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Abelian varieties and Galois representations

Let A/K be an abelian variety over a number field K ,O = OK [1/N`]
be an S-order over which A has good reduction. We associate a
Frobenius πp ∈ Aut(T`(A)) to any prime p ∈ Spec(O), acting on the
Tate module by means of its reduction

T`(A) ' T`(A), (1)

giving characteristic polynomial

P(T) = T 2g − a1T 2g−1 + · · ·+ pg (2)

The isomorphism (1) depends on a choice of place v over p in
KA,` = K [A[`∞]] in order to fix the compatible isomorphisms

A[`n] A[`n]

A(KA,`) A(kv)

from which (1) is induced. Any other
choice induces a conjugate li�ing of πp to
Aut(T`(A)), and the characteristic poly-
nomial (2) remains invariant of this choice.
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Abelian varieties and Galois representations

Choosing a symplectic basis for V`(A) = T`(A)⊗Q` with respect to
the Weil paring, we let

ρA,` : Gal(K/K) GSp(2g,Q`) ∼= Aut(V`(A)).

Gal(KA,`/K)

Let G` be the Zariski closure of ρA,`(Gal(K/K), and G1
` be the

unitary subgroup with respect to the symplectic structure.

Let ι : Q` −→ C be a fixed embedding, from which we obtain

GSp(2g,Q`)→ GSp(2g,Q`)⊗ι C = GSp(2g,C),

the induced image in GSp(2g,C). Finally, we denote by USp(2g) the
compact subgroup of unitary symplectic matrices.
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Sato-Tate groups

Definition

The Sato-Tate group ST(A) is a maximal compact Lie subgroup of
G1
` ⊗ι C in USp(2g).

As a consequence of the definition, while the li� of the Frobenius
automorphism depends on a choice of place over p, its normalized
conjugacy class[

πp ⊗ι
1√
Np

]
=

[
ρA,`(Frob(p))⊗ι

1√
Np

]
lies in G1

` ⊗ι C and is well-defined in the set C`(ST(A)) of conjugacy
classes. Its characteristic polynomial is

P(T) = T 2g − ã1T 2g−1 + · · · − ã1T + 1,

where ãi =
ai√
Np

i = ã2g−i, interpre�ed as a character on ST(A).
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Characters on compact Lie groups

The interpretation of ãi as a character on ST(A) implies that its
expectation

E[ãi] =

∫
G
ãidµG

is an integer. In fact
〈ãi, ãj〉 = E[ãiãj]

is the inner product of characters : if

ãi =
∑
k

mkχεk , ãj =
∑
k

nkχεk ,

then
〈ãi, ãj〉 =

∑
k

mknk ∈ N,

by the orthogonality relations on characters.
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Effective characters

E[χ] can be e�ectively computed: if S is a finite initial set of primes
(ordered by norm), set

ES[χ] =
1
|S|
∑
p∈S

χ(πp), and so E[χ] = lim
|S|→∞

ES[χ].

We represent χ as a polynomial in Q[ã1, . . . , ãg].

N.B. While the characters {ã1, . . . , ãg} form a set of fundamental
characters (generating the virtual character ring) for USp(2g), the
restriction to a subgroup G may require rational coe�icients to
express the irreducible characters.

Since {ã1, . . . , ãg} for USp(2g) are real, 〈ãi, ãj〉 = E[ãiãj].

We may adjoin characters of the finite group G/G0, where G0 is the
connected component to extend the known characters for G.
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Moment sequences

Previous approaches considered the fixed characters ã1, . . . , ãg and
sought to “recognize” ST(A) by the moment sequences

Mn(ã1) = E[ãn1 ],...
...

Mn(ãg) = E[ãng], for 1 ≤ n ≤ B.

The problem with moment sequences is the growth: ãni represents
the n-th tensor product character, which decomposes into many
smaller characters of high multiplicities. Thus for ãi = ãi real:

〈ãni , ãni 〉 = M2n(ãi) =
∑
k

n2k where ãni =
∑
k

nkχεk ,

giving a large integer M2n(ãi), whose convergence requires a large
sample size, made worse by the large variance of ãni .
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Variance

The moment M2n(χ) is the self inner product of the character χn:

M2n(χ) = E[χ2n] = 〈χn, χn〉.

Its variance is a a measure of the spread or dispersion of the
distribution; by definition

var(χn) = E
[(
χn − E[χn]

)2]
= E[χ2n]− E[χn]2 = M2n(χ)−Mn(χ)2.

