On Dantzig-Wolfe decomposition
in integer programming
and ways to perform branching

in a branch-and-price algorithm

Francois Vanderbeck
Mathématiques Appliquées Bordeaux (MAB), Université Bordeaux 1
351 Cours de la Libération, F-33405 Talence Cedex, France. Fax: +33 (05) 57 96 21 23
Email: fv@math.u-bordeaux.fr Url: http://www.math.u-bordeaux.fr/~fv

September 1995 (Research Paper in Management Studies, 1994-1995, No 29)
(Revised and Submitted to Operations Research in May 1996)
(Revised in May 1997)

(Minor revision in March 1998)

(Accepted for publication in Operations Research)
(Forthcoming in the January-February 2000 issue of Operations Research)

Subject Category
Integer Programming Algorithms: Decomposition, Column Generation, Branch-and-Price.
Production/Scheduling: Cutting Stock / Trim.

Abstract

Dantzig-Wolfe decomposition as applied to an integer program is a specific form
of problem reformulation which aims at providing a tighter linear programming re-
laxation bound. The reformulation gives rise to an integer master problem whose
typically large number of variables is dealt with implicitly by using an integer pro-
gramming column generation procedure, also known as branch-and-price algorithm.
There is a large class of integer programs that are well suited for this solution tech-
nique. In this paper, we propose to base the Dantzig-Wolfe decomposition of an
integer program on the discretization of the integer polyhedron associated with a
subsystem of constraints (as opposed to its convexification). This allows to formu-
late the integrality restriction directly on the master variables and sets a theoretical
framework for dealing with specific issues such as branching or the introduction of
cutting planes in the master. We discuss specific branching schemes and their effect
on the structure of the column generation subproblem. We give theoretical bounds
on the complexity of the separation process and the extent of the modifications to
the column generation subproblem. Our computational tests on the cutting stock
problem and a generalisation, the cutting strip problem, show that, in practice,
all fractional solutions can be eliminated using branching rules that preserve the
tractability of the subproblem, but there is a tradeoff between branching efficiency
and subproblem tractability.

Introduction

The Dantzig-Wolfe decomposition principle of Linear Programming (LP) (Dantzig and

Wolfe, 1960) has its equivalent in Integer Programming (IP). Consider an integer program

of the form:
min cx
[P] s.t. (1)
Ax >
Dz > d
r € IN"

where A € Q™™ and D € Q'™ are rational matrices and ¢ € ", b € @™, and d €@’ are

rational vectors. As we formally show in the next section, one can select a subset of con-

straints that includes the integrality restrictions as a subsystem, X = {z € IN" : Dz > d},
consider implicitly all the integer solutions in the polyhedron X, and reformulate the orig-
inal integer program P by replacing its variables with their expression as integer convex
combination of a finite set of points and rays of X. Then, one obtains a new integer
program, the so-called master formulation, that typically has a tighter linear program-
ming relaxation because the reformulation amounts to implicitly taking the convex hull,
conv(X), of the integer polyhedron X. Therefore, the master formulation is often bet-
ter suited for a solution by LP-based branch-and-bound than the original formulation P.
However, the master has many more variables and associated columns than the origi-
nal formulation. Even so, solving the master LP relaxation does not require an explicit
enumeration of all its columns since the column generation algorithm allows one to gen-
erate columns if and when needed. The column generation subproblem consists in finding
a feasible solution to the subsystem that defines a column with minimum LP reduced
cost. The algorithm consisting of embedding column generation in a branch-and-bound
framework is known as branch-and-price or IP column generation (Barnhart et al 1994,
Vanderbeck and Wolsey 1996).

To illustrate the IP decomposition principle, let us introduce the following general-
ization of the cutting stock problem. The model, due to Hurkens (1995), is called the
cutting strip problem. It originates from the fabrication of metallic pipes in a make-to-
stock manufacturing process. Metal sheets of various dimensions are used as raw material.
The pipes are produced by cutting and folding metal strips of appropriate width. De-
mands for pipes are expressed in length units and are triggered by stock replenishment
requirements. Over-production is allowed. The cost of a cutting pattern is proportional to
the unused area of cut metal sheets (the leftovers must go back to the furnace). Let there
be p different strip widths w; € IR, and associated demands d; € IR, forv=1,...,p and
K different metal sheets of length L* and width W* for k = 1,..., K. Let y* be one if
sheet k is used and zero otherwise, and let z¥ represent the number of strips of width w;

cut from sheet k. Then, the formulation of the cutting strip problem takes the form:

K p
min Z Lk(Wk y* - Z Wy Zf)
k=1 =1

[P] s.t. (2)

]~
h

ol
N
S
v
&

!
\'l—‘
S

k=1
p
STwizF < why k=1,... K (3)
=1
y* e {0,1} k=1,...,K (4)
e IN i=1,...,p, k=1,...,K (5)

Alternatively, the problem can be formulated in terms of the variables associated with
the selection of feasible cutting patterns. Let Q* be the set of feasible cutting patterns for
sheet k, i.e. Q¥ = {¢F € IN? : 30, w; ¢F < WF}, let c’; be the cost of pattern ¢* € Q*, i.e.
c’; = LF(WF — 3P w;qF), and let)\’; be the number of times pattern ¢* € Q* is selected

in the solution. Then, the master formulation is an integer program of the form:

K
min SN c’; /\’;

k=1gkeQk
(M) s.t. (6)
K
Z Z Lszch]; > d; t=1,...,p
k:lquQk
Yo o<1 k=1,...,K
gkeQk
Aeo€ {0,1} e k=1,....K

The master formulation M“ arises from applying the Dantzig-Wolfe decomposition

principle to formulation P where constraints (3 - 5) are selected as a subsystem, i.e.,

p
X = {(y*, 2F)por,x € NKOHP) S w;ZF <WEYF fork=1,...,K}

i=1
= {(ykazk)kzl,...,l(S RK(1+p) : yk = Z)‘Za Zk = Z qk)‘](;J and Z)\’; S 1 \V/ka
gkeQk gkeQ* gkeQ*
and A} € {0,1} V¢* € Q*, k}.
The second formulation of the integer polyhedron X is based on the enumeration

{q*}reqr of all solutions in the integer polyhedron {z € IN? : _ w; z; < W*} for

each £k =1,..., K and gives rise to the master reformulation. Solving the LP relaxation

of the master using a column generation procedure involves one column generation sub-

problem for each metal sheet type £k = 1,..., K, which takes the form of a knapsack

problem:
P
¢*(m, 1) = min LEWR =3 (wi + mi)zi) +
i=1
s.t.

p

dwiz < Wk

i=1

z € IN 1=1,...,p

where (7, 1) € IRTK are the dual variables of the master LP relaxation that are associ-

ated with the demand covering constraints and the convexity constraints respectively.

The standard cutting stock problem is a special case where all raw sheets are identical
and the data can therefore be normalized, i.e., L* = L for all k, W* = W for all k,
and the demands d; are expressed in number of standard length L required. Moreover,
over-production is typically not rewarded and therefore the cost consists of the number

of sheets that are used, i.e. ¢, =1 for each non-zero cutting pattern q.

