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Abstract. We study algebraic properties of the Tutte polynomial of a matroid and its
generalizations to other combinatorially defined bivariate polynomial invariants. Merino, de
Mier and Noy showed that the Tutte polynomial of a connected matroid is irreducible, and
Bohn, Cameron and Müller conjectured the stronger property that the Galois/monodromy
group of the Tutte polynomial of a connected matroid of rank r is isomorphic to the full
symmetric group on r letters. First, we generalize the result of Merino–de Mier–Noy to the
context of general ranked sets by exploiting a recent translation of the Brylawski relations,
satisfied by the coefficients of the Tutte polynomial, into a functional identity. Second, we
give the first confirmation of the conjecture of Bohn–Cameron–Müller for infinite families
of connected matroids, including the cycle graphs and the uniform matroids. Moreover,
we apply the large sieve to obtain a probabilistic statement showing that suitable linear
combinations of coprime Tutte polynomials generically satisfy the conjecture.

1. Introduction

The Tutte polynomial is a bivariate polynomial invariant of finite graphs that includes
many important specializations, such as the chromatic polynomial, reliability polynomial,
partition function of the Potts model in statistical physics, and the Jones polynomial of an
alternating knot (encoded as a plane graph). The Tutte polynomial is more generally defined
as an invariant of finite matroids and in this guise has served to bridge disparate areas of
combinatorics (such as hyperplane arrangements and coding theory) and appears in various
disciplines (such as the random cluster model in physics and DNA sequencing in biology).
Beyond matroids, the definition of the Tutte polynomial extends further to ranked sets [22]
where the rank function does not need satisfy all the axioms for a matroid rank function
(see Section 2 below for a precise definition).

In the present work we continue the study initiated in [19] of “generic” properties of Tutte
polynomials among bivariate Z-polynomials. While [19] focuses on linear algebraic aspects
(what is the dimension of the linear span of natural finite families of Tutte polynomials?),
here we seek to understand the expected algebro–geometric structure of such polynomials.

Let us recall that for M = (E, r) a matroid on groundset E and with rank function r, its
Tutte polynomial is defined by

TM(x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A).

It is an element of Z[x, y] with degx TM(x, y) = r(M) and degy TM(x, y) = |E| − r(M),
where r(M) := r(E). If M is the cycle matroid of a graph G = (V,E) with c(G) connected
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components then r(M) = |V | − c(G). The chromatic polynomial of G coincides (up to sign
and a factor of xc(G)) with the specialization TM(1− x, 0).

Given a matroid M = (E, r), its Tutte polynomial TM(x, y) naturally defines a plane
algebraic curve over Q. We will work in the slightly more general context where R is a fixed
unique factorization domain (UFD) with field of fractions k and where TM(x, y) is seen as an
element of R[x, y] through the application of the canonical ring homomorphism ϕ : Z → R
(sending 1 to 1) to its coefficients. In this framework we will denote by CM/k the plane affine
curve attached to TM , and by A1

k the affine line over k. Our main focus in the present work is
on properties of the k-morphism π : CM → A1

k of degree r(M) defined for any extension K/k
on K-rational points (x, y) of CM by π(x, y) = y. In the case where CM/k is irreducible, two
groups are naturally associated with the morphism π (see [24, §1]):

• the Galois group of the (normal closure of the) field extension defined using the
induced inclusion π∗ : k(A1

k) = k(y) → k(CM),
• the monodromy group corresponding to the topological unbranched cover V → U
obtained by restricting π to suitable Zariski open subsets U and V of A1

k and CM ,
respectively.

In the above setting Harris shows ([24, §1, Proposition]) that these two groups coincide, a
fact that has been exploited for geometric purposes ([24,30,40]). In the sequel we will denote
by Gk,y(TM(x, y)) (or Gk,y(TM) for brevity) the Galois/monodromy group attached to TM
via the morphism π in the way described above. This group can be seen as a permutation
group on r(M) letters and equals the Galois group of the splitting field of TM(x, y) inside a
fixed separable closure of k(y). The irreducibility assumption on CM/k corresponds to the
transitive action of Gk,y(TM) seen as a permutation group, and this group is known to be a
transitive subgroup of Sr(M) when M is a connected matroid ([33]) as long as char(k) does
not divide the constant term of the monomial of degree 1 of the x-polynomial TM(x, y). One
might wonder what finer properties than transitivity might be satisfied by the permutation
group Gk,y(TM), such as its action being primitive or doubly transitive, and whether these
properties correspond to a structural property of M like transitivity does to connectivity.
However, the following conjecture of Bohn–Cameron–Müller [4, Conj. 9] directs us rather
to consider whether Gk,y(TM) when transitive in fact coincides as a permutation group with
the full symmetric group Sr(M):

Conjecture 1.1 (Bohn–Cameron–Müller). Let M = (E, r) be a connected matroid on finite
groundset E with r(M) > 0, and let K be a field of characteristic zero. Then GK,y(TM) is
maximal i.e it is isomorphic to the symmetric group on r(M) letters.

The conjecture has been computationally confirmed [4] for connected graphic matroids M
such that r(M) ⩽ 10. However, prior to the present work the conjecture has not as far as we
know been proved for any infinite family of connected matroids. In [4] the analogue of Con-
jecture 1.1 is proved for the multivariate Tutte polynomial of a matroid ([4, Th. 1] in which
there are as many variables as elements in the groundset). On the other hand, specializing
the Tutte polynomial at combinatorially meaningful values to obtain a univariate polynomial
is not expected to lead to analogous behaviour. Indeed part of the motivation for stating
and studying Conjecture 1.1 comes from structural aspects of the chromatic polynomial.
Once divided by the product of linear factors corresponding to its chromatic number, does
the remaining “interesting” part of the chromatic polynomial of a graph resemble a random
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integer polynomial? For instance does it generically have maximal Galois group (as is the
case for random integer polynomials [3])? It turns out that this does not seem to be the
case (as theoretical and computational evidence obtained in [7, 34] indicate). In this sense,
the bivariate Tutte polynomial of a matroid is currently believed to lie at the frontier of
polynomial matroid invariants whose Galois group is almost surely maximal.

In another direction, to prove that the Galois group of the Tutte polynomial of a connected
matroid is transitive we need only use the Brylawski relations satisfied by the coefficients
and the fact that a matroid is connected if and only if the coefficient of x in its Tutte
polynomial (Crapo’s beta invariant [10]) is non-zero. The class of bivariate polynomials
satisfying Brylawski’s relations includes not just Tutte polynomials of matroids but also
rank-nullity polynomials of ranked sets generally. Drawing on a recent alternative deriva-
tion [1] of Brylawski’s relations via the simplification the Tutte polynomial undergoes on the
hyperbola (x−1)(y−1) = 1, we prove in Section 2.2 that a large class of bivariate polynomi-
als satisfying Brylawski’s relations and with non-zero coefficient of x are irreducible, among
which are the known cases of the Tutte polynomial of a connected matroid [33] or connected
delta matroid [15]. For some classes of ranked sets, the coefficient of x in the rank-nullity
polynomial being non-zero is – in a similar way to matroids – a necessary and sufficient
condition for not being a direct sum of smaller ranked sets (e.g. for delta matroids [15]), but
for others the condition is only sufficient (e.g. for greedoids, see Remark 2 below). We also
exhibit an infinite family of ranked sets whose Tutte polynomial is irreducible but does not
have maximal Galois group.

The paper is organized as follows. In §2, we study irreducibility properties of the Tutte
polynomial in the broader context of ranked sets. Inspired by the recent work of Beke et
al. [1], we introduce the notion of a Brylawski polynomial, which includes the rank-nullity
polynomials of a ranked set as a special case, and establish analogous criteria for the ir-
reducibility of a Brylawski polynomial to that established for the Tutte polynomial of a
matroid [33]. Next we prove in §3 a probabilistic statement (which is, to a large extent,
of independent interest) showing that particular Z[x]-linear combinations of pairs of co-
prime bivariate polynomials that are monic of the same degree seen as x-polynomials (e.g.
the respective, and distinct, Tutte polynomials of two connected matroids of the same size
and rank) generically satisfy Conjecture 1.1. We do so by first generalizing a sieve result
of Gallagher towards van der Waerden’s Conjecture. We conclude by showing in §4 that
Conjecture 1.1 might be extended to some, but not all, more general ranked sets and that
it holds for some infinite families of connected matroids (including cycle graphs and uni-
form matroids).

2. The Tutte polynomial of a ranked set

Definition 1. For a finite set E, a rank function on E is an integer-valued function r : 2E → Z
satisfying

r(∅) = 0, r(A) ⩽ r(E), and r(A) ⩽ |A|, for all A ⊆ E.

The pair S = (E, r) is called a ranked set, and E is its groundset.
3



While 0 = r(∅) ⩽ r(E), the rank function r may take negative values on proper sub-
sets of E, although when r is monotone, which is the case for matroids, antimatroids and
greedoids, it takes nonnegative values on all subsets [21].1

To a ranked set S = (E, r) we associate the bivariate polynomial

(1) TS(x, y) =
∑
A⊆E

(x− 1)r(E)−r(A)(y − 1)|A|−r(A),

which we call the corank-nullity polynomial of S, better known as the Tutte polynomial
when S is a matroid. Along the hyperbola (x − 1)(y − 1) = 1 the polynomial TS simplifies
considerably to a polynomial dependent only on the size and rank of the groundset E.

Proposition 2.1. For a ranked set S = (E, r),

(2) (y − 1)r(E)TS
( y

y − 1
, y
)
= y|E|.

In other words,

TS(x, y) ≡ xr(E)y|E|−r(E) (mod xy − x− y).

Proof. By the definition of TS, the left-hand side of (2) equals∑
A⊆E

(y − (y − 1)

y − 1

)r(E)−r(A)

(y − 1)r(E)+|A|−r(A) =
∑
A⊆E

(y − 1)|A| = y|E|.

□

Suppose S1 = (E1, r1) and S2 = (E2, r2) in which r1 and r2 are rank functions on disjoint
sets E1 and E2, respectively. Then the direct sum S1 ⊕ S2 = (E1 ∪ E2, r) has rank function
on E = E1∪E2 defined by r(A1∪A2) = r1(A1)+r2(A2), where A1 ⊆ E1 and A2 ⊆ E2. Then
TS1⊕S2(x, y) = TS1(x, y)TS2(x, y). In other words, if S can be expressed as the direct sum of
ranked sets on non-empty groundsets, then TS(x, y) is a reducible polynomial. When S is
a matroid, Merino et al. [33] showed that if TS(x, y) is reducible, then there are non-empty
matroids S1 and S2 such that S = S1 ⊕ S2, i.e. S is not connected. They use the fact that

1A rank function r on E defines a matroid if additionally it satisfies the following properties:

(i) Submodularity:

r(A ∪B) + r(A ∩B) ⩽ r(A) + r(B),

for A,B ⊆ E;
(ii) Adding an element cannot decrease the rank (monotonicity), and any increase is by at most 1:

r(A) ⩽ r(A ∪ {e}) ⩽ r(A) + 1,

for A ⊆ E and e ∈ E.

For the rank function of a greedoid the additional conditions are weaker versions of those for a matroid:

(i) Local submodularity: If r(A) = r(A ∪ {e}) = r(A ∪ {f}), then r(A ∪ {e, f}) = r(A), for A ⊆ E
and e, f ∈ E;

(ii) Monotonicity:

r(A) ⩽ r(A ∪ {e}),
for A ⊆ E and e ∈ E.

Item (ii) implies that r takes nonnegative values. Antimatroids are special types of greedoids, variation in
item (i) more complicated to state.
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when |E| ⩾ 2 the matroid S is connected if and only if the coefficient of x in TS(x, y) is non-
zero (a result due to Crapo [10]).2 For greedoids (ranked sets generally) there are examples
of S not expressible as the direct sum of greedoids (ranked sets) on non-empty groundsets
such that TS(x, y) is reducible, and examples of S such that TS(x, y) is irreducible but the
coefficient of x is zero. (For the latter, see Remark 2 below.)

