ERRATUM: “PRIME NUMBER RACES FOR ELLIPTIC CURVES
OVER FUNCTION FIELDS”

BYUNGCHUL CHA, DANIEL FIORILLI, AND FLORENT JOUVE

ABSTRACT. The paper mentioned in the title contains a mistake in Proposition 3.1. The
expression for the L-function of the elliptic curve E/F,(t) is wrong by a small uniformly
bounded number of linear factors in Z[T]. In this note we fix the problem and its minor
consequences on other results in the same paper.

1. THE L-FUNCTION OF ELLIPTIC CURVES IN ULMER’S FAMILY

First recall some notation used in [I, §3]. Let F,(¢) be the rational function field over a
finite field F, of characteristic p > 3. Following [2], fix d € Z-( and define E,;/F,(t) to be
the elliptic curve over F,(t) given by the Weierstrass equation

Eg: vy +ay =3 —t2.

The following explicit description of the Hasse-Weil L-function of E;/F,(t) is essential to
the analysis of Chebyshev’s bias for Ulmer’s family performed in [1]. This corrects the flawed
expression for L(E,/F,(t),T) given in [I, Prop. 3.1].

Proposition 1.1. Suppose that d divides p™ + 1 for some n, and let L(E4/F,(t),T) be the
Hasse-Weil L-function of Eq over F,(t). Then,

(1) L(E4/F,(t),T) = (1 - qT) (1 + ¢T)" [[ (1 - (7)™ )"
eld
ef6

(e)/0e(q)

Here, ¢(e) = #(Z/eZ)* is the Euler-phi function and o.(q) is the (multiplicative) order of q
in (Z/eZ)*. Further, ¢; and nq are defined as

if31d
if3|dand31q—1;
if3|dand3|q—1

- {o if2td ord|q—1 {0 if31dor3|q—1
d -—

+

0 f2¢dordtqg—1
€q 1=
¢ 1 if2|dandd|qg—1

N = O

1 if2|danddtq—1 1 if3|dand3fq—1"
The statement about the rank of E;/F,(¢) in [I, Prop. 3.1] is unchanged.

Proof of Proposition 1.1. We combine three arguments in order to obtain the expression
stated in the proposition for f4(T") := L(Ey4/F,(t),T) as an element of Z[T].

(i) We first compute the degree of f;(7) using the conductor-degree formula.
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(ii) We use our knowledge of deg f4(7") and the work of Ulmer ([2, Cor. 7.7, Prop. 8.1
and Th. 9.2]) to obtain the following factorization of f4(T") in Z[T):

fa(T) = (1 = qT)“ga(T) Po(T)

where P, is the product over divisors e of d not dividing 6 appearing in (1), and
94(T) € Z|T) has degree ng.

(ili) We use the geometric construction described in [2, §5] explaining that the difference
between P (T') and f;(7T) is the result of blowing up some relevant quotient F,;/I" of a
Fermat surface at points that are either defined over [F, or over a quadratic extension
of F, (these points are cube roots or fourth roots of 1).

In the rest of the proof we let k& = F,. For (i) we use [3, §3.1.7] and the reduction
data [2, §2| for E4/k(T) to deduce that

0 if6|d
deg fy= —d+ [1+4d
8 Ja +< + +{2 if6+d>’

where the first summand —4 on the right-hand side comes from the fact that the base
curve is P! /k and the three remaining summands correspond to the contributions of the bad
reduction places above t,1 — 243%t%, 0o, respectively. Overall,

d—3 if6|d
2 deg f1 = ’
@) 8 Ja {d—l if61d.

As expected, the geometric invariant deg f; does not depend on k, but only on d.

Step (ii) merely consists in extracting information from Ulmer’s work [2]. Since we assume
that d | p™ + 1 for some n, we deduce from [2, Cor. 7.7, Prop. 8.1] that L(E/k,T) is divisible
in Z[T) by

o @(€)/0e(q)
Po(T) =[] (1= (¢7)) v

eld

e‘fﬁ
Note that this factor depends a priori on ¢ since making a field extension £’/k will result in
replacing ¢ by |k’| each time it occurs in the expression for P». Moreover, invoking [2, Th.
9.2], we obtain an extra factor (a power of 1 —¢T") for L(E/k(t),T) so that overall we deduce
that in Z[T], the polynomial f; is a multiple of

e 0e(q)\ 9(e)/0e(a)

(3) ha(T) = (1 — gy [ (1 - (a7)*®) .

eld

eJ(G
Again note that ¢; depends on d and on k; precisely its value is affected by the presence of
cube roots or fourth roots of 1 in k. In particular as soon as we work over a field extension
K'/k containing the cube and fourth roots of 1, the parameter ¢; becomes independent of
any further base extension.

