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Applications algorithmiques des opérateurs de Hecke des groupes finis
pour les représentations galoisiennes

Résumé : Soit G un groupe fini, H,J des sous groupes de G, R un anneau
commutatif, et V un R[G]-module. A chaque élément de R[H\G/J], le R-module
libre sur I’ensemble des doubles classes, on peut associer de maniére canonique
un morphisme de R-modules qui va de V/ dans V¥, les ensembles des points
fixes de V sous les actions de J et de H respectivement. Les morphismes associés
de cette maniere aux classes HgJ avec g € G sont appelés opérateurs de Hecke.
Dans cette these, nous étudions les propriétés de ces opérateurs de Hecke, et en
particulier dans le cas o R = Z et ou le module V est le groupe des inversibles
d’un corps de nombres K galoisien sur Q, de groupe de Galois G. L’action d’un
opérateur de Hecke associé & une classe Hg.J va alors de (K”)* vers (K)*. Nous
développons deux applications principales algorithmiques de ces propriétés. Tout
d’abord, un algorithme permettant de calculer de maniére inductive le groupe des
classes d’un corps de nombres de la forme K, en se ramenant au calcul sur des
corps de plus petits degrés, de la forme K’i, & condition que les groupes G, H
et les J; satisfassent un certain type de relations, que nous appelons “relations
de normes généralisées”, et dont nous étudions également les propriétés. Ensuite,
étant donné un module galoisien fini M, nous décrivons un algorithme permettant
de trouver une résolution de M ou les morphismes s’expriment sous la forme de
sommes d’opérateurs de Hecke. Puis & partir d’une telle résolution, nous concevons
un algorithme permettant de calculer les groupes de Selmer du module M.

Mots-clés : Opérateurs de Hecke, Représentations galoisiennes, Cohomologie
galoisienne, Foncteurs de Mackey, Algorithmes, Groupes des classes, Groupes de
Selmer, Conjecture de Leopoldt




Algorithmic applications of Hecke operators of finite groups for Galois
representations

Abstract: Let G be a finite group, H, J two subgroups of G, R a commutative
ring, and V' a R[G]-module. To each element of R[H\G/J], the free R-module on
the set of double cosets, we can canonically associate a morphism of R-modules
from V' to V¥, the sets of fixed points of V under the actions of J and H respec-
tively. The morphism associated with the double cosets HgJ with g € G are called
Hecke operators. In this thesis, we study the properties of Hecke operators, and in
particular the case where R = Z and where the module V' is the group of invertible
elements of a number field K, Galois over Q, and of Galois group G. Then the
action of a Hecke operator associated with a double coset Hg.J goes from (K”)* to
(f( )X We develop two main algorithmic applications of these properties. First,
an algorithm that can compute inductively the class group of a number field of the
form K| by reducing the problem to the same computation for smaller fields, of
the form K7i, on the condition that the groups GG, H and the J; satisfy a certain
type of relations, that we will call “generalised norm relations”, and that we will
study. Then, given a finite Galois module M, we will describe an algorithm that
can find a resolution of M where the morphisms can be written as sums of Hecke
operators. And with such a resolution, we will describe an algorithm to obtain the
Selmer groups of the module M.

Keywords: Hecke operators, Galois representations, Galois cohomology, Mackey
functors, Algorithms, Class groups, Selmer groups, Leopoldt conjecture
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Résumé étendu en francais

Dans cette these, nous étudions les propriétés des opérateurs de Hecke, et
nous les utilisons pour obtenir des relations entre certains modules galoisiens.
Puis, grace a ces relations, nous concevons des algorithmes pour calculer des
objets arithmétiques tels que des groupes de classes de corps de nombres ou
bien des groupes de Selmer de modules galoisiens finis.

Corps de nombres et groupes des classes

Un corps de nombre est une extension de corps de degré fini de Q, le corps
des rationnels. Si K est un corps de nombre, on notera Zx son anneau des
entiers, c’est a dire 'anneau de tous les éléments de K qui sont racines d’un
polynome unitaire a coefficients entiers.

Un idéal fractionnaire I de I'anneau des entiers Zy est un sous Zx-module
de K tel que il existe o un élément non nul de Zx qui vérifie al C Zg.

On dit que deux idéaux fractionnaires J et J' de Zg sont equivalents, et
on note J ~ J', siil existe v € K non nul tel que J" = zJ. C’est une relation
d’équivalence. On note CI(K) le groupe des classes d’équivalence pour cette
relation. C’est le groupe des classes d’idéauxr de K. Par le théoreme du
nombre de classes (voir [25]), le groupe des classes d'un corps de nombres K
est toujours fini. Son cardinal est apellé le nombre de classes de K.

L’étude des groupes des classes de corps de nombres est centrale en théorie
des nombres. Ce groupe mesure le “défaut de principalité” de 'anneau Zg,
dans le sens ot Zx est un anneau principal si et seulement si le groupe CI(K)
est trivial. Ce groupe joue un role important par exemple dans la résolution
de certains probléemes Diophantiens.

Dans [13], Buchmann donne un algorithme qui prend en entrée un corps
de nombres K et son anneau des entiers Zg, et donne en sortie la structure
du groupe des classes C1(K) ainsi qu'une base du groupe des unités Zj.

La preuve de la correction de cet algorithme suppose I’hypothese de Rie-
mann généralisée (GRH). Voir [17] pour plus de détails sur cette conjecture,
qui est I'une des plus importantes de la théorie des nombres moderne.

La complexité en temps de 'algorithme de Buchmann augmente rapide-
ment avec le degré n du corps de nombres K: en notant Ag le discriminant

de K (voir [37]), la complexité pour un n fixé est en Q(e®V 1Ak nnIAx]) oy

a est une constante, et ou la constante implicite du O dépend de n de maniere



exponentielle. Notons aussi que le discriminant croit au moins exponentielle-
ment avec n. C’est en raison de cette croissance rapide de la complexité qu’il
est avantageux de trouver des méthodes inductives pour calculer le groupe
des classes d’un corps de nombres, en se ramenant au méme probleme sur
des corps auxiliaires de degrés plus petits.

Théorie de Galois et représentations galoisiennes
Théoreme fondamental

Soit K/ F une extension de corps algébrique finie. Notons Autg(K) le groupe
des automorphismes de corps de K dans K qui fixent F', ¢’est a dire que pour
tout o € Autp(K) et pour tout = € F', on a o(z) = x.

Si H est un sous groupe de Autp(K), alors on notera K le corps fizé par
H, défini par K# = {z € K|o(z) = z for all 0 € H}. C’est un sous-corps
de K, contenant F' (voir par exemple [32] pour toutes les preuves de cette
section).

Si KAwr(K) = [ alors on dit que K/F est une extension galoisienne,
et le groupe G = Autp(K) est appelé son groupe de Galois. De plus, on a
G = [K : F]. Une extension K/F est galoisienne si et seulement si elle est
normale et séparable. C’est aussi équivalent a dire que K est le corps de
décomposition d’'un polynéme séparable f € F[X].

Soit K /F une extension galoisienne, de groupe de Galois G = Autg (K).
Le théoreme fondamental de la théorie de Galois donne une bijection entre
I’ensemble £ des sous-corps de K contenant F' et l’ensemble H des sous
groupes de (G. La bijection est donnée par les applications

Q: L — H,L+— Autp(L)
¢t H - L Hw— LY.

De plus, si L est un corps intermédiaire ' C L C K, et si H < G est tel que
L = K" alors K est une extension galoisienne de L, de groupe de Galois H.
En outre, le corps L est une extension galoisienne de [ si et seulement si H
est un sous groupe normal de G, et dans ce cas, le groupe de Galois de L/F
est isomorphe a G/H.

Les applications ® et ®~! forment la correspondance de Galois. Notons
qu’elle renversent 'inclusion, dans le sens ou, si L, Ly sont deux sous corps
de K telsque FF C Ly C Ly C K, et si Hy, Hy sont les sous groupes de G tels
que L; = KM et Ly = K2 alors on a Hy, < H, et vice versa.
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Représentations galoisiennes

Dans cette sous-section, nous allons définir les représentations linéaires d'un
groupe fini G, ainsi que les modules a gauches et 1'algebre de groupe R[G],
avec R un anneau. Puis nous verrons que les représentations linéaires de GG
sur un corps F sont exactement les F[G]-modules. (Voir [45] ou [41]).

Soit V' un espace vectoriel sur un corps F', et soit GL(V') le groupe des iso-
morphismes de V' dans lui méme. Soit G un groupe fini. Une représentation
linéaire de G dans V est un morphisme p: G — GL(V). Notons qu'une
représentation linéaire p de G dans V' donne une action de groupe de GG sur
V' définie par g - © = p(g)(x), pour tout g € G,z € V. Donc V est un
G-module.

Soit R un anneau, un R-module a gauche M est un groupe abélien muni
d’une opération -: R x M — M telle que pour tout r,s € Ret m,n € M, on
a

e l-m=m

er-(m+n)=r-m+r-n

(r+s)-m=r-m+s-m
e (rs)-m=r-(s-m).

De plus, si M, N sont deux R-modules, alors une application f: M — N
est appelé morphisme de R-modules si pout tous z,y € R et pour tout r € R,
on a

o flx+y)=f(z)+ fly),
o f(r-a)=r-f(z)

Si R est un anneau commutatif, alors on peut définir [’algebre de groupe
de G sur R, 'ensemble des sommes formelles d’éléments de G, a coefficients

dans R:
R|G] = {Z aggla, € R}.
geG
C’est une R-algebre, avec la multiplication qui étend celle de G.
Soit V un R-module et soit p: G — GL(V') une représentation linéaire de
G dans V. Si on étend par linéarité 'action de groupe G x V' — V associée
a p, on voit que V est doté d'une structure de R[G]-module a gauche. Et
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réciproquement, un R[G]-module définit une représentation linéaire de G
dans V.

Si le groupe G est le groupe de Galois d’une extension de corps, alors
les R[G]-modules sont appelés modules galoisiens et les représentations de
groupe associées sont des représentations galoisiennes. Par exemple, si K/Q
est une extension de corps galoisienne, de groupe de Galois GG, alors K* et
Zj sont des modules galoisiens, avec R = Z.

Cohomologie des groupes et groupes de Selmer

Rappelons la définition d’un groupe de cohomologie, tel que dans [44]. Soit
G un groupe fini et M un G-module. Pour tout entier 4, notons C*(G, M) le
groupe abélien des fonctions f: G* — M.

Considérons les applications d': C*(G, M) — C™(G, M) sont définies
par

(@ F)or,-+ g02) =g 00+ (=1 Flan - gigpmn - 1 gun)

+ (_1)i+1f(927 e 7gi+1)

On peut définir 'espace des i-cocycles Z'(G, M) = ker(d") et I'espace des
i-cobords B'(G, M) = Im(d""!). Le i-itme groupe de cohomologie de G &
coefficients dans M est
ZY G, M)

H'(G, M) = B

Notons par exemple que H°(G, M) = M% ot MY est I'ensemble des points
fixes.

La propriété principale des groupes de cohomologie est la suivante. Soient
A, B, C des G-modules tels qu’il existe une suite exacte courte

0—+A—B—-C—=0.
Alors, on a une suite exacte infinie de groupes de cohomologie

0 —-HG,A) - H(G,B) - H°(G,C) - H (G, A) - H'(G,B) - H'(G,C) —
H*(G,A) — H*(G,B) — ---



L’étude de la cohomologie de groupes des modules galosiens est appelé la
cohomologie galoisienne.

Les groupes de cohomologie ne sont pas de type fini en général, ce qui les
rend souvent difficiles a utiliser en pratique. C’est pourquoi il est intéressant
de travailler avec des groupes de Selmer. Ce sont des sous-groupes finis des
groupes de cohomologie, définis de telle sorte qu’ils contiennent des informa-
tions locales importantes. Voir le chapitre 7 pour une définition plus précise.

Organisation et contributions de la these
Chapitre 2: Algebres de Hecke des groupes finis

Ce chapitre est basé sur la premiere section de l'article [22]. On y définit
les opérateurs de Hecke et les algebres de Hecke, et on décrit certaines de
leurs propriétés. Puis on définit la notion de compositums de deux corps de
nombres.

Notre contribution est la suivante. Si K est un corps de nombre tel
que Pextension K /Q est galoisienne, de groupe de Galois G, soient H, J deux
sous-groupes de G et soient K = K et L = K”. Alors on montre qu’il existe
une bijection entre ’ensemble des compositums de K et L et I’ensemble des
doubles classes J\G/H (voir proposition 2.17).

Alors, il y a une “action” naturelle de ’ensemble des compositums sur
I'ensemble des points fixes de diférents R[G]-modules, que nous décrivons
entre la proposition 2.19 et la proposition 2.23.

Enfin, nous décrivons 'action d’un compositum de K et L, de L™ vers
K*:

Theorem A. [Théoréme 2.24] Soit x un élément de K* et soit (C,ix,1r)
un compositum de K et L. Alors on a C-x = Neyp(tx(x)).

Ce théoreme sera surtout utile pour des applications algorithmiques, dans
le chapitre 5.

Bien que la bijection entre ’ensemble des doubles classes et 1’ensemble
des compositums était probablement connue, nous n’avons pas trouvé de
références dans la littérature. Il nous semble que le théoreme A est bien
nouveau, ainsi que ses applications algorithmiques.



Chapitre 3: foncteurs de Mackey

Dans la premiere section de ce chapitre, nous donnons la définition des fonc-
teurs de Mackey (cohomologiques), ainsi que certaines propriétés, qu’on peut
trouver dans [51] et dans [9], et qui permettent de faire un lien entre le for-
malisme des foncteurs de Mackey et les opérateurs de Hecke.

Ensuite, dans la seconde section, basée sur 'article [1], encore en préparation,
nous introduisons la notion de foncteurs de Mackey normés (voir définition
3.14), et donnons quelques exemples. Le résultat principal est le théoreme
3.16:

Theorem B. Soit R un anneau normé, et k son corps des fractions, et soit
M un R-foncteur de Mackey normé sur un groupe fini G. Soient Uy,---U,
and Uj,--- U/ des sous-groupes de G tels qu’il existe un épimorphisme de

k[G]-modules
o: @PKIG/U] — P KIG/UY.

Alors, on a une application R-linéaire

o: @ MUY — @ MUY

telle que le changement de base pRk est surjectif et telle que ¢ a son opérateur
norme borné par

max{1, max{|[U] : nggfl]] forge Gyi=1,---m, andj=1,--- ,n}.

Ce théoreme est intéressant car il peut étre utilisé pour obtenir une borne
sur 'opérateur norme d’applications linéaires dans des contextes tres divers.

Chapitre 4: Relations de normes

Dans [7], les auteurs étudient les propriétés des relations de normes, et les
utilisent pour produire des algorithmes pour calculer des invariants arithmétiques
de certains corps de nombres par induction, et en particulier la structure de
leurs groupes des classes. Le but de ce chapitre est de définir et d’étudier
une généralisation des relations de normes.

Dans la premiére section (4.1), nous rappelons la définition des relations
de normes, ainsi que certaines conditions nécessaires et suffisantes a leur
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existence, qui ont été démontrées dans [7]. Notre contribution est dans les
autres sections, qui sont basées sur [22].
Dans la section 4.2, nous définissons les relations de normes généralisées:

Definition C. Soit G un groupe fini, et H < G un sous-groupe. Soit J un
ensemble de sous-groupes de G et R un anneau commutatif. Une relation de
norme généralisée sur R par rapport & H et J est une égalité dans R[G] de

la forme
¢

NH = Z CLiNJibi
i=1
avec a;,b; € RG], J; € T, et J; # 1, et avec Ny, =3, j, et Ngu =3 .y h
les €léments normes de J; et H.

Et nous donnons des conditions nécessaires et suffisantes a l'existence de
relations de normes généralisées. En particulier la proposition suivante (4.14)

établit un lien entre les relations de normes généralisées et les opérateurs de
Hecke:

Proposition D. Soit H un sous-groupe de G, et J = {Jy, -, Jo} un en-
semble de sous-groupes non triviaur de G. Alors, G admet une relation de
norme généralisée sur Q par rapport a H et J si et seulement si il existe un
morphisme surjectif de Q[G]-modules

L

¢: EPQIG/ " — QIG/H]

i=1
ot pour tout i, n; € Zsyg.
Nous définissons aussi une notion de relations de normes généralisées entre

corps de nombres (définition 4.15) et dans le théoréeme 4.22, nous donnons
un critere basé sur 'action des compositums:

Theorem E. Si Ly, ---, L, sont des corps de nombres, définis par les polynomes
fi,-+, fo, et si on note R; l’ensemble des racines complezes de f;, alors un
corps de nombres K = Q(«) admet une relation de norme généralisée par
rapport a Ly, -+, Ly, si et seulement si il existe une relation de la forme

l
a = Z Z Z aicsC - B

i=1 CeCompo(K,L;) BER;

ou les coefficients a; cg sont dans Q.
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Dans la section 4.3, on définit le coefficient optimal d’une relation de
norme généralisée (voir définition 4.24), et nous donnons une borne (théoreme
4.28 qui sera utile dans le chapitre suivant pour étudier la complexité en
temps de certains algorithmes.

Dans ce chapitre et dans le suivant, on parle surtout de relations de
normes généralisées sur Q ou sur Z, mais dans la section 4.4, on parle
brievement de relations de normes généralisées sur des corps finis, et nous
donnons des criteres de leur existence (proposition 4.31).

Ensuite, dans la section 4.5, nous donnons des algorithmes pour la recherche
de relations de normes généralisées. Enfin, dans la section 4.6, nous com-
parons notre généralisation des relations de normes et la définition classique,
afin de montrer que notre généralisation est bien pertinente.

Chapitre 5: Calcul de groupes des classes

Dans ce chapitre, nous décrivons des algorithmes pour calculer les groupes des
classes de certains corps de nombres par induction, en utilisant les propriétés
des relations de normes généralisées. Ces méthodes sont similaires a celles
décrites dans [7].

Dans la premiere section, nous présentons des algorithmes pour calculer
le groupe des S-unités d'un corps de nombre, ce qui permet indirectement de
calculer son groupe des classes. Et les algorithmes présentés dans la deuxieme
section permettent de calculer plus directement le groupe des classes. Le
résultat principal de ce chapitre est le suivant:

Theorem F. En supposant [’hypothése de Riemann généralisée, il existe un
algorithme en temps polynomial, qui prends en entrée

e un corps de nombre K,

e un ensemble S de nombres premieers,

e des sous-corps K; de la cloture galoisienne K,

e pour chaque i, une base du groupe des S-unités de K;,

et qui, si K admet une relation de norme généralisée par rapport aur K;,
renvoie une base du groupe des S-unités de K.

12



Voir I’algorithme 5.9, et le théoreme 5.10.

Puis, dans la section 5.3, nous utilisons ces algorithmes (et en particulier
I’algorithme 5.12, dont la complexité n’est pas toujours polynomiale, mais
qui est plus rapide dans la plupart des cas), implémentés en Pari/GP ([40]),
pour calculer le groupe des classes de certains corps de nombres de tres grands

discriminants. Dans I’exemple 5.18, nous calculons le groupe des classes d'un
corps de degré 105 et de discriminant 2126 . 2990 . 6742 ~ 1.7 . 10246,

Chapitre 6: Une application des relations de normes généralisées
a la conjecture de Leopoldt

Soit L/ K une extension galoisienne de corps de nombres, de groupe de Galois
G. Dans larticle [23], les auteurs prouvent que si G admet une relation de
norme par rapport a un ensemble de sous-groupes H = {Hy,--- , H,}, alors,
pour un nompre premier p fixé, la conjecture de Leopoldt en p est vraie pour
L si et seulement si elle est vraie pour tous les L.

Dans ce chapitre, apres avoir rappelé quelques formulations de la conjec-
ture de Leopoldt, nous montrons que ce résultat peut étre généralisé de la
maniere suivante:

Proposition A (proposition 6.9). Soit L/K wune extension galoisienne de
corps de nombres, et soit G son groupe de Galois. Supposons que G admet
une relation de norme généralisée par rapport a I' < G, et a un ensemble de
sous-groupes H. Soit T C H tel que 1 ¢ T et pour tout H € H, il existe | € T
et g € G tel que glg=* < H. Soit p un nombre premier. Si la conjecture de
Leopoldt en p est vraie pour tous les L' avec I € I, alors elle est vraie pour
L',

Chapitre 7: Calcul des groupes de Selmer

Ce chapitre est basé sur 'article [21]. Etant donnés un corps de nombre de
groupe de Galois absolu G, un module galoisien fini M, et un systeme de
Selmer L, I'objectif est de donner une méthode pour calculer Sel., le groupe
de Selmer de M lié a L.

Dans la premiere section, nous décrivons une méthode pour obtenir une
résolution de M, ou les morphismes sont donnés par des opérateurs de
Hecke. Ensuite, dans la deuxieme section, nous définissons un autre groupe
HL(G, M), et nous prouvons, avec les propriétés des opérateurs de Hecke,
que HL(G, M) est un groupe de Selmer qui contient Sely.

13



Le résultat principal de la troisieme section est le suivant:

Theorem G. Soit G le groupe de Galois absolu d’un corps de nombres K,
et soit M un G-module fini. 1l existe un algorithme qui prend en entrée

e e module M,
e e groupe fini G qui est l'image de l'action G — Aut(M),
o un systeme de Selmer L,

et qui donne en sortie le groupe de Selmer Sely lié a L pour M. De plus,
chaque étape de cet algorithme a une complexité en temps polynomiale, a part
le calcul des sous-corps de K fixés par des sous-groupes de G, et les calculs de

groupes de S-unités et de groupes de classes de certaines extensions de corps
de K.
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Notations and conventions

When Risaring and M, N are left R-modules, we will denote by Homg (M, N)
the group of R-module homomorphisms from M to N.

If G is a group, H < G a subgroup and M a G-module, we will denote
by M the set of fixed points of M under the action of H.

If K is a number field, we will call K the Galois closure of K, that is to
say the Galois closure of the field extension Q : K.

If K is a field, we will denote by K the algebraic closure of K.

For the structure descriptions of groups, we will use the following nota-
tions (where n is a positive integer, ¢ a power of a prime number and G, H
are two groups):

e (,: cyclic group of order n,

e A,: alternating group of degree n,
e S,: symetric group of degree n,

e D,: dihedral group of size n,

e (),: quaternion group of size n,

QD,,: quasidihedral group of size n,

GL(n, q): general linear group of F,

PSL(n, q): projective special linear group of F,

G x H: direct product of G and H,

e (G x H: semidirect product of G and H.
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1 Introduction

In this thesis, we study the properties of Hecke operators, and how we can use
them to obtain relations between some Galois modules. We then use these
relations to derive efficient algorithms to compute arithmetic objects such as
class groups of number fields, or Selmer groups of finite Galois modules.

In the introduction, we will first recall some background knowledge about
class groups of number fields (section 1.1), about Galois theory (section 1.2)
and Galois cohomology (section 1.3). Then, in section 1.4, we will present
the plan of the thesis and our contributions in each chapter.

1.1 Number fields and class groups
1.1.1 Ideal class group

A number field is a field extension of the rational field Q, of finite degree. If
K is a number field, we denote by Zx the ring of integers of K, that is to
say the ring of all elements of K that are roots of a monic polynomial with
integer coefficients.

A fractional ideal I of the ring of integer Zx is a Zx-submodule of K
such that there exists a non zero element oo € Zx such that ool C Z.

We say that two fractional ideals J, J' of Zf are equivalent, and we write
J ~ J' if there exists a non zero x in K such that J' = xJ. This is an
equivalence relation. We denote by CI(K) the group of equivalence classes
for this relation. This is the ideal class group of K. An important result is
that the ideal class group of a number field K is always finite. (This is the
class number theorem, see for example [25] for a proof). Its order is called
the class number of K.

The study of class groups of number fields is central in number theory.
It measures the “defect of Zx from being a principal ideal domain”, in the
sense that Zy is a principal ideal domain if and only if CI(K) is the trivial
group, and thus it measures the degree of failure of unique factorisation in
Zy. It plays an important role in the study of some Diophantine problems
(see [25]).

1.1.2 Analytic class number formula

A way of computing the class number of a number field is through the analytic
class number formula (see for example [37]).

18



First, let us define all the terms involved in the formula.

Let K be a number field. Let uq,--- ,u, be a basis of the unit group of
Zk (i.e. the group of invertible elements in Zx) modulo the torsion. Let
o1, ,0p, be the real embeddings of K, and 0,41, - , 0,4, the complex

embeddings of K, up to complex conjugacy. Dirichlet’s units theorem gives
usr=ry+1ro+ 1.

Consider the matrix (e; IOg‘Uj(Ui)Dlézém where €; is 1 if 0; is a real
SIsT

embedding and 2 otherwise. Then the requlator Reg(K) of K is the absolute
value of the determinant of this matrix.

Let by,---,b, be an integral basis of Zx. We have n = r; + ry5. Let
Opytrgti = Opq for all 1 < ¢ < ry. Then the discriminant Ag of K is the
square of the determinant of the matrix (0;(b;))1<i j<n-

Recall that the Riemann (-function is defined for any complex number s
with Re(s) > 1 by the formula

00 1
o)== T a-w
n=1 p prime

We define the Dedekind (-function of K by the formula

(x(s) = Z [Zy 0] = H (1—1[Zx:p]%) "

0750 pPCZK
ideal of z non zero prime ideal

Note that when K = Q, we have (g = (.

Then, for every number field K, the sum (x(s) converges absolutely for
every complex number s with Re(s) > 1, and (i extends to a meromorphic
function over C, with a simple pole at s = 1.

The analytic class number formula gives the residue at s = 1:

lim(s — 1){k(s) = 20 - (2m)" - Regye hic

s—1 wK.1/|AK|

where 71,275 are the number of real and complex embeddings of K, Reg
is the regulator, hx the class number, wg the number of roots of unity
contained in K, and A is the discriminant.
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1.1.3 Buchmann’s algorithm

In [13], Buchmann gives an algorithm that on input a number field K and
its ring of integers Zx, outputs the structure of the class group CI(K) and a
basis of the unit group Z5.

