
ERRATUM: “PRIME NUMBER RACES FOR ELLIPTIC CURVES
OVER FUNCTION FIELDS”

BYUNGCHUL CHA, DANIEL FIORILLI, AND FLORENT JOUVE

Abstract. The paper mentioned in the title contains a mistake in Proposition 3.1. The
expression for the L-function of the elliptic curve E/Fq(t) is wrong by a small uniformly
bounded number of linear factors in Z[T ]. In this note we fix the problem and its minor
consequences on other results in the same paper.

1. The L-function of elliptic curves in Ulmer’s family

First recall some notation used in [1, §3]. Let Fq(t) be the rational function field over a
finite field Fq of characteristic p ≥ 3. Following [2], fix d ∈ Z>0 and define Ed/Fq(t) to be
the elliptic curve over Fq(t) given by the Weierstrass equation

Ed : y2 + xy = x3 − td .

The following explicit description of the Hasse–Weil L-function of Ed/Fq(t) is essential to
the analysis of Chebyshev’s bias for Ulmer’s family performed in [1]. This corrects the flawed
expression for L(Ed/Fq(t), T ) given in [1, Prop. 3.1].

Proposition 1.1. Suppose that d divides pn + 1 for some n, and let L(Ed/Fq(t), T ) be the
Hasse-Weil L-function of Ed over Fq(t). Then,

(1) L(Ed/Fq(t), T ) = (1− qT )εd(1 + qT )ηd
∏
e|d
e-6

(
1− (qT )oe(q)

)φ(e)/oe(q)
.

Here, φ(e) = #(Z/eZ)∗ is the Euler-phi function and oe(q) is the (multiplicative) order of q
in (Z/eZ)∗. Further, εd and ηd are defined as

εd :=

{
0 if 2 - d or 4 - q − 1

1 if 2 | d and 4 | q − 1
+


0 if 3 - d
1 if 3 | d and 3 - q − 1

2 if 3 | d and 3 | q − 1

;

ηd :=

{
0 if 2 - d or 4 | q − 1

1 if 2 | d and 4 - q − 1
+

{
0 if 3 - d or 3 | q − 1

1 if 3 | d and 3 - q − 1
.

The statement about the rank of Ed/Fq(t) in [1, Prop. 3.1] is unchanged.

Proof of Proposition 1.1. We combine three arguments in order to obtain the expression
stated in the proposition for fd(T ) := L(Ed/Fq(t), T ) as an element of Z[T ].

(i) We first compute the degree of fd(T ) using the conductor-degree formula.
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(ii) We use our knowledge of deg fd(T ) and the work of Ulmer ([2, Cor. 7.7, Prop. 8.1
and Th. 9.2]) to obtain the following factorization of fd(T ) in Z[T ]:

fd(T ) = (1− qT )εdgd(T )P2(T ) ,

where P2 is the product over divisors e of d not dividing 6 appearing in (1), and
gd(T ) ∈ Z[T ] has degree ηd.

(iii) We use the geometric construction described in [2, §5] explaining that the difference
between P2(T ) and fd(T ) is the result of blowing up some relevant quotient Fd/Γ of a
Fermat surface at points that are either defined over Fq or over a quadratic extension
of Fq (these points are cube roots or fourth roots of 1).

In the rest of the proof we let k = Fq. For (i) we use [3, §3.1.7] and the reduction
data [2, §2] for Ed/k(T ) to deduce that

deg fd = −4 +

(
1 + d+

{
0 if 6 | d
2 if 6 - d

)
,

where the first summand −4 on the right-hand side comes from the fact that the base
curve is P1/k and the three remaining summands correspond to the contributions of the bad
reduction places above t, 1− 2433td,∞, respectively. Overall,

(2) deg fd =

{
d− 3 if 6 | d ,
d− 1 if 6 - d .