Let g4 = }’:—fl € Z[T] and let ny = deggy. From (2) and (3) we deduce the formula

for ny stated in the proposition. In particular, the expression for 7y shows that g; = 1

when £ contains both the groups of cube roots and fourth roots of 1, and that in any case

ng = deggqg < 2.
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We finally turn to (iii). From [!, (6.3)] we know precisely how the zeta function of &,
relates to L(E/k(T'),T) (here the notation is as in [2, §3]: £;/k is the elliptic surface which
is regular, proper and relatively minimal when seen as fibered over P!, and which has generic
fiber E/k(T)). Also &, is constructed (see [2, §5]) from some quotient Fy/T" of the diagonal
Fermat surface Fy/k by a sequence of blow-ups at k-points of u3 and 4 (the groups of cube
roots and fourth roots of 1 in k, respectively), as explained in [2, §5.6].

By [2, Cor. 7.7], the polynomial P, is the characteristic polynomial of the Frobenius
acting on the middle étale cohomology of F,/I". The “missing” factor g, thus comes as the
arithmetic translation of the sequence of blow-ups leading from F,/I" to ;. Let zq be a
K'-rational point of Fy/I" which is blown up in the process of constructing &;. As already
mentioned, x, corresponds to an element of us U 114 seen as a subset of k. In particular
k' either equals k or is a quadratic extension of k. In any case we can choose k' to be a
quadratic extension of k such that ¢ is defined over k’. Then if Y — F,;/I" is the result of
blowing up xy we have by “multiplicativity of zeta functions”

Z((Fa/T) /K, T)

Z(Y/K,T) =
(/w1 = S

(Here we use the standard fact asserting that if X/k is a variety and if Y is a closed subvariety
of X, then Z(X,T) = Z(Y,T) - Z(U,T) where U is the complement U := X \ Y. This is
readily obtained from the definition of the zeta function of a variety over a finite field as an
exponential generating series.) Also one has the following base change formula:

Z(Y/K,T?) = Z(Y/k,T) x Z(Y/k,~T).

(Again this is a standard fact obtained by coming back to the definition of the zeta function
of a variety over a finite field X/k and by exploiting elementary properties of r-th roots of
1 in C, to show that if k. /k is an extension of degree r, then one has Z (X X Speck,, T") =
[1i-, Z(X.,&'T), where € € C is a primitive r-th root of 1.) Combining theses facts on zeta
functions, we deduce that

Z((Fy/T) /K, T?)
(1 —qT)(1+qT)

Z(Y/k,T)x Z(Y/k,~T) =

One possibly has to iterate the above process several times (depending on the number of
blow-ups that are necessary to construct &; from F;/T"). However each time a point is blown
up, the zeta function for the resulting variety only differs from that of the initial variety by
a factor 1 — ¢T or 14 ¢T. Of course a factor 1 — ¢T affects the rank of E;/k(T), but the
rank is known by [2, Th. 9.2]. We deduce that g4 has to be a power of the polynomial 1+ ¢T
and that the exponent is necessarily 1, by (ii) above.

O

We deduce the following corrected version of [1, Prop. 3.2].
Proposition 1.2. Let c.(X) be defined by

c _ Ja/la=1) for even X,
A {\/6_1/(6] —1) for odd X.
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Then
elmX —(X mod oe(q))/2
€d
(4) Td(X) = _Ci(X) + 1 1+q_§ +Z¢ _qfoe(q)/2 +0X~>oo<1)

1—q2
ej(ﬁ
for X large enough, where 0 < (X mod ¢) < ¢ —1 is the remainder in the Fuclidean division
of X by (.