The proof of the correctness of the algorithm assumes the generalised
Riemann hypothesis (GRH). See [17] for more details about this conjecture,
one of the most important in modern number theory.

The heuristic time complexity of Buchmann’s algorithm grows quickly
with the degree n of the number field K: if we denote by Ak the dis-
criminant of K, the time complexity of this algorithm for fixed n is in

O(eaVnlAxImnAxly where g is a constant, and the implicit constant of the
O depends on n exponentially; note in addition that the absolute value of the
discriminant of K is bounded from below by a function that is exponential
in n.

1.2 Galois theory and Galois representations
1.2.1 Fundamental theorem

Let K/F be a finite algebraic field extension, and let Autg(K) denote the
group of field automorphisms of K fixing F', that is to say, for all ¢ €
Autp(K) and for all z € F, we have o(z) = x.

If H is a subgroup of Autz(K), then we denote by K* the fized field of
H, defined by K = {z € Kl|o(z) = z for all c € H}. It is a subfield of K
containing F' (see for example [32] for all the proofs in this section).

If KAwr(K) — F then we say that K/F is a Galois estension, and the
group G = Autp(K) is its Galois group. Moreover, we have |G| = [K : F.
An extension K/F is Galois if and only if it is normal and separable. This is
also equivalent to saying that K is the splitting field of a separable polynomial
f € F[X].

Let K/F be a Galois extension, with Galois group G = Autp(K). Then,
the fundamental theorem of Galois theory states that there is a bijection be-
tween the set £ of subfields L of K containing F', and the set H of subgroups
H of GG. The bijection and its inverse are given by the maps

O: L —H,L— Auty(K)
¢V H L H— LT
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What’s more, if L is an intermediate field ' C L C K, and H such that
L = K", then K is Galois over L, with Galois group H. And the field L is
Galois over F' if and only if H is normal in GG. In that case, the Galois group
of L/F is isomorphic to G/H.

The maps ® and ®~! are known as the Galois correspondence. Note that
they are inclusion reversing, in the sense that if we have two subfields L, Lo
such that FF C Ly C Ly, C K, and Hy, Hy the subgroups of G such that
Ly = K" and Ly = K™ then Hy < Hy, and conversely, if H, < H, are two
subgroups of G, then we have K2 ¢ K,

Note that, even though we will mostly use the Galois group of finite field
extensions in this thesis, we will also need to use absolute Galois groups in
chapter 7. The absolute Galois group of a field K is the automorphism group
of K*? /K| where K*%P is a separable closure of K. When K is a perfect field,
K*° is equal to an algebraic closure of K.

1.2.2 (Galois representations

In this section, we will give the definitions of linear representations of a finite
group G, of left modules, and of the group algebra R[G], with R a ring.
Then we will see that the linear representations of G over I’ are the same as
F[G]-modules. (See [45] or [41]).

Let V' be a vector space over a field F', and let GL(V') be the group of
automorphisms of V. Let G be a finite group. A linear representation of G
in V' is an homomorphism p: G — GL(V'). Note that a linear representation
p of G in V gives a left group action of G on V defined by g -z = p(g)(x),
forall g € G,x € V. So V is a left G-module.

Let p be a linear representation of a finite group G in a vector space
V. The character of the representation p is the function x,: G — C,s
Tr(p(s)), where for every element a € GL(V'), Tr(a) denotes the trace of a.

Let R be aring, a left R-module M is an abelian group with an operation
-+ R x M — M such that for r,s € R and m,n € M, we have

e l-m=m
er-(m+n)=r-m+r-n
e (r+s)-m=r-m+s-m

o (rs)-m=r-(s-m).
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What’s more, if M, N are two R-modules, then a map f: M — N is
called a morphism of R-modules if for all z,y € M and for all » € R, we have

o flw+y)=f(x)+ fly),
o f(r-a)=r-f(z)

If R is a commutative ring, we can define the group algebra of G over R,
of formal sums of elements of G, with coefficients in R:

R[G] = {Z aggla, € R}.

geG

It is a R-algebra, with the multiplication that extends the one in G.

Let V' be a R-module and let p: G — GL(V') be a linear representation of
G in V. If we extend the associated group action G x V' — V by linearity, we
see that V' is endowed with a structure of left R|G]-module. And conversely,
a structure of R[G]-module on a set V' defines a linear representation of G in
V.

When the group G is the Galois group of a field extension, then any
R[G]-module is called Galois module, and the associated representation is a
Galois representation. For example, if K/Q is a finite Galois extension of
Galois group G, then K* or Z} are Galois modules with R = Z.

1.2.3 Brauer relations

Suppose K/F is a Galois extension of number fields, of Galois group G. By
studying relations between the subgroups of G arising from character theory,
we can find corresponding relations between the arithmetic invariants of the
intermediate fields.
Let H be a subgroup of G, and let W be a C[H]-module. The induction
of W is the C[G]-module Ind¢,y (W) = C[G]| ®cim W.
For a subgroup H < G, denote by Indg/u(1x) the permutation character
of G induced from the trivial representation of H. A Brauer relation is a
relation of the form
Z amgy Indg/H(lH) =0
H<G
with ay € Z. 1In [10], Brauer proved that when such a relation exists,
there is a corresponding relation between certain arithmetic invariants of

the fields K.
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In [7], Biasse, Fieker, Hofmann and Page studied another type of relation
called norm relation. In their paper, they derive from such a relation an
inductive algorithm to compute the class group or the groups of S-units of
K by reducing the problem to a similar problem on the subfields K.

1.3 Group cohomology and Selmer groups
1.3.1 Group cohomology

Let us recall the basic definition of group cohomology, as in [44] for example.
Let G be a finite group and M a G-module. For any integer ¢ < 0, let
C'(G, M) denote the abelian group of functions f: G* — M. By convention,
we define C~Y(G, M) = {0}.
The coboundary maps d*: C*(G, M) — C*T(G, M) are defined by

(d'f) g1, s g001) =91 - F(ga, -+ 1 gin1) + Z(—l)if(gl, L GiGi41s s Givt)
j=1

+ (_1)i+1f(gl7 e agz)

By convention, we let d~': C™1(G, M) — C°(G, M) be the zero map.

Then we can define the space of i-cocycles Z'(G, M) = ker(d') and the
space of i-coboundaries B'(G, M) = Im(d"'). The i-th cohomology group
of G with coefficients in M is

Zi(G, M)

Hi(G, M) = G

The main property of cohomology groups is the following;:
Let A, B,C be G-modules such that there is an exact sequence

0—+A—B—C—=0.
Then there is an infinite exact sequence of cohomology groups

0 —-H°G,A) - H(G,B) - H°(G,C) - H'(G,A) - H'(G,B) - H'(G,C) —
H*(G,A) = H*(G,B) — -

The study of the group cohomology of Galois modules is called Galois
cohomology.
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1.3.2 Selmer groups

Cohomology groups are not finitely generated in general, which makes them
often hard to use in practice. This is why it is interesting to work with Selmer
groups. Those are finite subgroups of the cohomology groups, defined in such
a way that they still contain some important local information. See chapter 7
for the precise definition.

Selmer groups are powerful tools in modern number theory. Introduced
in the study of descent in elliptic curves ([46, Chapter X, §4]), they have
been crucial for progress toward the BSD conjecture (see for example [31])
and arithmetic statistics on ranks of elliptic curves (see [6]), conjecturally
predict the order of vanishing of L-functions (see [8]), control deformations
of Galois representations (see [35, §1.10]) and therefore play an important
role in modularity theorems (see [50]) and have many other applications,
for instance in effective class field theory (see [15, §5.2.2]). It is therefore
important to design efficient algorithms to compute Selmer groups.

1.4 Organisation and contributions of the thesis
Chapter 2: Hecke algebra of finite groups

This chapter corresponds to [22, section 1]. We define Hecke operators and
Hecke algebras, and describe some of their properties. Then we define the
notion of compositum of two number fields.

Our contribution is the following. If K is a number field Galois over Q, of
Galois group G, and H, J are two subgroups of G, let K = K and L = K.
Then we show that there is a bijection between the set of compositums of K
and L and the set of double cosets J\G/H (see proposition 2.17).

Let K and L be number fields. A compositum of K and L is a triple
(C, 1, i) where C/Q is a number field, tx: K — C and ¢y,: L — C are
fields homeomorphisms, and where C' is generated by tx(K) and (L) as a
ring.

Up to isomorphism, there is only a finite number of compositums of K
and L, we denote by Compos(K, L) a set of representatives.

Then, there is a natural “action” of the set of compositum on the set
of fixed points of various R[G]-modules, which we describe from proposition
2.19 to proposition 2.23.

Finally, we describe the “action” of a compositum of K and L from L*
to K*:
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Theorem B. [Theorem 2.24] Let x be an element of K* and let (C,tx,tr)
be a compositum of K and L. Then C-x = N¢yr(tx(2)).

This theorem will be useful especially for algorithmic applications, in
chapter 5.

Though the bijection between double cosets and compositums was prob-
ably a folklore result, we did not know a reference for it. But it seems to us
that theorem B is new, as well as its algorithmic applications.

Chapter 3: Mackey functors

In the first section of this chapter, we give the definition of (cohomological)
Mackey functors, as well as some properties, that can be found in [51] and
9], linking the formalism of Mackey functors to Hecke operators.

Then, in the second section, based on the article [1], still in preparation,
we introduce the notion of normed Mackey functors (see definition 3.14), and
give some examples. The main result is theorem 3.16:

Theorem C. Let R be a normed domain with field of fractions k, and let
M be a normed R-Mackey functor on a finite group G. Let Uy,---U, and
Ui,--- U], be subgroups of G for which there exists an epimorphism of k[G]-

modules
o: @PKG/U) — P KIG/U).
( J
Then there is a R-linear map

o: @D MUHN - P MUY
5,J J

such that the base change ¢ ® k is surjective and such that ¢ has operator
norm bounded from above by

max{1, max{|[U] : ngg_1]| forgeGii=1,---m, andj=1,--- n}.

This theorem is interesting because it can be used to obtain a bound on
the operator norm of linear maps in a large variety of different contexts.
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Chapter 4: Norm relations

In [7], the authors study the properties of norm relations, and use them to
produce some algorithms to compute arithmetic invariants of some number
fields by induction, and in particular the structure of the class group. The
goal of this chapter is to study a generalisation of the definition of norm
relations.

In section 4.1, we recall the definition of norm relation, as well as some
necessary and sufficient criteria for their existence, as proven in [7].

Our contribution is in the other sections, which are largely based on [22].

In section 4.2, we define generalised norm relations:

Definition D. Let H be a subgroup of a finite group G, J a set a subgroups
of G and R a commutative ring. A generalised norm relation over R with
respect to H and J is an equality in R[G] of the form

)4
NH = ZazNJsz

=1

where a;,b; € R[G], J; € J, and J; # 1, and where Nj, = >, j, and
Ny = ey h are the norm elements of the J; and H.

And we give some necessary and sufficient criteria for their existence. In
particular, the following proposition (4.14) establishes a strong link between
generalised norm relations and Hecke operators:

Proposition E. Let H be a subgroup of G, and J = {J1, -+ ,Ji} a set of
non trivial subgroups of G. Then, G admits a generalised norm relation over
Q with respect to H and J if and only if there exists a surjective morphism

of Q[G]-modules
¢

¢: @PQIG/J]" — QIG/H]

i=1

where for all i, n; € Z>g.

By Galois theory, we get a corresponding notion of generalised norm
relations between number fields (see definition 4.15), and in theorem 4.22 we
also give a criterion based on the action of compositums:
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Theorem F. If Ly,---, L, are number fields, defined by the polynomials
fi, -, fo, and if we denote by R; the set of roots of f; in C, then a number
field K = Q(«) admits a generalised norm relation with respect to Ly, - -+, Ly,
if and only if there is a relation of the form

l
=Y Y Yuec

=1 CeCompo(K,L;) BER;
where the coefficients a; c 5 are in Q.

In section 4.3, we define the optimal coefficient of a generalised norm
relation (see definition 4.24), show that it is well defined and give a bound
(see theorem 4.28) that will mainly be useful in the next chapter, to study
the time complexity of some algorithms. The main result in this section is
the following;:

Theorem G. Let H, Jy,--- ,J; be non trivial subgroups of G, and let J =
{J1, -, Jo}. If there is a norm relation over Q with respect to H and J,
then there is a positive integer ¢ such that there exists an injective morphism
of Z[G]-modules ¢: Z|G/H| — @, Z|G/J;|"™ with n; € Zo for all i, and a
morphism of Z|G]-modules ¢: D, Z|G/J;|" — Z|G/H] such that ¢ o p =
c-id.

What’s more, the smallest such integer ¢ divides |G|?.

Even though throughout this chapter and the next one, we focus mainly
on generalised norm relations over Q or over Z, in section 4.4, we briefly
discuss generalised norm relations over finite fields, and give some criteria
for their existence (proposition 4.31).

Next, in section 4.5, we give some algorithms to look for generalised norm
relations.

Finally, in section 4.6, we compare our generalisation of norm relations
to the classical definition of norm relations, to show that our generalisation
is indeed relevant.

Chapter 5: Computing class groups

In this chapter, we describe some algorithms to compute the class groups of
some number fields by induction, using the properties of generalised norm
relations. The methods are similar to those used in [7].
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In the first section, we present an algorithm (5.7) to compute the group
of S-units of a number field, which allows for an indirect computation of the
class group, whereas the algorithms presented in the second section compute
the class group more directly. The main result in this chapter is the following;:

Theorem H. Assuming the generalised Riemann hypothesis, there exists a
polynomial time algorithm that, on input

e a number field K,

e a set S of prime numbers,

o subfields K; of the Galois closure K,

e for each i, a basis of the S-unit group of K;,

if K admits a generalised norm relation with respect to the K;, outputs a
basis of the S-unit group of K.

See algorithm 5.9, and see theorem 5.10 for the proof of correctness and
the proof of complexity assuming GRH.

Then in section 5.3, we use these algorithms, (and in particular algo-
rithm 5.12, not provably polynomial time, but often faster in practice), im-
plemented in Pari/GP ([40]), to compute the class groups of some number
fields with very large discriminant, that we were unable to compute with the
standard functions in Pari/GP or with the methods in [7]. In particular, in
example 5.18, we manage to compute the class group of a number field of
degree 105 and of discriminant 226 . 29% . 6742 ~ 1.7 . 1024,

Chapter 6: An application of generalised norm relations to Leopoldt’s
conjecture

Let L/K be a Galois extension of number fields, of Galois group G. In [23],
the authors prove that if G admits a norm relation with respect to a set of
subgroups H = {Hy,--- , H,}, then for a fixed prime number p, Leopoldt’s
conjecture at p holds for L if and only if it holds for all of the L.

In this chapter, after recalling some formulations of Leopoldt’s conjecture,
we show that this result can be generalised in the following way:
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Proposition I (proposition 6.9). Let L/K be a Galois extension of number
fields, and let G be its Galois group. Suppose that G has a generalised norm
relation with respect to a subgroup I' < G, and a set of subgroups H. Let
T C H be such that the trivial group 1 is not in 1Z and for every H € H,
there exists I € T and g € G such that glg~* < H. Let p be a prime number.
If Leopoldt’s conjecture at p for L' holds for every I € I, then Leopoldt’s
conjecture at p for L' holds.

Chapter 7: Computing Selmer groups

This chapter is based on the preprint [21]. Given a number field with absolute
Galois group G, a finite Galois module M, and a Selmer system L, the goal
is to give a method to compute Sel,, the Selmer group of M attached to L.

In the first section, we describe a method to obtain a resolution of M
where the morphisms are given by Hecke operators. Then in the second
section, we define another group H(G, M) and we prove, using the properties
of Hecke operators, that H&(G, M) is a Selmer group containing Sel,.

The main result of the third section is the following:

Theorem J. Let G be the absolute Galois group of a number field K, and
M be a finite left G-module. There exists an algorithm that on input

e the module M,
e the finite group G that is the image of the action G — Aut(M),
e a Selmer system L,

outputs the Selmer group Sely attached to L for M. Moreover, every step
of this algorithm is polynomial, except for the computation of subfields of K
fized by subgroups of G, and the computation of the group of S-units and the
class group of some field extensions of K.

We will describe this algorithm (see algorithm 7.19), and discuss the
complexity in proposition 7.21.
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2 Hecke algebras of finite groups

One common theme between every part of this thesis will be the use of
Hecke operators and Hecke algebras. In section 2.1, we will give a definition
of Hecke operators and Hecke algebras (see definitions 2.5 and 2.6) based
on group theory and module theory. Then in section 2.2, we will define the
notion of compositums of number fields (definition 2.10), and use it to give
a more field-theory-oriented interpretation of Hecke operators. In all of this
chapter, GG will be a finite group, and H, J will be subgroups of G.

2.1 Hecke algebras

Let R be a commutative ring. The module R|G/H] is the free R-module on
the finite set G/H, with a G-action linearly extending the one of G/H. The
main objects in this section will be R[G]-modules of the form &, R[G//H,],
where the H; are subgroups of G. We call R[G]-modules of this form permu-
tation modules.

First, let us introduce some useful isomorphisms of R-modules. These
isomorphisms (lemma 2.1 and lemma 2.2) are well known and can be found
for example in [51].

Lemma 2.1. Let V' be a G-module. The map
®,: Hompg(R[G/H],V) = VT ¢ ¢(1-H)

where VI is the set of points of V fized under the action of H, is an isomor-
phism of R-modules. And its inverse is

The unique morphism ¢ of
' V7 — Hompg(RIG/H],V),z — { R[G]-modules in'V such that
o(1-H)==z

Proof. Consider the map ®; : Hompe(R[G/H],V) — V7 ¢ — ¢(1- H),
First, let us show that the image of ®; is included in V. Let ¢ be an element
of Hompg(R[G/H],V), and let h € H. Then h-¢(1-H) = ¢(h-1-H) =
¢(1- H). Where the first equality is due to ¢ being a morphism of R[G]-
modules. This shows that ¢(1 - H) = ®,(¢) is indeed in V.

For every x € V¥, there exists a ¢ € Hompg(R[G/H],V) such that
¢(1- H) = x. It is given by the formula ¢(gH) = g - = for all ¢gH € G/H,
and it is independent from the choice of the representative ¢ since x € V.
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What’s more, since R[G/H] is spanned by 1-H as a R[G]-module, we know
that any morphism of R[G]-modules ¢ € Hompgq(R[G/H],V) is entirely
determined by the choice of ¢(1 - H). So ¢ is unique.

So ®; ! is well defined and is the inverse of ®;, hence the conclusion.
O

Lemma 2.2. There is an isomorphism of R-modules

@y RING/J) — RIG/TV, 3 angHgl = Y anggl
HgJEH\G/J gJEG/J

Its inverse is

®,': RG/J)" — RIH\G/J), Y aggl— > agHgl
gJeG/J HgJeH\G/J

Proof. Let © = 3 o/ ;g9 be an element of R[G/J]. Then z is fixed
under the action of H if and only if forall h € H, h-z = 3" 5/, a4(hg)J =
Zg,eg/J ap-149'J = x. Hence for all g in G/H, ap-1, = ay.

This proves that the image of ®, is in R[G//J]¥, and also that ®;" is well
defined.

Since ®,! is trivially the inverse of ®,, this proves the lemma.
]

Combining the two previous lemma, we can get another useful isomor-
phism of R-modules.

Proposition 2.3. There is an isomorphism of R-modules

®: R[H\G/J] — Homp)(RIG/H], RIG/J))

¢ such that
(692 JHgJ —> { o )
HgJGZH\G/J ’ o(1-H) = deG/J rgrgd

Its inverse is

®~': Hompe (R|G/H], R[G/J)) — R[H\G/J]

(ﬁr_){ ZHgJeH\G/J o HOJ '
where ¢(1-H) =3 )y 0gs9]
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Proof. We can obtain the isomorphism & simply by composing ®; from

lemma 2.1 and ®, from lemma 2.2.
O

Fact 2.4. By considering both the isomorphism & in proposition 2.3 and
the isomorphism ®; in lemma 2.1, we deduce that given any R[G]-module V,
for every element HgJ of R[H\G/J] we get a morphism T,y of R-modules
from V7 to VH# given by the following diagram:

THgJ
VJ VH

T > 5€G/J 0

HgJ=HéJ

I

v =y b—m—— vH =3 6eG/J vz

HgJ=H&sJ

HOIHR[G} (R[G/J], V) ¢H E HOIHR[G] (R[G/H], V)

where the expression of ¢p4; is obtained via the following diagram:

RIH\G/J] R[G/J]"

gernays Qg Hg) —— > oy rgrg]

T~

TH =32 jecys Qrgivg)

HgJ=H~J

Hompie) (R[G/H], R[G/J])
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This “action” of the double cosets on the set of fixed points of any R[G]-
module will be one of the corner stones of this thesis. With the two following
definitions, let us name the operators involved.

Definition 2.5. If R is a commutative ring and V' an R[G]-module, then
the morphisms of R-modules V7 — V! associated with double cosets of the
form HgJ for g € G, by the morphism described in fact 2.4 are called Hecke
operators.

Definition 2.6. We can define a multiplication in R[H\G/H] as inherited
from the o law in Endpgg(R[G/H]), by the isomorphism of proposition 2.3.
Then R[H\G/H] is an algebra over R, isomorphic to Endgjq(R[G/H]). We

call algebras of this form Hecke algebras.
Example 2.7. Set R =Q, G = S3 and H = {id, (1,2)} as a subgroup of G.

e There are two equivalence classes in H\G/H, which are {id, (1,2)} and
{(1,2,3), (1,3),(2,3), (2,3, 1)}. Indeed, (1,2,3)(1,2) = (1,3), (1,2)(1,2,3) =
(2,3) and(1,2)(1,2,3)(1,2) = (2,1,3).

So we have Q[H\G/H] = {a(Hid H) + b(H(1,3)H); (a,b) € Q*} =
Q- Hid H ®QH(1,3)H.

e There are three equivalence classes in G/H, which are {id, (1,2)},
{(1,2,3),(1,3)} and {(2,1,3),(2,3)}.
Therefore, an element of Endgiq(R[G/H]) is entirely determined by
the images of 1-id, 1-(1,3)H and 1-(2,3)H.

o Let = a(HidH) + b(H(1,3)H) be an element of Q[H\G/H]|. By
the second diagram of fact 2.4, = is associated with the element of
Endpgg)(R[G/H]) that sends vH € G/H to

ayH if HyH = HidH
by(1,3)H +bvy(2,3)H if HyH =H(1,3)H

e We can define the + law on Q[H\G/H]| by

(ay(H id H) + by (H(1,3)H)) + (ax(H id H) + by(H(1,3)H))
= ((a1 + a2)(Hid H) + (b1 + b2)(H(1,3)H)),

and the - law as inherited from the o in Endgiq(R[G/H]) by the iso-
morphism of proposition 2.3. Then we have:

33



— HidH-HidH =HidH

— HidH - H(1,3)H = H(1,3)H
— H(1,3)H-HidH = H(1,3)H
— H(1,3)H is associated with

£ o 0 if HyH = HidH
T ~(1,3)H +~(2,3)H if HyH = H(1,3)H °

so if v € (1,3), then (7) id H + (1,3)H so f2(v) = f(7),

and similarly, if v € (2,3), then f(v) = (2,3)H +id H so f2(y) =

F(),
Hence finally, H(1,3)H - H(1,3)H = H(1,3)H.

And, Q[H\G/H] is indeed an algebra.

Finaly, let us state two more isomorphisms (proposition 2.8 and proposi-
tion 2.9) that will prove useful in the rest of the section.

Let K be a number field. If we choose an embedding oy: K — C, then
we can define K the Galois closure of K in C. Let us suppose that K /Q has
Galois group G.

Let « be an element of C such that o¢(K) = Q(«), and f the minimal
polynomial of o over Q, and let Z be the set of complex roots of f. Let
o € Hom(K,C) ~ Hom(K, K) and g € G. The embedding ¢ sends « to a
complex root of f. Then g - o is the element of Hom(K,C) that sends « to
o(g-a).

The Galois group G acts on the set Hom(K,C) by g-0 = goo.

Proposition 2.8. Let H be a subgroup of G. The map
®:G/H—Z,gHw— g-«
1s a well-defined isomorphism of G-sets, whose inverse is given by
®':Z 5 G/H,a=g-aw gH.

Proof. Let us prove that the definition of ®(gH) does not depend of the
choice of ¢g. Let ¢1,¢92 € G such that g1H = g, H. So there exists h € H
such that go = g1h. Since « is in K, and H fixes K, we have h-a = a. So
g2 - =01«

What’s more, it is easy to check that ® is G-equivariant and that ®—!
indeed the inverse of ®. [
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Proposition 2.9. We write E = Hom(K, C) for the set of embeddings of K
in C, and o, for the embedding that maps o to g - o for all g € G.
There is an isomorphism of G-sets

¢: G/H — E,gH — o,.

Its inverse is
' S — G/H, 7y~ gH.

And ®(gH) is independent from the choice of g.

Proof. Let g1,90 € G such that g¢tH = ¢goH, and let h € H such that
g2 = g1h. Then, o, maps a to g1 - (h- ) = g1 - a. So 0, = 04. So (gH)
is indeed independent from the choice of g.
What’s more, it is easy to check to ® is G-equivariant and that ®~1! is
the inverse of ®.
O

The propositions 2.8 and 2.9 are very similar. In practice, the formulation
of proposition 2.8 with roots of polynomials is more useful for implementation
purposes, whereas in theoretical results, we will often prefer the formulation
of 2.9 with complex embeddings.

2.2 Compositums

Compositums are well know objects, useful for the study of algebraic fields
extensions. (See for example [32, Chapter 5]). In this section, we will be
interested in particular in the notion of compositum of two number fields
(see definition 2.10).

In this section, K will denote a Galois extension of Q, of finite degree and
of Galois group GG. Moreover, H and J will be two subgroups of G and we
will consider the fields K = K and L = K.

Definition 2.10. Let K and L be number fields. A compositum of K and L
is a triple (C, v, t1,) where C'/Q is a number field, 1 : K — Cand ¢y, L — C
are fields homeomorphisms, and where C' is generated by tx(K) and ¢ (L)
as a ring.

