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Questions (from J-P. Serre)

Definition

Let Nqy(g) denote the maximal number of (rational) points on any
(smooth and projective) curve of genus g over a finite field F.

Fix g, does the value Ny(g) remain at a bounded distance from
the Hasse-Weil bound 1+ q + 2g./q for all q (as is the case for
g=0,1and2)?

Is it possible to give, for each g, positive constants c, q, such that
for all g > qo, we have Ng(g) >1+q+c\/q?
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Three approaches to Question 2

(1) Katz-Sarnak theory - which will give the optimal result of this
kind when g — oc.

(2) Recursive constructions of double covers, starting with well
chosen hyperelliptic curve of genus 2 or 3.

Theorem (B.L-G.H.R.)

For any q and g > 2, Nq¢(g) > g+ 1+ 4,/q — 31.

(3) Counts of points over Fq of moduli spaces of hyperelliptic
curves - reproves the optimal result when g — oo, gives
weaker bounds than with method 2 (with current knowledge
about the moduli spaces).
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Moduli spaces of curves

e For g > 2, let Mg denote the moduli space of curves of
genus g which is defined over Z.

o Let M,(F,) denote the set of Fg-isomorphism classes of
curves over [Fg.

o If C/FF, is a curve of genus g, put
a1(C) = Tr(Frg, H&(C,Qp)) = g+ 1 — #C(F,),
and for n > 1,
~a(0)"
So(@Mg) = >
iz g #AE(C)

o Let Hy C M,y denote the subspace of hyperelliptic curves,
and make the corresponding definitions.
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Results from Katz-Sarnak theory

Theorem (Katz-Sarnak 1999)
Fix g >2,n>1. Let dm be the Haar measure on USp,,, the
compact symplectic group. Then we have,

Sn(q, M) —-1/2
Tr(m)" dm = —22287 4 (g~ 1/?).
/mEUSp2g ( ) qdlm./\/lg+n/2 ( )

Proposition (Katz-Sarnak/Lachaud 2016)
Fix g > 2. Put

1
A(x) := Z -
ceryy T AME(C)
a1(C)<x\/q
Then we have for any —2g < x < 2g,
A(x)/A(2g) = F(x) + O(q/?),

for a strictly increasing function F(x) with F(2g) = 1.

N
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Katz-Sarnak theory: corollary

Corollary (B.L-G.H.R.)
Fix g > 2 and € > 0. For all sufficiently large g we have,

Nq(g) > g+ 1+ (28 —€)V/q.

| 5\

Proof.
Since F(x) is strictly increasing for —2g < x < 2g, F(2g —¢) < 1.
So, taking sufficiently large g we have

A2g —€)/A(2g) < 1.
Hence, there is a curve C/F, with a;(C) > (2g —€),/q. O

v

Note that the above results holds just as well when one replaces
Mg with H,.
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Recursive double covers: the towers

The idea is to construct double covers of hyperelliptic curves
Ch— ... = G, with #Ci;11(Fq) > #Ci(Fq) and increasing genus.

Lemma (B.L-G.H.R.)

Let q be odd and let C/F, be a hyperelliptic curve of genus g
(with fewer than q rational Weierstrass points). Then there is a
hyperelliptic curve D of genus 2g + 1 that is a double cover of C
and such that #D(Fq) > #C(Fy).

A\

Proof (sketch).

Say that C is given by y? = f(x) of degree 2g + 2 and f(0) # 0,
then y2 = f(x?) and y? = f(n - x?), with n a non-square in Fy,
gives D, D’ such that #D(Fq) + #D'(Fq) = 2#C(F). O

There is a similar lemma (with a more subtle proof), demanding
that C has exactly two rational Weierstrass points, for covers of
genus 2g.
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Recursive double covers: the base cases

Lemma (B.L-G.H.R.)

Let q be odd. Then there is a curve C/Fq of genus 2 with exactly
two rational Weierstrass points such that

1+q+4,/G-5 ifq<512

C(Fq) >
#C(Fq) {1+q+4vﬁ—32 if g > 512.

