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Questions about error terms in Sato-Tate distributions



Equidistributed sequences

Let Ω be a closed interval in R with a probability measure µ. A
sequence X = {xn} of real numbers in Ω is said to be
equidistributed with respect to µ (or µ-equidistributed) if for all
intervals I ⊆ Ω,

lim
V→∞

1

V
#{1 ≤ n ≤ V : xn ∈ I} =

∫
I
dµ.

Equivalently, for any continuous function φ : Ω→ C,

lim
V→∞

1

V

V∑
n=1

φ(xn) =

∫
Ω
φdµ.

A pertinent analytic question about a µ-equidistributed sequence is
about error terms in the above asymptotics.
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Error terms in µ-equidistributed sequences

Can we find explicit bounds for the discrepancies

DX (I ,V ) := #{1 ≤ n ≤ V : xn ∈ I} − V

∫
I
dµ

and

DX (φ,V ) :=
V∑

n=1

φ(xn)− V

∫
Ω
φdµ

in terms of V ?

We consider sequences X in a suitable family F . Can we
obtain average error terms

1

|F|
∑
X∈F

DX (I ,V ) and
1

|F|
∑
X∈F

DX (φ,V )?

Does the order of the discrepancy improve upon averaging?
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Fluctuations

Can we estimate or find asymptotics for the variance

1

|F|
∑
X∈F

(DX (I ,V ))2,

and
1

|F|
∑
X∈F

(DX (φ,V ))2?

This leads to questions about higher moments of DX (I ,V )
and DX (φ,V ).

Such questions can be approached by modelling DX (I ,V ) and
DX (φ,V ) as sums of “independent” random variables.
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Spacing statistics

In case the sequence X is uniformly distributed in [0, 1], are
the spacings between its elements distributed like those in a
sequence of random points in [0, 1]?

The above question can be studied with the help of notions
such as level spacing distribution, pair correlation and k-level
correlations.

For a positive, real number s > 0, define

R(2)(s,X ,N) :=
1

N
#
{

1 ≤ i 6= j ≤ N : |xi − xj | ≤
s

N

}
.

If the limit limN→∞ R(2)(s,X ,N) =
∫ s
−s R(t)dt, then R(t) is

called the pair correlation function of the sequence X .

If R(t) = 1, then we say that the pair correlation function of
X is Poissonnian.
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Fourier coefficients of modular cusp forms

Let k and N be positive integers with k even.

Let Sk(N) denote the space of modular cusp forms of weight
k with respect to Γ0(N).

For n ≥ 1, let Tn denote the n-th Hecke operator acting on
Sk(N). We denote the set of Hecke newforms in Sk(N) by
Fk(N). Let sk(N) := |Fk(N)|.
Any Hecke newform f (z) ∈ Fk(N) has a Fourier expansion

f (z) =
∞∑
n=1

n
k−1

2 af (n)qn,

where af (1) = 1 and

Tn(f (z))

n
k−1

2

= af (n)f (z), n ≥ 1.
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Sato-Tate sequences

Let p be a prime number such that (p,N) = 1. By the
Ramanujan-Deligne bound, af (p) ∈ [−2, 2].

For a fixed f ∈ Fk(N), and (p,N) = 1, we denote
af (p) = 2 cosπ θf (p), θf (p) ∈ [0, 1].

We consider the sequence {θf (p)}p→∞,(p,N)=1 lying in [0, 1].

By the Sato-Tate equidistribution theorem, for a non-CM
eigenform f ∈ Fk(N), the above sequence is equidistributed in
the interval [0, 1] with respect to the measure

µ(t) = 2 sin2(πt) = 1− cos 2πt.

That is, for any interval I ⊂ [0, 1],

lim
x→∞

1

πN(x)
#{p ≤ x , (p,N) = 1 : θf (p) ∈ I} =

∫
I
µ(t)dt,

where πN(x) is the number of primes up to x , coprime to N.
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Sate-Tate equidistribution law

Equivalently, {af (p)}p→∞,(p,N)=1 is equidistributed in [−2, 2]
with respect to the measure

1

π

√
1− y2

4
.