Example 2.11. Consider the following diagram, with ¢ := e
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Q

Let i : K — C be the inclusion, and ¢y, : L — C' also the inclusion. It is
clear that C' is generated by tx(K) and ¢y (L), so C' is a compositum of K
and L.

Here, we have C' = K. We will see that up to isomorphism, every com-
positum of K and L C K is included in K.

Note that if we take txo: K — C the inclusion and ¢z 9: L — C,( E,
then (C,tx2,tr2) is another compositum of K and L.

Example 2.12. Note that the compositums of two number fields do not
necessarily have the same degree. v
Let C = K = Q(v/2) and L = Q(¢/2), with ¢ = e3° . Let tx be
the identity Q(v/2) — Q(v/2), and tz: L — C,(v/2 + /2. Then (C =
Q(V/2), tx, 1) is a compositum of K and L, and C' is a field of degree 3.
Now let C' = Q(+/2,¢) , and let tp5: L — C',(3/2 +— (/2. Then

(C", Lk, L 2) is also a compositum of K and L, and C' is a field of degree 6.

Definition 2.13. A morphism of compositums between two compositums
(Cyixe,er) and (C') U, 1)) is a field morphism f: C' — €', such that /y =
fougand ) = foup.

Example 2.14. With the notations of example 2.11, the field isomorphism
f:C=0Q(V2,¢) = C, ¢+ C induces an isomorphism of compositums from

(Citg,er) to (C i, tra).

From now on, we will want to consider compositums up to isomorphisms.
This will be possible thanks to the following lemma.
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Lemma 2.15. Up to isomorphism, there is a finite number of compositums
of K and L, we denote by Compos(K, L) a set of representatives. There is a
bijection between this set and the set of quotients of K ®q L. For every sur-
jective Q-algebra homomorphism f: K ®q L — C, the associated compositum
is (Cyig,ep) and 1 = fo(idg ®1), tp = fo(idy ®1). Every compositum of
K and L is isomorphic to a compositum whose underlying field is contained
n K.

Proof. The second statement is a direct application of the universal property
of the tensor product of algebras.

Since K ®q L is of finite dimension over Q, the set Compos(K, L) is finite.

Now let us prove the last statement. Write K = Q[X]/p(X), with
p(X) € Q[X] irreducible. Write p(X) = [[,pi(X) the decomposition of
p(X) into a product of irreducible polynomials in L[X]. Then K ®q L =
[T, LIX]/(p:(X)). What’s more, the polynomial p is split in K[X], so the p;
are also split in K[X]. So for every i, we have L[X]/(p;(X)) C K, since K
contains L and a splitting field of the p;,. Hence the conclusion. O]

Now, the next few results, from lemma 2.16 to proposition 2.17, will be
dedicated to explaining the link between compositums and Hecke algebras.

Lemma 2.16. The map
U: Homg.ae (K, K) — Compos(K, L), ¢ — (¢(K).L, ¢, incly, z)

induces a bijection from J\ Homgq a1 (K, K) to Compos(K, L)/ ~, where ~
18 the isomorphism equivalence relation.

Proof. Let ¢ € Homg_n4(K, K ). The composition by g € J induces an
isomorphism (¢(K).L, ¢, inclL/f{) — (9.0(K).L,g.9,g. inclL/k). Since g € J,
g fixes L, so g.incl; z = incl; . So the isomorphism induced by g is of the
form W(¢p) — W(g- ¢). Let us check that the map induced by ¥ is injective.
Let ¢, ¢ € Homg_a,(K, K) and let f: ¢(K)-L — ¢/ (K) - L an isomorphism
of compositums. Then f oincl; i = inclg; and f is the identity over L,
so f can be extended as an isomorphism ¢g € J. Since f is a morphism of
compositums, g¢ = ¢, hence ¢ ~ ¢'.

Let us check it is surjective. By lemma 2.15, every compositum in
Compos(K, L) is isomorphic to a compositum where 1 = inclL/f(. Let

1k : K — K be an embedding, then we can always pick ¢ = k. O]
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Proposition 2.17. There is a bijection
®: J\G/H — Compos(K, L), JgH + (gK - L,k — g - k,incl; z).

Its inverse is

JgH
®': Compos(K, L) = J\G/H, (C,tx, i) = { with g such that
k(o) =g-ae€ K

Proof. The proposition derives from the two lemmas 2.15 and 2.16. ]

Example 2.18. With the notations of example 2.7, we saw that H\G/H
has two equivalence classes: the class of 1 and the class of (1, 3).

Let K be a Galois extension of Q, of Galois group S, and let K be
the subfield of K fixed by H, the subgroup of G spanned by a transposi-
tion 7. Then Compos(K, K) will have two elements. One of them will be
(K,idk,idf) and the other one will be (K, 11, incly ) where t;: K — K is
the action of 7.

Now, using the bijection described in proposition 2.17 and the isomor-
phisms described in section 2.1, we obtain an “action” of Compos(K, L) on
various R-modules. In the rest of the section we will describe these actions.

Proposition 2.19. The map
$: Compos(K, L) — Hompi(R[G/J], R|G/H])

¢ such that
(C, LK, LL) — ¢(1 ’ J) - Z'yHEG/H ’YH
JyH=JgH
with g such g - a = g (a)
18 1njective.
Proof. This is derived from the proposition 2.17, using the isomorphism of
proposition 2.3. O

Let us choose an embedding of K in C and an embedding of L in C. By
the primitive element theorem, we can consider elements «, 5 of C such that
K ~Q(«) and L ~ Q(S). Let f, fr be the minimal polynomials of o and /3,
and let Z, Z;, be the sets of roots of f and f; respectively.
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Proposition 2.20. There is an injective morphism
®: Compos(K, L) — Hompgg(R[ZL], R[Z])

¢ such that
(Ca LK, LL) — ¢<ﬁ) = z a€Zy, fyH

Ja=J g (a)

with g such that g - o = 1 (@)

Proof. This is derived from proposition 2.19, using the isomorphism of propo-
sition 2.8. ]

For roots o/ of f in C, we denote by o, the embedding of K in C that
sends « to o'. Similarly, denote by 73 the embedding of L in C that sends

to 3.
Proposition 2.21. The map

¢: Compos(K, L) — Hom g (R[Hom(L, C)], R[Hom(K, C))),
¢ such that
(C,treser) = P(75) = > occHom(K,C) 7
(C,LK,LL)N(C/,CF,TB>
18 1njective.
Proof. This is derived from proposition 2.19, using the isomorphism of propo-

sition 2.9. ]

As for the propositions 2.8 and 2.9, these two previous propositions are
very similar. The formulation with roots of polynomial will often be more
useful for implementation, while the formulation with complex embedding
will be prefered for theoretical results.

Remark 2.22. Let (C, 1k, 1) be a compositum of K and L, and let ¢ the
corresponding element of Hompgjg(R[Hom(L,C)], R[Hom(K,C)]). We can
obtain a nicer way to write ¢(73):

¢(7s) = Z 0= Z |Eory| - 0

oc€Hom(K,C) oc€Hom(K,C)
(C,LK’LL)N(C/’U,T[;)

where F, ., = {f € Hom(C,C)|oc = foix and 73 = foir}.

39



And from that form we can deduce a general expression for ¢(7) for every
complex embedding 7.

Proposition 2.23. Let (C,tx,tr) be a compositum of K and L, and let ¢
the corresponding element of Hompgiq(R[Hom(L, C)], R[Hom (K, C)]). For all
7 € Hom(L, C),

P(r) = Z |Eoyr| -0

oc€Hom(K,C)

where E,, ={f € Hom(C,C)|oc = foix and 7= four}.

Proof. Let 7 = 7 - 15 with v € G. (We can always write 7 in that form,
because g acts transitively on the elements of Hom(L, C)).
Then,

o(r)=v-d(m)= D, |Esrl(y-0)

oc€Hom(K,C)

= Z |E'Y_1'Ua7-ﬂ| - 0.

~v~l.c€Hom(K,C)

But we have £ -1, ., = Es.r; = E, because v: Hom(K,C) — Hom(K,C)
is a bijection.
So finally,

¢(7—) = Z |EO',’7'| "o

oc€Hom(K,C)

because v: Hom(C,C) — Hom(C, C) is a bijection.
O

Similarly, for every R[G]-module V', a compositum C' of K and L induces
a map from V to V7. (The proof is similar to that of proposition 2.23.)

From now on, if x is an element of V¥, we will denote by C' - x the image
of z by this map.

Theorem 2.24. Let x be an element of K* and let C = (C,ik,tL) be a
compositum of K and L. Then C-x = N¢yp(tk(x)).

Proof. The bijection described in proposition 2.17 allows us to identify the
compositum (C, v, tr) with an element J\g/H of J\G/H.

First, let us prove that the subfield of K fixed by HN (gJg™ ') < G is C.
The subfield fixed by ¢gJg~ ' is g(L) = ¢(L). Denote by C the field fixed by
HN(gJg™"). All elements of K and ¢1,(L) are in C' so C' C C'. What’s more,
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if we denote by N the subgroup of G fixing C', then N is included both in H
and in ¢gJg7!, so it is included in H N gJg~'. We get C C C, so we indeed
have KHe79™Y) = .

Now, we know that C'-z = [[;cp 5/ 07 =[] seg/y 2, we want to make
HgJ=HéJ

the change of variables 6 = hg. For h,h' € H, we have hgJ = h/gJ if and
only if there exists j € J such that h = h'(gjg~'), that is to say if and only if
h="hin H/(HN(gJg™")). This gives C-z = [Thenunggsg-1y Py Finally,
we obtain

C-x= Neyp(tp(x))

as claimed.

[]

In practice, to compute the action of Hecke operators between number
fields, the most efficient method is often to use the formula from theorem 2.24.
This will prove useful in particular in sections 5.2 and 7.3.

We also have the following additive version of theorem 2.24.

Proposition 2.25. Let « be an element of K and let C = (C,ik,tr) be a
compositum of K and L. Then C-x = Tro/r(vi(x)), where Treyy, is the trace
map.

Proof. The proof is similar to that of theorem 2.24. O
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3 Mackey functors

A Mackey functor is an algebraic structure endowed with operations (induc-
tion, restriction and conjugation), satisfying some axioms (see definition 3.1)
similar to the induction, restriction and conjugation in group representa-
tion theory (see [45, section 7]). They were first introduced by Dress (]20],
[19]) and Green ([28]). However, they appear in a large variety of different
contexts, which makes their study interesting.

3.1 Definitions and properties
First let us recall the definition of a Mackey functor, as in [9)].

Definition 3.1. Let G be a finite group and R a commutative ring. An
R-Mackey functor M = (M, c,Res,Ind) on G is a quadruple consisting of

e a family of R-modules M(H) for each H < G,

e a family of homomorphisms of R-modules ¢, py: M(H) — M(9H), the
conjugation maps, for each g € G, H < G and 9H = gHg™*,

e a family of homomorphisms of R-modules Res?: M(H) — M(J), the
restriction maps, for each J < H < G, and

e a family of homomorphisms of R-modules Ind: M (J) — M(H), the
induction maps, for each J < H < G,

such that the following axioms are satified:
o (Triviality) csz = Resh = Ind}} = idy gy for all H < G and h € H.
o (Transitivity) ¢y, ir = cy9m0C, i, Resy o Res = Res! and Ind’ o Ind]

Ind? forall L<J< H <G andg,¢ €G.

e (G-equivariance) ¢, joRes” = Res,” oc, iy and ¢, yoInd] = Indy’ oc,. s
forall J< H<GandgeQaq.

e (Mackey formula) For all H < G, U, J < H, one has

H H U hy
Res;; oInd) = g Ind;qn ;0 Resyimny och, s
heU\H/J

where h € H runs through a set of representatives for the double cosets

U\H/K.
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Definition 3.2. An R-Mackey functor M on G is called cohomological if the
axiom
Indf oRes = [H : J]idpy, for all J < H <G

holds.

Now, in the rest of the section, let us see two results (theorem 3.3 and
theorem 3.4) that will link the formalism of Mackey functors to the objects
sudied in section 2.1.

Theorem 3.3. Let R be a commutative ring and G a group. The association
H — R[G/H] for every subgroups H < G forms a cohomological Mackey
functor with the following operations:

e Ind%: R[G/K] — R[G/H],gH — gK for K < H.
e Resii: RIG/H] = R[G/K],gH — 3,y /i ghK for K < H.
e c,n: R[G/H] — R|G/'H],xH — zg~ ' 9H

Proof. This result can be deduced from [51, example 4.1], with D the trivial
group. However, we will give here a more basic proof, by simply verifying all
the axioms.

1. Triviality
e For h € H, we have ¢y : tH — zh™'H = zH.
e What’s more, Resk : gH ZheH/H ghH = gH.
e Finally, Ind% : gH + gH.

2. Transitivity:

e Forall g,¢ € G et H< G, we have cy,p : aH — 1g7 g L99H,
and ¢y o ocom: vH = cyap(vrg ' IH) = xg~ g I9H.

e Forall L < K < H < G, we have Ind o Ind} = Ind/.

e Forall L < K < H < (G, we have

Res¥ oRest : gH Z Z gkhH.
keK/L heH/K
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Let us show that this last expression is equal to ) /L grH.
Let hK € H/K and kL € K/L, to which we associate hkL €
H/L. Let us show that this association induces a bijection from
a set of representatives (h, k) of H/K x K/L to a set of represen-
tatives of H/L.

Let b’ € H/L, let h be a representative of the class of A’ in H/K,
we have k € K a representative of h’~'h in K/L such that hk = I/
mod L.

Then we have to show it is injective. Consider (h, k), (b, k") with
h,h' € H in a set of representatives modulo K and k, k' € K in a

set of representatives modulo L, such that there exists [ € L such
that hk = W'K'l. Then h = W' (kK'lk=') so h =h' mod K so h =H'.
And then hk = hk'l so k = k'l, so k = k' mod L hence k = k'.

3. G-equivariance:

e For g € G and K < H < (G, we have

Coic © Resth(xH) = cg s Z zhK) = Z rhg ' IK.
heH/K heH/K

And

Res, & ocy g(xH) = Resyit(vg ' H) = Z zhK) = Z rhg ' IK.

heH/K heIH/IK

Those two sums are equal because we have h = hk if and only if
ghg™! = ghg'[’K].

e What’s more,
o o AN (1K) = ¢y y(vH) =29 ' 9H

= Ind, 5 oc, u(vH).

4. Mackey formula:
For H < G et U, K < H, we have

Rest oIndf (2 K) = Resff (zH) = Z xzhU.
heH/U

44



And

Z IndY mhKOReSUﬁhK ocp (2 K) Z Z zh 'kU.

heU\H/K heU\H/K "K/UNhK

So we want to show that >, in sr/se D ngjmong KU = 3 ey 9U-
We have deH/U gU = ZneK\H/U ) genyu YU, and

KgU=KnU

> gy 9U = ZaeK/nUmK U = Zé/en—lK/Umn—lK5,77U. Hence the

KgU=KnU
conclusion.

. Cohomological property:
For K < H < (G, we have

Ind o Rest (gH) = IndZ( Z ghK) = Z ghH = [H : Kl]gH.
heH/K heH/K

]

Theorem 3.4. Let M be a cohomological Mackey functor. If H, K are sub-
groups of G and g an element of G, let us define the operator

Thgr: M(K) — M(H),z — IndenH o Resy iy ocy K (2).

Then, all operators of this form follow the rules of compositions of RIH\G | K]
coming from the isomorphism of proposition 2.3.

Proof. One can find the proof in [51, theorem 4.1]. However, here is a more
down to earth proof:

Consider H, K, J < G and ¢, € G. Let us consider

THgK : M(K) —)M(H)

Tyse + M(H) — M(J).
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Then
J SH H IK
Tysu © Trgr () = Indi ;0 Ressypy 065 i © Indyeryr 0 Reso gy 0¢q, i (2)
_ J g SH IK
= Inds ;o Ressyn 0 (Indg(gKmH) Oc(s,g;mH) o Resggnpm 9Cq k()
_ J SH g S9K
= Indipn; 0 Ressyn 0 Ind5(gKﬂH) © (ReS5(gKmH) oCsar ) © Cg ()

J °H °H S9IK
= Ind ;0 Ress gy © Indso ey © Ress oy (0€og,x)

5 hé 5
= Ind;;]HﬁJ o Z Indpim‘] o ReSFh(QKnH) och s(9knH) | © ResaiglimH) OCsq. K
heSHNH\%H/*(9 KNH)
(with I, = (JHNJ)N" (K N H).)
hé
= Indiyp, 0 ) Indp;/™ 0 Resy, ™o (RGSZEZKKOH) OChﬁgK) © Cog.K
heSHNH\SH/5(9 KNH)
= Z Ind%h o Res;igK OChsg,K -
heSHNH\SH/%(9KNH)

But we also have

mh&gK

Ind%h = Ind jrnsg e © Ind%h

and
h6gK - JmhégK hégK
Resp, & = Resy, o Res jrps.i

and hé hé
Ind{"™"® o Res{""* = [H : Klidys)

since M is a cohomological Mackey functor.
Hence finaly

&
TJ5H o THgK = [H . K] Z Indinh‘ng o} Resj};gg[( OChég,K
heSHNH\%H /(9 KNH)
= [H : K] > Thi(hsg)ic -
heSHNH\H/*(9KNH)
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Proposition 3.5. Let R be a ring, G a group, H < G a subgroup and {J;}
a set of subgroups. If we have ¢: @), R[G/J;| — R|G/H| a morphism
of R|G]-modules and : R|G/H] — @;-, R|G/J;] a morphism of R|G]-
modules, such that ¢ o+ = d-idgig/m), then for every cohomological Mackey
functor M, there exists ¢pr: @iey M(J;)) — M(H) and Yy M(H) —
D", M(J;) such that ¢ar o ha = d - idarcmy.

Proof. One can find a proof in [9, corollary 1.4]. However, here is an other
proof using theorem 3.4.

We can view the morphism ¢: @, R[G/J;] — R[G/H] as a sum of
morphisms ¢;: R[G/J;] — R[G/H].

Similarly, if we denote by 7; the projection ", R[G/J;] — R[G/J;], we
can view the morphism ¢: R[G/H| — @], R[G/J;] as a sum of morphisms
Y R|G/H] — R[G/J;], with ¢; = m; 0 1.

Then, by proposition 2.3, we can associate every ¢; with an element of
R[J;\G/H], and every v; with an element of R[H\G/J;].

By theorem 3.4, we can then associate to every ¢; an operator Ty, : M(J;) —
M(H), and to every v; an operator Ty, : M(H) — M(J;).

Then, we take ¢ = >, Ty, and Yar = 3. Ty,

Since ¢y and 1y, follow the same composition law as ¢ and 1, by theo-
rem 3.4, then we have ¢y 09y = d - idpspy as claimed.

O

Remark 3.6. The statement of proposition 3.5 does not describe the forms
of ¢y and 1, but we see in the proof that we can describe them more
precisely. They are obtained by decomposing ¢ and 1 into sums of morphisms
respectively R|G/J;] — R[G/H] and R[G/H] — R|G/J;], expressing these
morphisms as elements of H\G/J; or J;\G/H and then applying theorem 3.4.

3.2 Normed Mackey functors

In several cases of applications of Mackey functors, the modules M (H)
naturally come equipped with a lattice structure (ie they are normed R-
modules). The goal of this section is to enrich the theory of Mackey functors
to take into account such norms on the modules M (H) and keep track of the
relations between the lattice structures of the various M (H). This section is
largely based on the article [1], which is still in preparation.

First, let us give some context to motivate the study of normed Mackey
functors.
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In [48], the author studies relations between the successive minima of
arithmetically equivalent number fields (see definitions 3.7 and 3.8).

Definition 3.7.

e Let K be a number field. The Dedekind zeta function of K is the map
(k defined for complex numbers s such that Re(s) > 1, by

CK(S) = Z [ZK . a]_s.

a#0
ideal of z

e Two number fields K and K’ are said to be arithmetically equivalent if
they have the same Dedekind zeta function.

Definition 3.8. Let K be a number field of degree d and let oy, -+, 04 be
the complex embeddings of K.

e The Minkowski embedding of K is the map

v K — Choes (01(v),- -, 04(0)).

e We can then define a euclidean norm ||.|| on K, by

Vo € K, |[|v]] = \/%Z(!Ul(v)P +o A Joa(v)]?)-

e The i-th successive minimum of K is the smallest \; € R such that the
set {v € Zg, ||v|| < A\;} contains i Q-linearly independent elements.

The main result in [48] is the following theorem:

Theorem 3.9 (Theorem 1 of [48]). Let d > 1 be an integer. There ex-
ists a constant cq > 0 such that the following holds. Let K and K' be two
arithmetically equivalent number fields of degree d. Let A\ < --- < A\g and
Ap < - <N be the multisets of successive minima of K and K'. Then for
all i, we have

)\i S Cd)\;.

To obtain a bound on the constant ¢4, one method (used in [48, proposi-
tion 6]) is to find a linear map ¢: K — K’ such that
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1. ¢ is an morphism of Q-vector space,

2. we have the inclusion ¢(Zy) C Zg,

3. for every non zero v € Zg, we find a bound on %

We know that the maps K — K’ induced by Hecke operators satisfy
the conditions 1 and 2 by proposition 2.25. The results in this section will
allow us to find a bound for condition 3. (See in particular lemma 3.15 and
theorem 3.16).

Now, let us recall some preliminary definitions, before defining the main
objects of this section, normed Mackey functors, in definition 3.14.

Definition 3.10. A normed domain R is a domain equipped with a norm
map | -|: R — Rx¢ such that for all z,y € R,

1. we have |z| = 0 if and only if z = 0,
2. and |zy| = |2[lyl,
3. and |z +y| < |z + |yl

Note that a norm on a normed domain R can be extended to the field of
fractions of R.

Definition 3.11. If R is a normed domain, a semi-normed R-module A is
an R-module equipped with a semi-norm || -||: A — R>q, ie a map such that
for all x,y € A, and for all » € R,

1. there exists some z € A such that ||z]| # 0,
2. we have ||rz|| = |r| - ||x]],
3. and [z +yl| < [l=[| + [[yll

Definition 3.12. If f: A — B is a R-module homomorphism between semi
normed R-modules, then the operator norm of f is

||f]| = inf{r € R; || f(a)|| < r||a||, for all a € A}.

It can be either a real number or co. We say the map f is bounded if
LI < oo
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Proposition 3.13. With the notations of definition 3.12, if || f|| < oo, then
for every a € A, we have ||f(a)|| < ||f]|-|]al|, i.e. the inf in the definition is
actually a min.

Proof. For alla € A, theset S, = {r € R;||f(a)|| < r||a||} is a closed interval
in R, so it contains its infimum. O

Definition 3.14. If R is a normed domain, then a normed R-Mackey
functor is a cohomological Mackey functor M such that

e for every subgroup H < G, the R-module M (H) is semi-normed,

e for every subgroup K < H of G, and every g € G, the maps ¢,y and
Resg have operator norm bounded by 1,

e for every subgroup K < H of GG, the map Indg has operator norm
bounded by max{1,|[H : K]|}.

A normed Z-Mackey functor where we use the absolute value on Z will be
called a normed Mackey functor.

The max in the definition is superfluous in the examples that we will
develop here, but it is necessary for examples over function fields that will
be presented in [1].

In the rest of the section, we will apply these definitions to the context
of Hecke operators. The main result will be theorem 3.16. Then we will give
some examples.

Lemma 3.15. Let M be a normed Mackey functor. If Uy, Us are subgroups
of G, g an element of G, and x in M (U,), then, with the notations of theorem
3.4, we have

1T g0 || < max{1, [Ty ¢ Uy N )|

Proof. By definition, we have |[T, gur, (2)|| = || Indg, 1, © ReSop2n, 0Ca.um(2)]].
The result then follows from the definition 3.14 of normed Mackey func-
tors, since ¢ ¢, and ReszgjnUl have operator norm bounded by 1, and Inng(}mU1

has operator norm bounded by max{1,|[Us: ¢ Uy N Ts]|}. O

Theorem 3.16. Let R be a normed domain with field of fractions k, and
let M be a normed R-Mackey functor on a finite group G. Let Uy,---U,
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and U7, --- U] be subgroups of G for which there exists an epimorphism of
k[G]-modules

o: @PKG/U) — P KIG/U.
( J
Then there is a R-linear map

o: @ MUY — @ MUY

such that the base change ¢ ® k is surjective and such that ¢ has operator
norm bounded by

max{1, max{|[U} : gU;g" ' NU/]| forg € G,i=1,---m, andj=1,--- ,n}}.

Proof. We can decompose the morphism ® in ® = """ | &, with ®;: k[G/U;] —
@D, kIG/Uj].
Then, if we denote by 7, the projection B, k[G/U;j] — k[G/U;], with
1 <1 < m, then for all 7, we have ®; = Z;”:l P, ; with ®; ; = m; o ®;. Hence
Then, for every pair (¢, 7), ®;; is the morphism associated to an element
> 1 Uigij1U; of E[U\G/U;] by the isomorphism of proposition 2.3. So by
theorem 3.4, we have

¢ = Z TZk Uigi,j 1 Uj * @ M(Ui)Ui\G/U]{ - 69 M(Uj/)
i,j 1,3 J
And the bound on the operator norm is a direct result of lemma 3.15.
O]

Example 3.17. Let V be a Z[G]-module, equipped with a G-invariant eu-
clidean inner product. For every H < G, denote by M(H) = V# the set of
points in V fixed by the action of H.

Then M is a Mackey functor with

o for H<Gandforge G, cyy: M(H) > M(YH),xz— g -,
o for H < J <G, Res’: M(H) = M(J),z + m,
e also for for H < J < G, Indf: M(J) = M(H),x— Y,y h- .
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In addition, M is normed, using the restriction of the euclidean norm
to V.

