
ECM and the Elliott–Halberstam conjecture for quadratic fields

Razvan Barbulescu and Florent Jouve 1

1 Univ. Bordeaux, CNRS, Bordeaux INP, IMB, UMR 5251, F-33400, Talence, France,
razvan.barbulescu@u-bordeaux.fr and florent.jouve@u-bordeaux.fr

January 2023

Abstract

The complexity of the elliptic curve method of factorization (ECM) is proven under a
strong conjectural form of existence of friable numbers in short intervals. In the present
work we use friability to tackle a different version of ECM which is much more studied and
implemented, especially because it enables the use of ECM-friendly curves. In the case of
curves with complex multiplication (CM) we replace heuristic arguments by rigorous results
conditional on the Elliott–Halberstam (EH) conjecture. The proven results mirror recent
work concerning the count of primes p such that p − 1 is friable. In the case of non CM
curves, we explore consequences of a hypothetical statement that can be seen as an elliptic
curve analogue of EH.

1 Introduction

Let E/Q be an elliptic curve that has good reduction precisely at every prime number not
dividing an integer ∆E . The main object of study of this paper is the prime counting function
ψE(x, y) which is defined as the cardinality of

ΨE(x, y) = {p ≤ x : p prime, p ∤ ∆E , |E(Fp)| is y-friable}. (1)

Here we make the usual slight abuse of notation and write E(Fp) for the set of Fp-points on
the reduction of E modulo p and we also recall that an integer is y-friable (or y-smooth) if all
its prime factors are less than y. For any integer n we shall denote by P−(n) (resp P+(n))
the smallest (resp. the largest) prime factor of n. By convention P−(1) = ∞. The notation
ψE(x, y) is reminiscent of ψ(x, y) which denotes the cardinality of

Ψ(x, y) = {n ≤ x : P+(n) < y}. (2)

Our main motivation for studying ΨE(x, y) comes from cryptography and more precisely from
the method of factorization ECM. First recall the principle and purposes of ECM [Len87].
Let P ∈ E(Q) be a rational point with homogeneous coordinates P = (xP : yP : zP ) ∈
E(Q), relatively to a fixed projective embedding of E. Without loss of generality we can
assume xP , yP , zP ∈ Z. Let N be a given positive integer for which one would like to find
the prime factorization; set two parameters u = u(N) and v = v(N) in (0, 1) and define
B = N1/u, C = B1/v. Note that if gcd(xP , yP , zP , N) = 1 and gcd(N,∆E) = 1 then E has
good reduction modulo any unknown prime factor p of N and P̄ := (xP : yP : zP ) mod p belongs
to E(Fp). Running ECM for E and N consists in computing the multiple Q = (xQ : yQ : zQ) :=
[M ]P mod N for M = (⌊C⌋!)⌊logN/ log 2⌋, i.e. one uses the chord-and-tangent formulæ and
reduces the coordinates modulo N (if two points have distinct coordinates modulo N then one
uses the formula for adding two distinct points). We summarize this in Algorithm 1 below.
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Algorithm 1: One curve subroutine of ECM

Input: parameters u, v, an integer N , an elliptic curve E/Q and P ∈ E(Q).
Output: a prime factor p of N such that p < B := ⌊N1/u⌋ or FAIL.
1: C ← ⌊B1/v⌋
2: M ← C!⌊logN/ log 2⌋

3: Q : (xQ : yQ : zQ)← [M ]P mod N
4: g ← gcd(zQ, N)
5: if g ̸= 1 then
6: print g
7: end if

Claim 1. If |E(Fp)| is C-friable for some (unknown) prime factor p of N , then gN := gcd(zQ, N)
is a multiple of p.

Let us give the main ideas justifying the claim. If the points involved in the double-and-add
method were all distinct not only modulo N but also modulo p, then Q would be the neutral
element, so zQ ≡ 0 (mod p). If one used a wrong formula because two points were distinct
modulo N but equal modulo p, then xQ ≡ yQ ≡ zQ ≡ 0 (mod p). In both cases ECM finds
a multiple of p and a careful analysis shows that the probability that the result is exactly p
is 1 − op→∞(1) (see [Len87]). If gN is a prime factor of N we are done, otherwise we pick a
different curve E and start over until a factor is found.

The ECM algorithm consists in repeating Algorithm 1 either once, or a given number of
times, or until success, depending on the application. ECM is primarily used to completely
factorize N , which is done by finding some proper divisor and then iterating. If one takes u = 2
so that we seek all prime factors less than B = N1/2, these prime factors are enough to find a
possible cofactor. Next the parameter v is chosen so as to minimize the average running time:
v =
√
2(logN)1/2/(log logN)1/2 or equivalently C = ⌊LN (1/2, 1/

√
2)⌋, where

LN (α, c) = exp
(
c(logN)α(log logN)1−α

)
, (3)

and one runs Algorithm 1 with as many curves as needed in order to factorize N (note that
there is no guarantee that the procedure terminates after testing finitely many curves). The
expectation of the number of curves needed in this optimal choice of v is C1+o(1) (see [Len87]).

If one decides in advance to stop after B/ψ(B,C) curves, then one finds all primes less
than B with constant probability (under the heuristics asserting independence relatively to the
choice of the elliptic curve). This allows a second application of ECM : given an integer, decide
whether it is B-friable with no false positive and with a constant proportion of false negatives.

A third application is as follows : given a large number of integers less than a paremeter N
and given a parameter B = N1/u, find at least a prescribed proportion f of B-friable integers
inside the set. This problem is solved by the Number Field Sieve (NFS) algorithm [LLJMP93],
where ECM is used as a building block in the cofactorization step of the relation collection,
also called sieving step, (see for example and [MBKL14, §3, page 337]) and in the splitting
step of the discrete logarithm version of NFS (see for example [CS06, §4.1, point 1, page 181]).
In the latter, one needs to find a single B-friable integer. To solve the problem, one uses a
single elliptic curve or a finite number of them on a large number of integers. For example,
the record factorizations of RSA moduli obtained with the CADO-NFS software [BGK+] use
a dozen elliptic curves to test the friability of billions of integers. Also, in [MBKL14, Table 3,
page 345] one uses 5 to 10 curves whereas the number of integers exceeds half a million per
special-q and billions in total. The idea here is to set v so that one has ψ(B,B1/v) ≥ f and
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then, in order to test B-friability, one is interested in how many primes up to B are found by
Algorithm 1 with entries v and a particular elliptic curve E. We are hence interested in the
quantity ψE(x, y) for (x, y) = (B1/u, B1/uv).

In particular, the heuristics underlying the use of ECM as a friability test states that the
larger ψE(x, y) gets, the more y-friable integers will be found by ECM inside a given set. In
other words, E is more ECM-friendly as ψE(x, y) increases. We formalize this idea in the
following definition.

Definition 1 (ECM-friendly curves). Let x > y be positive real numbers and let E1/Q and
E2/Q be two elliptic curves. One says that E1 is more ECM-friendly than E2 with respect to
(x, y) if

ψE1(x, y) > ψE2(x, y) .

One says that E1 is more ECM friendly than E2 if there exists x0 ≥ 2 and a positive valued
increasing function ϑ such that the above inequality holds for all pairs (x, y) such that x ≥ x0
and ϑ(x) ≤ y ≤ x.

Our main result (Theorem 1.2) roughly states that the probability that the number of Fp-
points on a given elliptic curve is friable approaches asymptotically the probability for any
integer to be friable. In the case of CM1 elliptic curves our result is conditional on the Elliott–
Halberstam conjecture (EH), an important analytic number theoretic statement about unifor-
mity aspects in the distribution of primes in residue classes.

Conjecture 1.1 (Elliott–Halberstam, e.g. [Wan18, Hyp B] for Q, extended to K quadratic
in [Pol16, Prop. 2.2]). Let K be either Q or an imaginary quadratic field of class number 1. Let
∥ · ∥ denote the field norm relative to K/Q. We define2

ΠK(x) = {p ∈̇ OK , prime: ∥ p ∥ ≤ x} , ΠK(x; c, a) = {p ∈ ΠK(x) : p ≡ a mod c},

of cardinality denoted πK(x) and πK(x; c, a), respectively. Let δ > 0. Then for any fixed a ∈ OK

and ω > 0 we have

∑

∥ q ∥ ≤ x1−δ

(q, a) = 1

∣∣∣∣πK(x; q, a)− πK(x)

φ(q)

∣∣∣∣≪ω
x

(log x)ω
,

for any x ≥ 2 and where q ∈ OK and φ(q) = |(OK/qOK)∗|.

The Elliott–Halberstam conjecture is standard in analytic number theory. It is a far reaching
generalization of the celebrated Bombieri–Vinogradov Theorem where K = Q and the bound
on q in the index set of the summation cannot exceed

√
x. EH would have countless important

applications in number theory. Suffice it to mention the EH bounds contained in [May15] on
gaps between consecutive primes (or more generally on the length of intervals containing k-
tuples of primes), as well as [Zha14] where, as a crucial step in the proof of the main result,
Zhang establishes a bound towards EH (i.e. going beyond the

√
x threshold) under some extra

restrictions on the prime factorization of the moduli involved.
A quantitatively refined version of EH allows one to let δ depend on x as long as δ(x)→ 0

as x tends to infinity. Indeed, H. Montgomery suggested that one could take δ(x) → 0 in
Conjecture 1.1. Friedlander and Granville [FG92] showed that the conjecture fails if δ(x) is less

1For each number field K, there is a finite number of CM elliptic curves defined over K but there are overall
infinitely many CM elliptic curves.

2Here “p ∈̇ OK” means that we count each prime ideal only once i.e. we identify elements that generate the
same prime ideal of OK .
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than a certain function of x. However Liu, Wu and Xi [LWX20] used the conjecture for δ(x)
large enough not to contradict the necessary constraints observed by Friedlander and Granville
(Conjecture 4.1 states this “parametrized” version of EH).