The motivation for using a Dantzig-Wolfe decomposition approach in integer program-
ming is to obtain an improved LP bound by exploiting the structure of the problem: the
fact that the integer program over the subsystem X is tractably solvable (although not
trivial) is exploited to obtain the bound LB = min{cz : Az > b,z € conv(X)}. La-
grangian relaxation, variable redefinition, and cutting planes are alternative approaches
that can be used in the same context to yield the same bound, LB. It is well-known
that the master LP is the dual formulation of the Lagrangian dual that results from
the dualization of the complicating constraints Az > b (Geoffrion, 1974). The variable
redefinition approach introduced by Martin (1987) consists in developing an alternative
formulation Z for the special structure polyhedron X. In the best of cases, the LP re-
laxation of Z provides a reformulation of conv(X). Hence, Dantzig-Wolfe decomposition
is a special case of the variable redefinition approach where the new variables use for the
reformulation Z are the convex combination coefficients. For the cutting strip problem
above Z¢ = {\ € {0,1}2: 9"l . Ygregr AF < 1 VEk}. As the number of new variables

is exponential in terms of the original problem size, the reformulation is only carried out

implicitly by way of using a column generation procedure. A cutting plane approach is
another implicitly way to obtain conv(X). It assumes that the (numerous) inequalities
that define conv(X) are known and can be separated upon. When only a partial polyhe-
dral description of conv(X) is known, a column generation approach where the column
generation subproblems are solved using a branch-and-cut procedure gives the desired
LP bound LB. When the separation problem is a linear program, Martin (1991) shows
that there exists a reformulation of P, using auxiliary variables, that gives the same LP-

relaxation bound, LB.

There is a large class of integer programs for which Dantzig-Wolfe decomposition
has proved to be an efficient solution approach. Gilmore and Gomory (1961 and 1963)
have been at the forefront of the development of this approach, with their work on the
cutting stock problem. In the last decade, the column generation approach to integer
programming has been successfully applied to several problems that can be formulated
as some variant of the set partitioning problem with binary variables. These applications
include routing problems (Desrosiers et al 1994), crew assignment problems (Anbil et al,
1993), the generalized assignment problem (Savelsbergh, 1997), edge clustering problems
(Johnson, Mehrotra, and Nemhauser, 1993, and Vanderbeck, 1994), and the bin packing
problem (Vance et al, 1994, and Vanderbeck, 1996) among others. In the present paper,
as well as in the recent studies of Vance (1996) and Valerio de Carvalho (1996), cutting
stock problems are solved to optimality using column generation within a branch-and-
bound algorithm. Such applications, where the master obtained through Dantzig-Wolfe
decomposition is an integer program with non-binary variables, emphasize the difficulties

inherent to branching in an IP column generation approach.

It is known for a fact that standard branching schemes are not suitable for integer
programming column generation. Fixing or bounding a variable of the master requires
modifications to the column generation subproblem that generally destroys the structure
that is exploited or even required in solving these subproblems efficiently. Moreover, it
leads to an unbalanced branch-and-bound tree (see Barnhart et al 1994, for instance).
Therefore branching schemes have been specially developed for use in the context of a
IP column generation algorithm. When the master formulation contains convexity con-

straints, enforcing that the master solution is made of exactly one column from each

subproblem, integrality can be enforced by adding branching constraints to the subprob-
lem formulation (Desaulniers et al. 1998, Vanderbeck and Wolsey 1996). If the columns
and right-hand-side entries of the master are binary, a branching scheme due to Ryan and
Foster can be used (see Vance et al. 1994). For the general case involving non-binary mas-
ter variables, a branching scheme has been proposed by Vanderbeck and Wolsey (1996).
In their paper on the bin packing problem, Vance et al (1994) also mention a similar

branching scheme when they discuss extending their work to the cutting stock problem.

The content of this paper is threefold. In Section 1, we show how the Dantzig-Wolfe
decomposition principle can be applied in integer programming. The presentation is based
on a complete discretization of the subsystem X which also uses interior points of the in-
teger polyhedron. With this convention (also adopted in Vanderbeck 1994) the integrality
restrictions of the original formulation naturally translate into integrality restrictions on
the variables of the master. Instead, when the decomposition is based on a convexification
of the integer polyhedron X, which has been the common practice, the master variables
are not directly restricted to integer values and the integrality requirements are enforced
on the convex combinations that arise in the master reformulation (Martin 1987, Barnhart
et al 1994, Desrosiers et al 1994). When the variables of the integer program P are binary,
ie. X C {0,1}" there are no integer interior points in X. Hence, discretization only
makes a difference, compared to convexification, in case some of the variables are general
integer, i.e. X ¢ {0,1}". Because the discretization approach establishes a clear relation
between the variables of the original formulation and those of the master reformulation, it
allows for the development of a unifying and complete theoretical framework to deal with
all relevant issues that arise in the implementation of a branch-and-price algorithm, such
as that of branching or that of adding cutting planes. When the original integer program
includes multiple and identical subsystems, as in the case of the cutting stock problem, the
discretization approach can exploit that structure whereas convexification cannot. The
issue is important since ignoring the special structure leads to notorious difficulties due
to the symmetry in the master. Hence, the discretization approach is also of practical

relevance as it permits the development of an efficient branch-and-bound procedure.

In Section 2, we present a branching framework for IP column generation that is

an extension of that of Vanderbeck and Wolsey (1996). By considering a wider class of

branching rules, we are able to derive theoretical results concerning the complexity of find-
ing a disjunctive branching constraint that cuts off the current fractional master solution,
and hence, we can bound the number of additional constraints and variables that must
be added to the column generation subproblem as a result of branching. The branching
framework considered here can be broadly described as follows: fractional master solu-
tions are ruled out by carrying out a partition X = X U (X \ X) of the solution space X
of the column generation subproblem and by enforcing the integrality of the number of
columns that are selected by the master solution in subset X of the partition. We discuss
specific ways of defining a partition of the solution space defined by the subsystem. We
present the modifications to the column generation subproblem that result from enforcing
integrality of the partition cardinality, and we give theoretical bounds on the extent of
these modifications. The branching framework encompasses various specific branching
schemes that have previously been used in IP column generation applications but also in-
cludes new branching rules of practical interest that prove to be computationally efficient

and to preserve the tractability of the column generation subproblem.

Finally, in Section 3, we test different branching rules on the cutting stock problem
and the cutting strip problem. The computations reveal that, in practice, the extent of
the subproblem modifications that result from branching is quite reasonable and much
lower than what was predicted by the theory. Indeed, we have been able to obtain
an integer solution for all our test problems, using only branching rules that require
none or little subproblem modifications. We also show, through a limited comparison of
computational results, that the branching rules of general applicability that are proposed
here, compare favourably with the more specific schemes used by Vance (1996) or Valerio
de Carvalho (1996) for the cutting stock problem. When the original problem consists
of multiple non-identical subsystems, as is the case for the the cutting strip problem,
the solution space typically exhibits some symmetry. Then, although branching could be
implemented simply by bounding the variables of the subproblem, our computational tests
indicate that it is more efficient to use more global branching rules as those proposed here.
In an independent study on the standard cutting stock problem, Vance (1996) reaches
similar conclusions by comparing the use of the standard master formulation to that of
a disaggregated formulation where each paper roll is associated with its own subset of

master variables.

1 Decomposition of an Integer Program

Consider an integer programming problem of the form (1). The subsystem X = {z €
IN™ : D z > d} is an integer polyhedron. Therefore, it can be generated from a finite set
of its points and a finite set of integer rays, i.e. any point in X can be expressed as an
integer combination of a finite set of integer points () C X and a finite set of integer rays
R C IN"™.

Proposition 1 (Nemhauser and Wolsey, 1988, p.104)

IfS={r € R":Dx >d} #0, X =SNIN", where (D,d) € @™V s a rational
matriz, then there exist a finite set of integer points, @ C X, and a finite set of integer
directions, R C {r € IN" : Dr > 0} \ {0}, such that

X={z€eR 2= qg\+> 7\, Y N\ =1, A€ NOTEY (7)

qeQ reR qeQ

Note that, when X is bounded, R = () and Q is the set X itself, i.e.,

X={zeN":Dr>d}={zcR.:x=> qX, > N=12€{0,1}9} = {g}eq -
q€eQ q€Q

If X is unbounded, R is the set of extreme rays of S (since S is a rational polyhedron, we

can assume without loss of generality that all 7 € R are integer vectors) and Q = XN{z €

RY 2= ,cppap+X,crT Br, Lpepp =1, ay >0forpe P, 0 < 3. <1 forr € R},

where P is the set of extreme points of S. If, moreover, S is a cone (d = 0), the points in

@ can be seen as rays and included in R, yielding Q = 0.