As expected, the geometric invariant deg fd does not depend on k, but only on d.
Step (ii) merely consists in extracting information from Ulmer’s work [2]. Since we assume

that d | pn + 1 for some n, we deduce from [2, Cor. 7.7, Prop. 8.1] that L(E/k, T ) is divisible
in Z[T ] by

P2(T ) :=
∏
e|d
e-6

(
1− (qT )oe(q)

)φ(e)/oe(q)
.

Note that this factor depends a priori on q since making a field extension k′/k will result in
replacing q by |k′| each time it occurs in the expression for P2. Moreover, invoking [2, Th.
9.2], we obtain an extra factor (a power of 1−qT ) for L(E/k(t), T ) so that overall we deduce
that in Z[T ], the polynomial fd is a multiple of

(3) hd(T ) := (1− qT )εd
∏
e|d
e-6

(
1− (qT )oe(q)

)φ(e)/oe(q)
.

Again note that εd depends on d and on k; precisely its value is affected by the presence of
cube roots or fourth roots of 1 in k. In particular as soon as we work over a field extension
k′/k containing the cube and fourth roots of 1, the parameter εd becomes independent of
any further base extension.

Let gd := fd
hd
∈ Z[T ] and let ηd = deg gd. From (2) and (3) we deduce the formula

for ηd stated in the proposition. In particular, the expression for ηd shows that gd = 1
when k contains both the groups of cube roots and fourth roots of 1, and that in any case
ηd = deg gd ≤ 2.
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We finally turn to (iii). From [4, (6.3)] we know precisely how the zeta function of Ed
relates to L(E/k(T ), T ) (here the notation is as in [2, §3]: Ed/k is the elliptic surface which
is regular, proper and relatively minimal when seen as fibered over P1, and which has generic
fiber E/k(T )). Also Ed is constructed (see [2, §5]) from some quotient Fd/Γ of the diagonal
Fermat surface Fd/k by a sequence of blow-ups at k-points of µ3 and µ4 (the groups of cube
roots and fourth roots of 1 in k, respectively), as explained in [2, §5.6].

By [2, Cor. 7.7], the polynomial P2 is the characteristic polynomial of the Frobenius
acting on the middle étale cohomology of Fd/Γ. The “missing” factor gd thus comes as the
arithmetic translation of the sequence of blow-ups leading from Fd/Γ to Ed. Let x0 be a
k′-rational point of Fd/Γ which is blown up in the process of constructing Ed. As already
mentioned, x0 corresponds to an element of µ3 ∪ µ4 seen as a subset of k̄. In particular
k′ either equals k or is a quadratic extension of k. In any case we can choose k′ to be a
quadratic extension of k such that x0 is defined over k′. Then if Y → Fd/Γ is the result of
blowing up x0 we have by “multiplicativity of zeta functions”

Z(Y/k′, T ) =
Z((Fd/Γ)/k′, T )

1− q2T
.

(Here we use the standard fact asserting that if X/k is a variety and if Y is a closed subvariety
of X, then Z(X,T ) = Z(Y, T ) · Z(U, T ) where U is the complement U := X \ Y . This is
readily obtained from the definition of the zeta function of a variety over a finite field as an
exponential generating series.) Also one has the following base change formula:

Z(Y/k′, T 2) = Z(Y/k, T )× Z(Y/k,−T ) .

(Again this is a standard fact obtained by coming back to the definition of the zeta function
of a variety over a finite field X/k and by exploiting elementary properties of r-th roots of
1 in C, to show that if kr/k is an extension of degree r, then one has Z(X ×k Spec kr, T

r) =∏r
i=1 Z(X, ξiT ), where ξ ∈ C is a primitive r-th root of 1.) Combining theses facts on zeta

functions, we deduce that

Z(Y/k, T )× Z(Y/k,−T ) =
Z((Fd/Γ)/k′, T 2)

(1− qT )(1 + qT )
.

