
Exact method for the two-dimensional

orthogonal packing problem

François Clautiaux, Jacques Carlier, Aziz Moukrim

Laboratoire HeuDiaSyC, UMR CNRS 6599
Université de Technologie de Compiègne, BP 20529, 60205 Compiègne, France

Email: {francois.clautiaux, jacques.carlier, aziz.moukrim}@hds.utc.fr

Abstract

The two-dimensional orthogonal packing problem (2OPP) consists of determining
if a set of rectangles (items) can be packed into one rectangle of fixed size (bin).
In this paper we propose two exact algorithms for solving this problem. The first
algorithm is an improvement on a classical branch&bound method, whereas the
second algorithm is based on a two-step enumerative method. We also describe
reduction procedures and lower bounds which can be used within the branch&bound
method. We report computational experiments for randomly generated benchmarks,
which demonstrate the efficiency of both methods.

Key words: two-dimensional orthogonal packing problem, exact method,
branch&bound
PACS:

1 Introduction

The two-dimensional orthogonal packing problem (2OPP) consists of deter-
mining if a set of rectangles (items) can be packed into one rectangle of fixed
size (bin). This problem occurs in industry when rectangular pieces of steel,
wood, or paper have to be cut from a larger rectangle. It can also be used to
model the layout of a newspaper. It is NP-complete as it generalizes the clas-
sical one-dimensional bin-packing problem [1]. This problem is an issue in the
two-dimensional bin-packing (2BP), two-dimensional knapsack (2KP), and
strip-packing problems (2SP).

A 2OPP instance D is a pair (A,B). A is the set of items ai to pack. B =
(W,H) is a bin of width W and height H. An item ai has a width wi and a
height hi (wi, hi ∈ N). We consider the version of the problem in which the

Preprint submitted to Elsevier Science 12 April 2005

items cannot be rotated. To simplify the notation we usually denote an item ai
by its size (wi, hi). The position of the item ai, denoted by (xi, yi), corresponds
to the coordinates of its bottom-left corner.

Several lower bounds have been proposed for 2BP , all of them can be used for
2OPP . Martello and Vigo [2] and Boschetti and Mingozzi [3,4] propose lower
bounds dedicated to this problem, whereas Fekete and Schepers [5] apply
one-dimensional functions called Dual Feasible Functions (DFF) separately
on each dimension and show that this method can be used for both two and
three dimensional bin packing problems. In a recent paper [6] we propose new
lower bounds following the framework defined by Fekete and Schepers. We
use a discrete version of DFF and propose a new class of functions called
Data-Dependent DFF. These functions behave as DFF for a given instance.
The bounds obtained dominate previous ones [2–4,7] and improve on the best
results for well-known established benchmarks derived from the literature.
Recently, Caprara et al. [8] have proposed an enumerative method to find the
best pair of DFF for a given two-dimensional bin-packing instance.

Although several papers deal with heuristics for 2BP or 2OPP [4,9,10] (see
[11,12] for extensive surveys), few exact methods exist. Hadjiconstantinou and
Christofides [13] study the two-dimensional knapsack and 2OPP . They pro-
pose a general framework for a branch&bound method but they do not report
any computational results. Martello and Vigo [2] introduce an exact method
for 2BP . Part of their work is devoted to 2OPP : their algorithm explicitly
enumerates all feasible packings. It generates many redundancies since the
same item can be packed in a given position several times during the enu-
meration. Scheithauer [14] lists many redundancies and proposes methods for
reducing their number.

In order to avoid exploring redundant solutions, Fekete and Schepers [15] in-
troduce a graph theoretical model. They show that any packing class (i.e. a set
of packings with common properties) can be associated with a pair of interval
graphs. The authors also propose an enumerative algorithm [5] to construct
such interval graphs. It dramatically reduces the number of redundancies com-
pared to the method proposed by Martello and Vigo [2], and outperforms all
previous methods for 2OPP .

In this paper we propose two branch&bound methods for 2OPP . The first al-
gorithm (LMAO) is an improvement on the method proposed by Martello and
Vigo [2]. Instead of testing the packing of items in each dominant coordinate,
the algorithm enumerates the packings of items only in the leftmost-downward
position denoted by c. It also tests the possibility of not packing any item in
c.

The second method (TSBP) is a two step branch&bound method based on a

2

new relaxation of the problem. In the first step (outer branch&bound method),
all solutions of a relaxed problem are enumerated. For each solution found,
a second enumerative method is run (inner branch&bound method) to seek
a solution for the initial problem corresponding to the current solution. The
relaxation consists in cutting each item (wi, hi) into hi strips of width wi. All
strips related to a given item have to be packed at the same x-coordinate, even
if all parts are not contiguous. Using this relaxation, the problem consists in
finding a suitable set of x-coordinates for the items. When a solution is sought
for the relaxed problem (i.e. a valid list of x-coordinates for the items), the
inner branch&bound method tries to add a set of y-coordinates to obtain
a solution for the initial problem. If there is no solution for the orthogonal
packing problem, the inner branch&bound method may not be launched. If
the instance is feasible, the number of states enumerated is also dramatically
reduced: many non-feasible configurations are not enumerated and the inner
branch&bound method is rarely launched more than once.

At each step of the enumeration, the quality of the lower bounds is improved
on. The idea is to make use of the packed items to transform the instance into
another instance with larger items. In the outer branch&bound method, we
avoid all symmetries related to the y-axis, but redundant solutions can still
be reached. So we propose methods to avoid many redundancies in the search
tree. These methods are different from [14], as they can be applied even when
the y-coordinates are not fixed yet.

Numerous benchmarks are available for 2BP or knapsack problems, but we
want our method to be tested against difficult 2OPP instances to allow a
better comparison with the other methods. Several available benchmarks for
2OPP are related to feasible sets of items. We wanted to test our method
against both feasible and non feasible instances. So we have generated our own
instances. We take into account the number of items, the size of the bin and
the discrepancy between the area of the bin and the global area of the items
to genereate those difficult 2OPP instances. This approach is similar to the
approach of Hopper and Turton [16]. We report computational experiments
testing our methods against the new randomly-generated benchmarks. We
compare our algorithms to the method proposed by Martello and Vigo [2],
and Fekete and Schepers [5]. The computational results confirm the interest
of our method, as it outperforms the method of Martello and Vigo and is
competitive compared to the method of Fekete and Schepers.

In section 2 we show how our reduction procedures can be applied to the
feasibility problem and how they can be improved. Section 3 describes our
lower bounds whereas section 4 is devoted to our new branch&bound method.
Section 5 deals with redundancies and how they can be avoided using our
methods. In section 6 we introduce the new benchmarks and we report com-
putational experiments.

3

2 Reduction procedures

Before applying an approximate or an exact method to the feasibility problem
it is interesting to reduce the size of the instance. In this section we propose
several reduction procedures related to special cases where an optimal way
to pack a set of items is known. We also show that a reduction procedure,
described in [6] for 2BP , can be adapted to 2OPP to obtain better results.

