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When N is a normal subgroup of G, can we reconstruct G from N and G/N? In general,
no. For instance, the groups Z/(p2) and Z/(p) × Z/(p) (for prime p) are nonisomorphic,
but each has a cyclic subgroup of order p and the quotient by it also has order p. As
another example, the nonisomorphic groups Z/(2p) and Dp (for odd prime p) have a normal
subgroup that is cyclic of order p, whose quotient is cyclic of order 2.

If we impose the condition that N and G/N have relatively prime order, then something
nice can be said: G is a semidirect product of N and G/N . This is the Schur-Zassenhaus
theorem, which we will discuss below. It doesn’t uniquely determine G, as there could
be several non-isomorphic semi-direct products of the abstract groups N and G/N , but
each one is a group with normal subgroup N and quotient by it isomorphic to G/N . For
instance, if N ∼= Z/(p) for odd prime p and G/N ∼= Z/(2) then G must be a semi-direct
product Z/(p) o Z/(2). The only two semidirect products are the direct product (which is
isomorphic to Z/(2p)) and the nontrivial semidirect product (which is isomorphic to Dp).

Theorem 1 (Schur-Zassenhaus). Let G be a finite group and write #G = ab where (a, b) =
1. If G has a normal subgroup of order a then it has a subgroup of order b.

Let’s see why this theorem tells us G is a semidirect product. Letting N be the normal
subgroup of order a and H be a subgroup of order b, N ∩H is trivial since (a, b) = 1, so
G = NH ∼= N oH is a semidirect product with N as the normal factor.

We will present two proofs of this theorem. Both proofs will be incomplete at the end.
Each proof will reduce to the case when N is abelian, at which point the machinery of
group cohomology can be applied. While group cohomology provides a general tool to
describe the groups having a particular normal subgroup with a particular quotient group
(up to isomorphism), it requires the normal subgroup be abelian, and we are making no
such assumption. So the proof of the Schur-Zassenhaus theorem amounts to a reduction
process to the case when N is abelian.

The first proof of the theorem will use the following lemma.

Lemma 2. If N CG and P ∈ Sylp(N) then G = N ·NG(P ). In particular, if P CN then
P CG.

Proof. Pick g ∈ G. Since P ⊂ N and N C G, gPg−1 ⊂ N . Then by Sylow II for the
group N , there is an n ∈ N such that gPg−1 = nPn−1, so n−1gPg−1n = P . That means
n−1g ∈ NG(P ), so g ∈ nNG(P ). Thus G = N ·NG(P ).

If P CN then N ⊂ NG(P ), so N ·NG(P ) = NG(P ). Thus G = NG(P ), so P CG. �

Here is the first proof of the Schur–Zassenhaus theorem.

Proof. Assume the theorem is false and let G be a counterexample of minimal order. So
any group with order less than #G satisfies the theorem. Easily a > 1 and b > 1.

Let N CG with #N = a. We aim to get a contradiction.
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Step 1: Show N is a minimal normal subgroup of G: there are no normal subgroups of
G lying strictly between {e} and N .

Suppose N ′ C G with {e} ⊂ N ′ ⊂ N and N ′ 6= {e} or N . We look at the group G/N ′

with order < #G. Since N/N ′ C G/N ′ and #(G/N ′) = #(N/N ′)b with the two factors
being relatively prime, by minimality of G there is a subgroup of G/N ′ with order b. It has
the form K/N ′, so #K = #N ′b < ab. Since #N ′ and b are relatively prime, by minimality
of G there is a subgroup of order b in K and hence in G. This is a contradiction, so N ′

doesn’t exist.
Step 2: Show N is an abelian p-group.
Let P be a nontrivial Sylow subgroup ofN , so by Theorem 2 we haveG = N NG(P ). Then

G/N ∼= NG(P )/(N∩NG(P )) and the order of NG(P ) is #(N∩NG(P ))b with #(N∩NG(P ))
a factor of a (hence relatively prime to b). Since N ∩NG(P ) is a normal subgroup of NG(P ),
if NG(P ) is a proper subgroup of G then by minimality of G there is a subgroup of order b in
NG(P ), and hence in G. This isn’t possible, so NG(P ) = G, which means P CG. Therefore,
by the Sylow theorems, P is a normal subgroup of N , so P = N by Step 1. Then Z(P )
is a nontrivial normal subgroup of P , so Z(P ) = P by Step 1 again, which means N is an
abelian p-group.