The integer discretization of the subsystem X, i.e. replacingz € X by x = 3" o g A+
SorerT Ar, With 3 co Ay =1and A € IN'QHIE vields a new IP formulation known as the

master:

min Zcq)\q—f—ZCT Ar

qeqQ reR

[M] s.t. (8)
DagA+ D ar A > b

qeEQ T€ER

oA =1

q€Q
)‘q € {Oa 1} qgeQ
A € IN reR

where ¢, =cq€@ and a, = Age@Qm forallge Q,and ¢, =cr €@ and a, = Ar e@Q™
for all » € R.

Independent subsystems

When, as is typical to many applications, the matrix D has a block diagonal structure,
the decomposition can be carried even further. Let D* € Q**? be the k" block of D,
for k = 1,..., K. To simplify the notation we assume that each block has the same
dimensions, thus [= Kt and n = Kp. Let ¢ € @, A* € @™*P, and d* € @' be the

corresponding blocks in ¢, A, and d. Then, the set X decomposes into K subsystems:

Xt={z e N?:DFz >d*}, k=1,....K

7

and the constraints A x > b can be viewed as linking constraints. Let Q* and R* be the

finite sets of integer points and directions that characterise X*.

We set Q(k) = {q = (¢F,e*) € IN? x {0,1}¥ : ¢* € Q¥} C INPTK | where ef is the
k™ unit vector (e¥ = 0 Vi # k and ef = 1). The appending of an incidence vector e* to
column vector ¢* is purely for notational convenience: it will allow us to identify whether
a vector ¢ belongs to Q(k) by checking whether g, > 1 and hence to treat the case of
multiple independent subsystems under the general framework developed for the case of a
unique subsystem. We then set Q = UK, Q(k). R(k) and R are defined similarly. Then,

the master formulation takes the form:

min Zcq)\q+zcr)\r

qcQ reR
[M] s.t. 9)
Zaq)‘q"'zar)‘r > b
qeQ r€ER
Z Ay =1 k=1,....K
7€Q(k)

A € {0,1} q€Q
M € IN reR

where ¢, = ¥ ¢* €@ and a, = A*¥ ¢* € @™ for all ¢ = (¢*,€*) € Q(k), and ¢, = F rF €@
and a, = A¥r* € @™ for all r = (r*, e*) € R(k). With these notations, the master formu-
lation M resemble that obtained in the case of an unique subsystem. Note that M could
have also been written as min{>"f_, 2o gkeQk c’;)\’;—FZkK:l Spkcpe CEAR L K D ogkeQk a’;)\’;—i-
S ke gk aEAE > b; Y ogkeok /\’; =1Vk; /\’; € {0,1} V¢* € QF, k; \F € IN Vr* € R* k}

where the notation are straightforward.

Formulation M arises from the application of Proposition 1 to each integer poly-
hedron X* C IN? for k = 1,..., K. Alternatively, Proposition 1 can be applied to
X = Q@K | Xk C INXP where ® denotes the Cartesian product. Then, assuming that X
is bounded, Q@ = ®K_, Q¥ C INK? and the resulting master formulation takes the form

M (8). The equivalence between M and M is made apparent by the following change of

variables:
M= > A, d=(e) ek ca, (10)
q€Q:q—q*
K
AN=110;:d=(e)andg—¢*), qeQ, (11)
k=1

where the notation ¢ — ¢* means that ¢* € IN? is the projection of ¢ € INX? in the space
Xk Equation (11) says that column ¢ = (¢*,¢?,...,¢%) € @K, QF is in the solution
of M if and only if all its appended sub-columns § = (¢*, €*) are in the solution of M
for k =1,..., K. This change of variables emphazises the benefit of the block diagonal
structure in reducing the dimension of the master. Indeed M has SR |QF| variables,
while M has [, |Q*| variables.

Identical independent subsystems

Now assume that each block of D has identical characteristics, i.e. c& = ¢, AF = A4,
D¥=D,and d* =d, fork=1,...,K. Weset X = {z € IN? : Dz > d}. Let Q and R be

the finite sets of integer points and directions characterising X. Then, the master takes

10

the form:

min g A+ D N

q€Q r€R
[M] s.t. (12)
doagAgt D ar A > b
qeQ reR
Z)‘q = K
q€Q
AN € IN gEQ
A € IN reR

where ¢, =¢q €@ and a, = Age@™ forallg € Q, and ¢, =¢r €Q and a, = Ar €Q™
for all r € R.

Observe that M and M differ by a change of variables, which, assuming that X is
bounded, takes the form:
Ma= > N, T€Q, (13)
§eQ:4—q
where ¢ — @ stands for § = (¢*, e¥) € INP*X and ¢* = g € IN? for some k. This transfor-
mation is not bijective as there is not a unique way to transform a solution to M into a
solution to M. The aggregation that results from this transformation yields an aggregated

convexity constraint - .5 A, = K and non 0-1 integer variables A, € IV for ¢ € Q.

The cutting strip model

The cutting strip model that we introduced above is an example where the original
IP decomposes into K independent subsystems. It falls under the general model P (1).
Here z* = (y*, 2*) € {0,1} x IN?, A% = (0, L*I) e @?*®+Y DF = (Wk, —wy,...,—w,) €
QP b = (dy,...,dy) €QP, d* =0 €@, c* = L*D* e @rt, X* = {aF = (y*,2*) €
{0,1} x IN? : 3P w2k < Wkyk} for k = 1,...,K, and n = K(p + 1), where I is
the identity matrix of size p and y*, 2%, L¥, W* d;, and p are defined as in P¢* (2). Each
subsystem X* is bounded and homogeneous. Therefore, R* =), Q* is X* itself, and Q*

11

contains the null vector, i.e.,
P
QF ={(1,2) : 2. € N?,Y w;z; < W*} U {(0,0)},
i=1
for k = 1,..., K. Alternatively, the null vector can be excluded from Q* and the convexity

constraints 3,cor) Ag = 1 replaced by 3 cony A < 1for k =1,..., K. The sets Q* then
take the form of knapsack polytopes

p
QF = {z € ﬂVp,Zwizi < Wk} fork=1,....K
i=1
and the master formulation M (9) takes the form M¢ (6). The standard cutting stock

problem is a special case of the cutting strip problem where all subsystems have identical
characteristics, yielding a master of the form M (12).

Equivalence between original and master formulations

In the rest of this paper we will refer to P (1) as the compact formulation or the original
formulation and M refers to one of the master formulations M (8), M (9), or M (12),
depending on the context. The compact formulation P and the master formulation M
are two models of the same problem. They have the same set of feasible integer solutions
and, therefore, the same optimal solution. However, the representation of a solution is
different in both formulations and a solution x to P might not correspond to an unique

solution A to M or vice versa:

e If Q # 0 and R # () (i.e. X is neither bounded nor a cone), and there exists ¢ € Q
and r € R such that (¢ +r) € @, then the transformation from z in P to A in M is

not unique for some points x € X.

e If there are K identical subsystems (model M), the transformation from A\ in M to
x in P is not unique. Indeed, the master variables have been aggregated through a

non-bijective change of variables (13) between M and M.

The original and master formulations differ however in their linear programming re-

laxations. The bounds provided by the LP relaxations of P and M are respectively

Zrp(P) = min{cz: Az >b,Dx >d,xz >0}, and
Zp(M) = min{cz: Az > b,z € conv({z € IN" : Dz > d})} .