2.1 First reduction procedures

If the height of an item ai is equal to the height of the bin, and there is a
solution for 2OPP , there is a solution such that ai is packed at position (0, 0).
Also the property holds for the width. So at each step of the algorithm, if
there exists such an item, it is removed and the size of the bin is updated.
This method can be generalized to items which cannot be packed above any
other item. It can remove several items when used with a preprocessing phase
which increases the size of large items, or within an enumerative method.

We now consider the case where four items can only be packed as a frame
around the bin (Figure 1). Let (A,B) be a 2OPP instance, and ai, aj, ak and
al four items of A such that hi+hk = hj+hl = H and wi+wl = wj+wk = W .
The following proposition holds.

Proposition 1 There exists a feasible packing for (A,B) if and only if there
is a feasible packing for (A,B) such that ai is packed in position (0, 0), al is
packed in position (wi, 0), ak is packed in position (0, hi), and aj is packed in
position (wk, hl).

i

j
k

l

Fig. 1. Frame configuration

The reduction procedure is directly deduced from the proposition. If four such
items are found, they are removed and the size of the bin is updated.

4

1 2 3

4
5 6

7

1 2 3

Fig. 2. v∗1 procedure

2.2 Improving a reduction procedure

In a recent paper [6] we propose a reduction procedure denoted by v1. The
same idea is used by Martello et al. for the strip-packing problem [17]. Let
D be an instance of OPP and p an integer, 1 ≤ p ≤ 1

2
H. We define the set

of tall items Atall = {ai ∈ A : hi > H − p}, and the set of shallow items
Ashallow = {ai ∈ A : hi ≤ p}. m = |Atall|. For each item ai of Atall a bin
Bi of size (H − hi, wi) is created. Consider D′ = (Ashallow, {B1, . . . Bm}) the
following decision problem: ¨Is there a feasible packing for Ashallow in the bins
B1, . . . Bm ?¨ .

Proposition 2 [6] If D′ has a feasible solution then applying function vp,H1

vp,H1 : [0,W]× [0, H]→ [0,W]× [0, H]

ai 7→





(wi, H) if hi > H − p
(0, 0) if hi ≤ p

(wi, hi) otherwise

on A does not modify the feasibility of D.

For 2OPP , both tall and shallow items are removed and the size of the bin is
updated. For 2BP , if a shallow item has too large a width, it cannot be packed
in the area above a tall item. The reduction procedure can also be improved
on for 2OPP , as shallow items may be packed in the area above several tall
items. The procedure obtained is denoted by v∗1. Figure 2 illustrates the fact
that v∗1 can reduce the size of the instance when v1 cannot. We use a greedy
algorithm to solve the decision problem created. For a given value of p, the
sets Atall and Ashallow are computed. Items of Atall are packed on the left-hand
side of the bin in decreasing order of height. Then we try to pack the small
items above them following the bottom-left decreasing rule.

5

3 Lower Bounds

A classical lower bound for 2BP is the continuous bound L0. It is equal to

the total area of the items divided by the area of one bin. L0 = d
∑

ai∈A
wihi

WH
e.

This bound can also be applied to a 2OPP instance. One way of improving
this method is to modify the size of the items so that the obtained instance
is feasible if the initial instance is feasible. It can be done using Dual-Feasible
Functions (DFF) independently for each dimension [18]. The original concept
of DFF has been proposed by Johnson [19] and first used for the 1BP by
Lueker [20] and then by Fekete and Schepers [7]. It has been generalized
for higher dimensional problems by Fekete and Schepers [18]. We use the
framework proposed in [18] in a previous paper [6], using a discretisation of
DFF. We now give a definition of the discrete DFF.

Definition 3 A Discrete DFF f is a discrete application from [0, X] to [0, X ′]
(X and X ′ integers) such that x1 +x2 + . . .+xk ≤ X ⇒ f(x1) + f(x2) + . . .+
f(xk) ≤ f(X) = X ′.

We also introduced the concept of Data-Dependent DFF (DDFF) [6]. These
functions behave as DFF with the instance for which they have been generated
(see [6] for more details). We also propose analytic families of DFF, similarly
to Fekete and Schepers [7]. So we introduce two families of DFF (f k0 and fk2),
and a family of DDFF (f k1) [6], which are inspired by the work of Boschetti
and Mingozzi [3], and lead to bounds which dominate those proposed by [3].
The three functions are defined as follows. A more complete description can
be found in [6].

• Let k = 1, . . . , C
2

. fk0 (x) = 0 if x < k, f k0 (x) = x if k ≤ x ≤ C − k, and
fk0 (x) = C if C − k < x ≤ C.
• Let k = 1, . . . , C

2
. The data-dependent DFF f k1 is defined for the value C

and a list of integer values c1, c2, . . . , cn (I = {1, . . . , n}). We introduce
the set J = {i ∈ I : 1

2
C ≥ ci ≥ k} and for a given integer Y , MC(Y, J)

denotes the maximum number of items ci such that i ∈ J which can be
packed together in a container of size Y . It can be computed in linear
time if the items are sorted by increasing order of size. f k1 (x) = 0 if x < k,
fk1 (x) = 1 if k ≤ x ≤ 1

2
C, and f k1 (x) = MC(C − x, J) if 1

2
C < x.

• Let k = 1, . . . , C
2

. fk2 (x) = 2bx
k
c if x < 1

2
C, fk2 (x) = bC

k
c if x = 1

2
C, and

fk2 (x) = 2bC
k
c − 2bC−x

k
c if x > 1

2
C.

The obtained lower bound is LDDFF = max
1≤k≤W

2
,1≤l≤H

2
,

u∈{0,1,2},v∈{0,1,2}

{⌈∑
ai∈A

fku (wi)f
l
v(hi)

fku (W)f lv(H)

⌉}
.

For 2OPP any reduction procedure or lower bound can be applied to the
instance obtained after using the (D)DFF. The reduction related to large

6

1

2
3

4

1’
2’

3’ 1”

2”

3”

Fig. 3. Creating new instances

items becomes more efficient and can improve the quality of the lower bound
in many cases. As function f k1 is data-dependent, the results can be improved
using a simple method: at each step of the algorithm, an item is removed from
the instance, and the lower bound applied on the residuous instance. Note
that this method would not improve the value of the bound if only DFF were
used.

