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Applications algorithmiques des opérateurs de Hecke des groupes finis
pour les représentations galoisiennes

Résumé : Soit G un groupe fini, H,J des sous groupes de G, R un anneau
commutatif, et V un R[G]-module. À chaque élément de R[H\G/J ], le R-module
libre sur l’ensemble des doubles classes, on peut associer de manière canonique
un morphisme de R-modules qui va de V J dans V H , les ensembles des points
fixes de V sous les actions de J et de H respectivement. Les morphismes associés
de cette manière aux classes HgJ avec g ∈ G sont appelés opérateurs de Hecke.
Dans cette thèse, nous étudions les propriétés de ces opérateurs de Hecke, et en
particulier dans le cas où R = Z et où le module V est le groupe des inversibles
d’un corps de nombres K̃ galoisien sur Q, de groupe de Galois G. L’action d’un
opérateur de Hecke associé à une classe HgJ va alors de (K̃J)× vers (K̃H)×. Nous
développons deux applications principales algorithmiques de ces propriétés. Tout
d’abord, un algorithme permettant de calculer de manière inductive le groupe des
classes d’un corps de nombres de la forme K̃H , en se ramenant au calcul sur des
corps de plus petits degrés, de la forme K̃Ji , à condition que les groupes G,H
et les Ji satisfassent un certain type de relations, que nous appelons “relations
de normes généralisées”, et dont nous étudions également les propriétés. Ensuite,
étant donné un module galoisien fini M , nous décrivons un algorithme permettant
de trouver une résolution de M où les morphismes s’expriment sous la forme de
sommes d’opérateurs de Hecke. Puis à partir d’une telle résolution, nous concevons
un algorithme permettant de calculer les groupes de Selmer du module M .

Mots-clés : Opérateurs de Hecke, Représentations galoisiennes, Cohomologie
galoisienne, Foncteurs de Mackey, Algorithmes, Groupes des classes, Groupes de
Selmer, Conjecture de Leopoldt



Algorithmic applications of Hecke operators of finite groups for Galois
representations

Abstract: Let G be a finite group, H,J two subgroups of G, R a commutative
ring, and V a R[G]-module. To each element of R[H\G/J ], the free R-module on
the set of double cosets, we can canonically associate a morphism of R-modules
from V J to V H , the sets of fixed points of V under the actions of J and H respec-
tively. The morphism associated with the double cosets HgJ with g ∈ G are called
Hecke operators. In this thesis, we study the properties of Hecke operators, and in
particular the case where R = Z and where the module V is the group of invertible
elements of a number field K̃, Galois over Q, and of Galois group G. Then the
action of a Hecke operator associated with a double coset HgJ goes from (K̃J)× to
(K̃H)×. We develop two main algorithmic applications of these properties. First,
an algorithm that can compute inductively the class group of a number field of the
form K̃H , by reducing the problem to the same computation for smaller fields, of
the form K̃Ji , on the condition that the groups G,H and the Ji satisfy a certain
type of relations, that we will call “generalised norm relations”, and that we will
study. Then, given a finite Galois module M , we will describe an algorithm that
can find a resolution of M where the morphisms can be written as sums of Hecke
operators. And with such a resolution, we will describe an algorithm to obtain the
Selmer groups of the module M .

Keywords: Hecke operators, Galois representations, Galois cohomology, Mackey
functors, Algorithms, Class groups, Selmer groups, Leopoldt conjecture
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thèse, pour m’avoir proposé ce beau sujet, ainsi que pour la disponibilité,
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Résumé étendu en français

Dans cette thèse, nous étudions les propriétés des opérateurs de Hecke, et
nous les utilisons pour obtenir des relations entre certains modules galoisiens.
Puis, grâce à ces relations, nous concevons des algorithmes pour calculer des
objets arithmétiques tels que des groupes de classes de corps de nombres ou
bien des groupes de Selmer de modules galoisiens finis.

Corps de nombres et groupes des classes

Un corps de nombre est une extension de corps de degré fini de Q, le corps
des rationnels. Si K est un corps de nombre, on notera ZK son anneau des
entiers, c’est à dire l’anneau de tous les éléments de K qui sont racines d’un
polynôme unitaire à coefficients entiers.

Un idéal fractionnaire I de l’anneau des entiers ZK est un sous ZK-module
de K tel que il existe α un élément non nul de ZK qui vérifie αI ⊂ ZK .

On dit que deux idéaux fractionnaires J et J ′ de ZK sont equivalents, et
on note J ∼ J ′, si il existe x ∈ K non nul tel que J ′ = xJ . C’est une relation
d’équivalence. On note Cl(K) le groupe des classes d’équivalence pour cette
relation. C’est le groupe des classes d’idéaux de K. Par le théorème du
nombre de classes (voir [25]), le groupe des classes d’un corps de nombres K
est toujours fini. Son cardinal est apellé le nombre de classes de K.

L’étude des groupes des classes de corps de nombres est centrale en théorie
des nombres. Ce groupe mesure le “défaut de principalité” de l’anneau ZK ,
dans le sens où ZK est un anneau principal si et seulement si le groupe Cl(K)
est trivial. Ce groupe joue un rôle important par exemple dans la résolution
de certains problèmes Diophantiens.

Dans [13], Buchmann donne un algorithme qui prend en entrée un corps
de nombres K et son anneau des entiers ZK , et donne en sortie la structure
du groupe des classes Cl(K) ainsi qu’une base du groupe des unités Z×

K .
La preuve de la correction de cet algorithme suppose l’hypothèse de Rie-

mann généralisée (GRH). Voir [17] pour plus de détails sur cette conjecture,
qui est l’une des plus importantes de la théorie des nombres moderne.

La complexité en temps de l’algorithme de Buchmann augmente rapide-
ment avec le degré n du corps de nombres K: en notant ∆K le discriminant

de K (voir [37]), la complexité pour un n fixé est en O(ea
√

ln |∆K | ln ln |∆K |), où
a est une constante, et où la constante implicite du O dépend de n de manière
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exponentielle. Notons aussi que le discriminant crôıt au moins exponentielle-
ment avec n. C’est en raison de cette croissance rapide de la complexité qu’il
est avantageux de trouver des méthodes inductives pour calculer le groupe
des classes d’un corps de nombres, en se ramenant au même problème sur
des corps auxiliaires de degrés plus petits.

Théorie de Galois et représentations galoisiennes

Théorème fondamental

Soit K/F une extension de corps algébrique finie. Notons AutF (K) le groupe
des automorphismes de corps de K dans K qui fixent F , c’est à dire que pour
tout σ ∈ AutF (K) et pour tout x ∈ F , on a σ(x) = x.

Si H est un sous groupe de AutF (K), alors on notera KH le corps fixé par
H, défini par KH = {x ∈ K|σ(x) = x for all σ ∈ H}. C’est un sous-corps
de K, contenant F (voir par exemple [32] pour toutes les preuves de cette
section).

Si KAutF (K) = F , alors on dit que K/F est une extension galoisienne,
et le groupe G = AutF (K) est appelé son groupe de Galois. De plus, on a
G = [K : F ]. Une extension K/F est galoisienne si et seulement si elle est
normale et séparable. C’est aussi équivalent à dire que K est le corps de
décomposition d’un polynôme séparable f ∈ F [X].

Soit K/F une extension galoisienne, de groupe de Galois G = AutK(K).
Le théorème fondamental de la théorie de Galois donne une bijection entre
l’ensemble L des sous-corps de K contenant F et l’ensemble H des sous
groupes de G. La bijection est donnée par les applications

Φ: L → H, L 7→ AutF (L)

Φ−1 : H → L, H 7→ LH .

De plus, si L est un corps intermédiaire F ⊂ L ⊂ K, et si H < G est tel que
L = KH , alors K est une extension galoisienne de L, de groupe de Galois H.
En outre, le corps L est une extension galoisienne de F si et seulement si H
est un sous groupe normal de G, et dans ce cas, le groupe de Galois de L/F
est isomorphe à G/H.

Les applications Φ et Φ−1 forment la correspondance de Galois. Notons
qu’elle renversent l’inclusion, dans le sens où, si L1, L2 sont deux sous corps
de K tels que F ⊂ L1 ⊂ L2 ⊂ K, et si H1, H2 sont les sous groupes de G tels
que L1 = KH1 et L2 = KH2 , alors on a H2 < H1, et vice versa.
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Représentations galoisiennes

Dans cette sous-section, nous allons définir les représentations linéaires d’un
groupe fini G, ainsi que les modules à gauches et l’algèbre de groupe R[G],
avec R un anneau. Puis nous verrons que les représentations linéaires de G
sur un corps F sont exactement les F [G]-modules. (Voir [45] ou [41]).

Soit V un espace vectoriel sur un corps F , et soit GL(V ) le groupe des iso-
morphismes de V dans lui même. Soit G un groupe fini. Une représentation
linéaire de G dans V est un morphisme ρ : G → GL(V ). Notons qu’une
représentation linéaire ρ de G dans V donne une action de groupe de G sur
V définie par g · x = ρ(g)(x), pour tout g ∈ G, x ∈ V . Donc V est un
G-module.

Soit R un anneau, un R-module à gauche M est un groupe abélien muni
d’une opération · : R×M →M telle que pour tout r, s ∈ R et m,n ∈M , on
a

• 1 ·m = m

• r · (m+ n) = r ·m+ r · n

• (r + s) ·m = r ·m+ s ·m

• (rs) ·m = r · (s ·m).

De plus, si M,N sont deux R-modules, alors une application f : M → N
est appelé morphisme de R-modules si pout tous x, y ∈ R et pour tout r ∈ R,
on a

• f(x+ y) = f(x) + f(y),

• f(r · x) = r · f(x).

Si R est un anneau commutatif, alors on peut définir l’algèbre de groupe
de G sur R, l’ensemble des sommes formelles d’éléments de G, à coefficients
dans R:

R[G] = {
∑
g∈G

agg|ag ∈ R}.

C’est une R-algèbre, avec la multiplication qui étend celle de G.
Soit V un R-module et soit ρ : G→ GL(V ) une représentation linéaire de

G dans V . Si on étend par linéarité l’action de groupe G× V → V associée
à ρ, on voit que V est doté d’une structure de R[G]-module à gauche. Et
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réciproquement, un R[G]-module définit une représentation linéaire de G
dans V .

Si le groupe G est le groupe de Galois d’une extension de corps, alors
les R[G]-modules sont appelés modules galoisiens et les représentations de
groupe associées sont des représentations galoisiennes. Par exemple, si K/Q
est une extension de corps galoisienne, de groupe de Galois G, alors K× et
Z×
K sont des modules galoisiens, avec R = Z.

Cohomologie des groupes et groupes de Selmer

Rappelons la définition d’un groupe de cohomologie, tel que dans [44]. Soit
G un groupe fini et M un G-module. Pour tout entier i, notons Ci(G,M) le
groupe abélien des fonctions f : Gi →M .

Considérons les applications di : Ci(G,M) → Ci+1(G,M) sont définies
par

(dif)(g1, · · · , gi+1) =f(g1, · · · , gi) +
i∑

j=1

(−1)if(g1, · · · , gjgj+1, · · · , gi+1)

+ (−1)i+1f(g2, · · · , gi+1)

On peut définir l’espace des i-cocycles Zi(G,M) = ker(di) et l’espace des
i-cobords Bi(G,M) = Im(di−1). Le i-ième groupe de cohomologie de G à
coefficients dans M est

H i(G,M) =
Zi(G,M)

Bi(G,M)
.

Notons par exemple que H0(G,M) = MG où MG est l’ensemble des points
fixes.

La propriété principale des groupes de cohomologie est la suivante. Soient
A,B,C des G-modules tels qu’il existe une suite exacte courte

0→ A→ B → C → 0.

Alors, on a une suite exacte infinie de groupes de cohomologie

0→H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ H1(G,C)→
H2(G,A)→ H2(G,B)→ · · ·
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L’étude de la cohomologie de groupes des modules galosiens est appelé la
cohomologie galoisienne.

Les groupes de cohomologie ne sont pas de type fini en général, ce qui les
rend souvent difficiles à utiliser en pratique. C’est pourquoi il est intéressant
de travailler avec des groupes de Selmer. Ce sont des sous-groupes finis des
groupes de cohomologie, définis de telle sorte qu’ils contiennent des informa-
tions locales importantes. Voir le chapitre 7 pour une définition plus précise.

Organisation et contributions de la thèse

Chapitre 2: Algèbres de Hecke des groupes finis

Ce chapitre est basé sur la première section de l’article [22]. On y définit
les opérateurs de Hecke et les algèbres de Hecke, et on décrit certaines de
leurs propriétés. Puis on définit la notion de compositums de deux corps de
nombres.

Notre contribution est la suivante. Si K̃ est un corps de nombre tel
que l’extension K̃/Q est galoisienne, de groupe de Galois G, soient H, J deux
sous-groupes de G et soient K = K̃H et L = K̃J . Alors on montre qu’il existe
une bijection entre l’ensemble des compositums de K et L et l’ensemble des
doubles classes J\G/H (voir proposition 2.17).

Alors, il y a une “action” naturelle de l’ensemble des compositums sur
l’ensemble des points fixes de diférents R[G]-modules, que nous décrivons
entre la proposition 2.19 et la proposition 2.23.

Enfin, nous décrivons l’action d’un compositum de K et L, de L× vers
K×:

Theorem A. [Théorème 2.24] Soit x un élément de K× et soit (C, ιK , ιL)
un compositum de K et L. Alors on a C · x = NC/L(ιK(x)).

Ce théorème sera surtout utile pour des applications algorithmiques, dans
le chapitre 5.

Bien que la bijection entre l’ensemble des doubles classes et l’ensemble
des compositums était probablement connue, nous n’avons pas trouvé de
références dans la littérature. Il nous semble que le théorème A est bien
nouveau, ainsi que ses applications algorithmiques.
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Chapitre 3: foncteurs de Mackey

Dans la première section de ce chapitre, nous donnons la définition des fonc-
teurs de Mackey (cohomologiques), ainsi que certaines propriétés, qu’on peut
trouver dans [51] et dans [9], et qui permettent de faire un lien entre le for-
malisme des foncteurs de Mackey et les opérateurs de Hecke.

Ensuite, dans la seconde section, basée sur l’article [1], encore en préparation,
nous introduisons la notion de foncteurs de Mackey normés (voir définition
3.14), et donnons quelques exemples. Le résultat principal est le théorème
3.16:

Theorem B. Soit R un anneau normé, et k son corps des fractions, et soit
M un R-foncteur de Mackey normé sur un groupe fini G. Soient U1, · · ·Un
and U ′

1, · · ·U ′
m des sous-groupes de G tels qu’il existe un épimorphisme de

k[G]-modules

Φ:
⊕
i

k[G/Ui]→
⊕
j

k[G/U ′
j].

Alors, on a une application R-linéaire

ϕ :
⊕
i,j

M(Ui)
Ui\G/U ′

j →
⊕
j

M(U ′
j)

telle que le changement de base ϕ⊗k est surjectif et telle que ϕ a son opérateur
norme borné par

max{1,max{|[U ′
i : gUjg

−1]| for g ∈ G, i = 1, · · ·m, and j = 1, · · · , n}.

Ce théorème est intéressant car il peut être utilisé pour obtenir une borne
sur l’opérateur norme d’applications linéaires dans des contextes très divers.

Chapitre 4: Relations de normes

Dans [7], les auteurs étudient les propriétés des relations de normes, et les
utilisent pour produire des algorithmes pour calculer des invariants arithmétiques
de certains corps de nombres par induction, et en particulier la structure de
leurs groupes des classes. Le but de ce chapitre est de définir et d’étudier
une généralisation des relations de normes.

Dans la première section (4.1), nous rappelons la définition des relations
de normes, ainsi que certaines conditions nécessaires et suffisantes à leur
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existence, qui ont été démontrées dans [7]. Notre contribution est dans les
autres sections, qui sont basées sur [22].

Dans la section 4.2, nous définissons les relations de normes généralisées:

Definition C. Soit G un groupe fini, et H < G un sous-groupe. Soit J un
ensemble de sous-groupes de G et R un anneau commutatif. Une relation de
norme généralisée sur R par rapport à H et J est une égalité dans R[G] de
la forme

NH =
ℓ∑
i=1

aiNJibi

avec ai, bi ∈ R[G], Ji ∈ J , et Ji ̸= 1, et avec NJi =
∑

j∈Ji j, et NH =
∑

h∈H h
les éléments normes de Ji et H.

Et nous donnons des conditions nécessaires et suffisantes à l’existence de
relations de normes généralisées. En particulier la proposition suivante (4.14)
établit un lien entre les relations de normes généralisées et les opérateurs de
Hecke:

Proposition D. Soit H un sous-groupe de G, et J = {J1, · · · , Jℓ} un en-
semble de sous-groupes non triviaux de G. Alors, G admet une relation de
norme généralisée sur Q par rapport à H et J si et seulement si il existe un
morphisme surjectif de Q[G]-modules

ϕ :
ℓ⊕
i=1

Q[G/Ji]
ni → Q[G/H]

où pour tout i, ni ∈ Z>0.

Nous définissons aussi une notion de relations de normes généralisées entre
corps de nombres (définition 4.15) et dans le théorème 4.22, nous donnons
un critère basé sur l’action des compositums:

Theorem E. Si L1, · · · , Lℓ sont des corps de nombres, définis par les polynômes
f1, · · · , fℓ, et si on note Ri l’ensemble des racines complexes de fi, alors un
corps de nombres K = Q(α) admet une relation de norme généralisée par
rapport à L1, · · · , Lℓ, si et seulement si il existe une relation de la forme

α =
ℓ∑
i=1

∑
C∈Compo(K,Li)

∑
β∈Ri

ai,C,βC · β

où les coefficients ai,C,β sont dans Q.
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Dans la section 4.3, on définit le coefficient optimal d’une relation de
norme généralisée (voir définition 4.24), et nous donnons une borne (théorème
4.28 qui sera utile dans le chapitre suivant pour étudier la complexité en
temps de certains algorithmes.

Dans ce chapitre et dans le suivant, on parle surtout de relations de
normes généralisées sur Q ou sur Z, mais dans la section 4.4, on parle
brièvement de relations de normes généralisées sur des corps finis, et nous
donnons des critères de leur existence (proposition 4.31).

Ensuite, dans la section 4.5, nous donnons des algorithmes pour la recherche
de relations de normes généralisées. Enfin, dans la section 4.6, nous com-
parons notre généralisation des relations de normes et la définition classique,
afin de montrer que notre généralisation est bien pertinente.

Chapitre 5: Calcul de groupes des classes

Dans ce chapitre, nous décrivons des algorithmes pour calculer les groupes des
classes de certains corps de nombres par induction, en utilisant les propriétés
des relations de normes généralisées. Ces méthodes sont similaires à celles
décrites dans [7].

Dans la première section, nous présentons des algorithmes pour calculer
le groupe des S-unités d’un corps de nombre, ce qui permet indirectement de
calculer son groupe des classes. Et les algorithmes présentés dans la deuxième
section permettent de calculer plus directement le groupe des classes. Le
résultat principal de ce chapitre est le suivant:

Theorem F. En supposant l’hypothèse de Riemann généralisée, il existe un
algorithme en temps polynomial, qui prends en entrée

• un corps de nombre K,

• un ensemble S de nombres premieers,

• des sous-corps Ki de la cloture galoisienne K̃,

• pour chaque i, une base du groupe des S-unités de Ki,

et qui, si K admet une relation de norme généralisée par rapport aux Ki,
renvoie une base du groupe des S-unités de K.
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Voir l’algorithme 5.9, et le théorème 5.10.
Puis, dans la section 5.3, nous utilisons ces algorithmes (et en particulier

l’algorithme 5.12, dont la complexité n’est pas toujours polynomiale, mais
qui est plus rapide dans la plupart des cas), implémentés en Pari/GP ([40]),
pour calculer le groupe des classes de certains corps de nombres de très grands
discriminants. Dans l’exemple 5.18, nous calculons le groupe des classes d’un
corps de degré 105 et de discriminant 2126 · 2990 · 6742 ≃ 1.7 · 10246.

Chapitre 6: Une application des relations de normes généralisées
à la conjecture de Leopoldt

Soit L/K une extension galoisienne de corps de nombres, de groupe de Galois
G. Dans l’article [23], les auteurs prouvent que si G admet une relation de
norme par rapport à un ensemble de sous-groupes H = {H1, · · · , Hℓ}, alors,
pour un nompre premier p fixé, la conjecture de Leopoldt en p est vraie pour
L si et seulement si elle est vraie pour tous les LHi .

Dans ce chapitre, après avoir rappelé quelques formulations de la conjec-
ture de Leopoldt, nous montrons que ce résultat peut être généralisé de la
manière suivante:

Proposition A (proposition 6.9). Soit L/K une extension galoisienne de
corps de nombres, et soit G son groupe de Galois. Supposons que G admet
une relation de norme généralisée par rapport à Γ < G, et à un ensemble de
sous-groupes H. Soit I ⊆ H tel que 1 /∈ I et pour tout H ∈ H, il existe I ∈ I
et g ∈ G tel que gIg−1 ≤ H. Soit p un nombre premier. Si la conjecture de
Leopoldt en p est vraie pour tous les LI avec I ∈ I, alors elle est vraie pour
LΓ.

Chapitre 7: Calcul des groupes de Selmer

Ce chapitre est basé sur l’article [21]. Etant donnés un corps de nombre de
groupe de Galois absolu G, un module galoisien fini M , et un système de
Selmer L, l’objectif est de donner une méthode pour calculer SelL, le groupe
de Selmer de M lié à L.

Dans la première section, nous décrivons une méthode pour obtenir une
résolution de M , où les morphismes sont donnés par des opérateurs de
Hecke. Ensuite, dans la deuxième section, nous définissons un autre groupe
H1
S(G,M), et nous prouvons, avec les propriétés des opérateurs de Hecke,

que H1
S(G,M) est un groupe de Selmer qui contient SelL.
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Le résultat principal de la troisième section est le suivant:

Theorem G. Soit G le groupe de Galois absolu d’un corps de nombres K,
et soit M un G-module fini. Il existe un algorithme qui prend en entrée

• le module M ,

• le groupe fini G qui est l’image de l’action G → Aut(M),

• un système de Selmer L,

et qui donne en sortie le groupe de Selmer SelL lié à L pour M . De plus,
chaque étape de cet algorithme a une complexité en temps polynomiale, à part
le calcul des sous-corps de K fixés par des sous-groupes de G, et les calculs de
groupes de S-unités et de groupes de classes de certaines extensions de corps
de K.
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Notations and conventions

WhenR is a ring andM , N are leftR-modules, we will denote by HomR(M,N)
the group of R-module homomorphisms from M to N .

If G is a group, H < G a subgroup and M a G-module, we will denote
by MH the set of fixed points of M under the action of H.

If K is a number field, we will call K̃ the Galois closure of K, that is to
say the Galois closure of the field extension Q : K.

If K is a field, we will denote by K the algebraic closure of K.
For the structure descriptions of groups, we will use the following nota-

tions (where n is a positive integer, q a power of a prime number and G, H
are two groups):

• Cn: cyclic group of order n,

• An: alternating group of degree n,

• Sn: symetric group of degree n,

• Dn: dihedral group of size n,

• Qn: quaternion group of size n,

• QDn: quasidihedral group of size n,

• GL(n, q): general linear group of Fnq ,

• PSL(n, q): projective special linear group of Fnq ,

• G×H: direct product of G and H,

• G⋊H: semidirect product of G and H.
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1 Introduction

In this thesis, we study the properties of Hecke operators, and how we can use
them to obtain relations between some Galois modules. We then use these
relations to derive efficient algorithms to compute arithmetic objects such as
class groups of number fields, or Selmer groups of finite Galois modules.

In the introduction, we will first recall some background knowledge about
class groups of number fields (section 1.1), about Galois theory (section 1.2)
and Galois cohomology (section 1.3). Then, in section 1.4, we will present
the plan of the thesis and our contributions in each chapter.

1.1 Number fields and class groups

1.1.1 Ideal class group

A number field is a field extension of the rational field Q, of finite degree. If
K is a number field, we denote by ZK the ring of integers of K, that is to
say the ring of all elements of K that are roots of a monic polynomial with
integer coefficients.

A fractional ideal I of the ring of integer ZK is a ZK-submodule of K
such that there exists a non zero element α ∈ ZK such that αI ⊂ ZK .

We say that two fractional ideals J, J ′ of ZK are equivalent, and we write
J ∼ J ′ if there exists a non zero x in K such that J ′ = xJ . This is an
equivalence relation. We denote by Cl(K) the group of equivalence classes
for this relation. This is the ideal class group of K. An important result is
that the ideal class group of a number field K is always finite. (This is the
class number theorem, see for example [25] for a proof). Its order is called
the class number of K.

The study of class groups of number fields is central in number theory.
It measures the “defect of ZK from being a principal ideal domain”, in the
sense that ZK is a principal ideal domain if and only if Cl(K) is the trivial
group, and thus it measures the degree of failure of unique factorisation in
ZK . It plays an important role in the study of some Diophantine problems
(see [25]).

1.1.2 Analytic class number formula

A way of computing the class number of a number field is through the analytic
class number formula (see for example [37]).
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First, let us define all the terms involved in the formula.
Let K be a number field. Let u1, · · · , ur be a basis of the unit group of

ZK (i.e. the group of invertible elements in ZK) modulo the torsion. Let
σ1, · · · , σr1 be the real embeddings of K, and σr1+1, · · · , σr1+r2 the complex
embeddings of K, up to complex conjugacy. Dirichlet’s units theorem gives
us r = r1 + r2 + 1.

Consider the matrix (ϵj log |σj(ui)|)1≤i≤r
1≤j≤r

, where ϵj is 1 if σj is a real

embedding and 2 otherwise. Then the regulator Reg(K) of K is the absolute
value of the determinant of this matrix.

Let b1, · · · , bn be an integral basis of ZK . We have n = r1 + r2. Let
σr1+r2+i = σr1+i for all 1 ≤ i ≤ r2. Then the discriminant ∆K of K is the
square of the determinant of the matrix (σj(bi))1≤i,j≤n.

Recall that the Riemann ζ-function is defined for any complex number s
with Re(s) > 1 by the formula

ζ(s) =
+∞∑
n=1

1

ns
=

∏
p prime

(1− p−s)−1.

We define the Dedekind ζ-function of K by the formula

ζK(s) =
∑
a̸=0

ideal of ZK

[ZK : a]−s =
∏

p⊂ZK

non zero prime ideal

(1− [ZK : p]−s)−1.

Note that when K = Q, we have ζK = ζ.
Then, for every number field K, the sum ζK(s) converges absolutely for

every complex number s with Re(s) > 1, and ζK extends to a meromorphic
function over C, with a simple pole at s = 1.

The analytic class number formula gives the residue at s = 1:

lim
s→1

(s− 1)ζK(s) =
2r1 · (2π)r2 · RegK ·hK

wK ·
√
|∆K |

where r1, 2r2 are the number of real and complex embeddings of K, RegK
is the regulator, hK the class number, wK the number of roots of unity
contained in K, and ∆K is the discriminant.
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1.1.3 Buchmann’s algorithm

In [13], Buchmann gives an algorithm that on input a number field K and
its ring of integers ZK , outputs the structure of the class group Cl(K) and a
basis of the unit group Z×

K .
The proof of the correctness of the algorithm assumes the generalised

Riemann hypothesis (GRH). See [17] for more details about this conjecture,
one of the most important in modern number theory.

The heuristic time complexity of Buchmann’s algorithm grows quickly
with the degree n of the number field K: if we denote by ∆K the dis-
criminant of K, the time complexity of this algorithm for fixed n is in

O(ea
√

ln |∆K | ln ln |∆K |) where a is a constant, and the implicit constant of the
O depends on n exponentially; note in addition that the absolute value of the
discriminant of K is bounded from below by a function that is exponential
in n.

1.2 Galois theory and Galois representations

1.2.1 Fundamental theorem

Let K/F be a finite algebraic field extension, and let AutF (K) denote the
group of field automorphisms of K fixing F , that is to say, for all σ ∈
AutF (K) and for all x ∈ F , we have σ(x) = x.

If H is a subgroup of AutF (K), then we denote by KH the fixed field of
H, defined by KH = {x ∈ K|σ(x) = x for all σ ∈ H}. It is a subfield of K
containing F (see for example [32] for all the proofs in this section).

If KAutF (K) = F , then we say that K/F is a Galois extension, and the
group G = AutF (K) is its Galois group. Moreover, we have |G| = [K : F ].
An extension K/F is Galois if and only if it is normal and separable. This is
also equivalent to saying that K is the splitting field of a separable polynomial
f ∈ F [X].

