ORTHOGONAL REPRESENTATIONS

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

On SO(7) and UG_2 000

1/20

On Sato-Tate groups SO(2n + 1) and the exceptional group UG_2

David Kohel Institut de Mathématiques de Marseille

Frobenius distributions III 5-7 October 2022

ORTHOGONAL REPRESENTATIONS

ON SO(7) AND UG₂

ABELIAN VARIETIES AND GALOIS REPRESENTATIONS

Let A/K be an abelian variety over a number field K, $\mathcal{O} = \mathcal{O}_K[1/N\ell]$ be an S-order over which A has good reduction. We associate a Frobenius $\pi_{\mathfrak{p}} \in \operatorname{Aut}(T_{\ell}(A))$ to any prime $\mathfrak{p} \in \operatorname{Spec}(\mathcal{O})$, acting on the Tate module by means of its reduction

$$T_{\ell}(A) \simeq T_{\ell}(\overline{A}),$$
 (1)

giving characteristic polynomial

$$P(T) = T^{2g} - a_1 T^{2g-1} + \dots + p^g$$
(2)

The isomorphism (1) depends on a choice of place v over p in $K_{A,\ell} = K[A[\ell^{\infty}]]$ in order to fix the compatible isomorphisms

 $A[\ell^n] \longrightarrow \overline{A}[\ell^n]$ from which (1) is induced. Any other $\begin{array}{c} \label{eq:choice} & \begin{tabular}{lll} \label{eq:choice} & \end{tabular} \end{tabular} \end{tabular} & \end{tabular}$ choice induces a conjugate lifting of $\pi_{\mathfrak{v}}$ to (日) (圖) (E) (E) (E)

On SO(7) and UG₂ 000

Abelian varieties and Galois representations

Choosing a symplectic basis for $V_{\ell}(A) = T_{\ell}(A) \otimes \mathbb{Q}_{\ell}$ with respect to the Weil paring, we let

Let G_{ℓ} be the Zariski closure of $\rho_{A,\ell}(\operatorname{Gal}(\overline{K}/K))$, and G_{ℓ}^1 be the unitary subgroup with respect to the symplectic structure. Let $\iota : \mathbb{Q}_{\ell} \longrightarrow \mathbb{C}$ be a fixed embedding, from which we obtain

$$\mathrm{GSp}(2g,\mathbb{Q}_\ell) \to \mathrm{GSp}(2g,\mathbb{Q}_\ell) \otimes_\iota \mathbb{C} = \mathrm{GSp}(2g,\mathbb{C}),$$

the induced image in $GSp(2g, \mathbb{C})$. Finally, we denote by USp(2g) the compact subgroup of unitary symplectic matrices,

Orthogonal representations

On SO(7) and UG₂ 000

SATO-TATE GROUPS

DEFINITION

The Sato-Tate group ST(A) is a maximal compact Lie subgroup of $G^1_{\ell} \otimes_{\iota} \mathbb{C}$ in USp(2g).

As a consequence of the definition, while the lift of the Frobenius automorphism depends on a choice of place over \mathfrak{p} , its normalized conjugacy class

$$\left[\pi_{\mathfrak{p}}\otimes_{\iota}rac{1}{\sqrt{N\mathfrak{p}}}
ight]=\left[
ho_{A,\ell}(\mathrm{Frob}(\mathfrak{p}))\otimes_{\iota}rac{1}{\sqrt{N\mathfrak{p}}}
ight]$$

lies in $G^1_{\ell} \otimes_{\iota} \mathbb{C}$ and is well-defined in the set $C\ell(ST(A))$ of conjugacy classes. Its characteristic polynomial is

$$P(T) = T^{2g} - \tilde{a}_1 T^{2g-1} + \dots - \tilde{a}_1 T + 1,$$

where $\tilde{a}_i = \frac{a_i}{\sqrt{N\mathfrak{p}^i}} = \tilde{a}_{2g-i}$, interpretted as a character on ST(A)

Orthogonal representations

On SO(7) and UG₂ 000

CHARACTERS ON COMPACT LIE GROUPS

The interpretation of \tilde{a}_i as a character on ST(A) implies that its expectation

$$\mathbb{E}[ilde{a}_i] = \int_G ilde{a}_i d\mu_G$$

is an integer. In fact

$$\langle \tilde{a}_i, \tilde{a}_j \rangle = \mathbb{E}[\tilde{a}_i \overline{\tilde{a}}_j]$$

is the inner product of characters : if

$$ilde{a}_i = \sum_k m_k \chi_{arepsilon_k}, \quad ilde{a}_j = \sum_k n_k \chi_{arepsilon_k},$$

then

$$\langle \tilde{a}_i, \tilde{a}_j
angle = \sum_k m_k n_k \in \mathbb{N},$$

by the orthogonality relations on characters.