In order to state our main result, we first recall some classical facts about the counting
function of friable integers. With notation as in (2), one has the well known asymptotics due
to Dickman:

lim
x→∞

ψ(x, x
1
u )

x
= ϱ(u) ,

where ϱ is the unique continuous function on R≥0 that is differentiable on (1,∞) and satisfies
ϱ(u) ≡ 1 on [0, 1] and uϱ′(u) = −ϱ(u − 1) on (1,∞). Asymptotics due to de Bruijn ([dB51,
(1.8)], see also [HT93, Cor. 2.3]) describe the behaviour of ϱ as u grows:

log ϱ(u) = −u
(
log u+ log2(u+ 2)− 1 +O

( log2(u+ 2)

log(u+ 2)

))
(u ≥ 1) . (4)

We now state our main result. From Conjecture 1.1, we draw an asymptotic equivalent for
ψE(x, y). From a refined version of Conjecture 1.1 (Conjecture 4.1) we handle uniformity issues
in these asymptotics, and finally, we state a non CM analogue (conjectural on Hypothesis 1) of
our estimates.

Theorem 1.2. Let x ≥ 2 and let y satisfy 2 ≤ y ≤ x. Set u := log x
log y .

• Let E/Q be a CM elliptic curve.

1. (Theorem 3.4) Assume Conjecture 1.1. If u is upper bounded by an absolute constant
then one has

ψE(x, y) ∼ ϱ(u)
x

log x
(x→∞) ,

2. (Corollary 4.3) Assume Conjecture 4.1. If δ(x) is a function satisfying for some
η > 0 and β > 0:

log2 x

η log x
≤ δ(x)≪ 1

(log2 x)
1+β

and u ≤ log3 x
log4 x

then we have

ψE(x, y) = ϱ(u)
x

log x
(1 +O(δ(x)u/ϱ(u))).

• Let E/Q be a non CM elliptic curve.

3. (Theorem 6.2) Assume Hypothesis 1. If u is upper bounded by an absolute constant
then one has

ψE(x, y) ∼ ϱ(u)
x

log x
, (x→∞) .

Note that the same asymptotics hold for ψE(x, y) disregarding the endomorphism ring of E,
provided the relevant assumption is made on E (Conjecture 1.1 if E has CM, and Hypothesis 1
otherwise). This uniform asymptotic behaviour of elliptic curves over Q suggests that ECM-
friendliness is determined by the implicit error terms in Theorem 1.2. In Section 4.2, we discuss
in detail these error terms. In particular, for CM elliptic curves, we show the relevance of
introducing as in [BS21, Def. 5.1], the quantity

γK = L′(1, χ)/L(1, χ),

where χ is the Kronecker character of the quadratic field K associated to E.
We conclude by stating a strong form of Theorem 1.2(2) which is directly related to questions

in cryptography, as we will discuss in Section 2.
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Theorem 1.3. Assume Conjecture 4.1. Let (x, y, z) be three positive integers such that u := log x
log y

and v := log y
log z lie in the domain

∆ :=
{
(u, v) ∈ R2 : u ≤ log2 x

log3 x
and v ≤ log3 y

log4 y

}
.

With notation as in (2) we set

ΨE,z(x, y) = {n ∈ Ψ(x, y) : ∃p | n, |E(Fp)| is z-friable}

and we let ψE,z(x, y) denote its cardinality. Then we have, uniformly on ∆,

ψE,z(x, y)

x
= ϱ(v)ϱ(u)(1 + o(1)) (x→∞, y →∞) .

The paper is organized as follows. In Section 2 we come back to our cryptographic motivation
and study the running time of the splitting step of NFS, which is ECM-based, as a consequence
of Theorem 1.3. In Section 3 we prove Theorem 1.2(1) following work of Wang [Wan18]. In
Section 4 we state a uniform version of the Elliott–Halberstam conjecture and, assuming it, we
prove Theorem 1.2(2). The error terms implicit in Theorem 1.2 are then discussed and, in the
CM case, we prove a computation oriented formula for γK . Section 5 is devoted to the proof of
Theorem 1.3. Finally in the last section, we investigate the implications, in the non CM case,
of heuristics developed by Pollack and we prove Theorem 1.2(3).

Acknowledgements. We thank Jie Wu for suggesting the first author to investigate con-
nections between ECM and the Elliott–Halberstam conjecture, as well as Régis de la Bretèche,
Ofir Gorodetsky and Alessandro Languasco for comments and corrections on an earlier version
of the manuscript.

2 Cryptographic motivation

In this section we put Theorem 1.3 in context and we give an example of algorithmic application.
Precisely Theorem 1.3 enables us to perform a computational task (Problem 1 below), which
is related to a classical problem in cryptography: the splitting step for discrete logarithms
(Problem 2 below).

Problem 1. Consider a prime q, a generator g of (Z/qZ)∗ and an auxiliary element h ∈ (Z/qZ)∗.
Let u and v be parameters and let E/Q be an elliptic curve. Find an integer e ∈ [0, q− 1] such
that n := geh mod q is q1/u-friable and such that, for some prime divisor p of n, E has good
reduction at p and |E(Fp)| is q1/(uv)-friable.
Problem 2 (Splitting step of NFS). Consider the same data as in the problem above. For a
parameter k, consider E1, E2, . . . , Ek, elliptic curves over Q. Find an integer e ∈ [0, q − 1] such
that n := geh mod q is q1/u-friable and, for all prime factors p of n, there exists i ≤ k such that
|Ei(Fp)| is q1/(uv)-friable.

To solve Problem 1, one runs ECM on the integers geh mod q corresponding to values of
e ∈ [1, q − 1] which are chosen uniformly at random until it is B-friable for B = q1/u (see
Algorithm 2 for a precise description). Note that the algorithm uses a single CM elliptic curve
E/Q that is required to have positive Mordell–Weil rank. To fix ideas, our description of
Algorithm 2 uses, among the 13 possible j-invariants of CM elliptic curves defined over Q, the
case j = 8000 for which we have selected one twist of positive rank given by the Weierstrass
equation: E : y2 = x3 + x2 − 3x+ 1 (the point P = (−1 : 2 : 1) ∈ E(Q) has infinite order).

The next statement asserts that Theorem 1.3 can be used to solve Problem 1.
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Algorithm 2: NFS splitting step

Input: a prime q and two integers g, h ∈ [1, q − 1] such that g is a generator of F∗
q , and two

parameters u and v
Output: an integer e such that geh mod q has a factor less than B = ⌊q1/u⌋
1: E : y2 = x3 + x2 − 3x+ 1, P = (−1 : 2 : 1) ∈ E(Q)
2: repeat
3: e← an integer chosen uniformly at random in [1, q − 1]
4: n← geh mod q
5: run ECM for n and B on the curve E, with parameters u and v
6: until ECM finds a proper factor of n

Theorem 2.1. 1. Under Conjecture 1.1 (resp. Conjecture 4.1), Algorithm 2 solves Prob-

lem 1 in time (q1/(uv)/ϱ(u)ϱ(v))1+o(1) (as q →∞) for bounded u (resp. for u ≤ log3 x
log4 x

).

2. Assume further that Theorem 1.3 can be extended to the domain (x, y = x1/u, z = y1/v)
below :

∆′ :=
{
(u, v) ∈ R2 : u ≤ cu

(log x)1/3

(log2 x)
1/3

and v ≤ cv
(log x)1/3

(log2 x)
1/3

}
, ,

for two constants cu, cv ≥ 31/3. Then, with a constant probability, Algorithm 2 on input
q terminates in time Lq(1/3, 3

1/3)1+o(1) and solves Problem 1 for u = cu(log q/ log2 q)
1/3

and v = cv(log q/ log2 q)
1/3.

Proof. 1. Recall that B = ⌊q1/u⌋ and C = ⌊B1/v⌋ = ⌊q1/(uv)⌋. As input N of Algorithm 1,
we take the ouput n of Algorithm 2. The cost of ECM (Algorithm 1) is essentially that of
step 3, which is O(logM) by double-and-add exponentiation (M = C!⌊logn/ log 2⌋ as defined in
Algorithm 1). By Stirling’s formula, this is

time(Alg. 2: line 5) = O(logM) = O(C logC log n) = C1+o(1) = q1/(uv)+o(1) (q →∞). (5)

Since e is uniformly chosen at random, the number of executions of the loop in lines 2-6 of
Algorithm 2 is, with positive probability, less than a constant times the inverse of the probability
of success. We saw earlier (cf. Claim 1) that the condition in line 6 of Algorithm 2 is satisfied
if, for a prime factor p of n, the order |E(Fp)| is C-friable. We conclude that the number of
executions of the loop is q/ψE,q1/(uv)(q, q

1/(u)).

Since u and v are in the domain ∆ defined in Theorem 1.3, we have q/ψE,q1/(uv)(q, q
1/(u)) ≤

(1/(ϱ(v)ϱ(u))(1+o(1)). Combining this with (5), the cost of Algorithm 2 is (q1/(uv)/ϱ(u)ϱ(v))1+o(1).
2. We set the value of the constants : cv = cu = 31/3. We inject in (4) the values of u and v:

log(ϱ(v)ϱ(u)) = (−1 + o(1)) · (u log u+ v log v) = (−1 + o(1)) ·
(
cu + cv

3
(log q)1/3(log2 q)

2/3

)
.

Hence the loop is executed at most Lq(1/3,
cu+cv

3 )1+o(1) times. Multiplying this by the cost

computed in (5), C1+o(1) = Lq(1/3,
1

cucv
)1+o(1), we find the running time of Algorithm 2

time(Algorithm 2) = Lq(1/3, c),

where c = 1
cucv

+ cu+cv
3 = 31/3.
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Remark 1. One can easily adapt Algorithm 2 to solve Problem 2 (hence the identical names):
in line 5 apply ECM to all the curves Ei with i = 1, . . . , k. If we set k = 1/ϱ(v)1+o(1), and
if the outcome of ECM is independent of the input curve Ei, then with constant probability
we completely factorize n whenever it is B-friable. Then we execute the loop in lines 2-6
q/ψ(q, q1/u) = 1/ϱ(u)1+o(1) times. Hence the total cost is (C/ϱ(u)ϱ(v))1+o(1), which is the same
as for Problem 1. To the best of our knowledge, no rigorous argument proves the required
“independence” property for the input curves at the present time even though a heuristic
complexity to solve Problem 2 is well known ([CS06]).