Proof. First let us prove that M is a Mackey functor. The axioms of triviality,
transitivity and G-equivariance are immediate to verify.
For all H < G and U, J < H, and for all z € M(J), we have

Indg} o Res (z Z u-x
ueU/H
and
Z Ind¥ ;0 Resg‘éh,J ocy j(x) = Z ndy ., (h-x) Z Z
heU\H/J heU\H/J heU\H/J ueUnh /U

So we have indeed Indjf o Res’ (z) = > uevym V- T, so the Mackey formula
stands.
Then, let us prove that M is normed.

e Since V' has a norm derived from the euclidean inner product, it is a
semi-normed Z-module, and then for all H < G, M(H) = VH is a
semi-normed Z-module, with the norm inherited from V.

e For every J < H < G and for every g € G, it is clear that ¢,z and
Res!] are isometries.

e For every H < J < G and for every x € M(J) = V’, we have
1 Tndj (@) = 1| Shenyu b - 2ll < Xpepysllh-all = ([ = H]| - ||l
So the operator norm of Ind” is bounded by max{1, |[J : H]|}.

]

Example 3.18. Let K be a Galois extension of Q, and let G be its Galois
group. Then K is a semi-normed Z-module with the normed induced by the
Minkowski scalar product (see definition 3.8). If H < G, we will denote by
M (H) the subfield of K fixed by H. With these notations, M is a normed
Mackey functor, with:

efor H<GandgeG, cgp:xr—rg-

e For H<J <G, Rest! : M(H) = M(J),z 2
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e Alsofor H< J <G, Ind" : M(J) = M(H),z > nemys ha
This is simply a particular case of example 3.17.

By applying theorem 3.16 and example 3.18 to the particular case of a so
called Gassmann triple, i.e. an isomorphism of the form Q|G /H| ~ Q[G//H'],
we can recover (48, theorem 1]. In the article [1], in preparation, we plan
to study other examples of normed Mackey functors. In particular, we will
develop an analogy of the number field case (example 3.18) to curves over
functions fields. We will also study the case of Sunada isospectral manifolds
(see [47]).
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4 Norm relations

Suppose K/F' is a Galois extension of number fields, of Galois group G.
In [7], the authors studied a type of relation in R[G], where R is a commu-
tative ring, called morm relation. They then derive from such relations an
inductive algorithm to compute the class group or the groups of S-units of K
by induction, reducing the problem to a similar problem on some auxiliary
subfields.

In section 4.1, we will define norm relations as in [7], and give some of
their important properties. We will call them “classical” norm relations, as
opposed to “generalised” norm relations, that we shall define and study in
section 4.2.

In all of this chapter, G will denote a finite group.

4.1 Classical norm relation

This section will be largely based on [7].

Definition 4.1. Let H be a subgroup of G. We call the element Ny =
> nem I € Z|G] the norm element of H.

Definition 4.2. Let H be a set a subgroups of G and R a commutative ring.
A norm relation over R with respect to H is an equality in R[G] of the form

L
i=1

where a;,b; € R|G|, H; € H, and H; # 1.
Note that the H; can appear with repetitions in the formula.

Example 4.3. The symmetric group S3 admits a norm relation over Q with
respect to H = {((1,2,3)),((2,3))}. Indeed, one can check that

I=- N<273>((17 2,3)+2-(1,3)) + (1, 2)N<273>((27 3)+2-(1,2,3))
+ N<(1’273)<2,3,4).

In [22], our approach was to propose a more general type of relations
(which we will study in section 4.2), and then generalise some of the main
results in [7]. Let us recall here some of the properties of classical norm
relations proven in [7], that we will adapt to generalised norm relation in
section 4.2.
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Proposition 4.4 (Proposition 2.10 of [7]). Let H be a set of non trivial
subgroups of G. Then the following are equivalent.

o There exists a norm relation in G over Q with respect to H.
o We have (Ny; H € H)qie) = Q[G] as a two sided ideal.

e For every simple Q|G]-module V', there exists H € H such that VH #

{0}

e For every simple Q|G]-module V', there exists H € H such that V #

{0}

e For every simple C|G]-module V', there exists H € H such that VH #

{0}

Now let us consider a relation in Z|G] of the form

l
=1

with H; < G, a;,b; € Z|G] and d € Z-,. That is to say a norm relation over
Q where we multiplied each side by an adequate integer d to get a relation

in Z|G].
In order to state proposition 4.7, we first need the following definitions:

Definition 4.5. Let R be a commutative ring. The annihilator of a subset
S of an R-module M is Ann(S) = {r € R;Vz € S,rz = 0}.

Definition 4.6. The exponent of a Z-module is the positive generator of the
group of annihilators.

Proposition 4.7 (Proposition 3.1 of [7]). Let M be a Z|G]-module. If G
admits a relation of the form (1), then the exponent of the quotient

)4
M/ aM™
=1

1s finite and divides d.
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Proposition 4.7 is quite general since it works for any finite group G and
any Z[G]-module M. For our purposes, we want to apply it to the context
of number fields. That will be done with corollary 4.10. However, to state
it, we first need to define S-units, and saturation.

Let K/Q be a Galois extension of number fields, of Galois group G.

Definition 4.8. Let S be a G-stable set of non zero prime ideals in the ring
of integers Zy of K. The group ZIXC g of S-units of K is the subgroup of K*
defined by

Zis={r € K*;v(x) =0 for all p & S}

where v, is the p-adic valuation.
If L is a subfield of K, then we will define the S-units of L to be ZES =
Z] ¢ with 8" ={LNplp € S}.

With this definition, the multiplicative group Zy ¢ is a Z[G]-submodule

of K*, and for every subgroup H < G, we have (Z§7S)H =Ziu g

Definition 4.9. Let V be a finitely generated subgroup of K*, and let d be
a positive integer. The d-saturation of V' is the smallest subgroup W C K*
such that V' C W and K* /W is d-torsion free. This is equivalent to adding
to V all possible d’-th roots in K*, for all i € Z>.

Similarly, the saturation of V' is the smallest subgroup W C K* such
that V. C W and K* /W is torsion free.

In particular, the group Zg g is saturated.
When V' is a Q[G]-module and a € Q[G], we will denote by V' the image
of V' by the action of a.

Corollary 4.10 (Corollary 3.4 of [7]). If G admits a norm relation of the
form (1), then the exponent of the quotient

Z}((,S/(Z;(H175)al T (Z;((He,sybz

s finite and divides d. In particular, the group Zf(,s of S-units of K equals
the d-saturation of the Z[G]-module generated by (Z,on, ¢)* (Zyen, o)-

This corollary is the cornerstone of an algorithm described in [7] to com-
pute inductively the group of S-units of number fields. See section 5.1.
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4.2 Generalised norm relations

Now, let us give a generalisation of definition 4.2, and see how the properties
in section 4.1 can be adapted to this new definition.

Definition 4.11. Let H be a subgroup of GG, J a set a subgroups of G' and
R a commutative ring. A generalised norm relation over R with respect to
H and J is an equality in R[G] of the form

1
Ny =Y aiNyb;

i=1
where a;,b; € R|G|, J; € J, and J; # 1.

Remark 4.12. e (learly, with the notations above, a classical norm re-
lation is a generalised norm relation where H is the trivial subgroup.

e If a finite group GG admits a generalised norm relation over a commuta-
tive ring R with respect to H < G and J = {Jy, -, J,} with J; < G,
let J; be a subgroup of G conjugate to J;. Then G admits a generalised
norm relation over Q with respect to H and J = {jl, Joy oo Jo}

e With the same notations, let Jy,.; be any other subgroup of G, then
G admits a generalised norm relation over Q with respect to H and
t72 = {Jla ) ']@7 Jg+1}.

Example 4.13. Let G = S4 seen as the group of permutations of the set
{1,2,3,4}, and let H = ((1,2),(3,4)) ~ Cy x Cs.

If we take J; = ((1,4)(2,3),(1,3)(2,4),(3,4)) ~ Ds and
Jo ={(3,4),(2,4,3)) ~ Ss, then, one can check that we have a relation

2NH = alelbl + GQNJ2b2

with ay = _1G7 Ay = ]-G + (1,2), bl = (2,3,4) + (2,4) and bg = (3,4) +
(1,2,4,3).

The following proposition will give us some equivalent definitions of gen-
eralised norm relations. It is very similar to proposition 4.4 in the case of
classical norm relations.

Proposition 4.14. Let H be a subgroup of G, and J = {Jy,--- ,Jo} a set
of non trivial subgroups of G. Then the following assertions are equivalent:
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1. There exists a surjective morphism of Q|G]-modules

L

¢: @PQIG/ T — QIG/H]

i=1
where for all 1, n; € Z~y.

2. Ifeq,...,e. are the central primitive idempotent elements of Q[G], then
forall1 <i<r,ife;Nyg # 0, there exists J € J such that e;Nj # 0.

3. For all simple Q[G]-module V', if VH £ 0, there exists J € J such that
V7 £0.

4. For all simple Q[G]-module V, if VH 0, there exists J € J such that
V7 £0.

5. For all simple C[G]-module V, if VH £ 0, there exists J € J such that
V7 £0.

6. The norm element Ny is in the two sided ideal (Nj : J € J)qic)-

7. The group G admits a generalised norm relation over Q with respect to

H and J.

Proof.

e 1 = 3. We know there is an isomorphism of R-modules between V#
and Homg(Q[G/H], V).
Likewise, for all ¢, Vi is isomorphic to Homgyg (Q[G/J;], V). Suppose
1, then we have the following diagram, where fz is an element of V#

seen as an element of Homg)(Q[G/H], V'), and the f;, are elements of
Homgq) (QIG/ 1, V).
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Q[G/H]

0eVvH
¢ surjective fu#

r G/ J;|™ v
D=, QlG/ frod=:37_ f1, #0

So Y7, [, is non zero, so at least one of the f;, is non zero, hence the
conclusion.

2 & 3. Let V; be the simple Q[G]-module (unique up to isomorphism)
such that e;V; # 0 then Q[G]/(1—¢;) acts faithfully on V;. So e;Ny =0
if and only if Ny - V; = 0, so if and only if (ﬁNH) - V; = 0 which is
equivalent to V;H = 0.

3 = 1. Suppose 3, then let V' = Q[G/H]|. Then V is a Q[G]-module,
and V' can decompose as V = @, Vi, where the V} are simple. For
all k, let fr: V — Vi the projection. It can be seen as an element of
V. by 2.1. Then there exists a non zero element of VkJi for some i,
by lemma 3. So we have a nonzero morphism @'_, Q[G/.J;]™ — Vj so
it is surjective because V}, is simple. Hence the conclusion by putting
together all the k.

3 = 4. Suppose 3, let W be a simple Q[G]-module. W is isomorphic to
a submodule of V ®q Q, with V a simple Q[G]-module. Then we have
V ®q Q =~ @le W;, where the W; are simple Q[G]-modules. So W is
isomorphic to one of the W;. What’s more, the W; are pairwise Galois
conjugate, so dimgW/T = dimg W} for all j. So if W is non zero,
VH is also non zero. So, by 3, there exists J € J such that V' is non
zero. Hence W7 # 0.
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4 = 5. The simple C[G]-modules are exactly the V ®5C, where V is a
simple Q[G]-module. The conclusion follows.

e 5 = 4. Suppose 5, let V a simple Q[G]-module. If V¥ £ 0, then
(V ®§C)H # 0. So, by 4., there exists J € J such that (V ®5C)J £ 0.
Hence V7 # 0.

e 4 = 3. Suppose 4, let V' a simple Q[G]-module such that VH £ 0.
Consider V ®q Q =~ @?21 W;. We know that W/ # 0 for all j. So
there exists J € J such that W # 0. So V7 # 0.

e 3 < 6. Let I be a two-sided ideal of Q[G]. We have I = >"7_ e;1.
What’s more, there is an isomorphic projection of e;1 in a two sided
ideal of the algebra Q[G]/(1 —e;), which is simple. So e;[ is either zero,
or ¢;Q[G]. By applying this result to I = (N : J € J)qjq), we find the
equivalence.

e 6 & 7. This equivalence comes directly from the definition of a gener-
alised norm relation.

O

We will want to apply the concept of generalised norm relations to solve
some algorithmic problem in the context of number fields. For convenience,
let us define a notion of generalised norm relations between number fields:

Definition 4.15. Let K, Ly, ---, L, be number fields. Let €2 be a Galois
extension of Q containing K and all the L;, and let G its Galois group. We
denote by H the subgroup of G fixing K, and by ); the ones fixing the L;
respectively. Then we say there is a generalised norm relation between K
and the L; if there is a generalised norm relation over Q with respect to ‘H

and the ).

Example 4.16. There is a generalised norm relation between the number
field K defined by f(x) = 2% — 62* 4+ 922 4+ 23 and the number fields Ly, Ly
respectively defined by ¢;(x) = 2* — 92 — 27 and g¢»(z) = 2? + 207. Indeed,
K/Q is a Galois extension of Galois group G = S3, and Ly, Ly are the sub-
groups fixed respectively by Vi = ((2,3)) and V» = ((1,2,3)), and G admits
a classical norm relation over Q with respect to J = {)1,)s} (see example
4.3), which can be seen as a generalised norm relation with respect to H = 1

and J.
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Suppose there is a generalised norm relation between some number fields
K and Ly, --- , Ly. In chapter 5, we will describe some algorithms to compute
the class group or the group of S-units of K inductively, by reducing the
problem to the same computation in the auxiliary fields Lq, - - , L,. But this

method is only interesting when the L; are of degree smaller than the degree
of G.

Definition 4.17. We will say a generalised norm relation between a number
field K and some other number fields Ly, - - - , Ly is useful if the degrees of all
the L; are smaller than the degree of K. Similarly, if G' admits a generalised
norm relation over Q with respect to H < G and a set of subgroups J =
{J1,---, Jp}, then we will say the relation is useful if the orders of all the J;
are larger than the order of H.

Theorem 4.18. Suppose there is a generalised norm relation between a num-
ber field K and some L; that are not necessarily contained in the Galois
closure K of K. Denote by Q a Galois extension of Q of Galois group G
containing K and all the L;. Let N',H and the Y; be the subgroups of G
fizing K, K and the L; as in the diagram below.

Vi
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Then there is also a generalized norm relation between K and some M;
that are contained in K.

Proof. We have N' = (,cggHg'. What’s more, N is normal in G and
G =G/N and H = H/N. Since there is a generalised norm relation between
the L, and K, there exists a relation of the form Ny = ). a;Ny,b; € Q[G].
Consider the projection

72 Q[G] = QG/N] = QIG), 3 Nigi = DA

This map 7 is a surjective morphism of Q-algebras. Composing the relation
by m we get

m(Nw) = W Ny = ZW(%)W(NM)W(@)

and

T(Ny,) = IN 0 Vil Ny, vy
) So there is a generalised norm relation lzetween K and the M, = QYi/ N C
K. Note that if for some 4, J; C N, then K C L;, and therefore the relation
was not useful.

[]

Theorem 4.18 will be helpful in particular when we will want a method
to look for all generalised norm relations involving a number field (see sec-
tion 4.5): we know we will only have to look at subfields of the Galois closure.

Now, in the rest of the section, let us prove some characterizations of
generalised norm relations, with Hecke operators.

Lemma 4.19. Let V be a R|G|-module, with ﬁ € R, and ¢: V — R|G/H|

a surjective morphism of R|G]-modules. There exists a preimage of 1H by ¢
that is in VH.

Proof. Since ¢ is surjective, there exists v € V' such that ¢(v) = 1H. Now
consider the element v' = \_;n Yonen b

Then, clearly, v € V¥ and ¢(v') = ﬁZheH ¢(h-v) = l| D hem

~
¢(v) = g Xpen b - 1H = 1H.
O
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Proposition 4.20. We have a generalised norm relation, given by a surjec-
tion

¢: @Q[G/JJ — Q[G/H),

(where the J; are not necessarily distinct) if and only if there exist p; and
i elements of Q, and 0; 5, and g;, elements of G such that

1H = Z I3, pindibnH Z i ki kJi,
i k

where the equality takes place in in (@, Q[G/J:])H.

Proof. Suppose there exists ¢: €D, Q[G/J;] — Q[G/H] surjective. Let us
consider @, >, i x9ikJ; a preimage of 1H. By lemma 4.19, we can suppose

D 2ok AinginJi is in (B, QG/ TN
Let us write ¢ = €, ¢; with ¢;: Q|G /J;] = Q[G/H]. Then we have

L = Z ¢Z(Z NikGikJi)-
( k
Then, by writing ¢; = >, n L6, 18 = TS, ui pJi8:,01, We can obtain
1 = Z T5, i didin Z i kGi ke Ji
i k

]

Considering the action of Hecke operators on the module of S-units, we
then obtain the following corollary:

Corollary 4.21. Let S be set of non-zero prime ideals of Og. If there is
a generalised norm relation between K and the auziliary fields K;, then the

map
a4
P @ @ Ox. s = Ok

i=1 CeCompos(K;,K)

¢ ¢
D D wemd 2 Coac

=1 CeCompos(K;,K) =1 CeCompos(K;,K)

has an image of finite index.

63



Theorem 4.22. If Ly,---, Ly, are number fields, defined by the polynomaials
fi, -+, fo, and if we denote by R; the set of roots of f; in C, then K = Q(«)
admits a generalised norm relation with respect to Ly, -+ | Ly, if and only if
there is a relation of the form

L
0= Y Y weCos

i=1 CeCompo(K,L;) BER;
where the coefficients a; ¢z are in Q.

Proof. This theorem is a rephrasing of proposition 4.20 using the isomor-
phisms of part 2.2. O

4.3 Optimal coefficient

In [7], the authors define the notion of denominator of a norm relation in the
following way:

Definition 4.23 (Definition 2.15 of [7]).

e Let GG be a finite group, and let H be a set of non-trivial subgroups
of G. Then the optimal denominator d(H) relative to H is the unique
non negative integer such that

d(’H)Z =7ZN <NH’H € H>Z[G]-

o [et 1 = Zle a;Ng,b; be a classical norm relation with H; € H, then
the least common denominator of the coefficients of the a; and b; is
called the denominator of the relation.

That way, given a finite group G and H a set of non-trivial subgroups,
there exists a norm relation over Q if and only if d(H) # 0. In that case,
d(H) divides the denominator of the relation, and there exists a relation with
denominator d(#).

Then, in [7, Theorem 2.20], they prove that if d(H) is positive, then
it divides |G|, which is later useful to study the time complexity of some
algorithms (see [7, Theorem 4.18]).

While generalizing the definition of optimal denominator for the context
of generalised norm relations has some interest (see section 4.4), we will
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prefer to define another similar notion, that fits more naturally with the
Hecke operators point of view of generalised norm relations.

Definition 4.24. Let H, .Jy,--- ,J;, be non trivial subgroups of G, and let
J = {J1,---,Je}. If there is a norm relation over Q with respect to H
and J, we define the optimal coefficient ¢(J,H) to be the smallest pos-
itive integer such that there exists an injective morphism of Z[G]-module
v Z|G/H] — @, Z[G/J;|" with n;, € Zs( for all ¢, and a morphism of
Z[G]-module ¢: @, Z|G/J;|" — Z|G/H] such that ¢p o) = ¢(T, H) - id.

To prove that the optimal coefficient is well defined, we start by giving a
more general proposition.

Proposition 4.25. Let I' be a finite group, and let Hy, -+, H,, V1, , Vs
be some subgroups of I'. Let M = P, Q['/H:] and N = B, Q[I'/V].

1. If there exists a surjective morphism of Q[I']-modules
®: M — N,
then there is an injective morphism of Q[I']-modules
UV: N—>M
such that U o ® = idy.
2. Similarly, If there exists an injective morphism of Q[I'|-modules
U: N — M,
then there is a surjective morphism of Q[I'|-modules
& M — N
such that ¥ o ® = idy.

Proof. Let us prove 1. Since Q[I'] is a semi-simple algebra, this means
we can write the decomposition in simple modules. Up to isomorphism,
N=@; W, and M = ), W; & ,_, Vi, where the W; and the V} are
simple, and @ is the projection. Then W is the natural injection @?:1 W; —
D W; & By Vi

The proof of 2 is similar.

[]
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Proposition 4.26. With the notations of the definition above, ¢(J,H) is
well defined.

Proof. Since there is a norm relation over Q with respect to H and 7, there
is a surjective Q[GJ]-module morphism €, Q[G/J;|™ — Q|G/H].

Consider an injection ¥ as in proposition 4.25, let ¢ be the LCM of the
denominators of all coefficients of all the W(gH) for gH € G/H. Then c¢- ¥
induces an injective morphism of Z[G]-modules Z[|G/H] — @, Z|G/J;]™.
With the same reasoning, we can construct a morphism of Z[G]-modules
¢: P, Z|G/J;)" — Z|G/H| whose image is of finite index in Z[G//H]. And
then W o @ is a multiple of idz/m). Hence the conclusion.

O

We now prove that the optimal coefficient is also smallest for the divisi-
bility relation.

Proposition 4.27. If ¢ is a positive integer such that there exists ¢ and
as in definition 4.24 such that ¢ o) = c-idzq/m, then (T, H) | c.

Proof. Consider the group
E = <t2 o t1|7’LZ € 221Vi7t1 S Al,(”i)i’ ty € A2,(n¢)¢>z N Zldz[G/H],
where

Al,(m‘)i = HOIHZ[G] (Z[G/H], @ Z[G/Ji]n’)

and

Ag ny); = Homz[G](@ Z|G /)™, Z|G/H)).

Then E is a subgroup of Endzg)(Z[G/H]) contained in Zid, so E is of the
form aZid with a € Z>(,. And by definition, a = ¢(J, H). By construction,
c-id is in E, hence ¢(J, H) | c.

[

Theorem 4.28. With the notations of Definition 4.2/, we have ¢(J,H) |
G

Proof. Let p be a prime number. Let O be a maximal order of Q,[G] con-

taining Z,[G]. By [16, 27.1, proposition] we have O C ﬁZP[G].
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Consider My = O - Z,|G/H]| C Q,|G/H]. Then My is an O-module,
and we have Z,|[G/H|] C My C faZp[G]. Similarly, for all i, we write
M, =0-2,G/J].

Let ey, - - , e, be central primitive idempotents of Q,[G] contained in O,
which exist since O is a maximal order. For all 1 < ¢ < r, there is a
isomorphism a: O/(1 —e;) — M,(A), where A = A; is the maximal order of
a division algebra D over Q, (see [42, theorem 17.3]). And « can be extended
to O with the projection O — O/(1 — ¢;).

We have M, (A) € M,(D) and M,(D) acts on D", which is the only
simple M,,(D)-module up to isomorphism.

So e, My ® Q, = D™ with a € Z>4, since e;My ® Q, is a is a M, (D)-
module. Similarly, e; P, MZZ ® Q, & D" and thus e,My = A™ and
e; @, My = A™.

What’s more, we have a surjective morphism of Q,[G]-modules from
e, M7 ® Q, = B,Q,[G/Ji] to esMy @ Q, = Q,[G/H], which means
that a < b.

Let us fix an injective morphism of O-modules i: A" — A™. Let s be
a surjective morphism of @-modules A™ — A" such that for all z € A",
soi(z) =x.

That gives us, an injection of O-modules Ve My — e D, M}, and a
surjection ¢: @, M7y — My.

Let us denote ¢ = |G|¢) and ¢ = |G|¢. That way, 1 induces an injective
morphism Z,[G/H] — @, Z,[G/J;|" and ¢ a morphism ,Z,[G/J;]" —
Z,|G/H] with image of finite index in Z,[G/H]. And we have ¢potp = |G|?id.

By doing the same reasoning over all e¢; and by putting together every

prime p, we obtain the claimed result.
O

4.4 Norm relation over finite fields

In this thesis, we will mostly apply generalised norm relations to compute
invariants of number fields (class groups or S-units groups, see chapter 5).
This is why we mainly study generalised norm relations over Q or over Z.
However, for future research, it would be interesting to study generalised
norm relations over finite fields, and this is what we begin to do in this
section.

For this context, we find it more convenient to use a straightforward gen-

67



eralisation of optimal denominator (see definition 4.23 or [7, definition 2.15))
rather than the notion of optimal coefficient.

Definition 4.29. Let H, Jy,--- ,J; be non trivial subgroups of G, and let
J =A{J1, -, Je}. We define the optimal denominator d(J, H) to be the
unique non negative integer such that

d(J, H)ZNy = ZNg N (N1 < i < Oz,

That way, we have d(J, H) > 0 if and only if there exists a generalised
norm relation.
We also have a way to control the size of the optimal denominator:

Proposition 4.30. Let H, Jy,--- ,J; be non trivial subgroups of G, and let
J=A{J1, -, Jo}. Ifd(T,H) >0, then d(J,H) divides |G|>.

The proof is very similar to that of theorem 4.28.

Proposition 4.31. Let H, Jy,--- ,J; be non trivial subgroups of G, and let
J ={N, -, Je}. Let J be the Jacobson radical of F,|G]. Then the following
are equivalent:

1. ptd(J, H)

2. There exists an extended norm relation over F, with respect to J and
H.

3. There exists an identity in F,[G]/J of the form Ny =>".a;N;b;, with
a;, bl € FP[G]/J

4. For every simple F,[G] module V, if NyV # 0, there exists J; € J
such that N;V # 0.

5. For every simple F,[G| module V', if NgV # 0, there exists J; € J
such that N;,V # 0.

This is an adaptation of [7, proposition 2.18] to generalised norm relations.
The proofs are very similar.
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e It is clear that 1 implies 2. Conversely, assume that
Ny = Za_iN 7.bi

is a generalised norm relation over F,. Pick arbitrary lifts a;, b; of @;, b;,
and let

5NH = Z @iNJibi'

We have Nzgz(0) = Ng,ar,(1) = 1 mod p, which is nonzero.
Therefore the norm is nonzero, the element 0 is invertible in Q[G],and
the denominator d of §~! is coprime to p. Hence the relation

dNH = Z(d5_1aZ)NJlbz

with d € Z coprime to p, and (dé~'a;) € Z[G]. Therefore, ptd(J, H).

e It is clear that 2 implies 3. Conversely, assume that

Ny = Za_iNJib_i

holds in F,[G]/J. Pick arbitrary lifts a;, b; € F,[G] of @;, b;, and let

5NH = Z CLZ'NJZ,bi.