Let K/F be a Galois extension, with Galois group G = AutF (K). Then,
the fundamental theorem of Galois theory states that there is a bijection be-
tween the set L of subfields L of K containing F , and the set H of subgroups
H of G. The bijection and its inverse are given by the maps

Φ: L → H, L 7→ AutL(K)

Φ−1 : H → L, H 7→ LH .
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What’s more, if L is an intermediate field F ⊂ L ⊂ K, and H such that
L = KH , then K is Galois over L, with Galois group H. And the field L is
Galois over F if and only if H is normal in G. In that case, the Galois group
of L/F is isomorphic to G/H.

The maps Φ and Φ−1 are known as the Galois correspondence. Note that
they are inclusion reversing, in the sense that if we have two subfields L1, L2

such that F ⊂ L1 ⊂ L2 ⊂ K, and H1, H2 the subgroups of G such that
L1 = KH1 and L2 = KH2 , then H2 < H1, and conversely, if H1 < H2 are two
subgroups of G, then we have KH2 ⊂ KH1 .

Note that, even though we will mostly use the Galois group of finite field
extensions in this thesis, we will also need to use absolute Galois groups in
chapter 7. The absolute Galois group of a field K is the automorphism group
of Ksep/K, where Ksep is a separable closure of K. When K is a perfect field,
Ksep is equal to an algebraic closure of K.

1.2.2 Galois representations

In this section, we will give the definitions of linear representations of a finite
group G, of left modules, and of the group algebra R[G], with R a ring.
Then we will see that the linear representations of G over F are the same as
F [G]-modules. (See [45] or [41]).

Let V be a vector space over a field F , and let GL(V ) be the group of
automorphisms of V . Let G be a finite group. A linear representation of G
in V is an homomorphism ρ : G→ GL(V ). Note that a linear representation
ρ of G in V gives a left group action of G on V defined by g · x = ρ(g)(x),
for all g ∈ G, x ∈ V . So V is a left G-module.

Let ρ be a linear representation of a finite group G in a vector space
V . The character of the representation ρ is the function χρ : G → C, s 7→
Tr(ρ(s)), where for every element a ∈ GL(V ), Tr(a) denotes the trace of a.

Let R be a ring, a left R-module M is an abelian group with an operation
· : R×M →M such that for r, s ∈ R and m,n ∈M , we have

• 1 ·m = m

• r · (m+ n) = r ·m+ r · n

• (r + s) ·m = r ·m+ s ·m

• (rs) ·m = r · (s ·m) .
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What’s more, if M,N are two R-modules, then a map f : M → N is
called a morphism of R-modules if for all x, y ∈M and for all r ∈ R, we have

• f(x+ y) = f(x) + f(y),

• f(r · x) = r · f(x).

If R is a commutative ring, we can define the group algebra of G over R,
of formal sums of elements of G, with coefficients in R:

R[G] = {
∑
g∈G

agg|ag ∈ R}.

It is a R-algebra, with the multiplication that extends the one in G.
Let V be a R-module and let ρ : G→ GL(V ) be a linear representation of

G in V . If we extend the associated group action G×V → V by linearity, we
see that V is endowed with a structure of left R[G]-module. And conversely,
a structure of R[G]-module on a set V defines a linear representation of G in
V .

When the group G is the Galois group of a field extension, then any
R[G]-module is called Galois module, and the associated representation is a
Galois representation. For example, if K/Q is a finite Galois extension of
Galois group G, then K× or Z×

K are Galois modules with R = Z.

1.2.3 Brauer relations

Suppose K/F is a Galois extension of number fields, of Galois group G. By
studying relations between the subgroups of G arising from character theory,
we can find corresponding relations between the arithmetic invariants of the
intermediate fields.

Let H be a subgroup of G, and let W be a C[H]-module. The induction
of W is the C[G]-module IndG/H(W ) = C[G]⊗C[H] W .

For a subgroup H < G, denote by IndG/H(1H) the permutation character
of G induced from the trivial representation of H. A Brauer relation is a
relation of the form ∑

H<G

aH IndG/H(1H) = 0

with aH ∈ Z. In [10], Brauer proved that when such a relation exists,
there is a corresponding relation between certain arithmetic invariants of
the fields KH .
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In [7], Biasse, Fieker, Hofmann and Page studied another type of relation
called norm relation. In their paper, they derive from such a relation an
inductive algorithm to compute the class group or the groups of S-units of
K by reducing the problem to a similar problem on the subfields KH .

1.3 Group cohomology and Selmer groups

1.3.1 Group cohomology

Let us recall the basic definition of group cohomology, as in [44] for example.
Let G be a finite group and M a G-module. For any integer i ≤ 0, let

Ci(G,M) denote the abelian group of functions f : Gi →M . By convention,
we define C−1(G,M) = {0}.

The coboundary maps di : Ci(G,M)→ Ci+1(G,M) are defined by

(dif)(g1, · · · , gi+1) =g1 · f(g2, · · · , gi+1) +
i∑

j=1

(−1)if(g1, · · · , gjgj+1, · · · , gi+1)

+ (−1)i+1f(g1, · · · , gi)

By convention, we let d−1 : C−1(G,M)→ C0(G,M) be the zero map.
Then we can define the space of i-cocycles Zi(G,M) = ker(di) and the

space of i-coboundaries Bi(G,M) = Im(di−1). The i-th cohomology group
of G with coefficients in M is

H i(G,M) =
Zi(G,M)

Bi(G,M)
.

The main property of cohomology groups is the following:
Let A,B,C be G-modules such that there is an exact sequence

0→ A→ B → C → 0.

Then there is an infinite exact sequence of cohomology groups

0→H0(G,A)→ H0(G,B)→ H0(G,C)→ H1(G,A)→ H1(G,B)→ H1(G,C)→
H2(G,A)→ H2(G,B)→ · · ·

The study of the group cohomology of Galois modules is called Galois
cohomology.
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1.3.2 Selmer groups

Cohomology groups are not finitely generated in general, which makes them
often hard to use in practice. This is why it is interesting to work with Selmer
groups. Those are finite subgroups of the cohomology groups, defined in such
a way that they still contain some important local information. See chapter 7
for the precise definition.

Selmer groups are powerful tools in modern number theory. Introduced
in the study of descent in elliptic curves ([46, Chapter X, §4]), they have
been crucial for progress toward the BSD conjecture (see for example [31])
and arithmetic statistics on ranks of elliptic curves (see [6]), conjecturally
predict the order of vanishing of L-functions (see [8]), control deformations
of Galois representations (see [35, §1.10]) and therefore play an important
role in modularity theorems (see [50]) and have many other applications,
for instance in effective class field theory (see [15, §5.2.2]). It is therefore
important to design efficient algorithms to compute Selmer groups.

1.4 Organisation and contributions of the thesis

Chapter 2: Hecke algebra of finite groups

This chapter corresponds to [22, section 1]. We define Hecke operators and
Hecke algebras, and describe some of their properties. Then we define the
notion of compositum of two number fields.

Our contribution is the following. If K̃ is a number field Galois over Q, of
Galois group G, and H, J are two subgroups of G, let K = K̃H and L = K̃J .
Then we show that there is a bijection between the set of compositums of K
and L and the set of double cosets J\G/H (see proposition 2.17).

Let K and L be number fields. A compositum of K and L is a triple
(C, ιK , ιL) where C/Q is a number field, ιK : K → C and ιL : L → C are
fields homeomorphisms, and where C is generated by ιK(K) and ιL(L) as a
ring.

Up to isomorphism, there is only a finite number of compositums of K
and L, we denote by Compos(K,L) a set of representatives.

Then, there is a natural “action” of the set of compositum on the set
of fixed points of various R[G]-modules, which we describe from proposition
2.19 to proposition 2.23.

Finally, we describe the “action” of a compositum of K and L from L×

to K×:
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Theorem B. [Theorem 2.24] Let x be an element of K× and let (C, ιK , ιL)
be a compositum of K and L. Then C · x = NC/L(ιK(x)).

This theorem will be useful especially for algorithmic applications, in
chapter 5.

Though the bijection between double cosets and compositums was prob-
ably a folklore result, we did not know a reference for it. But it seems to us
that theorem B is new, as well as its algorithmic applications.

Chapter 3: Mackey functors

In the first section of this chapter, we give the definition of (cohomological)
Mackey functors, as well as some properties, that can be found in [51] and
[9], linking the formalism of Mackey functors to Hecke operators.

Then, in the second section, based on the article [1], still in preparation,
we introduce the notion of normed Mackey functors (see definition 3.14), and
give some examples. The main result is theorem 3.16:

Theorem C. Let R be a normed domain with field of fractions k, and let
M be a normed R-Mackey functor on a finite group G. Let U1, · · ·Un and
U ′
1, · · ·U ′

m be subgroups of G for which there exists an epimorphism of k[G]-
modules

Φ:
⊕
i

k[G/Ui]→
⊕
j

k[G/U ′
j].

Then there is a R-linear map

ϕ :
⊕
i,j

M(Ui)
Ui\G/U ′

j →
⊕
j

M(U ′
j)

such that the base change ϕ ⊗ k is surjective and such that ϕ has operator
norm bounded from above by

max{1,max{|[U ′
i : gUjg

−1]| for g ∈ G, i = 1, · · ·m, and j = 1, · · · , n}.

This theorem is interesting because it can be used to obtain a bound on
the operator norm of linear maps in a large variety of different contexts.
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Chapter 4: Norm relations

In [7], the authors study the properties of norm relations, and use them to
produce some algorithms to compute arithmetic invariants of some number
fields by induction, and in particular the structure of the class group. The
goal of this chapter is to study a generalisation of the definition of norm
relations.

In section 4.1, we recall the definition of norm relation, as well as some
necessary and sufficient criteria for their existence, as proven in [7].

Our contribution is in the other sections, which are largely based on [22].
In section 4.2, we define generalised norm relations:

Definition D. Let H be a subgroup of a finite group G, J a set a subgroups
of G and R a commutative ring. A generalised norm relation over R with
respect to H and J is an equality in R[G] of the form

NH =
ℓ∑
i=1

aiNJibi

where ai, bi ∈ R[G], Ji ∈ J , and Ji ̸= 1, and where NJi =
∑

j∈Ji j, and
NH =

∑
h∈H h are the norm elements of the Ji and H.

And we give some necessary and sufficient criteria for their existence. In
particular, the following proposition (4.14) establishes a strong link between
generalised norm relations and Hecke operators:

Proposition E. Let H be a subgroup of G, and J = {J1, · · · , Jℓ} a set of
non trivial subgroups of G. Then, G admits a generalised norm relation over
Q with respect to H and J if and only if there exists a surjective morphism
of Q[G]-modules

ϕ :
ℓ⊕
i=1

Q[G/Ji]
ni → Q[G/H]

where for all i, ni ∈ Z≥0.

By Galois theory, we get a corresponding notion of generalised norm
relations between number fields (see definition 4.15), and in theorem 4.22 we
also give a criterion based on the action of compositums:
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Theorem F. If L1, · · · , Lℓ are number fields, defined by the polynomials
f1, · · · , fℓ, and if we denote by Ri the set of roots of fi in C, then a number
field K = Q(α) admits a generalised norm relation with respect to L1, · · · , Lℓ,
if and only if there is a relation of the form

α =
ℓ∑
i=1

∑
C∈Compo(K,Li)

∑
β∈Ri

ai,C,βC · β

where the coefficients ai,C,β are in Q.

In section 4.3, we define the optimal coefficient of a generalised norm
relation (see definition 4.24), show that it is well defined and give a bound
(see theorem 4.28) that will mainly be useful in the next chapter, to study
the time complexity of some algorithms. The main result in this section is
the following:

Theorem G. Let H, J1, · · · , Jℓ be non trivial subgroups of G, and let J =
{J1, · · · , Jℓ}. If there is a norm relation over Q with respect to H and J ,
then there is a positive integer c such that there exists an injective morphism
of Z[G]-modules ψ : Z[G/H] →

⊕
i Z[G/Ji]

ni with ni ∈ Z>0 for all i, and a
morphism of Z[G]-modules ϕ :

⊕
i Z[G/Ji]

ni → Z[G/H] such that ϕ ◦ ψ =
c · id.

What’s more, the smallest such integer c divides |G|2.

Even though throughout this chapter and the next one, we focus mainly
on generalised norm relations over Q or over Z, in section 4.4, we briefly
discuss generalised norm relations over finite fields, and give some criteria
for their existence (proposition 4.31).

Next, in section 4.5, we give some algorithms to look for generalised norm
relations.

Finally, in section 4.6, we compare our generalisation of norm relations
to the classical definition of norm relations, to show that our generalisation
is indeed relevant.

Chapter 5: Computing class groups

In this chapter, we describe some algorithms to compute the class groups of
some number fields by induction, using the properties of generalised norm
relations. The methods are similar to those used in [7].
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In the first section, we present an algorithm (5.7) to compute the group
of S-units of a number field, which allows for an indirect computation of the
class group, whereas the algorithms presented in the second section compute
the class group more directly. The main result in this chapter is the following:

Theorem H. Assuming the generalised Riemann hypothesis, there exists a
polynomial time algorithm that, on input

• a number field K,

• a set S of prime numbers,

• subfields Ki of the Galois closure K̃,

• for each i, a basis of the S-unit group of Ki,

if K admits a generalised norm relation with respect to the Ki, outputs a
basis of the S-unit group of K.

See algorithm 5.9, and see theorem 5.10 for the proof of correctness and
the proof of complexity assuming GRH.

Then in section 5.3, we use these algorithms, (and in particular algo-
rithm 5.12, not provably polynomial time, but often faster in practice), im-
plemented in Pari/GP ([40]), to compute the class groups of some number
fields with very large discriminant, that we were unable to compute with the
standard functions in Pari/GP or with the methods in [7]. In particular, in
example 5.18, we manage to compute the class group of a number field of
degree 105 and of discriminant 2126 · 2990 · 6742 ≃ 1.7 · 10246.

Chapter 6: An application of generalised norm relations to Leopoldt’s
conjecture

Let L/K be a Galois extension of number fields, of Galois group G. In [23],
the authors prove that if G admits a norm relation with respect to a set of
subgroups H = {H1, · · · , Hℓ}, then for a fixed prime number p, Leopoldt’s
conjecture at p holds for L if and only if it holds for all of the LHi .

In this chapter, after recalling some formulations of Leopoldt’s conjecture,
we show that this result can be generalised in the following way:
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Proposition I (proposition 6.9). Let L/K be a Galois extension of number
fields, and let G be its Galois group. Suppose that G has a generalised norm
relation with respect to a subgroup Γ < G, and a set of subgroups H. Let
I ⊆ H be such that the trivial group 1 is not in 1I and for every H ∈ H,
there exists I ∈ I and g ∈ G such that gIg−1 ≤ H. Let p be a prime number.
If Leopoldt’s conjecture at p for LI holds for every I ∈ I, then Leopoldt’s
conjecture at p for LΓ holds.

Chapter 7: Computing Selmer groups

This chapter is based on the preprint [21]. Given a number field with absolute
Galois group G, a finite Galois module M , and a Selmer system L, the goal
is to give a method to compute SelL, the Selmer group of M attached to L.

In the first section, we describe a method to obtain a resolution of M
where the morphisms are given by Hecke operators. Then in the second
section, we define another group H1

S(G,M) and we prove, using the properties
of Hecke operators, that H1

S(G,M) is a Selmer group containing SelL.
The main result of the third section is the following:

Theorem J. Let G be the absolute Galois group of a number field K, and
M be a finite left G-module. There exists an algorithm that on input

• the module M ,

• the finite group G that is the image of the action G → Aut(M),

• a Selmer system L,

outputs the Selmer group SelL attached to L for M . Moreover, every step
of this algorithm is polynomial, except for the computation of subfields of K
fixed by subgroups of G, and the computation of the group of S-units and the
class group of some field extensions of K.

We will describe this algorithm (see algorithm 7.19), and discuss the
complexity in proposition 7.21.
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2 Hecke algebras of finite groups

One common theme between every part of this thesis will be the use of
Hecke operators and Hecke algebras. In section 2.1, we will give a definition
of Hecke operators and Hecke algebras (see definitions 2.5 and 2.6) based
on group theory and module theory. Then in section 2.2, we will define the
notion of compositums of number fields (definition 2.10), and use it to give
a more field-theory-oriented interpretation of Hecke operators. In all of this
chapter, G will be a finite group, and H, J will be subgroups of G.

2.1 Hecke algebras

Let R be a commutative ring. The module R[G/H] is the free R-module on
the finite set G/H, with a G-action linearly extending the one of G/H. The
main objects in this section will be R[G]-modules of the form

⊕
iR[G/Hi],

where the Hi are subgroups of G. We call R[G]-modules of this form permu-
tation modules.

First, let us introduce some useful isomorphisms of R-modules. These
isomorphisms (lemma 2.1 and lemma 2.2) are well known and can be found
for example in [51].

Lemma 2.1. Let V be a G-module. The map

Φ1 : HomR[G](R[G/H], V )→ V H , ϕ 7→ ϕ(1 ·H)

where V H is the set of points of V fixed under the action of H, is an isomor-
phism of R-modules. And its inverse is

Φ−1
1 : V H → HomR[G](R[G/H], V ), x 7→


The unique morphism ϕ of
R[G]-modules in V such that
ϕ(1 ·H) = x

.

Proof. Consider the map Φ1 : HomR[G](R[G/H], V ) → V H , ϕ 7→ ϕ(1 · H),
First, let us show that the image of Φ1 is included in V H . Let ϕ be an element
of HomR[G](R[G/H], V ), and let h ∈ H. Then h · ϕ(1 · H) = ϕ(h · 1 · H) =
ϕ(1 · H). Where the first equality is due to ϕ being a morphism of R[G]-
modules. This shows that ϕ(1 ·H) = Φ1(ϕ) is indeed in V H .

For every x ∈ V H , there exists a ϕ ∈ HomR[G](R[G/H], V ) such that
ϕ(1 · H) = x. It is given by the formula ϕ(gH) = g · x for all gH ∈ G/H,
and it is independent from the choice of the representative g since x ∈ V H .
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What’s more, sinceR[G/H] is spanned by 1·H as aR[G]-module, we know
that any morphism of R[G]-modules ϕ ∈ HomR[G](R[G/H], V ) is entirely
determined by the choice of ϕ(1 ·H). So ϕ is unique.

So Φ−1
1 is well defined and is the inverse of Φ1, hence the conclusion.

Lemma 2.2. There is an isomorphism of R-modules

Φ2 : R[H\G/J ]→ R[G/J ]H ,
∑

HgJ∈H\G/J

αHgJHgJ 7→
∑

gJ∈G/J

αHgJgJ.

Its inverse is

Φ−1
2 : R[G/J ]H → R[H\G/J ],

∑
gJ∈G/J

αgJgJ 7→
∑

HgJ∈H\G/J

αgJHgJ.

Proof. Let x =
∑

g∈G/J αggJ be an element of R[G/J ]. Then x is fixed

under the action of H if and only if for all h ∈ H, h · x =
∑

g∈G/J αg(hg)J =∑
g′∈G/J αh−1g′g

′J = x. Hence for all g in G/H, αh−1g = αg.

This proves that the image of Φ2 is in R[G/J ]H , and also that Φ−1
2 is well

defined.
Since Φ−1

2 is trivially the inverse of Φ2, this proves the lemma.

Combining the two previous lemma, we can get another useful isomor-
phism of R-modules.

Proposition 2.3. There is an isomorphism of R-modules

Φ: R[H\G/J ]→ HomR[G](R[G/H], R[G/J ])

∑
HgJ∈H\G/J

αHgJHgJ 7→
{
ϕ such that
ϕ(1 ·H) =

∑
g∈G/J αHgJgJ

.

Its inverse is

Φ−1 : HomR[G](R[G/H], R[G/J ]) 7→ R[H\G/J ]

ϕ 7→
{ ∑

HgJ∈H\G/J αgJHδJ

where ϕ(1 ·H) =
∑

g∈G/J αgJgJ
.

31



Proof. We can obtain the isomorphism Φ simply by composing Φ1 from
lemma 2.1 and Φ2 from lemma 2.2.

Fact 2.4. By considering both the isomorphism Φ in proposition 2.3 and
the isomorphism Φ1 in lemma 2.1, we deduce that given any R[G]-module V ,
for every element HgJ of R[H\G/J ] we get a morphism THgJ of R-modules
from V J to V H given by the following diagram:

V J V H

HomR[G](R[G/J ], V ) HomR[G](R[G/H], V )

x
∑

δ∈G/J
HgJ=HδJ

δx

γJ 7→ γx γH 7→
∑

δ∈G/J
HgJ=HδJ

γδx

THgJ

ϕHgJ

where the expression of ϕHgJ is obtained via the following diagram:

R[H\G/J ] R[G/J ]H

HomR[G](R[G/H], R[G/J ])

∑
g∈H\G/J αHgJHgJ

∑
g∈G/J αHgJgJ

γH 7→
∑

g∈G/J
HgJ=HγJ

αHgJγgJ
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This “action” of the double cosets on the set of fixed points of any R[G]-
module will be one of the corner stones of this thesis. With the two following
definitions, let us name the operators involved.

Definition 2.5. If R is a commutative ring and V an R[G]-module, then
the morphisms of R-modules V J → V H associated with double cosets of the
form HgJ for g ∈ G, by the morphism described in fact 2.4 are called Hecke
operators.

Definition 2.6. We can define a multiplication in R[H\G/H] as inherited
from the ◦ law in EndR[G](R[G/H]), by the isomorphism of proposition 2.3.
Then R[H\G/H] is an algebra over R, isomorphic to EndR[G](R[G/H]). We
call algebras of this form Hecke algebras.

Example 2.7. Set R = Q, G = S3 and H = {id, (1, 2)} as a subgroup of G.

• There are two equivalence classes in H\G/H, which are {id, (1, 2)} and
{(1, 2, 3), (1, 3), (2, 3), (2, 3, 1)}. Indeed, (1, 2, 3)(1, 2) = (1, 3), (1, 2)(1, 2, 3) =
(2, 3) and(1, 2)(1, 2, 3)(1, 2) = (2, 1, 3).

So we have Q[H\G/H] = {a(H idH) + b(H(1, 3)H); (a, b) ∈ Q2} =
Q ·H idH ⊕ QH(1, 3)H.

• There are three equivalence classes in G/H, which are {id, (1, 2)},
{(1, 2, 3), (1, 3)} and {(2, 1, 3), (2, 3)}.
Therefore, an element of EndR[G](R[G/H]) is entirely determined by
the images of 1 · id, 1 · (1, 3)H and 1 · (2, 3)H.

• Let x = a(H idH) + b(H(1, 3)H) be an element of Q[H\G/H]. By
the second diagram of fact 2.4, x is associated with the element of
EndR[G](R[G/H]) that sends γH ∈ G/H to{

aγH if HγH = H idH
bγ(1, 3)H + bγ(2, 3)H if HγH = H(1, 3)H

.

• We can define the + law on Q[H\G/H] by

(a1(H idH) + b1(H(1, 3)H)) + (a2(H idH) + b2(H(1, 3)H))

= ((a1 + a2)(H idH) + (b1 + b2)(H(1, 3)H)),

and the · law as inherited from the ◦ in EndR[G](R[G/H]) by the iso-
morphism of proposition 2.3. Then we have:
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– H idH ·H idH = H idH

– H idH ·H(1, 3)H = H(1, 3)H

– H(1, 3)H ·H idH = H(1, 3)H

– H(1, 3)H is associated with

f : γH 7→
{

0 if HγH = H idH
γ(1, 3)H + γ(2, 3)H if HγH = H(1, 3)H

,

so if γ ∈ (1, 3), then f(γ) = idH + (1, 3)H so f 2(γ) = f(γ),
and similarly, if γ ∈ (2, 3), then f(γ) = (2, 3)H + idH so f 2(γ) =
f(γ),

Hence finally, H(1, 3)H ·H(1, 3)H = H(1, 3)H.

And, Q[H\G/H] is indeed an algebra.

Finaly, let us state two more isomorphisms (proposition 2.8 and proposi-
tion 2.9) that will prove useful in the rest of the section.

Let K be a number field. If we choose an embedding σ0 : K → C, then
we can define K̃ the Galois closure of K in C. Let us suppose that K̃/Q has
Galois group G.

Let α be an element of C such that σ0(K) = Q(α), and f the minimal
polynomial of α over Q, and let Z be the set of complex roots of f . Let
σ ∈ Hom(K,C) ≃ Hom(K, K̃) and g ∈ G. The embedding σ sends α to a
complex root of f . Then g · σ is the element of Hom(K,C) that sends α to
σ(g · α).

The Galois group G acts on the set Hom(K,C) by g · σ = g ◦ σ.

Proposition 2.8. Let H be a subgroup of G. The map

Φ : G/H → Z, gH 7→ g · α

is a well-defined isomorphism of G-sets, whose inverse is given by

Φ−1 : Z → G/H, a = g · α 7→ gH.

Proof. Let us prove that the definition of Φ(gH) does not depend of the
choice of g. Let g1, g2 ∈ G such that g1H = g2H. So there exists h ∈ H
such that g2 = g1h. Since α is in K, and H fixes K, we have h · α = α. So
g2 · α = g1 · α.

What’s more, it is easy to check that Φ is G-equivariant and that Φ−1 is
indeed the inverse of Φ.
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Proposition 2.9. We write E = Hom(K,C) for the set of embeddings of K
in C, and σg for the embedding that maps α to g · α for all g ∈ G.

There is an isomorphism of G-sets

Φ: G/H → E, gH 7→ σg.

Its inverse is
Φ−1 : S → G/H, τgα 7→ gH.

And Φ(gH) is independent from the choice of g.

Proof. Let g1, g2 ∈ G such that g1H = g2H, and let h ∈ H such that
g2 = g1h. Then, σg2 maps α to g1 · (h · α) = g1 · α. So σg2 = σg1 . So Φ(gH)
is indeed independent from the choice of g.

What’s more, it is easy to check to Φ is G-equivariant and that Φ−1 is
the inverse of Φ.

The propositions 2.8 and 2.9 are very similar. In practice, the formulation
of proposition 2.8 with roots of polynomials is more useful for implementation
purposes, whereas in theoretical results, we will often prefer the formulation
of 2.9 with complex embeddings.

2.2 Compositums

Compositums are well know objects, useful for the study of algebraic fields
extensions. (See for example [32, Chapter 5]). In this section, we will be
interested in particular in the notion of compositum of two number fields
(see definition 2.10).

In this section, K̃ will denote a Galois extension of Q, of finite degree and
of Galois group G. Moreover, H and J will be two subgroups of G and we
will consider the fields K = K̃H and L = K̃J .

Definition 2.10. Let K and L be number fields. A compositum of K and L
is a triple (C, ιK , ιL) where C/Q is a number field, ιK : K → C and ιL : L→ C
are fields homeomorphisms, and where C is generated by ιK(K) and ιL(L)
as a ring.

Example 2.11. Consider the following diagram, with ζ := e
2iπ
3 .
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C = Q( 3
√

2, ζ) = K̃

K = Q( 3
√

2) L = Q(ζ)

Q

H J

G

Let ιK : K → C be the inclusion, and ιL : L→ C also the inclusion. It is
clear that C is generated by ιK(K) and ιL(L), so C is a compositum of K
and L.

Here, we have C = K̃. We will see that up to isomorphism, every com-
positum of K and L ⊂ K̃ is included in K̃.

Note that if we take ιK,2 : K → C the inclusion and ιL,2 : L→ C, ζ 7→ ζ,
then (C, ιK,2, ιL,2) is another compositum of K and L.

Example 2.12. Note that the compositums of two number fields do not
necessarily have the same degree.

Let C = K = Q( 3
√

2) and L = Q(ζ 3
√

2), with ζ = e
2iπ
3 . Let ιK be

the identity Q( 3
√

2) → Q( 3
√

2), and ιL : L → C, ζ 3
√

2 7→ 3
√

2. Then (C =
Q( 3
√

2), ιK , ιL) is a compositum of K and L, and C is a field of degree 3.
Now let C ′ = Q( 3

√
2, ζ) , and let ιL,2 : L → C ′, ζ 3

√
2 7→ ζ 3

√
2. Then

(C ′, ιK , ιL,2) is also a compositum of K and L, and C ′ is a field of degree 6.

Definition 2.13. A morphism of compositums between two compositums
(C, ιK , ιL) and (C ′, ι′K , ι

′
L) is a field morphism f : C → C ′, such that ι′K =

f ◦ ιK and ι′L = f ◦ ιL.