3.1 Modification of the instance

Consider an enumeration process such that the x-coordinate and then the y-
coordinate of items are fixed. The partial or total packings provide information
which can be used to update the lower bounds and the reduction procedures.
One easy way of improving the bounds is to check if each remaining item ai
can be packed in the remaining free areas. More powerful methods can be
designed. The idea is to aggregate the items which are packed side-by-side
to create new instances which are more constrained than the initial instance
(Figure 3). The lower bounds and the reduction procedures are applied to
these instances to obtain better results. The method is based on a geometric
observation. Consider the polygon ψ formed by the set A1 of items packed in
the bin. If A1 is replaced in the initial instance D by another set A′1 such that
items of A′1 can be packed in ψ, the following property holds:

Proposition 4 If there is no feasible solution for A − A1 + A′1 in B, then
there is no feasible solution for A in B such that items of A1 are packed in ψ.

PROOF. If the original instance D has a feasible solution such that A1 is
packed to form the polygon ψ, a solution for the modified instance D′ can be
found by packing the items of A′1 to form the same polygon. The other items
are packed the same way and a feasible solution for D′ is built.

7

1

2
3

4

1’
2’

3’

1’
2’

3’

Fig. 4. A configuration to avoid

Given a set of packed items A1, we create a set A′1 which is more constrained
than A1. The idea is to maximize the height or the width of the created items
to obtain two instances (Figure 3). If several transformed items which are
packed side by side are shallow they can be packed one above the other in the
new instance. For example in Figure 4, the third configuration is not allowed,
otherwise the bounds may be weaker, as geometric information are lost. To
avoid this situation we operate a second modification on the items. If the
packed items have been cut into vertical strips, we add to the new items a
height equal to H and the height of the bin is updated to 2H. So the bounds
can take into account the fact that these items cannot be packed one above
the other. If the packed items do not fit the width of the bin a dummy item
with size (w∗, H) is created, w∗ being the free width to the right of the packed
items (Figure 5). Note that after the second transformation, item 3′ cannot
be packed above item 2′. The same operation can be realized when the width
is considered. We denote the new instance obtained as D′′. The reduction
procedures described in section 2 and our lower bounds can be applied to D ′′.
The results are improved on because the problem is more constrained as the
number of large items increases.

Proposition 5 If there is no feasible solution for the new instance D′′ ob-
tained there is no feasible solution for the initial instance D including the
current partial packing.

PROOF. If there is a solution for D including the packing of the items of A1

in ψ there exists a solution for D′. It can be found by packing the modified items
in such a way that the remaining area is the same as in D. The remaining
items of A \ A1 are packed in the same way as in the solution for D. So if
there is a solution for D including the packing of A1 in ψ there is a packing
for the modified instance.

8

1

2
3

4
1’

2’
3’

Dum

Fig. 5. Improving the new instances

4 Exact methods

We propose in this section two new exact methods for 2OPP . The first algo-
rithm is an improvement on a branch&bound method proposed by Martello
and Vigo [2]. The second algorithm is based on a two-step enumerative method.
The idea is to enumerate all the solutions of a relaxed problem. During this
step only the x-coordinates of the items are fixed. For each configuration found
a second exact algorithm searches for a valid list of y-coordinates to obtain a
solution for the initial problem.

4.1 Classical methods

Several methods in the literature [13,2] build a configuration step by step
following the leftmost-downward strategy. As Martello and Vigo [2] have ap-
plied an efficient implementation of this algorithm for 2BP , we will denote
this method MV . The coordinates considered for an item ai are those in
which ai has its left edge adjacent either to the right edge of a previously
packed item or to the left edge of the bin, and its bottom edge adjacent ei-
ther to a packed item or to the bottom edge of the bin [21]. In Figure 6
the left configuration is dominated whereas the right configuration is non-
dominated. At each step there is a finite list of l positions and a list of n1

items. There are two choices to make: the item to be packed and the posi-
tion to be used. This leads to l × n1 child nodes. This method generates a
large number of redundancies which have to be handled to obtain an effi-
cient algorithm. A given configuration can be found in different parts of the
search tree. For example, in Figure 6, the right packing can be obtained by
the two following orders : π1 = [(a1, (0, 0)), (a2, (3, 0)), (a3, (5, 0)), (a4, (0, 8))]
and π2 = [(a1, (0, 0)), (a4, (0, 8)), (a2, (3, 0)), (a3, (5, 0))].

9

1 2
3

4

1 2
3

4

0

7

9

3 5 8

Fig. 6. The leftmost downward rule

1

2

3

4

5

1

2 3 4

5

1

2
3 4

5

Fig. 7. Interval graphs model

Fekete and Schepers [15,5] propose a new model for the feasibility problem.
They show that a pair of interval graphs can be associated with any packing
class (i.e. a set of packings with common properties). The interest of this con-
cept is that a large number of symmetries are removed as only one packing by
class is enumerated. A graph Gd = (V,Ed) is associated with each dimension,
where |V | = n is the number of items in the bin and d ∈ {w, h} the dimension
considered. In the two graphs each vertex vi is associated with an item ai. An
edge is added in the graph Gw (respectively Gh) between two vertices vi and
vj if the projections of items ai and aj on the horizontal (respectively vertical)
axis overlap (see Figure 7). The authors prove that the packing class related
to a pair of interval graphs Gw and Gh is feasible if and only if

(1) each stable set S of Gw is such that
∑
vi∈S wi ≤ W

(2) each stable set S of Gh is such that
∑
vi∈S hi ≤ H

(3) Eh ∩ Ew = ∅

The authors propose a branch&bound method to search for a pair of inter-

10

val graphs with the properties described above. This method avoids a large
number of redundancies compared to the classical method, and outperforms
all previous methods.

4.2 Improving on the classical branch&bound method: LMAO

We propose an improvement on the classical method in order to avoid a large
number of repetitions in the branch&bound method. At each node of the
search tree our method generates at most ni + 1 child nodes corresponding to
the packing of the ni items in a single position or not using this position.

We now describe this method in detail. We define the concept of active and
non-active positions. Initially all positions are active. The leftmost downward
active position (i.e. the position with the smallest y-coordinate among the
positions with the smallest x-coordinates) is denoted by c. At each node of
the search tree the algorithm tests the packing of each item at position c.
The possibility of not packing any item in c is also tested. In this case it is
not interesting to pack any item in c in a future step. So this position is said
inactive. We denote the exact method obtained by LMAO (Left-Most Active
Only).

When an item ai is packed at position c = (x, y) the area left to ai is removed
if there is such an area. Indeed the possibility of packing an item at this
position is enumerated in another part of the search tree. Practically speaking,
a dummy item is created and packed to the left of ai to ensure that no item
will be packed at this position and to increase the total area of the items. In
this case a new leftmost downward position is created at y-coordinate yi + hi.
This new coordinate is active. Note that when the dummy item is added, the
total area of the items (including the dummy items) can become larger than
the area of the bin.

Definition 6 A LMAO order is a sequence of choices related to a given so-
lution using algorithm LMAO. It is composed of choices of a given item ai to
pack in the current dominant position c: (ai, c) and choices not to pack any
item in the current leftmost-downward active position: c.