Excerpts from the proof.

The result for g < 512 is found by computer counts.

For g =3 4, we can find an elliptic curve E : y? = x(x — a)(x — b)

such that (a1(E),q) =1, a1(E) =¢ —q — 1 and a1(E) > 2,/q — 16.

Using results of Howe, Leprévost, Poonen, the curve y2 = h with:
h=c(x*+ b/a)(x* — (a— b)/b) (x* — a/(b— a)),

has a Jacobian which is isogenous to E x E and which has exactly

two rational Weierstrass points. []

o’
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Recursive double covers: summing up

@ There is a similar result in genus 3 (using double covers of
curves of genus 2 constructed as in the previous lemma).

@ With these base cases in genus 2 and 3 we can reach any
genus g using towers as above.

@ There are corresponding results when q is even.

@ In summary we have (as we saw before):

Theorem (B.L-G.H.R.)

For any q and g > 2, Ny(g) > q+1+4,/q—31.
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Counting points on moduli spaces of hyperelliptic curves

Theorem (B. 2009)
For every g > 2 and q we have

S2(q, Hg) = [¢°6] — 1

2g 2
q¢(3¢g°+q+1) 1 2
= —_ — _ 1
54(q, M) [ p—— (@ —=1)(g-2)(g+1)g"+
1 3 2
+5(=q"+29" 79 +2)g —3q +2
2g 4 2
q°8(15q* + 164q —|—2q—|—1)]
Se(q, Hg) =
6(q, Hg) [ G+ 17 +

where [f1/f] denotes the polynomial quotient in the Euclidean
division of f; by f.

@ The part [-] is the contribution from the stable cohomology.
e We also prove a formula for Sg(q, Hg) = 105¢°63 + .. ..

Jonas Bergstrom Lower bounds ...



Point counting corollary

Theorem (B.L-G.H.R.)
Forg > 2, q and (even) n > 2, let

2q,n(8) = (Sn(a, Hg)/q " Hetn/2)1/,
Then Ng(g) > g+ 1+ aq,n(g)/q.

A\

Proof (sketch).

There are 261, Fq—isomorphism classes of hyperelliptic genus-g
curves defined over . Each such can be represented by a curve

Ci1,..., Cpe—1 over g and a positive integer s,(C;) such that
2g—1

a1(G)" > sp(Ci) and Sn(q, Hg) = Y71 sn(Ci). So, there has to

be a curve C; such that a1(C;)" > Sp(q, Hg)/q*6 1.

Ol

4

@ For n=8, g > 3 and odd g > 11 this gives the corollary,
Ng(g) > g+ 1+1.71,/q.
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The main term when point counting

Theorem (B.L-G.H.R.)
For g > 2 and (even) n > 2 let

an(g) = qlrgo Sn(q”Hg)/qdim'Hngn/?

Then a,(g) is equal to the number of times the trivial
representation appears in the USp,,-representation Ven with V
the standard representation.

Proof (sketch).
See the Katz-Sarnak theorem.

Theorem (B.L-G.H.R.)

For every g > 2, we have

(a20(g))"*" = 2g..

lim
n—0o0
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Representations and local systems

e From now on work in progress (and less directly connected

to Ny(g)).

@ The irreducible representations V) (j) of GSp,, are indexed by
A= (A1,...,Ag) with Ay > ... > Xy >0 and an integer j.

@ Put |\| = A1 + ...+ Az and note that V) = V) (|A]).

o Let V = V(3)(—1) be the standard representation.

@ From the universal curve 7 : Hg 1 — H, we define the local
system V := Rlﬂ'*(@g.

o For [C] € M, we have V¢ = H'(C,Qy) and from the
symplectic pairing we get induced local systems V,()).
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Lefschetz trace formula and cohomology of local systems

@ For any n, there are integers c) , > 0 such that,
Ve (B VPO ((—n+ M)/2).
[A|<n

o Note that ¢y , =0 if |A| #2 n.