Example 2.14. With the notations of example 2.11, the field isomorphism
f : C = Q( 3

√
2, ζ)→ C, ζ 7→ ζ induces an isomorphism of compositums from

(C, ιK , ιL) to (C, ιK,2, ιL,2).

From now on, we will want to consider compositums up to isomorphisms.
This will be possible thanks to the following lemma.
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Lemma 2.15. Up to isomorphism, there is a finite number of compositums
of K and L, we denote by Compos(K,L) a set of representatives. There is a
bijection between this set and the set of quotients of K ⊗Q L. For every sur-
jective Q-algebra homomorphism f : K⊗QL→ C, the associated compositum
is (C, ιK , ιL) and ιK = f ◦ (idK ⊗1), ιL = f ◦ (idL⊗1). Every compositum of
K and L is isomorphic to a compositum whose underlying field is contained
in K̃.

Proof. The second statement is a direct application of the universal property
of the tensor product of algebras.

Since K⊗QL is of finite dimension over Q, the set Compos(K,L) is finite.
Now let us prove the last statement. Write K = Q[X]/p(X), with

p(X) ∈ Q[X] irreducible. Write p(X) =
∏

i pi(X) the decomposition of
p(X) into a product of irreducible polynomials in L[X]. Then K ⊗Q L =∏

i L[X]/(pi(X)). What’s more, the polynomial p is split in K̃[X], so the pi
are also split in K̃[X]. So for every i, we have L[X]/(pi(X)) ⊂ K̃, since K̃
contains L and a splitting field of the pi. Hence the conclusion.

Now, the next few results, from lemma 2.16 to proposition 2.17, will be
dedicated to explaining the link between compositums and Hecke algebras.

Lemma 2.16. The map

Ψ: HomQ -alg(K, K̃)→ Compos(K,L), ϕ 7→ (ϕ(K).L, ϕ, inclL/K̃)

induces a bijection from J\HomQ -alg(K, K̃) to Compos(K,L)/ ∼, where ∼
is the isomorphism equivalence relation.

Proof. Let ϕ ∈ HomQ -alg(K, K̃). The composition by g ∈ J induces an
isomorphism (ϕ(K).L, ϕ, inclL/K̃)→ (g.ϕ(K).L, g.ϕ, g. inclL/K̃). Since g ∈ J ,
g fixes L, so g. inclL/K̃ = inclL/K̃ . So the isomorphism induced by g is of the
form Ψ(ϕ)→ Ψ(g · ϕ). Let us check that the map induced by Ψ is injective.
Let ϕ, ϕ′ ∈ HomQ -alg(K, K̃) and let f : ϕ(K) ·L→ ϕ′(K) ·L an isomorphism
of compositums. Then f ◦ inclK̃/L = inclK̃/L and f is the identity over L,
so f can be extended as an isomorphism g ∈ J . Since f is a morphism of
compositums, gϕ = ϕ′, hence ϕ ∼ ϕ′.

Let us check it is surjective. By lemma 2.15, every compositum in
Compos(K,L) is isomorphic to a compositum where ιL = inclL/K̃ . Let

ιK : K → K̃ be an embedding, then we can always pick ϕ = ιK .
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Proposition 2.17. There is a bijection

Φ: J\G/H → Compos(K,L), JgH 7→ (gK · L, k 7→ g · k, inclL/K̃).

Its inverse is

Φ−1 : Compos(K,L)→ J\G/H, (C, ιK , ιL) 7→


JgH
with g such that

ιK(α) = g · α ∈ K̃
.

Proof. The proposition derives from the two lemmas 2.15 and 2.16.

Example 2.18. With the notations of example 2.7, we saw that H\G/H
has two equivalence classes: the class of 1 and the class of (1, 3).

Let K̃ be a Galois extension of Q, of Galois group S3, and let K be
the subfield of K̃ fixed by H, the subgroup of G spanned by a transposi-
tion τ . Then Compos(K,K) will have two elements. One of them will be
(K, idK , idK) and the other one will be (K̃, ι1, inclK,K̃) where ι1 : K → K̃ is
the action of τ .

Now, using the bijection described in proposition 2.17 and the isomor-
phisms described in section 2.1, we obtain an “action” of Compos(K,L) on
various R-modules. In the rest of the section we will describe these actions.

Proposition 2.19. The map

Φ: Compos(K,L)→ HomR[G](R[G/J ], R[G/H])

(C, ιK , ιL) 7→


ϕ such that
ϕ(1 · J) =

∑
γH∈G/H
JγH=JgH

γH

with g such g · α = ιK(α)

is injective.

Proof. This is derived from the proposition 2.17, using the isomorphism of
proposition 2.3.

Let us choose an embedding of K in C and an embedding of L in C. By
the primitive element theorem, we can consider elements α, β of C such that
K ≃ Q(α) and L ≃ Q(β). Let f, fL be the minimal polynomials of α and β,
and let Z,ZL be the sets of roots of f and fL respectively.
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Proposition 2.20. There is an injective morphism

Φ: Compos(K,L)→ HomR[G](R[ZL], R[Z])

(C, ιK , ιL) 7→


ϕ such that
ϕ(β) =

∑
a∈ZL

J·a=J·ιK (α)

γH

with g such that g · α = ιK(α)

.

Proof. This is derived from proposition 2.19, using the isomorphism of propo-
sition 2.8.

For roots α′ of f in C, we denote by σα′ the embedding of K in C that
sends α to α′. Similarly, denote by τβ′ the embedding of L in C that sends β
to β′.

Proposition 2.21. The map

Φ: Compos(K,L)→ HomR[G](R[Hom(L,C)], R[Hom(K,C)]),

(C, ιK , ιL) 7→

 ϕ such that
ϕ(τβ) =

∑
σ∈Hom(K,C)

(C,ιK,ιL)∼(C′,σ,τβ)

σ

is injective.

Proof. This is derived from proposition 2.19, using the isomorphism of propo-
sition 2.9.

As for the propositions 2.8 and 2.9, these two previous propositions are
very similar. The formulation with roots of polynomial will often be more
useful for implementation, while the formulation with complex embedding
will be prefered for theoretical results.

Remark 2.22. Let (C, ιK , ιL) be a compositum of K and L, and let ϕ the
corresponding element of HomR[G](R[Hom(L,C)], R[Hom(K,C)]). We can
obtain a nicer way to write ϕ(τβ):

ϕ(τβ) =
∑

σ∈Hom(K,C)
(C,ιK,ιL)∼(C′,σ,τβ)

σ =
∑

σ∈Hom(K,C)

|Eσ,τβ | · σ

where Eσ,τβ = {f ∈ Hom(C,C)|σ = f ◦ ιK and τβ = f ◦ ιL}.
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And from that form we can deduce a general expression for ϕ(τ) for every
complex embedding τ .

Proposition 2.23. Let (C, ιK , ιL) be a compositum of K and L, and let ϕ
the corresponding element of HomR[G](R[Hom(L,C)], R[Hom(K,C)]). For all
τ ∈ Hom(L,C),

ϕ(τ) =
∑

σ∈Hom(K,C)

|Eσ,τ | · σ

where Eσ,τ = {f ∈ Hom(C,C)|σ = f ◦ ιK and τ = f ◦ ιL}.

Proof. Let τ = γ · τβ with γ ∈ G. (We can always write τ in that form,
because g acts transitively on the elements of Hom(L,C)).

Then,

ϕ(τ) = γ · ϕ(τβ) =
∑

σ∈Hom(K,C)

|Eσ,τβ |(γ · σ)

=
∑

γ−1·σ∈Hom(K,C)

|Eγ−1·σ,τβ | · σ.

But we have Eγ−1·σ,τβ = Eσ,γ·τβ = Eσ,τ because γ : Hom(K,C)→ Hom(K,C)
is a bijection.

So finally,

ϕ(τ) =
∑

σ∈Hom(K,C)

|Eσ,τ | · σ

because γ : Hom(C,C)→ Hom(C,C) is a bijection.

Similarly, for every R[G]-module V , a compositum C of K and L induces
a map from V H to V J . (The proof is similar to that of proposition 2.23.)

From now on, if x is an element of V H , we will denote by C · x the image
of x by this map.

Theorem 2.24. Let x be an element of K× and let C = (C, ιK , ιL) be a
compositum of K and L. Then C · x = NC/L(ιK(x)).

Proof. The bijection described in proposition 2.17 allows us to identify the
compositum (C, ιK , ιL) with an element J\g/H of J\G/H.

First, let us prove that the subfield of K̃ fixed by H ∩ (gJg−1) < G is C.
The subfield fixed by gJg−1 is g(L) = ιL(L). Denote by C̃ the field fixed by
H ∩ (gJg−1). All elements of K and ιL(L) are in C̃ so C ⊂ C̃. What’s more,
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if we denote by N the subgroup of G fixing C, then N is included both in H
and in gJg−1, so it is included in H ∩ gJg−1. We get C̃ ⊂ C, so we indeed
have K̃H∩(gJg−1) = C.

Now, we know that C ·x =
∏

δ∈HgJ/J δx =
∏

δ∈G/J
HgJ=HδJ

δx, we want to make

the change of variables δ = hg. For h, h′ ∈ H, we have hgJ = h′gJ if and
only if there exists j ∈ J such that h = h′(gjg−1), that is to say if and only if
h = h′ in H/(H ∩ (gJg−1)). This gives C · x =

∏
h∈H/(H∩(gJg−1)) hgx. Finally,

we obtain
C · x = NC/L(ιL(x))

as claimed.

In practice, to compute the action of Hecke operators between number
fields, the most efficient method is often to use the formula from theorem 2.24.
This will prove useful in particular in sections 5.2 and 7.3.

We also have the following additive version of theorem 2.24.

Proposition 2.25. Let x be an element of K and let C = (C, ιK , ιL) be a
compositum of K and L. Then C ·x = TrC/L(ιK(x)), where TrC/L is the trace
map.

Proof. The proof is similar to that of theorem 2.24.
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3 Mackey functors

A Mackey functor is an algebraic structure endowed with operations (induc-
tion, restriction and conjugation), satisfying some axioms (see definition 3.1)
similar to the induction, restriction and conjugation in group representa-
tion theory (see [45, section 7]). They were first introduced by Dress ([20],
[19]) and Green ([28]). However, they appear in a large variety of different
contexts, which makes their study interesting.

3.1 Definitions and properties

First let us recall the definition of a Mackey functor, as in [9].

Definition 3.1. Let G be a finite group and R a commutative ring. An
R-Mackey functor M = (M, c,Res, Ind) on G is a quadruple consisting of

• a family of R-modules M(H) for each H ≤ G,

• a family of homomorphisms of R-modules cg,H : M(H)→ M(gH), the
conjugation maps, for each g ∈ G, H ≤ G and gH = gHg−1,

• a family of homomorphisms of R-modules ResHJ : M(H) → M(J), the
restriction maps, for each J ≤ H ≤ G, and

• a family of homomorphisms of R-modules IndHJ : M(J) → M(H), the
induction maps, for each J ≤ H ≤ G,

such that the following axioms are satified:

• (Triviality) ch,H = ResHH = IndHH = idM(H) for all H ≤ G and h ∈ H.

• (Transitivity) cg′g,H = cg′,gH◦cg,H , ResJL ◦ResHJ = ResHL and IndHJ ◦ IndJL =
IndHL for all L ≤ J ≤ H ≤ G and g, g′ ∈ G.

• (G-equivariance) cg,J ◦ResHJ = Res
gH
gJ ◦cg,H and cg,J ◦IndHJ = Ind

gH
gJ ◦cg,J

for all J ≤ H ≤ G and g ∈ G.

• (Mackey formula) For all H ≤ G, U, J ≤ H, one has

ResHU ◦ IndHJ =
∑

h∈U\H/J

IndUU∩hJ ◦Res
hJ
U∩hJ ◦ch,J

where h ∈ H runs through a set of representatives for the double cosets
U\H/K.
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Definition 3.2. An R-Mackey functor M on G is called cohomological if the
axiom

IndHJ ◦ResHJ = [H : J ] idM(H), for all J ≤ H ≤ G

holds.

Now, in the rest of the section, let us see two results (theorem 3.3 and
theorem 3.4) that will link the formalism of Mackey functors to the objects
sudied in section 2.1.

Theorem 3.3. Let R be a commutative ring and G a group. The association
H 7→ R[G/H] for every subgroups H < G forms a cohomological Mackey
functor with the following operations:

• IndHK : R[G/K]→ R[G/H], gH 7→ gK for K < H.

• ResHK : R[G/H]→ R[G/K], gH 7→
∑

h∈H/K ghK for K < H.

• cg,H : R[G/H]→ R[G/gH], xH 7→ xg−1 gH

Proof. This result can be deduced from [51, example 4.1], with D the trivial
group. However, we will give here a more basic proof, by simply verifying all
the axioms.

1. Triviality

• For h ∈ H, we have ch,H : xH 7→ xh−1H = xH.

• What’s more, ResHH : gH 7→
∑

h∈H/H ghH = gH.

• Finally, IndHH : gH 7→ gH.

2. Transitivity:

• For all g, g′ ∈ G et H < G, we have cg′g,H : xH 7→ xg−1g′−1.g
′gH,

and cg′,gH ◦ cg,H : xH 7→ cg′,gH(xg−1.gH) = xg−1g′−1.g
′gH.

• For all L < K < H < G, we have IndHK ◦ IndKL = IndHL .

• For all L < K < H < G, we have

ResKL ◦ResHK : gH 7→
∑
k∈K/L

∑
h∈H/K

gkhH.
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Let us show that this last expression is equal to
∑

x∈H/L gxH.

Let hK ∈ H/K and kL ∈ K/L, to which we associate hkL ∈
H/L. Let us show that this association induces a bijection from
a set of representatives (h, k) of H/K ×K/L to a set of represen-
tatives of H/L.

Let h′ ∈ H/L, let h be a representative of the class of h′ in H/K,
we have k ∈ K a representative of h′−1h in K/L such that hk = h′

mod L.

Then we have to show it is injective. Consider (h, k), (h′, k′) with
h, h′ ∈ H in a set of representatives modulo K and k, k′ ∈ K in a
set of representatives modulo L, such that there exists l ∈ L such
that hk = h′k′l. Then h = h′(k′lk−1) so h = h′ mod K so h = h′.
And then hk = hk′l so k = k′l, so k = k′ mod L hence k = k′.

3. G-equivariance:

• For g ∈ G and K < H < G, we have

cg,K ◦ ResHK(xH) = cg,K(
∑

h∈H/K

xhK) =
∑

h∈H/K

xhg−1.gK.

And

Res
gH
gK ◦cg,H(xH) = Res

gH
gK(xg−1H) =

∑
h∈H/K

xhK) =
∑

h∈gH/gK

xhg−1.gK.

Those two sums are equal because we have h = h̃k if and only if
ghg−1 = gh̃g−1[gK].

• What’s more,

cg,H ◦ IndHK(xK) = cg,H(xH) = xg−1.gH

= Ind
gK
gH ◦cg,H(xH).

4. Mackey formula:

For H < G et U,K < H, we have

ResHU ◦ IndHK(xK) = ResHU (xH) =
∑

h∈H/U

xhU.
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And ∑
h∈U\H/K

IndUU∩hK ◦Res
hK
U∩hK ◦ch,k(xK) =

∑
h∈U\H/K

∑
hK/U∩hK

xh−1kU.

So we want to show that
∑

h∈U\H/K
∑

hK/U∩hK h
−1kU =

∑
g∈H/U gU .

We have
∑

g∈H/U gU =
∑

η∈K\H/U
∑

g∈H/U
KgU=KηU

gU , and∑
g∈H/U

KgU=KηU

gU =
∑

δ∈K/ηU∩K δηU =
∑

δ′∈η−1K/U∩η−1K δ
′ηU . Hence the

conclusion.

5. Cohomological property:

For K < H < G, we have

IndHK ◦ResHK(gH) = IndHK(
∑

h∈H/K

ghK) =
∑

h∈H/K

ghH = [H : K]gH.

Theorem 3.4. Let M be a cohomological Mackey functor. If H,K are sub-
groups of G and g an element of G, let us define the operator

THgK : M(K)→M(H), x 7→ IndHgK∩H ◦Res
gK
gK∩H ◦cg,K(x).

Then, all operators of this form follow the rules of compositions of R[H\G/K]
coming from the isomorphism of proposition 2.3.

Proof. One can find the proof in [51, theorem 4.1]. However, here is a more
down to earth proof:

Consider H,K, J < G and g, δ ∈ G. Let us consider

THgK : M(K)→M(H)

and
TJδH : M(H)→M(J).
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Then

TJδH ◦ THgK(x) = IndJδH∩J ◦Res
δH
δH∩J ◦cδ,H ◦ IndHgK∩H ◦Res

gK
gK∩H ◦cg,K(x)

= IndJδH∩J ◦Res
δH
δH∩J ◦

(
Ind

δH
δ(gK∩H) ◦cδ,gK∩H

)
◦ Res

gK
gK∩H ◦cg,K(x)

= IndJδH∩J ◦Res
δH
δH∩J ◦ Ind

δH
δ(gK∩H) ◦

(
Res

δgK
δ(gK∩H) ◦cδ,gK

)
◦ cg,K(x)

= IndJδH∩J ◦Res
δH
δH∩J ◦ Ind

δH
δ(gK∩H) ◦Res

δgK
δ(gK∩H) (◦cδg,K)

= IndJδH∩J ◦

 ∑
h∈δH∩H\δH/δ(gK∩H)

Ind
δH∩J
Γh

◦Res
hδ(gK∩H)
Γh

◦ch,δ(gK∩H)

 ◦ Res
δgK
δ(gK∩H) ◦cδg,K

( with Γh = (δH ∩ J) ∩hδ (gK ∩H).)

= IndJδH∩J ◦
∑

h∈δH∩H\δH/δ(gK∩H)

Ind
δH∩J
Γh

◦Res
hδ(gK∩H)
Γh

◦
(

Res
hδgK
hδ(gK∩H) ◦ch,δgK

)
◦ cδg,K

=
∑

h∈δH∩H\δH/δ(gK∩H)

IndJΓh
◦Res

hδgK
Γh
◦chδg,K .

But we also have

IndJΓh
= IndJ∩hδgK ◦ IndJ∩

hδgK
Γh

and
Res

hδgK
Γh

= ResJ∩
hδgK

Γh
◦Res

hδgK
J∩hδgK

and
IndJ∩

hδgK
Γh

◦ResJ∩
hδgK

Γh
= [H : K]idM(H)

since M is a cohomological Mackey functor.
Hence finaly

TJδH ◦ THgK = [H : K]
∑

h∈δH∩H\δH/δ(gK∩H)

IndJJ∩hδgK ◦Res
hδgK
J∩hδgK ◦chδg,K

= [H : K]
∑

h∈δH∩H\δH/δ(gK∩H)

TH(hδg)K .

46



Proposition 3.5. Let R be a ring, G a group, H < G a subgroup and {Ji}
a set of subgroups. If we have ϕ :

⊕m
i=1R[G/Ji] → R[G/H] a morphism

of R[G]-modules and ψ : R[G/H] →
⊕m

i=1R[G/Ji] a morphism of R[G]-
modules, such that ϕ ◦ ψ = d · idR[G/H], then for every cohomological Mackey
functor M , there exists ϕM :

⊕m
i=1M(Ji) → M(H) and ψM : M(H) →⊕m

i=1M(Ji) such that ϕM ◦ ψM = d · idM(H).

Proof. One can find a proof in [9, corollary 1.4]. However, here is an other
proof using theorem 3.4.

We can view the morphism ϕ :
⊕m

i=1R[G/Ji] → R[G/H] as a sum of
morphisms ϕi : R[G/Ji]→ R[G/H].

Similarly, if we denote by πj the projection
⊕m

i=1R[G/Ji]→ R[G/Jj], we
can view the morphism ψ : R[G/H]→

⊕m
i=1R[G/Ji] as a sum of morphisms

ψj : R[G/H]→ R[G/Jj], with ψj = πj ◦ ψ.
Then, by proposition 2.3, we can associate every ϕi with an element of

R[Ji\G/H], and every ψj with an element of R[H\G/Jj].
By theorem 3.4, we can then associate to every ϕi an operator Tϕi : M(Ji)→

M(H), and to every ψj an operator Tψj
: M(H)→M(Jj).

Then, we take ϕM =
∑

i Tϕi and ψM =
∑

j Tψj
.

Since ϕM and ψM follow the same composition law as ϕ and ψ, by theo-
rem 3.4, then we have ϕM ◦ ψM = d · idM(H) as claimed.

Remark 3.6. The statement of proposition 3.5 does not describe the forms
of ϕM and ψm, but we see in the proof that we can describe them more
precisely. They are obtained by decomposing ϕ and ψ into sums of morphisms
respectively R[G/Ji] → R[G/H] and R[G/H] → R[G/Ji], expressing these
morphisms as elements of H\G/Ji or Ji\G/H and then applying theorem 3.4.

3.2 Normed Mackey functors

In several cases of applications of Mackey functors, the modules M(H)
naturally come equipped with a lattice structure (ie they are normed R-
modules). The goal of this section is to enrich the theory of Mackey functors
to take into account such norms on the modules M(H) and keep track of the
relations between the lattice structures of the various M(H). This section is
largely based on the article [1], which is still in preparation.

First, let us give some context to motivate the study of normed Mackey
functors.

47



In [48], the author studies relations between the successive minima of
arithmetically equivalent number fields (see definitions 3.7 and 3.8).

Definition 3.7.

• Let K be a number field. The Dedekind zeta function of K is the map
ζK defined for complex numbers s such that Re(s) > 1, by

ζK(s) =
∑
a̸=0

ideal of ZK

[ZK : a]−s.

• Two number fields K and K ′ are said to be arithmetically equivalent if
they have the same Dedekind zeta function.

Definition 3.8. Let K be a number field of degree d and let σ1, · · · , σd be
the complex embeddings of K.

• The Minkowski embedding of K is the map

ι : K → Cd, v 7→ (σ1(v), · · · , σd(v)).

• We can then define a euclidean norm ||.|| on K, by

∀v ∈ K, ||v|| =
√

1

d
(|σ1(v)|2 + · · ·+ |σd(v)|2).

• The i-th successive minimum of K is the smallest λi ∈ R such that the
set {v ∈ ZK , ||v|| ≤ λi} contains i Q-linearly independent elements.

The main result in [48] is the following theorem:

Theorem 3.9 (Theorem 1 of [48]). Let d ≥ 1 be an integer. There ex-
ists a constant cd > 0 such that the following holds. Let K and K ′ be two
arithmetically equivalent number fields of degree d. Let λ1 ≤ · · · ≤ λd and
λ′1 ≤ · · · ≤ λ′d be the multisets of successive minima of K and K ′. Then for
all i, we have

λi ≤ cdλ
′
i.

To obtain a bound on the constant cd, one method (used in [48, proposi-
tion 6]) is to find a linear map ϕ : K → K ′ such that
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1. ϕ is an morphism of Q-vector space,

2. we have the inclusion ϕ(ZK) ⊆ ZK′ ,

3. for every non zero v ∈ ZK , we find a bound on ||ϕ(v)||
||v|| .

We know that the maps K → K ′ induced by Hecke operators satisfy
the conditions 1 and 2 by proposition 2.25. The results in this section will
allow us to find a bound for condition 3. (See in particular lemma 3.15 and
theorem 3.16).

Now, let us recall some preliminary definitions, before defining the main
objects of this section, normed Mackey functors, in definition 3.14.

Definition 3.10. A normed domain R is a domain equipped with a norm
map | · | : R→ R≥0 such that for all x, y ∈ R,

1. we have |x| = 0 if and only if x = 0,

2. and |xy| = |x||y|,

3. and |x+ y| ≤ |x|+ |y|.

Note that a norm on a normed domain R can be extended to the field of
fractions of R.

Definition 3.11. If R is a normed domain, a semi-normed R-module A is
an R-module equipped with a semi-norm || · || : A→ R≥0, ie a map such that
for all x, y ∈ A, and for all r ∈ R,

1. there exists some z ∈ A such that ||z|| ≠ 0,

2. we have ||rx|| = |r| · ||x||,

3. and ||x+ y|| ≤ ||x||+ ||y||.

Definition 3.12. If f : A→ B is a R-module homomorphism between semi
normed R-modules, then the operator norm of f is

||f || = inf{r ∈ R; ||f(a)|| ≤ r||a||, for all a ∈ A}.

It can be either a real number or ∞. We say the map f is bounded if
||f || <∞.
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Proposition 3.13. With the notations of definition 3.12, if ||f || <∞, then
for every a ∈ A, we have ||f(a)|| ≤ ||f || · ||a||, i.e. the inf in the definition is
actually a min.

Proof. For all a ∈ A, the set Sa = {r ∈ R; ||f(a)|| ≤ r||a||} is a closed interval
in R, so it contains its infimum.

Definition 3.14. If R is a normed domain, then a normed R-Mackey
functor is a cohomological Mackey functor M such that

• for every subgroup H < G, the R-module M(H) is semi-normed,

• for every subgroup K < H of G, and every g ∈ G, the maps cg,H and
ResHK have operator norm bounded by 1,

• for every subgroup K < H of G, the map IndHK has operator norm
bounded by max{1, |[H : K]|}.

A normed Z-Mackey functor where we use the absolute value on Z will be
called a normed Mackey functor.

The max in the definition is superfluous in the examples that we will
develop here, but it is necessary for examples over function fields that will
be presented in [1].

In the rest of the section, we will apply these definitions to the context
of Hecke operators. The main result will be theorem 3.16. Then we will give
some examples.

Lemma 3.15. Let M be a normed Mackey functor. If U1, U2 are subgroups
of G, g an element of G, and x inM(U1), then, with the notations of theorem
3.4, we have

||TU1gU2|| ≤ max{1, |[U2 : g−1

U1 ∩ U2]|}.

Proof. By definition, we have ||TU1gU2(x)|| = || IndU1
gU2∩u1 ◦Res

gU2
gU2∩U1

◦cg,U2(x)||.
The result then follows from the definition 3.14 of normed Mackey func-

tors, since cg,U2 and Res
gU2
gU2∩U1

have operator norm bounded by 1, and IndU1
gU2∩U1

has operator norm bounded by max{1, |[U2 : g−1
U1 ∩ U2]|}.

Theorem 3.16. Let R be a normed domain with field of fractions k, and
let M be a normed R-Mackey functor on a finite group G. Let U1, · · ·Un
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and U ′
1, · · ·U ′

m be subgroups of G for which there exists an epimorphism of
k[G]-modules

Φ:
⊕
i

k[G/Ui]→
⊕
j

k[G/U ′
j].

Then there is a R-linear map

ϕ :
⊕
i,j

M(Ui)
Ui\G/U ′

j →
⊕
j

M(U ′
j)

such that the base change ϕ ⊗ k is surjective and such that ϕ has operator
norm bounded by

max{1,max{|[U ′
i : gUjg

−1 ∩ U ′
i ]| for g ∈ G, i = 1, · · ·m, and j = 1, · · · , n}}.

Proof. We can decompose the morphism Φ in Φ =
∑n

i=1 Φi with Φi : k[G/Ui]→⊕
j k[G/U ′

j].
Then, if we denote by πk the projection

⊕
j k[G/U ′

j] → k[G/U ′
k], with

1 ≤ l ≤ m, then for all i, we have Φi =
∑m

j=1 Φi,j with Φi,j = πj ◦ Φi. Hence
Φ =

∑
i,j Φi,j with Φi,j : k[G/Ui]→ k[G/U ′

j].
Then, for every pair (i, j), Φi,j is the morphism associated to an element∑
k Uigi,j,kUj of k[Ui\G/Uj] by the isomorphism of proposition 2.3. So by

theorem 3.4, we have

ϕ =
∑
i,j

T∑
k Uigi,j,kUj

:
⊕
i,j

M(Ui)
Ui\G/U ′

j →
⊕
j

M(U ′
j).

And the bound on the operator norm is a direct result of lemma 3.15.

Example 3.17. Let V be a Z[G]-module, equipped with a G-invariant eu-
clidean inner product. For every H < G, denote by M(H) = V H the set of
points in V fixed by the action of H.

Then M is a Mackey functor with

• for H < G and for g ∈ G, cg,H : M(H)→M(gH), x 7→ g · x,

• for H < J < G, ResHJ : M(H)→M(J), x 7→ x,

• also for for H < J < G, IndHJ : M(J)→M(H), x 7→
∑

h∈H/J h · x.
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In addition, M is normed, using the restriction of the euclidean norm
to V H .