This method has the advantage of reducing the number of orders on the items
which lead to the same solution. In fact, this order is unique for a given
solution. For example the configuration of Figure 6 can only be reached with
the following order.

π = [(a1, (0, 0)), (a4, (0, 8)), (0, 9), (a2, (3, 0)), (3, 7), (a3, (5, 0))]

11

Proposition 7 For a given leftmost downward configuration P there is only
one LMAO order π which leads to P .

PROOF.

Let π1, π2 be two distinct LMAO orders and j be the first index for which
π1(j) 6= π2(j). As the two partial configurations are the same before step j,
two cases are possible:

(1) π1(j) = (ai, c) and π2(j) = (ak, c), k 6= i. In this case item ai cannot have
the same position in the two obtained configurations because ak uses this
coordinate when we follow LMAO order π2.

(2) π1(j) = c and π2(j) = (ak, c). In this case position c will not be inspected
any more following order π1 and thus item ak cannot be packed in position
c.

The configurations obtained in the two cases are not equivalent.

Theorem 8 LMAO is a valid method for 2OPP .

PROOF. We show that for any feasible configuration P enumerated by MV
there is a LMAO order which leads to P . As MV is valid, the theorem im-
mediately holds. Let P be a feasible configuration obtained by MV . We con-
struct a new MV order π1 from P by selecting iteratively the remaining item
which is packed in the leftmost-downward position available at the current step.
π1 = [(ai1, c1), (ai2, c2), . . . , (ain , cn)]. From π1 it is possible to obtain a LMAO
order π2 which leads to P . For each choice (aij , cj) in π1 made with MV , we
give an equivalent sequence of choices in the LMAO order. Two cases can
occur.

(1) cj is the current leftmost-downward position. The LMAO choice consists
in packing item aj in this corner, and a partial configuration is obtained,
which is equivalent to the configuration obtained with MV .

(2) cj is not the current leftmost downward position ck. It is an immediate
consequence of the construction of π1 that no item is packed in position
ck in P (otherwise, the current LMAO choice would be to pack this item
in ck). The LMAO choice consists in declaring ck inactive, and then re-
cursively declaring the current leftmost-downward active position inactive
while cj is not reached. The construction of π2 ensures that all skipped
positions are not used in P . So after several iterations, as the two current
configurations are the same, position cj is reached. Then the next LMAO
choice consists in packing aij in position cj.

12

1

i

ii

1
2

dummy item

i’

ii’

Fig. 8. LMAO

Figure 8 illustrates the two main principles of LMAO. The situation on the left
occurs if no item is packed in the leftmost-downward position i. The position
ii becomes the leftmost downward active position. The right situation occurs
if item 2 is packed at position ii. A dummy item is inserted in the area to
the left of item 2. A new active position i′ is created. Note that LMAO and
MV enumerate an identical set of packings. The only difference is that many
redundancies do not occur with LMAO and thus do not have to be handled
by any expensive methods. When a position c becomes inactive, we add a
dummy item of height 1 in c. As the size of the items are integers, when an
item overlaps with the corresponding area the minimum overlapped area has
height 1.

4.3 two-step-algorithm: TSBP

Our goal is to aggregate in a first step a large number of packings in order
to determine that a whole set of packings are not feasible. For this purpose
we propose a two-step method composed of two branch&bound methods. The
outer branch&bound method only determines the x-coordinates of the items.
We relax the constraint related to the height of the items (i.e. several horizon-
tal strips of an item are allowed not to be contiguous). For each solution found
in the first step an inner branch&bound method is launched. This method de-
termines the y-position of the items according to the x-coordinates chosen in
the first step. Each configuration in the outer branch&bound method is re-
lated to a set of packings. Thus when a pruning is performed in the outer tree,
a large number of non-feasible packings are not enumerated. We denote the
whole method by TSBP (Two-Step Branching Procedure). Other papers deal
with mathematical models for the two-dimensional knapsack problem using
horizontal or vertical strips [22–24], but none of them add the constraint that
all strips of a same item have to be packed at the same x-coordinate. We now
describe the two steps of the algorithm.

The outer branch&bound method determines the x-coordinates of the items.
During this step, the constraints related to the height of the items are not

13

1

2

3

3

0 1 2 3 4 5 6 7 8
0

1

2

3

4

Fig. 9. Outer branch&bound method

taken into account. Several horizontal strips of the same item can be packed
in non-contiguous y-positions. We keep several constraints: the total height of
the items packed at a given x-coordinate has to be less than the height of the
bin H. Moreover the horizontal strips of the same item have to be packed at
the same x-coordinate (see Figure 9).

For each x-coordinate x < W , we denote the height of the horizontal strips
at this position by K(x) . These strips ai are those packed at position x but
also those packed at position xi < x, xi +wi > x. Before the first step no item
is packed in the bin. K(x) = 0,∀x. When an item ai is packed at position
x = 0, the value K(x) is updated for x = 0, . . . , wi − 1 (K(x)← K(x) + hi).
At a given step of the branch&bound method, the algorithm enumerates all
sets of items Aj which can be packed at the current x-coordinate x. The
value x is the smallest value for which K(x) < H. The set Aj has to obey
this rule:

∑
ai∈Aj hi ≤ H − K(x). By construction, the values K(x) are non-

increasing so the constraint is satisfied for all x-coordinates greater than x.
If for a given x-coordinate x, we have K(x) < H after having selected Aj,
a dummy item of size (1, H − K(x)) is created so that K(x) = H. This
dummy item increases the total area of the items and may increase the value
of lower bound. Practically speaking, by no means all values of K(x) are
interesting. The only x-coordinates tested are those related to the end of an
item ai (x = xi + wi). When a dummy item is added its size is the difference
between the current x-coordinate and the first x-coordinate where the set of
items is different.

In Figure 9 the current x-coordinate is x = 6. The first hashed surface is a
dummy item which has been added to make up the height between position
0 and position 3. Such an item is not necessary between positions 3 and 4
because the set of items occupies the entire height. It is an arbitrary figure:
item 1 is neither above nor below item 2. A feasible packing can be obtained
by choosing y-position 3 for item 2.

If at a given step of the algorithm an item goes beyond the right-hand side of

14

the bin, or if the total area of the items including the dummy items is larger
than the total area of the bin, the enumeration is stopped. At each leaf of
the search tree, each item has a fixed x-coordinate. The list of x-coordinates
obtained is related to a set of packings, feasible or not. A method has to be
run to determine if there is a feasible packing under the constraints added
during the first step.

Lemma 9 The outer branch&bound method enumerates all feasible configu-
rations of the relaxed problem.

PROOF. A feasible configuration of the relaxed problem is related to a list
of items packed for each x-coordinate. At each step of the algorithm, all possi-
bilities are tested for the set Aj to pack at the current x-coordinate x. So each
feasible configuration is enumerated by the algorithm.

Theorem 10 If the method used for the inner method is valid, TSBP is valid.