3 Background and proof of Theorem 1.2(1)

Let K be either Q or an imaginary quadratic field of class number 1. Recall that ∥ · ∥ is the
norm map relative to K/Q and that P−(n) and P+(n) respectively denote the smallest and
largest prime factors of n. Let a, c ∈ OK and let κ be a root of unity of K. We set (recall the
notation of Conjecture 1.1)

ψK(x, y; c, a, κ) = |{π ∈ ΠK(x; c, a) : P+(∥ π − κ ∥) < y}|. (6)

Deuring’s CM theory describes precisely the number of Fp-points on a CM elliptic curve E/Q
having good reduction at p. We state an explicit version that can be found in [RS09] or [Coh07],
that enables us to relate (1) with (6).

Lemma 3.1 ([RS09, Th 1.1, Th. 5.3, Th 5.6, Th 5.7] , [Coh07, §8.5.2]). For any elliptic curve
E/Q with CM by an order O of an imaginary quadratic field K, there exists c ∈ OK , a set
A ⊂ {a ∈ OK : gcd(a, c) = 1} of cardinality φ(c)/2 such that for any prime number p not
dividing the discriminant of O and at which E has good reduction,

• if p is inert in K then one has |E(Fp)| = p+ 1,

• if p splits in K, there exists a ∈ A and a root of unity µc,a satisfying |E(Fp)| = ∥ π − µc,a ∥,
where π ∈ O is uniquely determined by the conditions ∥ π ∥ = p and π ≡ a (mod c).

In particular

ψE(x, y) = #{p ∈ ΨE(x, y) : p inert in K}+
∑

a∈A
ψK(x, y; c, a, µc,a)

= #{p ≤ x : p ∤ ∆E , p inert in K, (p+ 1) is y-friable}+
∑

a∈A
ψK(x, y; c, a, µc,a) .

The lemma is stated in the general case where the elliptic curve E has CM by an unspecified
order O of an imaginary quadratic field K. However the counting functions we study only
involve |E(Fp)|, as far as the geometry of E is concerned. Therefore, since there is a canonical
Q-rational isogeny E → E0, where E0/Q is an elliptic curve with CM by the full ring of integers
OK (see e.g. [CCS13, Prop. 25]) we will assume in the sequel that O = OK whenever this
simplifies the exposition.

To prove Theorem 1.2(1), we follow the strategy of Wang [Wan18]. In particular we assume
Conjecture 1.1 and we appeal to the linear sieve of Rosser–Iwaniec that we now recall.

Let A ⊂ OK be a finite set, P ⊂ OK a set of primes, z ≥ 2 a real number and d ∈
OK a squarefree integer whose prime factors belong to P. Let Ad = A⋂ dOK and P (z) =∏

∥p∥<z,p∈P p. Let X be a real number (that should be seen as an “approximation” of |A|) and
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let w be a multiplicative function on OK such that for p ∈ P one has 0 < w(p) < ∥ p ∥. We set

r(A, d) = |Ad| − w(d)
∥d∥ X (which is expected to be small) and also:

S(A;P, z) = |{a ∈ A : (a, P (z)) = 1}| , V (z) =
∏

p∈P, ∥p∥≤z

(1− w(p)

∥ p ∥) .

Lemma 3.2 (Rosser–Iwaniec [Iwa80], see also [Wan18, Lemme 3.1]). Assume that there exists
α ≥ 2 such that

∏

u≤∥p∥<v

(
1− w(p)

p

)−1

≤ log v

log u

(
1 +

α

log u

)

for all v > u ≥ 2. Then for any D ≥ z ≥ 2 one has

S(A;P, z)≪ XV (z) +
∑

∥d∥<D, d|P (z)

|r(A, d)|.

Finally we recollect an estimate for the summatory function of µ(n)/∥n∥ over integers less
than x that are not divisible by primes ≤ y. In the application of Wang’s strategy, one of the
base steps uses Möbius inversion, which explains why such summatory functions come into play.

Lemma 3.3 ([dlBF20, Lemma 7.2]3, generalized to imaginary quadratic fields4). Let K be Q
or an imaginary quadratic field of class number 1. Let µ be the Möbius function generalized
to K. For any ϵ > 0, we have

∑

∥n∥≤x
P−(n)>y

µ(n)

n
= ϱ(u) +Oϵ(exp{−(log y)

3
5
−ϵ})

uniformly in x ≥ 2 and exp{(log x) 2
5
+ϵ} ≤ y ≤ x, where u = log x

log y .

We can now recall the statement and give the proof of Theorem 1.2(1).

Theorem 3.4. Let E/Q be a CM elliptic curve and let K be the associated imaginary quadratic
field of class number 1. Let x ≥ 2 and let y be such that 2 ≤ y ≤ x and u := log x

log y is upper
bounded by an absolute constant. Then we have

ψE(x, y) ∼ ϱ(u)
x

log x
(x→∞) .

Proof of Theorem 3.4. By Lemma 3.1 we have

ψE(x, y) =|{p split in K, p ≤ x : P+(|E(Fp)|) < y}|
+ |{p inert in K, p ≤ x : P+(|E(Fp)|) < y}|

=
∑

a∈A
ψK(x, y; c, a, µc,a) + |{p inert in K, p ≤ x : P+(p+ 1) < y}|, (7)

where A, c and µ are as in Lemma 3.1 (see the notation (6)). Note that for the purpose of this
article one could have added a O(1) term to account for ramified primes in K and for primes of

3The first version of this lemma can be found in [LT15] where one has an additional error term Oϵ(
log(u+1)

log y
).

The version of loc. cit. suffices for most of our computations, however our discussion of error terms in §4.2
requires the refinement in [dlBF20] .

4The generalization is direct, hence it is not reproduced here.
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bad reduction of E, but one can be more precise and erase the O(1) term because the ramified
primes correspond precisely to the primes of bad reduction.

The second term of the right hand side is the case a = −1 in [Wan18, Lemma 4.1]:

|{p inert in K, p ≤ x : P+(p+ 1) < y}| ∼ ϱ(u)
x

log x

2
. (8)

We shall prove that ψK(x, y; c, a, µ) ∼ ϱ(u)x/(φ(c) log x) and, when summing over the |A| =
φ(c)/2 values of a we obtain:

|{p split in K, p ≤ x : P+(|E(Fp)|) < y}| ∼ 1

2
ϱ(u)

x

log x
, (9)

which, together with Equation (8) implies the equivalent of ψE(x, y) and will complete the
proof.

Hence, it remains to prove an equivalent for ψK(x, y; c, a, κ) for constants c, a ∈ OK and a
constant κ ∈ O×

K .
We note that for large enough y, more precisely y > c (which we assume holds in the rest of

the proof since x→∞ and u remains bounded), one has gcd(q, c) = 1 as soon as P−(∥ q ∥) > y.
Therefore, by the Chinese Remainder Theorem, we can fix, for each such q an element a′ ∈ OK

such that a′ ≡ a (mod c) and a′ ≡ κ (mod q). Combining this with Möbius’ inversion we write

ψK(x, y; c, a, κ) = |{π ∈ ΠK(x; c, a) : P+(∥ π − κ ∥) < y}| (10)

= |{π ∈ ΠK(x; c, a) : gcd
(
π − κ,

∏

ℓ prime, ∥ℓ∥≥y

ℓ
)
= 1}|

=
∑

q∈OK , ∥q∥≤x+1
P−(∥q∥)>y

µ(q)|ΠK(x; c, a) ∩ΠK(x; q, κ)| =
∑

q∈OK , ∥q∥≤x+1
P−(∥q∥)>y

µ(q)πK(x; qc, a′)

where we have used the fact that the algebraic norm of a root of unity is 1.
In order to evaluate ψK(x, y; c, a, κ) we follow closely Wang’s method ([Wan18, Dém. du

Lemme 4.1]). We highlight the necessary adaptations, omitting the details whenever they are
straightforward form Wang’s approach. Starting from (10) we fix an arbitrarily small δ > 0 and
split the counting function ψK(x, y; c, a, κ) = S1 + S2 where

S1 =
∑

q∈OK , ∥q∥≤x1−δ

P−(∥q∥)>y

µ(q)πK(x; qc, a′) , S2 =
∑

q∈OK , x+1≥∥q∥>x1−δ

P−(∥q∥)>y

µ(q)πK(x; qc, a′) . (11)

Next, using the multiplicativity of φ and our assumption y > c, we further decompose
S1 = S′

1 + S′′
1 where

S′
1 =

x

φ(c) log x

∑

q∈OK , ∥q∥≤x1−δ

P−(∥q∥)>y

µ(q)

φ(q)
, S′′

1 =
∑

q∈OK , ∥q∥≤x1−δ

P−(∥q∥)>y

µ(q)r(x, qc, a′) (12)

and where r(x, qc, a′) = πK(x; qc, a′)− x
φ(cq) log x .

Step 1′. We show that S′
1 ∼ x

φ(c) log xϱ(u) as x → ∞ and u remains bounded (under these

restrictions we deduce that S′
1 is asymptotically larger than a constant times x

log x). For q

satisfying P−(q) > y, observe that5

1

φ(q)
− 1

q
=

1

q
×O

((
1 +

1

y

)ω(q) − 1
)
= O

(1
q
× ω(q)

y

)
.

5We use the notation ω(n) for the number of distinct prime factors of an element n in a given PID.
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Since ∥q∥ ≤ x1−δ, we use the upper bound ω(q) ≪ log x which we combine with the fact that
y ≫ xθ, for some θ > 0 (recall that u remains bounded) to conclude that uniformly for any q
in the index set of S′

1 one has

1

φ(q)
=

1

q
(1 + o(x)) (x→∞) .

Using Lemma 3.3, Wang’s computation [Wan18, (4.6)] immediately produces

S′
1 =

x

φ(c) log x
ϱ(u) (1 +O(δ) + o(x)) ∼ Li(x)

φ(c)
ϱ(u) (x→∞, u≪ 1) . (13)

Step 1′′. We use Conjecture 1.1 with a fixed ω > 6 to show that S′′
1 = O(x(log x)−1/(log x)ω−1).