Proof. First let us prove thatM is a Mackey functor. The axioms of triviality,
transitivity and G-equivariance are immediate to verify.

For all H < G and U, J ≤ H, and for all x ∈M(J), we have

IndHU ◦ResHJ (x) =
∑

u∈U/H

u · x

and∑
h∈U\H/J

IndUU∩hJ ◦Res
hJ
U∩hJ ◦ch,J(x) =

∑
h∈U\H/J

IndUU∩hJ(h·x) =
∑

h∈U\H/J

∑
u∈U∩hJ/U

(uh)·x

So we have indeed IndHU ◦ResHJ (x) =
∑

u∈U/H u · x, so the Mackey formula
stands.

Then, let us prove that M is normed.

• Since V has a norm derived from the euclidean inner product, it is a
semi-normed Z-module, and then for all H < G, M(H) = V H is a
semi-normed Z-module, with the norm inherited from V .

• For every J < H < G and for every g ∈ G, it is clear that cg,H and
ResHJ are isometries.

• For every H < J < G and for every x ∈ M(J) = V J , we have
|| IndHJ (x)|| = ||

∑
h∈H/K h · x|| ≤

∑
h∈H/J ||h · x|| = |[J : H]| · ||x||.

So the operator norm of IndHJ is bounded by max{1, |[J : H]|}.

Example 3.18. Let K be a Galois extension of Q, and let G be its Galois
group. Then K is a semi-normed Z-module with the normed induced by the
Minkowski scalar product (see definition 3.8). If H < G, we will denote by
M(H) the subfield of K fixed by H. With these notations, M is a normed
Mackey functor, with:

• For H < G and g ∈ G, cg,H : x 7→ g · x

• For H < J < G, ResHJ : M(H)→M(J), x 7→ x
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• Also for H < J < G, IndHJ : M(J)→M(H), x 7→
∑

h∈H/J hx

This is simply a particular case of example 3.17.

By applying theorem 3.16 and example 3.18 to the particular case of a so
called Gassmann triple, i.e. an isomorphism of the form Q[G/H] ≃ Q[G/H ′],
we can recover [48, theorem 1]. In the article [1], in preparation, we plan
to study other examples of normed Mackey functors. In particular, we will
develop an analogy of the number field case (example 3.18) to curves over
functions fields. We will also study the case of Sunada isospectral manifolds
(see [47]).
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4 Norm relations

Suppose K/F is a Galois extension of number fields, of Galois group G.
In [7], the authors studied a type of relation in R[G], where R is a commu-
tative ring, called norm relation. They then derive from such relations an
inductive algorithm to compute the class group or the groups of S-units of K
by induction, reducing the problem to a similar problem on some auxiliary
subfields.

In section 4.1, we will define norm relations as in [7], and give some of
their important properties. We will call them “classical” norm relations, as
opposed to “generalised” norm relations, that we shall define and study in
section 4.2.

In all of this chapter, G will denote a finite group.

4.1 Classical norm relation

This section will be largely based on [7].

Definition 4.1. Let H be a subgroup of G. We call the element NH =∑
h∈H h ∈ Z[G] the norm element of H.

Definition 4.2. Let H be a set a subgroups of G and R a commutative ring.
A norm relation over R with respect to H is an equality in R[G] of the form

1 =
ℓ∑
i=1

aiNHi
bi

where ai, bi ∈ R[G], Hi ∈ H, and Hi ̸= 1.

Note that the Hi can appear with repetitions in the formula.

Example 4.3. The symmetric group S3 admits a norm relation over Q with
respect to H = {⟨(1, 2, 3)⟩, ⟨(2, 3)⟩}. Indeed, one can check that

1 =−N⟨2,3⟩((1, 2, 3) + 2 · (1, 3)) + (1, 2)N⟨2,3⟩((2, 3) + 2 · (1, 2, 3))

+N⟨(1,2,3)(2, 3, 4).

In [22], our approach was to propose a more general type of relations
(which we will study in section 4.2), and then generalise some of the main
results in [7]. Let us recall here some of the properties of classical norm
relations proven in [7], that we will adapt to generalised norm relation in
section 4.2.
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Proposition 4.4 (Proposition 2.10 of [7]). Let H be a set of non trivial
subgroups of G. Then the following are equivalent.

• There exists a norm relation in G over Q with respect to H.

• We have ⟨NH ;H ∈ H⟩Q[G] = Q[G] as a two sided ideal.

• For every simple Q[G]-module V , there exists H ∈ H such that V H ̸=
{0}.

• For every simple Q[G]-module V , there exists H ∈ H such that V H ̸=
{0}.

• For every simple C[G]-module V , there exists H ∈ H such that V H ̸=
{0}.

Now let us consider a relation in Z[G] of the form

d =
ℓ∑
i=1

aiNHi
bi (1)

with Hi < G, ai, bi ∈ Z[G] and d ∈ Z>0. That is to say a norm relation over
Q where we multiplied each side by an adequate integer d to get a relation
in Z[G].

In order to state proposition 4.7, we first need the following definitions:

Definition 4.5. Let R be a commutative ring. The annihilator of a subset
S of an R-module M is Ann(S) = {r ∈ R;∀x ∈ S, rx = 0}.

Definition 4.6. The exponent of a Z-module is the positive generator of the
group of annihilators.

Proposition 4.7 (Proposition 3.1 of [7]). Let M be a Z[G]-module. If G
admits a relation of the form (1), then the exponent of the quotient

M/
ℓ∑
i=1

aiM
Hi

is finite and divides d.
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Proposition 4.7 is quite general since it works for any finite group G and
any Z[G]-module M . For our purposes, we want to apply it to the context
of number fields. That will be done with corollary 4.10. However, to state
it, we first need to define S-units, and saturation.

Let K/Q be a Galois extension of number fields, of Galois group G.

Definition 4.8. Let S be a G-stable set of non zero prime ideals in the ring
of integers ZK of K. The group Z×

K,S of S-units of K is the subgroup of K×

defined by
Z×
K,S = {x ∈ K×; vp(x) = 0 for all p /∈ S}

where vp is the p-adic valuation.
If L is a subfield of K, then we will define the S-units of L to be Z×

L,S =

Z×
L,S′ with S ′ = {L ∩ p|p ∈ S}.

With this definition, the multiplicative group Z×
K,S is a Z[G]-submodule

of K×, and for every subgroup H < G, we have (Z×
K,S)H = Z×

KH ,S
.

Definition 4.9. Let V be a finitely generated subgroup of K×, and let d be
a positive integer. The d-saturation of V is the smallest subgroup W ⊂ K×

such that V ⊂ W and K×/W is d-torsion free. This is equivalent to adding
to V all possible di-th roots in K×, for all i ∈ Z≥1.

Similarly, the saturation of V is the smallest subgroup W ⊂ K× such
that V ⊂ W and K×/W is torsion free.

In particular, the group ZK,S is saturated.
When V is a Q[G]-module and a ∈ Q[G], we will denote by V a the image

of V by the action of a.

Corollary 4.10 (Corollary 3.4 of [7]). If G admits a norm relation of the
form (1), then the exponent of the quotient

Z×
K,S/(Z

×
KH1 ,S

)a1 · · · (Z×
KHℓ ,S

)aℓ

is finite and divides d. In particular, the group Z×
K,S of S-units of K equals

the d-saturation of the Z[G]-module generated by (Z×
KH1 ,S

) · · · (Z×
KHℓ ,S

).

This corollary is the cornerstone of an algorithm described in [7] to com-
pute inductively the group of S-units of number fields. See section 5.1.
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4.2 Generalised norm relations

Now, let us give a generalisation of definition 4.2, and see how the properties
in section 4.1 can be adapted to this new definition.

Definition 4.11. Let H be a subgroup of G, J a set a subgroups of G and
R a commutative ring. A generalised norm relation over R with respect to
H and J is an equality in R[G] of the form

NH =
ℓ∑
i=1

aiNJibi

where ai, bi ∈ R[G], Ji ∈ J , and Ji ̸= 1.

Remark 4.12. • Clearly, with the notations above, a classical norm re-
lation is a generalised norm relation where H is the trivial subgroup.

• If a finite group G admits a generalised norm relation over a commuta-
tive ring R with respect to H < G and J = {J1, · · · , Jℓ} with Ji < G,
let J̃1 be a subgroup of G conjugate to J1. Then G admits a generalised
norm relation over Q with respect to H and J̃ = {J̃1, J2, · · · , Jℓ}.

• With the same notations, let Jℓ+1 be any other subgroup of G, then
G admits a generalised norm relation over Q with respect to H and
J2 = {J1, · · · , Jℓ, Jℓ+1}.

Example 4.13. Let G = S4 seen as the group of permutations of the set
{1, 2, 3, 4}, and let H = ⟨(1, 2), (3, 4)⟩ ≃ C2 × C2.

If we take J1 = ⟨(1, 4)(2, 3), (1, 3)(2, 4), (3, 4)⟩ ≃ D8 and
J2 = ⟨(3, 4), (2, 4, 3)⟩ ≃ S3, then, one can check that we have a relation

2NH = a1NJ1b1 + a2NJ2b2

with a1 = −1G, a2 = 1G + (1, 2), b1 = (2, 3, 4) + (2, 4) and b2 = (3, 4) +
(1, 2, 4, 3).

The following proposition will give us some equivalent definitions of gen-
eralised norm relations. It is very similar to proposition 4.4 in the case of
classical norm relations.

Proposition 4.14. Let H be a subgroup of G, and J = {J1, · · · , Jℓ} a set
of non trivial subgroups of G. Then the following assertions are equivalent:
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1. There exists a surjective morphism of Q[G]-modules

ϕ :
ℓ⊕
i=1

Q[G/Ji]
ni → Q[G/H]

where for all i, ni ∈ Z>0.

2. If e1, . . . , er are the central primitive idempotent elements of Q[G], then
for all 1 ≤ i ≤ r, if eiNH ̸= 0, there exists J ∈ J such that eiNJ ̸= 0.

3. For all simple Q[G]-module V , if V H ̸= 0, there exists J ∈ J such that
V J ̸= 0.

4. For all simple Q[G]-module V , if V H ̸= 0, there exists J ∈ J such that
V J ̸= 0.

5. For all simple C[G]-module V , if V H ̸= 0, there exists J ∈ J such that
V J ̸= 0.

6. The norm element NH is in the two sided ideal ⟨NJ : J ∈ J ⟩Q[G].

7. The group G admits a generalised norm relation over Q with respect to
H and J .

Proof.

• 1 ⇒ 3. We know there is an isomorphism of R-modules between V H

and HomQ[G](Q[G/H], V ).

Likewise, for all i, V Ji is isomorphic to HomQ[G](Q[G/Ji], V ). Suppose
1, then we have the following diagram, where fH is an element of V H

seen as an element of HomQ[G](Q[G/H], V ), and the fJi are elements of
HomQ[G](Q[G/Ji], V ).
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Q[G/H]

V
⊕r

i=1 Q[G/Ji]
ni

fH ̸= 0 ∈ V H

ϕ surjective

fH ◦ ϕ =:
∑r

i=1 fJi ̸= 0

So
∑r

i=1 fJi is non zero, so at least one of the fJi is non zero, hence the
conclusion.

• 2 ⇔ 3. Let Vi be the simple Q[G]-module (unique up to isomorphism)
such that eiVi ̸= 0 then Q[G]/(1−ei) acts faithfully on Vi. So eiNH = 0
if and only if NH · Vi = 0, so if and only if ( 1

|H|NH) · Vi = 0 which is

equivalent to V H
i = 0.

• 3 ⇒ 1. Suppose 3, then let V = Q[G/H]. Then V is a Q[G]-module,
and V can decompose as V =

⊕
k Vk, where the Vk are simple. For

all k, let fk : V → Vk the projection. It can be seen as an element of
V H
k by 2.1. Then there exists a non zero element of V Ji

k for some i,

by lemma 3. So we have a nonzero morphism
⊕ℓ

i=1 Q[G/Ji]
ni → Vk so

it is surjective because Vk is simple. Hence the conclusion by putting
together all the k.

• 3⇒ 4. Suppose 3, let W be a simple Q[G]-module. W is isomorphic to
a submodule of V ⊗Q Q, with V a simple Q[G]-module. Then we have

V ⊗Q Q ≃
⊕k

j=1Wj, where the Wj are simple Q[G]-modules. So W is
isomorphic to one of the Wj. What’s more, the Wj are pairwise Galois
conjugate, so dimQ W

H
j = dimQ W

H
1 for all j. So if WH is non zero,

V H is also non zero. So, by 3, there exists J ∈ J such that V J is non
zero. Hence W J ̸= 0.
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• 4 ⇒ 5. The simple C[G]-modules are exactly the V ⊗Q C, where V is a

simple Q[G]-module. The conclusion follows.

• 5 ⇒ 4. Suppose 5, let V a simple Q[G]-module. If V H ̸= 0, then
(V ⊗Q C)H ̸= 0. So, by 4., there exists J ∈ J such that (V ⊗Q C)J ̸= 0.

Hence V J ̸= 0.

• 4 ⇒ 3. Suppose 4, let V a simple Q[G]-module such that V H ̸= 0.
Consider V ⊗Q Q ≃

⊕k
j=1Wj. We know that WH

j ̸= 0 for all j. So

there exists J ∈ J such that W J
1 ̸= 0. So V J ̸= 0.

• 3 ⇔ 6. Let I be a two-sided ideal of Q[G]. We have I =
∑r

i=1 eiI.
What’s more, there is an isomorphic projection of eiI in a two sided
ideal of the algebra Q[G]/(1−ei), which is simple. So eiI is either zero,
or eiQ[G]. By applying this result to I = ⟨NJ : J ∈ J ⟩Q[G], we find the
equivalence.

• 6 ⇔ 7. This equivalence comes directly from the definition of a gener-
alised norm relation.

We will want to apply the concept of generalised norm relations to solve
some algorithmic problem in the context of number fields. For convenience,
let us define a notion of generalised norm relations between number fields:

Definition 4.15. Let K,L1, · · · , Lℓ be number fields. Let Ω be a Galois
extension of Q containing K and all the Li, and let G its Galois group. We
denote by H the subgroup of G fixing K, and by Yi the ones fixing the Li
respectively. Then we say there is a generalised norm relation between K
and the Li if there is a generalised norm relation over Q with respect to H
and the Yi.

Example 4.16. There is a generalised norm relation between the number
field K defined by f(x) = x6 − 6x4 + 9x2 + 23 and the number fields L1, L2

respectively defined by g1(x) = x3 − 9x − 27 and g2(x) = x2 + 207. Indeed,
K/Q is a Galois extension of Galois group G = S3, and L1, L2 are the sub-
groups fixed respectively by Y1 = ⟨(2, 3)⟩ and Y2 = ⟨(1, 2, 3)⟩, and G admits
a classical norm relation over Q with respect to J = {Y1,Y2} (see example
4.3), which can be seen as a generalised norm relation with respect to H = 1
and J .
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Suppose there is a generalised norm relation between some number fields
K and L1, · · · , Lℓ. In chapter 5, we will describe some algorithms to compute
the class group or the group of S-units of K inductively, by reducing the
problem to the same computation in the auxiliary fields L1, · · · , Lℓ. But this
method is only interesting when the Li are of degree smaller than the degree
of G.

Definition 4.17. We will say a generalised norm relation between a number
field K and some other number fields L1, · · · , Lℓ is useful if the degrees of all
the Li are smaller than the degree of K. Similarly, if G admits a generalised
norm relation over Q with respect to H < G and a set of subgroups J =
{J1, · · · , Jℓ}, then we will say the relation is useful if the orders of all the Ji
are larger than the order of H.

Theorem 4.18. Suppose there is a generalised norm relation between a num-
ber field K and some Li that are not necessarily contained in the Galois
closure K̃ of K. Denote by Ω a Galois extension of Q of Galois group G
containing K̃ and all the Li. Let N ,H and the Yi be the subgroups of G
fixing K̃,K and the Li as in the diagram below.

Ω

K̃

K

F = Q

Li

N

H

G

Yi

H

G
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Then there is also a generalized norm relation between K and some Mi

that are contained in K̃.

Proof. We have N =
⋂
g∈G gHg−1. What’s more, N is normal in G and

G = G/N and H = H/N . Since there is a generalised norm relation between
the Li and K, there exists a relation of the form NH =

∑
i aiNYi

bi ∈ Q[G].
Consider the projection

π : Q[G]→ Q[G/N ] = Q[G],
∑
i

λigi 7→
∑
i

λigi.

This map π is a surjective morphism of Q-algebras. Composing the relation
by π we get

π(NH) = |N |NH =
∑
i

π(ai)π(NYi
)π(bi)

and

π(NYi
) = |N ∩ Yi|NYi/(N∩Yi).

So there is a generalised norm relation between K and the Mi = ΩYi/N ⊆
K̃. Note that if for some i, Yi ⊂ N , then K̃ ⊂ Li, and therefore the relation
was not useful.

Theorem 4.18 will be helpful in particular when we will want a method
to look for all generalised norm relations involving a number field (see sec-
tion 4.5): we know we will only have to look at subfields of the Galois closure.

Now, in the rest of the section, let us prove some characterizations of
generalised norm relations, with Hecke operators.

Lemma 4.19. Let V be a R[G]-module, with 1
|H| ∈ R, and ϕ : V → R[G/H]

a surjective morphism of R[G]-modules. There exists a preimage of 1H by ϕ
that is in V H .

Proof. Since ϕ is surjective, there exists v ∈ V such that ϕ(v) = 1H. Now
consider the element v′ = 1

|H|
∑

h∈H h · v.

Then, clearly, v′ ∈ V H , and ϕ(v′) = 1
|H|

∑
h∈H ϕ(h · v) = 1

|H|
∑

h∈H h ·
ϕ(v) = 1

|H|
∑

h∈H h · 1H = 1H.
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Proposition 4.20. We have a generalised norm relation, given by a surjec-
tion

ϕ :
⊕
i

Q[G/Ji]→ Q[G/H],

(where the Ji are not necessarily distinct) if and only if there exist µi,h and
λi,k elements of Q, and δi,h and gi,k elements of G such that

1H =
∑
i

T∑
h µi,hJiδi,hH

∑
k

λi,kgi,kJi,

where the equality takes place in in (
⊕

i Q[G/Ji])
H .

Proof. Suppose there exists ϕ :
⊕

i Q[G/Ji] → Q[G/H] surjective. Let us
consider

⊕
i

∑
k λi,kgi,kJi a preimage of 1H. By lemma 4.19, we can suppose⊕

i

∑
k λi,kgi,kJi is in (

⊕
i Q[G/Ji])

H

Let us write ϕ =
⊕

i ϕi with ϕi : Q[G/Ji]→ Q[G/H]. Then we have

1H =
∑
i

ϕi(
∑
k

λi,kgi,kJi).

Then, by writing ϕi =
∑

h µhTJiδi,hH = T∑
h µi,hJiδi,hH

, we can obtain

1H =
∑
i

T∑
h µi,hJiδi,hH

∑
k

λi,kgi,kJi

Considering the action of Hecke operators on the module of S-units, we
then obtain the following corollary:

Corollary 4.21. Let S be set of non-zero prime ideals of OK. If there is
a generalised norm relation between K and the auxiliary fields Ki, then the
map

Φ:
ℓ⊕
i=1

⊕
C∈Compos(Ki,K)

O×
Kj ,S
→ O×

K,S

ℓ⊕
i=1

⊕
C∈Compos(Ki,K)

ai,C 7→
ℓ∑
i=1

∑
C∈Compos(Ki,K)

C · ai,C

has an image of finite index.
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Theorem 4.22. If L1, · · · , Lℓ are number fields, defined by the polynomials
f1, · · · , fℓ, and if we denote by Ri the set of roots of fi in C, then K = Q(α)
admits a generalised norm relation with respect to L1, · · · , Lℓ, if and only if
there is a relation of the form

α =
ℓ∑
i=1

∑
C∈Compo(K,Li)

∑
β∈Ri

ai,C,βC · β

where the coefficients ai,C,β are in Q.

Proof. This theorem is a rephrasing of proposition 4.20 using the isomor-
phisms of part 2.2.

4.3 Optimal coefficient

In [7], the authors define the notion of denominator of a norm relation in the
following way:

Definition 4.23 (Definition 2.15 of [7]).

• Let G be a finite group, and let H be a set of non-trivial subgroups
of G. Then the optimal denominator d(H) relative to H is the unique
non negative integer such that

d(H)Z = Z ∩ ⟨NH |H ∈ H⟩Z[G].

• Let 1 =
∑ℓ

i=1 aiNHi
bi be a classical norm relation with Hi ∈ H, then

the least common denominator of the coefficients of the ai and bi is
called the denominator of the relation.

That way, given a finite group G and H a set of non-trivial subgroups,
there exists a norm relation over Q if and only if d(H) ̸= 0. In that case,
d(H) divides the denominator of the relation, and there exists a relation with
denominator d(H).

Then, in [7, Theorem 2.20], they prove that if d(H) is positive, then
it divides |G|, which is later useful to study the time complexity of some
algorithms (see [7, Theorem 4.18]).

While generalizing the definition of optimal denominator for the context
of generalised norm relations has some interest (see section 4.4), we will
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prefer to define another similar notion, that fits more naturally with the
Hecke operators point of view of generalised norm relations.

Definition 4.24. Let H, J1, · · · , Jℓ be non trivial subgroups of G, and let
J = {J1, · · · , Jℓ}. If there is a norm relation over Q with respect to H
and J , we define the optimal coefficient c(J , H) to be the smallest pos-
itive integer such that there exists an injective morphism of Z[G]-module
ψ : Z[G/H] →

⊕
i Z[G/Ji]

ni with ni ∈ Z≥0 for all i, and a morphism of
Z[G]-module ϕ :

⊕
i Z[G/Ji]

ni → Z[G/H] such that ϕ ◦ ψ = c(J , H) · id.

To prove that the optimal coefficient is well defined, we start by giving a
more general proposition.

Proposition 4.25. Let Γ be a finite group, and let H1, · · · ,Hr,Y1, · · · ,Ys
be some subgroups of Γ. Let M =

⊕
i Q[Γ/Hi] and N =

⊕
j Q[Γ/Yj].

1. If there exists a surjective morphism of Q[Γ]-modules

Φ: M → N,

then there is an injective morphism of Q[Γ]-modules

Ψ: N →M

such that Ψ ◦ Φ = idN .

2. Similarly, If there exists an injective morphism of Q[Γ]-modules

Ψ: N →M,

then there is a surjective morphism of Q[Γ]-modules

Φ: M → N

such that Ψ ◦ Φ = idN .

Proof. Let us prove 1. Since Q[Γ] is a semi-simple algebra, this means
we can write the decomposition in simple modules. Up to isomorphism,
N =

⊕n
j=1Wj and M =

⊕n
j=1Wj ⊕

⊕m
k=1 Vk, where the Wj and the Vk are

simple, and Φ is the projection. Then Ψ is the natural injection
⊕n

j=1Wj →⊕n
j=1Wj ⊕

⊕m
k=1 Vk.

The proof of 2 is similar.
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Proposition 4.26. With the notations of the definition above, c(J , H) is
well defined.

Proof. Since there is a norm relation over Q with respect to H and J , there
is a surjective Q[G]-module morphism

⊕
i Q[G/Ji]

ni → Q[G/H].
Consider an injection Ψ as in proposition 4.25, let c be the LCM of the

denominators of all coefficients of all the Ψ(gH) for gH ∈ G/H. Then c ·Ψ
induces an injective morphism of Z[G]-modules Z[G/H] →

⊕
i Z[G/Ji]

ni .
With the same reasoning, we can construct a morphism of Z[G]-modules
Φ:

⊕
i Z[G/Ji]

ni → Z[G/H] whose image is of finite index in Z[G/H]. And
then Ψ ◦ Φ is a multiple of idZ[G/H]. Hence the conclusion.

We now prove that the optimal coefficient is also smallest for the divisi-
bility relation.

Proposition 4.27. If c is a positive integer such that there exists ϕ and ψ
as in definition 4.24 such that ϕ ◦ ψ = c · idZ[G/H], then c(J , H) | c.

Proof. Consider the group

E = ⟨t2 ◦ t1|ni ∈ Z≥1∀i, t1 ∈ A1,(ni)i , t2 ∈ A2,(ni)i⟩Z ∩ Z idZ[G/H],

where
A1,(ni)i = HomZ[G](Z[G/H],

⊕
i

Z[G/Ji]
ni)

and
A2,(ni)i = HomZ[G](

⊕
i

Z[G/Ji]
ni ,Z[G/H]).

Then E is a subgroup of EndZ[G](Z[G/H]) contained in Z id, so E is of the
form aZ id with a ∈ Z≥0. And by definition, a = c(J , H). By construction,
c · id is in E, hence c(J , H) | c.

Theorem 4.28. With the notations of Definition 4.24, we have c(J , H) |
|G|2.

Proof. Let p be a prime number. Let O be a maximal order of Qp[G] con-
taining Zp[G]. By [16, 27.1, proposition] we have O ⊂ 1

|G|Zp[G].
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Consider MH = O · Zp[G/H] ⊂ Qp[G/H]. Then MH is an O-module,
and we have Zp[G/H] ⊂ MH ⊂ 1

|G|Zp[G]. Similarly, for all i, we write

MJi = O · Zp[G/Ji].
Let e1, · · · , er be central primitive idempotents of Qp[G] contained in O,

which exist since O is a maximal order. For all 1 ≤ i ≤ r, there is a
isomorphism α : O/(1− ei)→Mn(Λ), where Λ = Λi is the maximal order of
a division algebra D over Qp (see [42, theorem 17.3]). And α can be extended
to O with the projection O → O/(1− ei).

We have Mn(Λ) ⊂ Mn(D) and Mn(D) acts on Dn, which is the only
simple Mn(D)-module up to isomorphism.

So eiMH ⊗ Qp
∼= Dna with a ∈ Z≥1, since eiMH ⊗ Qp is a is a Mn(D)-

module. Similarly, ei
⊕

iM
ni
Ji
⊗ Qp

∼= Dnb, and thus eiMH
∼= Λna and

ei
⊕

iM
ni
Ji
∼= Λnb.

What’s more, we have a surjective morphism of Qp[G]-modules from
ei
⊕

iM
ni
Ji
⊗ Qp =

⊕
i Qp[G/Ji] to eiMH ⊗ Qp = Qp[G/H], which means

that a ≤ b.
Let us fix an injective morphism of O-modules i : Λna → Λnb. Let s be

a surjective morphism of O-modules Λnb → Λna, such that for all x ∈ Λna,
s ◦ i(x) = x.

That gives us, an injection of O-modules ψ̃ : eiMH → ei
⊕

iM
ni
Ji

, and a

surjection ϕ̃ :
⊕

iM
ni
Ji
→MH .

Let us denote ψ = |G|ψ̃ and ϕ = |G|ϕ̃. That way, ψ induces an injective
morphism Zp[G/H] →

⊕
i Zp[G/Ji]

ni and ϕ a morphism
⊕

i Zp[G/Ji]
ni →

Zp[G/H] with image of finite index in Zp[G/H]. And we have ϕ◦ψ = |G|2 id.
By doing the same reasoning over all ei and by putting together every

prime p, we obtain the claimed result.

4.4 Norm relation over finite fields

In this thesis, we will mostly apply generalised norm relations to compute
invariants of number fields (class groups or S-units groups, see chapter 5).
This is why we mainly study generalised norm relations over Q or over Z.
However, for future research, it would be interesting to study generalised
norm relations over finite fields, and this is what we begin to do in this
section.

For this context, we find it more convenient to use a straightforward gen-
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eralisation of optimal denominator (see definition 4.23 or [7, definition 2.15])
rather than the notion of optimal coefficient.

Definition 4.29. Let H, J1, · · · , Jℓ be non trivial subgroups of G, and let
J = {J1, · · · , Jℓ}. We define the optimal denominator d(J , H) to be the
unique non negative integer such that

d(J , H)ZNH = ZNH ∩ ⟨NJi |1 ≤ i ≤ ℓ⟩Z[G].

That way, we have d(J , H) > 0 if and only if there exists a generalised
norm relation.

We also have a way to control the size of the optimal denominator:

Proposition 4.30. Let H, J1, · · · , Jℓ be non trivial subgroups of G, and let
J = {J1, · · · , Jℓ}. If d(J , H) > 0, then d(J , H) divides |G|3.

The proof is very similar to that of theorem 4.28.