5/20

+ = + + @ + + = + + = =

On SO(7) and UG₂ 000

EFFECTIVE CHARACTERS

 $\mathbb{E}[\chi]$ can be effectively computed: if *S* is a finite initial set of primes (ordered by norm), set

$$\mathbb{E}_{\mathcal{S}}[\chi] = \frac{1}{|\mathcal{S}|} \sum_{\mathfrak{p} \in \mathcal{S}} \chi(\pi_{\mathfrak{p}}), \text{ and so } \mathbb{E}[\chi] = \lim_{|\mathcal{S}| \to \infty} \mathbb{E}_{\mathcal{S}}[\chi].$$

We represent χ as a polynomial in $\mathbb{Q}[\tilde{a}_1, \ldots, \tilde{a}_g]$.

N.B. While the characters $\{\tilde{a}_1, \ldots, \tilde{a}_g\}$ form a set of fundamental characters (generating the virtual character ring) for USp(2g), the restriction to a subgroup *G* may require rational coefficients to express the irreducible characters.

Since $\{\tilde{a}_1, \ldots, \tilde{a}_g\}$ for USp(2g) are real, $\langle \tilde{a}_i, \tilde{a}_j \rangle = \mathbb{E}[\tilde{a}_i \tilde{a}_j]$. We may adjoin characters of the finite group G/G_0 , where G_0 is the connected component to extend the known characters for G.

On SO(7) and UG₂ 000

Moment sequences

Previous approaches considered the fixed characters $\tilde{a}_1, \ldots, \tilde{a}_g$ and sought to "recognize" ST(*A*) by the moment sequences

$$egin{array}{ll} M_n(ilde{a}_1) &= \mathbb{E}[ilde{a}_1^n],\ dots &dots\ dots\ dots\$$

The problem with moment sequences is the growth: \tilde{a}_i^n represents the *n*-th tensor product character, which decomposes into many smaller characters of high multiplicities. Thus for $\tilde{a}_i = \overline{\tilde{a}}_i$ real:

$$\langle \tilde{a}_i^n, \tilde{a}_i^n
angle = M_{2n}(\tilde{a}_i) = \sum_k n_k^2$$
 where $\tilde{a}_i^n = \sum_k n_k \chi_{\varepsilon_k}$,

giving a large integer $M_{2n}(\tilde{a}_i)$, whose convergence requires a large sample size, made worse by the large *variance* of \tilde{a}_i^n .

Symplectic	REPRESENTATIONS	AND	ST(A)
000			

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG_2 000

VARIANCE

The moment $M_{2n}(\chi)$ is the self inner product of the character χ^n :

$$M_{2n}(\chi) = \mathbb{E}[\chi^{2n}] = \langle \chi^n, \chi^n \rangle.$$

Its variance is a a measure of the spread or dispersion of the distribution; by definition

$$\begin{aligned} \operatorname{var}(\chi^n) &= \mathbb{E}\big[\big(\chi^n - \mathbb{E}[\chi^n]\big)^2\big] \\ &= \mathbb{E}[\chi^{2n}] - \mathbb{E}[\chi^n]^2 = M_{2n}(\chi) - M_n(\chi)^2. \end{aligned}$$

When $M_n(\chi) = 0$, the variance equals $M_{2n}(\chi)$, and in general the growth of the moment sequence is exponential in *n* so that $M_{2n}(\chi)$ gives the dominate term in $\operatorname{var}(\chi^n)$.

Conclusion. The moment sequence is an interesting mathematical invariant, but computationally inefficient and impractical.

Orthogonal representations

On SO(7) and UG_2 000

CHARACTER THEORY METHOD

In his thesis Yih-Dar SHIEH proposed instead to (pre)-compute some irreducible characters of a target $G \subset USp(2g)$, in order to answer the question "Is $ST(A) \subseteq G$?" to address "Is G = ST(A)?".