Definition 2. Let S = (E, r) where E is a finite set and r is a rank function on E. The
dual rank function r∗ is defined by

r∗(A) = |A|+ r(E \ A)− r(E),

for A ⊆ E, and we write S∗ = (E, r∗) for the corresponding ranked set.

The dual r∗ of a rank function is again a rank function because r∗(∅) = 0 = r(∅); the
condition r∗(A) ⩽ |A| is satisfied for all A ⊆ E as r∗(A) = |A| − [r(E) − r(E \ A)] ⩽ |A|
since r(E \ A) ⩽ r(E); and r∗(A) = |A| + r(E \ A) − r(E) ⩽ |A| + |E \ A| − r(E) =
|E| − r(E) = r∗(E). The dual of the dual rank function satisfies (r∗)∗(A) = |A|+ |E \ A|+
r(A) − r(E) − [|E| − r(E)] = r(A). Thus (S∗)∗ = S, and it is routine to verify the duality
formula TS∗(x, y) = TS(y, x).
We have degx TS = r(E) − minA r(A) ⩾ r(E) with equality if and only if r takes just

non-negative values; and, noting that |A| − r(A) = r∗(E) − r∗(E \ A), degy TS = r∗(E) −
minA r∗(A) ⩾ |E| − r(E), with equality if and only if r∗ takes just non-negative values.

2.1. Brylawski polynomials.

Definition 3. A bivariate polynomial U(x, y) over a commutative ring R such that (y −
1)rU( y

y−1
, y) = cyn for some non-negative integer n, integer r, and non-zero constant c ∈ R is

called an (n, r)-Brylawski polynomial (with constant c). Equivalently, (x−1)n−rU(x, x
x−1

) =
cxn.

In Definition 3, we may have r < 0: for example, U(x, y) = (y− 1)ℓ is a (0,−ℓ)-Brylawski
polynomial (with constant c = 1). Similarly, we may have r > n: for example, (x − 1)k is
a (0, k)-Brylawski polynomial (with constant c = 1). By Proposition 2.1, the corank-nullity
polynomial TS(x, y) of a ranked set S = (E, r) is an (|E|, r(E))-Brylawski polynomial (with
constant c = 1). Here 0 ⩽ r = r(E) ⩽ n = |E|.

More generally, polynomials of the form c0x
k1yℓ1(x−1)k2(y−1)ℓ2 , with c0 ∈ R\{0}, ki, ℓj ∈

Z⩾0, are clear instances of Brylawski polynomials (for the choice (n, r) = (k1+ℓ1, k1+k2−ℓ2)).
If U(x, y) is an (n, r)-Brylawski polynomial and V (x, y) is an (m, s)-Brylawski polynomial,

then U(x, y)V (x, y) is an (n+m, r + s)-Brylawski polynomial. (Lemma 2.5 below gives the
converse.) In particular, if U(x, y) is an (n, r)-Brylawski polynomial then xk1yℓ1(x−1)k2(y−
1)ℓ2U(x, y) is an (n+ k1 + ℓ1, r + k1 + k2 − ℓ2)-Brylawski polynomial.

For a polynomial U(x, y) =
∑
ui,jx

iyj ∈ R[x, y], we set degx U = max{i : ∃j ui,j ̸= 0}
and degy U = max{j : ∃i ui,j ̸= 0}.

2The proof of this depends on the fact that for a connected matroid S and e ∈ E either S\e or S/e is
also connected [43, §6.5] (see also [10, p. 410]); that t1,0, like all the coefficients of the Tutte polynomial, is
non-negative (as is easily seen by induction using its deletion-contraction recurrence); and finally that t1,0
satisfies the deletion-contraction recurrence for the Tutte polynomial. These properties do not extend to
ranked sets generally.
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Proposition 2.2. If U(x, y) is an (n, r)-Brylawski polynomial of R[x, y], then degx U ⩾ r
and degy U ⩾ n− r.
Moreover if R is a UFD then univariate factors of U(x, y) are necessarily of the form a(x−

1)kxℓ or b(y − 1)kyℓ, for a, b ∈ R \ {0} and k, ℓ ∈ Z⩾0.

Proof. Let U(x, y) =
∑
ui,jx

iyj and d := degx. Since
∑

i,j ui,j(y−1)d−iyi+j = c(y−1)d−ryn is
a polynomial identity, the degree d satisfies d ⩾ r. Moreover, if d > r, then, by setting y = 1
in this identity,

∑
j ud,j = 0, while if d = r then

∑
j ud,j = c. Likewise, as the identity (y −

1)rU( y
y−1

, y) = cyn is equivalent to the identity (x−1)n−rU(x, x
x−1

) = cxn, a similar argument

shows that degy U ⩾ n− r.
We turn to the second statement. If U(x, y) is a Brylawski polynomial divisible by a

polynomial V (x) (independent of y), then there exists U0(x, y) ∈ R[x, y] such that

(x− 1)n−rU(x, x
x−1

) = V (x)(x− 1)n−rU0(x,
x

x−1
) = cxn.

By unique factorization in R[x] the only potential irreducible factors of V (x) are x and x−1.
We reach the analogous conclusion for factors of U(x, y) of type V (y) ∈ R[y] by using the
identity (y − 1)rU( y

y−1
, y) = cyn. □

Remark 1. We can say a little more in Proposition 2.2 when U(x, y) is the corank-nullity
polynomial TS(x, y) of a ranked set S = (E, r). As already mentioned, TS is an (|E|, r(E))-
Brylawski polynomial (by Proposition 2.1), and we have equality in degx TS ⩾ r(E) if and
only if r(A) ⩾ 0 for each A ⊆ E, and equality in degy TS ⩾ |E|−r(E) if and only if r∗(A) ⩾ 0
for each A ⊆ E.

Moreover the only possible univariate factors of TS(x, y) are of the form axℓ and byℓ. For
suppose x− 1 divides TS(x, y). Then

TS(1, y) =
∑
A⊆E

r(A)=r(E)

(y − 1)|A|−r(E) = 0,

which cannot hold as the sum contains leading term (y − 1)|E|−r(E), and so is monic as a
polynomial in y. Dually, supposing y − 1 divides TS(x, y) yields

TS(x, 1) =
∑
A⊆E

r(A)=|A|

(x− 1)r(E)−|A| = 0,

and the sum is a monic polynomial in x (from the term contributed by A = ∅).
When S = (E, r) is a matroid, if xℓ divides TS(x, y) then S is the direct sum of a smaller

ranked set and S1 = (E1, r1), in which |E1| = ℓ and r1(A) = |A| for each A ⊆ E1 (i.e., S1

is the matroid of ℓ coloops, for which TS1(x, y) = xℓ); dually, if yℓ divides TS(x, y) then S is
the direct sum of a smaller ranked set and S∗

1 = (E1, r
∗
1), in which |E1| = ℓ and r∗1(A) = 0

for each A ⊆ E1 (i.e., S∗
1 is the matroid of ℓ loops, for which TS∗

1
(x, y) = yℓ).

The motivation for the name “Brylawski polynomial” lies in the following key proposition
and its consequence for corank-nullity polynomials of ranked sets (Corollary 2.4).
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Proposition 2.3 ([1, proof of Theorem 1.1]). If U(x, y) is an (n, r)-Brylawski polynomial
with constant c then its coefficients ui,j satisfy 3∑

i,j

i+j⩽h

(−1)j
(
h− i

j

)
ui,j = c · (−1)n−r

(
h− r

h− n

)
, for any integer h ⩾ 0.

In particular, u0,0 = 0 if n > 0, and u1,0 = u0,1 if n > 1. Proposition 2.3 contains the
following special case.

Corollary 2.4. Let S = (E, r) be a ranked set with |E| = n, r(E) = r, and TS(x, y) =∑
i,j ti,jx

iyj. Then, for any integer h ⩾ 0,

(3)
∑
i,j

i+j⩽h

(−1)j
(
h− i

j

)
ti,j = (−1)n−r

(
h− r

h− n

)
.

The linear relations given by Corollary 2.4 for 0 ⩽ h < n were established by Brylawski [5]
for matroid rank functions, and extended to greedoid and antimatroid rank functions by
Gordon [22], who also established the affine relation for h = n. Although the proof of
Corollary 2.4 given by Beke et al [1] assumes that r takes non-negative values, it is easily
extended to include the case of rank functions taking negative values as well. In fact [1,
Th. 1.1] is really Corollary 2.4 above once extended from N- to Z-valued rank functions:
Beke et al do not explicitly state the generalization to Brylawski polynomials, although
their argument depends only property defining a Brylawski polynomial (Definition 3) and
not on being the Tutte polynomial of a rank function.

A constant not equal to 1 in Definition 3 of an (n, r)-Brylawski polynomial features in [2,
Lemma 7.6, Theorem 8.2]. For our purposes, allowing an arbitrary constant serves as a
technical convenience (and we do not usually need to specify the constant) enabling one to
prove stability properties of the class of Brylawski polynomials. While it is straightforward
to see that the product of two Brylawski polynomials is again a Brylawski polynomial, the
following lemma asserts that the converse holds over any UFD.

Lemma 2.5. Let R be a UFD. Suppose that T (x, y) is an (n, r)-Brylawski polynomial
in R[x, y] with factorization T (x, y) = U(x, y)V (x, y) in R[x, y]. Then there are integers m, s
such that U(x, y) is an (n−m, r−s)-Brylawski polynomial and V (x, y) is an (m, s)-Brylawski
polynomial, where 0 ⩽ m ⩽ n.

Proof. For simplicity write T (x, y) = T (x), meaning that it is considered as a polynomial
in x with coefficients in R[y]. Likewise write T (x) = U(x)V (x) the given factorization of T
over R[y]. As T is an (n, r)-Brylawski polynomial, there is non-zero c ∈ R such that

(4) cyn = (y − 1)rT
( y

y − 1

)
= (y − 1)r−sU

( y

y − 1

)
· (y − 1)sV

( y

y − 1

)
,

where s is chosen to be the minimal integer such that (y − 1)sV ( y
y−1

) is a polynomial in y.

This then forces (y − 1)r−sU( y
y−1

) to be a polynomial in y, for otherwise it is a ratio of a

polynomial in y and a power of y − 1, and this implies that y − 1 divides (y − 1)sV ( y
y−1

) as

3We use the convention
(
a
b

)
= 0 if b < 0 or b > a.
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the product on the right-hand side of (4) is the polynomial cyn on the left-hand side, which
contradicts minimality of s.

By unique factorization in R[y], this implies that

(y − 1)sV
( y

y − 1

)
= bym, and (y − 1)r−sU

( y

y − 1

)
= ayn−m,

for some a, b ∈ R such that ab = c and some integer m satisfying 0 ⩽ m ⩽ n. □

2.2. Irreducibility of Brylawski polynomials. The main result of this section is the
following.

Theorem 2.6. Let R be a UFD and let T (x, y) =
∑

i,j ti,jx
iyj ∈ R[x, y] be an (n, r)-

Brylawski polynomial, where n, r are integers with r ⩾ 1 and n − r ⩾ 1. Suppose that (i)
neither x − 1 nor y − 1 divide T (x, y); (ii) t1,0 ̸= 0 and (iii) degx T + degy T ∈ {n, n + 1}.
If T (x, y) = U(x, y)V (x, y) in R[x, y] then U(x, y) or V (x, y) is constant (in R). In particu-
lar T (x, y) is irreducible in k[x, y] where k is the fraction field of R; moreover if gcdi,j{ti,j} =
1 then T (x, y) is irreducible in R[x, y].

By Proposition 2.2, condition (iii) is equivalent to degx T + degy T ⩽ n+ 1.