Note that this is negligible compared to S′
1.

Let 0 < δ̃ < δ be so that ∥ cq ∥ ≤ x1−δ whenever ∥ q ∥ ≤ x1−δ̃. Using the triangle inequality
and Conjecture 1.1 we have

S′′
1 =

∑

q∈OK , ∥q∥≤x1−δ

P−(∥q∥)>y

µ(q)r(x, qc, a′) ≤
∑

∥q∥≤x1−δ̃

r(x, qc, a′)

≤
∑

∥q′∥≤x1−δ

r(x, q′, a′)≪ω
x

log(x)ω
. (14)

We now handle the contribution of S2 defined in (11). We first apply the triangle inequality
and we observe that the primes p ∈ OK that are counted satisfy p− κ = qcm with m ∈ OK of
norm bounded by ∥m∥ ≤ xδ. Therefore we have

|S2| ≤
∑

m∈OK
∥m∥≤xδ

|{p prime, ∥p∥ ≤ x : P−(∥∥p−a′

mc

∥∥) > y}| .

To evaluate this upper bound, the main ingredient used by Wang is the linear sieve. We apply
Lemma 3.2 to

A = A(m, c, a′) =
{p− a′

mc
: p ∈ ΠK(x;mc, a′)

}
, P = {p prime: p ∤ mca′} , z ≤ y .

Indeed for this choice of parameters, one has

|S2| ≤
∑

m∈OK
∥m∥≤xδ

S(A(m, c, a′);P, z) . (15)

and therefore, for all squarefree d ∈ OK having all its prime factors in P, we have gcd(d,m) = 1,
and Ad is homothetic to the translate ΠK(x; dmc, a′)− a′. In particular |Ad| = πK(x; dmc, a′).
We set X = x

φ(mc) log x and fix a multiplicative function w on OK satisfying

w(p) =

{
0, if p | mca′,
∥p∥

∥p∥−1 , otherwise.

For any squarefree d ∈ OK with all its prime factors in P we have therefore

w(d)

∥d∥ X =
w(d)

∥d∥
x

φ(mc) log x
=
(∏

p|d

1

∥p∥(1− 1
∥p∥)

) x

φ(mc) log x
=

x

φ(mcd) log x

10



since d is coprime to mc, by definition of P.
Finally note that the following inequalities hold for all primes p ∈ OK with ∥ p ∥ > 2,

(
1− 1

∥ p ∥

)
≥
(
1− 1

∥ p ∥ − 1

)
≥
(
1− 1

∥ p ∥

)(
1 +

1

∥ p ∥2
)
, (16)

therefore, combined with Mertens’ formula (see e.g. [Ten15, Chap. I.6, Th. 1.12]), this shows
that the hypotheses of Lemma 3.2 are satisfied. For any fixed D ≥ z we obtain

S(A;P, z)≪ X
∏

∥p∥≤z

(
1− w(p)

∥ p ∥

)
+

∑

∥d∥<D, d|P (z)

∣∣∣∣|Ad| −
x

φ(dmc) log x

∣∣∣∣ .

From this upper bound, combined with (15), we deduce that |S2| ≪ S′
2 + S′′

2 where

S′
2 =

∑

∥m∥≤xδ

x

φ(cm) log x

∏

∥p∥<z
p∤mca′

(
1− 1

∥ p ∥ − 1

)
, S′′

2 =
∑

∥m∥≤xδ

∑

∥d∥<D
d|P (z)

|r(A, d)| , (17)

and where |r(A, d)| = |πK(x; dmc, a′)− x
φ(dmc) log x |.

We next set z = D = y1−2δ and recall ω > 6. Under these conditions we prove upper bounds
for S′

2 and S′′
2 .

Step 2′. We prove that S′
2 = O(Li(x)uδ). Since c and a′ are constants we relax the condition

p ∤ mca′ into p ∤ m in the index set of the product appearing in S′
2. Then we have

S′
2 ≪c,a′

∑

∥m∥≤xδ

x

φ(m) log x

∏

∥p∥<z
p∤m

(
1− 1

∥ p ∥ − 1

)

≪ x

log x


 ∏

∥p∥<z

(
1− 1

∥ p ∥ − 1

)






∑

∥m∥≤xδ

1

φ(m)

∏

∥p∥<z
p|m

(
1− 1

∥ p ∥ − 1

)−1




The first factor over primes on the right hand side is≪ (log z)−1 = ((1−2δ) log y)−1 by Mertens’

formula combined with (16). For the right-most factor we write φ(m)
∥m∥ =

∏
p|m(1− 1

∥p∥) and note
that the function f defined on OK by

f(m) =
∏

p|m

(
1− 1

∥ p ∥ − 1

)−vp(m)(
1− 1

∥ p ∥
)−vp(m)

(where vp(m) is the p-adic valuation of m) is completely multiplicative. Since in the product
defining f , each factor at p is ≥ 1 we obtain:

∑

∥m∥≤xδ

1

φ(m)

∏

∥p∥<z
p|m

(
1− 1

∥ p ∥ − 1

)−1
≤

∑

∥m∥≤xδ

f(m)

∥ m ∥ .

Here note that the general term of the product over primes on the left hand side is ≥ 1 and
therefore the upper bound holds both in the case z ≥ xδ and z < xδ. Using a partial Euler
product and Mertens’ formula combined with (16) we deduce that

∑

∥m∥≤xδ

1

φ(m)

∏

∥p∥<z
p|m

(
1− 1

∥ p ∥ − 1

)−1
≤

∑

∥m∥≤xδ

f(m)

∥ m ∥ ≪
∏

∥p∥≤xδ

(
1− 1

∥ p ∥ − 2

)−1
≪ δ log x ,

11



This concludes step 2′:

S′
2 = O

( x

log x
u

δ

1− 2δ

)
= O

( x

log x
uδ
)
. (18)

Step 2′′. We prove that S′′
2 = O(x(log x)−1/ log xω/2−3). Note that if ∥ m ∥ ≤ xδ and

∥ d ∥ ≤ D = y1−2δ ≤ x1−2δ then n := md is such that ∥ n ∥ ≤ x1−δ. We denote by τ(n) the
number of divisors of n. Hence we have, applying Cauchy–Schwarz in the last step,

S′′
2 ≤

∑

∥n∥≤x1−δ

∑

d|n

|r(A; cd, a′)| ≤
∑

∥n∥≤x1−δ

τ(q)|r(A;nc, a′)| ≤ (S′′
2,⋆S

′′
2,†)

1
2

where
S′′
2,† =

∑

∥n∥≤x1−δ

|r(A;nc, a′)| , S′′
2,⋆ =

∑

∥n∥≤x1−δ

τ(n)2|r(A;nc, a′)| .

For S′′
2,† we recognize the expression of Conjecture 1.1 so, recalling that c is a constant (therefore

for big enough x one has ∥ c ∥ ≤ xδ/2), we deduce

S′′
2,† ≪ x/(log x)ω.

As in [Wan18, (4.10)] we first use a trivial upper bound on S′′
2,⋆:

|r(A;nc, a)| =
∣∣∣πK(x;nc, a)− πK(x)

φ(nc)

∣∣∣≪ x

∥ n ∥ ,

to obtain the upper bound:

S′′
2,⋆ ≪ x

∑

∥n∥≤x1−δ

τ(n)2

∥ n ∥ ≪ x(log x)4

where the last step uses summation by parts and knowledge of the average order of τ2 (see
e.g. [Wil23, (1.25)]). Note also that, invoking positivity for the general term of the sum, the
implied constant is absolute (and in particular does not depend on δ). Overall we obtain

S′′
2 ≪

( x

(log x)ω

) 1
2
x

1
2 (log x)2 ≪ x(log x)−1

(log x)
ω
2
−3

. (19)

Putting together (13), (14), (18), and (19), we see that the sums S′′
1 and S′′

2 are negligible
compared to x/ log x. Since ϱ(u) is lower bounded by a constant, the proof of Theorem 3.4 is
finished by letting δ → 0.

4 Uniform version of the Elliott–Halberstam conjecture and
proof of Theorem 1.2(2)

In this section we start by stating a refined version of Conjecture 1.1 and we prove Theo-
rem 1.2(2) under this refined conjecture. We next discuss the error term implicit in Theo-
rem 1.2(1) and (2).

12



4.1 Proof of Theorem 1.2(2)

The argument we provide is a consequence of [LWX20, Th. 1.5]. Let us first state the refined
version of Conjecture 1.1 required in our analysis.

Conjecture 4.1 (parametric EH, [LWX20, Conj. 1] in the K = Q, same δ(x) as in the rational
case, with the same adjustments as in Conjecture 1.1 for the case of quadratic K). Let δ(x) be
a decreasing function such that

(log2 x)/(η log x) ≤ δ(x) < η (x ≥ x0(η)), (20)

for any η ∈ (0, 1/2] Let K be either Q or an imaginary quadratic field of class number one. For
all q ∈ K we set ∥ q ∥ = |OK/q| the algebraic norm and φ(q) = |(OK/q)

∗| the Euler function.
Let us consider

πK(x) = {p ∈ OK , prime : ∥ p ∥ ≤ x} , πK(x; c, a) = {p ∈ OK , prime : ∥ p ∥ ≤ x, p ≡ a mod c}.

Then for any fixed a ∈ OK , a ̸= 0, and ω > 0 we have

∑

q∈OK , (q,a)=1

∥q∥≤x1−δ(x)

∣∣∣∣πK(x; q, a)− πK(x)

φ(q)

∣∣∣∣≪ω
x

(log x)ω
,

uniformly for x ≥ x0(η).

The original EH conjecture is stated for K = Q and constant δ. As already mentioned
it is a strengthening of the Bombieri–Vinogradov (BV) Theorem. Huxley [Hux71] proved a
number field variant of the BV Theorem (see also [Joh79, Cor. p. 203] for the particular case of
imaginary quadratic fields or Pollack [Pol16, Lemma 2.3] for imaginary quadratic fields of class
number 1), so it seems natural to state a number field EH conjecture extending Huxley’s result
with the same range on q as in the original EH conjecture. Finally, Liu et al. [LWX20] extended
EH by replacing δ with a decreasing function. In the present work we use the number field EH.
If we only want to focus on non uniform results we can restrict to the original EH. However
in order to prove uniform results, our analysis requires a new variant of EH (Conjecture 4.1)
which combines the number field EH (extending [Pol16, Lemma 2.3]) with the parametric EH
(see [LWX20]).