When Mn(χ) = 0, the variance equals M2n(χ), and in general the
growth of the moment sequence is exponential in n so that M2n(χ)
gives the dominate term in var(χn).

Conclusion. The moment sequence is an interesting mathematical
invariant, but computationally ine�icient and impractical.
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Character theory method

In his thesis Yih-Dar Shieh proposed instead to (pre)-compute some
irreducible characters of a target G ⊂ USp(2g), in order to answer
the question “Is ST(A) ⊆ G?” to address “Is G = ST(A)?”.

By expressing χε ∈ Q[ã1, . . . , ãg] as a polynomial, we have

〈χε, χε′〉 =

{
1 if ε = ε′,
0 if ε 6= ε′.

The symplectic characters ã1, . . . , ãg are real, but a subgroup may
have complex characters, for which we cannnot decompose further
than χ = χε + χε. For such a character,

〈χ, χ〉 = 〈χε + χε, χε + χε〉 = 2.
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Weyl character ring

The Weyl virtual character ring R(G) is the formal direct sum
module on irreducible characters. The irreducible characters can be
indexed by a fundamental cone Λ+ ⊂ Zh, where h = rank(G) and
Zh = Hom(T ,U(1)), for a maximal torus T ⊂ G.

The Z-module R(G) forms a ring, equipped with tensor product as
multiplication; addition is identified with direct sum.

Restriction of characters determines a homomorphism:

Res : R(USp(2g)) = Z[ã1, . . . , ãg] −→ R(ST(A)) =
⊕
ε∈Λ+

Zχε.

In what follows we will generalize this construction to families of
abelian varieties with ST(A) ⊆ SO(2n + 1).
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Orthogonal representations

Let SO(2n + 1) be an orthogonal group, of rank n. The characteristic
polynomial of an element A is:

P(T) = TN − ã1TN−1 + ã2TN−2 − · · ·+ ã2nT − 1.

and since A−1 = At , the eigenvalues are closed under the involution
α 7−→ α = α−1 and hence

P(T) = (T − 1)
n∏

i=1
(T − αi)(T − αi)

= (T − 1)
n∏

i=1
(T 2 − �iT + 1).

N.B. In particular there are n degrees of freedom in P(T); here �i
denotes 2 cos(θi) in terms of the Frobenius angles.
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Some combinatorics

This motivates the definition of the polynomial

Q(T) =

n∏
i=1

(T − �i) =

n∑
i=0

(−1)(n−i)siTn−i,

such that P(T) = (T − 1)TnQ
(
T 2 + 1

T

)
·

Suppose we are given, for 0 ≤ r ≤ n, the data of Frobenius traces:

Tr(πr) = 1 + pr = 1 +

n∑
i=1

(αr
i + αr

i ).

Then by the Girard-Newton formulae, we have

sk =
1
k

k∑
i=1

(−1)k−1sk−ipi

from which we can construct sk , hence Q(T) and P(T).
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Katz character sums

In Notes on G2, Katz introduced the exponential sums

Sr(χ, ψ, xN − tx) =
∑
x∈Fpr

χr(x)ψr(xN − tx) ∈ Z[ζm, ζp] (1)

where χr = χ ◦ NFpr /Fp and ψr = ψ ◦ TrFpr /Fp , with

χ a multiplicative character of order m,

ψ an additive character (of order p), and

for any p > 2N + 1 and N ≥ 3.

For m = 2, we define the normalized Katz sums:

S̃r(χ, ψ, xN − tx) =
Sr(χ, ψ, xN − tx)

η(N )r
·

where η(N ) = χ(ε(N )N )G(χ, ψ) is a Gauss sum.
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Katz orthogonal sums

For m = 2 and odd N , Katz proves that his normalized sums

S̃r(χ, ψ, xN − tx)

satisfy the trace distribution (as t varies) for a degree N
representation of

SO(N ) = SO(2n + 1) when N is odd,
EXCEPT UG2 ⊂ SO(7) when N = 7.

For even N , the sums to follow the trace distribution on SU(N ).†

Here G2 is the exceptional Lie group and we denote its compact
subgroup in SO(7) by UG2.