One possibly has to iterate the above process several times (depending on the number of
blow-ups that are necessary to construct Ed from Fd/Γ). However each time a point is blown
up, the zeta function for the resulting variety only differs from that of the initial variety by
a factor 1 − qT or 1 + qT . Of course a factor 1 − qT affects the rank of Ed/k(T ), but the
rank is known by [2, Th. 9.2]. We deduce that gd has to be a power of the polynomial 1+qT
and that the exponent is necessarily ηd by (ii) above.

�

We deduce the following corrected version of [1, Prop. 3.2].

Proposition 1.2. Let c±(X) be defined by

c±(X) :=

{
q/(q − 1) for even X,
√
q/(q − 1) for odd X.
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Then

(4) Td(X) = −c±(X) +
εd

1− q− 1
2

+
ηde

iπX

1 + q−
1
2

+
∑
e|d
e-6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1)

for X large enough, where 0 ≤ (X mod `) ≤ `− 1 is the remainder in the Euclidean division
of X by `.

Proof. We combine [1, Cor. 2.10] and Proposition 1.1 to obtain that

(5) Td(X) = −c±(X)+
εd

1− q− 1
2

+
ηde

iπX

1 + q−
1
2

+
∑
e|d
e-6

φ(e)

oe(q)

oe(q)−1∑
k=0

e2πikX/oe(q)

1− q− 1
2 e−2πik/oe(q)

+oX→∞(1) .

The end of the proof of [1, Prop. 3.2] remains valid. �

The definition of the “periodic part” of Td(X) has to be corrected accordingly. We set
(compare with [1, (44)])

T per
d (X) := −c±(X) +

εd

1− q− 1
2

+
ηde

iπX

1 + q−
1
2

+
∑
e|d
e-6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
.

The statement of [1, Cor. 3.4] remains valid (in the proof, one has to replace the flawed
expression for Td(X) by (4) but this has no impact on the statement of [1, Cor. 3.4] since
ηd ≥ 0).

2. Corrected versions of [1, Th. 1.5] and of some related statements

The fact that the expression for Td(X) was incorrect in [1] has consequences on some of
the results of [1] on Chebyshev’s bias in Ulmer’s family (Ed/Fq(t)). In this section we state
and prove the following corrected version of [1, Th. 1.5].

Theorem 2.1. For the family {Ed/Fq(t)} (where we recall that the integer d and the char-
acteristic p of Fq are linked by the relation d | pn + 1 for some n ≥ 1), one has the following
cases of extreme bias.

(i) Suppose that 3 | d and 3 | q−1 and that either d is odd or 4 | q−1. Then, Td(X) > 0
for all large enough X, and thus δ(Ed) = δ(Ed) = 1.

(ii) If q = pk with p large enough and d = pn+1 for some 1 ≤ n ≤ eq
1
2 /6 with n ≡ 0 mod k,

then Td(X) > 0 for all large enough X, and thus δ(Ed) = δ(Ed) = 1.
(iii) Fix ε > 0. There exists primes d ≥ 3 and p such that p is a primitive root modulo d,

and such that if we pick q = p
d+1
2 , then the associated curve Ed has analytic rank 1

(resp. 2) if (d− 1)/2 is even (resp. odd) and

0 < δ(Ed) ≤ δ(Ed) < ε .

Note that the statement (iii) is unchanged, compared with [1, Th. 1.5(iii)], but since
its proof has to be amended, we chose, for completeness, to give a full corrected statement
for [1, Th. 1.5].
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Proof of Theorem 2.1(i). If d and q satisfy the stated assumptions, then εd ∈ {2, 3} and
ηd = 0. Then, the statement easily follows because

−c±(X) +
εd

1− q− 1
2

+
ηde

iπX

1 + q−
1
2

≥ − 1

1− q−1
+

εd

1− q− 1
2

− ηd

1 + q−
1
2

=
−1 + εd − ηd + q−

1
2 (εd + ηd)

1− q−1
> 0,

thus using Proposition 1.2 we see that Td(X) > 0 for all large enough X. �

Proof of Theorem 2.1(ii). By Proposition 1.2 and by positivity, we have that (recall that p
is large enough, and therefore so is d)

Td(X) = −c±(X) +
εd

1− q− 1
2

+
ηde

iπX

1 + q−
1
2

+
∑
e|d
e-6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1)

≥ φ(d)q−(X mod od(q))/2 − 1− ηd + op→∞(1) + oX→∞(1)

≥ φ(d)q−(od(q)−1)/2 − 3 + op→∞(1) + oX→∞(1).