The proof of Theorem 1.2(2) will follow from a generalized form of [LWX20, Th. 1.5] that
we now state.

Theorem 4.2 ([LWX20, Th. 1.5] generalized to imaginary quadratic fields). Let K be an
imaginary quadratic field of class number 1. Let a ∈ OK \ {0} and let µ denote a root of unity
of K. Let ω > 0 and let κ be a non-negative arithmetic function on OK . With notation as
in (6) and assuming Conjecture 4.1 for a given function δ satisfying (20), we have

∑

q∈OK , ∥q∥≤Q
(q,a)=1

∣∣∣∣ψK(x, y; q, a, µ)− πK(x)

φ(q)
ϱ

(
log(x/∥ q ∥)

log y

)∣∣∣∣≪a,ω

x
√∑

∥q∥≤x κ(q)
2/∥ q ∥

(log x)ω

+ πK(x)δ(x)u
∑

∥q∥≤Q

κ(q)

φ(q)

For every ϵ > 0 this upper bound is uniform for x ≥ 2, exp((log x)2/5+ϵ) ≤ y ≤ x and Q ≤
min(y,

√
x).
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Note that the original statement [LWX20, Th. 1.5] is over Q: in loc. cit. the prime counting
function πK is replaced by the usual prime counting function π and ψK(x, y; q, a, µ) is replaced
by

π(x, y; q, a) = #{p ≤ x : q | (p− a), P+(p−a
q ) ≤ y} .

Obtaining Theorem 4.2 from the original [LWX20, Th. 1.5] requires minor modifications only.
As we will see below, Corollary 4.3 (and in turn Theorem 1.2(2)) will follow from Theorem 4.2.
If one wants to dispense from generalizing [LWX20, Th. 1.5] to an imaginary quadratic field, one
can instead consider the version of Corollary 4.3 proved in Appendix A, where the arguments
used are similar to those of the proof of Theorem 1.2(1).

In [LWX20, Cor. 1.8 (p. 5)] a result is proven for u ≤ log2 x
log3 x

. We note here that a stronger

consequence of Theorem 4.2 holds if one restricts to u ≤ log3 x
log4 x

, and implies in turn Theo-

rem 1.2(2).

Corollary 4.3. Let K be Q or an imaginary quadratic field of class number 1. Let a, c ∈ OK

with a ̸= 0 and let µ be a unit of K. Finally let β > 0. Assuming Conjecture 4.1, we have

πK(x, y; c, a, µ) =
x

φ(c) log x
ϱ(u)

(
1 +O

(
δuϱ(u)−1)

))
. (21)

uniformly for 1 ≤ u ≤ log3 x
log4 x

and for δ(x)≪ 1
(log2 x)

1+β . Consequently Theorem 1.2(2) holds.

Proof. First note that under the stated assumptions (δ(x)u/ϱ(u)) = o(1) as x → ∞. Indeed,
by (4), one has ϱ(u)≫ exp(−(1 + β′)u log u) for u ≥ 1 and any fixed β′ satisfying 0 < β′ < β.
Therefore we compute:

u

ϱ(u)
≪ ue(1+β′)u log u ≤ log3 x

log4 x
exp

(
(1 + β′)

log3 x

log4 x
log
( log3 x
log4 x

))

≤ log3 x

log4 x
exp

(
(1 + β′) log3 x

(
1− log5 x

log4 x

))

≤ (log2 x)
1+β′ log3 x

log4 x
exp

(
− (1 + β′)

log3 x

log4 x

)
= o
(
(log2 x)

1+β
)
.

Next the assumption on the size of u implies that log y ≥ log x log4 x/ log3 x and thus for big
enough x one has c ≤ min(y,

√
x), since c is fixed. Setting κ = 1{c} in Theorem 4.2 we obtain:

∣∣∣∣ψK(x, y; c, a, µ)− πK(x)

φ(c)
ϱ

(
log(x/∥ c ∥)

log y

)∣∣∣∣≪a,ω
x√

∥ c ∥(log x)ω
+
πK(x)

φ(c)
δ(x)u. (22)

The second summand on the right hand side of (22) is ≪ x
log xδ(x)u. Likewise, since u ≥ 1, and

since δ is lower bounded by assumption in Conjecture 4.1, we have for the first summand:

x

(log x)ω
≪η

x

log x
δ(x)u

log x

(log x)ω−1 log2 x

which is ≪ x
log xδ(x)u for any fixed ω ≥ 2.

Finally, since ϱ is smooth on (1,∞), c is fixed, and we may assume that y is big enough

(recall that the assumptions imply that log y ≥ log x log4 x/ log3 x) there exists ξ ∈ (u− log ∥c∥
log y , u)

such that
∣∣∣∣ϱ
( log(x/∥ c ∥)

log y

)
− ϱ(u)

∣∣∣∣ =
∣∣∣∣
log ∥ c ∥
log y

ϱ′(ξ)

∣∣∣∣ ≤
∣∣∣∣
log ∥ c ∥
log y

ϱ(ξ − 1)

ξ

∣∣∣∣≪
∣∣∣∣
ϱ(ξ − 1)

log x

∣∣∣∣ .
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We deduce
1

x(log x)−1δ(x)u

∣∣∣∣ϱ
( log(x/∥ c ∥)

log y

)
− ϱ(u)

∣∣∣∣≪η
1

x

log x

log2 x
= o(1) .

This finishes the proof of (21).
To deduce Theorem 1.2(2), we combine (7) with (21), using again that c depends only on

E.

4.2 Discussion on the implicit error terms in Theorem 1.2

The error term in the estimates of Theorem 1.2 plays an important role in deciding whether
an elliptic curve E1 is more ECM-friendly than a second curve E2. To explain this, let us first
recall [BS21, Problem 5.1].

Problem 3. Let E/Q be an elliptic curve without CM. Decide whether there exists a real
number β(E) such that

Prob(#E(Fp) is B-friable : p ∼ n) ∼n Prob(m is B-friable : m ∼ neβ(E)),

where ∼n denotes the asymptotic equivalent as n → ∞, for positive numbers a, b we write
a ∼ b as a shorthand for a ∈ [b −

√
b, b +

√
b], and “Prob” on the left hand side denotes the

natural density of a subset of primes, while “Prob” on the right hand side denotes the uniform
probability on a finite set.

Next we mention two results that investigate the size of the error terms in approximations
of the counting function of friable integers.

Theorem 4.4 ([Sco04, Cor. 1.2, Th. 1.3]). Let K be an imaginary quadratic field. Then for a
fixed ε > 0, for all x and y such that (log2 x)

5/3+ε ≤ log y ≤ log x, one has

ψK(x, y) = L(1, χ)xϱ(u)
(
1− ξ(u)

log y

(
γK +O

( log u
log y + log u√

u

)))
(u→∞) .

Here ψK(x, y) = |{(a) ideal of OK : ∥a∥ ≤ x, max{Np : p ◁ OK prime, p | (a)} ≤ y}|, γK =
(L′/L)(1, χ) for χ the Kronecker character of K, and ξ(u) is defined for u > 1 by the equality
exp(ξ(u)) = 1 + uξ(u).

In particular, since there are L(1, χ)x(1 + o(1)) integral ideals of OK of norm ≤ x, one has

ψK(x, y)

ψK(x,∞)
= ϱ(u)

(
1− log(u+ 1)

log y
γK(1 + o(1))

)
.

The result was generalized from ζK to a large class of Dirichlet series of the form Z(s)G(s)
where Z is a product of zeta functions with positive exponents and G a well behaved function
(e.g. a holomorphic function). The following particular case is sufficient for our applications.

Theorem 4.5 ([HTW08, Th. 1.1, Th. 1.2], case Z = ζ, G holomorphic). Let h be an arithmetic

function with Dirichlet series H(s) =∑n≥1
h(n)
ns . We assume that H extends to a meromorphic

function with a simple pole at s = 1 and we write H(s) = a0/(s − 1) + a1 + O(s − 1) in a
neighborhood of 1. Then one has

∑

n≤x
P+(n)≤y

h(n) = xϱ(u)

(
a0 + a1

log(u+ 1)

log y
+O

(
(log(u+ 1))2

(log y)2

))
,

uniformly on exp((log2 x)
5/3+ϵ) ≤ y ≤ x, for any fixed ϵ > 0.
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Let us add that a similar result holds for Z = 1/ζ, the Dirichlet series of µ. The case h = 1,
a0 = 1, a1 = γ − 1 (the Euler–Mascheroni constant) of Theorem 4.5 was previously established
by Saias [Sai89, Main corollary] and yields in particular

ψ(x, y) = xϱ(u)

(
1 +

( log(u+ 1)

log y
(γ − 1 + o(1))

))
, (23)

as x→∞ and under the same restrictions on (x, y) as in Theorem 4.5.
Note that Theorem 1.2(1) gives a positive answer to Problem 3 in the CM case while

Theorem 1.2(3) does so in the non CM case. Finally, Theorem 1.2(2) raises the necessity of
finding asymptotics for log(ψE(x, y)/ψ(x, y)). The numerical statistics in Appendix B suggest
that the following question is relevant.

Problem 4. Let E be a CM elliptic curve and let K be the associated imaginary quadratic
field. Let χ be the Kronecker character of K and let γK = L′(1, χ)/L(1, χ). Does the following
formula hold:

log(ψE(x, y)/ψ(x, y)) ∼ (−γ + 1− γK)
log(u+ 1)

log y
?

Remark 2. The result [LT15, Th. 1.1], which was used in [Wan18] and is sufficient for The-
orem 1.2(1), is not enough here because the error term given is O(log(u + 1)/ log y). We use
instead the stronger Lemma 3.3 due to de la Bretèche and Fiorilli.