†This is a purely empirical observation, not treated by Katz in Notes on G2.
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Katz curves

Motivated by Katz sums, we define the Katz curve Cm for each m,
equipped with a covering of C1, as follows:

Cm : yp − y = xN − tx where x = zmy
C1 : yp − y = xN − tx

It follows from the definition that

−
∑∑

Sr(χ, ψ, xN − tx) = |Cm(Fpr )| − |C1(Fpr )|,

from which we see that the Katz sums determine the zeta function
of the Prym variety Bm in the exact sequence

0 −→ Bm −→ Jac(Cm) −→ Jac(C1) −→ 0.

15 / 20



Symplectic representations and ST(A) Character theory method Orthogonal representations On SO(7) and UG2

Katz representations

This is rather remarkable: a family of abelian varieties whose
Sato-Tate groups‡ are naturally embedded in SO(2n + 1), but, as the
following lemma indicates, the genera are huge.

Lemma

g(Cm)− g(C1) =
(p − 1)

2
(m− 1)N and g(C1) =

(p − 1)
2

(N − 1).

Remark. The cohomology modules H 1(Bm) and H 1(Jac(C1)) are
modules over Z[ζm, ζp] and Z[ζp] ⊂ C, respectively, which, for m
prime, should be considered as complex modules of dimension N
and N − 1. For computing their zeta functions, they behave like
abelian varieties of dimension n = bN/2c = rank(SO(N )).

‡The distribution is over t, which we refer to as a vertical Sato-Tate group.
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Katz curves

Remark. The parameter t of Cm gives an absolute geometric
invariant. As such, the curves Cm (or the Prym varieties Bm) have a
one-dimensional moduli space, analogous to elliptic curves, to fake
elliptic curves (QM abelian surfaces parametrized by Shimura
curves), or certain genus 3 curves with prescribed automorphisms or
configurations of Weierstrass points.

Despite the lower complexity of these objects, they exhibit behavior
not observed in lower dimension. In particular N = 7 (and m = 2),
this gives a representation of G2.
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On SO(7) and UG2

We specialize to the parameters of N = 7 and m = 2, for which Katz
normalized sums for UG2 ⊂ SO(7) decompose as:

S̃r(χ, ψ, t) = 1 + αr
1 + αr

1 + αr
2 + αr

2 + αr
3 + αr

3,

satisfying the defining relation α1α2α3 = 1 for UG2. We write

P(T) = (T − 1)
3∏

i=1
(T − αi)(T − αi) = (T − 1)

3∏
i=1

(T 2 − �iT + 1).

and set

(s1, s2, s3) = (�1 + �2 + �3, �1�2 + �1�3 + �2�3, �1�2�3).

The condition α1α2α3 = 1 for UG2 translates as

� 21 + � 22 + � 23 = �1�2�3 + 4,

or s21 = 2s2 + s3 + 4 in terms of the symmetric sums.
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Branching rules: from SO(7) to UG2

Branching rules associated to an inclusion H ⊂ G of Lie groups are
decomposition formulas for irreducible characters under restriction:

Res : R(G) −→ R(H).

For G = SO(7) and H = UG2 we have restriction map,

Res : R(SO(7)) = Z[s1, s2, s3] −→ R(UG2) = Z[s1, s2]

taking s3 to s21 − 2s2 − 4. The branching rules on the first irreducible
characters are:

εi χi deg Res(χi) deg

(1, 0, 0) χ1 = s1 + 1 7 ψ1 = s1 + 1 7
(0, 1, 0) χ2 = s1 + s2 + 3 21 ψ1 + ψ2 7 + 14
(0, 0, 1) χ3 = 2s1 + s2 + s3 + 3 35 1 + ψ1 + ψ(2,0) 1 + 7 + 27

Here χ1, χ2, χ3 are the fundamental characters for SO(7), and
ψ1, ψ2 are the fundamental characters for UG2.

19 / 20



Symplectic representations and ST(A) Character theory method Orthogonal representations On SO(7) and UG2

Recognizing UG2

For identifying or recognizing a UG2 representation inside of SO(7),
it su�ices to know data for only two symmetric sums (s1, s2).

The relation s21 = 2s2 + s3 + 4 can be verified if we know s3, which
might be (computationally) expensive; otherwise we test whether

(χ1, χ2) = (s + 1, s1 + s2 + 3),

are irreducible, as on SO(7), or decompose as

(χ1, χ2) = (ψ1, ψ1 + ψ2),

as on UG2. This reduces to a simple test of the inner product matrix:(
〈χi, χj〉

)
=

(
1 0
0 1

)
or
(
1 1
1 2

)
·

Thanks for your a�ention!
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