By expressing $\chi_{arepsilon} \in \mathbb{Q}[ilde{a}_1, \dots, ilde{a}_g]$ as a polynomial, we have

$$\langle \chi_{arepsilon}, \chi_{arepsilon'}
angle = \left\{ egin{array}{cc} 1 & ext{if} & arepsilon = arepsilon', \ 0 & ext{if} & arepsilon
eq arepsilon'. \end{array}
ight.$$

The symplectic characters $\tilde{a}_1, \ldots, \tilde{a}_g$ are real, but a subgroup may have complex characters, for which we cannot decompose further than $\chi = \chi_{\varepsilon} + \overline{\chi}_{\varepsilon}$. For such a character,

$$\langle \chi, \chi \rangle = \langle \chi_{\varepsilon} + \overline{\chi}_{\varepsilon}, \chi_{\varepsilon} + \overline{\chi}_{\varepsilon} \rangle = 2.$$

9/20

Orthogonal representations

On SO(7) and UG₂ 000

Weyl character ring

The *Weyl virtual character ring* $\mathcal{R}(G)$ is the formal direct sum module on irreducible characters. The irreducible characters can be indexed by a fundamental cone $\Lambda^+ \subset \mathbb{Z}^h$, where $h = \operatorname{rank}(G)$ and $\mathbb{Z}^h = \operatorname{Hom}(T, \operatorname{U}(1))$, for a maximal torus $T \subset G$.

The \mathbb{Z} -module $\mathcal{R}(G)$ forms a ring, equipped with tensor product as multiplication; addition is identified with direct sum.

Restriction of characters determines a homomorphism:

$$\operatorname{Res}: \mathfrak{R}(\operatorname{USp}(2g)) = \mathbb{Z}[\tilde{a}_1, \dots, \tilde{a}_g] \longrightarrow \mathfrak{R}(\operatorname{ST}(A)) = \bigoplus_{\varepsilon \in \Lambda^+} \mathbb{Z}\chi_{\varepsilon}.$$

In what follows we will generalize this construction to families of abelian varieties with $ST(A) \subseteq SO(2n + 1)$.

◆ロト ◆部 ト ◆注 ト ◆注 ト ─ 注

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG_2 000

ORTHOGONAL REPRESENTATIONS

Let SO(2n + 1) be an orthogonal group, of rank *n*. The characteristic polynomial of an element *A* is:

$$P(T) = T^{N} - \tilde{a}_{1}T^{N-1} + \tilde{a}_{2}T^{N-2} - \dots + \tilde{a}_{2n}T - 1.$$

and since $A^{-1} = A^t$, the eigenvalues are closed under the involution $\alpha \mapsto \overline{\alpha} = \alpha^{-1}$ and hence

$$P(T) = (T-1) \prod_{i=1}^{n} (T-\alpha_i) (T-\overline{\alpha}_i)$$

= $(T-1) \prod_{i=1}^{n} (T^2 - \tau_i T + 1).$

N.B. In particular there are *n* degrees of freedom in P(T); here τ_i denotes $2\cos(\theta_i)$ in terms of the Frobenius angles.

Orthogonal representations 000000 On SO(7) and UG₂ 000

Some combinatorics

This motivates the definition of the polynomial

$$Q(T) = \prod_{i=1}^{n} (T - \tau_i) = \sum_{i=0}^{n} (-1)^{(n-i)} s_i T^{n-i},$$

such that $P(T) = (T - 1) T^n Q\left(\frac{T^2 + 1}{T}\right)$.

Suppose we are given, for $0 \le r \le n$, the data of Frobenius traces:

$$\operatorname{Tr}(\pi^r) = 1 + p_r = 1 + \sum_{i=1}^n (\alpha_i^r + \overline{\alpha}_i^r).$$

Then by the Girard-Newton formulae, we have

$$s_k = \frac{1}{k} \sum_{i=1}^k (-1)^{k-1} s_{k-i} p_i$$

from which we can construct s_k , hence Q(T) and $P(T_k)$, $z_k \in \mathbb{R}$

12/20

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG₂ 000

KATZ CHARACTER SUMS

In Notes on G₂, Katz introduced the exponential sums

$$S_r(\chi,\psi,x^N-tx) = \sum_{x \in \mathbb{F}_{p^r}} \chi_r(x)\psi_r(x^N-tx) \in \mathbb{Z}[\zeta_m,\zeta_p]$$
(1)

where $\chi_r = \chi \circ N_{\mathbb{F}_{p^r}/\mathbb{F}_p}$ and $\psi_r = \psi \circ \operatorname{Tr}_{\mathbb{F}_{p^r}/\mathbb{F}_p}$, with

- χ a multiplicative character of order *m*,
- ψ an additive character (of order *p*), and
- for any p > 2N + 1 and $N \ge 3$.