Proof of Theorem 2.6. Suppose that T (x, y) is an (n, r)-Brylawski polynomial and T (x, y) =
U(x, y)V (x, y), where U, V are not constants (in R). By assumption (i), and the fact that
under assumption (ii) neither x nor y divide T (x, y) (noting that t0,1 = t1,0 by Proposition 2.3
as n ⩾ 2), Proposition 2.2 implies neither U(x, y) nor V (x, y) is univariate. By Lemma 2.5
there are integersm, s such that U(x, y) is an (n−m, r−s)-Brylawski polynomial and V (x, y)
is an (m, s)-Brylawski polynomial, where 0 ⩽ m ⩽ n. We also have degx U+degx V = degx T
and degy U + degy V = degy T . By definition, there is c ∈ R such that

(y − 1)rT (
y

y − 1
, y) = cyn.

We may assume that 0 < degx U, degx V < degx T and 0 < degy U, degy V < degy T . For
otherwise T (x, y) admits a univariate factor in R[x, y] and we reach a contradiction.

As U(x, y) is an (n − m, r − s)-Brylawski polynomial and V (x, y) is a (m, s)-Brylawski
polynomial where 0 ⩽ m ⩽ n, by Proposition 2.2 we have s ⩽ degx V < degx T and m− s ⩽
degy V < degy T . These inequalities imply that m ⩽ degx T +degy T − 2 ⩽ n− 1. Similarly,
r − s ⩽ degx U < degx T and n − m − (r − s) ⩽ degy U < degy T imply that n − m ⩽
degx T + degy T − 2 ⩽ n − 1. Hence m ⩾ 1 and n − m ⩾ 1, and the first of Brylawski’s
relations gives v0,0 = 0 = u0,0.
But then t1,0 = u0,0v1,0 + u1,0v0,0 = 0, contrary to assumption (ii). □

When T = TS is the corank-nullity polynomial of a ranked set S = (E, r) in which both r
and its dual r∗ take nonnegative values (which holds for rank functions of matroids, but
not necessarily of greedoids [21]), we have degx TS = r(E) and degy TS = |E| − r(E) and
so, with degx TS + degy TS = |E|, condition (iii) in Theorem 2.6 holds for the (|E|, r(E))-
Brylawski polynomial TS(x, y). But if either r or r

∗ take negative values, then condition (iii)
fails for TS unless only one of these rank functions takes negative values and moreover the
only negative value this one takes is −1. We therefore deduce the following particular case
of Theorem 2.6, first shown by Merino, de Mier and Noy [33].
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Corollary 2.7. Let M be a connected matroid on groundset E of size ⩾ 2 and with Tutte
polynomial TM(x, y) =

∑
i,j ti,jx

iyj. Let R be any UFD and let φ : Z → R be the natural ring
homomorphism whose kernel is generated by the characteristic κ of R. Assuming that κ ∤ t1,0,
then TM , seen as an element of R[x, y] by applying φ to its coefficients, is irreducible.

For a connected matroid S = (E, r) with |E| ⩾ 2, we have t1,0 = t0,1 ̸= 0, ensuring
that r = r(E) ⩾ 1 and n− r = |E| − r(E) ⩾ 1 as required for Theorem 2.6.

Corollary 2.7 extends to delta matroids in which the rank function r used in the definition
of the Tutte polynomial is the function σ defined in [15, p. 1341, eq. (3)] (obtained by
averaging the ranks of two associated matroids). By Theorem 4.7 of the paper just cited,
the coefficient t1,0 is non-zero if and only if the delta matroid is connected; that paper’s
Theorem 1.2 is then a consequence of the general phenomenon recorded in our Theorem 2.6.

Remark 2. Assumptions (ii) and (iii) in Theorem 2.6 are not necessary conditions for
irreducibility. (As already mentioned, for matroids assumption (ii) is in fact necessary as well
as sufficient for connectivity, and accordingly necessary and sufficient for irreducibility [33].)

The polynomial x3+2x2+y2+3xy (see [22, p. 23]) is a (5, 3)-Brylawski polynomial, equal
to the corank-nullity polynomial

TS(x, y) = (x− 1)3 + 5(x− 1)2 + 10(x− 1) + 7 + 3(x− 1)(y − 1) + 5(y − 1) + (y − 1)2,

where S = (E, r), in which |E| = 5 and r is defined by r(∅) = 0; r(A) = 1 for each A
of size 1; r(A) = 2 for each A of size 2; r(A) = 3 for 7 subsets A of size 3, and r(A) = 2
for the remaining 3 subsets of size 3; r(A) = 3 for each A of size 4; and r(E) = 3. The
polynomial TS(x, y) shares with the Tutte polynomial of a matroid the properties of being
monic as a polynomial in x (considering TS(x, y) over Z[y]) and monic as a polynomial
in y (considering TS(x, y) over Z[x]). This polynomial is irreducible (as a quadratic in y, its
discriminant is x2(1−4x)) but does not satisfy assumption (ii) of Theorem 2.6. Irreducibility
of TS(x, y) implies the ranked set S cannot be expressed as the direct sum of smaller ranked
sets.4

4Gordon [20] exhibits in his Example 2.1 a greedoid that is not decomposable as a direct sum of smaller
greedoids and yet has t1,0 = 0. Let E = {a, b, c} and F = {∅, {a}, {b}, {a, c}, {b, c}, {a, b, c}}. The greedoid
rank function is defined for A ⊆ E by

r(A) = max{|F | : F ∈ F , F ⊆ A}.

Then S = (E, r) has corank-nullity polynomial

TS(x, y) = (x−1)3 + 2(x−1)2 + (x−1)3(y−1) + 2(x−1) + (x−1)2(y−1) +1

= x[x+ (x− 1)2y]

The first factor is the Tutte polynomial of a single isthmus, i.e. of the ranked set S1 = (E1, r1), where E1 = {c}
and r1 is defined by r1(∅) = 0, r({c}) = 1. While the second factor is not the Tutte polynomial of a greedoid,
it is equal to

(x− 1)2(y − 1) + (x− 1)2 + x− 1 + 1

which is the corank-nullity polynomial of S2 = (E2, r2) in which E2 = {a, b} and r2 is defined by

r2(∅) = 0, r2({a}) = 0, r2({b}) = 1, r2({a, b}) = 2.

Not only do we have then

TS(x, y) = TS1(x, y)TS2(x, y),

but S = S1 ⊕ S2 even though as a greedoid S cannot be expressed as a sum of smaller greedoids.
9



Assumption (iii), while automatic for corank-nullity polynomials of matroids, as noted
after the statement of the theorem, is not necessary either, as the following example shows.
We define the ranked set S = (E, r) for integers a > b > 0, in which |E| ⩾ b, by setting

r(A) =


0 A = ∅,
|A| − a ∅ ⊊ A ⊊ E,

|E| − b A = E.

Then

TS(x, y) = (x− 1)|E|−b +
∑

∅⊊A⊊E

(x− 1)|E|−b−|A|+a(y − 1)|A|−|A|+a + (y − 1)|E|−|E|+b

= (x− 1)|E|−b + (x− 1)a−b(y − 1)a
∑

0<i<|E|

(
|E|
i

)
(x− 1)i + (y − 1)b.

Also,

r∗(A) =


0 A = ∅,
b− a ∅ ⊊ A ⊊ E,

b A = E.

Writing X = x− 1, Y = y − 1, |E| = n,

TS(X, Y ) = Xn−b +Xa−bY a
∑

0<i<n

(
n

i

)
X i + Y b.

This has X-degree n + (a − b − 1) ⩾ n ⩾ r(E) = n − b and Y -degree a, so that degx TS +
degy TS = n + 2a − b − 1 ⩾ n + a. Thus for a > 1 the assumption (iii) fails. The Newton
polygon of TS(X, Y ) has vertices (0, b), (n− b, 0), and (a− b+ i, a) for i ∈ {n−1, . . . , 1}, and
is readily seen not to be reducible as a Minkowski sum of smaller polygons. (Its sides have
direction vectors (n − b,−b), (a − 1, a), (−1, 0) (n − 2 times), and (b − a − 1, b − a); since
a, b, a− b > 0, all the sides of one of the smaller polygons would be forced to have direction
vectors (−1, 0).) Hence TS(X, Y ) is irreducible ([18, p. 507]).

The example in Remark 2 in which assumption (ii) of Theorem 2.6 fails is accommodated
by the following irreducibility criterion, derived by a similar proof to that of Theorem 2.6.

Theorem 2.8. Let T (x, y) =
∑

i,j ti,jx
iyj be an (n, r)-Brylawski polynomial over R, a UFD,

where n, r are integers with r ⩾ 1 and n − r ⩾ 1. Let φ : Z → R be the canonical ring
homomorphism and suppose that (i) none of x− 1, y − 1, x, y divide T (x, y); (ii) φ(2) ∤ t1,1;
and (iii) degx T + degy T = n. Then T (x, y) is irreducible in k[x, y] where k denotes the
fraction field of R; moreover if gcdi,j{ti,j} = 1 in R then T (x, y) is irreducible in R[x, y].

Proof. Suppose that T (x, y) = U(x, y)V (x, y) is factorization of T (x, y) in R[x, y] with
both U and V non constant. Assumption (iii) (together with Proposition 2.2) implies degx U+
degx V = degx T = r and degy U + degy V = degy T = n − r, and as T (x, y) is an (n, r)-
Brylawski polynomial, there is c ∈ R such that

(y − 1)rT (
y

y − 1
, y) = cyn.

10



As in the proof of Theorem 2.6, we may assume that 0 < degx U, degx V < degx T and 0 <
degy U, degy V < degy T (needing (i); note that assuming that neither x nor y are factors
of T (x, y) replaces the condition that t1,0 ̸= 0 assumed in the earlier theorem), and, using
Lemma 2.5, the polynomial U(x, y) is an (n −m, r − s)-Brylawski polynomial and V (x, y)
is a (m, s)-Brylawski polynomial for some integers m, s with 0 ⩽ m ⩽ n. We invoke Propo-
sition 2.2 and see that the inequalities s ⩽ degx V < degx T and m − s ⩽ degy V < degy T
imply thatm ⩽ degx T+degy T−2 = n−2; and r−s ⩽ degx U < degx T and n−m−(r−s) ⩽
degy U < degy T imply n−m ⩽ degx T + degy T − 2 = n− 2. Hence m ⩾ 2 and n−m ⩾ 2,
and the first two Brylawski relations (Proposition 2.3) give v0,0 = 0 = u0,0 and u1,0 = u0,1
and v1,0 = v0,1.
But then t1,1 = u0,0v1,1 + u1,1v0,0 + u1,0v0,1 + u0,1v1,0 = φ(2)u0,1v0,1, contradicting (ii). □

We close this section with two examples of ranked sets for which our general criteria
for irreducibility in Theorems 2.6 and 2.8 are not satisfied, but which we can prove are
irreducible by considering their Newton polygons (again applying [18, p. 507]). Each example
involves a rank function taking non-negative values, but whose dual takes negative values. In
Section 4.1.1 we show that the Galois group of the corank-nullity polynomial in Example 1 as
a polynomial in x is not the full symmetric group of degree r (see Proposition 4.2; this is the
only example we know where Conjecture 1.1 does not extend from matroids to ranked sets
generally). In Section 4.1.2 we exhibit an infinite number of instances of the corank-nullity
polynomial in Example 2 for which its Galois group as a polynomial in x is the symmetric
group of degree |E| (see Corollary 4.4).

Example 1. Let E be a finite set and let r ∈ Z be such that |E| ⩾ r ⩾ 1. Consider r : 2E →
Z the rank function defined by r(E) = r and r(A) = 0 for A ⊊ E. The corank-nullity
polynomial of the ranked set S = (E, r) is

TS(x, y) = (y − 1)|E|−r + (y|E| − (y − 1)|E|)(x− 1)r,

which is an (|E|, r)-Brylawski polynomial with degx TS = r = r(E) and degy TS = |E| − 1 ⩾
|E|− r(E). As degx TS +degy TS = n+ r−1, assumption (iii) of Theorem 2.6 is not satisfied
if r > 2.