That is, for any continuous function g : [−2, 2]→ R,

lim
x→∞

1

πN(x)

∑
p≤x

(p,N)=1

g (af (p)) =
1

π

∫ 2

−2
g(y)

√
1− y2

4
dy .

It is sufficient to check whether above asymptotic holds for a
collection of polynomials Pm(y), m ≥ 0 where Pm(y) denotes
a polynomial of degree m.
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We choose {Um(y)}m≥0, where Um(y) is the m-th Chebyshev
polynomial given by

Um(y) =
sin(m + 1)πθ

sinπθ
, y = 2 cosπθ, θ ∈ [0, 1].

Since Um(af (p)) = af (pm), the Sato-Tate equidistribution law
is equivalent to the assertion that for every m ≥ 0,

lim
x→∞

1

πN(x)

∑
p≤x

(p,N)=1

af (pm) =
1

π

∫ 2

−2
Um(y)

√
1− y2

4
dy

=

{
1 if m = 0

0 if m > 0.
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Error terms in the Sato-Tate distribution

Recall af (p) = 2 cosπ θf (p), θf (p) ∈ [0, 1]. Let us fix an
interval I ⊂ [0, 1].Can one find effective estimates for the
discrepancy in the Sato-Tate theorem?That is, for a non-CM
f ∈ Fk(N), can we find bounds for

Df ,I (x) := #{p ≤ x , (p,N) = 1 : θf (p) ∈ I}−πN(x)

∫
I
µ(t)dt,

for µ(t) = 2 sin2 πt?

For a continuous function g on the interval [0, 1], can we find
bounds for

Df (g , x) :=
∑
p≤x

(p,N)=1

g (θf (p))− πN(x)

∫ 1

0
g(t)µ(t)dt?
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In 1985, V. K. Murty showed that for f ∈ F2(N), N square
free, n1/2af (n) ∈ Z,

Df ,I (x)� x3/4
√

logNx

(under the assumption that all symmetric power L-functions
associated to f are automorphic and satisfy the GRH.)

By the work of Rouse and Thorner in 2016, for all even k ≥ 2,

Df ,I (x)� x3/4 logNkx

log x

(under similar strong analytic assumptions.)

Thorner (2020) proves unconditionally that

Df ,I (x)� π(x) log(kN log x))√
log x

.
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Modelling by random variables

We choose an interval I ⊂ [0, 1].

Denote µ(I ) :=
∫
I µ(t)dt.

For a prime p coprime to N, define Xp : Fk(N)→ {0, 1} as

Xp(f ) = χI (θf (p)).

Thus, ∑
p≤x

(p,N)=1

Xp(f ) = #{p ≤ x , (p,N) = 1 : θf (p) ∈ I}.

µp = E[Xp] = 1
sk (N)

∑
f ∈Fk (N) χI (θf (p)).

σ2
p = 1

sk (N)

∑
f ∈Fk (N)(Xp(f )− µp)2.
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Some remarks on µp

µp := E[Xp] = 1
sk (N)

∑
f ∈Fk (N) χI (θf (p)).

Theorem (Sarnak, 1984 and Serre,1997)

lim
k+N→∞

p-N

µp =

∫
I
νp(t)dt,

where

νp(t) =
p + 1

π
[
(p1/2 + p−1/2)2 − 4 cos2 πt

]µ(t).

Note: The “vertical Sato-Tate” perspective goes back to the work
of Sarnak in 1984, where the above result was proved for spaces of
primitive Maass cusp forms. Proved independently by Conrey,
Duke and Farmer for N = 1.
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The trace formula for Hecke operators

Proposition (Estimates from the Eichler-Selberg trace formula)

Let k be a positive even integer, m be a positive integer and p be
coprime to N. Then,

1

sk(N)

∑
f ∈Fk (N)

af (pm) =
δ2|m

pm/2
+ O

(
pmc

kN1/2−ε

)
.

Here, c is an absolute constant such that 1 < c < 2.

