require remains an issue that pre-
vents the resolution of larger instances. A key challenge will be to
extend our approach so as to address efficiently these larger size
instances. This may be accomplished by developing new hybrid
algorithms or by trying to generate arcs dynamically, instead of
explicitly considering them all from the beginning. Alternatively,
the development of model-based heuristics that take advantage
of the properties of this pseudo-polynomial model will also be
explored.
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