12

Thus
Zrp(P) < Zpp(M) < Zip

where Z;p is the integer solution value (Z;p = Z;p(P) = Z1p(M)).

When conv({zx € IN" : Dx > d}) = { € IR}, : Dx > d} (i.e. when the current formu-
lation of the subsystem already has the integrality property), Z;p(P) = Z;p(M). Then
a branching scheme that results in modifying the subproblem can destroy its integrality
property. When conv({z € IN* : Az > b,Dx > d}) = {z € R} : Az > b} N conv({z €
IN™: Dx > d}), Zpp(M) = Z;p, and branching is not needed. The applications targeted
by this study are cases where the original formulation of the subsystem does not have the

integrality property and the master LP does not provide an integer solution and, typically,
ZLP(P) < ZLP(M) < Z[P.

A decomposition based on the convexification of the subsystem

The traditional presentation of the decomposition of an integer program is based on
Minkowski’s theorem (cfr Nemhauser and Wolsey, 1988). This approach differs from the
above presentation as it consists of reformulating conv(X) and not X itself. The points
in conv(X) are expressed as a convex combination of extreme points ¢ € Q and rays
r € R of the linear polyhedron conv(X), and the coefficients of this decomposition are
not restricted to be integer (see Desrosiers et al 1994, for instance). Then, there remains
to formulate the integrality restrictions in the master integer program. This is done by
using the relationship between the convex combination coefficients A in M and the original

variables x in P to enforce the integrality of x, i.e. constraints
r=0_qr+D rA)eN
qEQ reR

are added in the master (Martin 1987, Barnhart et al 1994, Desrosiers et al 1994).

The two alternative approaches to decomposition, discretization and convexification,
give rise to the same LP relaxation of the master. Moreover, the resulting IP master
formulations are equivalent when the variables of the original formulation are binary: if
X C {0,1}", then Q = Q, R = 0, and Y0l r €{0,1}" & A € {0,1}/9 as proved

13

in Barnhart et al (1994). When X C IN" and there is a single subsystem or there are
multiple non-identical subsystems, the two approaches might just differ by the way in
which an integer solution is represented: for an interior point z* of X, we can have
T =Y e0d AT o™ Ar € IN™ although A g INIQIH&] However, when X C IN" is
composed of identical subsystems and the master variable have been aggregated (13), it
is not clear how to formulate the integrality constraints when using the convexification
approach as there is no unique transformation from A\ € M to = in P and enforcing the
integrality of the aggregated solution, i.e. 3 5q Aq + X,z Ar € IN" , does not guar-
antee the integrality of a corresponding solution z in P. Moreover, Vance’s study on the
cutting stock (1996) shows that working with the disaggregated formulation (i.e. using
formulation M instead of M) is not efficient.

Alternative reformulations of the subsystem

The Dantzig-Wolfe decomposition approach to integer programming consists in refor-
mulating a subsystem X of problem P according to (7). In turn, this reformulation of
X leads to a reformulation of P. The useful characteristic of this reformulation of X is
that its linear relaxation gives conv(X) (which explains the quality of the bound provided
by the master LP relaxation). However, the integrality property of the subsystem refor-
mulation is obtained at the expense of working with an exponential number of variables,
which must be dealt with implicitly by way of using a column generation procedure. As
we mention in the introduction, the decomposition of Dantzig-Wolfe is just a special form
of reformulation. Alternative reformulation of X with a similar property, namely, whose
LP relaxation gives conv(X), can be used to produce the same LP bound on P. We em-
phasize, however, that we consider reformulations of X as opposed to reformulations of
conv(X). With the latter, the same LP bound is obtained, but the integrality restrictions
on the original variables does not immediately translate into integrality restrictions for
the new variables, hence the drawback outlined above.

In particular, any integer polyhedron X = {z € IN" : Dx > d} can be represented by
an acyclic directed graph with the property that directed walks from the source node s to
the sink node ¢ correspond to solutions of X (see Nemhauser and Wolsey, 1988, p. 312).

However the number of nodes in the digraph grows exponentially with the number of con-

14

straints defining X and grows linearly with the size of the RHS coefficient d. Nevertheless,
this network representation has the integrality property. This network reformulation is
the one that is being implicitly used in applications where the column generation sub-
problem is solved by dynamic programming. For instance, if X is the knapsack polytope,
the network that underlines the standard dynamic programming procedure consists of n
layer whose nodes represent capacity consumption levels that can be achieved using a
combination of the first ¢ items, for ¢ = 1,...,n, and, a solution is an s — ¢ path in this
network. Then, the subproblem solutions, and hence the problem P, can be formulated
in terms of the arc flow variables that define an arc incidence vector representation of s-¢

path solutions.

Eppen and Martin (1987) make explicit use of this network structure and reformulate
lot-sizing problems involving only a few time periods in terms of arc flow variables in an
appropriate acyclic network. Valerio de Carvalho (1996) solves cutting stock problems
using a branch-and-price algorithm where the master is formulated directly in terms of
the arc flow variables. He uses a underlying network with W 4 1 nodes where W is
the knapsack capacity, and he places the flow balance constraints in the master (since
there is a pseudo-polynomial number of flow balance constraints, they are only added
when needed). The column generation procedure consists in solving a knapsack problem
and hence results in generating multiple columns: one for each arc used in the path
representation of the knapsack solution. We suggest that it might be more practical to
exploit the underlying network structure implicitly, as has been done by Desrosiers et al
(1994). When the arc flow reformulation of P is done explicit as advocated by Martin’s
variable redefinition approach, the size of the reformulation quickly becomes intractable
for realistic applications. When it is used as a basis for a column generation approach,
as done by Valerio de Carvalho (1996), the master typically contains a larger number
of constraints than reformulation M and hence its intermediate LP relaxations are more
difficult to solve. We later show how to exploit the underlying network structure while

working with formulation M.

15

2 Integer Programming Column Generation

We now show briefly how to solve the master IP to optimality. For simplicity of nota-
tion, we assume in the rest of this paper that the subsystem X is bounded and therefore
R = (. The algorithm is an LP-based branch-and-bound procedure. At each node of
the branch-and-bound tree, the master LP relaxation is solved by column generation. If
the master LP solution is not integral and the LP bound is not higher than the current

incumbent IP solution, branching must take place.

Branching refers to the process of partitioning the solution space to eliminate the cur-
rent fractional solution. When dealing with the master reformulation, it is well known
that a “direct” partitioning of the space INI?l by fixing (or bounding) individual vari-
ables)\, is not appropriate as it requires significant alterations to the column generation
subproblem and it yields an unbalanced branch-and-bound tree (see e.g. Barnhart et al
1994 or Vanderbeck 1994). Instead we take a broader view at branching. We consider a
partition of the set Q into Q and Q \ () and we show that any master fractional solution
can be eliminated by fixing (or bounding) the number of points ¢ selected from some
subset Q C Q. Intuitively, the master solution \ = (A1, ..., A|g)) defines a set of weights
on the points of Q. If) is fractional, there must exist a subset Q C @Q whose total weight,

@ = Yo Ag, 1s fractional and branching takes the form

Z Ag < laf or Z Ag 2 [al. (14)

7€d a€Q

Branching on an individual variable A, corresponds to taking Q = {q} and yields an

uneven partition of Q).

At a branch-and-bound node u, the master LP relaxation takes the form:

min Z Cq Aq
qeQ
[M¥p] s.t. (15)

o oA < KI forj € G*

16

oA > U7 forj € H"
q€EQICQ
Ay >0 €@

where G* and H* are the sets of cardinality branching constraints of the form (14) that
define the problem at node u, i.e. constraints j € G* (resp. j € H") are characterised
by a pair (Q?, K7) (resp. (Q?, L7)) where)7 is a subset of @ and K7 (resp. L7) is an
integer. As the convexity constraints in the master take the same form as the branching
constraints, we also include them in G* and / or L*. For instance, in the case of K inde-
pendent subsystems, the convexity constraints are 1 < 3 ,cop A < 1for k=1,... K.
Then, at every node u, the pairs (Q(k), 1) belong to both G* and H* for k =1,..., K.