We have 6 =1 mod J. Since 1 is invertible and J is a nilpotent two-
sided ideal, this implies that ¢ is invertible. We therefore have the
relation

NH = 25_1aiNJibi
in F,[G]. So 3 implies 2.

e The proof of the equivalence between 3 and 4 is identical to that of
proposition 4.14, by considering the central primitive idempotent of
the semi-simple algebra F,[G]/J.

e The proof of the equivalence between 4 and 5 is identical to that of
proposition 4.14.
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4.5 Looking for generalised norm relations

Given a finite group G and a subgroup H, we do not have a simple criterion
to determine whether or not there exists a set of subgroups J such that G
admits a generalised norm relation with respect to H and J. However, if we
provide GG, H and J, we do have algorithms to check whether or not there
is a generalised norm relation.

Therefore, when we only have G and H, we can enumerate all the sub-
groups of G and add them to a set J and check when (or if) J works.

We know we only have to enumerate the subgroups up to conjugacy.
Moreover, if we are looking for useful norm relations, then we only have to
enumerate the subgroups of GG of order larger than the order of H.

Algorithm 4.32.
input: A finite group G, a subgroup H, and set of subgroups J = {J1,--- , J¢}.
output: A boolean indicating whether there is a generalised norm relation.

e Compute the central primitive idempotent elements eq,--- , e, of the
group algebra Q[G].

e Foralle € {eg, - ,e}:

— if eNyg # 0:
x compute eN; for all J € J,

x if for some J € J, we have eN; # 0, then skip directely to
the next e € {ey, -+ ,e.},

x if for all J € J, eN; = 0, then return False.

e Return True

The correctness of algorithm 4.32 is an immediate result of 2 in proposi-
tion 4.14.

Remark 4.33.

e The software Sagemath ([18]) has a function to directly compute the
central primitive idempotent elements of the group algebra Q[G].
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e Suppose we have G and H and we are looking for a set J of sub-
groups such that there is a generalised norm relation. Then, rather
than enumerating candidate sets J and using algorithm 4.32 for every
candidate, it is more efficient to first compute the list E of every cen-
tral primitive idempotent elements e; of Q[G] such that e; Ny # 0, then
enumerate every proper subgroups J; of G larger than H (from the
largest to the smallest, and up to conjugacy), and for every J;, remove
from E all the e; such that e;N;, # 0. When the list £ is empty, return
the list of all enumerated J; that decreased the size of E. If E is not
empty after the enumeration, then there are no useful generalised norm
relations.

We can also adapt algorithm 4.32 to obtain a very similar algorithm,
this time based on 5 of proposition 4.14. For all irreducible character x of
G and for all H < G, let us denote by Resy x the restriction to H of ¥,
and 1 the character of the trivial representation. Recall that if y is the
character associated to a simple C[G]-module V', then we have dim(V#) =
(L, Resy ) = e Sperr X ().

The software Sagemath also has a function to directly compute a character
table of G.

Algorithm 4.34.
input: A finite group G, a subgroup H, and set of subgroups J = {J1, -+ , Ji}.
output: A boolean indicating whether there is a generalised norm relation.

e Compute all irreducible characters xi,--- , x, of G.

e for every x € {x1, ", X+ }:

— if (1,Resy x)u # 0,
« compute (1, Res; x); for all J € J,

* if for some J € J, we have (1, Res; x)s # 0, then skip directly
to the next e € {e, - , e},

« if for all J € J, (1,Res; x)s = 0, then return False.

e Return True.

Remark 4.35. A more straightforward method would be to determine whether
Ny is in the two sided ideal (N;|J € J)qa)-
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According to proposition 4.30, this problem would be equivalent to finding
whether ’G‘?’NH is in <NJ‘J € j>Z[G]
Since

(NJIJ € T)zie) = (gNsh|J € T, (g,h) € G*)z
= (gN;h; J € T, g€ G,h e G/J)z,

this is a linear system over Z. Note that it is more efficient for computational
complexity to view it as a system over F, with p a prime number that does
not divide |G|. However, in practice this method is still much slower than
algorithms 4.32 or 4.34, and only works for small examples.

Now suppose that we have a number field K and a family of number fields
(K;). To determine whether there is a generalised norm relation between K
and the K;, we could compute a Galois closure of K and the Kj;, and the
Galois group, and then apply algorithms 4.32 or 4.34. However, computing
a Galois group is very costly.

Using the theorem 4.22; we can find an algorithm that is polynomial in
the size of the input, and also determines the coefficients of the relation if it
exists.

Algorithm 4.36.

input: A number field K = K and a family (K; = K7 of number fields
given by the minimal polynomial f of o with K = Q(«), and the minimal
polynomials f; of the §;, with K; = Q(f3;).

output: A boolean indicating whether there is a generalised norm relation,
and if so, a formula of the form

LH = T, st Y, Nikik i
i k

in Z[G/H].

e For all 7, list all compositums of K and Kj.

If fi =p1---pr € K[X], then the compositums are the K[X]/(p;), with
ik the inclusion, and ¢z, : 8; = X mod p;.

e For all 4, and for all ¢ € Hom(L;,C) and for every compositum C,
compute C - o € QHom(X, C)].
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e By linear algebra in Q[G/H] = Q[Hom(K, C)|, find a linear combination
of these element that equals 1H (if such a combination exists).

Theorem 4.37. This algorithm is correct and its complexity is polynomial
in the size of the input.

Proof. The correctness of the algorithm follows from theorem 4.22.
For the complexity, we have to check that every step of the algorithm
works in polynomial time.

e Listing all the compositums boils down to a problem of factorisation of
polynomials in K[X], which is polynomial thanks to the LLL algorithm
(see [33]). The number of compositums to list is at most Z§:1 deg(Kj).

e Given a complex embedding o of a field K;, and a compositum C
of K and K, computing C - ¢ is in O(deg(K;) x deg(K)). And the
number of times such a computation occurs is at most ), deg(K;) X
| Compos(K, K;)|. What’s more, the size of C - ¢ is polynomial in the
size of the input.

O

4.6 Comparing classical and generalised norm relations

In this section, we will discuss the relevance of studying generalised norm
relation instead of classical norm relation.

Suppose we have a number field K, Galois over Q, of Galois group G,
and some K where G admits a classical norm relation over Q with respect
to the H;. Then, the article [7] describes an algorithm to compute the class
group of K by induction, by reducing the problem to the computation of the
class groups of the K,

Similarly, if we have a number field K, Galois over Q, of Galois group G,
a number field K = K¥ and some K7 where G admits a generalised norm
relation over Q with respect to H and the J;, then we will see in chapter 5
some algorithm to compute the class group of K by induction, by reducing
the problem to the computation of the class groups of the K7

What’s more, a generalised norm relation of a group G with respect to
H < G and a set of subgroups J can come directly from a classical norm
relation in G (see fact 4.38) or in a quotient of G (see proposition 4.40).
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Therefore, in order to justify the relevance of our generalisation of norm
relations, we need to produce some examples where the methods in chapter 5
allows us to compute the class groups more efficiently than classical norm
relations.

Fact 4.38. If there is a classical relation 1 = Zle a;N;.b; for some finite

group G and some set J of subgroups of GG, then for any subgroup H, we
can construct a generalised norm relation with respect to H and 7, simply
by multiplying both sides of the classical relation by Ng.

Example 4.39. The alternating group G = A, admits a classical norm
relation over Q with respect to H = {Cy x Cy, C5}. Indeed, if we see Ay
as a subgroup of the group of permutations of the set {1,2,3,4}, let J; =
((1,2),(3,4)) ~ CyxCy, and Jo = ((2,3,4)) ~ C5. Then we have the relation

4-1¢=1¢- Ny, - (2(1,2)(3,4) + (1,2,3) + (1,4,2))
+1c- Ny, - ((2,3,4) — (1,4,2))

—(1,2)(3,4) - Ny, - ((2,3,4) +2(1,4,2) + (1, 3)(2,4))
+(1,2,3) - Ny, - ((1,3)(2,4) — (1,4, 2)).

Then, let us take H = ((1,2)) ~ C5. By multiplying both sides of this
relation by Ny (either on the right or on the left), we get a generalised norm
relation with respect to H and {Ji, Jo}. And this new relation is still useful,
since H is of order lower than the orders of J; and Js.

Therefore, if K is a number field, Galois over Q, of Galois group G, and if
we have K = K, K| = K/ and K, = K72, then we will be able to compute
the class group of the field K, of degree 6, by reducing the problem to the
fields K7 and K5, of degree respectively 3 and 4. But the same result could
have been obtained using only classical norm relations.

Proposition 4.40. Let G be a finite group, H, J1,--- , Jy subgroups of G. Let
N be a normal subgroup of G contained in H. Denote by 7w the projection
from G to G/N. Then G admits a generalised norm relation with respect to
H and Jy, -+, Jy if and only if G/N admits a generalised norm relation with
respect to w(H) and w(Jy), -, 7(Je).

Proof. Suppose G admits a generalised norm relation over Q with respect to
H and Jy,-- -, Jp, of the form Ny = 3¢ a;N,b.

Let II: Q[G] — Q[G/N],>_; Aigi +— >, Aim(g:). Then II is a surjective
morphism of Q[G]-modules. And we have II(Ng) = |N|Ny/n, and II(N ;) =
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INN Ji'NJi/(NﬁJi). Then, if we compose the relation by II, we get a generalised
norm relation of G/N with respect to 7(H) and 7(Jy), - ,7(Jp).

Now suppose G/N admits a generalised norm relation with respect to
m(H) and 7w(Jy),--- ,m(Je). So there is a surjective morphism

¢

¢: P QI(G)/n(J;)] = Qm(G)/w(H)].

i=1

So ¢ o Il is a surjective morphism from @;_, Q[G/Ji] to Q[x(G)/x(H)].
And since N C H C G, we have 7(G)/n(H) ~ G/H. Thus, we have a
surjective morphism from @_, Q[G/.J;] to Q[G/H].

[

It is important to note however that some generalised norm relations do
not come from a classical norm relation in a subgroup or in a quotient.

Example 4.41. For example, the symmetric group S, admits a norm relation
over Q with respect to H = Cy x Cy, and J = {Ds, S3} (see example 4.13).

This generalised norm relation does not come from a classical norm rela-
tion because we can check that S, does not have a norm relation with respect
to J. It does not come from a quotient either because the largest normal
subgroup of Sy contained in H is trivial. One can check that it is not a linear
combination of classical norm relations in G' and in subquotients of G either.

See the appendix for more examples of generalised norm relations that
do not come from classical norm relations, and that are more useful than
classical norm relations, in a sense that we will define.

However, even when a generalised norm relation in Q[G] does not come
from a classical norm relation in a quotient of GG, it can still come from a
classical norm relation in a quotient of a subgroup of G.

Indeed, let K be a non Galois extension of Q. Denote by K its Galois
closure, G its Galois group and H < G such that K = K”. Suppose there
is a subfield L such that L ¢ K C K. Denote by J the subgroup of G such
that K/ = L. Suppose also that H is normal in .J, and I = J/H admits a
classical norm relation with respect to some subgroups 4;, as in the figure
below.
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N\ A
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Then, by proposition 4.40, since there is a classical norm relation in Q[I'],
J admits a generalised norm relation with respect to H and some lifts of the
A;, which can be seen as a relation in Q[G] since J < G.

Example 4.42. Let G = GL(2,3), and H = C3. Then G admits a gener-
alised norm relation over Q with respect to H and J = {S3, Cs}.

However, H is normal in D5 < (G, and there is a classical norm relation
in Dyy/H ~ Cy x Cy. We can check that this relation gives (by proposition
4.40) a generalised norm relation of Dyy over Q with respect to J = {53, Cs},
which in turn causes the relation with G, by fact 4.38.

Note also that if G admits a generalised normed relation with respect
to a subgroup H and some auxiliary fields, then if H’ is another subgroup
containing H, then there is also a generalised norm relation with respect
to H'. That means that if a field K admits a generalised norm relation
with respect to some auxiliary fields L;, then so do all of its subfields. The
following algorithm is useful to find examples where generalised norm relation
allow us to compute class groups more efficiently than classical norm relations
in any subgroups or quotients.

Algorithm 4.43. input: A finite group G.
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output: For all subgroup H of G, the smallest n € Z such that for all

Galois extension K /Q, the class group of K" can be computed from the
class groups of fields of degree less than n using classical norm relations.

e [ ; < All subgroups of G up to conjugation

e M < List of the % for all J in L;. The entries of M represent

the degrees of the K7. The goal will be to explore all classical norm
relations in all quotients of G' and update the entries of M to represent
the maximum degree of the fields one has to study in order to compute
the class group of K.

e M5 <+ An empty list
e WHILE M; # M

— My M
— FOR i from 1 to #L;
* FOR j from i + 1 to #L;
- Check if H is conjugate to a normal subgroup of J. If
not, go directly to the next J.
- Look for a classical norm relation in J/H that minimizes
the entries of M corresponding to the subgroups involved.
- If such a relation is found, update the entries of M ac-
cordingly. The entry corresponding to K but also those
corresponding to its subfields or all the fields isomorphic
to those.

Example 4.44. Let G = C3x PSL(3,2), and H = S5 < G, (up to conjugacy,
there is only one copy of S3 in G). Suppose we have K a Galois extension
of Q of Galois group G. Then K = K7 is a field of degree 84. To compute
the class group of K, we can verify that there are no classical norm relations
in any quotients or subgroups of G' that allows us to recursively reduce the
problem to fields of degree less than 84. However, there exists a generalised
norm relation that allows us to reduce the problem to four fields of respective
degree 24, 21, 8 and 3. Moreover, this generalised norm relation does not
come from a subgroup or from a quotient of G.
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Remark 4.45. As explained in [7, theorem 2.11], the groups that do not
admit classical norm relations are the ones with a fixed point free unitary
representation. In all the examples that we enumerated (see appendix), we
could not find any generalised norm relations in these groups either, except
the ones coming from classical norm relations in quotients. We do not know
if this is true in general or if counterexamples are simply larger.

In the rest of this section, we will see that if we have an example of a
useful generalised norm relation for a finite group GG, we can build infinitely
many other examples, simply by taking the same relation in C), x G, for any
prime p that does not divide |G].

Definition 4.46. Let GG be a group that admits a generalised norm relation
with respect to H < G and a set a subgroups J = {J;--- Jy}. We say that
| J:]

|H|>

the relation is optimal if it is a relation that maximizes the quotient
where J; is the smallest group in J.

Remark 4.47. With the notations of the previous definition, if K /Q is a
Galois extension of Galois group G, then the quotient EA

- _ |H|
the degree of K by the degree of K7i.

is the quotient of

Lemma 4.48. For all subgroup K' of G', either K’ is of the form 1 x K with
K < G, oritis of the form C, x K with K < G.

Proof. Suppose K’ contains an element i x g € G' = C, x G with i # 1.
Let n be the order of g in G. Then, since ged(n,p) = 1, the subgroup K’
contains all the (kn)i x 1 with k in Z-y. So C, x 15 is contained in G'. So
it is easy to check that the projection of K’ on G is indeed a subgroup of G.

O

Proposition 4.49. Let G be a group that admits a generalised norm relation
with respect to H < G and a set a subgroups J = {Jy--- Jy}. Suppose this
generalised norm relation is optimal. Let p be a prime number that does not
diwide |G|. Then C, x G admits an optimal generalised norm relation with
respect to 1 X H and Jo = {1 X Jy,--+ ,1 X Jp}.

Proof. Let G' = C, x G. Let p' be an irreducible representation of G’. Then
P = x®p, with x a character of C}, and p an irreducible representation of G.

Let K a subgroup of G. Then (p/ )% = pX and (p/)“»* K = x% ® p¥.
So (p/)»*K £ 0 if and only if  is trivial and p® # 0.
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Since GG admits a generalised norm relation with respect to H and 7, then
for every irreducible representation p of G, if p # 0, there exists J € J
such that p7 # 0. Let o/ = x ® p be an irreducible representation of G'.
Then it is easy to check that if (p/)'*# # 0, there exists J € J such that
(p)*7 # 0. So G’ admits a generalised norm relation with respect to 1 x H
and {1 X Jl,"' , 1 x Jg}

Now let us prove that this relation is optimal. Suppose G has a better
generalised norm relation with respect to H' < G’ and {jll, e fm/}. Let
H,Ji, -, Jm < G the projections of H' and of the ji/ onto G. Then, using
the same method as before, it is easy to check that G admits a generalised
norm relation with respect to H and the J;, and that this norm relation is
better than the first one, which is a contradiction.

O

Remark 4.50. Similarely, if G is a group that admits an optimal generalised
norm relation with respect to H < G and a set a subgroups J = {J; - -+ Ji},
and if G’ is another group, such that |G| and |G’| are coprime, then we can
show that G’ x G also admits a generalised norm relation with respect to
1x Hand Jo ={1xJy, -+ ,1xJ,}. However, this generalised norm relation
is not optimal a priori.
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5 Computing class groups

The goal of this chapter is to use the properties of generalised norm relations,
studied in chapter 4, to obtain inductive methods to compute the class groups
of some number fields, in analogy with the methods described in [7] using
classical norm relations.

5.1 Algorithms using S-units

In [7], the authors give applications of classical norm relations to obtaining
relations between the arithmetic invariants of subfields of a Galois extension
of number fields. The arithmetic invariants that we will be interested about
here are S-units (see definition 4.8) and class groups.

Note that if we are able to compute the S-units of a number field K for
every set S of prime ideals, then we can also compute its class group. This
is the content of lemma 5.1 and proposition 5.2.

Lemma 5.1. Let S be a finite set of prime ideals that generates the class
group CL(K) of a number field K. Consider the map

o : (’)[XCS — 78— (vp())pes-
Then the sequence
05 ¢ 575 % CUK) — 0
is exact, where Y((vy)pes) = |:Hp€5‘ pvpi|.
In particular, CI(K) is isomorphic to the cokernel of ¢.

Proposition 5.2. Let K be a number field. Assume the generalised Riemann
hypothesis, then the set S = {p|N(p) < 12 -log(|AKk|)?} generates the class
group of K.

Proof. See [3]. O

As in section 4.1, let us consider a relation of the form

l
d=> aNpyb (2)
=1
with H; < G, a;,b; € Z|G] and d € Z,.

In [7], the authors describe an algorithm ([7, algorithm 4.16]) such that,
if there exists a relation of the form (2), then, on input of
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a number field K,

an injection G — Aut(K),

a finite G-stable set S of prime ideals of K,

for each H € H, a basis of the group of S-units of the subfield fixed
by H,

the algorithm returns a Z-basis of the group of S-units of K. What’s more,
the algorithm is deterministic and of time complexity polynomial in the size
of the input. The proof of correctness relies on corollary 4.10.

Therefore, in order to compute the class groups of number fields with
generalised norm relations, we will find a generalisation of proposition 4.7
and of corollary 4.10, and then we will use it to derive an algorithm similar
to [7, algorithm 4.16].

Let K be a number field, let K be its Galois closure and G the Galois
group of K. Let H < G be the subgroup such that K = K. Suppose there
is a relation in Z[G] of the form

dNy =Y aiNy,b; (3)

with J; < G, a;,b; € Z[G] and d € Z- that comes from a generalised norm
relation over Q where we multiply each side by an adequate integer d to get a
relation in Z[G]. (The integer d is actually the optimal denominator d(7, H),
see definition 4.29.)

Proposition 5.3. Let M be a Z|G]-module. If G admits a relation of the
form (3), then the exponent of the quotient M™ /(Ny - (3, a;M7%)) is finite
and divides |H|*d.

Proof. Let m € M*. We have Ngym = |H|m, so dNgm = d|H|m, hence
But (>, a;Nybj)m =Y. a;Ny (bym). And for all i, we have Ny, (b;m) €
M’ So d|H|m € (3, a;M7).
Multiplying by Ny on the left, we get d|H|[*m € Ny(>~,a;M7). And we
have Ny (>, a;M”7") C M*. Hence the conclusion. O
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Corollary 5.4. With the same hypothesis as proposition 5.3, if we define
a; = Ny - a; for all i, then the exponent of the quotient

O;}H’S/<<O;}J17s)al o (O;{Jzys)aé>

is finite and divides |H|*d.
In particular, the group O,  is the (|[H|*d)-saturation of the group

((O;E(Jl ’S)Oll e (O;(Jg7s)az>'

Proposition 5.5. Suppose we have a relation of the form (3), and let M be
a Z|G)-module. Consider the maps

¢
on s MY — @Mjiym = (Nzbim)i<ici

=1
and
V4 l
QﬁM : @M‘]Z — MH, (mi)lgigl —> NH(Z azml)
i=1 =1

Then ¢ ® Q is injective, and ¥y @ Q s surjective.

Proof. Let us show that ¥y o ¢py : M7 — MH = d|H| -id.

Indeed, let m € M. Then ¢yo¢(m) = Ny S-_, a;Nj,bym = dNZm. But
we have N3 = |H|Ny, and Ngm = |H|m since m € M. So v o ¢(m) =
d|H[*m.

Hence the conclusion, since d|H|?*m is invertible in Q. O

In the rest of the section, if V' is an abelian group, V/ tor will denote the
group V' modulo its torsion subgroup.
Note that for every ¢, O;( J; S/ tor is isomorphic to Z™ where n; is the

rank of O, ./ tor.
If we have a basis (u;) of O, ./tor for an integer 1 < i < {, we can

then send it in Ok ¢/ tor and also in Z¥, with N = Zle n; via the maps
that are described in the following diagram.
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(u;’) € Of g/ tor

O
Ny

(u)) GO?Wi’S/tor xe@iOIX{Ji’S/tor:ZN

(vj) € (’)IXQS/ tor

Algorithm 5.6. input: The groups G, H, and J; for all 7, the coefficients of
the relation 3, and a basis (u;;); of O, /tor for all 1 <i < /.
output: A basis of V = ((Op;, o) (O, o)), With a; = Ng -a; for all i.

e For every 1 <i </, compute (ug) € O ¢/ tor.

e Forevery 1 <14 < {, compute (v;; = Npy(ug3)) € O ¢/ tor and z; € ZV
as in the previous diagram.

e Create a matrix M € M, y(Z) where the columns are the z;.
e Apply an algorithm to obtain the Hermite normal form of M.

e Apply the same transformations to the (v;;), and output the result.

Algorithm 5.7. input: A number field K, its Galois closure K and its Galois
group G, H < G such that K = K a set of subgroups J = {J1,+, Jo},
the coefficients of a relation of the form (3), and a G-stable set S of non-zero
prime ideals of O-.

output: A basis of O g.

X

i g with Buchmann’s

e For every element J; of J, compute a basis of O
algorithm.

e With algorithm 5.6, compute a basis of V' = ((O}.,, 4
with a; = Ny (a;) for all 4.

Jor ... (@IX{J/Z’S)W)?

e Output a basis of the d-saturation of V.
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Proposition 5.8. Algorithm 5.7 is correct.
Proof. The correctness of the algorithm is a direct result of corollary 5.4 [

The main issue with algorithm 5.7 is that it requires to know the Galois
group of the number field K of which we want to compute the group of S-
units. In practice, when we only have a polynomial defining K, computing
G is very costly. In that regard, algorithms 5.9 and 5.12 are more efficient.

Algorithm 5.9. input: A number field K and a set of number fields { K},
each given by an irreducible polynomial in Q[X] and such that K admits a
generalised norm relation with respect to the K, a set S of prime numbers,
and for each j a Z-basis B; of O .

output: A Z-basis of O g.

1. Compute 71, --- ,m all the prime divisors of n! where n is the degree
of K (ie all the primes up to n). Let r; = 2v,,(n!).

2. For all j, compute all the compositums of K and K; (up to isomor-
phism).

3. Compute the set B of images of every element of the B; by every
compositum of K and K.

4. Compute the subgroup V C OIXC ¢ generated by B.
5. For every 1i:

oV, V

o V,+ (V,, (xl)’%i, s (xm)ﬂ%> where (7;) is a basis of (V;N(K>)™)/V™.
(See [7, corollary 4.13])

e Reduce the basis of V; as in [36, lemma 7.1].
6. V&Vi---Vg

7. Return a basis of V.
Note that to use this algorithm, we need to know that there exists a

generalised norm relation, but we do not need to know the coefficients of the
relations.
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Theorem 5.10. Algorithm 5.9 is correct. If we assume the generalized Rie-
mann Hypothesis (GRH) then its complexity is polynomial in the size of the
mput.

Proof. First, let us prove the correctness. Let G be the Galois group of K,
let H the subgroup fixing K and for every ¢, let J; the subgroup fixing K;.
Since there is a generalised norm relation, we know that there exists an
integer ¢, a morphism of Z|G]-module ¢: @, Z[G/J;] — Z|G/H] such that
»®Q is surjective, and an injective morphism of Z|G]-modules ¢ : Z[G/H]| —
D, Z|G/ J;], such that ¢ o) = c-id (by proposition 4.26).

Therefore, by proposition 3.5, for any cohomological Mackey functor M,
there is a morphism ¢y : @)%, M(J;) — M(H), and a morphism ¢y, : M(H) —
@, M(J;) such that ¢ o¢p = c-id. Consider M(H) = Ogu g and M(J;) =
Ofuig- Since ¢p o9 = c-id, the c-saturation of the image of ¢ is indeed
Ogn g And by theorem 4.28, ¢ divides |G|?. Now, we know by remark
3.6 that ¢, can be expressed as a sum of elements of J;\G/H, and since,
by proposition 2.17, these can be seen as elements of Compos(K;, K), this
proves the correctness.

Then let us prove the complexity. To compute all the m; in step 1, we
can use a sieve method, which is polynomial in n where n is the degree of
K. Therefore, step 1 takes polynomial time.

As seen before, for every j, computing all the compositums of K and
K; takes polynomial time. What’s more, the number and the size of the
compositums obtained are also polynomial. So step 2 is also polynomial.

The size of the image of an element x € K; by a compositum C is also
polynomial, since the map induced by C is the composition of the injection
K; — C and the norm C' — K. So step 3 is polynomial.