Proof. We combine [I, Cor. 2.10] and Proposition 1.1 to obtain that

€4 ¢ 6 %e (g e27rikX/oe(q)
5) Tu(X) = —ca(X)+ : 1 Foyoo(l).
( ) d( ) Ci( ) 1—q™2 1 —|—q*5 Z Oc q kz_% 1— q*ﬁe*%ik/oe(q) OX= ( )
eJ(G
The end of the proof of [I, Prop. 3.2] remains valid. O

The definition of the “periodic part” of T,;(X) has to be corrected accordingly. We set
(compare with [1, (44)])

—(X mod oc(q))/2

per — €d
T3 (X) = —ee(X) 4 77 + 1+q_2+—§: T

eJ(G

The statement of [I, Cor. 3.4] remains valid (in the proof, one has to replace the flawed
expression for T;(X) by (4) but this has no impact on the statement of [I, Cor. 3.4] since

na > 0).

2. CORRECTED VERSIONS OF [l, Th. 1.5] AND OF SOME RELATED STATEMENTS

The fact that the expression for 7,(X) was incorrect in [!] has consequences on some of
the results of [1] on Chebyshev’s bias in Ulmer’s family (E;/F,(¢)). In this section we state
and prove the following corrected version of [I, Th. 1.5].

Theorem 2.1. For the family {E4/F,(t)} (where we recall that the integer d and the char-
acteristic p of F, are linked by the relation d | p™ + 1 for some n > 1), one has the following
cases of extreme bias.

(i) Suppose that 3| d and 3 | q—1 and that either d is odd or 4 | g—1. Then, Ty(X) >0
for all large enough X, and thus §(Eq) = 0(Eq) = 1.
1
(ii) If g = p* with p large enough and d = p"+1 for some 1 < n < e??/6 withn = 0 mod k,
then Ty(X) > 0 for all large enough X, and thus 0(Ey) = 6(Eq) = 1.
(iii) Fiz e > 0. There ezists primes d > 3 and p such that p is a primitive root modulo d,

and such that if we pick q = p%, then the associated curve Eq has analytic rank 1
(resp. 2) if (d—1)/2 is even (resp. odd) and

0<d(Ey) <0(Ey) <e.

Note that the statement (iii) is unchanged, compared with [I, Th. 1.5(iii)], but since
its proof has to be amended, we chose, for completeness, to give a full corrected statement

for [1, Th. 1.5].
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Proof of Theorem 2.1(i). If d and q satisfy the stated assumptions, then ¢; € {2,3} and
1ng = 0. Then, the statement easily follows because

€ el™X 1 €
—e(X) + d_l_'_ "ld > — d_l_ 7)az_l
l—qz 1+q:2 l—gq l—qz2 1+q:
_ —1+ € —na+q 2 (éa+ 1) -0
1—q! ’
thus using Proposition 1.2 we see that Ty(X) > 0 for all large enough X. O

Proof of Theorem 2.1(ii). By Proposition 1.2 and by positivity, we have that (recall that p
is large enough, and therefore so is d)

—(X mod oc(q))/2

Ty(X) = —ca(X) + —2 _+ Z + 0x300(1)

= 1 = — @

em
> ¢(d)g™ X ot 1 — g+ 0y 00 (1) + 0xs00(1)
> ¢(d)g 1D — 340, (1) + 0xse0(1).
However, we have that ¢*"/* = 1 mod d, that is 04(q) | 2n/k. We conclude that
Tu(X) > ¢(d)q2q % = 3+ 0pso(1) + 0x 00 (1)
= 3(d)gZ(d — 1) = 34 0pyoo(1) + 0x—00(1).

This quantity is positive for large enough X since, for d large enough, we have that ¢(d)/(d—
1) > (e77 4+ 0o(1))/loglogd and the condition on n implies that loglog(p™ + 1) < q%/6 +
loglogp + 1. Since 6 exp(—+y) > 3 the proof is complete.

0]

The proof of [I, Th. 1.5(iii)] uses [!, Prop. 3.5] which remains valid although parts of its
proof require some corrections that we now explain.

Proof of Proposition 3.5 in [1]. The argument given in [!] to prove [I, Prop. 3.5(i)] remains
valid since the hypotheses on the parameters imply that ny; = 0.