Proposition 4.31. Let H, J1, · · · , Jℓ be non trivial subgroups of G, and let
J = {J1, · · · , Jℓ}. Let J be the Jacobson radical of Fp[G]. Then the following
are equivalent:

1. p ∤ d(J , H)

2. There exists an extended norm relation over Fp with respect to J and
H.

3. There exists an identity in Fp[G]/J of the form NH =
∑

i aiNJibi, with
ai, bi ∈ Fp[G]/J .

4. For every simple Fp[G] module V , if NHV ̸= 0, there exists Ji ∈ J
such that NJiV ̸= 0.

5. For every simple Fp[G] module V , if NHV ̸= 0, there exists Ji ∈ J
such that NJiV ̸= 0.

This is an adaptation of [7, proposition 2.18] to generalised norm relations.
The proofs are very similar.
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• It is clear that 1 implies 2. Conversely, assume that

NH =
∑
i

aiNJibi

is a generalised norm relation over Fp. Pick arbitrary lifts ai, bi of ai, bi,
and let

δNH =
∑
i

aiNJibi.

We have NZ[G]/Z(δ) ≡ NFp[G]/Fp(1) ≡ 1 mod p, which is nonzero.
Therefore the norm is nonzero, the element δ is invertible in Q[G],and
the denominator d of δ−1 is coprime to p. Hence the relation

dNH =
∑
i

(dδ−1ai)NJibi

with d ∈ Z coprime to p, and (dδ−1ai) ∈ Z[G]. Therefore, p ∤ d(J , H).

• It is clear that 2 implies 3. Conversely, assume that

NH =
∑
i

aiNJibi

holds in Fp[G]/J . Pick arbitrary lifts ai, bi ∈ Fp[G] of ai, bi, and let

δNH =
∑
i

aiNJibi.

We have δ ≡ 1 mod J . Since 1 is invertible and J is a nilpotent two-
sided ideal, this implies that δ is invertible. We therefore have the
relation

NH =
∑
i

δ−1aiNJibi

in Fp[G]. So 3 implies 2.

• The proof of the equivalence between 3 and 4 is identical to that of
proposition 4.14, by considering the central primitive idempotent of
the semi-simple algebra Fp[G]/J .

• The proof of the equivalence between 4 and 5 is identical to that of
proposition 4.14.
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4.5 Looking for generalised norm relations

Given a finite group G and a subgroup H, we do not have a simple criterion
to determine whether or not there exists a set of subgroups J such that G
admits a generalised norm relation with respect to H and J . However, if we
provide G, H and J , we do have algorithms to check whether or not there
is a generalised norm relation.

Therefore, when we only have G and H, we can enumerate all the sub-
groups of G and add them to a set J and check when (or if) J works.

We know we only have to enumerate the subgroups up to conjugacy.
Moreover, if we are looking for useful norm relations, then we only have to
enumerate the subgroups of G of order larger than the order of H.

Algorithm 4.32.
input: A finite groupG, a subgroupH, and set of subgroups J = {J1, · · · , Jℓ}.
output: A boolean indicating whether there is a generalised norm relation.

• Compute the central primitive idempotent elements e1, · · · , er of the
group algebra Q[G].

• For all e ∈ {e1, · · · , er}:

– if eNH ̸= 0:

∗ compute eNJ for all J ∈ J ,

∗ if for some J ∈ J , we have eNJ ̸= 0, then skip directely to
the next e ∈ {e1, · · · , er},

∗ if for all J ∈ J , eNJ = 0, then return False.

• Return True

The correctness of algorithm 4.32 is an immediate result of 2 in proposi-
tion 4.14.

Remark 4.33.

• The software Sagemath ([18]) has a function to directly compute the
central primitive idempotent elements of the group algebra Q[G].
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• Suppose we have G and H and we are looking for a set J of sub-
groups such that there is a generalised norm relation. Then, rather
than enumerating candidate sets J and using algorithm 4.32 for every
candidate, it is more efficient to first compute the list E of every cen-
tral primitive idempotent elements ei of Q[G] such that eiNH ̸= 0, then
enumerate every proper subgroups Jj of G larger than H (from the
largest to the smallest, and up to conjugacy), and for every Jj, remove
from E all the ei such that eiNJj ̸= 0. When the list E is empty, return
the list of all enumerated Jj that decreased the size of E. If E is not
empty after the enumeration, then there are no useful generalised norm
relations.

We can also adapt algorithm 4.32 to obtain a very similar algorithm,
this time based on 5 of proposition 4.14. For all irreducible character χ of
G and for all H < G, let us denote by ResH χ the restriction to H of χ,
and 1 the character of the trivial representation. Recall that if χ is the
character associated to a simple C[G]-module V , then we have dim(V H) =
⟨1,ResH χ⟩ = 1

|H|
∑

h∈H χ(h).
The software Sagemath also has a function to directly compute a character

table of G.

Algorithm 4.34.
input: A finite groupG, a subgroupH, and set of subgroups J = {J1, · · · , Jℓ}.
output: A boolean indicating whether there is a generalised norm relation.

• Compute all irreducible characters χ1, · · · , χr of G.

• for every χ ∈ {χ1, · · · , χr}:

– if ⟨1,ResH χ⟩H ̸= 0,

∗ compute ⟨1,ResJ χ⟩J for all J ∈ J ,

∗ if for some J ∈ J , we have ⟨1,ResJ χ⟩J ̸= 0, then skip directly
to the next e ∈ {e1, · · · , er},

∗ if for all J ∈ J , ⟨1,ResJ χ⟩J = 0, then return False.

• Return True.

Remark 4.35. A more straightforward method would be to determine whether
NH is in the two sided ideal ⟨NJ |J ∈ J ⟩Q[G].
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According to proposition 4.30, this problem would be equivalent to finding
whether |G|3NH is in ⟨NJ |J ∈ J ⟩Z[G].

Since

⟨NJ |J ∈ J ⟩Z[G] = ⟨gNJh|J ∈ J , (g, h) ∈ G2⟩Z
= ⟨gNJh; J ∈ J , g ∈ G, h ∈ G/J⟩Z,

this is a linear system over Z. Note that it is more efficient for computational
complexity to view it as a system over Fp with p a prime number that does
not divide |G|. However, in practice this method is still much slower than
algorithms 4.32 or 4.34, and only works for small examples.

Now suppose that we have a number field K and a family of number fields
(Ki). To determine whether there is a generalised norm relation between K
and the Ki, we could compute a Galois closure of K and the Ki, and the
Galois group, and then apply algorithms 4.32 or 4.34. However, computing
a Galois group is very costly.

Using the theorem 4.22, we can find an algorithm that is polynomial in
the size of the input, and also determines the coefficients of the relation if it
exists.

Algorithm 4.36.

input: A number field K = K̃H and a family (Ki = K̃Ji) of number fields
given by the minimal polynomial f of α with K = Q(α), and the minimal
polynomials fi of the βi, with Ki = Q(βi).
output: A boolean indicating whether there is a generalised norm relation,
and if so, a formula of the form

1H =
∑
i

T∑
h µi,hJiδi,hH

∑
k

λi,kgi,kJi

in Z[G/H].

• For all i, list all compositums of K and Ki.

If fi = p1 · · · pr ∈ K[X], then the compositums are the K[X]/(pj), with
ιK the inclusion, and ιLi

: βi 7→ X mod pj.

• For all i, and for all σ ∈ Hom(Li,C) and for every compositum C,
compute C · σ ∈ Q[Hom(K,C)].
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• By linear algebra in Q[G/H] = Q[Hom(K,C)], find a linear combination
of these element that equals 1H (if such a combination exists).

Theorem 4.37. This algorithm is correct and its complexity is polynomial
in the size of the input.

Proof. The correctness of the algorithm follows from theorem 4.22.
For the complexity, we have to check that every step of the algorithm

works in polynomial time.

• Listing all the compositums boils down to a problem of factorisation of
polynomials in K[X], which is polynomial thanks to the LLL algorithm
(see [33]). The number of compositums to list is at most

∑ℓ
j=1 deg(Kj).

• Given a complex embedding σ of a field Kj, and a compositum C
of K and Kj, computing C · σ is in O(deg(Kj) × deg(K)). And the
number of times such a computation occurs is at most

∑
j deg(Kj) ×

|Compos(K,Kj)|. What’s more, the size of C · σ is polynomial in the
size of the input.

4.6 Comparing classical and generalised norm relations

In this section, we will discuss the relevance of studying generalised norm
relation instead of classical norm relation.

Suppose we have a number field K, Galois over Q, of Galois group G,
and some KHi where G admits a classical norm relation over Q with respect
to the Hi. Then, the article [7] describes an algorithm to compute the class
group of K by induction, by reducing the problem to the computation of the
class groups of the KHi .

Similarly, if we have a number field K̃, Galois over Q, of Galois group G,
a number field K = K̃H and some K̃Ji where G admits a generalised norm
relation over Q with respect to H and the Ji, then we will see in chapter 5
some algorithm to compute the class group of K by induction, by reducing
the problem to the computation of the class groups of the K̃Ji .

What’s more, a generalised norm relation of a group G with respect to
H < G and a set of subgroups J can come directly from a classical norm
relation in G (see fact 4.38) or in a quotient of G (see proposition 4.40).
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Therefore, in order to justify the relevance of our generalisation of norm
relations, we need to produce some examples where the methods in chapter 5
allows us to compute the class groups more efficiently than classical norm
relations.

Fact 4.38. If there is a classical relation 1 =
∑ℓ

i=1 aiNJibi for some finite
group G and some set J of subgroups of G, then for any subgroup H, we
can construct a generalised norm relation with respect to H and J , simply
by multiplying both sides of the classical relation by NH .

Example 4.39. The alternating group G = A4 admits a classical norm
relation over Q with respect to H = {C2 × C2, C3}. Indeed, if we see A4

as a subgroup of the group of permutations of the set {1, 2, 3, 4}, let J1 =
⟨(1, 2), (3, 4)⟩ ≃ C2×C2, and J2 = ⟨(2, 3, 4)⟩ ≃ C3. Then we have the relation

4 · 1G = 1G ·NJ1 · (2(1, 2)(3, 4) + (1, 2, 3) + (1, 4, 2))

+ 1G ·NJ2 · ((2, 3, 4)− (1, 4, 2))

− (1, 2)(3, 4) ·NJ2 · ((2, 3, 4) + 2(1, 4, 2) + (1, 3)(2, 4))

+ (1, 2, 3) ·NJ2 · ((1, 3)(2, 4)− (1, 4, 2)).

Then, let us take H = ⟨(1, 2)⟩ ≃ C2. By multiplying both sides of this
relation by NH (either on the right or on the left), we get a generalised norm
relation with respect to H and {J1, J2}. And this new relation is still useful,
since H is of order lower than the orders of J1 and J2.

Therefore, if K̃ is a number field, Galois over Q, of Galois group G, and if
we have K = K̃H , K1 = K̃J1 and K2 = K̃J2 , then we will be able to compute
the class group of the field K, of degree 6, by reducing the problem to the
fields K1 and K2, of degree respectively 3 and 4. But the same result could
have been obtained using only classical norm relations.

Proposition 4.40. Let G be a finite group, H, J1, · · · , Jℓ subgroups of G. Let
N be a normal subgroup of G contained in H. Denote by π the projection
from G to G/N . Then G admits a generalised norm relation with respect to
H and J1, · · · , Jℓ if and only if G/N admits a generalised norm relation with
respect to π(H) and π(J1), · · · , π(Jℓ).

Proof. Suppose G admits a generalised norm relation over Q with respect to
H and J1, · · · , Jℓ, of the form NH =

∑ℓ
i=1 aiNJibi.

Let Π: Q[G] → Q[G/N ],
∑

i λigi 7→
∑

i λiπ(gi). Then Π is a surjective
morphism of Q[G]-modules. And we have Π(NH) = |N |NH/N , and Π(NJi) =
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|N∩Ji|NJi/(N∩Ji). Then, if we compose the relation by Π, we get a generalised
norm relation of G/N with respect to π(H) and π(J1), · · · , π(Jℓ).

Now suppose G/N admits a generalised norm relation with respect to
π(H) and π(J1), · · · , π(Jℓ). So there is a surjective morphism

ϕ :
ℓ⊕
i=1

Q[π(G)/π(Ji)]→ Q[π(G)/π(H)].

So ϕ ◦ Π is a surjective morphism from
⊕ℓ

i=1 Q[G/Ji] to Q[π(G)/π(H)].
And since N ⊂ H ⊂ G, we have π(G)/π(H) ≃ G/H. Thus, we have a
surjective morphism from

⊕ℓ
i=1 Q[G/Ji] to Q[G/H].

It is important to note however that some generalised norm relations do
not come from a classical norm relation in a subgroup or in a quotient.

Example 4.41. For example, the symmetric group S4 admits a norm relation
over Q with respect to H = C2 × C2, and J = {D8, S3} (see example 4.13).

This generalised norm relation does not come from a classical norm rela-
tion because we can check that S4 does not have a norm relation with respect
to J . It does not come from a quotient either because the largest normal
subgroup of S4 contained in H is trivial. One can check that it is not a linear
combination of classical norm relations in G and in subquotients of G either.

See the appendix for more examples of generalised norm relations that
do not come from classical norm relations, and that are more useful than
classical norm relations, in a sense that we will define.

However, even when a generalised norm relation in Q[G] does not come
from a classical norm relation in a quotient of G, it can still come from a
classical norm relation in a quotient of a subgroup of G.

Indeed, let K be a non Galois extension of Q. Denote by K̃ its Galois
closure, G its Galois group and H < G such that K = K̃H . Suppose there
is a subfield L such that L ⊂ K ⊂ K̃. Denote by J the subgroup of G such
that K̃J = L. Suppose also that H is normal in J , and Γ = J/H admits a
classical norm relation with respect to some subgroups ∆i, as in the figure
below.
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K̃

K

L

Q

K∆i

H

Γ

J
∆i

Then, by proposition 4.40, since there is a classical norm relation in Q[Γ],
J admits a generalised norm relation with respect to H and some lifts of the
∆i, which can be seen as a relation in Q[G] since J < G.

Example 4.42. Let G = GL(2, 3), and H = C3. Then G admits a gener-
alised norm relation over Q with respect to H and J = {S3, C6}.

However, H is normal in D12 < G, and there is a classical norm relation
in D12/H ≃ C2 × C2. We can check that this relation gives (by proposition
4.40) a generalised norm relation of D12 over Q with respect to J = {S3, C6},
which in turn causes the relation with G, by fact 4.38.

Note also that if G admits a generalised normed relation with respect
to a subgroup H and some auxiliary fields, then if H ′ is another subgroup
containing H, then there is also a generalised norm relation with respect
to H ′. That means that if a field K admits a generalised norm relation
with respect to some auxiliary fields Li, then so do all of its subfields. The
following algorithm is useful to find examples where generalised norm relation
allow us to compute class groups more efficiently than classical norm relations
in any subgroups or quotients.

Algorithm 4.43. input: A finite group G.
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output: For all subgroup H of G, the smallest n ∈ Z such that for all

Galois extension K̃/Q, the class group of K̃H can be computed from the
class groups of fields of degree less than n using classical norm relations.

• LJ ← All subgroups of G up to conjugation

• M ← List of the |G|
|J | for all J in LJ . The entries of M represent

the degrees of the K̃J . The goal will be to explore all classical norm
relations in all quotients of G and update the entries of M to represent
the maximum degree of the fields one has to study in order to compute
the class group of K̃J .

• M2 ← An empty list

• WHILE M2 ̸= M

– M2 ←M

– FOR i from 1 to #LJ

∗ H ← LJ [i]

∗ FOR j from i+ 1 to #LJ
· J ← LJ [j]

· Check if H is conjugate to a normal subgroup of J . If
not, go directly to the next J .

· Look for a classical norm relation in J/H that minimizes
the entries of M corresponding to the subgroups involved.

· If such a relation is found, update the entries of M ac-
cordingly. The entry corresponding to K̃H but also those
corresponding to its subfields or all the fields isomorphic
to those.

Example 4.44. Let G = C3×PSL(3, 2), and H = S3 < G, (up to conjugacy,
there is only one copy of S3 in G). Suppose we have K̃ a Galois extension
of Q of Galois group G. Then K = K̃H is a field of degree 84. To compute
the class group of K, we can verify that there are no classical norm relations
in any quotients or subgroups of G that allows us to recursively reduce the
problem to fields of degree less than 84. However, there exists a generalised
norm relation that allows us to reduce the problem to four fields of respective
degree 24, 21, 8 and 3. Moreover, this generalised norm relation does not
come from a subgroup or from a quotient of G.
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Remark 4.45. As explained in [7, theorem 2.11], the groups that do not
admit classical norm relations are the ones with a fixed point free unitary
representation. In all the examples that we enumerated (see appendix), we
could not find any generalised norm relations in these groups either, except
the ones coming from classical norm relations in quotients. We do not know
if this is true in general or if counterexamples are simply larger.

In the rest of this section, we will see that if we have an example of a
useful generalised norm relation for a finite group G, we can build infinitely
many other examples, simply by taking the same relation in Cp×G, for any
prime p that does not divide |G|.

Definition 4.46. Let G be a group that admits a generalised norm relation
with respect to H < G and a set a subgroups J = {J1 · · · Jℓ}. We say that

the relation is optimal if it is a relation that maximizes the quotient |Ji|
|H| ,

where Ji is the smallest group in J .

Remark 4.47. With the notations of the previous definition, if K̃/Q is a

Galois extension of Galois group G, then the quotient |Ji|
|H| is the quotient of

the degree of K̃H by the degree of K̃Ji .

Lemma 4.48. For all subgroup K ′ of G′, either K ′ is of the form 1×K with
K < G, or it is of the form Cp ×K with K < G.

Proof. Suppose K ′ contains an element i × g ∈ G′ = Cp × G with i ̸= 1.
Let n be the order of g in G. Then, since gcd(n, p) = 1, the subgroup K ′

contains all the (kn)i× 1G with k in Z>0. So Cp × 1G is contained in G′. So
it is easy to check that the projection of K ′ on G is indeed a subgroup of G.

Proposition 4.49. Let G be a group that admits a generalised norm relation
with respect to H < G and a set a subgroups J = {J1 · · · Jℓ}. Suppose this
generalised norm relation is optimal. Let p be a prime number that does not
divide |G|. Then Cp × G admits an optimal generalised norm relation with
respect to 1×H and J2 = {1× J1, · · · , 1× Jℓ}.

Proof. Let G′ = Cp×G. Let ρ′ be an irreducible representation of G′. Then
ρ′ = χ⊗ρ, with χ a character of Cp and ρ an irreducible representation of G.

Let K a subgroup of G. Then (ρ′)1×K = ρK and (ρ′)Cp×K = χCp ⊗ ρK .
So (ρ′)Cp×K ̸= 0 if and only if χ is trivial and ρK ̸= 0.
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Since G admits a generalised norm relation with respect to H and J , then
for every irreducible representation ρ of G, if ρH ̸= 0, there exists J ∈ J
such that ρJ ̸= 0. Let ρ′ = χ ⊗ ρ be an irreducible representation of G′.
Then it is easy to check that if (ρ′)1×H ̸= 0, there exists J ∈ J such that
(ρ′)1×J ̸= 0. So G′ admits a generalised norm relation with respect to 1×H
and {1× J1, · · · , 1× Jℓ}.

Now let us prove that this relation is optimal. Suppose G has a better

generalised norm relation with respect to H̃ ′ < G′ and {J̃1
′
, . . . , J̃m

′}. Let

H̃, J̃1, · · · , J̃m < G the projections of H̃ ′ and of the J̃i
′

onto G. Then, using
the same method as before, it is easy to check that G admits a generalised
norm relation with respect to H̃ and the J̃i, and that this norm relation is
better than the first one, which is a contradiction.

Remark 4.50. Similarely, if G is a group that admits an optimal generalised
norm relation with respect to H < G and a set a subgroups J = {J1 · · · Jℓ},
and if G′ is another group, such that |G| and |G′| are coprime, then we can
show that G′ × G also admits a generalised norm relation with respect to
1×H and J2 = {1×J1, · · · , 1×Jℓ}. However, this generalised norm relation
is not optimal a priori.
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5 Computing class groups

The goal of this chapter is to use the properties of generalised norm relations,
studied in chapter 4, to obtain inductive methods to compute the class groups
of some number fields, in analogy with the methods described in [7] using
classical norm relations.

5.1 Algorithms using S-units

In [7], the authors give applications of classical norm relations to obtaining
relations between the arithmetic invariants of subfields of a Galois extension
of number fields. The arithmetic invariants that we will be interested about
here are S-units (see definition 4.8) and class groups.

Note that if we are able to compute the S-units of a number field K for
every set S of prime ideals, then we can also compute its class group. This
is the content of lemma 5.1 and proposition 5.2.

Lemma 5.1. Let S be a finite set of prime ideals that generates the class
group Cl(K) of a number field K. Consider the map

ϕ : O×
K,S → Z|S|, α 7→ (vp(α))p∈S.

Then the sequence

O×
K,S

ϕ−→ Z|S| ψ−→ Cl(K)→ 0

is exact, where ψ((vp)p∈S) =
[∏

p∈S p
vp
]
.

In particular, Cl(K) is isomorphic to the cokernel of ϕ.

Proposition 5.2. Let K be a number field. Assume the generalised Riemann
hypothesis, then the set S = {p|N(p) ≤ 12 · log(|∆K |)2} generates the class
group of K.

Proof. See [3].

As in section 4.1, let us consider a relation of the form

d =
ℓ∑
i=1

aiNHi
bi (2)

with Hi < G, ai, bi ∈ Z[G] and d ∈ Z>0.
In [7], the authors describe an algorithm ([7, algorithm 4.16]) such that,

if there exists a relation of the form (2), then, on input of
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• a number field K,

• an injection G→ Aut(K),

• a finite G-stable set S of prime ideals of K,

• for each H ∈ H, a basis of the group of S-units of the subfield fixed
by H,

the algorithm returns a Z-basis of the group of S-units of K. What’s more,
the algorithm is deterministic and of time complexity polynomial in the size
of the input. The proof of correctness relies on corollary 4.10.

Therefore, in order to compute the class groups of number fields with
generalised norm relations, we will find a generalisation of proposition 4.7
and of corollary 4.10, and then we will use it to derive an algorithm similar
to [7, algorithm 4.16].

Let K be a number field, let K̃ be its Galois closure and G the Galois
group of K̃. Let H < G be the subgroup such that K = K̃H . Suppose there
is a relation in Z[G] of the form

dNH =
∑
i

aiNJibi (3)

with Ji < G, ai, bi ∈ Z[G] and d ∈ Z>0 that comes from a generalised norm
relation over Q where we multiply each side by an adequate integer d to get a
relation in Z[G]. (The integer d is actually the optimal denominator d(J , H),
see definition 4.29.)

Proposition 5.3. Let M be a Z[G]-module. If G admits a relation of the
form (3), then the exponent of the quotient MH/(NH · (

∑
i aiM

Ji)) is finite
and divides |H|2d.

Proof. Let m ∈ MH . We have NHm = |H|m, so dNHm = d|H|m, hence
(
∑

i aiNJibi)m = d|H|m.
But (

∑
i aiNJibi)m =

∑
i aiNJi(bim). And for all i, we have NJi(bim) ∈

MJi . So d|H|m ∈ (
∑

i aiM
Ji).

Multiplying by NH on the left, we get d|H|2m ∈ NH(
∑

i aiM
Ji). And we

have NH(
∑

i aiM
Ji) ⊂MH . Hence the conclusion.
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Corollary 5.4. With the same hypothesis as proposition 5.3, if we define
αi = NH · ai for all i, then the exponent of the quotient

O×
K̃H ,S

/((O×
K̃J1 ,S

)α1 · · · (O×
K̃Jℓ ,S

)αℓ)

is finite and divides |H|2d.
In particular, the group O×

K̃H ,S
is the (|H|2d)-saturation of the group

((O×
K̃J1 ,S

)α1 · · · (O×
K̃Jℓ ,S

)αℓ).

Proposition 5.5. Suppose we have a relation of the form (3), and let M be
a Z[G]-module. Consider the maps

ϕM : MH →
ℓ⊕
i=1

MJi ,m 7→ (NJibim)1≤i≤l

and

ψM :
ℓ⊕
i=1

MJi →MH , (mi)1≤i≤l 7→ NH(
ℓ∑
i=1

aimi).

Then ϕM ⊗ Q is injective, and ψM ⊗ Q is surjective.

Proof. Let us show that ψM ◦ ϕM : MH →MH = d|H| · id.
Indeed, let m ∈MH . Then ψ ◦ϕ(m) = NH

∑ℓ
i=1 aiNJibim = dN2

Hm. But
we have N2

H = |H|NH , and NHm = |H|m since m ∈ MH . So ψ ◦ ϕ(m) =
d|H|2m.

Hence the conclusion, since d|H|2m is invertible in Q.

In the rest of the section, if V is an abelian group, V/ tor will denote the
group V modulo its torsion subgroup.

Note that for every i, O×
K̃Ji ,S

/ tor is isomorphic to Zni where ni is the

rank of O×
K̃Ji ,S

/ tor.

If we have a basis (uj) of O×
K̃Ji ,S

/ tor for an integer 1 ≤ i ≤ ℓ, we can

then send it in O×
K,S/ tor and also in ZN , with N =

∑ℓ
i=1 ni via the maps

that are described in the following diagram.
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(u
αj

j ) ∈ O×
K,S/ tor

(uj) ∈ O×
KJi ,S

/ tor
(vj) ∈ O×

K,S/ tor
x ∈

⊕
iO

×
KJi ,S

/ tor ≃ ZN

NH

ϕK̃×

Algorithm 5.6. input: The groups G, H, and Ji for all i, the coefficients of

the relation 3, and a basis (ui,j)j of O×
KJi ,S

/ tor for all 1 ≤ i ≤ ℓ.

output: A basis of V = ((O×
KJ1 ,S

)α1 · · · (O×
KJℓ ,S

)αℓ), with αi = NH ·ai for all i.

• For every 1 ≤ i ≤ ℓ, compute (uαi
i,j) ∈ O×

K,S/ tor.

• For every 1 ≤ i ≤ ℓ, compute (vj,i = NH(uαi
i,j)) ∈ O×

K,S/ tor and xi ∈ ZN

as in the previous diagram.

• Create a matrix M ∈Mℓ,N(Z) where the columns are the xi.

• Apply an algorithm to obtain the Hermite normal form of M .

• Apply the same transformations to the (vi,j), and output the result.

Algorithm 5.7. input: A number field K, its Galois closure K̃ and its Galois

group G, H < G such that K = K̃H , a set of subgroups J = {J1, · · · , Jℓ},
the coefficients of a relation of the form (3), and a G-stable set S of non-zero
prime ideals of OK .
output: A basis of O×

K,S.

• For every element Ji of J , compute a basis of O×
KJi ,S

, with Buchmann’s

algorithm.

• With algorithm 5.6, compute a basis of V = ((O×
KJ1 ,S

)α1 · · · (O×
KJℓ ,S

)αℓ),

with αi = NH(ai) for all i.

• Output a basis of the d-saturation of V .
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Proposition 5.8. Algorithm 5.7 is correct.

Proof. The correctness of the algorithm is a direct result of corollary 5.4

The main issue with algorithm 5.7 is that it requires to know the Galois
group of the number field K of which we want to compute the group of S-
units. In practice, when we only have a polynomial defining K, computing
G is very costly. In that regard, algorithms 5.9 and 5.12 are more efficient.

Algorithm 5.9. input: A number field K and a set of number fields {Kj},
each given by an irreducible polynomial in Q[X] and such that K admits a
generalised norm relation with respect to the Kj, a set S of prime numbers,
and for each j a Z-basis Bj of O×

Kj ,S
.

output: A Z-basis of O×
K,S.

1. Compute π1, · · · , πk all the prime divisors of n! where n is the degree
of K (ie all the primes up to n). Let ri = 2vπi(n!).

2. For all j, compute all the compositums of K and Kj (up to isomor-
phism).

3. Compute the set B of images of every element of the Bj by every
compositum of K and Kj.

4. Compute the subgroup V ⊂ O×
K,S generated by B.

5. For every i:

• Vi ← V

• Vi ← ⟨Vi, (x1)
1
πi , · · · , (xm)

1
πi ⟩ where (xi) is a basis of (Vi∩(K×)πi)/V πi

i .
(See [7, corollary 4.13])

• Reduce the basis of Vi as in [36, lemma 7.1].

6. V ← V1 · · ·Vk

7. Return a basis of V .

Note that to use this algorithm, we need to know that there exists a
generalised norm relation, but we do not need to know the coefficients of the
relations.
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Theorem 5.10. Algorithm 5.9 is correct. If we assume the generalized Rie-
mann Hypothesis (GRH) then its complexity is polynomial in the size of the
input.