For step 4 as well as step 7, one can deduce a basis from a generating set
of the groups involved in polynomial time. The algorithms of [27] provide a
basis of the relations between the generators, and the Hermite normal form
[29] allows us to obtain a basis of the group in polynomial time.

The saturation in step 5 is performed as many times as the number of
primes dividing (n!)?, counted with multiplicity, according to theorem 4.28.
That number is polynomial in n, since the number of different primes in the
decomposition of (n!)? is at most n, and for every prime p, v,(n!) < % =
O(nlog(n)).

Moreover, for every prime dividing (n!)?, counted with multiplicity, the
saturation can be done in polynomial time, if we assume GRH. This is |7,
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corollary 4.13].

5.2

Algorithms for direct computation

Now, let us present an algorithm that computes the class group directly,
without computing the group of S-units first.

Remark 5.11. Assuming GRH, the paper [5] gives a polynomial time method
to approximate, the residue ki of the Dedekind zeta function (x(s) at s =1
of a number field K, from the discriminant Ax and the norm of prime ideals

of K.

Algorithm 5.12 is an alternative to algorithm 5.9, which is more efficient
in practice but not provably polynomial-time.

Algorithm 5.12. input: A number field K = K and a family (K; = K*)
of number fields, such that K admits a generalised norm relation with respect
to K71, Ky. We know the minimal polynomial f of a with K = Q(«), and
the minimal polynomials f; of the ;, with L; = Q(/3;).

output: The structure of the class group of K

1.

2.

For every K, compute every compositums of K and K.

Compute H R = hx Reg using the approximation method in [5]. An
approximation up to a factor 1.5 is enough.

Initialize T a set of prime ideals p such that N(p) = 1 mod d, where
d = deg(K)?.

The primes in T will be used to detect d-th powers.

Initialize a set of prime numbers Sg, and compute the set S of prime
ideals of K above the primes in Sq.

We hope that S will generate the class group.

For all K, let S; be the set of prime ideals of K; above all primes p in
Sq, and compute a set U; of generators of the group of S; units of K.

For each j, for each p in S;, compute the vector V;, of valuations of
every element of U; at p.
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7. Compute the matrix of a map ®, that sends all the ideals above all the
primes in S; to their image by every compositum. Apply this matrix
to every Vj,, then concatenate all the vectors to obtain a matrix M.

8. Apply the action of every compositum to every generator of the U; then
compute the discrete logarithms in F, of for every p in 7. Concatenate
all the vectors of discrete logarithms to obtain a matrix .

9. Concatenate the matrix M and N and compute the kernel R modulo d
of this matrix.

We hope to obtain a basis of the d-saturation of the images in K of the
S;-units of the K; by the actions of every compositum.

10. Compute the Smith normal form of the concatenation of M and a basis
of R.

If T and S are large enough, that should give us the structure of C1(K).

11. Compute the regulator of the group of units of K obtained by the
d-saturation of images of the units of the K; by the actions of every
compositum. Multiply it with the class number to obtain a new HR
product, that we will denote by H Ry. If the approximation for H Ry
is up to a factor 1.5, then the regulator should be calculated with

o . 4
precision up to a factor 3

12. Check if the HR product corresponds to the one in step 3. If not,
increase the size of T and Sg and go back to step 5.

Theorem 5.13. If this algorithm terminates, then it is correct.

Proof. By proposition 4.26, there exists an injective morphism of Z|G]-module
V: Z|G/H] — D, Z[G/ J;|" with n; € Z- for all 4, and a morphism of Z|G]-
module ¢: @, Z[G/J;]™ — Z|G/H] such that the image of ¢ has finite index
in Z|G/H] and ¢ o) = ¢(J, H) -id. Then, we can use proposition 3.5, with
the Mackey functor M defined by M (H) =Z%,  and M(J;) =Z, .. This
proves that the algorithm finds indeed all the S-units in K. 7

Then, if the verification of the HR product is correct, it means the S-
units are enough to generate the class group. The crucial observation is that
the approximation errors due to the choice of T" and S cannot compensate.

If T is not large enough and the algorithm incorrectly assumes an element
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to be a d-th power, then HRy will be a divisor of its expected value. The
same will happen if S is not large enough to generate the class group. O

Remark 5.14. Suppose we have a number field K = K7 and a family
(K; = K’ of number fields, such that K admits a generalised norm relation
with respect to Ky,..., K,. If we want to compute the class group of K
using algorithm 5.12, we could expect the most expensive step to be the
computation of the Sj-units in all the K, since it is the only step whose
computation is not polynomial in the size of the input. However, in practice,
when we try to apply this method to reasonable size examples, the most
expensive step is often the computation of the images of the ideals in the .S;
by the compositums.

In some cases, computing the images of the morphisms associated with
compositums can be facilitated by the following proposition.

Proposition 5.15. Let K = K" and L = K’, and let (C,ux,11) be a
compositum of K and L, where vy, is the inclusion. Suppose we have fized
an embedding K — C, so QHom(K, C)] and Q[Hom(L,C)] canonically have
a structure of Q|G|-modules. Let I be the intersection F' = 1x(K) N L, and
suppose that C' = 1 (K) @ L. Denote by ¢ the morphism of Q[G]-modules

¢: QHom(L,C)] — Q[Hom(K, C)]

associated with the compositum (C, 1, ) by proposition 2.19. Then, for any

7 € Hom(L,C), we have
o(r)= >, o

c€Hom(K,C)

-1
ool =T
K |F F

(where o o LI}l!F and 7'|F denote the restrictions of o o 1t and T to F).
To prove the proposition 5.15, we will need the following lemma:

Lemma 5.16. With the notations of proposition 5.15, let a be the primitive
element such that 1 (K) = F(«). Then we have C' = L(«).

Proof. Since L is included in C, and since « is in tx(K) C C, we have
L(a) C C.

By definition, the field C' is spanned by L and tx(K’). We have of course
L C L(«a), and all elements of tx(K) can be written in the form Y, z;0,
with ; € F C L and o' € L(a). So tx(K) C L(a), hence C C L(«). O
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Now let us prove proposition 5.15.

Proof. By proposition 2.23, for all 7 € Hom(L, C), we have

¢(T) - Z ’EG,T| "0 (4>

occHom(K,C)

with E,, = {f € Hom(C,C)|oc = foix and 7 = fop}.

Let 7 € Hom(L,C), 0 € Hom(K,C), and let 5 = oot} € Hom(ix(K),C).

Let us show that & = 7 when restricted to F' = tx(K) N L if and only if
there exists f € Hom(C, C) such that 0 = f o and 7 = f oy, and that in
this case, the f is unique.

Suppose that ¢ = 7 when restricted to F. Then, since we have C' =
1 (K) ®p L, we can take f € Hom(C,C) such that f = 7 when restricted
to L (ieT= fouy). Let a be as in lemma 5.16. Then we have 0 = f o 1
if and only if f(a) = &(a). And by lemma 5.16, we know that f is uniquely
determined by its restriction to L and by the image of «.

Conversely, suppose there is a f € Hom(C, C) such that ¢ = f o tx and
7 = fouy. Then, for every z in tx(K)N L, we have 6(z) = 7(x) = f(z). So
¢ = 7 when restricted to F' = tx(K) N L.

With this result, the formula 4 gives us the conclusion.

5.3 Examples

Example 5.17. The group G = S5 admits a generalised norm relation with
respect to H = S3 < G and J = {Ay, D12,C5 x Cy}. We can check that
this relation does not come from a classical norm relation in a subgroup or
a quotient. There are two non conjugate copies of S in S5. For H we have
to take the one with no fixed point.

If we choose a Galois extension K /Q of Galois group G, then K = KH
is of degree 20, and we can compute its class group inductively, by reducing
the problem to three fields of respective degree 10, 10 and 6.

By choosing K such that K has a big discriminant, we can obtain exam-
ples where the recursive method is more efficient to compute the class group
of K than the pre-existing methods. For example, consider the polynomial
p(x) = 2% 4+ 912* + 72 — 1122 — 2 + 1 and define K to be the splitting field
of p(z). Then K has Galois group S5, and K = K is a number field of
degree 20 and of discriminant 22 . 38310 . 47230 . 2383119 ~ 6 - 10'**. On
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Pari/GP [40], the function to compute Cl(K') was not able to finish in three
days, whereas with the method of generalised norm relations, implemented
also in Pari/GP, we obtained the result in less than nine hours (CPU time).
The result is CI(K) = Cy x Cy.

Example 5.18. The group G = A; admits a generalised norm relation with
respect to H = Cy X Cy < G and J = {A4, D1p}. We can check that this
relation does not come from a classical norm relation in a quotient.

If we choose a Galois extension K /Q of Galois group G, then K = K"
is of degree 15, and we can compute its class group inductively, by reducing
the problem to two fields of respective degree 6 and 5. However, the method
with classical norm relations also applies here, but with that method, the
largest field we would need to consider is of degree 12.

To create a bigger example, since 7 1 | 45|, we can consider the generalised
norm relation of G/ = C7; x As with respect to H = Cy x Cy < G and
J = {A4, Dyp}. That way, we can compute the class group of a field of
degree 105 by reducing the problem to two fields of respective degree 42 and
35, whereas with classical norm relations, we would have reduced the problem
to a field of degree 84.

For example, consider the polynomial f(z) = % —22° + 3z* — 423 + 222 —
22 —1. Define L to be the splitting field of f(z). Then L has Galois group As.
The splitting field M of the polynomial g(z) = 27 + 2% — 1225 — 7o + 2823 +
142% — 92 + 1 has Galois group C7. Up to isomorphism, there is only one
compositum K of L and M. What’s more, K /Q is Galois and its Galois group
is G = C; x As. Denote by K the subfield of K fixed by H = Cy x Cy, which
is a field of degree 105 and of discriminant 2!26.29%.6742 ~ 1.7.10%%. With
the method involving only classical norm relation, we can compute Cl(K),
but we have to compute the class group of some subfields, the largest of which
is ' = K%, of degree 84 and of discriminant 2'26 . 2972 . 6742 ~ § . 102!,
On Pari/GP, the function to compute CI(F') was not able to finish in over 5
months, whereas with our implementation of the method of generalised norm
relations, we computed CI(K) in about 5 days (CPU time). The result is
CI(K) = 1. And the regulator of K is approximately Reg, = 2.656 - 10%3.
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6 An application of generalised norm rela-
tions to Leopoldt’s conjecture

In this chapter we apply our notion of generalised norm relations to the study
of Leopoldt’s conjecture. We will need some results about local fields, in this
chapter and in the next one, which can be found for example in [43]. Let p
be a prime number, and K a number field of degree d, and let r, 75 be the
number of real and pairs of complex embeddings of K. Let €1, , €, 4rp—1
be a basis of the group U(K) of units of Z}. Fix an algebraic closure Qp of
the field Q, of p-adic numbers, and denote by C, the completion of QNP by
the p-adic absolute value. We call C, the field of p-adic complex numbers.
There is a uniquely defined p-adic logarithm log,: CX — C, (see [chapter
I1, (5.4)][38]). Let oy,---, 04 be the elements of Hom (K, C,). Let us recall
the following definition.

Definition 6.1. The requlator matriz of K at p is defined by

log, o1 (1) e log, 04(e€1)
Rp(le e 767”1-1-7“2—1) = : ' :

lng 01 <€T1+T2*1> T logp O'd<€7“1+1“2*1)'

and the p-adic regulator rank of K is rp(K) = rank R (€1, - - , €7 4ry—1). It i
independent of the choice of the basis (€1, - , € 4r,—1) and of the ordering
of the o;.

Then Leopoldt’s conjecture can be stated as follows (see [39, chapter
10.3.5]).

Conjecture 6.2. For every number field K and every prime number p, the
p-adic regulator rank r,(K) is equal to ry + 19 — 1.

Leopoldt’s conjecture has many equivalent formulations (see [39, Theorem
10.3.6]), and has connections in particular with Galois cohomology and with
Iwasawa theory (see [39, Chapters 10 and 11]).

Here, we will be interested in the following equivalent formulation of
Leopoldt’s conjecture, which is also the one used in [23].

Let S,(K) be the set of places of K above p, and for every w € S,(K), let
Uk, and U }(w be respectively the group of units and the subgroup of principal
units of K, (i.e. the units congruent to 1 modulo the maximal ideal).
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Let us consider the diagonal embedding Zjc = [[,cq, (r) Uk
Taking the p-adic completion, we get an homomorphism

Aicp: Zy @7 Z% — H Uk

weSp(K)
Then Leopoldt’s conjecture can be stated as follows:

Conjecture 6.3. For every number field K and for every prime number p,
the homomorphism Mg, is injective.

Definition 6.4. Let K be a number field, and p a prime number.

e We denote by Leo(K, p) Leopoldt’s conjecture at K and p: we say that
Leo(K, p) holds if Ak, is injective.

e The Leopoldt kernel L(K,p) is the kernel of the map
Agp=Qp®z, Axp: Qp®z Zk — Q, @z, H UIlQU'
weS,(K)
e The Leopoldt defect §(K,p) is defined to be dimg, L(K,p).
With that definition, we have that Leo(K, p) is equivalent to §(K, p) = 0.

Lemma 6.5 (lemma 2.2 of [23]). Let L/K be a Galois extension of number
fields, of Galois group G, and let p be a prime number. Then L(L,p) is a
Q,|G]-module, and for any subgroup H < G, we have L(L,p)" = L(Lp).

Proof. This is [23, lemma 2.2] O

In the rest of the chapter, we will see that some results in [23] using
classical normed relations can be generalised.

Definition 6.6 and proposition 6.7 will be very close to what we have
already seen in section 4.2, but rephrased to better fit the notations of [23].

Definition 6.6. In this chapter, if G is a finite group, H < G a subgroup,
and K a field of characteristic zero, then we will denote by fz the idempotent

element of the algebra K[G] defined by fr = % = E}\LEIIJ h

With this definition, we can state the following proposition, which is an
extension of [23, Proposition 4.4].
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Proposition 6.7. Let G be a finite group and suppose that G has a gener-
alised norm relation with respect to a subgroup I' < G, and a set of subgroups
H. Let M be a K|G]-module. If fuM =0 for every non trivial H € H, then
JrM =0

Proof. This is a rephrasing of proposition 4.14, part 2. O]

Corollary 6.8. Let G be a finite group and suppose that G has a generalised
norm relation with respect to a subgroup I' < G, and a set of subgroups H.
Let T C H be such that 1 ¢ T and for every H € H, there exists I € T and
g € G such that glg~* < H. Let M be a K|G]-module. If fiM =0 for every
I €Z, then frM = 0.

This corollary is an adaptation of [23, corollary 4.5]. It is not exactly a
generalisation since the converse that was true for classical norm relations is
no longer true. The proofs are very similar.

Proof. Suppose that f;M =0 for every I € 7.
If H e H, with H+# 1 and g € G, there is I € Z such that glg~! < H.
Then we have gfig™" = fy1,-1, and

1
fn=\ = h|gfig".
oo, 2
gltg

Then, for all z € M, we have f;g 'z € fM =0, so fyM = 0. Therefore,
faM = 0 for all H € H with H # 1, and so, by proposition 6.7, we have
frM = 0.

O

Proposition 6.9. Let L/K be a Galois extension of number fields, and let
G be its Galois group. Suppose that G has a generalised norm relation with
respect to a subgroup I' < G, and a set of subgroups H. Let T C H be such
that 1 ¢ Z and for every H € H, there exists I € T and g € G such that
glg~t < H. Let p be a prime number. If Leo(L!, p) holds for every I € T,
then Leo(LY, p) holds.

Proof. This follows directly from corollary 6.8 and lemma 6.5. m
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Example 6.10. We saw in example 4.13 that the group G = S, admits a
generalised norm relation over Q with respect to H = Cy x Cy and J =
{Ds, S3}. That means that for every Galois extension K /Q of Galois group
G = 54, and for p a prime number, if H is a subgroup of GG isomorphic to
Cy x Cy and Jy,J, < G are isomorphic to Dg and Ss, if Leo(K”,p) and
Leo(K”2, p) both hold, then Leo(K ™, p) also holds.

We could use proposition 6.9 to find new examples of number fields F
and primes p such that Leo(F’ p) holds.

Until now, we were only interested in generalised norm relations where
the auxiliary fields are of the lowest possible degree, so their class groups or
their groups of S-units would be easier to compute a priori. However, to find
examples where Leopoldt’s conjecture holds, the most useful relations would
be those where we know that Leopoldt’s conjecture holds for every auxiliary
fields.

To find such auxiliary fields, one can use for example the following result,
by Ax and Brumer:

Theorem 6.11 ([2], [12]). Let K be a finite abelian extension of Q or of an
imaginary quadratic field. Then Leo(K,p) holds for every prime number p.

In [23], the authors also prove that Leopoldt’s conjecture holds for cer-
tain primes for an infinite family of totally real Ss-extensions of Q (see [23,
theorem 6.12]) or for an infinite family of totally real Dg-extensions of Q (see
23, corollary 6.17]).
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7 Computing Selmer groups

In this chapter, we will present an algorithmic method to compute Selmer
groups of finite Galois modules. We will use the following definition of a
Selmer group.

Let K be a number field, K its algebraic closure, and G (or Gg) its
absolute Galois group. Let M be a left G-module. Given a finite place v
of K, let G, denote the decomposition group of K at v, and I, the inertia
group. Then,

e a local condition at v is a subgroup L, C HY(G,, M),

e the unramified condition is the subgroup

H.(Gy, M) = ker { H'(G,, M) — H'(I,, M)},

e a Selmer system for M is a set L of local conditions L, at every finite
place v of K, such that all but finitely many of the L, are the unramified
condition,

e given a Selmer system L, the Selmer group attached to L is the sub-
group of HY (G, M) given by

1
Sel, = ker {Hl(gK,M) - 11 w} .

Note that this definition of Selmer group is restricted to subgroups of
the first cohomology group H'(Gg, M), but we can give a similar definition
for Selmer groups that would be subgroups of other cohomology groups. For
future research, it might be interesting to try and adapt the method presented
in this chapter to be able to compute Selmer groups contained in H?(Gx, M).

Some methods already exist to compute Selmer groups. For Selmer
groups of elliptic curves, Bruin lists some of these algorithms in [11, sec-
tion 5.4] and gives a geometric interpretation, and we can also mention some
more recent articles, like the article [34] by Maistret and Shukla. The method
presented here is more general, since it allows one to compute Selmer groups
in general and not only Selmer groups of elliptic curves. For future work,
we think it would be interesting to compare the time complexity of all the
existing methods.
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In all of the chapter, K will be a field of characteristic zero. We will
denote by K its algebraic closure and by G the Galois group Gal(K/K).

All modules will be left modules.

When R is a ring and M, N are left R-modules, we will denote by
Hompg (M, N) the group of R-module homomorphisms from M to N.

If M is a G-module, we will denote by M* := Homz(M,?X) the dual
module of M, where K™ is viewed as an abelian group.

In a finite field extension L/F, we will denote by N, p(x) the norm of
x € L.

Unless specified otherwise, the group laws of cohomology groups will al-
ways be denoted multiplicatively.

7.1 Finding a resolution with Hecke operators

In all of the chapter, M will be a finite Galois module.

Let G be the image of the action G — Aut(M). It is isomorphic to a
finite quotient of G. Note that the action of G over M can be factorized to
be seen as an action of G over M.

Remark 7.1. If A/ denotes the kernel of the action G — Aut(M), then G is
the Galois group of the Galois extension =Y /K.

Suppose we have Z[G]-modules P, for every integer i, that are permutation
modules, as well as some morphisms of G-modules s and d; such that the
sequence

ds i dg Sk
o =P =P —=F=>M =0
is exact, where M™* is the dual module of M.

We will see in section 7.3 that we can always find such an exact sequence,
and we will give an algorithm (algorithm 7.18) to compute such P; and d
up to any integer i.

For this method, we will only need to compute such sequences up to Ps.
We will denote by (5) an exact sequence of the form

RN NN SN} (5)

Lemma 7.2. The functor P — P* = Homgz(P, fx), from the category of
G-modules that are finitely generated Z-modules to the category of G-modules,
15 exact.
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Proof. 1t is enough to prove that P — P* is exact as a functor from the
category of Z-modules to the category of Z-modules.

Since K is divisible, it is injective as a Z-module. Therefore, the functor
P+ P* =Homgz(P,K ") is exact. O

Once we obtain an exact sequence of the form (5), by lemma 7.2, we can
take the dual and get an exact sequence of the form

0—M— Iy 25, (6)

where [; = P} for all i.
Consider an exact sequence of the form (6) obtained with the construction

described above. The modules Py, P, P, are permutations modules. In the
rest of the section, let us write P, = P, Z[G/H, ] for i € {1,2,3}, and for

every pair (i, ), let us define L;; = K .

Proposition 7.3. With the above notations, for i € {1,2,3}, we have
X X
L= dg, K =EPLi;
J J
where Gy, ; is the absolute Galois group of L; ;. Moreover, we have

I=1°=Ly
J

Proof. See [49, Section 3.12, Example 19]. O

The morphisms dy: Iy — I; and dy: Iy — I, induce morphisms respec-
tively from I§ to IE and from I¢ to I, that we will denote by d§ and d$'.

Proposition 7.4. With the above notations, we have

Ker(d§': 1€ — I)
Im(d§: 1§ — I¢) "

H'(G, M) =
Proof. Let J C I; be the image of dy. Then we have a short exact sequence

0= M=1I,% 750
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The associated long exact sequence starts with
0— M9 — 12 J— HY(G, M) — H(G,I,)

and H'(G, I)) = P, HI(GLOJ,ZSJ) by Shapiro’s lemma, and HI(GLOJ,ZSJ-) =
0 by Hilbert 90th theorem.
This last exact sequence allows us to deduce that

JG

1 _
H (G, M) = Im(d§: 1§ — I¢) @)

What’s more, by definition of J, we also have an exact sequence
0—J— 1 4, Is,
hence the exact sequence
0— J9 164 ¢,
from which we can deduce that
JC =Ker(dS: IE — IY).
Combining that result with 7, we get

Ker(d§': 1€ — IY)
Im(d§: 1§ — I¢) "

(G, M) =

]

Remark 7.5. If the modules I; were injective, proposition 7.4 would be
trivial, but this is not usually the case. For example, for all 7,7, we have
H?*(G,Resy, ,/k K™) = H*G,L;; ") which is the Brauer group of L; ;, which
is usually non trivial.

Proposition 7.6. For every subgroup H < Gk, the map
Res : H(Gg, M) — H'(H, M)
15 the natural restriction

Ker(dy: I — IY)
Im(dy: 1§ — I7)

Ker(d}t: I7t — I}

HY G, M) = .
(G, M) (@7 T 1)

— H'(H, M) =
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Proof. Let J C I; be the image of dy. Then we have a short exact sequence

0—>M— 1, Do 7 0.
The associated long exact sequence starts with
0— M9 —1I{ = J/ — H (G,M).

We can then apply the restriction map to obtain

0 M9 g J5 H'(G, M)
l Res l Res l Res l Res
0 M I JH H(H, M)

Moreover, for every field F' such that K C F, and for all 7, we have
19 = LY and IiGal(F/F) = (L; @k F)*. So It = EH, hence the conclusion.
m

7.2 A remarkable Selmer group

Let M be a finite Galois module, suppose that we have the Galois modules
Iy, I, I, and the morphisms of G-modules dy and d; obtained as in section
7.1, such that the sequence

0= M-I, 215,

is exact. By proposition 7.4, we have

Ker(d§': 1€ — IS)
Im(d§: I§ — I¢) "

Hl(g’M) -

where for all i € {0, 1,2}, I is of the form @D, L;; and the L;; are interme-

diate fields between K and K.

In the rest of the section, we will denote by L; the étale algebra [ ] i Lij
We will allow ourself to extend to étale algebras the notions of class groups
and S-unit groups.
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Definition 7.7. Let S be a set of prime numbers. Let us define the group
Ker(df: @,Zf  4—®.Z5 o)
1 - et WY L J L2
HS(Q7M) - Im(dg: @j ZZOJ’S*)@],ZZLJ.’S) .

By theorem 2.24, the images of S-units by d¥ and d§ are S-units, so the
group HL(G, M) is well defined.

When the context is clear, we will also allow ourself to write H* and HJ
instead of H'(G, M) and HL(G, M).

The goal of this section will be to prove that H(G, M) is a Selmer group.
We will use the following notations:

o Z':=Ker(d§: I¢ — I§)
e Bl :=Im(d§: I§ — IF)
o 7L :=Ker(df: D, Zzl,j,s - @, Zzz,jys)
e BL:=TIm(dS: D, 25,5 2> D, Z5,,.5) -
Proposition 7.8. We have an injection HL(G, M) — H (G, M).

Proof. We have trivially Z& C Z!'. So in order to prove the proposition, it is
enough to show that B'NZ} ¢ C Bg. In other words, we need to show that
if an element y in the image of d is an S-unit, then there exists an S-unit
xin I§ = L such that d§(z) = v.

If we take the tensor product of the exact sequence (6) with Q, we obtain

0—>[0®Qd—0>11®Qd—1>12®Q

because M is finite, so that M ® Q = 0.

Then, by proposition 4.25 applied to P, and Pj, there exists a surjective
morphism of G-modules f: I — Iy such that fody =k -id.

Now, let y be an element of B! N Zzl,s' Since x is in B!, there exists
x € L§ such that d§(z) = y. So sod§(x) = k- (or z* in multiplicative
notation). But d§(z) = y is an S-unit, so its image by f is also an S-unit
by 2.4. Hence k - x is an S-unit. And since zg} 1, is saturated as a subgroup
of Ly, that means z is also an S-unit.