Theorem (Sarnak, Zubrilina, 2022)

1

sk(N)

∑
f ∈Fk (N)

af (pm) =
δ2|m

pm/2
+ O

(
pm/8+ε

N1/2−ε

)
.
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Thus, for every m ≥ 0,

lim
k+N→∞

p-N

1

sk(N)

∑
f ∈Fk (N)

Um(af (p))

= lim
k+N→∞

p-N

1

sk(N)

∑
f ∈Fk (N)

af (pm)

=

{
1

pm/2 if m is even

0 if m is odd

=

∫ 2

−2
Um(y)ν̃p(y)dy ,

where

ν̃p(y) =
p + 1

π
[
(p1/2 + p−1/2)2 − y2

]√1− y2

4
.
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What can we say about
∑

p≤x µp and

∑
p≤x

σ2
p =

1

sk(N)

∑
f ∈Fk (N)

∑
p≤x

(χI (θf (p))− µp)2 .

If Xp and Xq were mutually independent, then one could try to use
a CLT to predict if ∑

p≤x(Xp − µp)√∑
p≤x σ

2
p

is normally distributed.

Theorem (Sarnak, 1984)

Let p, q be distinct primes. Then, as N + k →∞ such that k is
even and p, q - N,

E[XpXq] ∼ νp(I )νq(I ).
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Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Is E[XpXq] = E[Xp]E[Xq] on Fk(N)?

Theorem

For fixed positive integers k and N (k even), a prime p coprime to
N,

1 (Murty, S, 2009)

µp = E[Xp] = νp(I ) + O

(
log p

log kN

)
,

where νp(I ) =
∫
I νp(t)dt.

2 (Lau, Wang, 2011) If p and q are distinct primes coprime to
N,

E[XpXq] = νp(I )νq(I ) + O

(
log pq

log kN

)

= E[Xp]E[Xq] + O

(
log pq

log kN

)
.

Questions about error terms in Sato-Tate distributions



Theorem (Conrey-Duke-Farmer, 1997, Nagoshi, 2006)

Let I be a fixed interval in [0, 1] and Xp : Fk(1)→ {0, 1} is given
by Xp(f ) = χI (θf (p)).

Let k = k(x) such that log k
log x →∞ as x →∞.

Then,
∑
p≤x

E[Xp] =
1

sk(1)

∑
f ∈Fk (1)

∑
p≤x

χI (θf (p)) ∼ π(x)µ(I )

as x →∞.

Remark: The above can be interpreted as Sato-Tate on average
over Fk(1).

Wang (2014):
∑

p≤x E[Xp] = µ(I ) + O
(

log x
log k + log x log log x

x

)
.

Above results can be generalized to a higher (fixed) level N.
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Theorem (Prabhu-S, 2019)

Let N be a positive integer. If (p,N) = 1, define
Xp : Fk(N)→ {0, 1} as Xp(f ) = χI (θf (p)). Let k = k(x) such
that

log k√
x log x

→∞ as x →∞.

Then, ∑
p≤x

σ2
p ∼ π(x)[µ(I )− µ(I )2]

as x →∞. For any integer r ≥ 0,

lim
x→∞

1

sk(N)

∑
f ∈Fk (N)

(∑
p≤x χI (θf (p))− π(x)µ(I )√

π(x)[µ(I )− µ(I )2]

)r

=
1√
2π

∫ ∞
−∞

tre−t
2/2dt.
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Smooth analogue

(Joint work with S. Baier and N. Prabhu)

Replace χI by a suitable test function.

One takes a real-valued, even test function g ∈ C∞(R).

One then considers, for L ≥ 1,

GL(θ) :=
∑
m∈Z

g (L(θ + m)) .

GL(θ) is a smooth analogue of χ[−1/L,1/L].

The function GL(θ) is periodic and has Fourier expansion∑
m∈Z

1

L
ĝ
(m
L

)
e(mθ).
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Define Xp : Fk(N)→ R as Xp(f ) = GL(θf (p))

Note

µp = E[Xp] =
1

sk(N)

∑
f ∈Fk (N)

GL(θf (p)).

σ2
p =

1

sk(N)

∑
f ∈Fk (N)

(GL(θf (p))− µp)2 .