Step 3: Show N ∼= (Z/(p))k.
Considering the structure of finite abelian p-groups, this step is equivalent to showing

Np = {xp : x ∈ N} is trivial. Assume Np is nontrivial. It is preserved as a set by all
group automorphisms of N , so in particular gNpg−1 = Np for any g ∈ G. Thus Np C G,
so N/Np C G/Np. Since N/Np is a p-group while the index [G/Np : N/Np] = [G : N ] is
relatively prime to p, by induction G/Np has a subgroup of order [G : N ]. The subgroup is
H/Np for some H ⊂ G, so [H : Np] = [G : N ] is not divisible by p. Since Np CH, Np is a
p-group with index prime to p in H, and #H < #G, by induction again there is a subgroup
K of H with order [H : Np] = [G : N ]. This K is also in G, so G has a subgroup of order
[G : N ]. This is a contradiction, so Np is trivial.

Step 4: Get a final contradiction.

Let G act on N by conjugation. Since N ∼= (Z/(p))k, automorphisms of N can be inter-
preted as elements of GLk(Z/(p)). Therefore the conjugation action of G on N is a group
homomorphism G→ GLk(Z/(p)). Since N is abelian, it acts trivially on itself, so our action
descends to a homomorphism G/N → GLk(Z/(p)). At this point the reader is referred to
the literature for the rest of the proof. Two possible approaches are representation theory
[2, p. 146] or group cohomology (the vanishing of H2(G/N,N); a cohomological neophyte
can find this done without any reference to cohomology in [3, pp. 246–247], but it is not
very illuminating). �

Here is a second proof. Again we will reduce to the case of an abelian normal subgroup.

Proof. Let N C G with #N and [G : N ] relatively prime. We want to prove G has a
subgroup of order [G : N ]. Of course we can assume N is a nontrivial proper subgroup of
G.

We induct on #G. Assume #G > 1 and the theorem is verified for subgroups with
smaller order. Let p be a prime factor of #N and P be a p-Sylow subgroup of N , so P is
nontrivial. Because [G : N ] is prime to #N , p does not divide [G : N ] so P is also a p-Sylow
subgroup of G. Since P ⊂ N and N CG, all G-conjugates of P are in N . Therefore all the



THE SCHUR–ZASSENHAUS THEOREM 3

p-Sylow subgroups of G are in N , hence by counting p-Sylows in G and in N we get

[G : NG(P )] = [N : NG(P ) ∩N ].

Writing these indices as ratios and rearranging terms,

(1) [G : N ] = [NG(P ) : NG(P ) ∩N ].

Case 1: P is not normal in G. Then NG(P ) is a proper subgroup of G. The group
NG(P ) ∩ N is normal in NG(P ) since N C G, the order of NG(P ) ∩ N divides #N , and
the index of NG(P ) ∩ N in NG(P ) is [G : N ] by (1), so NG(P ) and its normal subgroup
NG(P ) ∩ N satisfy the hypotheses of the theorem. Since # NG(P ) < #G, by induction
NG(P ) has a subgroup of order [NG(P ) : NG(P ) ∩ N ] = [G : N ]. This is a subgroup of G
too, so we’re done.

Case 2: P C G. Then P C N and N/P C G/P with #(N/P ) dividing #N and [G/P :
N/P ] = [G : N ]. This order and index are relatively prime, and #(G/P ) < #G, so by
induction the theorem holds for G/P and its subgroup N/P : there is a subgroup in G/P
of order [G/P : N/P ] = [G : N ]. Write the subgroup as H/P , so H is a subgroup of G and

(2) [H : P ] = #(H/P ) = [G : N ]

is not divisible by p. (If P = N then H = G.)
Since P is a nontrivial p-group, its center Z := Z(P ) is nontrivial. Also Z C H (the

center of a normal subgroup is also a normal subgroup), so P/Z CH/Z. The group P/Z is
a p-group (possibly trivial, if P is abelian) while [H/Z : P/Z] = [H : P ] = [G : N ] is prime
to p, so (since #(H/Z) < #H ≤ #G) by induction H/Z contains a subgroup K/Z of order
[H : P ]. (If P is abelian then K = H.)

Now we have Z CK with Z a p-group and

[K : Z] = #(K/Z) = [H : P ] = [G : N ]

being prime to p, so K and its normal subgroup Z satisfy the hypotheses of the theorem.
Now if #K < #G then we can apply induction to conclude K has a subgroup of order
[K : Z] = [G : N ], and this is also a subgroup of G, so we’re done. What if K = G? Since
K ⊂ H ⊂ G, if K = G then H = G so [G : P ] = [G : N ] by (2). Therefore N = P since
P ⊂ N , so N is a normal Sylow subgroup of G.

