FEUILLE N° 1: ENSEMBLES, RELATIONS, APPLICATIONS

Dans les trois premiers exercices, on considère un ensemble E et $A, B, C \in \mathcal{P}(E)$.

Exercice 1. On suppose que

$$A \cup B = A \cap C$$
, $B \cup C = B \cap A$, $C \cup A = C \cap B$.

Montrer que A = B = C.

Exercice 2. (1) Montrer que

- $(i) A \cap (B \cup C) = (A \cap B) \cup (A \cap C)$
- $(ii) \ A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$
- (2) On considère les deux ensembles $X, Y \in \mathcal{P}(E)$ définis par

$$X := (A \cap B) \cup (B \cap C) \cup (C \cap A), \qquad Y := (A \cup B) \cap (B \cup C) \cap (C \cup A).$$

Montrer que X = Y.

Exercice 3. Montrer l'équivalence

$$A \cup B \subset A \cup C$$
 et $A \cap B \subset A \cap C \iff B \subset C$.

Exercice 4. Soient X, Y deux ensembles, $A \in \mathcal{P}(X)$, $B \in \mathcal{P}(Y)$ et $f: X \to Y$ une application quelconque.

- (1) Quels liens y a-t-il entre $f(f^{-1}(B))$ et B? Quelle condition sur f permet d'avoir égalité? Expliciter un exemple où il n'y a pas égalité.
- (2) Quels liens y a-t-il entre $f^{-1}(f(A))$ et A? Quelle condition sur f permet d'avoir égalité? Expliciter un exemple où il n'y a pas égalité.

Exercice 5. Soit E un ensemble. Pour $A \in \mathcal{P}(E)$, on considère l'application

$$f_A: \mathcal{P}(E) \rightarrow \mathcal{P}(E)$$

 $B \mapsto B \cap A$

Montrer que si $A \neq E$, alors f_A n'est ni injective, ni bijective.

Exercice 6. Soient E et F deux ensembles finis de même cardinal et f une application de E dans F. Montrer que les assertions suivantes sont équivalentes :

- (i) f est injective
- (ii) f est surjective
- (iii) f est bijective

Exercice 7. Ensembles équipotents

Soient E, F deux ensembles. On dit que :

E est moins puissant que F s'il existe une injection $f: E \to F$

Eest plus puissant que F s'il existe une surjection $f: E \to F$

Eet F sont équipotents s'il existe une bijection $f: E \to F$.

- (1) Démontrer que : $(E \text{ est moins puissant que } F) \iff (F \text{ est plus puissant que } E)$.
- (2) Montrer que \mathbb{N} , \mathbb{N}^* , $\{n \in \mathbb{N} : 3 \mid n\}$, et \mathbb{Z} sont deux à deux équipotents.
- (3) Démontrer que E est moins puissant que $\mathcal{P}(E)$.
- (4) Soit $f: E \to \mathcal{P}(E)$ quelconque et $A := \{x \in E: x \notin f(x)\}$. Prouver que $A \notin f(E)$.
- (5) Est-ce que E et $\mathcal{P}(E)$ peuvent être équipotents?

Exercice 8. On considère deux ensembles X, Y et f une application quelconque de X dans Y. Soit \mathcal{R} la relation binaire

$$\forall (x_1, x_2) \in X^2$$
, $x_1 \mathcal{R} x_2$ si et seulement si $f(x_1) = f(x_2)$.

- (1) Montrer que \mathcal{R} est une relation d'équivalence sur X.
- (2) On considère le quotient $\tilde{X} = X/\mathcal{R}$. On désigne la classe d'un élément $x \in X$ par \tilde{x} . Montrer que l'application $\tilde{f}: \tilde{X} \to Y, \tilde{x} \mapsto f(x)$ est bien définie.
 - (3) Montrer que \tilde{f} est injective.
 - (4) \hat{f} est-elle surjective?

Exercice 9. Soit n un entier naturel non nul. On définit une relation binaire \mathcal{R}_n sur \mathbb{Z}

$$\forall (a,b) \in \mathbb{Z}^2$$
, $a\mathcal{R}_n b$ si et seulement si $n \mid (b-a)$.

- (1) Montrer que \mathcal{R}_n est une relation d'équivalence sur \mathbb{Z} .
- (2) Déterminer un système de représentants des classes d'équivalence de \mathcal{R}_n .
- (3) Calculer le cardinal de l'ensemble quotient \mathbb{Z}/\mathcal{R}_n .

Remarque. On note l'ensemble quotient $\mathbb{Z}/n\mathbb{Z}$.

Exercice 10. On note $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$. On considère l'application

$$\phi: \quad \mathbb{R} \quad \to \quad \mathbb{T}$$

$$x \quad \mapsto \quad e^{ix}$$

- (1) Cette application est-elle surjective et/ou injective?
- (2) On considère la relation binaire \mathcal{R} sur \mathbb{R} définie par

$$\forall (x,y) \in \mathbb{R}^2$$
, $x\mathcal{R}y$ si et seulement si $\exists k \in \mathbb{Z}, x = y + 2k\pi$.

- (i) Montrer que c'est une relation d'équivalence sur \mathbb{R} .
- (ii) Déterminer une réalisation pratique de l'ensemble quotient \mathbb{R}/\mathcal{R} , c'est à dire expliciter un ensemble en bijection avec le quotient.