PROOF. The validity of the method holds on the fact that all feasible con-
figurations of the relaxed problem are enumerated. Suppose a given solution s
is found using only the inner method. If s is feasible for the bin-packing prob-
lem the x-coordinates of the items in s are feasible for the relaxed problem. So
because of Lemma 9 it is enumerated by the outer tree and the inner method
is launched.

For the inner branch&bound method we use the LMAO method. It is modified
in the following way: an item ai is candidate to be packed at position (xj, yj)
if its x-coordinate has been fixed to xj in the outer tree.

5 Redundancies in the outer tree

The two-step method avoids a large number of redundancies, but methods can
be applied to reduce their number further. For the classical branch&bound
method MV , Scheithauer [14] lists several classes of redundancies and pro-
poses methods to avoid some of these repetitions. For the outer branch&bound
method in TSBP , detecting the redundancies is more difficult. We have to
propose dominance relations and ensure that a non-feasible configuration can-
not dominate a feasible configuration. We now show that two redundancies can
be avoided during the tree search: a block equivalence and a pseudo-symmetry.
For both cases we propose a class of non-dominated configurations which are
actually enumerated during the branch&bound method.

15

1

2

3

3

4

5

1

2

3

3

4

5

Fig. 10. Block equivalence

5.1 Block equivalence

We consider cases where a configuration is composed of two independent
blocks.

Definition 11 A configuration is said to be composed of two independent
blocks if there exist two sets A1 and A2, A = A1 ∪ A2, such that no piece
of an item of A1 is on the same x-coordinate as an item of A2:

∃A1, A2 such that A1∪A2 = A,∀ai ∈ A1,∀aj ∈ A2, xi+wi ≤ xj or xj+wj ≤ xi

Figure 10 illustrates the equivalence between two configurations composed of
the same blocks. In this case, the two blocks are independent and thus invert-
ing the positions of blocks A1 and A2 leads to an equivalent set of packings.
We enumerate only one of the two configurations. For this purpose we select
before the enumeration an item a∗ which does not change during the enumer-
ation. If item a∗ is in the left-hand block, the enumeration goes on, otherwise,
the branch is cut. This proposition can be generalized if the configuration is
composed of more than two blocks. In this case another method has to be
used to avoid exploring redundant solutions.

In order to choose one configuration among the two equivalent configurations,
we introduce a dominance rule based on lexicographic labels lbl.

Definition 12 Let ai and aj be two items. lbl(ai) � lbl(aj) if and only if one
of the following cases holds.

(1) hi > hj
(2) hi = hj and wi > wj

Definition 13 Let P1 and P2 be two blocks respectively composed of the sets
A1 and A2. Let aij be the ith element of Aj. Without loss of generality we

16

suppose that the aij are sorted by decreasing labels. lbl(A1) � lbl(A2) if and
only if

(1) ai1 = ai2 for i = 1, . . . , |A2| and |A1| > |A2|
(2) there exists i such that lbl(ai1) � lbl(ai2) and no k < i such that lbl(ak2) �

lbl(ak1).

Note that due to the definition lbl(Aj) � lbl(∅) for all Aj.

Proposition 14 Let (A,B) be a 2OPP instance and P a configuration com-
posed of two or more independent blocks P1, P2, . . . , Pk. If P is feasible then
there is an equivalent feasible configuration P ′ composed of the same indepen-
dent blocks sorted in decreasing order of lbl(Pj).

PROOF. Immediate.

If two consecutive blocks are not sorted by decreasing values of lbl, the enu-
meration stops. A simple method to ensure that the blocks can be sorted by
decreasing values of Pj after the construction of a given block P1 is to check
that there is no unpacked item ai such that lbl(ai) � lbl(ak) for all items ak of
P1. For the left-hand configuration of Figure 10, as soon as the x-coordinates
of 1, 2 and 3 are selected, the enumeration stops. Indeed as 4 is the tallest
item, subsequent blocks cannot be sorted by decreasing values of lbl(Pj).

5.2 Pseudo-symmetry

In the classical method, if two configurations are symmetrical with respect
to the y-axis only one has to be enumerated. If this configuration does not
respect the leftmost-downward rule, it is not enumerated either.

In the outer branch&bound method, there is no real axial symmetry, as the
y-coordinates are not fixed. One way of avoiding exploring symmetrical con-
figurations is to select two items a∗1 and a∗2 before the enumeration, and then
we enumerate only solutions where x∗1 ≤ x∗2. If a∗2 is packed before a∗1, a cut
is made. As we are dealing with pseudo-symmetry instead of real symmetry,
a problem can occur. Suppose two feasible pseudo-symmetrical configurations
are such that x∗1 > x∗2. This can happen because a translation is applied after
the symmetry. In this case, no configuration is enumerated. So, we have to ver-
ify that such a case cannot occur. We only apply the method if h∗1 + h∗2 > H.
Indeed if the items are translated, their respective positions cannot be modi-
fied without overlapping.

17

1

2
3

4

4

1

2
3

4

4

Fig. 11. Pseudo-symmetry

Proposition 15 Let (A,B) be a 2OPP instance and a∗1, a
∗
2 two items of A,

h∗1 + h∗2 > H . If there is a non-dominated feasible packing for A in B, there
is a non-dominated feasible packing for A in B such that x∗1 ≤ x∗2.

PROOF. Suppose there is a feasible packing P for A in B. If x∗1 ≤ x∗2,
the proposition is true. If x∗1 > x∗2, a (possibly dominated) packing P ′ can
be obtained by applying an axial symmetry to this configuration. In this con-
figuration, x∗1 < x∗2. The corresponding non-dominated configuration P ′′ can
be obtained by translating items to the left or downward. As h∗1 + h∗2 > H,
the translation cannot change the relative position of a∗1 and a∗2. So P ′′ is a
non-dominated packing such that x∗1 ≤ x∗2.

Note that if a∗1 and a∗2 are not chosen such that lbl(a∗2) � lbl(a∗1), this method
can be used with the method which considers the block redundancies. More-
over the pseudo-symmetry can also occur inside a block. In this case a slightly
different procedure can be applied. The reference items ai and ak are the
two lexicographically highest items of the block. The configuration retained is
when xi ≤ xj.

6 Computational experiments

We generated our own benchmarks in order to obtain instances which are
difficult to solve (i.e. where the lower and upper bounds are not equal). The
first results obtained on randomly generated instances show that TSBP dra-
matically reduces the computing time in many cases compared to LMAO
and MV . It solves instances which cannot be handled by the other methods.
Then we studied the efficiency of TSBP for a large number of benchmarks
generated according to two parameters: the number of items and the total
area of the items. We also tested the reduction procedures, the method to

18

avoid redundancies and our lower bounds within the enumeration. The reduc-
tion procedures and the method to avoid redundancies reduce the computing
time, but it is not always interesting to use the lower bounds within the enu-
meration process. Finally we tested the optimized method against the method
of Fekete and Schepers [5]. TSBP solves instances which are not handled by
the graph theoretical method.