If Problem 4 receives a positive answer, the constant γK will be used as a criterion to
compare ECM-friendliness of CM elliptic curves. In the non CM case, Peter Montgomery used
without proof6 ([Mon92, §6.3, pp. 75–76]) the constant α(E) =

∑
ℓ αℓ(E) (see Proposition 4.6

below) to compare the ECM-friendliness of two given elliptic curves E1 and E2, where the sum
is over primes ℓ such that αℓ(E1) ̸= αℓ(E2). The next result recalls [BS21, Th. 5.1] which
justifies the existence of α(E) in the non CM case, and gives an analogue of α(E) in the CM
case. Moreover we relate explicitly the quantities γK and α(E) in the CM case.

Proposition 4.6. Let E/Q be an elliptic curve. For every rational prime ℓ we set

• if E is a non CM curve,

αℓ(E) =
( 1

ℓ− 1
− Ep(valℓ(|E(Fp)|))

)
log ℓ ,

• If E is a CM curve,

αℓ(E) =
( 3

ℓ− 1
− 4Ep(valℓ(|E(Fp)|))

)
log ℓ

where Ep is the operator limx→∞ π(x)−1
∑

p≤x, p∤∆E and valℓ denotes the ℓ-valuation.
Then, the series (

∑
ℓ αℓ(E)) converges. Furthermore, denote by α(E) the limit of the con-

verging series: if E/Q has CM by an order of an imaginary quadratic field K, one has the
formula

α(E) = γK − ΣK , (24)

6Peter Montgomery is famous for having invented algorithms and concepts which are very effective in computer
science but are not justified rigorously or are not presented as part of a broader theory. For instance the modern
presentation [KVV10] of the Montgomery reduction is Barrett’s reduction with Q2 replacing R whereas the use
of Murphy’s α to compare polynomials for NFS, originally used by Montgomery, was justified in [BL17].
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where γK = L′(1, χ)/L(1, χ) for χ the Kronecker character of K, and where ΣK is the value of
the following converging sum depending only on K:

ΣK =
∑

ℓ inert

2 log ℓ

ℓ2 − 1

(
1 +

2

ℓ2 − 1

)
+
∑

ℓ ram.

ℓ log ℓ

(ℓ− 1)2
+
∑

ℓ prime

log ℓ
3 + χ(ℓ)

(ℓ− 1)2
.

Proof. As already mentioned, the non CM case is due to Barbulescu–Shinde [BS21, Th. 5.1].
Consider an elliptic curve E/Q that has CM by an order of an imaginary quadratic field

K. Fix s ∈ C such that Re(s) > 1. We use the factorization ζK(s) = ζ(s)L(s, χ) of the
Dedekind Zeta function ζK of K combined with the fact that the logarithmic derivative of ζK
at s coincides, up to sign, with the Dirichlet series at s of the von Mangoldt function of K. We
obtain

ζ ′K(s)

ζK(s)
=
L′(s, χ)

L(s, χ)
+
ζ ′(s)

ζ(s)
= −

∑

k≥1, p

log(Np)

(Np)ks

= −
∑

ℓ prime

(1 + χ(ℓ)) log ℓ

ℓs − 1
−

∑

ℓ prime
unram. in K

(1− χ(ℓ)) log ℓ2
2(ℓ2s − 1)

,

where, in the first sum, p runs over the prime ideals of OK and Np = |OK/p|. Using the
analogous link between the logarithmic derivative of ζ and the classical von Mangoldt function,
we deduce that

L′(s, χ)

L(s, χ)
=

∑

ℓ prime

log ℓ
( 1

ℓs − 1
− 1 + χ(ℓ)

ℓs − 1

)
−

∑

ℓ prime
unram. in K

log ℓ
1− χ(ℓ)
ℓ2s − 1

.

Since both sums on the right hand side converge at s = 1, we let s→ 1 and get

L′(1, χ)

L(1, χ)
= −

∑

ℓ prime

log ℓ
( χ(ℓ)
ℓ− 1

+
|χ(ℓ)|(1− χ(ℓ))

ℓ2 − 1

)
. (25)

Next we fix any prime number ℓ and compute

Ep(valℓ(|E(Fp)|)) = lim
x→∞

1

π(x)

∑

p≤x
p good

valℓ(|E(Fp)|)

Let c ∈ OK be as in Lemma 3.1. Let R denote either Z or OK . For any prime λ ∈ R and for
any integer k ≥ 0, the density of primes π ∈ R that7 satisfy π ≡ µ+ bλk mod λk+1, for a fixed
unit µ of R and some b ∈ (R/(λ))∗ (i.e. primes π for which π−µ has λ-adic valuation equal to
k) is |(R/(λ))∗|/|(R/(λk))∗| = φ(λ)/φ(λk+1) = ∥λ∥−k, where φ is Euler’s indicator function for
R. Moreover, if we require the extra condition π ≡ a mod c, the Chinese Remainder Theorem
asserts that the density of the primes π considered shrinks to φ(λ)/(φ(λk+1)φ(c)), which equals
φ(c)−1∥λ∥−k. Using this density computation (combined with Lemma 3.1) in the case R = Z
we obtain the contribution of inert primes to Ep(valℓ(|E(Fp)|)):

1

π(x)

∑

p≤x
inert in K

valℓ(p+ 1) =
1

2

∑

k≥0

k
#{p ≤ x : valℓ(p+ 1) = k}

π(x)
→ 1

2

∑

k≥0

k

ℓk
=

1

2

ℓ

(ℓ− 1)2
.

7Again, we identify prime ideals with one given generator.
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In the case R = OK we handle, using Lemma 3.1 again, the contribution of split primes. To
do so we use the notation of Lemma 3.1 and factorize π − µc,a =

∏
i λ

ei
i , where λi is a prime

of OK above a prime number ℓi. If ℓi is inert in K then valℓi(∥π − µc,a∥) = 2ei, otherwise
valℓi(∥π − µc,a∥) = ei. Thus, using similar computations as the ones performed in the case of
inert primes p, we obtain:

lim
x→∞

1

π(x)

∑

p≤x
split in K

valℓ(|E(Fp)|) = lim
x→∞

1

π(x)

∑

a∈A

∑

π∈OK , ∥π∥=p≤x
π≡a mod c

valℓ(∥π − µc,a∥)

=
|A|
φ(c)

(1 + χ(ℓ) + 1ℓ|discK

2

ℓ

(ℓ− 1)2
+
|χ(ℓ)|(1− χ(ℓ))

2

2ℓ2

(ℓ2 − 1)2

)

=
1 + χ(ℓ) + 1ℓ|discK

4

ℓ

(ℓ− 1)2
+
|χ(ℓ)|(1− χ(ℓ))

4

2ℓ2

(ℓ2 − 1)2

Overall

4Ep(valℓ(|E(Fp)|)) =
3 + χ(ℓ)

ℓ− 1

(
1 +

1

ℓ− 1

)
+

1ℓ|discKℓ

(ℓ− 1)2
+

41ℓ inertℓ
2

(ℓ2 − 1)2
(26)

Combining with (25), one deduces as wished,

∑

ℓ prime

(
4Ep(valℓ(|E(Fp)|))−

3

ℓ− 1

)
log ℓ =− L′(1, χ)

L(1, χ)
+
∑

ℓ inert

2 log ℓ

ℓ2 − 1

(
1 +

2

ℓ2 − 1

)

+
∑

ℓ ram.

ℓ log ℓ

(ℓ− 1)2
+
∑

ℓ prime

3 + χ(ℓ)

(ℓ− 1)2

Example 1. We have computed the value of γK = L′/L(1, χ), ΣK and respectively α(E) using
Equation (25), the summed for ℓ ≤ 106. The rapidly converging series ΣK is evaluated using
the formula in the statement of Porposition 4.6 using ℓ ≤ 106. Finally, for each prime ℓ ≤ 104

one approximates the average value of valℓ |E(Fp)| using the primes p ≤ 103; and we obtained
α̃(E). The results illustrate the equality α̃(E) ≈ α(E) = γK − ΣK for a list of elliptic curves
having CM by the quadratic fields K = Q(

√
−d), (d > 0) of class number 1.

d 1 2 3 7 11 19 43 67 163
α̃(E) −3.042 −2.990 −3.038 −3.073 −3.019 −3.045 −3.080 −3.091 −3.119
α(E) −2.268 −3.058 −1.878 −3.924 −2.908 −2.284 −1.541 −1.041 0.585
ΣK 2.509 3.032 2.242 3.936 2.820 2.194 1.793 1.692 1.594
γK 0.245 −0.022 0.367 −0.015 −0.085 −0.085 0.246 0.659 2.171

α̃(E)− (γK − ΣK) 0.78 0.07 −1.16 0.85 −0.11 −0.76 −1.54 −2.05 −2.53

The difference α̃(E) − (γK − ΣK) is close to 0, but not negligible, depending on K. Indeed
the numerical estimation of the average ℓ-valuation of |E(Fp)| is slow and the sample of primes
p ≤ 103 is not sufficient to produce very small differences α̃(E) − (γK − ΣK). Note also that
the rate of convergence of the series involved seems to depend on the field K = Q(

√
−d).

Remark 3. The computation of L′(1, χ)/L(1, χ) is slow if one uses a naive evaluation of each of
the series L′(s, χ) and L(s, χ) (see [Lan22] for a recent algorithm). This gives a second purpose
of the formula (24): quickly computing (L′/L)(1, χ). Note that [BL17] gives bounds on the
convergence speed.
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Remark 4. In the study of friability of binary forms, Murphy [Mur98] associated a function
to irreducible polynomials f ∈ Z[x] as follows. For a prime ℓ,

αℓ(f) = (log ℓ) ·
(
En(valℓ n)− E(a,b)=1

(
valℓ b

deg(f)f(a/b)
))
,

α(f) =
∑

ℓ prime

αℓ(f),

where E(a,b)=1 corresponds to natural density for randomly chosen pairs of integers (a, b) which
are relatively prime; the convergence of the series is proven in [BL17, §2.2 ]. We note that
α(E) has an expression similar to α(f) with f such that K ≃ Q[x]/(f) (up to the condition
(a, b) = 1).

5 The set ΨE,z(x, y): proof of Theorem 1.3

This section is devoted to the proof of Theorem 1.3. We first state and prove a lemma, which
is a variation on the fact that a set of primes which has a natural density also has an analytic
(or logarithmic) density (see [Ten15, §III.1]).