A standard column generation procedure is applied to solve formulation M}, at each
node u. The formulation initially contains a subset of columns @ C () consisting of all the
columns generated at previously processed nodes. This restricted LP formulation M} ,(Q)
is solved. Then a column generation subproblem is solved to price out the remaining
columns (in @ \ Q). Letting (7, u,v) € IRTHGHMHM‘ be an optimal dual solution of the

restricted master LP, M}, (Q), the reduced cost of column g is:

=g — Y T aig+ Y 5 95(0) = D v hlg)
i=1 jeG JEH™

where g(q) € {0,1}/¢*/ and h(q) € {0,1}/#"| are indicator functions whose components
take values g;(¢) =1 if ¢ € 7 and zero otherwise for all j € G*, and hj(q) =1if g € @’

and zero otherwise for all j € H".

The column generation subproblem
min{¢, : ¢ € Q}
takes the form of an IP:

¢(m, p,v) = min cq—TAq+ pg —vh

[SP] .t (16)
Dq > d
g = 9(9)

= h(q)
€ IN™

e {0,1}/¢"l
e {0,1}/#"
q)

> O e v 0=

are IP formulations that define the values of

(

boolean vectors g and h as functions of the value of ¢. If {(m,pu,v) < 0, a new column

where relations ¢ = ¢(q) and h =

q" € argmin .qCq has been found that is added to the master LP formulation M. Oth-

erwise, the master LP is solved and its value provides a lower bound.

There are many practical issues that are important in designing an efficient imple-
mentation of an IP column generation algorithm. For instance, at each branch-and-bound
node, an initial feasible LP solution is required. One way to ensure feasibility is to include
in the formulation a single artificial column whose entries equal the RHS values for all
rows corresponding to a “greater than or equal to” constraint and zero otherwise, and
whose cost equals a strict upper bound on the optimal IP value. For a discussion of other
ways in which to carry out the phase 1 of the simplex algorithm, of various column gen-
eration strategies that may be used (generation of multiple columns, heuristic generation,
...), and of early termination of the column generation procedure, the reader is referred
to Barnhart et al (1994), Desrosiers et al (1994), Vanderbeck (1994), or Vanderbeck and
Wolsey (1996). Here, we focus on the design of the branching scheme.

In designing a branching scheme for the IP column generation algorithm one must
take on board the standard considerations of efficiency. Branching aims at closing the
gap between lower and upper bounds on the solution. With regard to improving the
lower bound, an efficient branching rule is one that yields a significant increase in the
lower bounds of each child node, i.e. one that results in a balanced branch-and-bound
tree even when the solution space presents some symmetry. With regard to improving
the upper bound, an efficient branching rule is one that forces the emergence of feasible
integer solutions. But, in a column generation approach, there is another very important
issue with regard to branching: the assessment of the modifications to the structure of the
column reduced costs that result from branching and their consequence on the tractability

of the modified column generation subproblem.

18

Preserving the tractability of the column generation subproblem means that the sub-
problem should not become significantly more difficult to solve after branching. For the
general model P considered in this presentation, the only assumption on the subproblem
is that it can be formulated as an integer program. Consequently, a minimum require-
ment is that the subproblem modifications that arise from the branching scheme can
be brought to an integer programming formulation, i.e. that the relations g = g(¢) and
h = h(q) in (16) can be expressed as IPs. When the column generation subproblem is well
suited for a special purpose solution method such as dynamic programming, branching
rules should be carefully selected in an effort to preserve the special subproblem structure.

In the rest of this section, we discuss different branching schemes, i.e. we present
specific forms of partitions of () that are sufficient to guarantee that an integer solution
to the master will be obtained after adding a finite number of branching constraints (14).

For each of them, we consider the practical issues raised above.

2.1 Branching based on partitioning () with a hyperplane

Proposition 2
Given a feasible solution \ of M}p that is not integral, there exists a hyperplane (v, 7o) €

Z"™ such that Aq is fractional.

qeQ: vq>70

Proof:

Let F={qeQ: \j—|A] >0} CQ C IN" Let {¢°}s=1,..+ be the set of extreme points
of conv(F). Let F' = F\{q'}. As q' & conv(F"), there exists a hyperplane (v, 7,) € Z"!
that separates ¢ € IN™ from the rational polyhedron conv(F'), i.e. vq* > 7o, but
vq <7 —1forall g € @Nconv(F"). Then

1> Z)\q—L Z)\qJZ/\qt—L)\th>0.

g€Q: v q=0 q€Q: v 9>70

Branching

Assuming that the solution, A, of the master LP, M}, at node u is fractional and that a

19

hyperplane (v,7,) € Z™™ has been found such that

Z AM=agIN,
9€Q: 742%0
two new master problem MY and M**! are created by adding the branching constraints
Y e@ivgmre A < Lo and Yieg: gm0 A¢ = [a] to G* and H* respectively, ie. G¥ =
G U{(v,v, o))}, H* = H*, G"*' = G*, and H"™ = H" U {(v, 7, [a])}, where the
triplet (7,7, k) € Z™? defines the new branching constraint.

Subproblem Modifications

To each constraint j = (77, %7 K7) € G" is associated a dual variable p1; € IRy in M¥p. p;
is added to the reduced cost of columns ¢ satisfying v/ ¢ > ’yg, making them less attractive
for the LP. This penalty is implemented in the column generation subproblem by adding
w5 9; in the objective, where g; is a binary variable (g; = 1if 7 ¢ > 7{; and zero otherwise).
Then, only the lower bound on g; needs to be enforced in the subproblem formulation.

Thus the relation g; = g,(¢) takes the form:
(e =B+ 1) 95 =7 g =7 +1 (17)

where 7/, = max,cq ¥ ¢.

Similarly, if j = (7, 73 ,L7) € H" and v; € IR, is the associated master dual variable,
a binary variable h; is introduced that takes value 1 when 47 ¢ > ”yg, and v;h; is subtracted
from the subproblem objective. Then, only the upper bound on A; needs to be enforced

in the subproblem and the relation h; = h;(g) takes the form:

where 7/, = min,co 7 g.

Finiteness

As it is shown in the proof of Proposition 2, any fractional master solution can be cut off
by partitioning the set of fractional columns F'. As the number of possible sets F' is finite,
the number of extreme points of F' that could be singled out is finite, and the number

of possible integer bounds on Aq is finite, we must obtain an integer solution

q€Q: v q>0

20

after a finite number of successive applications of this branching scheme.

Finding an appropriate hyperplane

The proof of Proposition 2 suggests that a valid hyperplane can be obtained using the
vector v € Z" that characterises the support of the facet of conv(F \ {¢'}) that is the
closest to ¢*. However, it is not clear that one should proceed along these lines and the
question of choosing a hyperplane that meets the requirements of a good branching scheme
(in the sense defined above) remains open. In a sense the result of Proposition 2 is largely
theoretical.

In practice, we will consider hyperplanes with special structure. For instance, when
v = €, the i unit vector, yq > v < ¢ > Y and Q is partitioned into {g € Q : ¢; <
v — 1} and {g € @ : ¢; > v }. However, when restricting our attention to a subclass
of hyperplanes, we cannot guarantee the existence of a hyperplane (within that subclass)
that cuts off the current fractional solution. But, there are weaker results using sets of

simple hyperplanes, i.e. component bound constraints.