So y is the image of an S-unit by df, ie y € Bg. Hence Bg C B'NZ] .
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Definition 7.9. In the rest of the section, if v is a finite place of K, we will
use the following notations:

1 _ x  di—5x
i Zunits,v - Ker(Zth — ZLQ,U)7
1 _ x do X
i Bunits,v - Im(ZLo,v — ZLl,v)7
A
1 _ units,v
i Hunits,v — Bl ’

units,v

K" the largest unramified extension of K,, and I, = Gal(K,/K')
the inertia group, and Gg, = Gal(K,/K).

o Zhny = Ker(Lo® K1) % (L@ Ky7)),
o Blypy = Im((Ly @ K1) % (L ® K1)),
o Hiy = 5
1 When the context is clear, we will allow ourself to write H. , ZL —and
B,

For every place v of K, we also write:
o 7! =Ker(L}, ™% L3,)

o Bl =Im(L, 2 L},)

° Hq} = g—“;.

where dy, and d; , are defined respectively by the two following commu-
tative diagrams
do dl

Ly —2 ¥ L ——
@ | | e J
Ly, ————> L7, Lfy ——— L3,
dO,v 1v
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Proposition 7.10. For every place v of K, we have

Zl
Res,(H' (G, M)) C B#li

v

where Res, denotes the restriction map from H (G, M) to H*(G,, M).

Proof. Let T be a class in H'(G, M) and let = be a representative of T modulo
By, and x, the localisation of x at v.

Since the diagram (#*) commutes and d;(x) = 0, we have d; ,(z,) = 0.
So x, € Z..

If 25 is another representative of Z, then xo = x + b with b € B'. When
we take the localisation at v, we get x5, = x, + b,, and since the diagram

1 - Z;

(*) commutes, we have b, € B,. Hence Res,(T) € 3.
]
Proposition 7.11. With the notations of definition 7.9, we have H} =

H'Y(Gy,, M) and HY, = H'(Ix,, M).

ram

Proof. We can do the same construction as in section 7.1, with K, (respec-
tively K) instead of K. The same resolution

0= M= I, 21 5,

also works in these cases, since the I; are also both Gg -modules and Ik,
modules. Moreover, for all 7, we have IigK” = L}, and IZ-IK” = (L; @ KM™)*.
Hence the conclusion. O

Note that, by proposition 7.6, the map Res, : H'(Gx, M) — H;, is the

Zl,'u

natural restriction ZL — Zhv
By B,y

Lemma 7.12. Let v ¢ S be a place of K, then we have
Res,(Hs(G, M)) C H}

units,v

Proof. Let v be a place not in S. Let T be a class in HL, © € Z& a rep-
resentative of T, and x, the localisation of x at v. Since v ¢ S, we have
x, € Zj, . And since the diagram (xx) commutes, we have z, € Z}. So

d v . . .
r, € Ker(Z; — Ly,). And if 5 = x - b is another representative of 7,
with b € Bg, then it is easy to check that b, € Tm(Z} , — Zj ). Hence
Resv (E> S Hunits,v-
O
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Proposition 7.13. If S is a set of primes such that the class group C1(Lg)
1s spanned by ideals above all primes in S, then we have

Hg={x € H" |Vv ¢ S, Res,(x) € Hjs0}-

Proof. By lemma 7.12, we already have the inclusion H: C {z € H' | Vv ¢
S’ ReS’L)(x) < H&nits,v}'

Now, let Z be a class in H'(G, M) such that for all place v ¢ S, we have
Res,(z) € H}ys,- By definition, for all v, there exists z, in L, such that
Res, () - doy(20) € Z], -

We want to show that there exists z € Lj such that for all v ¢ S,
z-zl € Zzo,v. This problem is equivalent to taking a fractional ideal a of
Ly, and deciding whether there exists p a product of prime ideals in S such
that ap is principal. But since S spans the class group of Ly, we know it is
possible.

]

Proposition 7.14. For every place v of K such that v does not divide |M]|,
we have H} ..., = Ker(Res: H' — H]

units,v ram) ‘

C Ker(Res: H' — H] ).

Proof. First let us show the inclusion H} ram

units,v
We have the following diagram:

do dl

(Op, ® OK;;r)X

(O, ® OK;;r) %

(OL2 ® OK;]JI‘) X

(Lo @ K}")* (Ly @ K}7)" (Ly @ K}7)*

i val ¢val i val

ZHom(Lo,Ki¥)c do ZHom(L1,K¥) d1 ZHom(L,Ki¥)

where the three vertical sequences are exact, and where val denotes
the valuation morphisms. What’s more, the morphism dy: ZHom(Lo. K"
ZHom(L1.K5) s injective because the kernel of dy: (Lo ® K")* — (L; ® K)*
is torsion, so its image under val is 0.

Let © € Zyy, C OF,. That is to say di(x) = 1 € Of,. We want to show
that Res(z) =2z ®1 € (L ® K™)* isin BL = do((Ly ® K¥)*).

ram
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Let N be an integer such that the module M is annihilated by N, and
such that N does not divide the characteristic of the residue field of Ok.
Then H)  is N-torsion.

So there exists y € (Lo ® K™)* such that Res(z)™ = dy(y).

Since x € Of , then val(Res(x)) = 0, so val(y) = 0, so y € (Of, @ Ogur) ™.
And (O, ® Op.)* is N-divisible, so there exists z € (Of ® Ogu)* such
that 2V = .

Hence dy(2)Y = dy(y) = V. This proves that do(2) = (yx, with (y a
N-th root of unity.

Now let us prove that for the N-th roots of unity, Im(dy) = Ker(d;), which
would imply the conclusion.

With the notation of section 7.1, we have an exact sequence
d s
P, P %P3 M —0.

Consider the modules Py = Im(d}) and P} = Im(df). Then, by definition,
we have the short exact sequence

0— Py— P — P,—0.

By properties of Tor functors (see for example [14, chapter VI]), and
because the modules Py, P, P; are N-torsion free, we have the short exact
sequence

0— Py/N — P//N — Pj/N — 0.

By taking the dual, we then get precisely that Im(dy) = Ker(d;) for the N-th
roots of unity, because for every i, we have (P;/N)* = L,[N], and I;[N] is the
set of N-th roots of unity of L;.

Now let us show the second inclusion: Hy ., 2 Ker(Res: H' — HJ, ).

Let  be an element of Ker(Res: H' — HL ), that is to say an element
of Ly such that Res(x) € B. . We want to show that there exists z € B!
such that z - 27" € OF .

As Res(z) is in B, there exists y € (Lo® K™)* such that dy(val(y)) =
val(Res(z)). Besides, since x is in L{, then val(Res(z)) is invariant by the
action of Gal(K}"/K).

So for all g € Gal(K/K), g - dy(val(y)) = do(val(y)) = do(g - val(y)).

Since dy: ZHom(Lo. K5 _y ZHom(LLK) g injective, that means val(y) is also
invariant by the action of Gal(K'/K).
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Therefore, val(y) is in (ZHomLo. K (GalK/K) g6 there exists z € L
such that val(z) = val(y).
And thus val(Res(do(2))) = do(val(2)) = do(val(y)) = val(Res(x)), hence
val(Res(do(2)z™!)) = 0.
So, again by injectivity, do(z) = x, hence the conclusion.
0

Theorem 7.15. If all prime ideals above S span Cl(Lgy) and S contains all
primes that divide |M|, then HY is a Selmer group. More precisely, it is
the Selmer group attached to the Selmer structure where all the conditions at
places outside of S are unramified conditions and where there is no condition
for the places in S.

Proof. The theorem is a direct consequence of proposition 7.13 and proposi-
tion 7.14.
O

Remark 7.16. Since every Selmer group is contained in a H for some
finite set of places .S, this gives another proof that Selmer groups are finitely
generated.

7.3 Algorithm and complexity

In this section, we will explain the algorithmic method to obtain a partial res-
olution of a finite Galois module M with permutation modules, as discussed
in section 7.1 (See algorithm 7.18). Then, we will describe the algorithm to
compute Selmer groups, (see algorithm 7.19) and discuss its complexity (see
proposition 7.21).

But first, we have to explain how to represent in bits all the mathematical
objects involved.

Let M be a finite Galois module, and G be the image of the action
G — Aut(M). Tt is a finite group, so we can represent it as a subgroup of a

permutation group. We can also suppose that we have a list [g1,- - , g, of
generators.
Since M is a finite module, we can represent it as a list [mq,--- ,m] of

generators of M as an abelian group, and a list of relations, as well as a list
of matrices giving the actions of the generators of G on the m;.

We can represent a Selmer system £, with a set of primes, indicating the
places where the local conditions are not the unramified condition, a basis
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of the local cohomology groups at these places and the generators of the
subgroups in L.

As for the Selmer group Sel,, since it is a finitely generated group, we
can represent it as a list of generators and a list of relations, or by its decom-
position in cyclic factors, with the theorem of structure of finitely generated
abelian groups.

Algorithm 7.17.
input: A finite group G and a finitely generated G-module N.

output: A permutation module P and a surjective morphism of G-modules
s: P— N.

e Let (x1,---x,) be a generating sequence of elements of N.
e For every element z in {zy,--- , .},
— compute H, = Stabg(z) the stabilizer of  under the action of G.
— Compute f,: Z[G/H,] - N, 1- H, — x.
e Return P =@._, Z[G/H,,] and s =>"._| fa,-
Algorithm 7.18.
input: A finite Galois module M, of Galois group G, and G the image of the
action G — Aut(M).

output: Permutation modules P; and morphisms of G-modules s and d} such
that the sequence

d dr dx
$P2—1>P1—0>P0i>1\4*%0
is exact.

1. Compute M*, take (z1,--- ,x,) a finite generating sequence of elements
of M*.

2. Using algorithm 7.17, compute a permutation module P, as well as a
surjective morphism of G-module s: Py — M*

3. Compute the kernel K of s.

4. Use algorithm 7.17 again, on Ky, to obtain P, and dj.
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5. Repeat the same process again to obtain all the P; and the d.

Suppose we have a Selmer system L, and we want to compute Sel,, the
Selmer group attached to £ for M. Using the results in part 7.1 and 7.2, we
deduce the following algorithm.

Algorithm 7.19.

input: A finite Galois module M, of Galois group G, and G the image of the
action G — Aut(M). A Selmer system L.

output: The Selmer group Sel,

e Use algorithm 7.18 to compute a resolution of M as in section 7.1.

e Let S be the smallest set of primes such that all conditions in £ outside
of S are the unramified condition and such that S spans the class group
Cl(Lp) and S contains all the primes that divide |M].

e Compute HL(G, M).
e Look for Sel. as a subgroup of the finitely generated group Hi(G, M).

Theorem 7.20. The algorithms 7.17, 7.18 and 7.19 are correct.

Proof. The correctness of algorithms 7.17 and 7.18 are self explanatory, and
the correctness of algorithm 7.19 is a consequence of theorem 7.15.
m

Proposition 7.21. If we suppose that we have an oracle that can give us
the S-units and the class group of any number fields, and another that can
compute the fixed field of a subgroup of a Galois group, then the algorithm 7.19
has a time complezity polynomial in the size of the input and in |M]|.

Proof. First, let us prove that algorithm 7.18 has a time complexity polyno-
mial in the size of M and G.

e If we have a finite G-module M given by a list of generators [my, - - - , mg]
and a list of matrices [My,--- , M,], as described above, then we can
represent the dual module M* by taking the inverse transpose of all
the matrices, twisted by the cyclotomic character x|as.
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Indeed, all elements of M are | M |-torsion, so HomZ(M,FX) = Homgz (M, pa1))
where i is Z/|M|Z as a G-module where the action of G is given by
the cyclotomic character x|a. So

Homg (M, K ) = Homz(M, Z/|M|Z) @ X)),
and the dual module M* is computed in polynomial time.

e We can compute the stabilizers Stabg(z) in time polynomial in the size
of M, using the method described in [30, Chapter 4.1].

e With the notations of section 7.1, the P; are all free, finitely generated,
Z-modules, they can be represented as in [30, section 7.4.1].

If [g1, -+, 9] is a list of generators of G, let ¢ be an integer, and let
us fix (p;1,- - ,pia) be a Z-basis of P,. Then we can represent P; as a
list [ag, - , ;] where the a; are the (d; x d;)-matrices of the actions

of the g; on the basis (p;1,- - ,pig;). So their size is still polynomial in
the size of the input.

And the morphisms of G-modules dy and d; can be represented as a
list of co-sets, corresponding to their decompositions in Hecke operators
(see fact 2.4 ) .

Once we apply algorithm 7.18, we obtain an exact sequence of the form
Py L P2y py Mt 0

and we represent dy and d; as a sum of cosets corresponding to Hecke op-
erators. Then, with the notations of proposition 7.3, we can compute the
number fields L; ; = K thanks to the oracle.

Then, assuming the oracle gives us the S-units of all the L;;, with S
easily accessible from the representation of the Selmer system £ and from
our oracle, computing the group H(G, M) boils down to computing the
actions of Hecke operators on S-units, which takes polynomial time (see [22,
Theorem 1.18]).

Finally, all there is left to do is to find a basis of Sel; as a subgroup of
HY(G, M). This comes down to computing the kernel of the map

1
Hy(G, M) — [] 26 M) (GL”’M).

v
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Remark 7.22. To compute the fixed fields L;; = FHM, one can use [24,
algorithm 1]. However, we were unable to find a result in the literature about
the complexity of this algorithm.
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Conclusion

To conclude this thesis, let us sketch some possible continuations for our
research.

e If G is afinite group, let H, Jy, - - - , Jy, be non trivial subgroups of GG, and
let 7 ={Ji,---,J¢}. If there is a norm relation over Q with respect to
H and J. Then, by proposition 4.26, there exists an injective morphism
of Z[G]-module ¢: Z[G/H| — D, Z|G/J;]™ with n; € Z5 for all 7, and
a morphism of Z|G]-module ¢: @, Z|G/J;|" — Z[G/H] such that the
image of ¢ has finite index in Z|G/H] and ¢o1) = ¢(J, H) -id. What's
more, we have ¢(J, H )| |G|2. Then, by proposition 3.5, for every coho-
mological Mackey functor M, there exists ¢p: @, M(J;) — M(H)
and wM: M(H) — @Zl M(J,L> such that (bM O wM = C(j, H) : ldM(H)

In this thesis, we mainly use this result for the particular case where
M is defined by M(I') = Z%  for every I' < G, for K/Q a Galois
extension of number fields, of Galois group G, and for S a set of prime
ideals of Z;. For further research, it would be interesting to look for
other Mackey functors to apply this result to, and maybe find some
algorithms similar to 5.9 to compute other objects inductively.

e Another open question would be to find a classification of all gener-
alised norm relations, similar for example to the classification of Brauer
relations given in [4].

e A very natural continuation to the research described in chapter 7
would be to actually implement algorithm 7.19. Moreover, the defini-
tion of Selmer groups can be extended to include not only subgroups
of the first cohomology group H', but also all of the H®. Although
there would be some complications to overcome, one should be able
to extend the method of chapter 7 to also compute Selmer groups in
H?(G, M). We can also try to extend the method to be able to compute
cup products, or other cohomological operations or pairings.
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Appendix

The tables below give a list of norm relations in groups of order less than 720.
For every row of the tables, GG is a finite group, K is a number field such that
K /Q is a Galois extension of Galois group G. So the degree of K is the order
of G. We also have H a subgroup of GG, and K is the number field defined by
K = K", We define K 7, to be the largest degree number field on which one
would have to use Buchmann’s algorithm, in order to compute CI(K) using
only classical norm relations, in any quotient of G. We can have K; = K
when there are no relevant classical norm relations. Similarly, K, is the
largest degree number field on which one would have to use Buchmann’s
algorithm, in order to compute Cl(K') using generalised norm relations. The
tables were obtained by enumerating every groups G of order n, for every n
less than 720 (we skipped n = 256, 384,512,576, 640). Then for every G, we
enumerated every subgroups H up to conjugacy classes, and computed the
degrees of K; and K. Here we display the examples where the degree of
K, is strictly lower than the degree of K, .

Note that some rows can seem to be repeated. It can mean either that the
group G differs between the two rows, but has the same structure description
(which can happen in the case of a semi direct product for example), or that
the subgroup H differs but has the same structure description (which can
happen if G contains several copies of H that are not in the same conjugacy
classe).