Lemma 5.1. Let Q be a set of primes and, for x ≥ 2, let ΠQ(x) = Q ∩ [1, x]. In the case
where Q is the set of all primes, we will simply write Π(x) for ΠQ(x). Assume that there exists
a positive non increasing function λ(x) and a constant ω > 0 such that for all x ≥ 2,

|ΠQ(x)|
|Π(x)| − λ(x)≪

1(
log2 x)

1+ω
.

Then we have ∑
p∈ΠQ(x) p

−1

∑
p∈Π(x) p

−1
= λ(x)(1 + o(1)) +O

( 1

(log2 x)
1+ω

)
.

Proof. First note that

∑

p∈ΠQ(x)

p−1 =

⌊x⌋∑

n=1

|ΠQ(n)| − |ΠQ(n− 1)|
n

.

An Abel summation then yields

⌊x⌋∑

n=1

|ΠQ(n)| − |ΠQ(n− 1)|
n

=
|ΠQ(x)|
⌊x⌋+ 1

+

⌊x⌋∑

n=1

|ΠQ(n)|
n(n+ 1)

.

Now we use the Prime Number Theorem under the form |Π(x)| = (x/ log x)(1 + o(1)). We
obtain:

⌊x⌋∑

n=1

|ΠQ(n)|
n(n+ 1)

=
∑

n≤x

λ(n)
( 1

n log n
+ o(n−2)

)
+O

(∑

n≤x

1

n log n(log2 n)
ω+1

)
. (27)

To handle the error term we make use of Cauchy’s condensation criterion. Precisely

∑

n≤x

1

n log n(log2 n)
ω+1
≪

∑

1≤2k≤x

2k

2k log(2k) log2(2
k)ω+1

≪
∑

k≤log x

1

k(log k)ω+1
≪ (log2(x))

−ω .

19



Plugging this into (27) and using the fact that λ(n) ≥ λ(x) for all n ≤ x, one deduces that

⌊x⌋∑

n=1

|ΠQ(n)|
n(n+ 1)

= λ(x)
(∑

n≤x

1

n log n
+O(1)

)
+O

(
(log2 x)

−ω
)

= λ(x) log2 x(1 + o(1)) +O
(
λ(x) + (log2 x)

−ω
)
.

Finally, the term |ΠQ(x)|/⌊x⌋ has size λ(x)
log x(1 + o(1)) + O( 1

log x(log2 x)
1+ω ), which is negligible

compared to the left hand side of (27). The proof of the lemma is finished by using Dirichlet’s
estimate

∑
p∈Π(x) p

−1 = log2 x+O(1).

Proof of Theorem 1.3. Let Q = {p prime : |E(Fp)| is z-friable} and recall that z = y1/v.

ψE,z(x, y)

ψ(x, y)
=
( ∑

p∈Q, p≤y

ψ(x/p, y)
)
·
(∑

p≤y

ψ(x/p, y)
)−1

=
( ∑

p∈Q, p≤y

x

p
ϱ(u)(1 + ε(x, y, p))

)
·
(∑

p≤y

x

p
ϱ(u)(1 + ε(x, y, p))

)−1
,

where ε(x, y, p) = (ψ(x/p, y)− (x/p)ϱ(u))/((x/p)ϱ(u)). We combine (23) with the fact that for

any u ∈ ∆, one has log(u+1)
log y ≪ log2 x

log x to obtain that ε(x, y, p) = O( log(u+1)
log y ) = O( 1

(log x)ω ) for any
fixed 0 < ω < 1 and for u ∈ ∆. We deduce

ψE,z(x, y) = ψ(x, y)
(
1 +O( log(u+1)

log y )
)( ∑

p∈Q, p≤y

1/p
)
·
(∑

p≤y

1/p
)−1

.

In order to apply Lemma 5.1, we invoke Theorem 1.2(2) which asserts that

ψE(y, z)

|Π(x)| − ϱ(v)≪ δ(y)v .

Here we fix β > 0 such that δ(y)v ≪ (log2 y)
−1−β log3 y(log4 y)

−1. This is ≪ (log2 y)
−1−β

2 .
Therefore, by Lemma 5.1 we have that

( ∑

p∈Q, p≤y

1/p
)
·
(∑

p≤y

1/p
)−1

= ϱ(v)(1 + o(1)) +O
(
(log2 y)

−1−β
2
)
.

Hence we infer

ψE,z(x, y) = xϱ(u)
(
1 +O(

log(u+ 1)

log y
)
)
ϱ(v)(1 + o(1)) +O

(
(log2 y)

−1−β
2
)

= xϱ(u)ϱ(v)(1 + o(1)) .

6 The case of non CM elliptic curves

It is interesting to investigate potential analogues of Theorem 3.4 in the non CM case. This
section suggests such an analogue and highlights its theoretical limitations. Let E/Q be a non
CM elliptic curve. Deuring’s Theorem (Lemma 3.1) enabled us in the CM case to relate ψE(x, y)
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to the count of primes in arithmetic progressions. In the non CM case a natural choice for the
analogous prime counting function is the following:

πE(x; d) = |{p ≤ x : d | |E(Fp)|}| .

In celebrated work [Ser72], Serre shows the existence of an integerME depending only on E, such
that for n coprime with ME , the Galois group Gn of the n-torsion field extension E[n](Q)/Q is
isomorphic to the full group GL2(Z/Z). Moreover one has additional multiplicativity property
Gmn ≃ Gm ×Gn for any m coprime with n. David and Wu [DW12, Proof of Lemma 4.1] give
an asymptotic development under GRH for the Dedekind zeta function of Q(E[d](Q)) when d
is coprime to ME and squarefree:

πE(x; d) =
w(d)

d

x

log x
+OE(d

3/2x1/2 log(dx)) , (28)

wE(d) =
∏

ℓ|d
ℓ prime

ℓ2(ℓ2 − 2)

|GL2(Z/ℓZ)|
=

∏

ℓ|d
ℓ prime

ℓ(ℓ2 − 2)

(ℓ− 1)(ℓ2 − 1)
.

In the spirit of the Bombieri–Vinogradov Theorem and of its expected generalization Conjec-
ture 1.1, it is tempting to expect some strong average version of (28) over d. The following
results are evidence for the validity of this “Elliott–Halberstam phenomenon” that we next state
(Hypothesis 1 below).

Theorem 6.1. Let E/Q be a non CM elliptic curve and assume the GRH for Dedekind Zeta
functions.

1. One has ([Kow06, Prop. 3.8]):

∑

d≤x
1
4 /(log x)2

φ(d)|{p ≤ x : E[d](Q) ⊂ E(Fp)}| =
(∑

d≥1

φ(d)

|Gd|

)
x

log x
+OE

( x

(log x)3
)

2. One has ([DW12, (4.7)]):

∑

d≤x
1
5 /(log x)4

p|d⇒ME<p≤x1/10/(log x)4

2ω(d)µ(d)2
∣∣∣πE(x; d)−

wE(d)

d

x

log x

∣∣∣≪E
x

(log x)3
.

Regarding point 2 of Theorem 6.1, we follow Pollack who studied the elliptic curve analogue
of the Titchmarsh divisor problem ([Pol16, p.185]):

“We pretend that this approximation is valid for d up to size ≈ x, at least on average”.

This gives rise to the following hypothesis inspired by Conjecture 1.1.

Hypothesis 1. Let E/Q be a non CM elliptic curve. Then one has:

∑

d≤X

∣∣∣πE(x; d)−
wE(d)

d

x

log x

∣∣∣≪E,ω
x

(log x)ω
,

for any X ≤ x1−δ, x ≥ 2, for any constant ω > 0, and where one extends wE to a function on
N satisfying wE(mn) = wE(m)wE(n) for any coprime integers m,n such that either m or n is
coprime to ME (see [DW12, §2]).
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Note that Hypothesis 1 allows any exponent ω > 0 on the denominator of the upper bound.
This mimicks the upper bound appearing in the Elliott–Halberstam conjecture 1.1; moreover we
believe that there was no attempt to optimize the exponent 3 appearing in the upper bounds of
Theorem 6.1 in the works of Kowalski and David–Wu. Finally, as in the proof of Theorem 3.4,
we need an exponent ω > 6 to conclude the proof of Theorem 6.2.

Hypothesis 1 enables us to prove the following analogue of Theorem 3.4.

Theorem 6.2. For any x ≥ 2 and y ∈ [1, x] we set u = log x
log y . Assume Hypothesis 1 for a non

CM elliptic curve E/Q. Then, as x → ∞ and y is such that u ≤ u0, for some fixed constant
u0, we have

ψE(x, y) ∼
x

log x
ϱ(u) .

Proof. The argument is a verbatim translation of the proof of Theorem 3.4. We fix δ > 0. By
Möbius inversion we split the studied prime counting function:

ψE(x, y) =
∣∣∣
{
p ≤ x : gcd

(
|E(Fp)|,

∏

ℓ prime
ℓ>y

ℓ
)
= 1
}∣∣∣ = S1 + S2,

where
S1 =

∑

q≤x1−δ

P−(q)>y

µ(q)πE(x; q) , S2 =
∑

x+2
√
x≥q>x1−δ

P−(q)>y

µ(q)πE(x; q) .

Note that the upper bound on q in the index set of S2 comes from the Hasse–Weil bound on
|E(Fp)|. We next decompose S1 = S′

1 + S′′
1 where

S′
1 =

x

log x

∑

q≤x1−δ

P−(q)>y

µ(q)wE(q)

q
, S′′

1 =
∑

q≤x1−δ

P−(q)>y

µ(q)r(x, q) ,

and where r(x, q) = πE(x; q) − x
log x

wE(q)
q . Since u remains bounded, we may assume that

ME < y ≤ x, so that wE is multiplicative on all integers q such that P−(q) > y. If in addition
q is squarefree, the formula (28) for wE(q) is valid and yields wE(q) = 1 + O((P−(q))−1). We
compute

S′
1

x(log x)−1
=

∑

q≤x1−δ

P−(q)>y ,gcd(q,ME)=1

µ(q)wE(q)

q
=

∑

q≤x1−δ

P−(q)>y

µ(q)

q
+O

( ∑

q≤x1−δ

P−(q)>y

1

qP−(q)

)

∼ ϱ(u) +O
(1
y

∑

q≤x1−δ

1

q

)
(x→∞, u≪ 1) ,

where we have used Lemma 3.3. Finally, the fact that u ≪ 1 implies that the error term is
O((log y)/y) = o(1) as x→∞. This establishes S′

1 ∼ ϱ(u) x
log x as x→∞ with u≪ 1.