However, we have that q2n/k ≡ 1 mod d, that is od(q) | 2n/k. We conclude that

Td(X) ≥ φ(d)q
1
2 q−

n
k − 3 + op→∞(1) + oX→∞(1)

= φ(d)q
1
2 (d− 1)−1 − 3 + op→∞(1) + oX→∞(1).

This quantity is positive for large enough X since, for d large enough, we have that φ(d)/(d−
1) ≥ (e−γ + o(1))/ log log d and the condition on n implies that log log(pn + 1) ≤ q

1
2/6 +

log log p+ 1. Since 6 exp(−γ) > 3 the proof is complete.
�

The proof of [1, Th. 1.5(iii)] uses [1, Prop. 3.5] which remains valid although parts of its
proof require some corrections that we now explain.

Proof of Proposition 3.5 in [1]. The argument given in [1] to prove [1, Prop. 3.5(i)] remains
valid since the hypotheses on the parameters imply that ηd = 0.

We turn to the proof of [1, Prop. 3.5(ii)]. The hypotheses imply εd = 0 and ηd = 1. Thus,
by Proposition 1.2, one has that

Td(X) = −c±(X) +
eiπX

1 + q−
1
2

+ φ(`)
q−(X mod o`(q))/2

1− q−o`(q)/2
+ φ(2`)

q−(X mod o2`(q))/2

1− q−o2`(q)/2
+ oX→∞(1).

We have qn ≡ (−p−1)n ≡ −1 mod d. We claim that n is the least positive integer such
that this congruence holds. Indeed this minimality condition holds by definition for the
congruence pn ≡ −1 mod d. Now q ≡ −p−1 mod d and n is even, thus the claim follows.
Since q is odd, the property ` | qk−1 is equivalent to 2` | qk−1, for all k ∈ Z≥1. In particular
we have od(q) = o2`(q) = o`(q) = 2n. Now, let j be an integer such that 4 ≤ j ≤ 2n− 1. We
have that

φ(`)
q−(j mod o`(q))/2

1− q−o`(q)/2
+ φ(2`)

q−(j mod o2`(q))/2

1− q−o2`(q)/2
� `q−4/2 � pn−2(n−1) = p2−n .
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If j is odd, we have that c±(j) � q−
1
2 = p(1−n)/2 and eiπj = −1. We deduce that for p and

X large enough we have Td(X) < 0 (recall n ≥ 4) as soon as X ≡ j mod 2n. If j is even, we
have that

Td(X) = −c±(j) +
1

1 + q−
1
2

+O(p2−n) + oX→∞(1) = −p
−(n−1)/2

1− q−1
+O(p2−n) + oX→∞(1).

which is < 0 for large enough p and X. Hence

0 ≤ δ(Ed) ≤ δ(Ed) ≤
2

n
.

As for the lower bound, it is given by [1, Cor. 3.4]. �

Proof of Theorem 2.1(iii). This is a direct consequence of [1, Prop. 3.5(i)] and [1, Cor. 3.7]
(the argument given in the proof of [1, Th. 1.5(iii)] can be applied without modifications). �

3. Corrected version of [1, Th. 1.7] and of some related results

The corrected version of [1, Th. 1.7] is the following statement.

Theorem 3.1. For the family {Ed/Fq(t)}, one has the following cases where Td(X) is com-
pletely unbiased. Fix p ≡ 3 mod 4 and let d ≥ 5 be an odd divisor of p2 + 1. Pick q = p4k+1

with k ≥ 1. Then the analytic rank of Ed is (d− 1)/4 and we have

δ(Ed) = δ(Ed) =
1

2
.