The dual rank function r∗ is defined by r∗(∅) = 0, and r∗(A) = |A| − r for ∅ ⊊ A ⊆ E.
The Newton polygon of the polynomial Y |E|−r+Xr[(Y +1)|E|−Y |E|] is the convex hull of

vertices (0, |E| − r) and (r, i) for i ∈ {0, 1, . . . , |E| − 1} and this clearly cannot be expressed
as a Minkowski sum of smaller polygons (the direction vectors of the segments forming the
convex hull — a triangle — are (r,−|E|+r), (0, 1) with multiplicity |E|−1, and (−r, 1−r)).
Hence TS(x, y) is irreducible.

Example 2. Let E be a non-empty finite set and for A ⊂ E define the rank function r by

r(A) =


0 A = ∅
1 ∅ ⊊ A ⊊ E

|E| A = E.
11



The Tutte polynomial of S = (E, r) is

TS(x, y) = (x− 1)|E| +
∑

∅⊊A⊊E

(x− 1)|E|−1(y − 1)|A|−1 + 1

= (x− 1)|E| + (x− 1)|E|−1

(
y|E| − 1− (y − 1)|E|

y − 1

)
+ 1.

Here degx TS = |E| = r(E) and degy TS = |E| − 2 ⩾ |E| − r(E) = 0. As degx TS +degy TS =
2|E| − 2 assumption (iii) of Theorem 2.6 fails when |E| > 3. The dual rank function is
defined by

r∗(A) =


0 A = ∅
1− |E \ A| ∅ ⊊ A ⊊ E

0 A = E.

The Newton polygon of the polynomial X |E| + X |E|−1 (Y+1)|E|−1−Y |E|

Y
+1 is the convex hull

of vertices (|E|, 0), (0, 0) and (|E| − 1, i) for i ∈ {0, 1, . . . , |E| − 2} (again this is a triangle
and the direction vectors of the sides are (−1, |E| − 2), (−|E| + 1,−|E| + 2) and (|E|, 0)).
This clearly cannot be expressed as a Minkowski sum of smaller polygons. Hence TS(x, y) is
irreducible.

3. Probabilistic approach: generic Galois maximality

In this section, which is to a large extent of independent interest, we approach Conjec-
ture 1.1 from a probabilistic point of view: within suitable families of polynomials equipped
with a “height function” and originating from well identified rank functions (such as rank
functions associated to connected matroids) we aim at obtaining an upper bound on the
size of the set of “pathological” elements (those having a non maximal Galois group) in the
family as the height grows. This is achieved through Kowalski’s sieve framework [28] with
a crucial appeal to Cohen’s work [8]. In the first subsection below we state and prove a
generalized form of a uniform sieve bound due to Gallagher [17] towards the celebrated (and
recently solved [3]) conjecture of van der Waerden [44] from 1936.

3.1. Generalizing a uniform version of a Theorem of Gallagher. Gallagher [17] con-
siders, for fixed r ⩾ 1 and for a growing parameter N ∈ N⩾1, the set

Er(N) :=
{
f(x) = xr +

r−1∑
i=0

aix
i : ai ∈ Z, |ai| ⩽ N, |GalQ(f)| < r!

}
of polynomials f for which the Galois group of a splitting field over Q (denoted GalQ(f) in
the above definition of Er(N)) is not maximal. A uniform version of the large sieve result
of Gallagher [17] states that |Er(N)|/(2N + 1)r ≪ r3 logN ·N−1/2 (for all N ⩾ 2, all r ⩾ 1,
and with an absolute implied constant, see [28, Th. 4.2]). The starting point of Gallagher’s
method is the identification of the set of monic Z-polynomials of degree r with Zr through
fixing the canonical basis (1, x, . . . , xr−1) of Q-polynomials of degree < r.

We extend Gallagher’s approach to more general linearly independent families of poly-
nomials. Our result (Theorem 3.1) gives the same type of uniform upper bound on the
proportion of pathological elements (still meant in the sense that the Galois group is not
maximal) as in [28, Th. 4.2].
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For s ∈ N, consider a family (F0, . . . , Fs) of monic polynomials in Z[x] with degFs <
max{degFi : i ⩽ s − 1} =: r. For p an element in a set of prime numbers P(r) of positive
density (the definition of P(r) may depend on r only and we assume that its density admits
a positive lower bound uniform in r), let (F0,p, . . . , Fs,p) be the reduction of (F0, . . . , Fs)
modulo p (meaning that we reduce the coefficients of the polynomials Fi modulo p). For any
prime p ∈ P(r), assume the following assumptions hold:

(H1) the polynomials Fi,p are relatively prime for i ∈ {0, . . . , s}, and (F0,p, . . . , Fs,p) is
linearly independent over Fp (in particular s ⩽ r),

(H2) the family (Fi,p − βiFs,p)0⩽i⩽s−1 has normal gcd for all (βi) ∈ Fs
p in the sense of

Cohen [8, p. 95] (i.e. the gcd of this family has at most one multiple irreducible
factor which, if it exists, has multiplicity 2 and degree 1) and (Fi,p)0⩽i⩽s is not totally
composite in the sense of [8, (2.2)] (a family (f0, . . . , fs) ∈ Fp[x]

s+1 is totally composite
if there exists ψ = N/D ∈ Fp(x), written in lowest degree terms, and (gj)0⩽j⩽s ∈
Fp[x]

s+1, such that degN > degD+1, ℓ := maxj deg gj > 1 and fi = Dℓ · (gi ◦ψ) for
all i ∈ {0, . . . , s}).

The main result of this subsection is the following extension of the uniform version of
Gallagher’s Theorem ([28, Th. 4.2]).

Theorem 3.1. With notation and assumptions as above, one has:∣∣∣{(ni)1⩽i⩽s ∈ [−N,N ]s : |GalQ
(
F0 +

∑s
i=1 niFi

)
| < r!

}∣∣∣
(2N + 1)s

≪ r2
(
1 +

1

log r

)2s logN√
N

,

for every integers s ⩾ 1, r ⩾ 2, every N ≫r 1 and with an absolute implied constant.

As already mentioned above, the proof proceeds by a sieving argument using primes in
the set P(r). Before proving Theorem 3.1, we introduce the necessary objects and outline
the sieve setup.

For a prime number p, we let πp : Z
s → Fs

p be the reduction modulo p morphism that
acts coordinate-wise. Let λ be a factorisation pattern for polynomials of degree r: given a
partition λ of r (i.e. λ = (a1, . . . , ar) ∈ Zr

⩾0 with
∑r

i=0 iai = r), a polynomial f of degree r
has factorisation pattern λ if it has exactly ai distinct irreducible factors of degree i, for
each i ∈ {0, . . . , r} (in particular such an Fp-polynomial is squarefree). For a prime number p
and for λ = {λi}i a set of partitions of r, define the following subset of Fs

p:

Ωλ,p =
{
(βi)1⩽i⩽s ∈ Fs

p : F0,p +
s∑

i=1

βiFi,p has factorisation pattern λ ∈ λ in Fp[x]
}
.

(We will simply write Ωλ,p if λ = {λ} contains a single partition.) In the spirit of [28, §4.2],
we fix (for now) an auxiliary parameter L (to be eventually optimized) and consider the
sieving problem of finding an upper bound for the cardinality of

S(N,λ, L) := {(ni)1⩽i⩽s ∈ [−N,N ]s : ∀p ∈ P(r) ∩ [1, L], πp((ni)) /∈ Ωλ,p}.

As explained in [28, §4.2], if the reduction modulo a prime number p of F = F0 +
∑s

i=1 niFi

(corresponding to (πp(ni))1⩽i⩽s) has factorisation pattern λ over Fp, then at least one per-
mutation of cycle type λ (i.e. a product of a1 fixed points, a2 disjoint transpositions, etc...)
belongs to GalQ(F ). Consequently if a polynomial F = F0 +

∑s
i=1 niFi has a Galois group
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over Q not intersecting the conjugacy invariant subset cλ of Sr consisting of permutations
of cycle type λ ∈ λ, then the s-tuple (ni)1⩽i⩽s belongs to S(N,λ, L). In other words,∣∣∣{(ni)1⩽i⩽s ∈ [−N,N ]s : GalQ(F0 +

s∑
i=1

niFi) does not intersect cλ in Sr

}∣∣∣ ⩽ ∣∣S(N,λ, L)∣∣.
Moreover, if (cλj

) is a set of conjugacy invariant subsets such that no proper subgroup of Sr

intersects every cλj
then

(5)
∣∣∣{(ni)1⩽i⩽s ∈ [−N,N ]s : |GalQ(F0 +

s∑
i=1

niFi)| < r!
}∣∣∣ ⩽ ∑

j

∣∣S(N,λj, L)
∣∣.

The following sieve inequality is a key ingredient to the proof of Theorem 3.1.

Proposition 3.2. Let s ⩾ 1 be an integer and let (F0, . . . , Fs) be a (s + 1)-tuple of monic
polynomials in Z[x] with degFs < max{degFi : i ⩽ s − 1} =: r ⩾ 2. Let λ be a set of
partitions of r and let P(r) be a set of primes depending only on r. For any positive inte-
gers N,L, there exists constants ∆(N,L) and H(L,λ) depending only on (N,L) and (L,λ),
respectively, satisfying ∣∣S(N,λ, L)∣∣ ⩽ ∆(N,L) ·H(L,λ)−1.

Moreover one has the bounds

∆(N,L) ⩽ (
√
2N + 1 + L)2s and H(L,λ) ⩾

∑
p∈P(r)∩[1,L]

|Ωλ,p|
|Fs

p|
.

Proof. Formally the first inequality as well as the lower bound on H are applications of
Kowalski’s sieve statement [28, Prop. 3.5] (where the constants ∆ and H are also properly
defined in a general context). The upper bound on ∆ is due to Huxley [25]; see also [28,
Th. 4.1]. □

In view of Proposition 3.2, our next task is to estimate the lower bound on H(L, λ). To
this purpose we appeal to a result of Cohen [8, Th. 3].

Lemma 3.3 (Cohen). Keeping the notation as in 3.2, assume that (H1) and (H2) hold
for (F0, . . . , Fs). Then for every p ∈ P(r) ∩ (r,∞),

|Ωλ,p|
|Fs

p|
= T (λ) +Or(p

−1/2),

where T (λ) is the proportion of elements of the symmetric group Sr of cycle type λ =
(a1, . . . , ar) the partition of r with i contributing ai times for all i ∈ {1, . . . , r}(precisely5 T (λ) =
(
∏

i i
aiai!)

−1).

Note that the assumption p > r enables us to simplify some of the requirements in Cohen’s
work. Indeed, for such a p, linear independence over Fp is equivalent to linear independence
over Fp(x

p), as explained by Cohen [8, p. 95], and also Fs is automatically tame (which
means that no zero of Fs has multiplicity divisible by p [8, statement of Th. 3]).
We are now ready to prove Theorem 3.1 (the argument follows closely the proof of [28,

Th. 4.2]).

5For example the partition λirr corresponding to irreducible polynomials is (a1, . . . , ar) = (0, . . . , 0, 1) and
one has T (λirr) = 1/r.
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Proof of Theorem 3.1. Imposing L ⩾ r2, say, we start by applying Lemma 3.3. First we have
for any partition λ of r,∑

p∈P(r)∩[1,L]

|Ωλ,p|
|Fs

p|
⩾

∑
p∈P(r)∩(r,L]

|Ωλ,p|
|Fs

p|
= T (λ)

(
|P(r) ∩ (r, L]|

)
+Or

(∑
p⩽L

1
√
p

)
,

where, in the error term, the sum extends to primes up to L. Moreover, summation by parts
yields the following upper bound:

∑
p⩽L

1
√
p
⩽

√
L

logL
.