2.2 Branching based on a set of bounds on the components of ¢

Here we consider a partition Q, Q\ Q of (), where Q is defined in terms of lower and
upper bounds on some components of ¢ € Q. A component lower bound constraint,
g;i > v is defined by a triple § = (i,>,v), where i € {1,...,n} and v € IN. Let
Q(B) ={gq€ Q: ¢ > v} be the set of columns ¢ € @ that satisfy the component bound
constraint . Similarly, the component upper bound constraint ¢; < v is characterised by
the triple 8 = (i, <,v). We define the complement ¢ of a bound constraint 3 by replacing
> by < or vice versa. With this notation,

Q=Q(AHUR(E) and QB)NQE)=0.

Let B be a set of component lower and upper bound constraints, then

Q(B) =] Q).

BEB

We now show that any master fractional solution can be cut off using a branching
constraint based on a partition Q(B), @ \ Q(B) of @ for some component bound set B

21

of small cardinality. We shall need the following notations. Let

f(B) = Z (A = [Ad]) -
9€Q(B)
In particular, f = f(0) = Y,cq (Aq — [A]) represents the fractionality of the current
solution A of M}p.

Proposition 3
Given a feasible solution A\ of M}p that is not integral, there ezists a set of component
bounds B with |B| < |log f| + 1 such that ¥ ,cqp) Aq 18 fractional.

The proof of Proposition 3 is based on the following Lemma.

Lemma 4
If, for a given component bound set B, f(B) > 1, there exists a component bound 3 ¢ B
such that 0 < f(BU{B}) < f(B)/2.

Proof of Lemma 4

If f(B) > 1, there exist ¢* and ¢* € Q(B) with A\ — [A1] > 0 and A2 — [Az2] > 0.
As ¢" # ¢ 3Ir € {1,...,n} such that ¢! # ¢>. Without loss of generality, assume
q < ¢ Letv = [@], B = (r,<,v), and 3¢ = (r,>,v). Then, as ¢! < v < ¢,
f(BU{B}) > Ap — [Ap] > 0 and f(BU{B°%}) > A2 — [Ap2] > 0. Moreover, f(B) =
F(BULBY) + F(BU{5)). Thus either f(BU{GY) < 12 or f(BU{HY) < L2,

Proof of Proposition 3

The proposition can be restated as follows: if 0 < f < 2! where | € IN, then 3 B with
|B| < Is.t. Yoeqm) A¢ € IN. We prove this statement by induction. The statement is
trivially true for [= 0. Assuming that it is true for 0 <[< t € IN, we show that it also
holds for [= ¢. Consider 1 < f < 2! (the case f < 1 being trivial). By Lemma 4, there
exists a (3 such that 0 < f({8}) < g < 2t=1. Then, by the induction hypothesis, there
exists a component bound set B with [B| <t —1s.t. ¥ copuisy M & IV- n

Branching Scheme and Subproblem Modifications
In a branching scheme based on Proposition 3, the branching constraints j € G* or H*

are defined by a pair (B, k) where B is a set of component bounds and & is an integer. As

22

the number of possible component bounds, component bound sets and values are finite,

an integer solution must be obtained after adding a finite number of branching constraints.

For each branching constraint j = (B’, K’) € G, there is an associated master dual
variable p; € IR, that comes as an extra cost in the reduced cost of columns ¢ € Q(B?).
Therefore, a term p; g; is added to the subproblem objective, where g; = 1 if ¢ € Q(B)
and zero otherwise, and enforcing the appropriate lower bound on g; in the subproblem

formulation, through the relation g; = g;(q), takes the form:

g = 1-— Z_(l —n’) (19)
BeEBI
("™ —v4+1)n° > (i —v+1) V3= (i,>,v) € B
v > v—yg V8 = (i,<,v) € B
n’ € {0,1} V3 € B

where ¢* = max,cq ¢; and the binary variables 7° indicate whether or not g € Q(f).

Similarly, for each branching constraint j = (B’, L’) € H*, the corresponding dual
variable v; € IR, represents a reward for selecting a column ¢ € Q(B’). Thus, the term
v; h;j is subtracted from the generic column reduced cost in the subproblem objective and
the relation h; = h;(q) takes the form:

hy < nf V3 € BI (20)
v < g V3= (i,>,v) € B
@ —v+1)7° < (¢"> —q) V8 = (i,<,v) € B
e {0,1} V3 € B

Observe that the lower and upper bound constraints on 7 are special cases of (17)
and (18) where (7,7) = (e',v) if 8 = (i,>,v) and (—€',1 —) if 8 = (i, <,v) and €’ is
the 4*® unit vector. Moreover, when |B’| = 1, the above IPs take a simpler form and there
is no need to introduce the boolean variable 7°. Indeed, constraint (19) (resp. constraint

(20)) can be dropped and g; (resp. h;) replaces n°.

Finding a set B that cuts off the current fractional solution

A polynomial algorithm to find a set B that cuts off the current fractional solution A is

23

given implicitly by Lemma 4. Successive application of Lemma 4 provides a set B whose
cardinality |B| is guaranteed to be reasonably small, i.e. |B| < |logf| + 1. However,
there might exist another set B such that e N € IN and |B| < [B|.

As the extent of the subproblem modifications increases with |B|, one is keen to find
a minimal cardinality set B on which to branch. To this end, one can always enumerate
all possible sets B in increasing order of their cardinality and stop as soon as a set B
has been found for which }cop) A IN. One only needs to consider component bound

+q; !
9 1 are two consecutive

constraints (i, <,v) or (i,>,v) where v = [ql] and ¢ and ¢/ "
values in the ordered list 0 < ¢/ < ¢? < ... of distinct positive values that are assumed
by component i of fractional columns ¢ € F = {q € Q : A\, — |A;] > 0}. Hence, there are
O(n|F|) component bound to consider. Since Proposition 3 guarantees the existence of a
set B on which to branch with cardinality less than or equal to 6 = |logf]|+1, the enumer-
ation is over O((n|F'[)°) sets B. Checking if a set B yields a fractional sum 3 ,cqpynr Aq
requires O(d |F'|) operations since checking whether ¢ € Q(B) requires O(|B|) = O(9)
operations. Therefore, the complexity of this enumerative algorithm is O(8 |F| (n|F|)?),
which is exponential. However, in our experiments, we seldom need to consider sets B of

cardinality greater than one.

Special case: Branching based on component lower bounds
The branching scheme proposed in Vanderbeck and Wolsey (1996) is a special case of the
above, where B consists of lower bound constraints (i, >, v) only. There, it is shown that

it is always possible to find a partition of the form Q, Q\ Q with
Q={qEQ:q2p}gQgﬂV” for some vector p € IN" (21)

that yields a branching constraint cutting off the current fractional solution, i.e. such that
Ygcd g ¢ IN. However, the number of component bounds required, i.e. the number of
strictly positive components in p, may then be larger than |[logf| + 1. Vanderbeck and
Wolsey (1996) also show that when the branching constraint is of the form

D A<0 or Y A>K
9€Q 9€Q

where K is a valid upper bound on) it can be enforced directly in the subproblem

5 A
qeQ D
by adding a constraint in its formulation and there is no need to amend the expression of

24

column reduced costs. In particular, whenever the master contains convexity constraints,
enforcing that the master solution is made of exactly one column from each subproblem,
K =1 is a valid upper bound for all subset C Q(k) and branching can always be en-
forced directly in the subproblem. Vanderbeck and Wolsey (1996) also consider the case
of binary columns, @) C {0,1}". Then, the subproblem modifications can be implemented
without introducing additional binary variables n®. If moreover the right-and-side of the
master is the unit vector, b = 1 € IN™, the branching scheme based on (21) reproduces

that of Ryan and Foster (a presentation of which can be found in Vance et al 1994).