If N is a normal p-Sylow in G and it is not abelian, we can use induction yet again to
finish the proof. Run through the argument two paragraphs up (with P = N , H = G,
and Z = Z(P ) = Z(N) the center of N). We get a subgroup K/Z of G/Z with order
[G : N ]. Now #K = #Z[G : N ]. If Z 6= N (i.e., N is non-abelian) then #Z < #N so
#K < #N [G : N ] = #G and we are done as before.

What if N is normal in G and N is abelian? In this case we can, as in the previous proof,
consider Np = {x ∈ N : xp = 1}. This is a normal subgroup of N and in fact it is normal
in G too. Running through the previous paragraph with Np in place of Z we are done by
another induction unless Np = N , which means all the elements of N have order p. So we
are left to contemplate the same case as at the end of the first proof: N is a normal p-Sylow
subgroup of G and is isomorphic to (Z/(p))k for some k. The end of the proof is now the
same as in the first proof: use either representation theory or group cohomology. �

Remark 3. The Schur–Zassenhaus theorem actually has an important second part, which
we omitted: any two subgroups of order b in G are conjugate to each other. See [3, p. 248]
for the proof of that.
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Let’s put the Schur–Zassenhaus theorem to work. We ask, out of idle curiosity, whether
p|#G implies p|# Aut(G). The answer, of course, is no: try G = Z/(p). As we now show,
this counterexample essentially explains all the others.

Corollary 4. Fix a prime p. For a finite group G with order divisible by p, the following
are equivalent:

(1) # Aut(G) is not divisible by p,
(2) G ∼= Z/(p)×H where #H and # Aut(H) are not divisible by p.

In particular, if p2|#G then p|# Aut(G).

Proof. Assume (1) holds and let P be a p-Sylow subgroup of G. We expect to show G ∼=
P ×H and P ∼= Z/(p).

For any x ∈ P there is the automorphism γx ∈ Aut(G) which is conjugation by x. Since
x has p-power order, so does γx (recall γnx = γxn for all n). By hypothesis # Aut(G) is
not divisible by p, so the only element of p-power order in Aut(G) is the identity. Thus
γx = idG for all x ∈ P , which means P ⊂ Z(G). In particular, P C G by Sylow II and P
is abelian. Therefore the Schur-Zassenhaus theorem tells us G ∼= PH for some subgroup H
with order not divisible by p. Since P ⊂ Z(G), G ∼= P ×H. Because the groups P and H
have relatively prime order and commute in G, Aut(G) ∼= Aut(P )×Aut(H) in the natural
way. Therefore p doesn’t divide # Aut(P ) or # Aut(H).

Which finite abelian p-groups P have # Aut(P ) not divisible by p? Write P as a direct
product of cyclic groups, say

P = Z/(pr1)× · · · × Z/(prk).

Since Aut(Z/(pr)) ∼= (Z/(pr))× has order pr−1(p− 1), we see that if some ri > 1 then that
Z/(pri) has an automorphism of order p, so P does as well (act by the chosen automorphism
on the i-th factor and fix elements in the other factors). Thus, if # Aut(P ) is not divisible
by p we must have ri = 1 for all i, so P ∼= (Z/(p))k is a direct sum of copies of Z/(p). That

means Aut(P ) ∼= GLk(Z/(p)), whose order is divisible by pk(k−1)/2, and thus is divisible by
p unless k = 1. So we must have P ∼= Z/(p), which concludes the proof that (1) implies (2).

To show (2) implies (1), Aut(Z/(p)×H) ∼= Aut(Z/(p))×Aut(H) ∼= (Z/(p))××Aut(H),
and this has order not divisible by p since # Aut(H) is not divisible by p. �

Example 5. If #G is even and # Aut(G) is odd then G ∼= Z/(2)×H where H is a group of
odd order with Aut(H) of odd order too. The smallest such nontrivial H has order 729 = 36

with automorphism group of order 19683 = 39.

When p|# Aut(G), one way to search for elements of order p in Aut(G) is by looking for
an inner automorphism: if g ∈ G has order p and g is not in the center of G then conjugation
by G is an (inner) automorphism of G with order p. Since inner automorphisms are a cheap
construction, we ask: when are there non-inner automorphisms of order p, assuming that
we know p|# Aut(G) (and p|#G)? For p-groups there is a complete answer. When G is
a finite abelian p-group, it has an automorphism of order p as long as G 6∼= Z/(p), and
that automorphism is not inner since G is abelian. When G is a finite non-abelian p-group,
Gatschütz [1] showed that there is an automorphism of order p which is not inner, using
cohomology.
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