For m = 2, we define the normalized Katz sums:

$$\tilde{S}_r(\chi,\psi,x^N-tx) = rac{S_r(\chi,\psi,x^N-tx)}{\eta(N)^r}$$

where $\eta(N) = \chi(\varepsilon(N)N)G(\chi,\psi)$ is a Gauss sum.

13/20

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG_2 000

KATZ ORTHOGONAL SUMS

For m = 2 and odd N, Katz proves that his normalized sums

$$\tilde{S}_r(\chi,\psi,x^N-tx)$$

satisfy the trace distribution (as t varies) for a degree N representation of

$$\mathrm{SO}(N) = \mathrm{SO}(2n+1)$$
 when N is odd,
EXCEPT $\mathrm{UG}_2 \subset \mathrm{SO}(7)$ when $N = 7$.

For even N, the sums to follow the trace distribution on SU(N).[†]

Here G_2 is the exceptional Lie group and we denote its compact subgroup in SO(7) by UG₂.

(日) (圖) (E) (E) (E)

[†]This is a purely empirical observation, not treated by Katz in *Notes on G*₂.

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG₂ 000

Katz curves

Motivated by Katz sums, we define the Katz curve C_m for each m, equipped with a covering of C_1 , as follows:

$$C_m: y^p - y = x^N - tx \text{ where } x = z^m$$

$$\downarrow$$

$$C_1: y^p - y = x^N - tx$$

It follows from the definition that

$$-\sum \sum S_r(\chi,\psi,x^N-tx) = |C_m(\mathbb{F}_{p^r})| - |C_1(\mathbb{F}_{p^r})|,$$

from which we see that the Katz sums determine the zeta function of the Prym variety B_m in the exact sequence

$$0 \longrightarrow B_m \longrightarrow \operatorname{Jac}(C_m) \longrightarrow \operatorname{Jac}(C_1) \longrightarrow 0.$$

ORTHOGONAL REPRESENTATIONS

On SO(7) and UG₂ 000

KATZ REPRESENTATIONS

This is rather remarkable: a family of abelian varieties whose Sato-Tate groups[‡] are naturally embedded in SO(2n + 1), but, as the following lemma indicates, the genera are huge.

LEMMA

$$g(C_m) - g(C_1) = \frac{(p-1)}{2}(m-1)N$$
 and $g(C_1) = \frac{(p-1)}{2}(N-1).$

Remark. The cohomology modules $H^1(B_m)$ and $H^1(\text{Jac}(C_1))$ are modules over $\mathbb{Z}[\zeta_m, \zeta_p]$ and $\mathbb{Z}[\zeta_p] \subset \mathbb{C}$, respectively, which, for *m* prime, should be considered as complex modules of dimension *N* and N - 1. For computing their zeta functions, they behave like abelian varieties of dimension $n = \lfloor N/2 \rfloor = \text{rank}(\text{SO}(N))$.

ヘロト 人間 とくほとくほとう

[‡]The distribution is over *t*, which we refer to as a vertical Sato-Tate group.

ORTHOGONAL REPRESENTATIONS

KATZ CURVES

Remark. The parameter t of C_m gives an absolute geometric invariant. As such, the curves C_m (or the Prym varieties B_m) have a one-dimensional moduli space, analogous to elliptic curves, to fake elliptic curves (QM abelian surfaces parametrized by Shimura curves), or certain genus 3 curves with prescribed automorphisms or configurations of Weierstrass points.

Despite the lower complexity of these objects, they exhibit behavior not observed in lower dimension. In particular N = 7 (and m = 2), this gives a representation of G₂.