We turn to the proof of [1, Prop. 3.5(ii)]. The hypotheses imply €4 = 0 and 7y = 1. Thus,
by Proposition 1.2, one has that

oinX ¢~ (X mod 0¢(q))/2 ¢~ (X mod 02,(q))/2

We have ¢" = (—p~')" = —1 mod d. We claim that n is the least positive integer such
that this congruence holds. Indeed this minimality condition holds by definition for the
congruence p" = —1 mod d. Now ¢ = —p~! mod d and n is even, thus the claim follows.
Since ¢ is odd, the property ¢ | ¢* —1 is equivalent to 2¢ | ¢*—1, for all k € Z>;. In particular
we have 04(q) = 020(q) = 0s(q) = 2n. Now, let j be an integer such that 4 < j < 2n —1. We
have that

Td(X) = —Ci(X) +

g~ mod 0x(@))/2 g~ mod 02e(0))/2 —4/2 o pn=2(n-1) _ 2—n
AT o T T e < < o
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If j is odd, we have that cy(j) > ¢ 2 = p="/2 and €™ = —1. We deduce that for p and
X large enough we have Ty(X) < 0 (recall n > 4) as soon as X = j mod 2n. If j is even, we
have that

, 1 —(n—1)/2
Ty(X) = —c+(j) + — + O(P*™") + 0x00(1) = _p—_l +O(p* ™) + 0x—00(1).
1+qg 2 1—gq
which is < 0 for large enough p and X. Hence

— 2
0 <9(Eq) <0(Eq) < —.
n

As for the lower bound, it is given by [I, Cor. 3.4]. O

Proof of Theorem 2.1(iii). This is a direct consequence of [1, Prop. 3.5(i)] and [I, Cor. 3.7
(the argument given in the proof of [, Th. 1.5(iii)] can be applied without modifications). O

3. CORRECTED VERSION OF [l, Th. 1.7] AND OF SOME RELATED RESULTS

The corrected version of [1, Th. 1.7] is the following statement.

Theorem 3.1. For the family {E4/F,(t)}, one has the following cases where Ty(X) is com-
pletely unbiased. Fiz p =3 mod 4 and let d > 5 be an odd divisor of p*> + 1. Pick ¢ = p***!
with k > 1. Then the analytic rank of Eq is (d — 1)/4 and we have

() = B(Es) = .

The proof of [I, Th. 1.7] uses [I, Prop. 3.8], which remains valid although the proof
requires some corrections that we now explain.

Proof of Proposition 3.8 in [1]. Under the stated assumptions ¢ = p mod 4 thus 4 1 ¢ — 1
and of course 2 | d. Also since n is even, 31 d. We deduce ¢; = 0 and 1y = 1 and, from (4),
we obtain the formula

T(X) = —esX) + 0 4 Yo L M)
= —c + + e + 0x500(1).
d * 1+q75 4 1—go@z =77

et6

As in [1, Prop. 3.8], one shows that, for each e | d with e { 6, we have that o.(q) > 3.
Using this fact, we have that if X = 3 mod 2n (recall n > 2 so that 3 is an admissible
remainder for the Euclidean division by 2n), then

1 q—3/2
Ta(X) = —ex(X) — - Tt ;:cb(@)m + 0x00(1).
et6

This last quantity is negative for large enough X = 3 mod 2n. Indeed (1 + q_%)_1 =
14+ 0p00(1), and since X is odd we have cy(X) = 0p,00(1). Also,
~3/2

Z gb(@)% < q_%d < pn—3(kn+1)/2 < p_%7
eld
eJ(ﬁ

which is 0,,(1). We conclude by invoking [1, Cor. 3.4].
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Proof of Theorem 3.1. We argue as in [I, Proof of Th. 1.7] to see that ¢; = 0. Moreover,
since we assume d is odd and d | p? +1 = 2 mod 3, we have n; = 0 and d = 1 mod 4 (indeed
d is an odd divisor of a sum of two coprime squares). Note also that if e | d with e ¢ {1,2}
(i.e. e # 1 since d is odd), then ¢*> = p* = —1 mod e, hence 0.(q) = 4. The rank of Ey
is then easily computed with the help of Proposition [I, Prop. 3.1]. Moreover, we deduce
from (4) that

q—(X mod 4)/2

Ty(X) = —ce(X) + zd: Ble) T +oxm(D)
e#1
hence T7(X) is 4-periodic.
If X =0 mod 4, then
_ 4 ¢(e) —1
Ty(X) = —7-1 Ed: g7 + 0x00(1) 2 =2+ ———5 + 0x40(1)
e#1

which is positive for X large enough.
If X =1 mod 4, then

¥

1) = - L+ Y A  oxon(l) = g} (20 ) o)