Let λ be a finite set of partitions of r and let T (λ) =
∑

λ∈λ T (λ). By Proposition 3.2
we deduce, invoking the Prime Number Theorem (which implies |P(r) ∩ (r, L]| ≫ L/ logL
since L ⩾ r2), that we have for some constant Cr > 0 depending only on r and as soon

as
√
L > max(r, Cr/T (λ)),

H(L,λ)−1 ≫ T (λ)|P(r) ∩ (r, L]| − Cr

√
L

logL
≫ T (λ)

L

logL

(
1− Cr

T (λ)
√
L

)
,

with absolute implied constants. In turn we obtain

|S(N,λ, L)| ≪ (
√
2N + 1 + L)2s · (T (λ))−1 logL

L

(
1− Cr

T (λ)
√
L

)−1

.

Now for N ≫ max(T (λ)−2r4, T (λ)−3C4
r ), we choose L = T (λ)

√
2N + 1. We obtain

(6) |S(N,λ, L)| ≪ T (λ)−2(1 + T (λ))2sN s− 1
2 logN.

To conclude we follow the end of the proof of [28, Th. 4.2] by invoking [17, Lemma p. 98]:
no proper transitive subgroup of Sr contains both a transposition and a q-cycle of prime
length q > r/2. Therefore it is enough to consider the following families of factorization
patterns:

• λirr the trivial partition (a1, . . . , ar) of r with ar = 1, which detects the transitivity
of the Galois action,

• λtr the set of partitions (a1, . . . , ar) of r satisfying a2 = 1 and a2i = 0 for i ̸= 1,
which detects an element of the Galois group acting as a transposition,

• λprime the set of partitions (a1, . . . , ar) of r with aq = 1 for some prime number q >
r/2, which detects an element of the Galois group acting as a q-cycle.

One has T (λirr) = r−1 and the asymptotics ([17, p. 99]):

T (λtr) ∼
log 2

log r
, T (λprime) ∼

1√
2πr

(r → ∞).

In particular max(T (λirr)
−2, T (λtr)

−2, T (λprime)
−2) ≪ r2. Combining this with (5) and (6)

the proof is complete. □
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3.2. Application to linear combinations of Tutte polynomials of connected ma-
troids. We restrict to the case s = 2: let TM1(x, y) and TM2(x, y) be distinct Tutte poly-
nomials of connected matroids M1,M2 of rank r ⩾ 2 and size n ⩾ r + 1. By Corollary 2.7
(originally [33] in this case) TM1 and TM2 are irreducible in Z[x, y]. The fact that TM1 and TM2

are distinct is equivalent to their Q-linear independence. From [19, §5] the conditions r ⩾ 2
and n ⩾ r+1 guarantee that the dimension of the Q-span of Tutte polynomials of connected
matroids of size n and rank r is at least 2 and therefore one can indeed pick two linearly in-
dependent Tutte polynomials of connected matroids of size n and rank r. Consequently TM1

and TM2 are distinct irreducible elements of Z[x, y]. We will state and prove the main result
of this section (Theorem 3.1) in the more general setting where we only require that T1
and T2 be copime squarefree in Z[x, y] and monic of the same degree as x-polynomials with
coefficients in Z[y].

We start by establishing the following result explaining that suitable specializations of T1
and T2 at integral values of y yield triples (F0, F1, F2) satisfying assumptions (H1) and (H2)
of §3.1.

Proposition 3.4. Let r ∈ N⩾2 and let T1(x, y) and T2(x, y) be elements of Z[x, y] that
are coprime, squarefree, and monic of the same degree r seen as x-polynomials with co-
efficients in Z[y]. For big enough t ∈ Z (depending only on (T1, T2)) there exists a con-
stant C(T1, T2, t) (depending only on (T1, T2, t)) so that for every prime p ⩾ C(T1, T2, t)
the polynomials T1,p(x, tp) and T2,p(x, tp) are squarefree and coprime (where tp = t mod p
and, for any g ∈ Z[x, y], we define gp to be the element of Fp[x, y] obtained by reducing the
coefficients of g modulo p). Moreover, setting

F1(x, y) = T1(x, y) , F2(x, y) = T1(x, y)− T2(x, y) , F0(x, y) = xF2(x, y),

then for every p ⩾ C(T1, T2, t), the triple (Fi,p(x, tp))0⩽i⩽2 satisfies assumptions (H1) and
(H2) of §3.1.

Proof. We consider P (x, y) = T1(x, y)T2(x, y), the product of T1 and T2. Since T1 and T2 are
distinct and irreducible in the UFD Z[x, y], the polynomial P (x, y) is squarefree in Z[x, y]
(and also in (Q(y))[x]) and so its x-discriminant (an element of Z[y]) is non zero. Therefore
for big enough t ∈ Z (depending only on (T1, T2)), the specialization P (x, t) is squarefree;
in other words T1(x, t) and T2(x, t) are coprime and squarefree. For every such t the dis-
criminant of the x-polynomial T1(x, t)T2(x, t) is non zero and therefore for every big enough
prime p (depending only on (T1, T2, t)), this discriminant is non zero modulo p, meaning
that T1,p(x, tp) and T2,p(x, tp) are squarefree and coprime.
Below we will write Fi,p as shorthand for Fi,p(x, tp) (0 ⩽ i ⩽ 2) for brevity. We can now

check that assumptions (H1) and (H2) are satisfied by the relevant triples (Fi,p)0⩽i⩽2.

(H1) Since T1,p(x, tp) and T2,p(x, tp) are coprime, then gcd(F1,p, F2,p) = 1 and there-
fore (Fi,p)0⩽i⩽2 is a family of relatively prime polynomials.
Let us check that the linear independence assumption is satisfied. Since F1,p

and F2,p are coprime, they are not colinear. Assume by contradiction that for
some α, β ∈ Fp one has

F0,p = αF1,p + βF2,p.

Recombining, we obtain

(x− (α + β))T1,p(x, tp) = (x− β)T2,p(x, tp).
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This contradicts the fact that T1,p(x, tp) and T2,p(x, tp) are coprime, squarefree, and
have degree r ⩾ 2.

(H2) We first check the normality assumption. For any (β0, β1) ∈ F2
p, we have

gcd(F0,p − β0F2,p, F1,p − β1F2,p) = gcd((x− β0)F2,p, F1,p − β1F2,p)

= gcd(x− β0, F1,p − β1F2,p),

where, for the last step, we use the fact that F2,p and F1,p are coprime. This implies
that the gcd considered is normal.

Finally, assume by contradiction that (Fi,p)0⩽i⩽2 is totally composite, then in par-
ticular there exists polynomials g0 and g2 in Fp[x] and a rational function ψ ∈ Fp[x]
of positive degree such that

F0,p = xF2,p = Dℓg0(ψ) , F2,p = Dℓg2(ψ).

This leads to
x = (h ◦ ψ)(x)

where h = g0/g2. Taking degrees, we obtain 1 = (deg h)(degψ). However both factors
on the right hand side are integers and degψ ⩾ 2 by assumption; a contradiction.

□

We are now ready to draw the following consequence of Theorem 3.1 and Proposition 3.4.
This establishes in particular that, generically degree one Z[x]-linear combinations of two
linearly independent Tutte polynomials of connected (n, r)-matroids have maximal Galois
group over Q(y).

Theorem 3.5. Let T1(x, y) and T2(x, y) be elements of Z[x, y] that are coprime, squarefree,
and monic of the same degree r ⩾ 2 seen as x-polynomials with coefficients in Z[y] (for
example one can take T1(x, y) and T2(x, y) to be distinct Tutte polynomials of connected (n, r)-
matroids with r ⩾ 2 and n ⩾ r + 1). Then one has∣∣∣{(n1, n2) ∈ {−N, . . . , N}2 : |GQ,y

(
(x+ n1)T1 − (x+ n2)T2

)
| < r!

}∣∣∣
(2N + 1)2

≪ r2
logN√
N

,

for all N ≫r 1 and with an absolute implied constant.

Proof. As in Proposition 3.4 set F0(x, y) = x(T1(x, y) − T2(x, y)), F1(x, y) = T1(x, y),
and F2(x, y) = T1(x, y) − T2(x, y). Picking t big enough (again in the sense of Proposi-
tion 3.4) the assumptions of Theorem 3.1 (with s = 2) are satisfied for the choice P(r) =
{p prime: p ⩾ max(C(T1, T2, t), r + 1)} which depends on (T1, T2, t) only and has density 1.
We conclude by applying Theorem 3.1 and a specialization argument (Proposition 4.1, where
one additionally notes that if f(x, y) ∈ Z[x, y] has x-degree d and if t, p ∈ Z are such that p
is prime and f(x, t) mod p is irreducible of degree d in Fp[x], then f(x, y) is irreducible seen
as an x-polynomial with coefficients in Q(y)). □

4. Monodromy computations for some ranked sets and specific families of
2-connected graphs

In this section we first consider possible extensions of Conjecture 1.1 to general ranked
sets, and next we prove that the conjecture holds for some families of connected matroids.
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4.1. Examples of monodromy group of Tutte polynomials of ranked sets. In order
to prove that Conjecture 1.1 holds in a number of cases, we will use the same strategy as for
the proof of Theorem 3.1 by showing that the Galois group considered, seen as a permutation
group, contains elements having a certain cycle type. Typically the final step of the proof
relies on a classical specialization argument (also used in the proof of Theorem 3.1). We
state the version, restricted to a UFD, of [4, Prop. 4], itself a simplified form of [29, VII,
Th. 2.9]).

Proposition 4.1. Let R be a UFD equipped with a ring homomorphism ψ : R → L to a
field L. Let f(X) ∈ R[X] be monic irreducible and assume that ψ(f) (the element of L[X]
obtained by mapping ψ to the coefficients of f) is separable. Then GalL(ψ(f)) is a subgroup
of Galk(f), where k denotes the field of fractions of R.

Remark 3. Let K/k be an algebraic field extension. Let T (x, y) ∈ k[x, y] be squarefree

and non constant as an x-polynomial with coefficients in k[y]. Fix an algebraic closure K(y)

of K(y); this is also an algebraic closure of k(y). Let (αi)1⩽i⩽r be the roots of T in K(y).
Then k(y)((αi)i) (resp. K(y)((αi)i)) is a splitting field of T over k(y) (resp. K(y)) and one
has an injective group morphism

GalK(y)(T ) −→ Galk(y)(T )

σ 7−→ σ|k(y)((αi)i).

As a consequence the maximality of GalK(y)(T ) (meaning it has order r!) implies the max-
imality of Galk(y)(T ). Moreover, if K/k has finite degree, then Galk(y)(T ) ≃ GalK(y)(T ).
Therefore, in the sequel, even though we fix, at times, the field of constants that we work
over (e.g. Q or C), one should keep in mind that under the above assumptions the state-
ments still hold after a finite constant field extension or by considering a subfield over which
the base field is algebraic.

In the remainder of §4.1, we give examples showing that Conjecture 1.1 extends to some
but not all general rank functions.

Remark 4. To give a first low degree example in the case R = Z, we go back to the first
example in Remark 2. Specializing the Tutte polynomial TS(x, y) = x3 + 2x2 + y2 + 3xy
(see [22, p. 23]) at y = 1 and reducing modulo 5, we obtain the product of irreducibles (x+
1)(x2 + 3) in F5[x]. We deduce that the Galois group of TS(x, y) over Q(y) is isomorphic
to S3 (up to isomorphism, it is the unique transitive permutation group of degree 3 that
contains a transposition).

The first example below corresponds to a rank function assuming 2 values only. In this case
the Galois group is not maximal (generically it has index ⩾ 3 inside the relevant symmetric
group). The second example corresponds to a rank function assuming 3 values. In this case
we exhibit subfamilies for which we show that the Galois group is maximal.

4.1.1. A rank function assuming two values. Example 1 gives an example of a rank function
whose dual takes negative values, and whose corank-nullity polynomial is the polynomial

Tn,r(x, y) = (y − 1)n−r + (yn − (y − 1)n)(x− 1)r,
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where n ⩾ r ⩾ 1. Let R be a UFD and let φ : Z → R be the natural ring homomorphism
the kernel of which is generated by the characteristic of R. Applying φ to the coefficients,
we consider the polynomial T as an element of R[x, y]. We let k be the fraction field of R.