As in the proof of Theorem 3.4 (step 1′′), we show that S′′
1 = O(x/(log x)ω) by virtue of

Hypothesis 1. In particular, for bounded u, one has S′′
1 = o( x

log xϱ(u)).
We turn to the evaluation of S2. As in the proof of Theorem 3.4, we use Lemma 3.2 to

obtain the following upper bound: |S2| ≪ S′
2 + S′′

2 . Here we define

S′
2 =

∑

m≤xδ

x

log x

wE(m)

m

∏

p∈P, p<z
p∤mME

(
1− wE(p)

p

)
, S′′

2 =
∑

m≤xδ

∑

d<D
d|P (z)

|r(x,md)| ,
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where z = D = 1− 2δ, the parameter ca′ has to be replaced by ME to define the set of primes
P and where, for p ∈ P, we choose w(p) = wE(p) (which satisfies the hypotheses of Lemma 3.2
as shown in [DW12, Proof of Lemma 4.1]). We denote by P (z) the product of primes in P
that are less than z. The fact that (1− wE(p)

p )/(1− 1
p) = 1 +O( 1

p2
) for p ∈ P implies that the

method used in the proof of Theorem 3.4 to handle the contribution of S′
2 also yields in the

present case8 that S′
2 = O(δ x

log xu).

Finally, to obtain the bound for S′′
2 = o( x

log x) we argue as in the proof of Theorem 3.4,
invoking Hypothesis 1 for a fixed ω > 6. We conclude by letting δ → 0.

A Alternative proof of Corollary 4.3

We prove the following form of Corollary 4.3, using the same method as for Theorem 3.4 (i.e
an adaptation of Wang’s approach [Wan18]).

Proposition A.1. Let K be Q or an imaginary quadratic field of class number 1. Let a, c ∈ OK

be fixed and let µ ∈ O×
K . Let C ∈ (0, 12) and β ∈ (2C, 1). Assuming Conjecture 4.1, we have

ψK(x, y; c, a, µ) =
x

φ(c) log x
ϱ(u)

(
1 +O

(
δ(x)1−βu log u)

))
(x→∞)

uniformly for 2 ≤ u := log x/ log y ≤ C log2 x/ log3 x and δ(x) ∈ ( log2 xη log x , (log x)
−2C/β).

Proof. Let ε(x, y) = δu log u. Recall that δ(x) satisfies the assumptions of Conjecture 4.1.
We follow through the steps of the proof of Theorem 3.4. We split ψK(x, y; c, a, µ) = S1+S2

with S1 and S2 as in Equation (11) (up to replacing δ by δ(x)). We write S1 = S′
1 + S′′

1 as in
Equation (12) and we upper bound |S2| ≤ S′

2 + S′′
2 as in Equation (17).

Step 1′. We show that S′
1 =

x
φ(c) log xϱ(u)(1 + o(ε(x, y))). By Lemma 3.3 we have

S′
1 =

x

φ(c) log x

∑

q∈OK , ∥q∥≤x1−δ

P−(∥q∥)>y

µ(q)

φ(q)
=

x

φ(c) log x

(
ϱ
( log(x1−δ(x))

log y

)
+O(exp(−(log y) 3

5
−ϵ))

)
.

(29)
Note that u≪ log2 x/ log3 x implies that log y ≫ log x log3 x/ log2 x (so that y lies in the range
of validity for Lemma 3.3) In particular the error term in (29) is o(δ(x)ϱ(u)u log u). Indeed one
has

e−(log y)
3
5−ϵ

ϱ(u)
≪ e−(log y)

3
5−ϵ+2u log u

≪ exp
(
−
(
log x

log3 x

log2 x

) 3
5
−ϵ

+O
(
log2 x(1−

log4 x

log3 x
)
))
≪ 1

where we have also used the lower bound ϱ(u)≫ exp(−2u log u) coming from (4).
Finally, using (4) again, we compute (writing δ instead of δ(x), for simplicity):

log
(
ϱ
( log(x1−δ)

log y

))
− log(ϱ(u))) = −u(1− δ)(log u+ log(1− δ)) + u log u+O(u log2 u) .

8Alternatively, one could appeal to [DW12, (4.3), (4.9)] to estimate the inner product over primes in the upper
bound for S′

2.
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Hence ϱ
(
log(x1−δ(x))

log y

)
/ϱ(u) = 1 +O(δ(x)u log u) which proves the stated estimate for S′

1.

Step 1′′. We show that S′′
1 = o( x

log xϱ(u)ε(x, y)). To do so we apply Conjecture 4.1 in the
same way we applied Conjecture 1.1 in the proof of Theorem 3.4. We fix ω > 2C − 2 where C
is an absolute constant such that we work under the restriction u ≤ C log2 x/ log3 x. The exact
same argument as the one used to obtain (14) yields S′′

1 = O(x(log x)−1/(log x)ω−1). The point
is that Conjecture 4.1 asserts that the implied constant in this upper bound is uniform in u.
We now compute, using again the bound ϱ(u)≫ exp(−2u log u) and the fact that u log u grows
as x→∞,

S′′
1

x(log x)−1ϱ(u)ε(x, y)
≪ e2u log u

(log x)ω−1δ(x)u log u
≪ (log2 x)e

2u log u

(log x)ω−2u log u

≪ (log2 x) exp(2C log2 x)

(log x)ω−2
≪ log2 x

(log x)ω−2C−2
.

Step 2′. We prove that S′
2 = O

(
x

log x
δ(x)

1−2δ(x)u
)
in the exact same way as for (18) (where the

implied constant is absolute). From the bound 1−2δ(x) ≥ 1−2η ≫ 1 (recall Conjecture (4.1)),
we conclude that

δ(x)βS′
2

ϱ(u)x(log x)−1ε(x, y)
≪ δ(x)β

ϱ(u)
≪ δ(x)βe2C log2 x ≪ 1 .

Therefore we have S′
2 = O( x

log xδ(x)
1−βϱ(u)u log u).

Step 2′′. We prove that S′′
2 = o( x

log xϱ(u)ε(x, y)). As in the proof of (19), we have

S′′
2 = O

(x(log x)−1

(log x)
ω
2
−3

)

with an implied constant depending only on ω. We then argue as in Step 1′′ above by requiring
this time that ω > 4C + 4. This concludes step 2′′ and the proof of Proposition A.1.

B Numerical illustration

We consider the examples E7 : y
2 + xy = x3 − x2 − 2x− 1 and E11 : y

2 + y = x3 − x2 − 7x+ 10
which have endomorphism rings included in Q(

√
−7) and Q(

√
−11), respectively.

Our numerical experiment (see Figure 1) can be seen as a type of Chebyshev race9 between
E7 and E11: we compare ψE7(x, 2

7) and ψE11(x, 2
7) for various values of x. The data shows

that E7 is “always ahead”, in other words, E7 is more ECM-friendly than E11 for these values
of x and y. We repeat this Chebyshev race for y = 225 and obtain the same conclusion. This
suggests the following conjecture: E7 is more ECM-friendly than E11 uniformly for x and y
when y grows with x and is not too large compared to x.

In Figure 2 we search for an accurate expression for the error term in the asymptotic ex-
pansion of ψE(x, y)/ψE(x,∞). First we plot the expression which is given by Scourfield’s
Theorem 4.4

ψK(x, y)/ψK(x,∞) = ϱ(u)

(
1− log(u+ 1)

log y
γK(1 + o(1))

)
.

9In an 1853 letter, Chebyshev observes that the count of primes up to x that are 3 modulo 4, almost always
exceeds that of primes that are 1 modulo 4. Modern instances of what is now called a “prime number race” have
been extensively studied in the recent years.
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The data corroborates the accuracy of this theoretical value. We also plot the expression

γ̃K :=
ψK (x,y)

ψK (x,∞)
ϱ(u)−1−1

log(u+1)/ log y which converges to a constant when u = 1.5. We define similarly

γ̃E :=
ψE(x,y)

ψE(x,∞)
ϱ(u)−1−1

log(u+1)/ log y for which we don’t have a theoretical result. The data suggests that

log(ψE(x, y)/ψE(x,∞)) has the same main error term as log(ψ(x, y)/ψ(x,∞)) and that γ̃E
converges as x→∞. Note that if γ̃E does converge, it is not expected to be equal to γ̃K since
the former quantity involves the contribution of both split and inert primes.

We emphasize that the collection of data presented in Figure 1 requires the computation of
|E(Fp)| for a large number of primes p and for E = E7 or E11. We haven’t used the expensive
Schoof algorithm because, in the particular case of CM curves, specific methods exist. We
haven’t used the formulæ in [RS09, Th 5.3, Th 5.5 and Th 5.6] either. Indeed the characters
involved, although explicit, have a costly evaluation, moreover the formulæ are prone to typos.
Instead we follow a classical procedure and use Lemma 3.1: let p be a prime for which one
wishes to compute |E(Fp)|. Fix a Weierstrass model for E and pick a dozen random projective
points P1 ∈ E(Fp); for each root of unity µ of K (there are at most 6 of them), compute the
possible value of N := ∥ π − µ ∥. Next compute |N ]P1, [N ]P2, . . . and rule out N if one of the
computed points is not (0 : 1 : 0). When all but one of the possible values of |E(Fp)| have been
ruled out, one successfully outputs the result.

The data plotted in Figures 1 and 2 is available online at:

https://razvanbarbulescu.pages.math.cnrs.fr/ElliottHalberstam/ElliottHalberstam.html
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Figure 1: Comparison between ψE(x, y) and ψK(x, y) when E is CM and K =
End(E)⊗Q.
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