Distribution of ∑
p≤x(Xp − µp)√∑

p≤x σ
2
p

?
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Theorem (Baier-Prabhu-S, 2020)

Let g ∈ C∞(R) be a real-valued and even function in the Schwartz
class such that the Fourier transform of g is compactly supported.

Let k = k(x) such that

log k

log x
→∞ as x →∞.

Then, as x →∞,∑
p≤x E[Xp] ∼ π(x)

∫ 1
0 GL(t)µ(t)dt,∑

p≤x σ
2
p ∼ π(x)VG ,L, where

VG ,L =

∫ 1

0
GL(t)2µ(t)dt −

(∫ 1

0
GL(t)µ(t)dt

)2

.
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Theorem (Contd.)

For any integer r ≥ 0,

1

sk(N)

∑
f ∈Fk (N)

(∑
p≤x Xp(f )− π(x)

∫ 1
0 GL(t)µ(t)dt√

π(x)VG ,L

)r

∼ 1√
2π

∫ ∞
−∞

tre−t
2/2dt.

Theorem (Baier-Prabhu-S, 2020)

For λ, ω > 0, suppose the Fourier transform ĝ satisfies
ĝ(t)� e−λ|t|

ω
, as |t| → ∞. Then, the conclusions of previous

theorem hold if k = k(x) ≥ 2 satisfies (log k)

(log x)1+1/ω →∞ as x →∞.
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ĝ(t)� e−λ|t|

ω
, as |t| → ∞. Then, the conclusions of previous

theorem hold if k = k(x) ≥ 2 satisfies (log k)

(log x)1+1/ω →∞ as x →∞.

Questions about error terms in Sato-Tate distributions



Motivation and proofs

In 2006, Nagoshi proved the following: If log k/ log x →∞ as
x →∞, then

lim
x→∞

1

sk(1)

∑
f ∈Fk (1)

(∑
p≤x af (p)√
π(x)

)r

=
1√
2π

∫ ∞
−∞

tre−t
2/2dt.

We approximate

L∑
m=0

S−(m)af (p2m) ≤ χI (θf (p)) ≤
L∑

m=0

S+(m)af (p2m),

and reduce our questions to the evaluation of moments

1

sk(N)

∑
f ∈Fk (N)

∑
p≤x

L∑
m=1

S±(m)af (p2m)

r

.
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The approximation of the characteristic function by these
trigonometric polynomials gives rise to (essentially) two
dominant error terms involving the parameter L.

The process of choosing an optimal value for L that balances
these two error terms is what results in the growth condition
of the weights k with respect to x .

It is natural to consider

1

sk(N)

∑
f ∈Fk (N)

∑
p≤x

∞∑
m=1

G (m)af (p2m)

r

,

and seek conditions on G (m) which ensure the convergence of
these moments.

This motivates us to choose the kind of test functions which
ensure appropriate decay of G (m). The contribution from
af (p2m) is measured by trace formulas.
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Straightened Hecke angles

We “straighten out” the Sato-Tate sequence into a uniformly
distributed sequence by defining

H(θf (p)) :=

∫ θf (p)

0
µ(t)dt.

By the Sato-Tate distribution theorem, the sequence
{H(θf (p)) : (p,N) = 1} is uniformly distributed in the
interval [0, 1].

In the 1990s, Katz and Sarnak asked questions that compares
the spacings between straightened Hecke angles to Poissonian
spacing spacings.

One way to address these questions is via the pair correlation
function, which looks at the spacings between unordered
elements of a uniformly distributed sequence.
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Pair correlation of straightened Hecke angles

Question (Katz, Sarnak)

For any s > 0, define the interval

Ix =

[
−s

πN(x)
,

s

πN(x)

]
.

the pair correlation function of the sequence
{H(θf (p)) : p prime, (p,N) = 1} is defined as:

R(x , s)(f ) :=

1

πN(x)
#

{
(p, q) : p 6= q ≤ x , (p,N) = (q,N) = 1,

H(θf (p))− H(θf (q)) ∈ Ix + Z

}
.