Exercice 11. On définit une relation binaire sur $\mathbb{Z} \times \mathbb{Z}^*$ par

$$\forall (a,b), (c,d) \in \mathbb{Z} \times \mathbb{Z}^*, \quad (a,b)\mathcal{R}(c,d) \text{ si et seulement si } ad = bc.$$

- (1) Montrer que c'est une relation d'équivalence.
- (2) Décrire les classes d'équivalence.
- (3) Que peut-on dire de l'ensemble quotient?

Exercice 12. Soient E, F deux ensembles et f une application de E dans F. Soient $\mathcal{R}(\text{resp. }\mathcal{S})$ une relation d'équivalence sur E (resp. F). On note u (resp. v) la surjection canonique de E dans E/\mathcal{R} (resp. de F dans F/\mathcal{S}). On dit que f est compatible avec \mathcal{R} et \mathcal{S} si

$$x\mathcal{R}y \Longrightarrow f(x)\mathcal{S}f(y).$$

(1) On suppose f compatible avec \mathcal{R} et \mathcal{S} . Montrer qu'il existe une application $h: E/\mathcal{R} \to F/\mathcal{S}$ telle que $v \circ f = h \circ u$.

- (2) Montrer la réciproque.
- (3) Application : soient n, m deux entiers naturels non nuls. On note π_n (resp. π_m) la surjection canonique de \mathbb{Z} dans $\mathbb{Z}/n\mathbb{Z}$ (resp. $\mathbb{Z}/m\mathbb{Z}$). Donner une condition nécessaire et suffisante sur m et n pour qu'il existe une application $h: \mathbb{Z}/n\mathbb{Z} \to \mathbb{Z}/m\mathbb{Z}$ telle que $\pi_m = h \circ \pi_n$.

Exercice 13. Soient E, F, G des ensembles et $f: E \to F$ et $g: E \to G$ deux applications. On suppose que g est surjective.

(1) Montrer qu'il existe une application $h: G \to F$ telle que $h \circ g = f$ si et seulement si

$$g(x) = g(x') \Longrightarrow f(x) = f(x').$$

- (2) On suppose qu'une telle h existe. Montrer que
- (i) h est surjective si et seulement si f est surjective.
- (ii) h est injective si et seulement si $f(x') = f(x) \Longrightarrow g(x') = g(x)$.
- (3) E, F, G sont des espaces vectoriels et $f: E \to F$ et $g: E \to G$ deux applications linéaires. On suppose que g surjective.

Quelle condition nécessaire et suffisante sur les noyaux de f et g assure l'existence d'une application linéaire $h: G \to F$ telle que $h \circ g = f$?

Exercice 14. Partie stable par une application

Soit
$$f: E \to E$$
. Pour $n \in \mathbb{N}^*$, on note $f^n = \underbrace{f \circ f \circ \cdots \circ f}_{n \text{ fois}}$, et $f^0 = \mathrm{id}_E$.

Soit $A \subset E$, $A_n = f^n(A)$, et $B = \bigcup_{n \in \mathbb{N}} A_n$.

- (1) Montrer que $f(B) \subset B$.
- (2) Montrer que B est la plus petite partie de E, au sens de l'inclusion, stable par f et contenant A.

Exercice 15.

(1) On pose $E = [0,1]^2$ et on définit une relation \leq sur E en posant

$$(x,y) \prec (x',y') \iff (x < x') \text{ ou } (x = x' \text{ et } y < y').$$

- (i) Montrer que \leq définit une relation d'ordre sur E. On l'appelle ordre lexicographique.
- (ii) Soit $(a,b) \in E$. Représenter graphiquement les majorants et les minorants de (a,b).
- (iii) L'ordre est-il total?
- (2) On pose $E = \mathbb{R}^2$ et on définit une relation \ll sur E en posant

$$(x,y) \ll (x',y') \iff |x-x'| \le y'-y.$$

Mêmes questions que pour (1).

Exercice 16. Soit E un ensemble et \mathcal{R} une relation binaire sur E supposée reflexive et transitive. On définit une relation \sim sur E en posant

$$\forall (x,y) \in E^2, \qquad x \sim y \iff (x\mathcal{R}y \text{ et } y\mathcal{R}x).$$

- (1) Montrer que \sim est une relation d'équivalence sur E.
- (2) On définit une relation ≺ sur le quotient en posant

$$\tilde{x} \preceq \tilde{y} \iff x \mathcal{R} y.$$

- (i) Montrer que la définition de \leq ne dépend pas du choix du représentant.
- (ii) Montrer que c'est une relation d'ordre sur le quotient.

Exercice 17. Parties saturées pour une relation d'équivalence

Soit \sim une relation d'équivalence sur un ensemble E. Pour $A \subset E$, on définit $s(A) = \bigcup_{x \in A} \dot{x}$.

- (1) Comparer A et s(A).
- (2) Simplifier s(s(A)).
- (3) Montrer que : $\forall x \in E$, on a $(x \in s(A)) \iff (\dot{x} \cap s(A) \neq \emptyset)$. En déduire $s(E \setminus s(A))$.
- (4) Démontrer que

$$s(\bigcup_{i\in I}A_i)=\bigcup_{i\in I}s(A_i)\text{ et }s(\bigcap_{i\in I}A_i)\subset\bigcap_{i\in I}s(A_i).$$