The proof of [1, Th. 1.7] uses [1, Prop. 3.8], which remains valid although the proof
requires some corrections that we now explain.

Proof of Proposition 3.8 in [1]. Under the stated assumptions q ≡ p mod 4 thus 4 - q − 1
and of course 2 | d. Also since n is even, 3 - d. We deduce εd = 0 and ηd = 1 and, from (4),
we obtain the formula

Td(X) = −c±(X) +
eiπX

1 + q−
1
2

+
∑
e|d
e-6

φ(e)
q−(X mod oe(q))/2

1− q−oe(q)/2
+ oX→∞(1).

As in [1, Prop. 3.8], one shows that, for each e | d with e - 6, we have that oe(q) ≥ 3.
Using this fact, we have that if X ≡ 3 mod 2n (recall n ≥ 2 so that 3 is an admissible

remainder for the Euclidean division by 2n), then

Td(X) = −c±(X)− 1

1 + q−
1
2

+
∑
e|d
e-6

φ(e)
q−3/2

1− q−oe(q)/2
+ oX→∞(1).

This last quantity is negative for large enough X ≡ 3 mod 2n. Indeed (1 + q−
1
2 )−1 =

1 + op→∞(1), and since X is odd we have c±(X) = op→∞(1). Also,∑
e|d
e-6

φ(e)
q−3/2

1− q−oe(q)/2
� q−

3
2d� pn−3(kn+1)/2 � p−

5
2 ,

which is op→∞(1). We conclude by invoking [1, Cor. 3.4].
�
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Proof of Theorem 3.1. We argue as in [1, Proof of Th. 1.7] to see that εd = 0. Moreover,
since we assume d is odd and d | p2 + 1 ≡ 2 mod 3, we have ηd = 0 and d ≡ 1 mod 4 (indeed
d is an odd divisor of a sum of two coprime squares). Note also that if e | d with e /∈ {1, 2}
(i.e. e 6= 1 since d is odd), then q2 ≡ p2 ≡ −1 mod e, hence oe(q) = 4. The rank of Ed
is then easily computed with the help of Proposition [1, Prop. 3.1]. Moreover, we deduce
from (4) that

Td(X) = −c±(X) +
∑
e|d
e 6=1

φ(e)
q−(X mod 4)/2

1− q−2
+ oX→∞(1),

hence T per
d (X) is 4-periodic.

If X ≡ 0 mod 4, then

Td(X) = − q

q − 1
+
∑
e|d
e6=1

φ(e)

1− q−2
+ oX→∞(1) ≥ −2 +

d− 1

1− q−2
+ oX→∞(1),

which is positive for X large enough.
If X ≡ 1 mod 4, then

Td(X) = − q
1
2

q − 1
+
∑
e|d
e 6=1

φ(e)q−
1
2

1− q−2
+ oX→∞(1) = q−

1
2

(
d− 2− q−1

1− q−2

)
+ oX→∞(1),

which is again positive for X large enough.
The analysis of the cases X ≡ 2, 3 mod 4 is unchanged compared with [1, Proof of Th.

1.7], except for ther index set in the sums
∑

e|d,e 6=1,2 which have to be replaced by
∑

e|d,e 6=1.
�

Remark 3.2. In [1, Th. 1.7], the constraint “d odd” does not appear. However taking into
account the correcting factor (1 + qT )ηd in the expression for L(Ed/Fq(t), T ) (in Proposi-
tion 1.1) we now see that this is a necessary restriction. Let us investigate the changes to
the above proof implied in case d is even. Since 3 - d and 4 - q − 1 we still have εd = 0;
however if d is even, we have ηd = 1. The argument according to which any divisor e 6= 1, 2
of d satisfies oe(q) = 4 is still valid and thus Proposition 1.2 gives

Td(X) = −c±(X) +
(−1)X

1 + q−
1
2

+
∑
e|d
e6=1,2

φ(e)
q−(X mod 4)/2

1− q−2
+ oX→∞(1),

hence with notation as before T per
d (X) is again 4-periodic.