All programs are implemented in C on a PC (Pentium IV 2,6 GHz). The
results of Fekete and Schepers [5] have been computed by the authors with
a PC (Pentium IV 3 Ghz). The limit of time given for one instance is 15
minutes. If the method tested is not able to find the solution within this time,
we consider it cannot solve the problem. In each table, two results are reported:
the number of nodes enumerated and the time needed to solve the problem.
All computing times are reported in seconds. For each instance, we report its
feasibility (F , N for feasible, and non-feasible). Symbol − means that the
method is not able to solve the instance within 15 minutes.

6.1 Results for the enumerative methods

The discrepancy between the area of the bin and the total area of the items
is an important parameter for the difficulty of an instance. We denote this
parameter by ε,

∑
ai∈Awihi = (1 − ε)WH. If they are equal, a non-feasible

configuration may be detected easily with the lower bounds. On the other
hand, if the discrepancy is too large, a solution may also be easily obtained.
In order to compare the efficiency of our methods with the classical method,
we generated a set of difficult 2OPP instances with bin of size (20, 20). The
difficulty of an instance is determined by parameter ε and the number of items
n. In the next section, we analyze the influence of ε on the difficulty of the
benchmarks. As our bounds detect a large number of non-feasible configura-
tions, we only report results for instances which are not closed by the lower
bounds.

The purpose of Table 1 is to show that our branching scheme is dramatically
more efficient than the scheme of Martello and Vigo. For each instance, the
results are reported for three methods: the classical method MV , the new
branch&bound method LMAO and the two-step method TSBP (Table 1).
The reduction procedures are launched at the root node. No lower bounds or
methods to avoid redundancies are used, even at the root node, so the results
only depend on the branching scheme.

TSBP is dramatically more efficient for the non-feasible instances. Practically
speaking the inner branch&bound method is rarely launched. For two easy
feasible instances LMAO is more efficient than TSBP (for these instances, a

19

Instance Nodes CPU Time

ε n feas. MV LMAO TSBP MV LMAO TSBP

00 10 N 498940 914 386 6 0 0

00 15 N 44108432 6972444 45016 - 87 0

00 23 N 56882064 67408024 40569046 - - 254

00 23 N 42608212 68155560 154997737 - - -

02 17 F 52758236 71765888 1706527 - - 8

02 20 F 43113104 58100032 70690 - - 0

02 22 F 1736591 58108864 108 28 - 0

02 20 N 53653556 73548088 171891273 - - -

03 10 N 4389743 198654 17122 55 2 0

03 15 N 54482588 79027208 22580963 - - 90

03 16 N 46469712 68238856 24091255 - - 106

03 17 N 41706968 73210184 147246675 - - 720

03 18 N 43368960 5001083 2621993 - 67 12

04 15 F 48638400 66949008 4249 - - 0

04 17 F 65952336 29908064 15937 - 377 0

04 19 F 57670816 5423174 25300 - 58 0

04 20 F 58401756 33 195 - 0 0

04 15 N 54766908 71919648 3340753 - - 12

04 17 N 62933956 77090992 80888040 - - 379

04 18 N 61351128 71299008 76571868 - - 364

05 15 F 68788024 49042968 82098 - 523 0

05 18 F 59957500 73878872 4249532 - - 29

05 20 F 23184128 68833 24836 254 1 0

05 15 N 63948032 84383344 13465274 - - 50

05 17 N 51738224 78107640 44862814 - - 209

05 15 N 63457040 80207048 211846864 - - -

07 15 F 65526928 20388888 822 - 219 0

07 10 N 5377856 424144 83795 63 3 0

07 15 N 57912524 83727840 12420952 - - 53

07 15 N 60273792 79483544 221997738 - - -

08 15 F 67319104 21165528 50689 - 218 0

08 15 N 60148728 91504040 38186062 - - 148

10 10 N 16777620 741677 27644 200 6 0

10 15 N 68136960 92775504 29091982 - - 104

10 15 N 54992568 77875552 259205325 - - -

13 10 N 37400760 2606968 164016 411 22 0

13 15 N 87402296 4595959 451458 - 35 1

13 15 N 44129192 86488752 259296268 - - -

15 10 N 84001872 7191894 110200 - 59 0

15 15 N 70194208 88272600 6287316 - - 22

20 15 F 41817 263837 81 1 3 0

20 15 F 50799084 72909992 7781 - - 0

Table 1
Comparison between the three enumerative methods

20

solution is found in one of the first branches of the tree). It can be explained by
the fact that the two-step method has to use two small branch&bound methods
instead of only one in the first method. For the feasible instances for which
the solution is harder to find, TSBP is more efficient. The results confirm
that the classical method MV , to be efficient, has to include many methods
to reduce the number of redundancies which occur (see Scheithauer [14], for
example). A large number of these redundancies are handled by LMAO and
TSBP .

6.2 Tuning TSBP

As we only consider x-coordinates in the first step of TSBP , the number of
nodes enumerated can be different if the role of the x-coordinates and the
y-coordinates are exchanged. It corresponds to a rotation of the problem of
angle π

2
. The instance obtained is feasible if and only if the original instance

is feasible. The problem is to determine which orientation minimizes the com-
puting time needed. The method we use is the following: for each orientation,
we compute the number of nodes generated for the first level. This number
is equal to the number of possible sets Aj to pack at the first x-coordinate.
This is not an optimal decision rule, but in most of the cases it allows us to
find the best orientation for the problem. So for MV and LMAO we solve the
problem for the original instance, whereas for TSBP we consider in several
cases the instance obtained after rotation. The computing time of the decision
procedure is included in the computing time of TSBP .

Our method may not perform well when there is a small non feasible subset
of items, we apply the following method: we first solve the instance related to
the two largest items, and then recursively add smaller items one by one while
the obtained instance is feasible. In several cases, small subsets are sufficient
for the instance not to be feasible. The drawback of this method is to increase
the computing time for feasible instances.

6.3 Benchmarks: computational analysis

For our tests we generated benchmarks according to parameter ε. The method
we used to generate benchmarks has similarities with the method of Hopper
and Turton [16]. The idea is to obtain both feasible and non-feasible problem
instances. The first step of the algorithm consists in randomly generating a
set of values whose sum is equal to (1− ε)WH. These values are the areas of
the items in the created instance. Then the values are factorized to get the
width and the height of the items.