Transforming integer columns into 0-1 vectors

Any bounded integer program can be transformed into a binary integer program. To
a vector ¢ € @ C IN™ corresponds a vector ¢ € {0,1}", where n' = Y7, n;, with
n; = [log(g™* +1)| and ¢"* = max,ecq ¢;- The vector ¢ associated with g is defined by
the relation ¢; = ?:"51 2! q,, 4, fori=1,...,n where p; = 1+ ‘~1n;. As branching takes
a simpler form when the columns are binary vectors (Vanderbeck and Wolsey (1996), it is
worth considering a scheme where the column generation subproblem is reformulated as
a binary integer program and branching is based on subsets @ that are defined in terms

of the components of ¢'.

In fact, any fractional solution can be eliminated by using only such branching rules.
Indeed, the scheme used to partition the set @ in the proof of Lemma 4 can be replaced
by one based on the components of the associated binary vectors: if ¢* # ¢2, ¢! < ¢,
and ¢? < ¢'*, then 31 € {1,...,n'} such that ql'1 #* ql’2, where ¢ <> ¢’ denotes that ¢’ is

the binary vector associated with ¢. It follows that:

Corollary 5

Given a feasible solution \ of M} p that is not integral, there exists a subset
Q={qeQ:qeq¢,q¢=0forlel, andq =1 forle J}

with I and J C {1,...,n'} and [I| + |J| < |logf| + 1, such that .5 Aq is fractional.

When columns can be associated with paths in a network

In many applications, the column generation subproblem can be naturally formulated as

25

a shortest (longest) s-t path problem in an acyclic network. This is in particular the case
when the column generation subproblem is solved by dynamic programming (Desaulniers
et al (1998) discussed several applications of that sort). Then, the columns are associated
with s-t paths in the underlying acyclic network, and the master solution can be inter-
preted as a combination of such paths that satisfies the linking constraints. Let us denote
by ¢' € {0, 1}”' the arc incidence vector representation of a path associated with a solution
g of the subproblem, where n’ is the number of arcs in the underlying network. As before,
we use the notation ¢ <> ¢’ to denote that the vector ¢ and ¢’ are two representations of
the same solution.

Branching on a single component of ¢’ does not destroy the structure of the subproblem
as the resulting modifications simply entail amending the cost of the corresponding arc
in the underlying network. Moreover, any fractional solution can be eliminated in this
way, i.e., using branching constraints of the form (14) where Q ={geQ: g q, q=
1 for some [€ {1,...,n'} }

Proposition 6

If vectors q' represent arc incidence vectors of s-t paths associated with solutions q € Q)
in an appropriate acyclic network representation of the column generation subproblem
and the master LP solution A of M}'p is not integral, then either an integer solution to
M™ can be found by application of the flow decomposition theorem, or there exists an arc

le{1,...,n'} of the underlying network such that the flow along that arc, i.e.

XN

q€Q: ¢' q,q=1

s fractional.

Proof

If 32 4eq: qoq.q=1 Aq is integer for all I € {1,...,n'}, i.e. if the flow on each arc of the
underlying network is integer, then, by the flow decomposition theorem, this integer arc
flow can be decomposed into integer flows along a finite number of s-t paths, each of
which corresponds to a solution ¢ € (). Hence an integer solution in A € IN'9l is readily

available. n

26

Proposition 6 shows how an underlying network structure can be exploited even when
the master is not explicitly formulated in terms of arc flow variables. Desaulniers et al
(1998) describe many routing applications for which they propose to use a branching
scheme based on Proposition 6. Valerio de Carvalho has applied a similar scheme to the
cutting stock problem. Even though the subproblem modifications are straightforward,
such branching scheme might not be efficient. The difficulty lies in the appropriate se-
lection of an arc on which to branch. There is typically an exponential number of arcs
to choose from and a branching constraint that involves a single arc might not be very
restrictive. By contrast, a branching constraint based on a component bound, as defined
in Proposition 3 and Corollary 5, might amount to bounding the flow a several arcs in
the underlying network (for instance, in the standard layered network associated with
the dynamic programming solution of the 0-1 knapsack problem, there are ¢ arcs asso-
ciated with the selection of the ith item). The selection of the underlying network is
also important. A network representation that allows for several paths to represent the
same solution ¢ €) will lead to difficulties inherent to symmetry. Note that, when the
column generation subproblem is a resource constrained shortest path problem, the flow
decomposition theorem does not hold in the network of the resource constrained prob-
lem and Proposition 6 only applies in the larger network associated with the dynamic
programming solution of the problem.

3 Implementation

The general branching framework described above includes a wide range of branching
rules. The purpose of the present section is: (7) to illustrate how the theoretical schemes
give rise to simple branching rules which have a practical interpretation; (i7) to show that
in practise the simplest of these rules that yield limited modifications to the subproblem
structure are often sufficient to eliminate all fractional solutions; and (ii7) to discuss the
efficiency of some of these simple rules and, in particular, to emphasize that a branching
scheme that yields no subproblem modification might not be the most efficient when, for
instance, the solution space exhibits some symmetry. The computer code used to obtain
the results reported here is only a preliminary implementation that does not fully exploit
the special structure of the subproblem nor does it use heuristics where possible, or opti-

mally implement the separation procedure searching for a branching constraints that cuts

27

off the current fractional master solution. Nevertheless, this preliminary implementation
permits comparison by way of using computational counters. A full-blown computa-
tional study of a branch-and-price algorithm for the cutting stock and the bin packing
problems is reported in Vanderbeck (1996). The study of a telecommunication network
design application by Sutter, Vanderbeck and Wolsey (1998) also contains examples of

implementations of our branching scheme.

3.1 The cutting strip problem

The cutting strip problem is quite difficult to solve. For the real instances that we received
from Hurkens (1995), the available metal sheets barely suffice to cover the requirements
and finding a feasible solution is already very challenging. We use a first fit decreasing
heuristic to provide a initial incumbent but it sometimes fails to construct a feasible so-
lution. Moreover, the typical gap between the LP relaxation of the master and the IP
solution is significant and solving the problem depends on developing an efficient branch-

ing scheme.

Because the master formulation M (6) contains convexity constraints, branching
can theoretically be straightforward as it can be enforced directly in the subproblems.
Indeed, there is a bijective relationship between the master variables and the variables
of the original formulation P% (2), zF = ¥, (4t et)eqe) & Ag» and enforcing integrality
of each component of z is equivalent to enforcing integrality of the master variables. If
28 & IN, let v = [2F] > zF and set ¥4t et)equry 6N < v — 1 on one branch and
D a=(g* eF)eQk) g¥\; > v on the other branch. Note that this branching rule is an instance
of the branching scheme of Proposition 3, with B = {(p + k, >,1), (i,>,v)}, where the

component bound (p + k, >, 1) restricts g to belong to Q(k). Then, as 3 cqu) Aq < 1,

o>l & > > (22)
9€Q(B) 9€Q(k)
and
o oAu<0 & Y g <v-1 (23)
q€Q(B) q€Q(k)

Given a fractional solution A, one can always find a triple (k,7,v) such that 2F =

28

2 qc0k) gFX\, € IN and v = [zF] on which to branch and the scheme amounts to:

Rule A: enforce >N € {0,1} Vk,i,v .

9€Q(k):qf >v

The implementation of Rule A takes a very simple form. Branching constraint (22)
amounts to saying that, in any cutting pattern for sheet k, there must be at least v strips
of width w;. Similarly, branching constraint (23) says that cutting patterns for sheet k
can have no more than v — 1 strips of width w;. Then, the columns that do not satisfy the
branching constraints can be removed from the master formulation and a lower (upper)
bound on ¢¥ is enforced in the column generation subproblem k. Note that such bounds
on ¢’s components can easily be integrated in a special purpose dynamic programming or
branch-and-bound algorithm for the knapsack problem, and therefore the tractability of

the subproblem is preserved.