Proposition 4.2. As a polynomial in x, Tn,r(x, y) is irreducible over k(y). Assuming more-
over that the characteristic of R does not divide r, the Galois group Gk,y(Tn,r) has order at
most rφ(r). If r ⩾ 4, then the index of Gk,y(Tn,r) in Sr is at least 3. In particular Gk,y(Tn,r)
is neither isomorphic to Sr nor to Ar as soon as r ⩾ 4.

Proof. By invariance of the Galois group structure (and in particular reducibility properties)
when factoring out a non-zero constant term, taking the reciprocal or performing linear
transformations, we can replace Tn,r(x, y) by

Un,r(x, y) = xr − (y − 1)n − yn

(y − 1)n−r
.

The polynomial Un,r has coefficients in k(y) and its constant term is not a constant multiple
of any g(y)ℓ for some g(y) ∈ k(y) and ℓ ∈ N⩾2. Indeed the numerator of such a g(y)ℓ has
multiple roots, which is not the case for (y − 1)n − yn as one checks by computing the y-
derivative. Applying [29, Chap. 6, Th. 9.1], we deduce that Un,r is irreducible over k(y).
Furthermore [29, Chap. 6, §9, Ex. 2] constructs, under the stated assumptions, an injective

morphism from Gk,y(Un,r) to{(
a b
0 1

)
: b ∈ Z/rZ, a ∈ (Z/rZ)×

}
,

which concludes the proof. □

4.1.2. A rank function assuming three values. The ranked set of Example 2 has corank-nullity
polynomial equal to

Tn(x, y) = (x− 1)n + (x− 1)n−1

(
yn − 1− (y − 1)n

y − 1

)
+ 1,

where n ⩾ 1.
Setting X = x− 1 we obtain

Tn(X, y) = Xn +

(
yn − 1− (y − 1)n

y − 1

)
Xn−1 + 1.

For a suitable factorization of n, the following statement asserts the maximality of the Galois
group of Tn over Q(y).

Proposition 4.3. Let n = p1p2 be the product of two odd primes such that the (multiplica-
tive) order of 2 modulo pi does not divide pj − 1 (for any i ̸= j). Then the Galois group of
the splitting field of Tn(X, 2) over Q is isomorphic to Sn and therefore GQ,y(Tn(x, y)) ≃ Sn.

Proof. First note that
Tn(X, 2) = Xn + (2n − 2)Xn−1 + 1.

By assumption, one has n ⩾ 15 and therefore [23, Th. 1] implies that Tn(X, 2) is irreducible
over Q. In particular Tn(X, y) is irreducible over Q(y).

Moreover gcd(n, 2n − 2) = 1. Indeed, for {i, j} = {1, 2}, one has

2n − 2 = (2pi)pj − 2 ≡ 2(2pj−1 − 1) ̸≡ 0 mod pi,
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since the order of 2 modulo pi does not divide pj − 1, by assumption. We conclude that the
Galois group of the splitting field of Tn(X, 2) over Q is isomorphic to Sn by invoking [37,
Th. 1]. We finish the proof by applying Proposition 4.1. □

From Proposition 4.3 we can deduce that there are infinitely many values of n for which
the Tutte polynomial of the ranked set in Example 2 has maximal Galois group over Q(y).
The following statement gives a strong form of this fact.

Corollary 4.4. For large enough t ⩾ 2, one has the following lower bound (that holds with
an absolute implied constant):

#{n ⩽ t : GQ,y(Tn(x, y)) ≃ Sn} ≫ t0.16

log t
.

Proof. By Proposition 4.3, a lower bound for the quantity investigated is

(7) #{n = p1p2 ⩽ t : ordpi(2) ∤ (pj − 1) for {i, j} = {1, 2}},

where p1, p2 are odd prime numbers and ordpi(2) denotes the multiplicative order of 2 mod-
ulo pi. Modulo a prime at least 5, we know that 2 cannot have order 2. Also, by Fer-
mat, ordpi(2) | (pi − 1) for any odd prime pi, and therefore (7) is bounded from below
by

#{n = p1p2 ⩽ t : pi ̸= 3 , pi ≡ 3 mod (4), (i = 1, 2), gcd(p1 − 1, p2 − 1) = 2}.

We rewrite this quantity as follows:

(8)
∑

7⩽p1⩽t
p1≡3 mod 4

#{7 ⩽ p2 ⩽ t/p1 : p2 ̸≡ 1 mod q if q = 4 or q | (p1 − 1), q odd prime}.

To estimate the general term of this sum we need to count, for given p1, the prime numbers p2
that are less than t/p1 and satisfy a linear system of type {p2 ≡ ai mod qi, ∀i ∈ {0, . . . , r}}
where q0 = 4, q1, . . . , qr are the distinct odd prime divisors of p1 − 1 and ai is an invertible
class distinct from 1 modulo qi for i ⩾ 1. By the Chinese Remainder Theorem each such
system is equivalent to a single congruence p2 ≡ a mod (q0 · · · qr). One knows [45, Th. 1.1]
that there exists a prime number p2 ≪ (q1 · · · qr)5.18 satisfying such a congruence (with an
absolute effectively computable implied constant). This means that if one restricts the sum
in (8) to primes p1 ⩽ t1/6.2, for big enough t, then there is a suitable prime p2 ⩽ t/p1. In
particular the sum (8) is bounded from below, for big enough t, by

π(t1/6.2; 4, 3),

the count of prime numbers that are 3 modulo 4 and less than t1/6.2. We conclude by invoking
the Prime Number Theorem in arithmetic progressions and the fact that 1/6.2 ≃ 0.1613. □

In the rest of Section 4, we prove that Conjecture 1.1 holds for several families of 2-
connected graphs. In some cases we do not prove the full force of the maximality result
predicted by the conjecture but we obtain information about the Galois action that goes
beyond the transitivity granted by our irreducibility statement (Corollary 2.7).
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4.2. The case of an n-cycle. Let n ⩾ 3 and let Cn be the cycle on n vertices, a 2-connected
graph (the associated matroid is connected) with Tutte polynomial given by

TCn(x, y) =
n−1∑
i=1

xi + y.

In this section, we prove the conjecture of Bohn–Cameron–Müller for the graphic matroid
associated with the n-cycle Cn where n ⩾ 3.

Theorem 4.5. Let n ⩾ 3 and let k be a field of characteristic 0 or p ∤ n(n − 1). We
have Gk,y(TCn) ≃ Sn−1. In particular Conjecture 1.1 holds for Cn.

Below we give a proof valid over any field satisfying the assumptions of the statement.
For the case k = Q (and therefore, over any number field by Remark 3) we will derive an
independent proof as a consequence of Lemma 4.10. Before proving Theorem 4.5 we consider
a slight modification of TCn better suited for computing its Galois group over k(y) with k as
in the statement of Theorem 4.5.

Lemma 4.6. For n and k as in Theorem 4.5, let p(x) = (xn − 1)/(x − 1) ∈ k[x]. Then,
setting P (x, y) = p(x)− y, we have Gk,y(P ) ≃ Sn−1.

Proof of Lemma 4.6. We present the argument given by N. Elkies [14]. It uses a result
that goes back to Hilbert ([39, Th. 4.4.1]) under the generalized form proved in Serre’s
book [39, Th. 4.4.5] and which asserts the following. Let f ∈ k[x] be of degree d, and suppose
the roots x1, . . . , xd−1 of the derivative f ′ are pairwise distinct and that the images yj :=
f(xj) are also pairwise distinct (i.e. f is a so-called Morse function), then the Galois group
of f(x)− y over k(y) is isomorphic to Sd.

To see that this holds for p(x) as in the statement, note that the discriminant of p(x)− y
with respect to x has precisely the yj’s as roots (this is seen e.g. by using the defining formula
for the discriminant which is, up to sign, the resultant of a polynomial and its derivative).
In fact the computation

d

dx

(
(x− 1)(p(x)− y)

)
= (p(x)− y) + (x− 1)p′(x)

shows that (x− 1)(p(x)− y) and its x-derivative have a common root if and only if y is one
of the yj’s, or y = n (in the latter case the common root is x0 = 1). Thus if one wants to
detect multiplicities in the yj’s by using the formula for the discriminant of a trinomial (see
e.g. [41, Th. 2])

discx((x− 1)(p(x)− y)) = discx(x
n − yx− 1 + y) = ±((n− 1)n−1yn − nn(y − 1)n−1),

one first has to divide this y-polynomial by the highest power of (y−n) that it is a multiple
of. One easily sees that this maximal power is (y − n)2 and we deduce that the roots of

q(y) :=
(n− 1)n−1yn − nn(y − 1)n−1

(y − n)2

are the yj’s counted with multiplicity. To finish the proof one computes the discriminant
of the polynomial q and checks that it does not vanish. Elkies computes ([14]) this dis-
criminant and shows that, up to sign, it equals 2∆n∆n−1 (here, for any positive integer m
we define ∆m = m(m−1)(m−3)) which is non zero by our assumption on the characteristic
of k. □
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Proof of Theorem 4.5. In the notation of Lemma 4.6, one has P (x, 1 − y) = TCn(x, y) and
therefore we deduce that Gk,1−y(P ) = Gk,y(TCn) ≃ Sn−1 since k(y) = k(1− y). □

4.3. The case of uniform matroids. Let Ua,b be the uniform matroid, which is defined on
groundset {1, . . . , b} and has bases all subsets of size a: the rank of A ⊆ {1, . . . , b} is equal
to |A| if |A| ⩽ a and equal to a if a < |A| ⩽ b. The Tutte polynomial of Ua,b is then given by

TUa,b
(x, y) =

a∑
i=0

(
b

i

)
(x− 1)a−i +

b∑
j=a+1

(
b

j

)
(y − 1)j−a.

Assume further that 0 < a < b, for which Ua,b is connected (Brylawski [5, Cor. 7.14] showed

that the coefficient of x in TUa,b
(x, y) is equal to

(
b−2
a−1

)
).

Theorem 4.7. Assume a ⩾ 2.

(1) One has GQ,y(TUa,b
) ≃ Sa if b is big enough in terms of a.

(2) If b = a + p for some prime number p > a then GQ,y(TUa,b
) acts as a primitive

permutation group on the roots of TUa,b
in a fixed algebraic closure of Q(y). If in

addition a is composite, then the action of GQ,y(TUa,b
) is doubly transitive.

Remark 5. The reason why the second statement of Theorem 4.7 is included in addition to
the first one is because of uniformity issues. As we explain in the proof below, Theorem 4.7(1)
is quite directly deduced from work of Filaseta and Moy [16] (recently complemented by
Klahn and Technau [27]), however no explicit growth rate for b as a function of a is made
explicit in [16, 27] and it does not seem clear how to extract this information from their
approach. Celebrated results (see e.g [11, Chap. 4 and §7.7]) in group theory show that
primitivity (and all the more so for, double transitivity) is not a property shared by many
subgroups of the symmetric group.

Proof of Theorem 4.7. (1) We note that

q⋆a,b(x− 1) := TUa,b
(x, 1) =

a∑
i=0

(
b

i

)
(x− 1)a−i .

This polynomial is the reciprocal evaluated at x−1 of the polynomial denoted qa,b(x) in [16,
p. 295]. For fixed a ⩾ 2, one can apply [16, Theorem 1] (complemented, for a = 6, by [27,
Th. 2]) which asserts that for big enough b (as a function of a), the Galois group of qa,b(x−1)
over Q is isomorphic to Sa. The same holds for q⋆a,b(x), and we conclude by Proposition 4.1.