On SO(7) and UG_2 •00

On SO(7) and UG_2

We specialize to the parameters of N = 7 and m = 2, for which Katz normalized sums for UG₂ \subset SO(7) decompose as:

$$\tilde{S}_r(\chi,\psi,t) = 1 + \alpha_1^r + \overline{\alpha}_1^r + \alpha_2^r + \overline{\alpha}_2^r + \alpha_3^r + \overline{\alpha}_3^r,$$

satisfying the defining relation $\alpha_1\alpha_2\alpha_3 = 1$ for UG₂. We write

$$P(T) = (T-1)\prod_{i=1}^{3} (T-\alpha_i)(T-\overline{\alpha}_i) = (T-1)\prod_{i=1}^{3} (T^2-\tau_i T+1).$$

and set

$$(s_1, s_2, s_3) = (\tau_1 + \tau_2 + \tau_3, \ \tau_1 \tau_2 + \tau_1 \tau_3 + \tau_2 \tau_3, \ \tau_1 \tau_2 \tau_3).$$

The condition $\alpha_1 \alpha_2 \alpha_3 = 1$ for UG₂ translates as

$$\tau_1^2 + \tau_2^2 + \tau_3^2 = \tau_1 \tau_2 \tau_3 + 4,$$

or $s_1^2 = 2s_2 + s_3 + 4$ in terms of the symmetric sums. The symmetries in the symmetry of the symmetry of

18/20

Orthogonal representations

On SO(7) and UG₂ $0 \bullet 0$

Branching rules: from SO(7) to UG_2

Branching rules associated to an inclusion $H \subset G$ of Lie groups are decomposition formulas for irreducible characters under restriction:

$$\operatorname{Res}: \mathcal{R}(G) \longrightarrow \mathcal{R}(H).$$

For G = SO(7) and $H = UG_2$ we have restriction map,

$$\operatorname{Res}: \mathfrak{R}(\operatorname{SO}(7)) = \mathbb{Z}[s_1, s_2, s_3] \longrightarrow \mathfrak{R}(\operatorname{UG}_2) = \mathbb{Z}[s_1, s_2]$$

taking s_3 to $s_1^2 - 2s_2 - 4$. The branching rules on the first irreducible characters are:

ε_i	χ_i	deg	$\operatorname{Res}(\chi_i)$	\deg
(1,0,0)	$\chi_1 = s_1 + 1$	7	$\psi_1 = s_1 + 1$	7
(0,1,0)	$\chi_2 = s_1 + s_2 + 3$	21	$\psi_1 + \psi_2$	7 + 14
(0,0,1)	$\chi_3 = 2s_1 + s_2 + s_3 + 3$	35	$1 + \psi_1 + \psi_{(2,0)}$	1 + 7 + 27

Here χ_1, χ_2, χ_3 are the fundamental characters for SO(7), and ψ_1, ψ_2 are the fundamental characters for UG₂.

On SO(7) and UG_2

Recognizing UG_2

For identifying or *recognizing* a UG₂ representation inside of SO(7), it suffices to know data for only two symmetric sums (s_1, s_2) .

The relation $s_1^2 = 2s_2 + s_3 + 4$ can be verified if we know s_3 , which might be (computationally) expensive; otherwise we test whether

$$(\chi_1,\chi_2) = (s+1, s_1+s_2+3),$$

are irreducible, as on SO(7), or decompose as

$$(\chi_1, \chi_2) = (\psi_1, \psi_1 + \psi_2),$$

as on UG2. This reduces to a simple test of the inner product matrix:

$$(\langle \chi_i, \chi_j \rangle) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

Thanks for your attention!

On SO(7) and UG_2

Recognizing UG_2

For identifying or *recognizing* a UG₂ representation inside of SO(7), it suffices to know data for only two symmetric sums (s_1, s_2) .

The relation $s_1^2 = 2s_2 + s_3 + 4$ can be verified if we know s_3 , which might be (computationally) expensive; otherwise we test whether

$$(\chi_1,\chi_2) = (s+1, s_1+s_2+3),$$

are irreducible, as on SO(7), or decompose as

$$(\chi_1, \chi_2) = (\psi_1, \psi_1 + \psi_2),$$

as on UG2. This reduces to a simple test of the inner product matrix:

$$(\langle \chi_i, \chi_j \rangle) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
 or $\begin{pmatrix} 1 & 1 \\ 1 & 2 \end{pmatrix}$.

Thanks for your attention!