— 2
eld 1 q
e#1
which is again positive for X large enough.
The analysis of the cases X = 2,3 mod 4 is unchanged compared with [!, Proof of Th.
1.7], except for ther index set in the sums >, ., , which have to be replaced by ;.-
O

q—

Remark 3.2. In [, Th. 1.7], the constraint “d odd” does not appear. However taking into
account the correcting factor (1 + ¢7")" in the expression for L(E,/F,(t),T) (in Proposi-
tion 1.1) we now see that this is a necessary restriction. Let us investigate the changes to
the above proof implied in case d is even. Since 3 1 d and 4 1 ¢ — 1 we still have ¢; = 0;
however if d is even, we have 7y = 1. The argument according to which any divisor e # 1, 2
of d satisfies 0.(q) = 4 is still valid and thus Proposition 1.2 gives

—(X mod 4)/2
Ta(X) = —cx(X) + ="+ Z SO+ oxome(l)

e;él 2

hence with notation as before T)”(X) is again 4-periodic.
The formula for the rank in [I, Prop. 3.1] provides the explicit value (d — 2)/4 for the
analytic rank of Ey/F,(t) (note that d is an even divisor of p? + 1 and thus d = 2 mod 4).
Let us determine the sign of Td(X) depending on X mod 4. If X = 0 mod 4, then

q 1 d—2
Ty(X)=— 5 +o oll) > =2+ T+ 5 +o (1),
0= gt B o2 2 g o)

67512

which is positive for X large enough.



Likewise for X = 3 mod 4 the contribution is negative in case d is odd (as seen in the
proof above). For even d the factor (14 ¢7")™ of the L-function produces an extra negative
contribution:

I 1 Ble)g
Ty(X) = — - S+ + 0x—00(1
1lX) q—1 14¢2 eld = Hoxoll
e#£1,2

thus Ty(X) is a fortiori negative for X large enough.
For X = 2 mod 4, the contribution remains negative. Indeed we have that

q 1 p(e)g! q 2 (d—2)q"
Ty(X) = — RASTA . (1) =— (1
a(X) ‘1‘1+1+Q‘5+Zd: — 7 toxo (1) Tt T T oxo (1)
e#1,2
3
—q 2+ (d=2)qg ' —q2

which is negative for X large enough since (d — 2)g 2 < p?~2¢~2 < p3.
Finally if X = 1 mod 4, the contribution is negative (contrary to the case d odd). Indeed
we have that
1
q 1
Tu(X) = - —+ D
eld

g—1 1443

Ble)g
e#1,2

-1 gz (d—2) —1—q 'l +q2(d-2)
1—qt 1—q2 0xX—00(1) 1—q2

+ OX%oo(l) .

As seen above (d — 2)g~2 < p~z and thus Ty(X) is negative for large enough X.
As a conclusion, we obtain that under the assumptions of Theorem 3.1 but fixing this time
an even divisor d of p*> + 1, we have 6(Fy) = 1/4.

4. CORRECTED PROOF OF [l, Th. 1.8] AND OF SOME RELATED RESULTS

The statement of [I, Th. 1.8] remains valid, however its proof relies on [I, Prop. 3.10],
that statement of which remains valid as well, although its proof requires some fixing. We
now explain the details.

Proof of Proposition 3.10 in [1]. We first see that the hypotheses on the parameters imply
that ¢, = 7y = 0. Indeed, as in [I, Proof of Prop. 3.10] we show that d = n = 1 mod 2
and that d = n mod 3. Since n is prime, we deduce that (6,d) = 1 as soon as n > 3. Now
if n = 3, the assumption 3 { p + 1 and the fact that p> + 1 = p + 1 mod 3 imply that
d = 1 mod 3 and again we conclude (6,d) = 1. Therefore under the assumptions stated
in [1, Prop. 3.10], we have ¢; = 1y = 0.
The rest of the proof of [I, Prop. 3.10] is unchanged.
0

The way [1, Th. 1.8] is deduced from [I, Prop. 3.10] is unchanged.

Acknowledgements. We thank Richard Griffon for helpful discussions that led to the

correct computation (1) of the L-function of Ulmer’s elliptic curve Ey/F,(t).
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