(2) Let α1, . . . , αa be the roots of TUa,b
in an algebraic closure of Q(y). By defini-

tion GQ,y(TUa,b
) ≃ Gal(Q(y)((αi)i)/Q(y)). For simplicity this group will be denoted G

and we will write

f(x) :=
a∑

i=0

(
b

i

)
(x− 1)a−i , g(y) :=

b∑
j=a+1

(
b

j

)
(y − 1)j−a,

22



so that TUa,b
(x, y) = f(x) + g(y). The following diagram summarizes the situation.

Q(y)
(
(αi)i

)
Q(g(y))

(
(αi)i

)
Q(y)

Q(g(y))

c |G|

deg g=b−a=p

Let K = Q(y), Kg = Q(g(y)) and c = [K((αi)i) : Kg(αi)i]. The fact that [K : Kg] = deg g
comes from [9, Prop. 7.5.5, p. 176] since g is non constant. The extension Kg((αi)i)/Kg is
Galois since Kg((αi)i) is a splitting field of TUa,b

over Kg. Let H denote its Galois group. As
easily seen in the above diagram, c · |H| = |G| · deg g.

Any automorphism of K((αi)i) fixing K restricts to an automorphism of Kg((αi)i) fix-
ing Kg (indeed, g has rational coefficients). This induces an injective group morphism G ↪→
H.

Since g is a non constant polynomial with rational coefficients, one hasH ≃ GalQ(Y )(f(x)+
Y ), where Y is an indeterminate over Q and the Galois group is understood as that of the
splitting field of f(x) + Y over Q(Y ). We invoke a result of Dujella, Gusić and Tichy [12,
Cor. 1], that asserts that the polynomial with integer coefficients

f(x+ 1) = xa + bxa−1 + · · ·
is indecomposable (meaning that if f = f1 ◦ f2 for some integral polynomials f1, f2 then
either f1 or f2 has degree 1; note also that regarding f(x+ 1) as an element of Z[x] or Q[x]
does not affect indecomposability, by [42, Cor. 2.3]) since, by assumption, b is coprime to a. In
turn the polynomial f is indecomposable and by virtue of [42, Lem. 3.1], the group H acts as

a primitive permutation group on the roots (seen in a fixed algebraic closure Q(Y ) of Q(Y ))
of the x-polynomial f(x) + Y . In case a is composite, we can further combine [42, Lem. 3.3,
Lem. 4.4]. The former statement guarantees that H contains an a-cycle while the latter
infers that in this case a composite implies that H is doubly transitive as a permutation
group of the roots in Q(Y ) of the x-polynomial f(x) + Y .

Finally we prove that G ≃ H. It relies on the following classical property of the composi-
tum of a field extension with a Galois extension (see e.g. [13, §14.4]).

Lemma 4.8. Let Ω/k be a field extension and let L and M be subextensions such that L/k is
finite Galois. Then the compositum LM (inside Ω) is finite Galois overM and Gal(LM/M) ≃
Gal(L/(L ∩M)).

In order to apply the lemma to our situation, note that K((αi)i)) is the compositum of K

and Kg((αi)i) (inside Q(y)). The lemma implies that

G = Gal(K
(
(αi)i

)
/K) ≃ Gal

(
Kg

(
(αi)i

)
/(K ∩Kg

(
(αi)i

)
)
)
.

However K ∩Kg

(
(αi)i

)
is a subextension of K/Kg which, by assumption, has prime degree.

Therefore K ∩Kg

(
(αi)i

)
is either K or Kg. By contradiction, assume that this intersection

is K; then we have a tower Kg

(
(αi)i

)
/K/Kg which would imply that p | [Kg

(
(αi)i

)
: Kg].
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This is impossible by our assumption on p and since [Kg

(
(αi)i

)
: Kg] ⩽ a!. We conclude

that K ∩ Kg

(
(αi)i

)
= Kg and in turn that G ≃ H, since Kg((αi)i)/Kg is Galois of group

isomorphic to H.
□

Remark 6. Note that [42, Lem. 3.3], used in the proof to derive double transitivity from
primitivity in the case where a is composite, is a property specific to bivariate polynomials
(it holds at least for polynomials of the form f(x) − y). In particular, contrary to many
other arguments used in the present work, such a strong group-theoretic property on the
Galois action is not established by a specialization argument. We will argue in the same
way, using an approach specific to bivariate polynomials, in the next section when proving
Theorem 4.5 over number fields. Monodromy groups of type GalC(y)(f(x)−y) where f ∈ Q[x]
is indecomposable have been classified [36]. Also note that similar monodromy computations
are performed in [26, §7] in the context of curves over finite fields with defining equation of
type ya = f(x).

4.4. The case of an n-cycle with a “thick edge”.

Definition 4. Let n, j ⩾ 1 be integers. We define Cj
n to be the multigraph obtained from a

path of length n− 1 with endpoints u and v by adding j edges joining u and v in parallel.

Thus C1
n = Cn, the cycle of length n, and Cj

n has n + j − 1 edges and rank n − 1. The
graph C0

n is Pn, the path on n vertices; the graph C0
2 consists of a single bridge.

Using the deletion-contraction recurrence for the Tutte polynomial (e.g. [21, Th. 3.1]), a
straightforward induction gives, for n ⩾ 2,

(9) T (Cj
n; x, y) = xn−1 + (y + x+ · · ·+ xn−2) · (1 + y + · · ·+ yj−1).

The multigraph Cj
2 consists of j+1 parallel edges joining two vertices, for which T (Cj

2 ; x, y) =
x+ y + · · ·+ yj , consistent with (9) with n = 2. The multigraph Cj

1 consists of j loops on
a vertex, and T (Cj

1 ; x, y) = yj.

4.4.1. The case where j is odd. We prove the following extra case of Conjecture 1.1. One of
the main ingredients here is specializing T (Cj

n; x, y) at y = −1. Since j ≡ 1 mod 2 one has
for n ⩾ 2

(10) T (Cj
n; x,−1) = xn−1 + xn−2 + · · ·+ x− 1.

Theorem 4.9. Let k/Q be a finite field extension. Assume that n ⩾ 3 and that j is odd.
We have:

(1) the group Gk,y(T (C
j
n; x, y)) is isomorphic to a transitive subgroup of Sn−1 that con-

tains a transposition;
(2) assuming that n is odd, Gk,y(T (C

j
n; x, y)) ≃ Sn−1;

(3) if n−1 is prime, then Gk,y(T (C
j
n; x, y)) ≃ Sn−1; in fact GalQ(T (C

j
n; x,−1)) ≃ Sn−1.

As we will see in the proof, (3) of the statement is deduced from [32, Th. 3.4]. Recall also
that Remark 3 explains why it is enough to prove the statement in the case k = Q. We first
state a preparatory result, and proceed by drawing a second proof of Theorem 4.5 in the
case where k is a number field.

Lemma 4.10. Let n ∈ N⩾2 and let f(x) = xn−1 + xn−2 + · · ·+ x− 1 ∈ Z[x]. Let Gf denote
the Galois group of a splitting field of f over Q. Then the following hold:
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(1) f is irreducible over Q;
(2) if n ⩾ 3, then the discriminant of the polynomial f has an odd prime divisor (in

other words, | disc(f)| is not a power of 2);
(3) if p is an odd prime divisor of | disc(f)| then the inertia subgroup at p (defined up

to conjugation and seen as a permutation subgroup of the complex roots of f) is
generated by a transposition, and

(4) assuming that n is odd, we have Gf ≃ Sn−1.

Before proving the Lemma, we use it to give a second proof of Theorem 4.5 in the case
where k is a number field (which reduces to the case k = Q by Remark 3).

Alternative proof of Theorem 4.5 for k = Q. As mentioned after Definition 4 the case of
an n-cycle corresponds to j = 1. Recall also that Corollary 2.7 guarantees that TCn is irre-
ducible seen as an x-polynomial with coefficients in Q(y). Therefore, combining (10) with
Proposition 4.1 and Lemma 4.10(2) and (3), the Galois group GalQ(y)(TCn) is isomorphic to
a transitive subgroup of Sn−1 containing a transposition. Moreover, as mentioned in Re-
mark 6, we may combine [12, Cor. 1] and [42, Lem. 3.1] to show that this Galois group acts as
a primitive permutation group of degree n−1. A primitive permutation group of degree n−1
containing a transposition is necessarily isomorphic to Sn−1 (see [11, Th. 3.3A]). □

Proof of Lemma 4.10. For (1), we first set

g(x) = (x− 1)f(x) = (x− 1) ·
(
xn − 1

x− 1
− 2

)
= xn − 2(x− 1)− 1 = xn − 2x+ 1.

We then apply a result due to Perron (see e.g. [38, Th. 2]) asserting that f(x) (i.e. the
quotient of g(x) by x− 1) is irreducible over Q.

Next we prove (2). Fix n ⩾ 3. The discriminant D of g is given by ([41, Th. 2]):

(11) D = (−1)n(n−1)/2
(
nn − (n− 1)n−12n

)
.

Moreover, recalling the definition of the discriminant of a polynomial in terms of the resultant
of the polynomial and its derivative ([29, Chap. IV, Prop. 8.3 and 8.5]), we have:

D = (−1)
n(n−1)

2 Res(g, g′) = (−1)
n(n−1)

2

∏
α root of g

g′(α)(12)

= (−1)
n(n−1)

2 f(1)
∏

α root of f

f ′(α)
∏

α root of f

(α− 1)

= (−1)deg f+
n(n−1)

2 (f(1))2
∏

α root of f

f ′(α) = (f(1))2disc(f).

Since f(1) = n− 2, we obtain:

|disc(f)| = |nn − (n− 1)n−12n|
(n− 2)2

.
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If n is odd then the right hand side is odd as well and we are done6. Let us assume
that n = 2k′ (k′ ⩾ 2). Then, up to sign, we have

| disc(f)| = |(2k′)2k′ − (2k′ − 1)2k
′−122k

′ |
4(k′ − 1)2

= 22(k
′−1) |k′2k

′ − (2k′ − 1)2k
′−1|

(k′ − 1)2

If k′ is even, then the right-most factor is odd7 and we are done. Therefore we assume
that n = 2(2k + 1) (i.e. k′ = 2k + 1) for some k ⩾ 1. We get

| disc(f)| = 24k
|(2k + 1)2(2k+1) − (4k + 1)4k+1|

4k2

Let us investigate the parity of the second factor. By Newton’s formula:

(2k + 1)2(2k+1) =
4k+2∑
j=0

(
4k + 2

j

)
(2k)j, (4k + 1)4k+1 =

4k+1∑
i=0

(
4k + 1

i

)
(4k)i.

The contributions of the indices i = j = 0 are both 1. They subtract to 0. Moreover we see
that the contributions of the indices:

(i) j = 1 and i = 1 are respectively (2k+1)4k and (4k+1)4k. The difference subtracts
to an integer divisible by 8k2.

(ii) j = 2 and i = 2 are respectively 4k2(2k + 1)(4k + 1) and 16k22k(4k + 1) and the
difference of these two terms is divisible par 4k2 = 22ℓ+2 but not 8k2 since (2k +
1)(4k + 1) is odd.

(iii) j ⩾ 3 and i ⩾ 3 are integers divisible by 8k2.

We conclude that

(13)
|(2k + 1)2(2k+1) − (4k + 1)4k+1|

4k2
≡ |(4k + 1)(2k + 1− 8k)| ≡ 1 mod 2.

Therefore, | disc(f)| admits an odd prime divisor as soon as the left-hand side of (13) is not
equal to 1. We claim that indeed one has

(4k + 1)4k+1 − (2k + 1)2(2k+1) > 4k2.

Notice first that the inequality is true if k ∈ {1, 2} by direct computation and suppose now
that k ⩾ 3. It is enough to prove that

(4k + 1)4k+1

(2k + 1)4k+2
> (4k + 1)2,

that is (
4k + 1

2k + 1

)4k−1

> (2k + 1)3.

Taking the logarithm on both sides, we see that it suffices that

(4k − 1) ln(13/7) > 3 ln(2k + 1),

6Note that disc(f) ̸= ±1 because f is irreducible and has degree > 1 and thus generates a ramified
extension of the rationals.