For any s > 0, does limx→∞ R(x , s)(f ) exist and is it equal to 2s?
If the answer is yes, we say that the sequence {H(θf (p))} has
Poissonnian pair correlation.
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Pair correlation in “mesoscopic” regimes

A variation of the question can be asked by restricting θf (p)
to short intervals I , such that |I | → 0 as x →∞.

Let 0 < ψ < 1 and Iδ denote intervals of the form

[ψ − δ, ψ + δ] , δ = δ(x)→ 0 as x →∞.

Suppose

# {p ≤ x : (p,N) = 1, θf (p) ∈ Iδ} ∼ πN(x)µ(Iδ) as x →∞.

We define

R̃δ(x , s)(f ) :=

1

πN(x)µ(Iδ)
#


(p, q) : p 6= q ≤ x , (p,N) = (q,N) = 1,

θf (p), θf (q)) ∈ Iδ,
H(θf (p))− H(θf (q)) ∈ Ix

 .
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Does the limit limx→∞ R̃δ(x , s)(f ) exist and is it equal to 2s?

To answer this question, we need conditions on δ(x) for which
the asymptotic

# {p ≤ x : (p,N) = 1, θf (p) ∈ Iδ} ∼ πN(x)µ(Iδ)

holds.

The existence and distribution of Hecke angles in shrinking
intervals I with |I | → 0 as x →∞ is linked to effective error
terms in the Sato-Tate equidistribution theorem.

By the result of Thorner, we get the following: Let F (x) be a
monotonically increasing function with limx→∞ F (x) =∞. If
δ(x)→ 0 is chosen such that

µ(Iδ) ≥
log(kN log x)F (x)√

log x
,

then #{p ≤ x : (p,N) = 1, θf (p) ∈ Iδ} ∼ πN(x)µ(Iδ).
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Simplifying R̃δ(x , s)(f )

For 0 < ψ < 1, henceforth, we denote A := 2 sin2 πψ. Let us
consider intervals

IL :=

[
ψ − 1

AL
, ψ +

1

AL

]
.

Here, L = L(x)→∞ as x →∞, and the Sato-Tate
distribution law holds for IL.
The advantage of localizing our intervals around ψ is that the
Sato-Tate density 2 sin2 πt ∼ A is essentially constant in short
intervals around ψ and the straightening of the Hecke angles
amounts to rescaling them.
Thus,

Lf := # {p ≤ x : (p,N) = 1, θf (p) ∈ IL}

∼ πN(x)

∫ ψ+ 1
AL

ψ− 1
AL

2 sin2 πt dt ∼ A
2

AL
πN(x) =

2πN(x)

L
.
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If θf (p), θf (p) ∈ IL, then, as x →∞,

H(θf (p))−H(θf (q)) =

∫ θf (p)

θf (q)
2 sin2 πt dt ∼ A(θf (p)− θf (q)).

Let

Ĩx =

[
−s

AπN(x)
,

s

AπN(x)

]
.

As x →∞,
R̃1/AL(x , s)(f )

∼ 1

Lf

∑
p 6=q≤x

χIL(θf (p))χIL(θf (q))χ
Ĩx

(θf (p)− θf (q)).
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Smooth analogue of pair correlation function

Let g , ρ be real valued, even functions ∈ C∞(R) in the
Schwartz class with Fourier transforms supported in the
interval [−1, 1].

Define, for L = L(x) ≥ 1, the functions

ρL(θ) :=
∑
n∈Z

ρ(L(θ + n)), Gx(θ) :=
∑
n∈Z

g (πN(x)(θ + n)) .

The smoothened pair correlation function is

R2(g , ρ)(f ) :=

L

2πN(x)

∑
p,q≤x

(p,N)=(q,N)=1
p 6=q

ρL(θf (p)−ψ)ρL(θf (q)−ψ)Gx(θf (p)− θf (q)).

Poissonnian pair correlation: R2(g , ρ)(f ) ∼ A2ĝ(0)ρ ∗ ρ(0) as
x →∞.
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Expected value of the pair correlation function

Theorem (Balasubramanyam, S, 2019)

We consider families Fk(N), N = N(x) and even k = k(x).