21

0
10
20
30
40
50

0%
0

1%

7.08

2%

38.64

3%

16.04

4%

25.42

5%

43.70

7.5%

4.66

10%
0.62
12.5% ε

CPU Time

Fig. 12. Difficulty of the feasible benchmarks for n = 15

Table 2, Figure 12 and Figure 13 illustrate the fact that the value of ε affects
the difficulty and even the solvability of the instances. For ε = 0% no feasible
instances were generated, and for ε = 50% and ε = 75% no non-feasible
instances were generated. These cases are shown in Table 2 as n.s.i (no such
instances). For each benchmark, the bin is of size (20, 20) (area: 400) and the
number of items n is equal to 15. For each value of ε we report the number
of nodes visited on average to determine the exact solution of the 50 first
instances generated. The method used is TSBP applied after the reduction
procedures and the lower bounds. The method to avoid redundancies is not
used within TSBP .

Non-Feasible Feasible Feasibility

ε nodes CPU time nodes CPU time N F X

0 20102.34 0.22 n.s.i. n.s.i 50 0 0

1% 448220.88 8.29 14104.00 0.00 49 1 0

2% 1782186.38 37.08 378055.94 7.08 37 13 0

3% 3310969.25 69.79 1929031.00 38.64 28 22 0

4% 7156912.00 147.28 865186.56 16.04 25 24 1

5% 4581232.00 96.27 1352387.50 25.42 11 38 1

7,5% 2192336.50 38.33 2566824.25 43.70 9 37 4

10% 0.00 0.00 503232.06 4.66 7 41 2

12,5% 0.00 0.00 62060.40 0.62 3 45 2

25% 0.00 0.00 216222.69 1.51 3 47 0

50% n.s.i n.s.i. 218606.52 1.41 0 49 1

75% n.s.i n.s.i. 580315.25 3.60 0 50 0

Table 2
Difficulty of the benchmarks for n = 15 and different values of ε

The more difficult instances in average are generated with ε = 3% or ε = 5%
for non-feasible configurations. For the feasible configurations, the results are
less clear, but the more difficult instances are related to values of ε between
3% and 7.5%. When ε = 0 the bounds work very well, as few branch&bound
methods are actually launched. It also appears that although the average CPU

22

0

25

50

75

100

125

150

0
0%

8.29

1%

37.08

2%

67.79

3%

147.28

4%

96.27

5%

38.33

7.5%
0

10%
0

12.5% ε

CPU Time

Fig. 13. Difficulty of the non-feasible benchmarks for n = 15

time used is smaller for values near 10%, the number of unsolved instances is
larger. For large values of ε the problem becomes easy.

6.4 Reduction Procedures and methods for pruning the search tree

We have added several procedures to reduce the computing time of the method:
the reduction procedures described in Section 2 (rp), the methods to handle
redundancies (rh) and our lower bounds (lb). Together with the methods to
handle redundancies, we check that each remaining item can be packed in the
current available areas. We sum up the results in Table 3.

The reduction procedures are run on the initial instance as a preprocessing,
and included in the lower bounds. When an instance is modified by a (D)DFF,
the reduction procedures are run on the residual instance. The computing time
is reduced by a wide range for many test cases. The procedures which handle
redundancies in the tree search decrease the number of explored nodes for a
small algorithmic cost, so they also reduce the computing time for most of the
instances. The reduction depends on the instance: it can be considerable in
some cases, and marginal for others. The lower bounds are useful to reduce the
number of nodes in the tree search, but their computing time is large. So they
may increase the overall computing time of the method. However in several
cases the time needed for the method to find a solution is reduced when the
lower bounds are used, so they can be useful.

6.5 Comparison with the method of Fekete and Schepers [5]

In Table 4, we compare our results to the method of Fekete and Schepers [5].
These results were sent by J. Van der Ween and S. Fekete. They were obtained
by the authors using a Pentium IV 3 Ghz. The two methods are complemen-

23

Instance Nodes CPU Time

ε n feas. init rp rp+rh rp+rh+lb init rp rp+rh rp+rh+lb

00 10 N 1 1 1 1 0 0 0 0

00 15 N 273008 181697 110943 96920 0 1 1 2

00 23 N - 39240877 9342562 5968406 - 258 66 86

00 23 N - - 13383832 9057985 - - 118 289

02 17 F 2969891 1814574 1171696 784796 23 9 6 12

02 20 F 608735 609161 487753 487230 10 14 12 12

02 22 F 175426 175426 175380 174943 1 4 4 4

02 20 N 1106 1 1 1 0 1 1 1

03 10 N 3100 3100 1222 417 0 0 0 0

03 15 N 5119 5119 4169 3707 0 1 1 1

03 16 N 4251766 4251766 1771831 1592400 15 17 9 32

03 17 N 242635 508053 343290 313007 0 3 2 4

03 18 F 3467378 3418946 2719210 2605815 16 18 17 22

04 15 F 8178 9053 6698 3949 0 1 1 1

04 17 F 2328156 2328156 2103026 1942682 24 27 25 26

04 19 F 2114390 2114390 1465752 1075159 8 11 8 7

04 20 F 6673 6673 6163 5876 0 3 3 3

04 15 N 63207 63207 43256 42844 0 1 1 1

04 17 N 13889 1 1 1 0 1 1 1

04 18 N - 7315303 1689391 434824 - 36 11 7

05 15 F 503436 503436 382690 334434 2 3 2 3

05 18 F 62890632 62804148 40122815 20245458 300 293 220 126

05 20 F 39429 39429 39429 39387 0 2 2 2

05 15 N 61379 1 1 1 0 0 0 0

05 17 N 5393 2158 1429 993 0 1 1 1

05 15 N 158 1 1 1 0 0 0 0

07 15 F 232534 232464 129878 90219 0 1 1 1

07 10 N 5363 5206 1903 1758 0 0 0 0

07 15 N 1 1 1 1 0 0 0 0

07 15 N 1180 1180 677 651 0 1 1 1

08 15 F 32853635 32901221 27666296 22658934 130 128 130 117

08 15 N 303 414 267 261 0 1 1 1

10 10 N 153 1 1 1 0 0 0 0

10 15 N 1085 1 1 1 0 0 0 0

10 15 N 33545 33545 17618 17603 0 1 1 1

13 10 N 3846 3846 1889 1468 0 0 0 0

13 15 N 4233 93 91 91 0 0 0 0

13 15 N 262 1 1 1 0 0 0 0

15 10 N 621 621 331 331 0 0 0 0

15 15 N 4293 3396 1117 1117 0 0 0 0

20 15 F 867 747 747 747 0 1 1 1

20 15 F 4607934 4355764 4355764 4355492 34 34 36 44

Table 3
Reducing the search tree

24

tary, as they perform differently depending on the instance. It appears that
the graph theoretical method fails to find a solution in the 15 minutes allowed
for three instances. No results were found after one hour for ε = 0 and n = 23,
and 1200 secondes were needed to find a solution for ε = 2, n = 20. However
the method of Fekete and Schepers remains of great interest, as it outperforms
our method for several instances (see ε = 7, n = 15 and ε = 13, n = 15, for
example). The computing time of each node of the tree search is large, but the
size of the tree is smaller in many cases. It seems that the graph theoretical
method performs well compared to TSBP when a small subset of items is
sufficient for the instance to be non feasible. This can be explained by the fact
that the graph-theoretical branching scheme consider pairs of items and may
concentrate the search on the more constrained items, whereas our method
has to deal with all items, even the smaller. In the cases where all items are
needed (the two instances with n = 23, for example), our branching scheme
is competitive.