The formula for the rank in [1, Prop. 3.1] provides the explicit value (d − 2)/4 for the
analytic rank of Ed/Fq(t) (note that d is an even divisor of p2 + 1 and thus d ≡ 2 mod 4).

Let us determine the sign of Td(X) depending on X mod 4. If X ≡ 0 mod 4, then

Td(X) = − q

q − 1
+

1

1 + q−
1
2

+
∑
e|d
e6=1,2

φ(e)

1− q−2
+oX→∞(1) ≥ −2+

1

1 + q−
1
2

+
d− 2

1− q−2
+oX→∞(1),

which is positive for X large enough.
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Likewise for X ≡ 3 mod 4 the contribution is negative in case d is odd (as seen in the
proof above). For even d the factor (1 + qT )ηd of the L-function produces an extra negative
contribution:

Td(X) = − q
1
2

q − 1
− 1

1 + q−
1
2

+
∑
e|d
e6=1,2

φ(e)q−
3
2

1− q−2
+ oX→∞(1)

thus Td(X) is a fortiori negative for X large enough.
For X ≡ 2 mod 4, the contribution remains negative. Indeed we have that

Td(X) = − q

q − 1
+

1

1 + q−
1
2

+
∑
e|d
e6=1,2

φ(e)q−1

1− q−2
+ oX→∞(1) = − q−

1
2

1− q−1
+

(d− 2)q−1

1− q−2
+ oX→∞(1)

=
−q− 1

2 + (d− 2)q−1 − q− 3
2

1− q−2
+ oX→∞(1),

which is negative for X large enough since (d− 2)q−
1
2 ≤ p2−2k−

1
2 ≤ p−

1
2 .

Finally if X ≡ 1 mod 4, the contribution is negative (contrary to the case d odd). Indeed
we have that

Td(X) = − q
1
2

q − 1
− 1

1 + q−
1
2

+
∑
e|d
e6=1,2

φ(e)q−
1
2

1− q−2
+ oX→∞(1)

=
−1

1− q−1
+
q−

1
2 (d− 2)

1− q−2
+ oX→∞(1) =

−1− q−1 + q−
1
2 (d− 2)

1− q−2
+ oX→∞(1) .

As seen above (d− 2)q−
1
2 ≤ p−

1
2 and thus Td(X) is negative for large enough X.

As a conclusion, we obtain that under the assumptions of Theorem 3.1 but fixing this time
an even divisor d of p2 + 1, we have δ(Ed) = 1/4.

4. Corrected proof of [1, Th. 1.8] and of some related results

The statement of [1, Th. 1.8] remains valid, however its proof relies on [1, Prop. 3.10],
that statement of which remains valid as well, although its proof requires some fixing. We
now explain the details.

Proof of Proposition 3.10 in [1]. We first see that the hypotheses on the parameters imply
that εd = ηd = 0. Indeed, as in [1, Proof of Prop. 3.10] we show that d ≡ n ≡ 1 mod 2
and that d ≡ n mod 3. Since n is prime, we deduce that (6, d) = 1 as soon as n > 3. Now
if n = 3, the assumption 3 - p + 1 and the fact that p3 + 1 ≡ p + 1 mod 3 imply that
d ≡ 1 mod 3 and again we conclude (6, d) = 1. Therefore under the assumptions stated
in [1, Prop. 3.10], we have εd = ηd = 0.

The rest of the proof of [1, Prop. 3.10] is unchanged.
�

The way [1, Th. 1.8] is deduced from [1, Prop. 3.10] is unchanged.

Acknowledgements. We thank Richard Griffon for helpful discussions that led to the
correct computation (1) of the L-function of Ulmer’s elliptic curve Ed/Fq(t).
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