Equidistribution and L-functions

During the lecture we proved the following statement.

Theorem 1. Let X be compact and let μ be a Radon measure on X. Let (x_n) be a sequence of elements of X. Then (x_n) is μ -equidist. in X if and only if for all $E \in \mathcal{B}(X)$ such that $\mu(\overline{E} \setminus \mathring{E}) = 0$, one has

$$\frac{1}{n}|\{i \le n \colon x_i \in E\}| \to \mu(E) \qquad (n \to \infty).$$

To clarify the argument for the converse implication given during the lecture we repeat it here.

First the assumption means that $n^{-1} \sum_{i=1}^{n} \mathbb{1}_{E}(x_{i})$ tends to $\int_{X} \mathbb{1}_{E} d\mu$ for every Borel subset E of X of μ -negligible boundary. By linearity this extends to any function $g = \sum_{i=1}^{k} \alpha_{i} \mathbb{1}_{E_{i}}$ where the E_{i} are pairwise disjoint Borel subsets of X of μ -negligible boundary and the α_{i} are real numbers.

Let $f: X \to \mathbf{R}$ be continuous and let $\varepsilon > 0$. We exploit the following lemma.

Lemma 1. There exists pairwise disjoint open subsets X_1, \ldots, X_k of X, all having μ -negligible boundary, such that the complement N_{ε} of $\bigcup_{1 \leq i \leq k} X_i$ is closed and μ -negligible and

$$\forall i \in \{1, \dots, k\}, \qquad \left| \sup_{x \in X_i} f(x) - \inf_{x \in X_i} f(x) \right| < \varepsilon.$$

Proof of the Lemma. First note that for any h outside of a Lebesgue negligible subset Z of \mathbf{R} , one has $\mu(f^{-1}\{h\}) = 0$ (proof left as an exercise). Next compactness of X and continuity of f allow us to cover f(X) by a finite number of intervals $[h_{i-1}, h_i]$ $(1 \le i \le k)$ satisfying:

$$\forall i \geq 1, \ h_{i-1} \notin Z, \ h_i \notin Z, \ h_{i-1} < h_i \ \text{and} \ |h_i - h_{i-1}| < \varepsilon.$$

(Here we use the fact that Z contains no open interval of \mathbf{R} to make sure the h_i can be chosen outside of Z.) For each i, set $X_i = f^{-1}(]h_{i-1}, h_i[)$. The X_i are pairwise disjoint open subsets of X and the complement N_{ε} of the union of the X_i is $\bigcup_{1 \leq i \leq k} f^{-1}\{h_i\}$ which is μ -negligible (by the fact that $h_i \notin Z$, for all i). The fact that f has fluctuations of magnitude at most ε on each X_i comes from the definition of the sequence (h_i) and finally note that

$$\overline{X_i} \setminus \mathring{X_i} \subset f^{-1}([h_{i-1}, h_i]) \setminus X_i = f^{-1}\{h_{i-1}, h_i\}$$

which is μ -negligible since $h_i \notin Z$ for all i.

For each $i \in \{1, ..., k\}$, choose $z_i \in X_i$ and consider $g_{\epsilon} = \sum_{i=1}^k f(z_i) \mathbb{1}_{X_i}$. By the Lemma we have

$$\sup_{x \in X \setminus N_{\varepsilon}} |f(x) - g_{\varepsilon}(x)| < \varepsilon. \tag{1}$$

The lemma, combined with the discussion preceding it, shows moreover that under our assumption:

$$\frac{1}{n} \sum_{i=1}^{n} g_{\varepsilon}(x_i) \to \int_{X} g_{\varepsilon} d\mu \qquad (n \to \infty).$$
 (2)

Finally we compute:

$$\left| \frac{1}{n} \sum_{j=1}^{n} f(x_j) - \int_X f d\mu \right| \le \left| \int_X g_{\varepsilon} d\mu - \int_X f d\mu \right| + \left| \frac{1}{n} \sum_{j=1}^{n} g_{\varepsilon}(x_j) - \int_X g_{\varepsilon} d\mu \right| + \frac{1}{n} \sum_{j=1}^{n} \left| f(x_j) - g_{\varepsilon}(x_j) \right|.$$

On the right-hand side, the first summand is upper bounded by ε (combine (1) with the fact that $\mu(N_{\varepsilon}) = 0$). The second summand is upper bounded by ε for big enough n by (2). As for the third summand, we invoke (1) once more to see that it is upper bounded by

$$\varepsilon + \frac{1}{n} \sum_{\substack{i=1\\x_i \in N_{\varepsilon}}}^{n} |f(x_i)| \le \varepsilon + ||f||_{\infty} \left(\frac{1}{n} |\{i \le n \colon x_i \in N_{\varepsilon}\}| \right)$$

and we conclude by applying our assumption to N_{ε} (closed and μ -negligible):

$$\frac{1}{n}|\{i \le n \colon x_i \in N_{\varepsilon}\}| \to \mu(N_{\varepsilon}) = 0 \qquad (n \to \infty).$$