Proof. First, let us prove the correctness. Let G be the Galois group of K,
let H the subgroup fixing K and for every i, let Ji the subgroup fixing Ki.
Since there is a generalised norm relation, we know that there exists an
integer c, a morphism of Z[G]-module ϕ :

⊕
i Z[G/Ji] → Z[G/H] such that

ϕ⊗Q is surjective, and an injective morphism of Z[G]-modules ψ : Z[G/H]→⊕
i Z[G/Ji], such that ϕ ◦ ψ = c · id (by proposition 4.26).
Therefore, by proposition 3.5, for any cohomological Mackey functor M ,

there is a morphism ϕM :
⊕m

i=1M(Ji)→M(H), and a morphism ψM : M(H)→⊕m
i=1M(Ji) such that ϕ ◦ ψ = c · id. Consider M(H) = OK̃H ,S and M(Ji) =

OK̃Ji ,S. Since ϕ ◦ ψ = c · id, the c-saturation of the image of ϕ is indeed
OK̃H ,S. And by theorem 4.28, c divides |G|2. Now, we know by remark
3.6 that ϕM can be expressed as a sum of elements of Ji\G/H, and since,
by proposition 2.17, these can be seen as elements of Compos(Ki, K), this
proves the correctness.

Then let us prove the complexity. To compute all the πi in step 1, we
can use a sieve method, which is polynomial in n where n is the degree of
K. Therefore, step 1 takes polynomial time.

As seen before, for every j, computing all the compositums of K and
Kj takes polynomial time. What’s more, the number and the size of the
compositums obtained are also polynomial. So step 2 is also polynomial.

The size of the image of an element x ∈ Kj by a compositum C is also
polynomial, since the map induced by C is the composition of the injection
Kj → C and the norm C → K. So step 3 is polynomial.

For step 4 as well as step 7, one can deduce a basis from a generating set
of the groups involved in polynomial time. The algorithms of [27] provide a
basis of the relations between the generators, and the Hermite normal form
[29] allows us to obtain a basis of the group in polynomial time.

The saturation in step 5 is performed as many times as the number of
primes dividing (n!)2, counted with multiplicity, according to theorem 4.28.
That number is polynomial in n, since the number of different primes in the
decomposition of (n!)2 is at most n, and for every prime p, vp(n!) ≤ log(n!)

log(2)
=

O(n log(n)).
Moreover, for every prime dividing (n!)2, counted with multiplicity, the

saturation can be done in polynomial time, if we assume GRH. This is [7,
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corollary 4.13].

5.2 Algorithms for direct computation

Now, let us present an algorithm that computes the class group directly,
without computing the group of S-units first.

Remark 5.11. Assuming GRH, the paper [5] gives a polynomial time method
to approximate, the residue κK of the Dedekind zeta function ζK(s) at s = 1
of a number field K, from the discriminant ∆K and the norm of prime ideals
of K.

Algorithm 5.12 is an alternative to algorithm 5.9, which is more efficient
in practice but not provably polynomial-time.

Algorithm 5.12. input: A number field K = K̃H and a family (Ki = K̃Ji)
of number fields, such that K admits a generalised norm relation with respect
to K1, · · ·Kℓ. We know the minimal polynomial f of α with K = Q(α), and
the minimal polynomials fi of the βi, with Li = Q(βi).

output: The structure of the class group of K

1. For every Kj, compute every compositums of K and Kj.

2. Compute HRK = hK RegK using the approximation method in [5]. An
approximation up to a factor 1.5 is enough.

3. Initialize T a set of prime ideals p such that N(p) = 1 mod d, where
d = deg(K)2.

The primes in T will be used to detect d-th powers.

4. Initialize a set of prime numbers SQ, and compute the set S of prime
ideals of K above the primes in SQ.

We hope that S will generate the class group.

5. For all Kj, let Sj be the set of prime ideals of Kj above all primes p in
SQ, and compute a set Uj of generators of the group of Sj units of Kj.

6. For each j, for each p in Sj, compute the vector Vj,p of valuations of
every element of Uj at p.
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7. Compute the matrix of a map Φ, that sends all the ideals above all the
primes in Sj to their image by every compositum. Apply this matrix
to every Vj,p, then concatenate all the vectors to obtain a matrix M .

8. Apply the action of every compositum to every generator of the Uj then
compute the discrete logarithms in Fp of for every p in T . Concatenate
all the vectors of discrete logarithms to obtain a matrix N .

9. Concatenate the matrix M and N and compute the kernel R modulo d
of this matrix.

We hope to obtain a basis of the d-saturation of the images in K of the
Sj-units of the Kj by the actions of every compositum.

10. Compute the Smith normal form of the concatenation of M and a basis
of R.

If T and S are large enough, that should give us the structure of Cl(K).

11. Compute the regulator of the group of units of K obtained by the
d-saturation of images of the units of the Kj by the actions of every
compositum. Multiply it with the class number to obtain a new HR
product, that we will denote by ˜HRK . If the approximation for HRK

is up to a factor 1.5, then the regulator should be calculated with
precision up to a factor 4

3
.

12. Check if the HR product corresponds to the one in step 3. If not,
increase the size of T and SQ and go back to step 5.

Theorem 5.13. If this algorithm terminates, then it is correct.

Proof. By proposition 4.26, there exists an injective morphism of Z[G]-module
ψ : Z[G/H]→

⊕
i Z[G/Ji]

ni with ni ∈ Z>0 for all i, and a morphism of Z[G]-
module ϕ :

⊕
i Z[G/Ji]

ni → Z[G/H] such that the image of ϕ has finite index
in Z[G/H] and ϕ ◦ ψ = c(J , H) · id. Then, we can use proposition 3.5, with
the Mackey functor M defined by M(H) = Z×

K̃H ,S
and M(Ji) = Z×

K̃Ji ,S
. This

proves that the algorithm finds indeed all the S-units in K.
Then, if the verification of the HR product is correct, it means the S-

units are enough to generate the class group. The crucial observation is that
the approximation errors due to the choice of T and S cannot compensate.
If T is not large enough and the algorithm incorrectly assumes an element
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to be a d-th power, then ˜HRK will be a divisor of its expected value. The
same will happen if S is not large enough to generate the class group.

Remark 5.14. Suppose we have a number field K = K̃H and a family
(Ki = K̃Ji) of number fields, such that K admits a generalised norm relation
with respect to K1, . . . , Kℓ. If we want to compute the class group of K
using algorithm 5.12, we could expect the most expensive step to be the
computation of the Sj-units in all the Kj, since it is the only step whose
computation is not polynomial in the size of the input. However, in practice,
when we try to apply this method to reasonable size examples, the most
expensive step is often the computation of the images of the ideals in the Sj
by the compositums.

In some cases, computing the images of the morphisms associated with
compositums can be facilitated by the following proposition.

Proposition 5.15. Let K = K̃H and L = K̃J , and let (C, ιK , ιL) be a
compositum of K and L, where ιL is the inclusion. Suppose we have fixed
an embedding K̃ → C, so Q[Hom(K,C)] and Q[Hom(L,C)] canonically have
a structure of Q[G]-modules. Let F be the intersection F = ιK(K) ∩ L, and
suppose that C = ιK(K)⊗F L. Denote by ϕ the morphism of Q[G]-modules

ϕ : Q[Hom(L,C)]→ Q[Hom(K,C)]

associated with the compositum (C, ιK , ιL) by proposition 2.19. Then, for any
τ ∈ Hom(L,C), we have

ϕ(τ) =
∑

σ∈Hom(K,C)

σ◦ι−1
K

∣∣
F

=τ

∣∣
F

σ

(where σ ◦ ι−1
K

∣∣
F
and τ

∣∣
F
denote the restrictions of σ ◦ ι−1

K and τ to F ).

To prove the proposition 5.15, we will need the following lemma:

Lemma 5.16. With the notations of proposition 5.15, let α be the primitive
element such that ιK(K) = F (α). Then we have C = L(α).

Proof. Since L is included in C, and since α is in ιK(K) ⊂ C, we have
L(α) ⊂ C.

By definition, the field C is spanned by L and ιK(K). We have of course
L ⊂ L(α), and all elements of ιK(K) can be written in the form

∑
i xiα

i,
with xi ∈ F ⊂ L and αi ∈ L(α). So ιK(K) ⊂ L(α), hence C ⊂ L(α).
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Now let us prove proposition 5.15.

Proof. By proposition 2.23, for all τ ∈ Hom(L,C), we have

ϕ(τ) =
∑

σ∈Hom(K,C)

|Eσ,τ | · σ (4)

with Eσ,τ = {f ∈ Hom(C,C)|σ = f ◦ ιK and τ = f ◦ ιL}.
Let τ ∈ Hom(L,C), σ ∈ Hom(K,C), and let σ̃ = σ◦ι−1

K ∈ Hom(ιK(K),C).
Let us show that σ̃ = τ when restricted to F = ιK(K) ∩ L if and only if

there exists f ∈ Hom(C,C) such that σ = f ◦ ιK and τ = f ◦ ιL, and that in
this case, the f is unique.

Suppose that σ̃ = τ when restricted to F . Then, since we have C =
ιK(K) ⊗F L, we can take f ∈ Hom(C,C) such that f = τ when restricted
to L (ie τ = f ◦ ιL) . Let α be as in lemma 5.16. Then we have σ = f ◦ ιK
if and only if f(α) = σ̃(α). And by lemma 5.16, we know that f is uniquely
determined by its restriction to L and by the image of α.

Conversely, suppose there is a f ∈ Hom(C,C) such that σ = f ◦ ιK and
τ = f ◦ ιL. Then, for every x in ιK(K)∩L, we have σ̃(x) = τ(x) = f(x). So
σ̃ = τ when restricted to F = ιK(K) ∩ L.

With this result, the formula 4 gives us the conclusion.

5.3 Examples

Example 5.17. The group G = S5 admits a generalised norm relation with
respect to H = S3 < G and J = {A4, D12, C5 ⋊ C4}. We can check that
this relation does not come from a classical norm relation in a subgroup or
a quotient. There are two non conjugate copies of S3 in S5. For H we have
to take the one with no fixed point.

If we choose a Galois extension K̃/Q of Galois group G, then K = K̃H

is of degree 20, and we can compute its class group inductively, by reducing
the problem to three fields of respective degree 10, 10 and 6.

By choosing K̃ such that K has a big discriminant, we can obtain exam-
ples where the recursive method is more efficient to compute the class group
of K than the pre-existing methods. For example, consider the polynomial
p(x) = x5 + 91x4 + 7x3 − 11x2 − x+ 1 and define K̃ to be the splitting field
of p(x). Then K̃ has Galois group S5, and K = K̃S3 is a number field of
degree 20 and of discriminant 228 · 38310 · 472310 · 2383110 ≃ 6 · 10114. On
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Pari/GP [40], the function to compute Cl(K) was not able to finish in three
days, whereas with the method of generalised norm relations, implemented
also in Pari/GP, we obtained the result in less than nine hours (CPU time).
The result is Cl(K) = C4 × C4

2 .

Example 5.18. The group G = A5 admits a generalised norm relation with
respect to H = C2 × C2 < G and J = {A4, D10}. We can check that this
relation does not come from a classical norm relation in a quotient.

If we choose a Galois extension K̃/Q of Galois group G, then K = K̃H

is of degree 15, and we can compute its class group inductively, by reducing
the problem to two fields of respective degree 6 and 5. However, the method
with classical norm relations also applies here, but with that method, the
largest field we would need to consider is of degree 12.

To create a bigger example, since 7 ∤ |A5|, we can consider the generalised
norm relation of G′ = C7 × A5 with respect to H = C2 × C2 < G and
J = {A4, D10}. That way, we can compute the class group of a field of
degree 105 by reducing the problem to two fields of respective degree 42 and
35, whereas with classical norm relations, we would have reduced the problem
to a field of degree 84.

For example, consider the polynomial f(x) = x6−2x5 +3x4−4x3 +2x2−
2x−1. Define L̃ to be the splitting field of f(x). Then L̃ has Galois group A5.
The splitting field M̃ of the polynomial g(x) = x7 +x6− 12x5− 7x4 + 28x3 +
14x2 − 9x + 1 has Galois group C7. Up to isomorphism, there is only one
compositum K̃ of L̃ and M̃ . What’s more, K̃/Q is Galois and its Galois group
is G = C7×A5. Denote by K the subfield of K̃ fixed by H = C2×C2, which
is a field of degree 105 and of discriminant 2126 ·2990 ·6742 ≃ 1.7 ·10246. With
the method involving only classical norm relation, we can compute Cl(K),
but we have to compute the class group of some subfields, the largest of which
is F = K̃C5 , of degree 84 and of discriminant 2126 · 2972 · 6742 ≃ 8 · 10219.
On Pari/GP, the function to compute Cl(F ) was not able to finish in over 5
months, whereas with our implementation of the method of generalised norm
relations, we computed Cl(K) in about 5 days (CPU time). The result is
Cl(K) = 1. And the regulator of K is approximately RegK = 2.656 · 1083.

90



6 An application of generalised norm rela-

tions to Leopoldt’s conjecture

In this chapter we apply our notion of generalised norm relations to the study
of Leopoldt’s conjecture. We will need some results about local fields, in this
chapter and in the next one, which can be found for example in [43]. Let p
be a prime number, and K a number field of degree d, and let r1, r2 be the
number of real and pairs of complex embeddings of K. Let ϵ1, · · · , ϵr1+r2−1

be a basis of the group U(K) of units of Z×
K . Fix an algebraic closure Q̃p of

the field Qp of p-adic numbers, and denote by Cp the completion of Q̃p by
the p-adic absolute value. We call Cp the field of p-adic complex numbers.
There is a uniquely defined p-adic logarithm logp : C×

p → Cp (see [chapter
II, (5.4)][38]). Let σ1, · · · , σd be the elements of Hom(K,Cp). Let us recall
the following definition.

Definition 6.1. The regulator matrix of K at p is defined by

Rp(ϵ1, · · · , ϵr1+r2−1) =

 logp σ1(ϵ1) · · · logp σd(ϵ1)
...

. . .
...

logp σ1(ϵr1+r2−1) · · · logp σd(ϵr1+r2−1).


and the p-adic regulator rank of K is rp(K) = rankRp(ϵ1, · · · , ϵr1+r2−1). It is
independent of the choice of the basis (ϵ1, · · · , ϵr1+r2−1) and of the ordering
of the σi.

Then Leopoldt’s conjecture can be stated as follows (see [39, chapter
10.3.5]).

Conjecture 6.2. For every number field K and every prime number p, the
p-adic regulator rank rp(K) is equal to r1 + r2 − 1.

Leopoldt’s conjecture has many equivalent formulations (see [39, Theorem
10.3.6]), and has connections in particular with Galois cohomology and with
Iwasawa theory (see [39, Chapters 10 and 11]).

Here, we will be interested in the following equivalent formulation of
Leopoldt’s conjecture, which is also the one used in [23].

Let Sp(K) be the set of places of K above p, and for every w ∈ Sp(K), let
UKw and U1

Kw
be respectively the group of units and the subgroup of principal

units of Kw (i.e. the units congruent to 1 modulo the maximal ideal).
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Let us consider the diagonal embedding Z×
K ↪→

∏
w∈Sp(K) UKw .

Taking the p-adic completion, we get an homomorphism

λK,p : Zp ⊗Z Z×
K →

∏
w∈Sp(K)

U1
Kw

Then Leopoldt’s conjecture can be stated as follows:

Conjecture 6.3. For every number field K and for every prime number p,
the homomorphism λK,p is injective.

Definition 6.4. Let K be a number field, and p a prime number.

• We denote by Leo(K, p) Leopoldt’s conjecture at K and p: we say that
Leo(K, p) holds if λK,p is injective.

• The Leopoldt kernel L(K, p) is the kernel of the map

ΛK,p = Qp ⊗Zp λK,p : Qp ⊗Z Z×
K → Qp ⊗Zp

∏
w∈Sp(K)

U1
Kw
.

• The Leopoldt defect δ(K, p) is defined to be dimQp L(K, p).

With that definition, we have that Leo(K, p) is equivalent to δ(K, p) = 0.

Lemma 6.5 (lemma 2.2 of [23]). Let L/K be a Galois extension of number
fields, of Galois group G, and let p be a prime number. Then L(L, p) is a
Qp[G]-module, and for any subgroup H ≤ G, we have L(L, p)H = L(LH , p).

Proof. This is [23, lemma 2.2]

In the rest of the chapter, we will see that some results in [23] using
classical normed relations can be generalised.

Definition 6.6 and proposition 6.7 will be very close to what we have
already seen in section 4.2, but rephrased to better fit the notations of [23].

Definition 6.6. In this chapter, if G is a finite group, H < G a subgroup,
and K a field of characteristic zero, then we will denote by fH the idempotent

element of the algebra K[G] defined by fH = NH

|H| =
∑

h∈H h

|H| .

With this definition, we can state the following proposition, which is an
extension of [23, Proposition 4.4].
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Proposition 6.7. Let G be a finite group and suppose that G has a gener-
alised norm relation with respect to a subgroup Γ < G, and a set of subgroups
H. Let M be a K[G]-module. If fHM = 0 for every non trivial H ∈ H, then
fΓM = 0

Proof. This is a rephrasing of proposition 4.14, part 2.

Corollary 6.8. Let G be a finite group and suppose that G has a generalised
norm relation with respect to a subgroup Γ < G, and a set of subgroups H.
Let I ⊆ H be such that 1 /∈ I and for every H ∈ H, there exists I ∈ I and
g ∈ G such that gIg−1 ≤ H. Let M be a K[G]-module. If fIM = 0 for every
I ∈ I, then fΓM = 0.

This corollary is an adaptation of [23, corollary 4.5]. It is not exactly a
generalisation since the converse that was true for classical norm relations is
no longer true. The proofs are very similar.

Proof. Suppose that fIM = 0 for every I ∈ I.
If H ∈ H, with H ̸= 1 and g ∈ G, there is I ∈ I such that gIg−1 ≤ H.

Then we have gfIg
−1 = fgIg−1 , and

fH =

 1

[H : gIg−1]

∑
h∈H/gIg−1

h

 gfIg
−1.

Then, for all x ∈M , we have fIg
−1x ∈ fIM = 0, so fHM = 0. Therefore,

fHM = 0 for all H ∈ H with H ̸= 1, and so, by proposition 6.7, we have
fΓM = 0.

Proposition 6.9. Let L/K be a Galois extension of number fields, and let
G be its Galois group. Suppose that G has a generalised norm relation with
respect to a subgroup Γ < G, and a set of subgroups H. Let I ⊆ H be such
that 1 /∈ I and for every H ∈ H, there exists I ∈ I and g ∈ G such that
gIg−1 ≤ H. Let p be a prime number. If Leo(LI , p) holds for every I ∈ I,
then Leo(LΓ, p) holds.

Proof. This follows directly from corollary 6.8 and lemma 6.5.
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Example 6.10. We saw in example 4.13 that the group G = S4 admits a
generalised norm relation over Q with respect to H = C2 × C2 and J =
{D8, S3}. That means that for every Galois extension K̃/Q of Galois group
G = S4, and for p a prime number, if H is a subgroup of G isomorphic to
C2 × C2 and J1, J2 < G are isomorphic to D8 and S3, if Leo(K̃J1 , p) and
Leo(K̃J2 , p) both hold, then Leo(K̃H , p) also holds.

We could use proposition 6.9 to find new examples of number fields F
and primes p such that Leo(F, p) holds.

Until now, we were only interested in generalised norm relations where
the auxiliary fields are of the lowest possible degree, so their class groups or
their groups of S-units would be easier to compute a priori. However, to find
examples where Leopoldt’s conjecture holds, the most useful relations would
be those where we know that Leopoldt’s conjecture holds for every auxiliary
fields.

To find such auxiliary fields, one can use for example the following result,
by Ax and Brumer:

Theorem 6.11 ([2], [12]). Let K be a finite abelian extension of Q or of an
imaginary quadratic field. Then Leo(K, p) holds for every prime number p.

In [23], the authors also prove that Leopoldt’s conjecture holds for cer-
tain primes for an infinite family of totally real S3-extensions of Q (see [23,
theorem 6.12]) or for an infinite family of totally real D8-extensions of Q (see
[23, corollary 6.17]).
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7 Computing Selmer groups

In this chapter, we will present an algorithmic method to compute Selmer
groups of finite Galois modules. We will use the following definition of a
Selmer group.

Let K be a number field, K its algebraic closure, and G (or GK) its
absolute Galois group. Let M be a left G-module. Given a finite place v
of K, let Gv denote the decomposition group of K at v, and Iv the inertia
group. Then,

• a local condition at v is a subgroup Lv ⊂ H1(Gv,M),

• the unramified condition is the subgroup

H1
un(Gv,M) = ker

{
H1(Gv,M)→ H1(Iv,M)

}
,

• a Selmer system for M is a set L of local conditions Lv at every finite
place v of K, such that all but finitely many of the Lv are the unramified
condition,

• given a Selmer system L, the Selmer group attached to L is the sub-
group of H1(GK ,M) given by

SelL = ker

{
H1(GK ,M)→

∏
v

H1(Gv,M)

Lv

}
.

Note that this definition of Selmer group is restricted to subgroups of
the first cohomology group H1(GK ,M), but we can give a similar definition
for Selmer groups that would be subgroups of other cohomology groups. For
future research, it might be interesting to try and adapt the method presented
in this chapter to be able to compute Selmer groups contained in H2(GK ,M).

Some methods already exist to compute Selmer groups. For Selmer
groups of elliptic curves, Bruin lists some of these algorithms in [11, sec-
tion 5.4] and gives a geometric interpretation, and we can also mention some
more recent articles, like the article [34] by Maistret and Shukla. The method
presented here is more general, since it allows one to compute Selmer groups
in general and not only Selmer groups of elliptic curves. For future work,
we think it would be interesting to compare the time complexity of all the
existing methods.
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In all of the chapter, K will be a field of characteristic zero. We will
denote by K its algebraic closure and by G the Galois group Gal(K/K).

All modules will be left modules.
When R is a ring and M , N are left R-modules, we will denote by

HomR(M,N) the group of R-module homomorphisms from M to N .

If M is a G-module, we will denote by M∗ := HomZ(M,K
×

) the dual

module of M , where K
×

is viewed as an abelian group.
In a finite field extension L/F , we will denote by NL/F (x) the norm of

x ∈ L.
Unless specified otherwise, the group laws of cohomology groups will al-

ways be denoted multiplicatively.

7.1 Finding a resolution with Hecke operators

In all of the chapter, M will be a finite Galois module.
Let G be the image of the action G → Aut(M). It is isomorphic to a

finite quotient of G. Note that the action of G over M can be factorized to
be seen as an action of G over M .

Remark 7.1. If N denotes the kernel of the action G → Aut(M), then G is

the Galois group of the Galois extension K
N
/K.

Suppose we have Z[G]-modules Pi for every integer i, that are permutation
modules, as well as some morphisms of G-modules s and d∗i such that the
sequence

· · ·
d∗2−→ P2

d∗1−→ P1

d∗0−→ P0
s−→M∗ → 0

is exact, where M∗ is the dual module of M .
We will see in section 7.3 that we can always find such an exact sequence,

and we will give an algorithm (algorithm 7.18) to compute such Pi and d∗i
up to any integer i.

For this method, we will only need to compute such sequences up to P2.
We will denote by (5) an exact sequence of the form

P2

d∗1−→ P1

d∗0−→ P0
s−→M∗ → 0. (5)

Lemma 7.2. The functor P 7→ P ∗ = HomZ(P,K
×

), from the category of
G-modules that are finitely generated Z-modules to the category of G-modules,
is exact.
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Proof. It is enough to prove that P 7→ P ∗ is exact as a functor from the
category of Z-modules to the category of Z-modules.

Since K
×

is divisible, it is injective as a Z-module. Therefore, the functor

P 7→ P ∗ = HomZ(P,K
×

) is exact.

Once we obtain an exact sequence of the form (5), by lemma 7.2, we can
take the dual and get an exact sequence of the form

0→M → I0
d0−→ I1

d1−→ I2 (6)

where Ii = P ∗
i for all i.

Consider an exact sequence of the form (6) obtained with the construction
described above. The modules P0, P1, P2 are permutations modules. In the
rest of the section, let us write Pi =

⊕
j Z[G/Hi,j] for i ∈ {1, 2, 3}, and for

every pair (i, j), let us define Li,j := K
Hi,j

.

Proposition 7.3. With the above notations, for i ∈ {1, 2, 3}, we have

Ii =
⊕
j

IndG/GLi,j
K

×
=

⊕
j

Li,j
×

where GLi,j
is the absolute Galois group of Li,j. Moreover, we have

IGi = IGi =
⊕
j

L×
i,j.

Proof. See [49, Section 3.12, Example 19].

The morphisms d0 : I0 → I1 and d1 : I1 → I2 induce morphisms respec-
tively from IG0 to IG1 and from IG1 to IG2 , that we will denote by dG0 and dG1 .

Proposition 7.4. With the above notations, we have

H1(G,M) =
Ker(dG1 : IG1 → IG2 )

Im(dG0 : IG0 → IG1 )
.

Proof. Let J ⊂ I1 be the image of d0. Then we have a short exact sequence

0→M → I0
d0−→ J → 0.
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The associated long exact sequence starts with

0→MG → IG0
d0−→ J → H1(G,M)→ H1(G, I0)

andH1(G, I0) =
⊕

j H
1(GL0,j

, L
×
0,j) by Shapiro’s lemma, andH1(GL0,j

, L
×
0,j) =

0 by Hilbert 90th theorem.
This last exact sequence allows us to deduce that

H1(G,M) =
JG

Im(dG0 : IG0 → IG1 )
. (7)

What’s more, by definition of J , we also have an exact sequence

0→ J → I1
d1−→ I2,

hence the exact sequence

0→ JG → IG1
d1−→ IG2 ,

from which we can deduce that

JG = Ker(dG1 : IG1 → IG2 ).

Combining that result with 7, we get

H1(G,M) =
Ker(dG1 : IG1 → IG2 )

Im(dG0 : IG0 → IG1 )
.

Remark 7.5. If the modules Ii were injective, proposition 7.4 would be
trivial, but this is not usually the case. For example, for all i, j, we have

H2(G,ResLi,j/K K
×

) = H2(G, Li,j
×

) which is the Brauer group of Li,j, which
is usually non trivial.

Proposition 7.6. For every subgroup H < GK, the map

Res : H1(GK ,M)→ H1(H,M)

is the natural restriction

H1(G,M) =
Ker(dG1 : IG1 → IG2 )

Im(dG0 : IG0 → IG1 )
→ H1(H,M) =

Ker(dH1 : IH1 → IH2 )

Im(dH0 : IH0 → IH1 )
.
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Proof. Let J ⊂ I1 be the image of d0. Then we have a short exact sequence

0→M → I0
d0−→ J → 0.

The associated long exact sequence starts with

0→MG → IG0 → JG
1 → H1(G,M).

We can then apply the restriction map to obtain

0 //MG //

Res
��

IG0 //

Res
��

JG
1

//

Res
��

H1(G,M)

Res
��

0 //MH // IH0 // JH
1

// H1(H,M)

Moreover, for every field F such that K ⊂ F , and for all i, we have

IGi = L×
i and I

Gal(F/F )
i = (Li ⊗K F )×. So IHi = Li

H
, hence the conclusion.

7.2 A remarkable Selmer group

Let M be a finite Galois module, suppose that we have the Galois modules
I0, I1, I2 and the morphisms of G-modules d0 and d1 obtained as in section
7.1, such that the sequence

0→M → I0
d0−→ I1

d1−→ I2

is exact. By proposition 7.4, we have

H1(G,M) =
Ker(dG1 : IG1 → IG2 )

Im(dG0 : IG0 → IG1 )
.

where for all i ∈ {0, 1, 2}, IGi is of the form
⊕

j L
×
i,j and the Li,j are interme-

diate fields between K and K.
In the rest of the section, we will denote by Li the étale algebra

∏
j Li,j.

We will allow ourself to extend to étale algebras the notions of class groups
and S-unit groups.
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Definition 7.7. Let S be a set of prime numbers. Let us define the group

H1
S(G,M) :=

Ker(dG1 :
⊕

j Z×
L1,j ,S

→
⊕

j Z×
L2,j ,S

)

Im(dG0 :
⊕

j Z×
L0,j ,S

→
⊕

j Z×
L1,j ,S

)
.