All of the calculation were done using sagemath (see [18]) and in particular
the GAP library (see [26]).
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G degree of K H degree of K degree of Kj;  degree of K,
S4 24 CQ X CQ 6 6 4
A5 60 CQ X CQ 15 12 6
As 60 S3 10 10 6
(S3 x S3) x Co 72 Dg 9 9 6
C3 x Sy 72 Co x O 18 18 12
((Cq x C2) x Cq) x Cs 96 Cs 32 24 12
((C2 x C3 x Oy x C2) x Cs3) x Ca 96 Co x Oy x Co 12 6 4
((C3 x C3) x C3) x (C2 x C2) 108 Ss3 18 18 9
S5 120 Ca x C2 30 15 10
S5 120 S3 20 20 10
S5 120 Dg 15 15 10
S5 120 Do 12 12 10
Cs X Sy 120 Cy x Cs 30 30 20
(C2 x (Cq x C4q))a 128 Co 64 16 8
(C3 x C3) x QDqg 144 Ss3 24 12 9
(Cg X C3) A QDIG 144 Dg 18 18 9
(C3 x C3) x QDqg 144 D12 12 12 9
S3 X Sy 144 Ca x C2 36 18 12
S3 X Sy 144 Coy x Oy x Co 18 18 12
S3 X Sy 144 Dg 18 18 12
(C5 X 05) X S3 150 Sg 25 25 15
((03 X C3 X 03) X Cg) X CQ 162 Sg 27 18 9
((C3 x C3 x C3) x C3) x Ca 162 Ss3 27 18 9
((C3 x C3 x C3) x C3) x Co 162 S3 27 18 9
((C3 x C3 x C3) x C3) x Ca 162 Ss3 27 18 9
((C3 x C3 x C3) x C3) x Co 162 Ss3 27 18 9
PSL(3,2) 168 S3 28 28 21
PSL(3,2) 168 Cr 24 24 21
PSL(3,2) 168 Ay 14 14 8
PSL(3,2) 168 Ay 14 14 8
(02 X CQ X 02) X (C7 X 03) 168 A4 14 14 8
C7 X Sy 168 Ca x C2 42 42 28
GL(2,4) 180 S3 30 30 15
GL(2,4) 180 Do 18 18 15
(Cyq - (Cq x Cyq))3 192 Ay 16 16 8
Ca - (((Cy x Cq) x C3) x Ca) 192 Cs 64 48 24
SL(2,3) x Cg 192 Cs3 64 32 24
Ca X (((Cyg x C2) x Cyq) x C3) 192 Csg 64 24 12
((C2 x ((Ca x C2) x C2))2)3 192 Csy 64 24 16
(((Ca x C2) x C4)2)3 192 Co 96 24 16
(((04 X CQ) X 04)2)3 192 Cg 64 24 16
(((Ca x C2) x C4)2)3 192 Cy 48 24 16
(((04 X 02) X C4)2)3 192 C4 48 24 16
(((Ca x C2) x Cq)2)3 192 Cy x Cs 48 24 16
(((Cq x C2) x Cq)2)3 192 Cy 48 24 16
(((Cq x C2) x Cq)2)3 192 Ce 32 24 16
(((Cq x C2) x Cq)2)3 192 Ce 32 24 16
(((CQ X CQ X CQ X CQ) A CQ) A CQ) X Cg 192 A4 16 16 8
(((C4 X Cg X Cg) X 02)2) X C3 192 A4 16 16 6
(((Ca x C2 x C2) x C2)2) x Cs 192 Ay 16 16 8
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G degree of K H degree of K degree of K;;  degree of K,
(CQ X Cg) g (CQ X 54) 192 03 64 32 24
SL(2,3)s 192 Cs 64 32 24
(((C2 x C2 x C2 x C2) x C2)3)2 192 Co x Oy x Co 24 12 8
(((C2 x C2 x C2 x C2) x C2)3)2 192 Co x Cg x Coy 24 12 8
(((C2 x C2 x C2 x C2) x C2)3)2 192 Co x Cg x Coy 24 12 8
(((CQ X CQ X 02 X Cg) X 02)3)2 192 Dg 24 12 8
(((CQ X Cqy X Cg X Cg) X 02)3)2 192 D12 16 12 8
(((C2 x C2 x C2 x C2) x C2)3)2 192 Co X Dg 12 12 8
(((C2 x C2 x C2 x C2) x C2)3)2 192 Co X Dg 12 12 8
(((CQ X CQ X CQ X 02) X 02)3)2 192 CQ X Ds 12 12 8
(((CQ X 02 X CQ X 02) X 02)3)2 192 CQ X Dg 12 12 8
((04 X Qg) X CQ) X Cg 192 03 64 48 24
(Qg X Qg) X Cg 192 Cg 64 32 24
(((CQ X CQ X CQ) A (CQ X CQ))S)Q 192 A4 16 16 8
((Cz X ((C4 X Cg) X 02))2) X Cg 192 A4 16 16 6
((CQ X ((C4 X Cg) X 02))2) X Cg 192 A4 16 16 6
((CQ X ((C4 X CQ) X CQ))Q) X Cg 192 A4 16 16 6
Ca X (((C2 x Ca x Ca x C2) x C3) x Ca) 192 Ca x Ca 48 12 8
Co X (((C2 x Ca x Ca x C3) x C3) x Co) 192 Co x Co 48 12 8
CQ X (((CQ X CQ X CQ X 02) X 03) A CQ) 192 CQ X 02 48 12 8
CQ X (((CQ X 02 X CQ X Cg) X 03) A CQ) 192 Dg 24 12 8
CQ X (((CQ X CQ X CQ X 02) X 03) X CQ) 192 Dg 24 12 8
CQ X (((CQ X CQ X CQ X CQ) X Cg) X CQ) 192 Dg 24 12 8
CQ X (((Cz x Cg X CQ X CQ) X Cg) X Cz) 192 Dg 24 12 8
Co X (((C2 x C2 x Ca x Ca) x C3) x Ca) 192 Co x C2 x Co 24 12 8
Co X (((02 X Cq X Cg X CQ) X C3) X CQ) 192 Dg 24 12 8
Cay X (((CQ X Cqy X Cg X 02) X Cg) X CQ) 192 Dg 24 12 8
CQ X (((02 X CQ X Cg X 02) X Cg) X CQ) 192 Dg 24 12 8
Cao X (((C2 x Ca x Ca x C3) x C3) x Co) 192 Dg 24 12 8
(C5 x C5) x Dsg 200 Ds 25 20 10
((03 X 03) X 03) A Cg 216 53 36 36 27
((03 X Cg) X 03) X Qg 216 53 36 36 27
Cg X S4 216 02 X CQ 54 54 36
((Cg X Cg) X Qg) X C3 216 Cg X Cg 24 12 9
((03 X 03) X Qg) X C3 216 Cg X S3 12 12 9
C3 x ((S3 X 83) x C3) 216 Dsg 27 24 12
(03 x C3 X C3) x Dg 216 Ca x C2 54 24 12
(C3 x C3 x C3) x Dg 216 Cs 36 24 12
(C3 x C3 x C3) x Dg 216 Dg 27 24 12
C3 x C3 X Sy 216 Co x Ca 54 18 12
SL(2,5) x Cy 240 Cs 18 43 10
A5 X C4 240 53 40 24 20
CQ X S5 240 02 X CQ 60 20 12
Co X S5 240 S3 40 20 12
Ca X S5 240 Dg 30 20 12
Ca X S5 240 Dg 30 20 12
Ca X S5 240 D12 20 20 12
Cy X S5 240 D12 20 20 12
D1o X Sa 240 Cy x C2 60 30 20
D1 X Sy 240 Coy x Oy x Coy 30 30 20
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G degree of K H degree of K degree of K;,  degree of K,
D10 X S4 240 Dg 30 30 20
C11 X Sy 264 Co x Ca 66 66 44
((C22 x C2 x C2) x (Ca x C2)) x (C3 x C3) 288 C3 x C3 32 32 24
Ayg X Sy 288 Ca x C2 72 18 16
Ayg X Sy 288 Ca x C2 x C2 36 18 16
Ay X Sy 288 Dg 36 18 16
A4 X S4 288 CG X Cg 24 18 16
Ay X Sy 288 Co X Dg 18 18 16
(((C2 x Oy x C2 x C2) x C3) x C2)3 288 C3 x C3 32 24 18
(((CQ X CQ X CQ X CQ) X C,j) X 02)3 288 Cg X S3 16 16 12
(A4 X A4) X CQ 288 CQ X CQ X CQ 36 18 12
(A4 X A4) X CQ 288 C4 X CQ 36 18 12
(A4 X A4) X CQ 288 D12 24 18 12
(A4 X A4) A CQ 288 D12 24 18 12
(A4 X A4) A Cz 288 Cz X Dg 18 18 12
(A4 X A4) A CQ 288 (Cg X 03)2 16 16 12
Cs X (((C2 x C2 x Ca x Ca) x C3) x Ca) 288 Co x Oy x Coy 36 18 12
(Cs3 x ((Cg X Cy x Ca x C2) x C3)) x Co 288 Co x Co 72 18 12
(C3 x ((C2 x C2 x C2 x C2) x C3)) x Co 288 Coy x Oy x Coy 36 18 12
(03 X ((CQ X CQ X 02 X CQ) al C,j)) X CQ 288 04 X 02 36 18 12
(03 X ((02 X CQ X CQ X CQ) X C3)) X 02 288 C4 X CQ 36 18 12
(03 X ((CQ X CQ X CQ X 02) X C3)) X CQ 288 C4 X CQ 36 18 12
(C7 X C7) X Sg 294 Sg 49 42 21
Cs X As 300 Cy x C2 75 60 30
Cs X As 300 S3 50 60 30
(C5 x Cs) x D12 300 Do 25 25 15
C13 x Sy 312 Co x C 78 78 52
((C2 x C2 x O3 x C2) x Cs) x Cy 320 Coy x Oy x Coy 40 20 16
((C2 x C2 x O3 x C2) 1 C5) x Cy 320 Dio 32 20 16
((Ca x C2 x O3 x C2) 1 Cs) x Cy 320 (Cy x C2) x Co 20 20 16
((CQ X 02 X CQ X Cz) X C5) el C4 320 CQ X Ds 20 20 16
((Cg X 03 X 03) X Cg) X (CQ X Cz) 324 Do 27 18 9
(03 X ((03 X Cg) X 03)) X (CQ X Cg) 324 53 54 18 12
((Cg x C3) x C3) x (C2 x C2) 324 S3 54 54 27
PSL(3,2) x Co 336 Ay 28 28 16
PSL(3,2) x Co 336 D12 28 28 21
PSL(3,2) x Co 336 D1y 24 24 21
Co x PSL(3,2) 336 C7 x Cs 16 16 14
Ca X ((C2 x Ca x Ca) x (C7 x C3)) 336 C7 x Cs 16 16 14
Diyg X Sy 336 Co x Co 84 42 28
D14 X 54 336 CQ X CQ X CQ 42 42 28
D14 X Sy 336 Dg 42 42 28
A6 360 (C3 X Cg) X CQ 20 20 10
Ag 360 Sa 15 15 10
Ag 360 Sa 15 15 10
C3 X S5 360 S3 60 60 30
C3 x S5 360 D1 36 36 30
C3 % Sy 360 S3 60 30 15
C3 % Ss 360 Do 36 18 15
C3 % Sk 360 Do 30 30 15
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G degree of K H degree of K degree of K;,  degree of K,
03 X 55 360 05 X 04 18 18 15
As X S3 360 Cao x C2 90 30 18
As x S3 360 S3 60 30 18
As X S3 360 Co x Cg x Coy 45 30 18
As x S3 360 Ay 30 30 18
Az X S3 360 Do 30 30 18
Cs X As 360 S3 60 36 30
Cs X As 360 Do 36 36 30
Cs x ((S3 x S3) x C2) 360 Dg 45 45 30
(C3 X Cd) X ((Cl() X 02) X CQ) 360 CQ X CQ 90 45 30
(Cg X 03) X ((010 X 02) X CQ) 360 Dg 45 45 30
015 X S4 360 02 X CQ 90 90 60
(Cs5 x C5) x ((Cy x C2)2) 400 (Cq x C2) x Co 25 20 10
(Ci7 x Sa 408 Ca x Ca 102 102 68
C7 X A5 420 CQ X CQ 105 84 42
C7 x As 420 S3 70 70 42
((C3 x C3) x C3) x QD14 132 Ss 72 36 27
((C5 x C3) x C3) x QD4 432 D12 36 36 27
Dig X Sy 432 Co x Ca 108 54 36
D18 X S4 432 CQ X CQ X CQ 54 54 36
DlS X 5'4 432 Dg 54 54 36
CQ X (((03 X 03) X Cg) X Cg) 432 53 72 72 54
(((Cg X 03) X Qg) X Cg) X Cz 432 Cg X Cg 48 24 18
(((C3 x C3) x Qg) x C3) x Co 432 C3 x S3 24 24 18
(((Cg X Cg) X Qg) X 03) X CQ 432 (03 X Cg,) X 02 24 12 9
(((03 X Cg) X Qg) X Cg) X CQ 432 Cg X S3 24 24 18
(((Cg X Cg) >4 ) X Cg) X CQ 432 Sg X Sg 12 12 9
CQ X (((C3 X 03) X Qg) A 03) 432 03 X C3 48 24 18
Ca % (((C3 x C3) x Qg) x C3) 432 C3 x S3 24 24 18
CQ X (((03 X 05) A Qs) A Cs) 432 Cg X 53 24 24 18
C3 X ((C3 X 03) X QDlﬁ 432 Dg 54 48 24
03 X ((03 X Cg) X QD16 432 QD16 27 27 24
(03 X 03 X C3) X QDIG 432 Dg 54 27 24
(C3 x O3 x C3) x QD4 432 QDyq 27 27 24
((S3 x S3) x Ca) X 53 432 Dsg 54 24 12
((S3 x S3) x C2) x S3 432 Co X Dg 27 24 12
C3 x S3 X Sy 432 Co x Co 108 36 24
C3 x S3 X Sy 432 Coy x Oy x Coy 54 36 24
C3 x S3 X Sy 432 Dg 54 36 24
C3 x S3 X Sy 432 Cg x Ca 36 36 24
((03 X 03) A CQ) X 54 432 02 X CQ 108 18 12
((Cg X 03) X CQ) X 54 432 Dg 54 18 12
((Cg X 03) X CQ) X 54 432 CQ X CQ X CQ 54 18 12
C3 x ((Cs x Cs) x S3) 450 S3 75 75 45
C19 X Sy 456 Ca x C2 114 114 76
Cy % Ss 480 Co x C2 120 40 20
Cy % Ss 480 S3 80 40 20
Cyq % Ss 480 Dg 60 40 20
Cyq % Ss 480 Dg 60 40 20
Cy x Ss 480 D12 40 40 20
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G degree of K H degree of K degree of K;,  degree of K,
C4 A S5 480 D12 40 40 20
As X Qs 480 Ss3 80 48 40
SL(2,5) x (Ce x C2) 480 Cs 96 48 40
SL(2,5) x (Ce x C2) 480 Do 48 48 40
Ca x (SL(2,5) x C2) 480 Cs 96 48 40
Cay X (As x Cy) 480 Ss3 80 24 20
Cs X (((C2 x Cy x C3) x (C2 x C2)) x C3) 480 Ay 40 40 20
Cs X (((C2 x Ca x C2) x (C2 x C2)) x C3) 480 Ay 40 40 20
Cs X (((C2 x Cy x C2) x (C2 x C2)) x C3) 480 Ay 40 40 20
CQ X CQ X 5'5 480 CQ X CQ 120 20 12
CQ X CQ X S5 480 Sg 80 20 12
CQ X CQ X S5 480 Dg 60 20 12
Cy x Oy X S5 480 Dg 60 20 12
Co x Oy X S5 480 Dg 60 20 12
Co x Oy X S5 480 Dg 60 20 12
Co x Oy X S5 480 D12 40 20 12
Co x Cy x S5 480 D12 40 20 12
CQ X CQ X Ss 480 D12 40 20 12
Cy x Cg X S5 480 Do 40 20 12
(((CQ X CQ X CQ X 02) X 05) A CQ) el 03 480 02 X CQ X CQ 60 20 16
(((CQ X CQ X CQ X Cg) X 05) A CQ) X Cg 480 D10 48 30 16
(((CQ X CQ X CQ X Cg) X 05) X CQ) X 03 480 CQ X Dg 30 20 16
(((C2 x C2 x C2 x C2) x C5) x Ca) x Cs 480 Co X Ay 20 20 16
(Cs x Cyq) x Sy 480 Ca x C2 120 30 20
(Cs5 x Cyq) x Sy 480 Dg 60 30 20
(Cs5 x Cyq) x Sy 480 Co x C2 x C2 60 30 20
(Cs5 x Cyq) x Sy 480 (Cy x C2) x Cy 30 30 20
(C5 x Cyq) x Sy 480 Cy x Co x Ca 30 30 20
Cs X (((C2 x Ca x Cg x Cz) x C3) x Ca) 480 Coy x Oy x Co 60 30 20
Cs X (((C2 x Ca x Ca x C2) x C3) x C2) 480 Cy x C 120 30 20
C5 el (((CQ X 02 X CQ X 02) X 03) X CQ) 480 C4 X CQ 60 30 20
C5 X (((CQ X 02 X CQ X Cg) X 03) X CQ) 480 C4 X CQ 60 30 20
05 X (((CQ X CQ X CQ X Cg) X 03) A CQ) 480 C4 X CQ 60 30 20
Cs X (((CQ X CQ X CZ X Cz) X Cg) X C2) 480 CQ X CQ X Cz 60 30 20
(((Cg x C3) x C3) x C3) x Ca 486 S3 81 54 27
((C3 x (Cg x C3)) x Cg) x Ca 486 Ss3 81 54 27
((C3 x (Cg x C3)) x Cg) x Ca 486 S3 81 54 27
((C3 x (Cg x C3)) x Cg) x Ca 486 S3 81 54 27
((C3 x (Cg x C3)) x C3) x Co 486 S3 81 54 27
((Cg . (03 X Cg) A 03) X 03) X CQ 486 53 81 54 27
(((03 X 03 X 05) X 03)2 486 S3 81 54 27
(((Cg X 03 X Cg) X 03)2 486 Sg 81 54 27
((Cg X Cg) X C3) X CQ 486 Sg 81 54 27
((C5 x C5) x Cs) x (C2 x C2) 500 Do 50 50 25
((C5 x C5) x Cs) x (C2 x C2) 500 Do 50 50 25
PSL(2,8) 504 Ca x Cg x Co 63 56 28
PSL(2,8) 504 D1y 36 36 28
Cs x PSL(3,2) 504 Co x C2 126 42 24
C3 x PSL(3,2) 504 Co x Ca 126 42 24
Cs3 x PSL(3,2) 504 S3 84 84 24
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G degree of K H degree of K degree of K;,  degree of K,
C3 x PSL(3,2) 504 Dg 63 42 24
C3 x PSL(3,2) 504 Ay 42 42 24
C3 x PSL(3,2) 504 Ay 42 42 24
C3 x PSL(3,2) 504 Ay 42 42 24
Cs x PSL(3,2) 504 Ay 42 42 24
(C7 x C3) x Sy 504 Ca x Ca 126 42 28
(C7 x C3) x Sy 504 Cg x Ca 42 42 28
C7 x ((S3 x S3) x C2) 504 Dg 63 63 42
(C3 x C3) x ((Cra x C2)2) 504 Cy x Co 126 84 42
(03 X Cd) X ((014 X 02)2) 504 Ds 63 63 42
021 X S4 504 02 X CQ 126 126 84
D22 X 54 528 CQ X CQ 132 66 44
Das X Sy 528 Co x Co x Coy 66 66 44
Da2 X Sy 528 Dg 66 66 44
Cy X As 540 S3 90 90 45
Cg X A5 540 D10 54 54 45
Cs X (((C3 x C3) x C3) x (Ca x C3)) 540 S3 90 90 45
((C3 x C3) x C3) x Dag 540 Ss3 90 90 45
C3 X 03 X A5 540 Sg 90 30 15
03 X Cg X A5 540 Dl() 54 18 15
023 X 5'4 552 02 X CQ 138 138 92
(C7 X 07) X D12 588 D12 49 42 21
C5 % Sy 600 D12 50 50 30
As X Dio 600 D12 50 50 30
(C5 x C5) x (Cq x S3) 600 Do 50 30 15
Dog X Sy 624 Ca x C2 156 78 52
Dog X Sy 624 Ca x C2 x C2 78 78 52
Dog X Sy 624 Dg 78 78 52
Cor X Sy 648 Cy x Co 162 162 108
CQ X CQ X (((03 X Cs) A C,j) X CQ)) A Cg 648 S3 108 54 36
CQ X CQ X (((03 X Cg) X 03) X CQ)) X 03 648 D12 54 54 36
CQ X 02 X (((03 X Cg) X 03) X CQ)) X 03 648 D12 54 54 36
CQ X CQ X (((03 X C3) X Cg) X 02)) X 03 648 D12 54 54 36
Cs3 - (((C3 x C3) x Qg) x C3) 648 S3 108 108 81
(((C3 x C3) x C3) xQg) xCs 648 S3 108 108 81
(((C3 x C3) x C3) xQsg) xCs 648 S3 108 36 27
(((C3 x C3) x C3) x Qsg) x Cs 648 C3 x S3 36 36 27
(((C3 x C3) x C3) x Qsg) x Cs 648 C3 x S3 36 36 27
(((C3 x C3) x C3) xQg) xC3 648 C3 x S3 36 36 27
(C3 x ((C3 x C3) x C3)) x Qs 648 Ss3 108 36 27
((09 X C,j) A 03) X Cg 648 53 108 108 81
Cg X ((S3 X S3) X CQ) 648 Dg 81 72 36
(Cg X 03 X 03) X Dg 648 CQ X CQ 162 72 36
(Co x C3 x C3) x Dg 648 Cs 108 72 36
(Co x C3 x C3) x Dg 648 Dg 81 72 36
(C3 x ((C3 x C3) x C3)) x Dg 648 S3 108 36 24
(C3 x ((C3 x C3) x C3)) x Dg 648 D12 54 36 18
(C3 x ((C3 x C3) x C3)) x Dg 648 C3 X S3 36 36 18
C3 X (((C3 x C3) x C3) x Qg) 648 Ss3 108 36 27
((Cy x C3) x C3) x Qs 648 Ss3 108 108 81
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Sg X (((03 X 03) X 03) X (CQ X CQ)) 648 53 108 36 18
Sz X (((C3 x C3) x C3) x (Ca x C3)) 648 D12 54 36 18
Sz X (((C3 x C3) x C3) x (Ca x C3)) 648 C3 x S3 36 36 18
C3 x Cg x Sy 648 Co x O 162 54 36

((C3 x C3)3) X Sy 648 Co x C2 162 54 36

((C3 x C3)3) X Sy 648 Ce x C2 54 54 36

((C3 x C3)3) X Sy 648 Ce x C2 54 54 36

((C3 x C3)3) x Sa 648 Cg x C2 54 54 36

((C3 x C3)3) x Sa 648 Cg x Ca 54 54 36

(09 X 03) X S4 648 CQ X CQ 162 54 36

(Cg X 03) X 54 648 Cﬁ X CQ 54 54 36

(((Cg X 03) X 03) X A4) X CQ 648 D12 54 54 36

(((C3 x C3) xC3) x Ag) x Ca 648 D12 54 54 36

(((C3 x C3) x C3) x Ag) x Co 648 D12 54 54 36

(((C3 x C3) x C3) x Ag) x Co 648 D12 54 54 36

(((C3 x C3 x C3) x (Ca x C2)) x C3) x Cy 648 D12 54 36 18
(((C3 x C3 x C3) x (Ca x Ca)) x C3) x Cy 648 (C3 x C3) x Cy 36 36 18
(((C3 x C3 % Cg) x (Ca X CQ)) % C3) x Ca 648 Dis 36 36 18
(((C3 x C3 x C3) x (Ca x C2)) x C3) x Ca 648 Dig 36 36 18
(((05 X Cg X 03) A (CQ X CQ)) el 03) X CQ 648 S4 27 27 18
(((03 X C3 X 03) A (CQ X 02)) el Cg) X 02 648 D24 27 27 18
(((03 X Cg X 03) A (02 X CQ)) X 03) X CQ 648 D12 54 36 18
(((C3 x C3 x C3) x (Ca x C2)) x C3) x Ca 648 (Cs x C2) x Co 27 27 18
(((C3 x C3 x C3) x (Ca x C2)) x C3) x Cs 648 Sa 27 27 18
(S3 x S3x53)%xCs 648 Ceg 108 36 24

(S3 x S3x53)%xCs 648 Co x C2 x C2 81 36 24

(S3 x S3 xS53)xCs 648 Do 54 36 24

(S3 x S3 xS3) % Cs 648 Co X Ay 27 27 18

C3 x C3 x ((S3 x S3) x C2) 648 Dg 81 24 12

(Cg X Cg X Cg X 03) X Ds 648 CQ X CQ 162 24 12

(C3 X 03 X C3 X Cg) X Ds 648 Dg 81 24 12

(Cg X 03 X 03 X Cg) X Dg 648 C3 X S3 36 24 12

(Cg X 03 X C'g, X Cg) X Dg 648 C3 X 53 36 24 12

(C3 x C3 x C3 x C3) x Dg 648 C3 x C3 72 12 9

(C3 x C3 x C3 x C3) x Dg 648 (C3 x C3)2 36 12 9

C3 x C3xC3 xSy 648 Co x Cg 162 18 12

Ci1 X As 660 Co x Oy 165 132 66

C11 X As 660 S3 110 110 66

C7 X (((Cy x C2)4) x C3) 672 Cs 224 168 84
PSL(3,2) x Cy 672 C7 % Cs 32 32 28

Cy x PSL(3,2) 672 C7 % Cs 32 32 28

C4 X ((CQ X 02 X CQ) X (07 X 03)) 672 C7 X Cg 32 32 14

C4 X ((02 X CQ X CQ) X (C7 X 03)) 672 02 X A4 28 28 14
C7 x (((C2 x Ca x C2) x (C2 x C2)) x C3) 672 Ay 56 56 28
C7 X (((C2 x C2 x C2) x (C2 x C2)) x C3) 672 Ay 56 56 28
C7 X (((C2 x C2 x C2) x (C2 x C2)) x C3) 672 Ay 56 56 28
Co x (PSL(3,2) x Ca) 672 Sa 28 28 16

Cy x Cy x PSL(3,2) 672 C7 % Cs 32 16 14

Coy x Oy X ((CQ X Cg x Ca) x (C7 x C3)) 672 C7 x Cs 32 16 14
C7 X (((C2 x Ca x Cg x Cz) x C3) x Ca) 672 Cy x Oy x Co 84 42 28
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C7 X (((CQ X CQ X CQ X CQ) X 03) X 02) 672 CQ X CQ 168 42 28
C7 X (((CQ X CQ X CQ X CQ) X Cg) X CQ) 672 C4 X CQ 84 42 28
C7 x (((C2 x C2 x C2 x C2) x C3) x Ca) 672 Cy x Co 84 42 28
C7 x (((C2 x C2 x C2 x C2) x C3) x Ca) 672 Cy x Co 84 42 28
C7 x (((C2 x Oz x C2 x C2) x C3) x Ca) 672 Co x Cg x Co 84 42 28
Caog9 X Sy 696 Co x O 174 174 116
As X (C3 x Cy) 720 S3 120 72 60
As x (C3 x Cy) 720 Do 72 72 60
012 X A5 720 83 120 72 60
C12 X A5 720 D10 72 72 60
Se 720 C3 x C3 80 36 30
SG 720 C3 X 53 40 36 30
Se 720 C3 x S3 40 36 30
Se 720 S4 30 30 20
Se 720 S4 30 30 20
Se 720 S3 x S3 20 20 12
Se 720 S3 x S3 20 20 12
Se 720 Co X Sy 15 15 10
Se 720 Ca X Sa 15 15 10
Ag x C2 720 Dg 90 72 60
AG X 02 720 C3 X 03 80 72 60
A6 X CQ 720 D10 72 72 60
AG el CQ 720 DlG 45 45 36
Ag x Cs 720 (C3 x C3) x Cy 40 40 20
Ag x Ca 720 S4 30 20 20
Ag - Co 720 Dg 90 60 36
Ag - Co 720 Do 72 60 36
Ag - Cy 720 QD14 45 45 36
Ag - C2 720 Sa 30 30 20
A(,‘ . 02 720 (Cg X Cd) X 04 20 20 12
AG . 02 720 (C3 X 03) X 04 20 20 12
02 X AG 720 (Cg X 03) 80 40 30
CQ X AG 720 (Cg X 03) X CQ 40 40 30
Cy X Ag 720 Sy 30 30 20
Cy X Ag 720 S4 30 30 20
Co X Ag 720 (Cg X Cg) x Cy 20 20 12
S5 X S3 720 S3 120 60 30
S5 X S3 720 Do 72 60 30
S5 X S3 720 D12 60 60 30
Sg, X Sg 720 D12 60 60 30
55 X 53 720 DQO 36 36 30
S5 X S3 720 Cs x Cy 36 36 30
A5 X A4 720 CQ X CQ 180 36 24
A5 X A4 720 53 120 36 24
As X Ay 720 Co x Cg x Ca 90 36 24
As X Ay 720 Cs x C2 60 36 24
A5 X A4 720 A4 60 36 24
As X Ay 720 Ay 60 36 24
A5 X A4 720 D12 60 36 24
A5 X A4 720 Cg X Sg 40 36 24

119




G degree of K H degree of K degree of K;;,  degree of K,
Cg X S5 720 02 X 02 180 60 36
Ce X S5 720 S3 120 60 36
Ce X S5 720 Dg 90 60 36
Cs X S5 720 Dg 90 60 36
Ce X S5 720 Dio 60 60 36
Ce X S5 720 D12 60 60 36
Cs X S5 720 Ay 60 60 36
Co x (As % S3) 720 S3 120 60 30
CQ X (A5 A 53) 720 Dl() 72 60 30
CQ X (A5 el 55) 720 D12 60 60 30
02 X (A5 el Sg) 720 D12 60 60 30
CQ X (A5 X Sg) 720 05 X 04 36 36 30
Cy x (A5 » S3) 720 Cs x Cy 36 36 30
Cy x Cg x As 720 S3 120 36 30
Cy x Cg X As 720 Do 72 36 30
(C3 x C3) x ((C1o x C2) x Cy) 720 Co x Co 180 45 30
(C3 x C3) x ((C1o x C2) x Cy) 720 Co x Oy x Coy 90 45 30
(C3 x C3) x ((C1o x C2) x Cy) 720 (Cq % CQ) x Co 45 45 30
Cs X ((C3 x C3) x QDy4) 720 S3 120 60 15
05 X ((03 X C,j) A QDH)-) 720 Dg 90 90 45
05 X ((03 X Cg) X QDlﬁ) 720 D2 60 60 45
(Cg X 03) X ((C5 X Qg) X CQ) 720 53 120 60 45
(C3 X Cg) X ((C5 X Qg) X CQ) 720 Do 60 60 45
((Sg X Sg) X Cz) X DlO 720 CQ X Ds 45 45 30
C3 x D1g X Sy 720 Ca x Ca 180 90 60
C3 x D1g X Sy 720 Co x Cy x Ca 90 90 60
C3 x D1g X Sa 720 Dg 90 90 60
Cs x S3 X Sy 720 Co x Co 180 90 60
Cs x S3 X Sa 720 Dg 90 90 60
Cs x S3 X Sy 720 Coy x Oy x Coy 90 90 60
D30 X S4 720 CQ X CQ 180 90 60
D30 X S4 720 Dg 90 90 60
D30 X 54 720 CQ X CQ X CQ 90 90 60

We stopped our systematic research at groups of order 720 but we still
tried some specific examples of greater order. In the table below, we display
the examples where the group G is Ay, S7, Ag or Ss.
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A7 2520 (C3 x Ag) x Co 35 355 21
S7 5040 S4 210 105 70
S7 5040 Cy x Oy x S3 210 105 70
Sz 5040 Co x Oy x S3 210 126 84
S7 5040 Coy X Ay 210 126 84
S7 5040 S3 X S3 140 126 70
S7 5040 S3 X S3 140 126 84
S7 5040 C7 x Cg 120 120 70
S7 5040 Dg x S3 105 105 70
S7 5040 Ca X Sy 105 105 70
S7 5040 Ca2 X Sy 105 105 70
S7 5040 (C3 X A4)2 70 70 42
S7 5040 S4 X S3 35 35 30
Asg 20160 Co x C2 x Ca x Co 1260 210 168
Ag 20160 (C2 x Oy x C2) x (Ca x Ca) 630 315 168
Ag 20160 (C2 x Oy x O3 x C2) x Cy 630 210 168
Ag 20160 (Ca x Oy x O3 x C2) x Ca 630 210 168
Ag 20160 (CQ X C2 x Cy x Cq) x Co 630 210 168
Asg 20160 S3 X S3 560 336 168
Ag 20160 (CQ X CQ X CQ X 02) X 03 420 210 120
Ag 20160 (CQ X 02 X CQ X 02) X C3 420 210 120
Asg 20160 Ca x C2 X Ay 420 210 168
Ag 20160 Ca X Sy 420 336 168
Ag 20160 Ca X Sy 420 336 168
Ag 20160 Ca X S4 420 336 168
Ag 20160 Ca X Sy 420 336 168
Ag 20160 (C2 x C2 x C2) x Cy 360 336 168
Asg 20160 (C2 x Cy x C2) x Cy 360 336 168
Asg 20160 ((C2 x C2 x Cy x C2) x Ca)2 315 210 168
Asg 20160 (S3 x S3) x Co 280 280 168
Asg 20160 (C3 x Ag) x Ca 280 280 168
Ag 20160 ((CQ X 02 X 02) X (CQ X CQ)) X 03 210 210 120
Ag 20160 ((CQ X CQ X CQ X Cg) X 03) X CQ 210 210 120
Ag 20160 ((CQ X CQ X Cz X Cg) X CQ) X Cg 210 210 120
Ag 20160 ((CQ X Cq X Cg X Cg) X 03) x Cq 210 210 120
Ag 20160 ((Cz X Cq X Cg X Cg) X CQ) x Cg 210 210 120
Ag 20160 (C2 x S4) x Co 210 210 168
Asg 20160 S5 168 168 120
Asg 20160 PSL(3,2) 120 120 105
Asg 20160 GL(2,4) 112 112 70
Asg 20160 (Ag X Ag) x Co 70 70 56
Ag 20160 ((A4 X A4) X CQ) X CQ 35 35 28
Sg 40320 (CQ X CQ X CQ X Cg) X 03 840 336 210
Ss 40320 ((C2 x C2 x C2 x C2) x Ca)2 630 336 210
Ss 40320 Dg x Dg 630 336 210
Ss 40320 (S35 x S3)2 560 336 210
Ss 40320 Co x Co x Sy 420 210 168
Ss 40320 ((C2 x C2 x C2 x C2)2) x C3 420 336 210
Ss 40320 ((C2 x C2 x Cy x C2)3) x Ca 420 336 210
Ss 40320 Ca x Cg x Sy 420 336 210
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Ss 40320 Ca x Co X Sy 420 336 210
Ss 40320 Ss 336 336 210
Sg 40320 (((C2 x O3 x Ca x O2) x Ca) x C2)2 315 315 210
Sg 40320 Ay X Ay 280 140 112
Sg 40320 Ca x ((S3 x S3) x C2) 280 280 210
Ss 40320 S4 X S3 280 280 210
Ss 40320 PSL(3,2) 240 240 210
Ss 40320 PSL(3,2) 240 240 210
Ss 40320 (Ca x Oy x C2) x (C7 x C3) 240 240 210
Sg 40320 (((CQ X CQ X CQ) X (02 X CQ) el Cd) X 02 210 210 168
Ss 40320 Sy X Dg 210 210 168
Ss 40320 Sy X Ay 140 140 112
Ss 40320 (((C2 x O3 x C2 x C2) x C3) x Ca) x C3 140 140 112
Sg 40320 PSL(3,2) x Co 120 120 112
Ss 40320 As X S3 112 112 70
Ss 40320 S4 X Sa 70 70 56
Sg 40320 ((Ag x Ag) x C2) x Ca 70 70 56
Ss 40320 (S4 %X S4) x Co 35 35 30
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