7 Conclusion

We propose new reduction procedures and a new exact method in two phases
to pack a set of rectangles in a rectangular bin. Practically speaking, using the
outer branch&bound method decreases the number of nodes visited by a wide
range compared to the method of Martello and Vigo. We also propose meth-
ods to handle a part of the redundancies which occur in the branch&bound
method. The lower bounds we propose may increase the computing time of the
method for some instances, but may also be useful. Work should be done to re-
duce their computing time. Our method is complementary with the method of
Fekete and Schepers, as it returns better results for several instances. It seems
that the graph theoretical model is not the only one to lead to interesting
results and other ways can still be explored to improve results for 2OPP .

Acknowledgements

We would like to thank Prof. Fekete and Jan Van der Ween who run their
2OPP program on our benchmarks and sent us the results.

References

[1] M. R. Garey, D. S. Johnson, Computers and intractability, a guide to the theory
of NP-completeness, Freeman, New York, 1979.

25

Instance Nodes CPU Time

ε n feas. Graph TSBP Graph TSBP

00 10 N 1 1 0 0

00 15 N 127 96920 0 2

00 23 N - 5968406 - 86

00 23 N - 9057985 - 289

02 17 F 28631 784796 7 12

02 20 F - 487230 - 12

02 22 F 190617 174943 167 4

02 20 N 1 1 0 1

03 10 N 1 417 0 0

03 15 N 13 3707 0 1

03 16 N 9891 1592400 2 32

03 17 N 431 313007 0 4

03 18 F 574 2605815 0 22

04 15 F 933 3949 0 1

04 17 F 20270 1942682 13 26

04 19 F 786057 1075159 560 7

04 20 F 22796 5876 22 3

04 15 N 35 42844 0 1

04 17 N 1 1 0 1

04 18 N 24593 434824 10 7

05 15 F 1410 334434 0 3

05 18 F 262 20245458 0 126

05 20 F 547708 39387 491 2

05 15 N 1 1 0 0

05 17 N 1 993 0 1

05 15 N 18369 1 2 0

07 15 F 92 90219 0 1

07 10 N 17 1758 0 0

07 15 N 1 1 0 0

07 15 N 61 651 0 1

08 15 F 433 22658934 0 117

08 15 N 1 261 0 1

10 10 N 5 1 0 0

10 15 N 77 1 0 0

10 15 N 7 17603 0 1

13 10 N 17 1468 0 0

13 15 N 1 91 0 0

13 15 N 1 1 0 0

15 10 N 25 331 0 0

15 15 N 1 1117 0 0

20 15 F 325 747 0 1

20 15 F 36 4355492 0 44

Table 4
Comparison with the method of Fekete and Schepers

26

[2] S. Martello, D. Vigo, Exact solution of the two-dimensional finite bin packing
problem, Management Sci. 44 (1998) 388–399.

[3] M. Boschetti, A. Mingozzi, The two-dimensional finite bin packing problem.
part I: New lower bounds for the oriented case, 4OR 1 (2003) 27–42.

[4] M. Boschetti, A. Mingozzi, The two-dimensional finite bin packing problem.
part II: New lower and upper bounds, 4OR 1 (2003) 135–147.

[5] S. Fekete, J. Schepers, An exact algorithm for higher-dimensional orthogonal
packing., Revised for Operations Research.

[6] J. Carlier, F. Clautiaux, A. Moukrim, The two-dimensional bin-packing
problem. New reduction procedures and lower bounds, Submitted.

[7] S. Fekete, J. Schepers, New classes of fast lower bounds for bin packing
problems, Mathematical Programming 91 (2001) 11–31.

[8] A. Caprara, M. Locatelli, M. Monaci, Bilinear packing by bilinear programming,
in: IPCO XI, 2005.

[9] J. O. Berkey, P. Y. Wang, Two-dimensional finite bin-packing algorithms,
Journal of Operational Research Society 38 (1987) 423–429.

[10] A. Lodi, S. Martello, D. Vigo, Heuristic and metaheuristic approaches for a class
of two-dimensional bin packing problems, INFORMS J. Comput. 11 (1999) 345–
357.

[11] A. Lodi, S. Martello, M. Monaci, Two-dimensional packing problems: a survey,
European Journal of Operational Research 141 (2002) 241–252.

[12] A. Lodi, S. Martello, D. Vigo, Recent advances on two-dimensional bin packing
problems, Discrete and Applied Mathematics 123 (2002) 379–396.

[13] E. Hadjiconstantinou, N. Christofides, An exact algorithm for general,
orthogonal, two-dimensional knapsack problem, European Journal of
Operational Research 83 (1995) 39–56.

[14] G. Scheithauer, Equivalence and dominance for problems of optimal packing of
rectangles, Ricerca Operativa 83 (1998) 3–34.

[15] S. P. Fekete, J. Schepers, A combinatorial characterization of higher-
dimensional orthogonal packing, Mathematics of Operations Research 29 (2004)
353–368.

[16] E. Hopper, B. C. H. Turton, Problem generators for rectangular packing
problems, Stud. Inform. Univ. 2 (1) (2002) 123–136.

[17] S. Martello, M. Monaci, D. Vigo, An exact approach to the strip-packing
problem, INFORMS Journal on Computing 15 (2003) 310–319.

[18] S. Fekete, J. Schepers, A general framework for bounds for higher-dimensional
orthogonal packing problems, Mathematical Methods of Operations Research
60 (2004) 311–329.

27

[19] D. S. Johnson, Near optimal bin packing algorithms, dissertation,
Massachussetts Institute of Technology, Cambridge, Massachussetts (1973).

[20] G. S. Lueker, Bin packing with items uniformly distributed over intervals [a,b],
in: Proc. of the 24th Annual Symposium on Foundations of Computer Science
(FOCS 83), IEEE Computer Society, 1983, pp. 289–297.

[21] N. Christofides, C. Whitlock, An algorithm for two-dimensional cutting
problems, Operations Research 25 (1977) 30–44.

[22] G. Scheithauer, LP-based bounds for the container and multi-container loading
problem, International Transactions in Operational Research 6 (1999) 199–213.

[23] A. Amaral, A. N. Letchford, An improved upper bound for the two-dimensional
non-guillotine cutting problem, submitted to publication.

[24] M. Boschetti, E. Hadjiconstantinou, A. Mingozzi, New upper bounds for the
two-dimensional orthogonal non guillotine cutting stock problem, IMA Journal
of Management Mathematics 13 (2002) 95–119.

28