1

1

|Fk(N)|
∑

f ∈Fk (N)

R2(g , ρ)(f ) = A2ĝ(0)ρ ∗ ρ(0)

+ O

(
1

L

)
+ O

(
L(log log x)2

πN(x)

)
+ O

(
LπN(x)xπN(x)c

√
N

|Fk(N)|

)
.

2 If we choose L such that L = o
(

πN(x)
(log log x)2

)
, and consider

families Fk(N) such that
log(k

√
N/4ν(N))
x →∞, then,

1

|Fk(N)|
∑

f ∈Fk (N)

R2(g , ρ)(f ) ∼ A2ĝ(0)ρ ∗ ρ(0) as x →∞.
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Second moment and variance

Theorem (Mahajan, S, 2022)

Let N, k , ρL,Gx ,R2 be as defined above.

1

|Fk(N)|
∑

f ∈Fk (N)

(
R2(g , ρ)(f )− A2ĝ(0)ρ ∗ ρ(0)

)2

� 1

L
+

L(log log x)2

πN(x)
+

L2(log log x)3

πN(x)2
+

L2(log log x)4

πN(x)3

+
L3(log log x)2

πN(x)3
+

L3(log log x)4

πN(x)4

+
L4πN(x)2x (8L+8πN(x))c ′4ν(N)

k
√
N

,

where c ′ > 0 is an absolute constant.
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Theorem (Contd.)

If we choose L(x) = o
(

πN(x)
(log log x)2

)
, and consider families Fk(N)

with levels N = N(x) and even weights k = k(x) such that

log
(
k
√
N/4ν(N)

)
x

→∞ as x →∞,

then

lim
x→∞

1

|Fk(N)|
∑

f ∈Fk (N)

(
R2(g , ρ)(f )− A2ĝ(0)ρ ∗ ρ(0)

)2
= 0.

Question: Are the above growth conditions sufficient to give us

1

|Fk(N)|
∑

f ∈Fk (N)

(R2(g , ρ)(f ))r ∼ (A2ĝ(0)ρ ∗ ρ(0))r?
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Terms of the pair correlation function

R2(g , ρ)(f ) :=

1

Lf

∑
p 6=q≤x

ρL(θf (p)−ψ)ρL(θf (q)−ψ)gx (θf (p)− θf (q))

=
1

Lf L2πN(x)

∑
p 6=q≤x

∑
l≥0

H(l)af (p2l)

∑
l ′≥0

H(l ′)af (q2l ′)


×

4G (0) +
∑
n≥1

2G (n)(af (p2n)− af (p2n−2))(af (q2n)− af (q2n−2))

 ,
where

H(l) = ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)

and G (n) = ĝ (n/πN(x)) .
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and G (n) = ĝ (n/πN(x)) .

Questions about error terms in Sato-Tate distributions



Terms of the pair correlation function

R2(g , ρ)(f ) :=

1

Lf

∑
p 6=q≤x

ρL(θf (p)−ψ)ρL(θf (q)−ψ)gx (θf (p)− θf (q))

=
1

Lf L2πN(x)

∑
p 6=q≤x

∑
l≥0

H(l)af (p2l)

∑
l ′≥0

H(l ′)af (q2l ′)


×

4G (0) +
∑
n≥1

2G (n)(af (p2n)− af (p2n−2))(af (q2n)− af (q2n−2))

 ,

where

H(l) = ρ̂

(
l

L

)
(2 cos 2πlψ)− ρ̂

(
l + 1

L

)
(2 cos 2π(l + 1)ψ)

and G (n) = ĝ (n/πN(x)) .
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Some comments

The variance theorem tells us that the value of the pair
correlation function limx→∞ R2(g , ρ)(f ) is more and more
likely to be Poissonnian for f in large families Fk(N).

However, we require the size of the families Fk(N) to grow
rapidly for this asymptotic to hold. This limitation comes from
the estimation of a term in the Eichler-Selberg trace formula.
A term in the trace formula leads to estimates of the form

O

(
xDπN(x)4ν(N)

k
√
N

)

for a positive constant D in the pair correlation sum.
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