7Here we note that the numerator of the fraction of the right-most member is ⩾ k′2k
′−1 for k′ ⩾ 2 and

therefore the fraction cannot be 1.
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because x 7→ 4x+1
2x+1

= 1 + 2x
2x+1

is increasing as a function of x and we assumed that k ⩾ 3.
This last inequality holds for all k ⩾ 3 as can be seen by a quick analysis of the function x 7→
(4x− 1) ln(13/7)− 3 ln(2x+1) for x > 1. We have proved that | disc(f)| is not a power of 2.

We turn to (3). Our method mimics the argument of Osada [37, Proof of Th. 1].
Let K be the splitting field (inside the complex numbers) of f (equivalently, of g) over Q.

Let p be a prime number ramified in K/Q and let p be a prime ideal of OK lying over p.
We let I(p/p) denote the inertia subgroup of Gf relative to p and p. Let σ be a non
trivial element of I(p/p); thus σ(α) ̸= α for some root α of f . Since σ ∈ I(p/p), we
have σ(α) ≡ α(mod p), meaning that α mod p is a multiple root of the reduction of f
modulo p. In particular g(mod p) ∈ Fp[x] has a multiple root. Let us show that g(mod p)
has at most one multiple root, and that in this case, its multiplicity is 2. We will deduce
that for any root β ∈ K of f , the necessary congruence σ(β) ≡ β(mod p) implies σ(β) = β
and thus σ, seen as a permutation of the roots of f is the transposition, (ασ(α)).

Let r be a multiple root of f(x) modulo some odd prime p ramified in K/Q. It is also a
multiple root of g(x) = xn − 2x + 1, seen as an element of Fp[x]. Then rn = 2r − 1 and r
is also a root of the derivative nxn−1 − 2 of g. Thus nrn = 2r. In particular p ∤ n: indeed,
by contradiction, if p | n, then nrn = 2r = 0 which would imply p = 2 since r ̸= 0. This
contradicts the fact that p is odd. Hence 2r − 1 = 2r/n and in turn 2r(1 − 1/n) = 1. In
particular p ∤ n − 1. We conclude that r = n/(2(n − 1)) is the only possible multiple root
of xn−2x+1 ∈ Fp[x]. Finally the second derivative of g is n(n−1)xn−2 which only vanishes
at 0 (recall p ∤ n and p ∤ n− 1). Thus r has mulitplicity < 3 as a root of g.

Finally we prove (4). Since n ⩾ 2 and n is odd, we have n ⩾ 3. First remark that the
Galois group Gf of f over Q is the same as the Galois group of g over Q. By (1), the
group Gf is a transitive subgroup of Sn−1. By [37, Lemma 5], it suffices to show that Gf

(seen as a subgroup ofSn−1) can be generated by transpositions to conclude that Gf ≃ Sn−1.
To do so, we use the fact that Gf is generated by the union over prime numbers p of the
inertia subgroups of Gf at p (a consequence of Galois theory combined with the fact that no
non-trivial extension of k = Q is unramified).

Note that f does not have a multiple root modulo 2. Indeed, assume by contradiction
that r is such a root; it is a multiple root of g and by the same computation as the one
performed in the proof of (3), we have:

rn = 2r − 1 = 1 , nrn−1 = 0.

These two equalities are not compatible, since n is odd. This implies that all the ramified
primes in the splitting field of f overQ are odd and by (3) all the non trivial inertia subgroups
of Gf are generated by a transposition. This concludes the proof. □

We are now ready to prove Theorem 4.9; our argument combines Lemma 4.10 and Propo-
sition 4.1.

Proof of Theorem 4.9. We first prove (1). Recall (10) and apply Proposition 4.1 for the
choice R = k[y], f(x) = T (Cj

n; x, y) (irreducible over R by Corollary 2.7, and monic as a
polynomial with coefficients in k[y]) and where the ring homomorphism we choose is reduc-
tion modulo y + 1. The image of the polynomial T (Cj

n; x, y) by such a morphism is the Q-
polynomial on the right hand side of (10). We conclude by combining Lemma 4.10(1), (2)
and (3).
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The proof of (2) follows from the same specialization argument (Proposition 4.1) as in the
proof of (1), combined this time with Lemma 4.10(4).

Finally we prove (3). This is deduced from [32, Th. 3.4] which asserts that the polyno-
mial T (Cj

p+1; x,−1) is irreducible modulo p := n−1. Let h(x) = xp−
∑p−1

i=0 x
i. Note that for

odd j, this is the opposite of the reciprocal of T (Cj
p+1; x,−1) (see (10)). We further denote

by hp(x) = xp −
∑p−1

i=0 x
i ∈ Fp[x] the reduction of h modulo p. It is enough to prove that hp

is irreducible to deduce the result. Indeed by virtue of (11) and (12) the prime p does not
divide the discriminant of f (recall that a polynomial with non zero constant coefficient and
its reciprocal have, up to sign and a power of the constant coefficient, the same discrimi-
nant), therefore if hp is irreducible, the Galois group of h over Q contains a p-cycle and is
a subgroup of Sp. It is therefore a transitive permutation group of prime degree, hence it
is a primitive permutation group. Since it also contains a transposition (by Lemma 4.10(2)
and (3)), we conclude that GalQ(h) ≃ Sp by [11, Th. 3.3A]. Finally we apply once more
Proposition 4.1. □

4.4.2. Case n − 1 ∈ {p, p2} and −j nonsquare mod p. We prove that Conjecture 1.1 holds
for T (Cj

n; x, y) for extra values of n and j. This time we proceed by specializing the Tutte
polynomial at y = 1:

T (Cj
n; x, 1) =: h(x) = xn−1 + j

n−2∑
k=0

xk.

Theorem 4.11. Let k/Q be a finite field extension. If
(1) n− 1 ∈ {p, p2} for some prime number p ⩾ 5,
(2) −j is a nonsquare modulo p, and
(3) gcd(n, j − 1) = 1,

then Gk,y(T (C
j
n; x, y)) ≃ Sn−1.

As before, it is enough, by Remark 3 to consider the case k = Q. We will need the
following preparatory result.

Lemma 4.12. Let a, b ∈ Q and let m > k > 0 be integers such that gcd(m, k) = 1. Consider
the trinomial f(x) = xm + axk + b ∈ Q[x]. Let h(x) ∈ Z[x] be an irreducible factor of f(x)
and assume that

(i) Df/Dh is a square in Z (here Dg denotes the discriminant of any g ∈ Q[x]);
(ii) there exists a prime number p such that vp(Df ) (the p-adic valuation of Df) is odd

and p ∤ ab.
Then the Galois group GalQ(f) of the splitting field of f (seen as a permutation subgroup of
the complex roots of f) over Q contains a transposition.

Proof. We use [41, Th. 2] to compute:

Df = (−1)m(m−1)/2bk−1
(
mmbm−k + (−1)m+1(m− k)m−kkkam

)
.

Let θ be a complex root of h and denote by dQ(θ) the discriminant of the number fieldQ(θ),
then Dh/dQ(θ) is a square in Z (the square of the index of Z[θ] in the ring of integers of K).
By assumption (i), we deduce that Df/dQ(θ) = (Df/Dh) · (Dh/dQ(θ)) is a square in Z.
We deduce that if p is a prime number satisfying (ii) then p is ramified in Q(θ)/Q (i.e. it

divides dQ(θ)). Moreover, applying [35, Lemma 5] (which builds on [31, Th. 2]), the inertia
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subgroup relative to any prime ideal p above p in the splitting field Kh of h over Q is
generated by a transposition. In turn GalQ(f) contains a transposition. □

Our goal is to apply the above Lemma to the specialization h(x) at y = 1 of T (Cj
n; x, y).

Then f(x) = (x− 1)h(x) is a trinomial to which the Lemma can be applied if
(a) h is irreducible,
(b) one can find a prime p such that vp(Df ) is odd and p ∤ j(j − 1) (see the proof of

Theorem 4.11 below).

To see that condition (a) holds we invoke [23, Th. 2] asserting the irreducibility in Q[x]
of T (Cj

n; x, 1) for j > 1.

Lemma 4.13 (Harrington). Assume n ⩾ 2. The specialization at y = 1 of T (Cj
n; x, y) is

the Q-polynomial:

h(x) = xn−1 + j

n−2∑
k=0

xk.

If j > 1, then h(x) is irreducible over Q except if (n, j) = (3, 4).

Proof of Theorem 4.11. Recall that G = GQ,y(T (C
j
n; x, y)) seen as a permutation group is a

transitive subgroup of Sn−1 by virtue of Corollary 2.7.
Next let us show thatG contains a transposition. Let h(x) be the specialization of T (Cj

n; x, y)
at y = 1 and define f(x) := (x − 1)h(x) = xn + (j − 1)xn−1 − j. Then, as shown in the
proof of 4.10(2), the number Df/Dh is a square in Z. Furthermore, as seen in the proof of
Lemma 4.12, one has

Df = (−1)n(n−1)/2(−j)n−1D0 where D0 = (−j)nn + (−1)n−1(n− 1)n−1(j − 1)n.

We note that D0 ≡ −j mod (n−1), therefore D0 is a non-square modulo p. In particular D0

is not a square in Z. Let ℓ be a prime such that vℓ(D0) is odd. Then ℓ ∤ j − 1, otherwise ℓ
would divide either n or j contradicting the assumption gcd(n, j − 1) = 1.

Also note that j is coprime to D0 (in particular ℓ ∤ j). Indeed a common prime divisor of j
andD0 would divide n−1 and so that prime divisor would be p. We would obtain j ≡ 0 mod p
which contradicts the fact that −j is a nonsquare modulo p. Therefore D is a non-square
in Z.

Therefore since vℓ(Df ) = vℓ(D0) is odd and ℓ ∤ j(j − 1) Lemma 4.12 applies and shows
that GalQ(f) seen as a permutation group of the complex roots of f contains a transposition.
In particular G contains a transposition.

Finally we want to prove that G is a primitive subgroup of Sn−1, which is now enough to
conclude by [11, Th. 3.3A]. The proof of primitivity is provided by Proposition 4.14 below.

In order to see that the assumptions of Proposition 4.14 are satisfied for h(x) = T (Cj
n; x, 1),

we appeal to Lemma 4.13 and we set ϕ(x) := (x− 1)h(x) = xn + (j − 1)xn−1 − j and so, in
the notation of Proposition 4.14, one has k = n, s = n− 1, a = j− 1 and b = −j. One cheks
that gcd((j−1)(n−1),−jn) = 1 since (n−1) (resp. j−1) is coprime to both n and −j. □

Proposition 4.14. Let ϕ(x) = xk+axs+ b ∈ Z[x] for integers k ⩾ 3 and s ∈ {1, . . . , k−1}.
Assume that gcd(as(k − s), kb) = 1 and s ∈ {p, p2} for some prime number p. If ϕ(x) =

(x−α)h(x) for some α ∈ Z and an irreducible h ∈ Z[x], then the Galois group of the splitting
field of ϕ over Q acts as a primitive permutation group on the set of complex roots of h.
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Proof. The setting and the proof are slightly adapted from work [35] of Movahhedi–Salinier.
Letting Gϕ be the Galois group of the splitting inside C of ϕ over Q, the assumptions imply
that Gϕ is isomorphic to a transitive subgroup of Sk−1. Moreover using a computation
similar to (12) one has

disc(ϕ) = h(α)2disc(h)

and thus the analysis of [35, §2, §3] applies and we conclude by invoking [35, Cor. 1 to
Th. 3]. □

Acknowledgements

F. Jouve benefited from the financial support of the ANR through project ETIENE (ANR-
24-CE93-0016) and is grateful to its members for valuable remarks and comments after some
of the above results were presented on the occasion of the first project meeting held in Jussieu
in June 2025. A. Goodall was partially supported by the Czech Science Foundation (GAČR)
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