By theorem 2.24, the images of S-units by dG1 and dG0 are S-units, so the
group H1

S(G,M) is well defined.
When the context is clear, we will also allow ourself to write H1 and H1

S

instead of H1(G,M) and H1
S(G,M).

The goal of this section will be to prove that H1
S(G,M) is a Selmer group.

We will use the following notations:

• Z1 := Ker(dG1 : IG1 → IG2 )

• B1 := Im(dG0 : IG0 → IG1 )

• Z1
S := Ker(dG1 :

⊕
j Z×

L1,j ,S
→

⊕
j Z×

L2,j ,S
)

• B1
S := Im(dG0 :

⊕
j Z×

L0,j ,S
→

⊕
j Z×

L1,j ,S
) .

Proposition 7.8. We have an injection H1
S(G,M) ↪→ H1(G,M).

Proof. We have trivially Z1
S ⊂ Z1. So in order to prove the proposition, it is

enough to show that B1 ∩Z×
L1,S
⊂ B1

S. In other words, we need to show that

if an element y in the image of dG0 is an S-unit, then there exists an S-unit
x in IG0 = L×

0 such that dG0 (x) = y.
If we take the tensor product of the exact sequence (6) with Q, we obtain

0→ I0 ⊗ Q
d0−→ I1 ⊗ Q

d1−→ I2 ⊗ Q

because M is finite, so that M ⊗ Q = 0.
Then, by proposition 4.25 applied to P0 and P1, there exists a surjective

morphism of G-modules f : I1 → I0 such that f ◦ d0 = k · id.
Now, let y be an element of B1 ∩ Z×

L1,S
. Since x is in B1, there exists

x ∈ L×
0 such that dG0 (x) = y. So s ◦ dG0 (x) = k · x (or xk in multiplicative

notation). But dG0 (x) = y is an S-unit, so its image by f is also an S-unit
by 2.4. Hence k · x is an S-unit. And since Z×

S,L0
is saturated as a subgroup

of L×
0 , that means x is also an S-unit.

So y is the image of an S-unit by dG0 , ie y ∈ B1
S. Hence B1

S ⊂ B1 ∩Z×
L1,S

.
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Definition 7.9. In the rest of the section, if v is a finite place of K, we will
use the following notations:

• Z1
units,v = Ker(Z×

L1,v

d1−→ Z×
L2,v

),

• B1
units,v = Im(Z×

L0,v

d0−→ Z×
L1,v

),

• H1
units,v =

Z1
units,v

B1
units,v

,

• Kur
v the largest unramified extension of Kv, and IKv = Gal(Kv/K

ur
v )

the inertia group, and GKv = Gal(Kv/K).

• Z1
ram,v = Ker((L0 ⊗Kur

v )×
d1−→ (L1 ⊗Kur

v )×),

• B1
ram,v = Im((L1 ⊗Kur

v )×
d0−→ (L2 ⊗Kur

v )×),

• H1
ram,v =

Z1
ram,v

B1
ram,v

.

When the context is clear, we will allow ourself to write H1
ram, Z1

ram and
B1

ram.
For every place v of K, we also write:

• Z1
v = Ker(L×

1,v

d1,v−−→ L×
2,v)

• B1
v = Im(L×

0,v

d0,v−−→ L×
1,v)

• H1
v = Z1

v

B1
v
.

where d0,v and d1,v are defined respectively by the two following commu-
tative diagrams

L×
0 L×

1

L×
0,v L×

1,v

d0

d0,v

L×
1 L×

2

L×
1,v L×

2,v

d1

d1,v

(⋆) (⋆⋆)
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Proposition 7.10. For every place v of K, we have

Resv(H
1(G,M)) ⊆ Z1

v

B1
v

where Resv denotes the restriction map from H1(G,M) to H1(Gv,M).

Proof. Let x be a class in H1(G,M) and let x be a representative of x modulo
B1, and xv the localisation of x at v.

Since the diagram (⋆⋆) commutes and d1(x) = 0, we have d1,v(xv) = 0.
So xv ∈ Z1

v .
If x2 is another representative of x, then x2 = x + b with b ∈ B1. When

we take the localisation at v, we get x2,v = xv + bv, and since the diagram

(⋆) commutes, we have bv ∈ B1
v . Hence Resv(x) ∈ Z1

v

B1
v
.

Proposition 7.11. With the notations of definition 7.9, we have H1
v =

H1(GKv ,M) and H1
ram = H1(IKv ,M).

Proof. We can do the same construction as in section 7.1, with Kv (respec-
tively Kur

v ) instead of K. The same resolution

0→M → I0
d0−→ I1

d1−→ I2

also works in these cases, since the Ii are also both GKv -modules and IKv

modules. Moreover, for all i, we have I
GKv
i = L×

i,v and I
IKv
i = (Li ⊗Kur

v )×.
Hence the conclusion.

Note that, by proposition 7.6, the map Resv : H1(GK ,M) → H1,v is the

natural restriction Z1

B1
→ Z1,v

B1,v
.

Lemma 7.12. Let v /∈ S be a place of K, then we have

Resv(H
1
S(G,M)) ⊆ H1

units,v.

Proof. Let v be a place not in S. Let x be a class in H1
S, x ∈ Z1

S a rep-
resentative of x, and xv the localisation of x at v. Since v /∈ S, we have
xv ∈ Z×

L1,v
. And since the diagram (⋆⋆) commutes, we have xv ∈ Z1

v . So

xv ∈ Ker(Z×
L1,v

d1,v−−→ L×
2,v). And if x2 = x · b is another representative of x,

with b ∈ B1
S, then it is easy to check that bv ∈ Im(Z×

L0,v
→ Z×

L1,v
). Hence

Resv(x) ∈ Hunits,v.
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Proposition 7.13. If S is a set of primes such that the class group Cl(L0)
is spanned by ideals above all primes in S, then we have

H1
S = {x ∈ H1 | ∀v /∈ S,Resv(x) ∈ H1

units,v}.

Proof. By lemma 7.12, we already have the inclusion H1
S ⊆ {x ∈ H1 | ∀v /∈

S,Resv(x) ∈ H1
units,v}.

Now, let x be a class in H1(G,M) such that for all place v /∈ S, we have
Resv(x) ∈ H1

units,v. By definition, for all v, there exists zv in L×
0,v such that

Resv(x) · d0,v(zv) ∈ Z×
L1,v

.

We want to show that there exists z ∈ L×
0 such that for all v /∈ S,

z · z−1
v ∈ Z×

L0,v
. This problem is equivalent to taking a fractional ideal a of

L0, and deciding whether there exists p a product of prime ideals in S such
that ap is principal. But since S spans the class group of L0, we know it is
possible.

Proposition 7.14. For every place v of K such that v does not divide |M |,
we have H1

units,v = Ker(Res : H1 → H1
ram).

Proof. First let us show the inclusion H1
units,v ⊆ Ker(Res : H1 → H1

ram).
We have the following diagram:

(OL0 ⊗OKur
v

)×
d0 //

� _

i
��

(OL1 ⊗OKur
v

)×
d1 //

� _

i
��

(OL2 ⊗OKur
v

)×
� _

i
��

(L0 ⊗Kur
v )×

d0 //

val����

(L1 ⊗Kur
v )×

d1 //

val����

(L2 ⊗Kur
v )×

val����
ZHom(L0,Kur

v ) � � d0 // ZHom(L1,Kur
v ) d1 // ZHom(L2,Kur

v )

where the three vertical sequences are exact, and where val denotes
the valuation morphisms. What’s more, the morphism d0 : ZHom(L0,Kur

v ) →
ZHom(L1,Kur

v ) is injective because the kernel of d0 : (L0⊗Kur
v )× → (L1⊗Kur

v )×

is torsion, so its image under val is 0.

Let x ∈ Z1
units ⊂ O×

L1
. That is to say d1(x) = 1 ∈ O×

L2
. We want to show

that Res(x) = x⊗ 1 ∈ (L1 ⊗Kur
v )× is in B1

ram = d0((L0 ⊗Kur
v )×).
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Let N be an integer such that the module M is annihilated by N , and
such that N does not divide the characteristic of the residue field of OK .
Then H1

ram is N -torsion.
So there exists y ∈ (L0 ⊗Kur

v )× such that Res(x)N = d0(y).
Since x ∈ O×

L1
, then val(Res(x)) = 0, so val(y) = 0, so y ∈ (O×

L0
⊗O×

Kur
v

)×.

And (O×
L0
⊗ O×

Kur
v

)× is N -divisible, so there exists z ∈ (O×
L0
⊗ O×

Kur
v

)× such

that zN = y.
Hence d0(z)N = d0(y) = xN . This proves that d0(z) = ζNx, with ζN a

N -th root of unity.
Now let us prove that for the N -th roots of unity, Im(d0) = Ker(d1), which
would imply the conclusion.

With the notation of section 7.1, we have an exact sequence

P2

d∗1−→ P1

d∗0−→ P0
s−→M∗ → 0.

Consider the modules P ′
2 = Im(d∗1) and P ′

0 = Im(d∗0). Then, by definition,
we have the short exact sequence

0→ P ′
2 → P1 → P ′

0 → 0.

By properties of Tor functors (see for example [14, chapter VI]), and
because the modules P1, P

′
0, P

′
2 are N -torsion free, we have the short exact

sequence
0→ P ′

2/N → P1/N → P ′
0/N → 0.

By taking the dual, we then get precisely that Im(d0) = Ker(d1) for the N -th
roots of unity, because for every i, we have (Pi/N)∗ = Ii[N ], and Ii[N ] is the
set of N -th roots of unity of Li.

Now let us show the second inclusion: H1
units,v ⊇ Ker(Res : H1 → H1

ram).
Let x be an element of Ker(Res : H1 → H1

ram), that is to say an element
of L×

1 such that Res(x) ∈ B1
ram. We want to show that there exists z ∈ B1

such that x · z−1 ∈ O×
L1

.
As Res(x) is in B1

ram, there exists y ∈ (L0⊗Kur
v )× such that d0(val(y)) =

val(Res(x)). Besides, since x is in L×
1 , then val(Res(x)) is invariant by the

action of Gal(Kur
v /K).

So for all g ∈ Gal(Kur
v /K), g · d0(val(y)) = d0(val(y)) = d0(g · val(y)).

Since d0 : ZHom(L0,Kur
v ) → ZHom(L1,Kur

v ) is injective, that means val(y) is also
invariant by the action of Gal(Kur

v /K).
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Therefore, val(y) is in (ZHom(L0,Kur
v ))(Gal(Kur

v /K)), so there exists z ∈ L×
0

such that val(z) = val(y).
And thus val(Res(d0(z))) = d0(val(z)) = d0(val(y)) = val(Res(x)), hence

val(Res(d0(z)x−1)) = 0.
So, again by injectivity, d0(z) = x, hence the conclusion.

Theorem 7.15. If all prime ideals above S span Cl(L0) and S contains all
primes that divide |M |, then H1

S is a Selmer group. More precisely, it is
the Selmer group attached to the Selmer structure where all the conditions at
places outside of S are unramified conditions and where there is no condition
for the places in S.

Proof. The theorem is a direct consequence of proposition 7.13 and proposi-
tion 7.14.

Remark 7.16. Since every Selmer group is contained in a H1
S for some

finite set of places S, this gives another proof that Selmer groups are finitely
generated.

7.3 Algorithm and complexity

In this section, we will explain the algorithmic method to obtain a partial res-
olution of a finite Galois module M with permutation modules, as discussed
in section 7.1 (See algorithm 7.18). Then, we will describe the algorithm to
compute Selmer groups, (see algorithm 7.19) and discuss its complexity (see
proposition 7.21).

But first, we have to explain how to represent in bits all the mathematical
objects involved.

Let M be a finite Galois module, and G be the image of the action
G → Aut(M). It is a finite group, so we can represent it as a subgroup of a
permutation group. We can also suppose that we have a list [g1, · · · , gr] of
generators.

Since M is a finite module, we can represent it as a list [m1, · · · ,ms] of
generators of M as an abelian group, and a list of relations, as well as a list
of matrices giving the actions of the generators of G on the mi.

We can represent a Selmer system L, with a set of primes, indicating the
places where the local conditions are not the unramified condition, a basis
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of the local cohomology groups at these places and the generators of the
subgroups in L.

As for the Selmer group SelL, since it is a finitely generated group, we
can represent it as a list of generators and a list of relations, or by its decom-
position in cyclic factors, with the theorem of structure of finitely generated
abelian groups.

Algorithm 7.17.

input: A finite group G and a finitely generated G-module N .
output: A permutation module P and a surjective morphism of G-modules
s : P → N .

• Let (x1, · · ·xr) be a generating sequence of elements of N .

• For every element x in {x1, · · · , xr},

– compute Hx = StabG(x) the stabilizer of x under the action of G.

– Compute fx : Z[G/Hx]→ N, 1 ·Hx 7→ x.

• Return P =
⊕r

i=1 Z[G/Hxi ] and s =
∑r

i=1 fxi .

Algorithm 7.18.
input: A finite Galois module M , of Galois group G, and G the image of the
action G → Aut(M).
output: Permutation modules Pi and morphisms of G-modules s and d∗i such
that the sequence

· · ·
d∗2−→ P2

d∗1−→ P1

d∗0−→ P0
s−→M∗ → 0

is exact.

1. Compute M∗, take (x1, · · · , xr) a finite generating sequence of elements
of M∗.

2. Using algorithm 7.17, compute a permutation module P0 as well as a
surjective morphism of G-module s : P0 →M∗

3. Compute the kernel K0 of s.

4. Use algorithm 7.17 again, on K0, to obtain P1 and d∗0.
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5. Repeat the same process again to obtain all the Pi and the d∗i .

Suppose we have a Selmer system L, and we want to compute SelL, the
Selmer group attached to L for M . Using the results in part 7.1 and 7.2, we
deduce the following algorithm.

Algorithm 7.19.
input: A finite Galois module M , of Galois group G, and G the image of the
action G → Aut(M). A Selmer system L.
output: The Selmer group SelL

• Use algorithm 7.18 to compute a resolution of M as in section 7.1.

• Let S be the smallest set of primes such that all conditions in L outside
of S are the unramified condition and such that S spans the class group
Cl(L0) and S contains all the primes that divide |M |.

• Compute H1
S(G,M).

• Look for SelL as a subgroup of the finitely generated group H1
S(G,M).

Theorem 7.20. The algorithms 7.17, 7.18 and 7.19 are correct.

Proof. The correctness of algorithms 7.17 and 7.18 are self explanatory, and
the correctness of algorithm 7.19 is a consequence of theorem 7.15.

Proposition 7.21. If we suppose that we have an oracle that can give us
the S-units and the class group of any number fields, and another that can
compute the fixed field of a subgroup of a Galois group, then the algorithm 7.19
has a time complexity polynomial in the size of the input and in |M |.

Proof. First, let us prove that algorithm 7.18 has a time complexity polyno-
mial in the size of M and G.

• If we have a finiteG-moduleM given by a list of generators [m1, · · · ,ms]
and a list of matrices [M1, · · · ,Mr], as described above, then we can
represent the dual module M∗ by taking the inverse transpose of all
the matrices, twisted by the cyclotomic character χ|M |.
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Indeed, all elements ofM are |M |-torsion, so HomZ(M,K
×

) = HomZ(M,µ|M |)
where µ|M | is Z/|M |Z as a G-module where the action of G is given by
the cyclotomic character χ|M |. So

HomZ(M,K
×

) = HomZ(M,Z/|M |Z)⊗ χ|M |,

and the dual module M∗ is computed in polynomial time.

• We can compute the stabilizers StabG(x) in time polynomial in the size
of M , using the method described in [30, Chapter 4.1].

• With the notations of section 7.1, the Pi are all free, finitely generated,
Z-modules, they can be represented as in [30, section 7.4.1].

If [g1, · · · , gr] is a list of generators of G, let i be an integer, and let
us fix (pi,1, · · · , pi,di) be a Z-basis of Pi. Then we can represent Pi as a
list [α1, · · · , αr] where the αj are the (di × di)-matrices of the actions
of the gi on the basis (pi,1, · · · , pi,di). So their size is still polynomial in
the size of the input.

And the morphisms of G-modules d0 and d1 can be represented as a
list of co-sets, corresponding to their decompositions in Hecke operators
(see fact 2.4 ) .

Once we apply algorithm 7.18, we obtain an exact sequence of the form

P2
d1−→ P1

d0−→ P0
s−→M∗ → 0

and we represent d0 and d1 as a sum of cosets corresponding to Hecke op-
erators. Then, with the notations of proposition 7.3, we can compute the

number fields Li,j = K
Hi,j

thanks to the oracle.
Then, assuming the oracle gives us the S-units of all the Li,j, with S

easily accessible from the representation of the Selmer system L and from
our oracle, computing the group H1

S(G,M) boils down to computing the
actions of Hecke operators on S-units, which takes polynomial time (see [22,
Theorem 1.18]).

Finally, all there is left to do is to find a basis of SelL as a subgroup of
H1
S(G,M). This comes down to computing the kernel of the map

H1
S(G,M)→

∏
v

H1(Gv,M)

Lv
.
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Remark 7.22. To compute the fixed fields Li,j = K
Hi,j

, one can use [24,
algorithm 1]. However, we were unable to find a result in the literature about
the complexity of this algorithm.
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Conclusion

To conclude this thesis, let us sketch some possible continuations for our
research.

• IfG is a finite group, letH, J1, · · · , Jℓ be non trivial subgroups ofG, and
let J = {J1, · · · , Jℓ}. If there is a norm relation over Q with respect to
H and J . Then, by proposition 4.26, there exists an injective morphism
of Z[G]-module ψ : Z[G/H]→

⊕
i Z[G/Ji]

ni with ni ∈ Z≥0 for all i, and
a morphism of Z[G]-module ϕ :

⊕
i Z[G/Ji]

ni → Z[G/H] such that the
image of ϕ has finite index in Z[G/H] and ϕ ◦ψ = c(J , H) · id. What’s
more, we have c(J , H)

∣∣ |G|2. Then, by proposition 3.5, for every coho-
mological Mackey functor M , there exists ϕM :

⊕m
i=1M(Ji) → M(H)

and ψM : M(H)→
⊕m

i=1M(Ji) such that ϕM ◦ψM = c(J , H) · idM(H).

In this thesis, we mainly use this result for the particular case where
M is defined by M(Γ) = Z×

K̃Γ,S
for every Γ < G, for K̃/Q a Galois

extension of number fields, of Galois group G, and for S a set of prime
ideals of ZK̃ . For further research, it would be interesting to look for
other Mackey functors to apply this result to, and maybe find some
algorithms similar to 5.9 to compute other objects inductively.

• Another open question would be to find a classification of all gener-
alised norm relations, similar for example to the classification of Brauer
relations given in [4].

• A very natural continuation to the research described in chapter 7
would be to actually implement algorithm 7.19. Moreover, the defini-
tion of Selmer groups can be extended to include not only subgroups
of the first cohomology group H1, but also all of the H i. Although
there would be some complications to overcome, one should be able
to extend the method of chapter 7 to also compute Selmer groups in
H2(G,M). We can also try to extend the method to be able to compute
cup products, or other cohomological operations or pairings.
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Appendix

The tables below give a list of norm relations in groups of order less than 720.
For every row of the tables, G is a finite group, K̃ is a number field such that
K̃/Q is a Galois extension of Galois group G. So the degree of K̃ is the order
of G. We also have H a subgroup of G, and K is the number field defined by
K = K̃H . We define KJ1 to be the largest degree number field on which one
would have to use Buchmann’s algorithm, in order to compute Cl(K) using
only classical norm relations, in any quotient of G. We can have KJ1 = K
when there are no relevant classical norm relations. Similarly, KJ2 is the
largest degree number field on which one would have to use Buchmann’s
algorithm, in order to compute Cl(K) using generalised norm relations. The
tables were obtained by enumerating every groups G of order n, for every n
less than 720 (we skipped n = 256, 384, 512, 576, 640). Then for every G, we
enumerated every subgroups H up to conjugacy classes, and computed the
degrees of KJ1 and KJ2 . Here we display the examples where the degree of
KJ2 is strictly lower than the degree of KJ1 .

Note that some rows can seem to be repeated. It can mean either that the
group G differs between the two rows, but has the same structure description
(which can happen in the case of a semi direct product for example), or that
the subgroup H differs but has the same structure description (which can
happen if G contains several copies of H that are not in the same conjugacy
classe).

All of the calculation were done using sagemath (see [18]) and in particular
the GAP library (see [26]).
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G degree of K̃ H degree of K degree of KJ1
degree of KJ2

S4 24 C2 × C2 6 6 4
A5 60 C2 × C2 15 12 6
A5 60 S3 10 10 6

(S3 × S3) ⋊ C2 72 D8 9 9 6
C3 × S4 72 C2 × C2 18 18 12

((C4 × C2) ⋊ C4) ⋊ C3 96 C3 32 24 12
((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2 96 C2 × C2 × C2 12 6 4
((C3 × C3) ⋊ C3) ⋊ (C2 × C2) 108 S3 18 18 9

S5 120 C2 × C2 30 15 10
S5 120 S3 20 20 10
S5 120 D8 15 15 10
S5 120 D10 12 12 10

C5 × S4 120 C2 × C2 30 30 20
(C2 × (C4 ⋊ C4))4 128 C2 64 16 8
(C3 × C3) ⋊QD16 144 S3 24 12 9
(C3 × C3) ⋊QD16 144 D8 18 18 9
(C3 × C3) ⋊QD16 144 D12 12 12 9

S3 × S4 144 C2 × C2 36 18 12
S3 × S4 144 C2 × C2 × C2 18 18 12
S3 × S4 144 D8 18 18 12

(C5 × C5) ⋊ S3 150 S3 25 25 15
((C3 × C3 × C3) ⋊ C3) ⋊ C2 162 S3 27 18 9
((C3 × C3 × C3) ⋊ C3) ⋊ C2 162 S3 27 18 9
((C3 × C3 × C3) ⋊ C3) ⋊ C2 162 S3 27 18 9
((C3 × C3 × C3) ⋊ C3) ⋊ C2 162 S3 27 18 9
((C3 × C3 × C3) ⋊ C3) ⋊ C2 162 S3 27 18 9

PSL(3, 2) 168 S3 28 28 21
PSL(3, 2) 168 C7 24 24 21
PSL(3, 2) 168 A4 14 14 8
PSL(3, 2) 168 A4 14 14 8

(C2 × C2 × C2) ⋊ (C7 ⋊ C3) 168 A4 14 14 8
C7 × S4 168 C2 × C2 42 42 28
GL(2, 4) 180 S3 30 30 15
GL(2, 4) 180 D10 18 18 15

(C4 · (C4 × C4))3 192 A4 16 16 8
C2 · (((C4 × C4) ⋊ C3) ⋊ C2) 192 C3 64 48 24

SL(2, 3) ⋊ C8 192 C3 64 32 24
C2 × (((C4 × C2) ⋊ C4) ⋊ C3) 192 C3 64 24 12
((C2 × ((C4 × C2) ⋊ C2))2)3 192 C3 64 24 16

(((C4 × C2) ⋊ C4)2)3 192 C2 96 24 16
(((C4 × C2) ⋊ C4)2)3 192 C3 64 24 16
(((C4 × C2) ⋊ C4)2)3 192 C4 48 24 16
(((C4 × C2) ⋊ C4)2)3 192 C4 48 24 16
(((C4 × C2) ⋊ C4)2)3 192 C2 × C2 48 24 16
(((C4 × C2) ⋊ C4)2)3 192 C4 48 24 16
(((C4 × C2) ⋊ C4)2)3 192 C6 32 24 16
(((C4 × C2) ⋊ C4)2)3 192 C6 32 24 16

(((C2 × C2 × C2 × C2) ⋊ C2) ⋊ C2) ⋊ C3 192 A4 16 16 8
(((C4 × C2 × C2) ⋊ C2)2) ⋊ C3 192 A4 16 16 6
(((C4 × C2 × C2) ⋊ C2)2) ⋊ C3 192 A4 16 16 8
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G degree of K̃ H degree of K degree of KJ1
degree of KJ2

(C2 × C2) · (C2 × S4) 192 C3 64 32 24
SL(2, 3)8 192 C3 64 32 24

(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 × C2 × C2 24 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 × C2 × C2 24 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 × C2 × C2 24 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 D8 24 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 D12 16 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 ×D8 12 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 ×D8 12 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 ×D8 12 12 8
(((C2 × C2 × C2 × C2) ⋊ C2)3)2 192 C2 ×D8 12 12 8

((C4 ×Q8) ⋊ C2) ⋊ C3 192 C3 64 48 24
(Q8 ×Q8) ⋊ C3 192 C3 64 32 24

(((C2 × C2 × C2) ⋊ (C2 × C2))3)2 192 A4 16 16 8
((C2 × ((C4 × C2) ⋊ C2))2) ⋊ C3 192 A4 16 16 6
((C2 × ((C4 × C2) ⋊ C2))2) ⋊ C3 192 A4 16 16 6
((C2 × ((C4 × C2) ⋊ C2))2) ⋊ C3 192 A4 16 16 6

C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 C2 × C2 48 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 C2 × C2 48 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 C2 × C2 48 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 C2 × C2 × C2 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8
C2 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 192 D8 24 12 8

(C5 × C5) ⋊D8 200 D8 25 20 10
((C3 × C3) ⋊ C3) ⋊ C8 216 S3 36 36 27
((C3 × C3) ⋊ C3) ⋊Q8 216 S3 36 36 27

C9 × S4 216 C2 × C2 54 54 36
((C3 × C3) ⋊Q8) ⋊ C3 216 C3 × C3 24 12 9
((C3 × C3) ⋊Q8) ⋊ C3 216 C3 × S3 12 12 9
C3 × ((S3 × S3) ⋊ C2) 216 D8 27 24 12
(C3 × C3 × C3) ⋊D8 216 C2 × C2 54 24 12
(C3 × C3 × C3) ⋊D8 216 C6 36 24 12
(C3 × C3 × C3) ⋊D8 216 D8 27 24 12

C3 × C3 × S4 216 C2 × C2 54 18 12
SL(2, 5) ⋊ C2 240 C5 48 48 40
A5 ⋊ C4 240 S3 40 24 20
C2 × S5 240 C2 × C2 60 20 12
C2 × S5 240 S3 40 20 12
C2 × S5 240 D8 30 20 12
C2 × S5 240 D8 30 20 12
C2 × S5 240 D12 20 20 12
C2 × S5 240 D12 20 20 12
D10 × S4 240 C2 × C2 60 30 20
D10 × S4 240 C2 × C2 × C2 30 30 20
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G degree of K̃ H degree of K degree of KJ1
degree of KJ2

D10 × S4 240 D8 30 30 20
C11 × S4 264 C2 × C2 66 66 44

((C22× C2 × C2) ⋊ (C2 × C2)) ⋊ (C3 × C3) 288 C3 × C3 32 32 24
A4 × S4 288 C2 × C2 72 18 16
A4 × S4 288 C2 × C2 × C2 36 18 16
A4 × S4 288 D8 36 18 16
A4 × S4 288 C6 × C2 24 18 16
A4 × S4 288 C2 ×D8 18 18 16

(((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2)3 288 C3 × C3 32 24 18
(((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2)3 288 C3 × S3 16 16 12

(A4 ×A4) ⋊ C2 288 C2 × C2 × C2 36 18 12
(A4 ×A4) ⋊ C2 288 C4 × C2 36 18 12
(A4 ×A4) ⋊ C2 288 D12 24 18 12
(A4 ×A4) ⋊ C2 288 D12 24 18 12
(A4 ×A4) ⋊ C2 288 C2 ×D8 18 18 12
(A4 ×A4) ⋊ C2 288 (C3 × C3)2 16 16 12

C3 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 288 C2 × C2 × C2 36 18 12
(C3 × ((C2 × C2 × C2 × C2) ⋊ C3)) ⋊ C2 288 C2 × C2 72 18 12
(C3 × ((C2 × C2 × C2 × C2) ⋊ C3)) ⋊ C2 288 C2 × C2 × C2 36 18 12
(C3 × ((C2 × C2 × C2 × C2) ⋊ C3)) ⋊ C2 288 C4 × C2 36 18 12
(C3 × ((C2 × C2 × C2 × C2) ⋊ C3)) ⋊ C2 288 C4 × C2 36 18 12
(C3 × ((C2 × C2 × C2 × C2) ⋊ C3)) ⋊ C2 288 C4 × C2 36 18 12