@ The Lefschetz trace formula gives us,

2dim Hy
Sa(@,Hg) = Y (=1) Tr(Frq, Hi(Hg @ Fq, VP")) =
i=0
2dim Hg
Z Z Tr Frq, H! (Hg®IF VA)) q("7|’\‘)/2.

AI<n
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The zeroeth cohomology group

@ Deligne’s theory of weights tells us that that the trace of
Frobenius on He(Hg ® g, V) is equal (after choosing an
embedding of Q, in C) to a sum of complex numbers with
absolute value at most gUtIAD/2,

@ So only when j = 2dimH, can we get a contribution to

an(Hg)-
@ Poincaré duality gives

HO(Hg ®quv)\) = Hgdimﬂg(%g ®Fq,V,\)(dim’Hg).

o But H(H, ® Fy,V)) is non-zero precisely if V is trivial and
Frobenius acts as multiplication by 1, hence we reprove that:
an(Hg) is equal to the number of times the trivial
representation appears in the USp,,-representation ven

@ Note that this is also the argument by Katz-Sarnak.
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The first cohomology group and even n

@ We will now return to M,.

e Take g > 3. From the work of Johnson 83’ and Hain 95" we
know that H}(M,, V) is non-zero if and only if A = (1,1,1).

@ By comparison theorems the same holds (in étale
cohomology) for HY(M, @ Fq, V).

@ The same type of argument using Deligne's theory of weights
gives the following,

Theorem (B.L-G.H.R.)

For any g > 3 and even n > 2,

n Sn qu =
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The first cohomology group and odd n

@ For odd n and g > 3 let us define

. . Sn(q7Mg)
bn(Mg) :=— un_}moo gdim Mg+(n—1)/2°

@ The cohomology group H}(M, ® Fq,V(Ll’l)) is of dimension
one and generated by the Gross-Schoen cycle, so the action of
Frq on this cohomology group is by multiplication by g.

@ Using again Deligne's theory of weights we get,

Theorem (B.L-G.H.R.)

For any g > 3 and odd n > 1, b,(M,) equals the number of times
the representation V(1 11y appears in the USp,,-representation
VO with V the standard representation.
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Serre's obstruction and experiments in genus three

@ In genus g > 3 there are non-hyperelliptic curves and for such
curves, the quadratic twist of its Jacobian is never a Jacobian.
This is called Serre’s obstruction.

@ Define,
1 1
Nog() = —gmxe D Tho 7oy
q g CEMg(]Fq) #Auth(C)
a1(C)=[xy4/
and

Vq,g(x) =/q (Nq,g(x) _qug(_x)%
to measure this obstruction.

o Concrete data for Vg 3(x) for small g seems to indicate that it
follows a common distribution:
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Linear interpolation

020
015
0.10 4
0.05

0 T

1 s

-005 4
——q-13——q-17——q=23  ¢-29 —q-37  g-4l
- q=41 - g-%3

Jonas Bergstrém Lower bounds ...



Heuristics for V, 3(x).

e This data (and graph) was found by Lercier, Ritzenthaler,
Rovetta, Sijsling, Smith 19" and they gave a heuristic
argument that the distribution V, 3(x) is related to the
function

Vim(x) = x(1 — x?/3) - ie"(z/2 .
27

@ This relates to our older considerations since for odd n,

t nV t o 25n(q7Mg)
Z ﬁ 9.8 ﬁ — gdim Mg+(n—1)/2

~2g/G<t<2g\/q

so letting g go to oo this expression goes to —2b,(g).

o Let now vi™ be of the form P(x) - (\/%e_xz/z) with P an

odd polynomial of degree 5, with odd moments matching
—2b,(3) for n < 5, we seem to get get an even better
approximation:
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Comparisons with Vs3 3(x).

0.201

-0.054

Figure: Vs3 3 in grey, Vim in blue and 2™ in red.
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Thank you for listening!