(C7 × C7) ⋊ S3 294 S3 49 42 21
C5 ×A5 300 C2 × C2 75 60 30
C5 ×A5 300 S3 50 60 30

(C5 × C5) ⋊D12 300 D12 25 25 15
C13× S4 312 C2 × C2 78 78 52

((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C4 320 C2 × C2 × C2 40 20 16
((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C4 320 D10 32 20 16
((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C4 320 (C4 × C2) ⋊ C2 20 20 16
((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C4 320 C2 ×D8 20 20 16
((C3 × C3 × C3) ⋊ C3) ⋊ (C2 × C2) 324 D12 27 18 9
(C3 × ((C3 × C3) ⋊ C3)) ⋊ (C2 × C2) 324 S3 54 18 12

((C9 × C3) ⋊ C3) ⋊ (C2 × C2) 324 S3 54 54 27
PSL(3, 2) ⋊ C2 336 A4 28 28 16
PSL(3, 2) ⋊ C2 336 D12 28 28 21
PSL(3, 2) ⋊ C2 336 D14 24 24 21
C2 × PSL(3, 2) 336 C7 ⋊ C3 16 16 14

C2 × ((C2 × C2 × C2) ⋊ (C7 ⋊ C3)) 336 C7 ⋊ C3 16 16 14
D14 × S4 336 C2 × C2 84 42 28
D14 × S4 336 C2 × C2 × C2 42 42 28
D14 × S4 336 D8 42 42 28

A6 360 (C3 × C3) ⋊ C2 20 20 10
A6 360 S4 15 15 10
A6 360 S4 15 15 10

C3 × S5 360 S3 60 60 30
C3 × S5 360 D10 36 36 30
C3 ⋊ S5 360 S3 60 30 15
C3 ⋊ S5 360 D10 36 18 15
C3 ⋊ S5 360 D12 30 30 15
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G degree of K̃ H degree of K degree of KJ1
degree of KJ2

C3 ⋊ S5 360 C5 ⋊ C4 18 18 15
A5 × S3 360 C2 × C2 90 30 18
A5 × S3 360 S3 60 30 18
A5 × S3 360 C2 × C2 × C2 45 30 18
A5 × S3 360 A4 30 30 18
A5 × S3 360 D12 30 30 18
C6 ×A5 360 S3 60 36 30
C6 ×A5 360 D10 36 36 30

C5 × ((S3 × S3) ⋊ C2) 360 D8 45 45 30
(C3 × C3) ⋊ ((C10 × C2) ⋊ C2) 360 C2 × C2 90 45 30
(C3 × C3) ⋊ ((C10 × C2) ⋊ C2) 360 D8 45 45 30

C15 × S4 360 C2 × C2 90 90 60
(C5 × C5) ⋊ ((C4 × C2)2) 400 (C4 × C2) ⋊ C2 25 20 10

(C17 × S4 408 C2 × C2 102 102 68
C7 ×A5 420 C2 × C2 105 84 42
C7 ×A5 420 S3 70 70 42

((C3 × C3) ⋊ C3) ⋊QD16 432 S3 72 36 27
((C3 × C3) ⋊ C3) ⋊QD16 432 D12 36 36 27

D18 × S4 432 C2 × C2 108 54 36
D18 × S4 432 C2 × C2 × C2 54 54 36
D18 × S4 432 D8 54 54 36

C2 × (((C3 × C3) ⋊ C3) ⋊ C8) 432 S3 72 72 54
(((C3 × C3) ⋊Q8) ⋊ C3) ⋊ C2 432 C3 × C3 48 24 18
(((C3 × C3) ⋊Q8) ⋊ C3) ⋊ C2 432 C3 × S3 24 24 18
(((C3 × C3) ⋊Q8) ⋊ C3) ⋊ C2 432 (C3 × C3) ⋊ C2 24 12 9
(((C3 × C3) ⋊Q8) ⋊ C3) ⋊ C2 432 C3 × S3 24 24 18
(((C3 × C3) ⋊Q8) ⋊ C3) ⋊ C2 432 S3 × S3 12 12 9
C2 × (((C3 × C3) ⋊Q8) ⋊ C3) 432 C3 × C3 48 24 18
C2 × (((C3 × C3) ⋊Q8) ⋊ C3) 432 C3 × S3 24 24 18
C2 × (((C3 × C3) ⋊Q8) ⋊ C3) 432 C3 × S3 24 24 18
C3 × ((C3 × C3) ⋊QD16 432 D8 54 48 24
C3 × ((C3 × C3) ⋊QD16 432 QD16 27 27 24
(C3 × C3 × C3) ⋊QD16 432 D8 54 27 24
(C3 × C3 × C3) ⋊QD16 432 QD16 27 27 24
((S3 × S3) ⋊ C2)× S3 432 D8 54 24 12
((S3 × S3) ⋊ C2)× S3 432 C2 ×D8 27 24 12

C3 × S3 × S4 432 C2 × C2 108 36 24
C3 × S3 × S4 432 C2 × C2 × C2 54 36 24
C3 × S3 × S4 432 D8 54 36 24
C3 × S3 × S4 432 C6 × C2 36 36 24

((C3 × C3) ⋊ C2)× S4 432 C2 × C2 108 18 12
((C3 × C3) ⋊ C2)× S4 432 D8 54 18 12
((C3 × C3) ⋊ C2)× S4 432 C2 × C2 × C2 54 18 12
C3 × ((C5 × C5) ⋊ S3) 450 S3 75 75 45

C19 × S4 456 C2 × C2 114 114 76
C4 ⋊ S5 480 C2 × C2 120 40 20
C4 ⋊ S5 480 S3 80 40 20
C4 ⋊ S5 480 D8 60 40 20
C4 ⋊ S5 480 D8 60 40 20
C4 ⋊ S5 480 D12 40 40 20
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C4 ⋊ S5 480 D12 40 40 20
A5 ⋊Q8 480 S3 80 48 40

SL(2, 5) ⋊ (C2 × C2) 480 C5 96 48 40
SL(2, 5) ⋊ (C2 × C2) 480 D10 48 48 40
C2 × (SL(2, 5) ⋊ C2) 480 C5 96 48 40
C2 × (A5 ⋊ C4) 480 S3 80 24 20

C5 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 480 A4 40 40 20
C5 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 480 A4 40 40 20
C5 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 480 A4 40 40 20

C2 × C2 × S5 480 C2 × C2 120 20 12
C2 × C2 × S5 480 S3 80 20 12
C2 × C2 × S5 480 D8 60 20 12
C2 × C2 × S5 480 D8 60 20 12
C2 × C2 × S5 480 D8 60 20 12
C2 × C2 × S5 480 D8 60 20 12
C2 × C2 × S5 480 D12 40 20 12
C2 × C2 × S5 480 D12 40 20 12
C2 × C2 × S5 480 D12 40 20 12
C2 × C2 × S5 480 D12 40 20 12

(((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C2) ⋊ C3 480 C2 × C2 × C2 60 20 16
(((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C2) ⋊ C3 480 D10 48 30 16
(((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C2) ⋊ C3 480 C2 ×D8 30 20 16
(((C2 × C2 × C2 × C2) ⋊ C5) ⋊ C2) ⋊ C3 480 C2 ×A4 20 20 16

(C5 ⋊ C4)× S4 480 C2 × C2 120 30 20
(C5 ⋊ C4)× S4 480 D8 60 30 20
(C5 ⋊ C4)× S4 480 C2 × C2 × C2 60 30 20
(C5 ⋊ C4)× S4 480 (C4 × C2) ⋊ C2 30 30 20
(C5 ⋊ C4)× S4 480 C4 × C2 × C2 30 30 20

C5 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C2 × C2 × C2 60 30 20
C5 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C2 × C2 120 30 20
C5 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C4 × C2 60 30 20
C5 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C4 × C2 60 30 20
C5 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C4 × C2 60 30 20
C5 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 480 C2 × C2 × C2 60 30 20

(((C9 × C3) ⋊ C3) ⋊ C3) ⋊ C2 486 S3 81 54 27
((C3 × (C9 ⋊ C3)) ⋊ C3) ⋊ C2 486 S3 81 54 27
((C3 × (C9 ⋊ C3)) ⋊ C3) ⋊ C2 486 S3 81 54 27
((C3 × (C9 ⋊ C3)) ⋊ C3) ⋊ C2 486 S3 81 54 27
((C3 × (C9 ⋊ C3)) ⋊ C3) ⋊ C2 486 S3 81 54 27

((C3 · (C3 × C3) ⋊ C3) ⋊ C3) ⋊ C2 486 S3 81 54 27
(((C3 × C3 × C3) ⋊ C3)2 486 S3 81 54 27
(((C3 × C3 × C3) ⋊ C3)2 486 S3 81 54 27
((C9 ⋊ C9) ⋊ C3) ⋊ C2 486 S3 81 54 27

((C5 × C5) ⋊ C5) ⋊ (C2 × C2) 500 D10 50 50 25
((C5 × C5) ⋊ C5) ⋊ (C2 × C2) 500 D10 50 50 25

PSL(2, 8) 504 C2 × C2 × C2 63 56 28
PSL(2, 8) 504 D14 36 36 28

C3 × PSL(3, 2) 504 C2 × C2 126 42 24
C3 × PSL(3, 2) 504 C2 × C2 126 42 24
C3 × PSL(3, 2) 504 S3 84 84 24
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C3 × PSL(3, 2) 504 D8 63 42 24
C3 × PSL(3, 2) 504 A4 42 42 24
C3 × PSL(3, 2) 504 A4 42 42 24
C3 × PSL(3, 2) 504 A4 42 42 24
C3 × PSL(3, 2) 504 A4 42 42 24
(C7 ⋊ C3)× S4 504 C2 × C2 126 42 28
(C7 ⋊ C3)× S4 504 C6 × C2 42 42 28

C7 × ((S3 × S3) ⋊ C2) 504 D8 63 63 42
(C3 × C3) ⋊ ((C14 × C2)2) 504 C2 × C2 126 84 42
(C3 × C3) ⋊ ((C14 × C2)2) 504 D8 63 63 42

C21 × S4 504 C2 × C2 126 126 84
D22 × S4 528 C2 × C2 132 66 44
D22 × S4 528 C2 × C2 × C2 66 66 44
D22 × S4 528 D8 66 66 44
C9 ×A5 540 S3 90 90 45
C9 ×A5 540 D10 54 54 45

C5 × (((C3 × C3) ⋊ C3) ⋊ (C2 × C2)) 540 S3 90 90 45
((C3 × C3) ⋊ C3) ⋊D20 540 S3 90 90 45

C3 × C3 ×A5 540 S3 90 30 15
C3 × C3 ×A5 540 D10 54 18 15
C23 × S4 552 C2 × C2 138 138 92

(C7 × C7) ⋊D12 588 D12 49 42 21
C5 ⋊ S5 600 D12 50 50 30
A5 ×D10 600 D12 50 50 30

(C5 × C5) ⋊ (C4 × S3) 600 D12 50 30 15
D26 × S4 624 C2 × C2 156 78 52
D26 × S4 624 C2 × C2 × C2 78 78 52
D26 × S4 624 D8 78 78 52
C27 × S4 648 C2 × C2 162 162 108

(C2 × C2 × (((C3 × C3) ⋊ C3) ⋊ C2)) ⋊ C3 648 S3 108 54 36
(C2 × C2 × (((C3 × C3) ⋊ C3) ⋊ C2)) ⋊ C3 648 D12 54 54 36
(C2 × C2 × (((C3 × C3) ⋊ C3) ⋊ C2)) ⋊ C3 648 D12 54 54 36
(C2 × C2 × (((C3 × C3) ⋊ C3) ⋊ C2)) ⋊ C3 648 D12 54 54 36

C3 · (((C3 × C3) ⋊Q8) ⋊ C3) 648 S3 108 108 81
(((C3 × C3) ⋊ C3) ⋊Q8) ⋊ C3 648 S3 108 108 81
(((C3 × C3) ⋊ C3) ⋊Q8) ⋊ C3 648 S3 108 36 27
(((C3 × C3) ⋊ C3) ⋊Q8) ⋊ C3 648 C3 × S3 36 36 27
(((C3 × C3) ⋊ C3) ⋊Q8) ⋊ C3 648 C3 × S3 36 36 27
(((C3 × C3) ⋊ C3) ⋊Q8) ⋊ C3 648 C3 × S3 36 36 27
(C3 × ((C3 × C3) ⋊ C3)) ⋊Q8 648 S3 108 36 27

((C9 × C3) ⋊ C3) ⋊ C8 648 S3 108 108 81
C9 × ((S3 × S3) ⋊ C2) 648 D8 81 72 36
(C9 × C3 × C3) ⋊D8 648 C2 × C2 162 72 36
(C9 × C3 × C3) ⋊D8 648 C6 108 72 36
(C9 × C3 × C3) ⋊D8 648 D8 81 72 36

(C3 × ((C3 × C3) ⋊ C3)) ⋊D8 648 S3 108 36 24
(C3 × ((C3 × C3) ⋊ C3)) ⋊D8 648 D12 54 36 18
(C3 × ((C3 × C3) ⋊ C3)) ⋊D8 648 C3 × S3 36 36 18
C3 × (((C3 × C3) ⋊ C3) ⋊Q8) 648 S3 108 36 27

((C9 × C3) ⋊ C3) ⋊Q8 648 S3 108 108 81
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S3 × (((C3 × C3) ⋊ C3) ⋊ (C2 × C2)) 648 S3 108 36 18
S3 × (((C3 × C3) ⋊ C3) ⋊ (C2 × C2)) 648 D12 54 36 18
S3 × (((C3 × C3) ⋊ C3) ⋊ (C2 × C2)) 648 C3 × S3 36 36 18

C3 × C9 × S4 648 C2 × C2 162 54 36
((C3 × C3)3)× S4 648 C2 × C2 162 54 36
((C3 × C3)3)× S4 648 C6 × C2 54 54 36
((C3 × C3)3)× S4 648 C6 × C2 54 54 36
((C3 × C3)3)× S4 648 C6 × C2 54 54 36
((C3 × C3)3)× S4 648 C6 × C2 54 54 36
(C9 ⋊ C3)× S4 648 C2 × C2 162 54 36
(C9 ⋊ C3)× S4 648 C6 × C2 54 54 36

(((C3 × C3) ⋊ C3)×A4) ⋊ C2 648 D12 54 54 36
(((C3 × C3) ⋊ C3)×A4) ⋊ C2 648 D12 54 54 36
(((C3 × C3) ⋊ C3)×A4) ⋊ C2 648 D12 54 54 36
(((C3 × C3) ⋊ C3)×A4) ⋊ C2 648 D12 54 54 36

(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 D12 54 36 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 (C3 × C3) ⋊ C2 36 36 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 D18 36 36 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 D18 36 36 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 S4 27 27 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 D24 27 27 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 D12 54 36 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 (C6 × C2) ⋊ C2 27 27 18
(((C3 × C3 × C3) ⋊ (C2 × C2)) ⋊ C3) ⋊ C2 648 S4 27 27 18

(S3 × S3 × S3) ⋊ C3 648 C6 108 36 24
(S3 × S3 × S3) ⋊ C3 648 C2 × C2 × C2 81 36 24
(S3 × S3 × S3) ⋊ C3 648 D12 54 36 24
(S3 × S3 × S3) ⋊ C3 648 C2 ×A4 27 27 18

C3 × C3 × ((S3 × S3) ⋊ C2) 648 D8 81 24 12
(C3 × C3 × C3 × C3) ⋊D8 648 C2 × C2 162 24 12
(C3 × C3 × C3 × C3) ⋊D8 648 D8 81 24 12
(C3 × C3 × C3 × C3) ⋊D8 648 C3 × S3 36 24 12
(C3 × C3 × C3 × C3) ⋊D8 648 C3 × S3 36 24 12
(C3 × C3 × C3 × C3) ⋊D8 648 C3 × C3 72 12 9
(C3 × C3 × C3 × C3) ⋊D8 648 (C3 × C3)2 36 12 9

C3 × C3 × C3 × S4 648 C2 × C2 162 18 12
C11 ×A5 660 C2 × C2 165 132 66
C11 ×A5 660 S3 110 110 66

C7 × (((C4 × C2)4) ⋊ C3) 672 C3 224 168 84
PSL(3, 2) ⋊ C4 672 C7 ⋊ C3 32 32 28
C4 × PSL(3, 2) 672 C7 ⋊ C3 32 32 28

C4 × ((C2 × C2 × C2) ⋊ (C7 ⋊ C3)) 672 C7 ⋊ C3 32 32 14
C4 × ((C2 × C2 × C2) ⋊ (C7 ⋊ C3)) 672 C2 ×A4 28 28 14

C7 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 672 A4 56 56 28
C7 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 672 A4 56 56 28
C7 × (((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3) 672 A4 56 56 28

C2 × (PSL(3, 2) ⋊ C2) 672 S4 28 28 16
C2 × C2 × PSL(3, 2) 672 C7 ⋊ C3 32 16 14

C2 × C2 × ((C2 × C2 × C2) ⋊ (C7 ⋊ C3)) 672 C7 ⋊ C3 32 16 14
C7 × (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C2 × C2 × C2 84 42 28
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C7 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C2 × C2 168 42 28
C7 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C4 × C2 84 42 28
C7 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C4 × C2 84 42 28
C7 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C4 × C2 84 42 28
C7 ⋊ (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) 672 C2 × C2 × C2 84 42 28

C29 × S4 696 C2 × C2 174 174 116
A5 × (C3 ⋊ C4) 720 S3 120 72 60
A5 × (C3 ⋊ C4) 720 D10 72 72 60

C12 ×A5 720 S3 120 72 60
C12 ×A5 720 D10 72 72 60

S6 720 C3 × C3 80 36 30
S6 720 C3 × S3 40 36 30
S6 720 C3 × S3 40 36 30
S6 720 S4 30 30 20
S6 720 S4 30 30 20
S6 720 S3 × S3 20 20 12
S6 720 S3 × S3 20 20 12
S6 720 C2 × S4 15 15 10
S6 720 C2 × S4 15 15 10

A6 ⋊ C2 720 D8 90 72 60
A6 ⋊ C2 720 C3 × C3 80 72 60
A6 ⋊ C2 720 D10 72 72 60
A6 ⋊ C2 720 D16 45 45 36
A6 ⋊ C2 720 (C3 × C3) ⋊ C2 40 40 20
A6 ⋊ C2 720 S4 30 20 20
A6 · C2 720 D8 90 60 36
A6 · C2 720 D10 72 60 36
A6 · C2 720 QD16 45 45 36
A6 · C2 720 S4 30 30 20
A6 · C2 720 (C3 × C3) ⋊ C4 20 20 12
A6 · C2 720 (C3 × C3) ⋊ C4 20 20 12
C2 ×A6 720 (C3 × C3) 80 40 30
C2 ×A6 720 (C3 × C3) ⋊ C2 40 40 30
C2 ×A6 720 S4 30 30 20
C2 ×A6 720 S4 30 30 20
C2 ×A6 720 (C3 × C3) ⋊ C4 20 20 12
S5 × S3 720 S3 120 60 30
S5 × S3 720 D10 72 60 30
S5 × S3 720 D12 60 60 30
S5 × S3 720 D12 60 60 30
S5 × S3 720 D20 36 36 30
S5 × S3 720 C5 ⋊ C4 36 36 30
A5 ×A4 720 C2 × C2 180 36 24
A5 ×A4 720 S3 120 36 24
A5 ×A4 720 C2 × C2 × C2 90 36 24
A5 ×A4 720 C6 × C2 60 36 24
A5 ×A4 720 A4 60 36 24
A5 ×A4 720 A4 60 36 24
A5 ×A4 720 D12 60 36 24
A5 ×A4 720 C3 × S3 40 36 24
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C6 × S5 720 C2 × C2 180 60 36
C6 × S5 720 S3 120 60 36
C6 × S5 720 D8 90 60 36
C6 × S5 720 D8 90 60 36
C6 × S5 720 D12 60 60 36
C6 × S5 720 D12 60 60 36
C6 × S5 720 A4 60 60 36

C2 × (A5 ⋊ S3) 720 S3 120 60 30
C2 × (A5 ⋊ S3) 720 D10 72 60 30
C2 × (A5 ⋊ S3) 720 D12 60 60 30
C2 × (A5 ⋊ S3) 720 D12 60 60 30
C2 × (A5 ⋊ S3) 720 C5 ⋊ C4 36 36 30
C2 × (A5 ⋊ S3) 720 C5 ⋊ C4 36 36 30
C2 × C6 ×A5 720 S3 120 36 30
C2 × C6 ×A5 720 D10 72 36 30

(C3 × C3) ⋊ ((C10 × C2) ⋊ C4) 720 C2 × C2 180 45 30
(C3 × C3) ⋊ ((C10 × C2) ⋊ C4) 720 C2 × C2 × C2 90 45 30
(C3 × C3) ⋊ ((C10 × C2) ⋊ C4) 720 (C4 × C2) ⋊ C2 45 45 30
C5 × ((C3 × C3) ⋊QD16) 720 S3 120 60 45
C5 × ((C3 × C3) ⋊QD16) 720 D8 90 90 45
C5 × ((C3 × C3) ⋊QD16) 720 D12 60 60 45

(C3 × C3) ⋊ ((C5 ⋊Q8) ⋊ C2) 720 S3 120 60 45
(C3 × C3) ⋊ ((C5 ⋊Q8) ⋊ C2) 720 D12 60 60 45

((S3 × S3) ⋊ C2)×D10 720 C2 ×D8 45 45 30
C3 ×D10 × S4 720 C2 × C2 180 90 60
C3 ×D10 × S4 720 C2 × C2 × C2 90 90 60
C3 ×D10 × S4 720 D8 90 90 60
C5 × S3 × S4 720 C2 × C2 180 90 60
C5 × S3 × S4 720 D8 90 90 60
C5 × S3 × S4 720 C2 × C2 × C2 90 90 60
D30 × S4 720 C2 × C2 180 90 60
D30 × S4 720 D8 90 90 60
D30 × S4 720 C2 × C2 × C2 90 90 60

We stopped our systematic research at groups of order 720 but we still
tried some specific examples of greater order. In the table below, we display
the examples where the group G is A7, S7, A8 or S8.
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A7 2520 (C3 ×A4) ⋊ C2 35 355 21
S7 5040 S4 210 105 70
S7 5040 C2 × C2 × S3 210 105 70
S7 5040 C2 × C2 × S3 210 126 84
S7 5040 C2 ×A4 210 126 84
S7 5040 S3 × S3 140 126 70
S7 5040 S3 × S3 140 126 84
S7 5040 C7 ⋊ C6 120 120 70
S7 5040 D8 × S3 105 105 70
S7 5040 C2 × S4 105 105 70
S7 5040 C2 × S4 105 105 70
S7 5040 (C3 ×A4)2 70 70 42
S7 5040 S4 × S3 35 35 30
A8 20160 C2 × C2 × C2 × C2 1260 210 168
A8 20160 (C2 × C2 × C2) ⋊ (C2 × C2) 630 315 168
A8 20160 (C2 × C2 × C2 × C2) ⋊ C2 630 210 168
A8 20160 (C2 × C2 × C2 × C2) ⋊ C2 630 210 168
A8 20160 (C2 × C2 × C2 × C2) ⋊ C2 630 210 168
A8 20160 S3 × S3 560 336 168
A8 20160 (C2 × C2 × C2 × C2) ⋊ C3 420 210 120
A8 20160 (C2 × C2 × C2 × C2) ⋊ C3 420 210 120
A8 20160 C2 × C2 ×A4 420 210 168
A8 20160 C2 × S4 420 336 168
A8 20160 C2 × S4 420 336 168
A8 20160 C2 × S4 420 336 168
A8 20160 C2 × S4 420 336 168
A8 20160 (C2 × C2 × C2) ⋊ C7 360 336 168
A8 20160 (C2 × C2 × C2) ⋊ C7 360 336 168
A8 20160 ((C2 × C2 × C2 × C2) ⋊ C2)2 315 210 168
A8 20160 (S3 × S3) ⋊ C2 280 280 168
A8 20160 (C3 ×A4) ⋊ C2 280 280 168
A8 20160 ((C2 × C2 × C2) ⋊ (C2 × C2)) ⋊ C3 210 210 120
A8 20160 ((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2 210 210 120
A8 20160 ((C2 × C2 × C2 × C2) ⋊ C2) ⋊ C3 210 210 120
A8 20160 ((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2 210 210 120
A8 20160 ((C2 × C2 × C2 × C2) ⋊ C2) ⋊ C3 210 210 120
A8 20160 (C2 × S4) ⋊ C2 210 210 168
A8 20160 S5 168 168 120
A8 20160 PSL(3, 2) 120 120 105
A8 20160 GL(2, 4) 112 112 70
A8 20160 (A4 ×A4) ⋊ C2 70 70 56
A8 20160 ((A4 ×A4) ⋊ C2) ⋊ C2 35 35 28
S8 40320 (C2 × C2 × C2 × C2) ⋊ C3 840 336 210
S8 40320 ((C2 × C2 × C2 × C2) ⋊ C2)2 630 336 210
S8 40320 D8 ×D8 630 336 210
S8 40320 (S3 × S3)2 560 336 210
S8 40320 C2 × C2 × S4 420 210 168
S8 40320 ((C2 × C2 × C2 × C2)2) ⋊ C3 420 336 210
S8 40320 ((C2 × C2 × C2 × C2)3) ⋊ C2 420 336 210
S8 40320 C2 × C2 × S4 420 336 210
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S8 40320 C2 × C2 × S4 420 336 210
S8 40320 S5 336 336 210
S8 40320 (((C2 × C2 × C2 × C2) ⋊ C2) ⋊ C2)2 315 315 210
S8 40320 A4 ×A4 280 140 112
S8 40320 C2 × ((S3 × S3) ⋊ C2) 280 280 210
S8 40320 S4 × S3 280 280 210
S8 40320 PSL(3, 2) 240 240 210
S8 40320 PSL(3, 2) 240 240 210
S8 40320 (C2 × C2 × C2) ⋊ (C7 ⋊ C3) 240 240 210
S8 40320 (((C2 × C2 × C2) ⋊ (C2 × C2) ⋊ C3) ⋊ C2 210 210 168
S8 40320 S4 ×D8 210 210 168
S8 40320 S4 ×A4 140 140 112
S8 40320 (((C2 × C2 × C2 × C2) ⋊ C3) ⋊ C2) ⋊ C3 140 140 112
S8 40320 PSL(3, 2) ⋊ C2 120 120 112
S8 40320 A5 × S3 112 112 70
S8 40320 S4 × S4 70 70 56
S8 40320 ((A4 ×A4) ⋊ C2) ⋊ C2 70 70 56
S8 40320 (S4 × S4) ⋊ C2 35 35 30
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[49] Valentin Voskresenskĭı. Algebraic groups and their birational invari-
ants. Transl. from the original Russsian manuscript by Boris Kun-
yavskii. English. Rev. version of ‘Algebraic tori’, Nauka 1977. Vol. 179.
Transl. Math. Monogr. Providence, RI: American Mathematical Soci-
ety, 1998. isbn: 0-8218-0905-9.

[50] Andrew Wiles. “Modular Elliptic Curves and Fermat’s Last Theorem”.
In: Annals of Mathematics 141.3 (1995), pp. 443–551. issn: 0003486X,
19398980. url: http://www.jstor.org/stable/2118559 (visited on
04/04/2025).

[51] Tomoyuki Yoshida. “On G-functors. II: Hecke operators and G-functors”.
English. In: J. Math. Soc. Japan 35 (1983), pp. 179–190. issn: 0025-
5645. doi: 10.2969/jmsj/03510179.

127

https://doi.org/10.2307/1971195
https://doi.org/10.1016/j.jnt.2023.02.011
https://doi.org/10.1016/j.jnt.2023.02.011
http://www.jstor.org/stable/2118559
https://doi.org/10.2969/jmsj/03510179

	Introduction
	Number fields and class groups
	Ideal class group
	Analytic class number formula
	Buchmann's algorithm

	Galois theory and Galois representations
	Fundamental theorem
	Galois representations
	Brauer relations

	Group cohomology and Selmer groups
	Group cohomology
	Selmer groups

	Organisation and contributions of the thesis

	Hecke algebras of finite groups
	Hecke algebras
	Compositums

	Mackey functors
	Definitions and properties
	Normed Mackey functors

	Norm relations
	Classical norm relation
	Generalised norm relations
	Optimal coefficient
	Norm relation over finite fields
	Looking for generalised norm relations
	Comparing classical and generalised norm relations

	Computing class groups
	Algorithms using S-units
	Algorithms for direct computation
	Examples

	An application of generalised norm relations to Leopoldt's conjecture
	Computing Selmer groups
	Finding a resolution with Hecke operators
	A remarkable Selmer group
	Algorithm and complexity