This simple branching scheme has been used by Hurkens (1995). However, our compu-
tational experiments show that it is not very efficient because of the symmetric structure
of the solution space. Although the metal sheet have different dimensions, they can ac-
commodate very similar cutting patterns. Thus, restricting the number of strips of size
w; on a specific sheet &', but not on another sheet k?, can result in an “almost identical”
solution where the roles of k' and k% are interchanged (possibly at the expense of generat-
ing new columns). This pitfall must be addressed by an appropriate choice of branching

rules. To this end, we tried branching rules that involve all sheet types k.

We first considered a branching scheme based on sets B of component bound con-
straints of the form (4, >,v) only. To find such a set B with minimal cardinality |B|
and fractional part ¢ closest to 0.5, where ¢ = (X cq(p) Ad) — | Xgeq(n) Aql, We use the
enumerative procedure outlined in Section 2.2. For all our test problems we have always
found a single component bound (%, >,v) on which to branch and never had to consider

a set B with |B| > 1. Thus, the branching rule we have found useful is:

Rule B: enforce Z Aq integer Vi, v

9€Q:qi2v

29

Rule B simply says that the number of cutting patterns containing v or more strips of
width w; must be integer in any integer solution. The implementation of Rule B requires
adding a single boolean variable in the column generation subproblem for each branching
constraint. Alternatively, if a dynamic program is used to solve the knapsack subprob-
lems, the appropriate modification to the reduced cost can be implemented at the stage

where the value of component g; is fixed.

We observed that if the threshold v is poorly chosen, branching can yield an uneven
partition of the solution space (i.e. an unbalanced branch-and-bound tree). Let ¢** be
the maximum value of ¢; in any feasible cutting pattern, i.e. ¢; € [0, ¢**] for all ¢ € Q.
If g™ is relatively large, and v is chosen close to the boundary of the interval [0, ¢™*],
then the new master problem on one branch is very restricted, while the other is barely
restricted. Say X ,cq.q>0 A¢ = @ € IV for v = ¢"* > 0, then the branching constraint
Y gc@q>v A < | does not significantly improve the LP bound as new columns with

max

entry ¢; bounded above by ¢"** — 1 instead of g;

X will be generated. Conversely, if

v =1 < ¢, then the branching constraint > cq...>0 A > [] is easily satisfied by

incorporating just one unit of ¢ in columns similar to those already generated.

To tackle this issue we tried another way of choosing v that partitions the inter-

val [0, ¢™**] more evenly. Our numerical experimentations have shown that this could be

done by successively considering thresholds v = [£ g™ for§ = 1,1, 3 andfori=1,...,p
and stopping with the first fraction ¢ that yields a fractional sum, 3 cq.q,>1¢ gmax] Ag, for
some 7. Note that considering larger fraction denominators, i.e. £ = é, %, g, ..., amounts

to slicing the interval in ever smaller portions and thus reproduces the pitfall we were try-
ing to avoid. In our implementation of Rule B, we first try to find a pair (¢,v) on which
to branch in this way and, if we failed, we resolve on using the enumeration previously
described.

Observe that the maximum number of strips of width w; in a cutting pattern is a
function of the sheet type:

WkJ fork=1,... K.

w;

max f: [
qe€Q(k)

Therefore, when the threshold v is chosen as a fraction of the maximum number of strips,

30

rule B is an instance of a partitioning of the subproblem space @ C IN?*X by a hyperplane
(Proposition 2), i.e. (v, 70) = (¢, —[€| % [],..., — €[5]1,0) € ZP+E+L, where ¢ is

the i*" unit vector of size p.

The other branching scheme we have considered is based on Corollary 5. Indeed, ac-
cording to Martello and Toth (1990), the most effective way to solve bounded knapsack
problems nowadays is to transform it into its 0-1 form and to apply an efficient algo-
rithm designed for the 0-1 knapsack. In the case of the cutting strip problem, the column
generation subproblem is an unbounded knapsack problem but the implicit component
bounds that result from the knapsack constraint are reasonably small for the practical
instances we considered. Therefore, the number of binary variables in the 0-1 form of the
knapsack subproblem remains practical. If the column generation subproblem is solved
in its 0-1 form, branching on the components of the associated binary solution vectors is

most appropriate.

Hence, the branching rule we have implemented is the following (the notations we used

here are the same as in Corollary 5),

Rule C: enforce > Ag integer vie{l,...,n'}

qEQ:q(—)q’&qf:l

Given a fractional solution A, we search for a index [, i.e. a component of the 0-1 form
of columns ¢, such that the number of columns with an entry one in that component,
2 4€Q:qtsq'beqi=1 Ag> 1 fractional. To avoid the pitfall of an unbalanced tree as described
above, we consider indices [= p; +n; — 1 for each width 7 before considering [= p; +n; —2
and so forth. When the 0-1 form of the column generation subproblem is used, the mod-
ifications that results from branching rule C merely consist in amending the objective

coefficients of the subproblem binary variables for the associated indices (.

Note that, after applying rule B or C, there might remain fractional solutions where
the fractional columns correspond to identical cutting patterns but on different sheet
types k. Therefore Rule A is still used as a complement of rule B and the subsystem level

equivalent of Rule C (enforcing YogeQk):qerg & q/=1 Aq integer Vk, 1 € {1,...,n'}) is used

31

to complement Rule C.

3.2 The cutting stock problem

With his specific cost structure, the cutting stock problem is known to have a strong
master LP relaxation: for most instances, rounding up the master LP solution provides
the IP value, i.e. typically Z;p = [Z7%"] (Marcotte 1985). Hence, branching essentially
aims at proving the optimality of the root node bound by obtaining a incumbent solution
of the same cost. In this context, primal heuristics can be quite helpful (see Vanderbeck,
1996). However, as our purpose here is to test branching schemes, we did not incorporate
heuristics other than a straightforward first fit decreasing heuristic (Martello and Toth,
1990) that is used for the sake of comparison with Valerio de Carvalho who also uses this
heuristic. When the incumbent solution obtain at the root node has a cost strictly higher
than [Z79'], branching takes place. Prior to branching however, we enforce integrality
of the cost by adding the cut ,cqA; > [Z[%"] to the master formulation if needed.
This constraint has the same form as a branching constraint. The resulting subproblem
modifications simply consist of subtracting from the reduced cost a constant equal to the

corresponding dual variable.

A branching scheme for the cutting stock problem has been proposed by Vance (1996).
Vance generates only maximal cutting patterns and branches on a single fractional column,
say ¢. The branch A\; > [a], is dealt with by adjusting the master RHS appropriately.
In the branch A\; < |/, the component bounds in the subproblem are amended to avoid
regenerating ¢. This unbalanced branching scheme is used in a depth-first-search ap-
proach, in an attempt to construct a feasible integer solution quickly. The scheme works
well, with few exceptions (odd instances for which there is significant backtracking). Our
limited computational tests show that applying a less specific branching scheme such as
rules B or C works just as well and is more robust. Although rules B or C are only partial
branching schemes not guaranteed to yield an integer solution, they have been sufficient

in solving all test problems obtained from Vance to optimality.

In Valerio de Carvalho ’s study (1996) of the cutting stock problem, the master is

formulated in terms of arc flow variables and branching consists in enforcing arc flow inte-

32

grality. The test problems used by Valerio de Carvalho are from the OR-Library (Beasley
1990). We have solved some of these instances using Rule C. However for these instances,
the feasible cutting patterns involve only a few (1 or 2) strips of any given width (i.e.
n' is barely larger than n) and it has not always been possible to eliminate all fractional
solutions by branching on a single component of ¢. Therefore we considered branching

on pairs of components.

The branching rule we have implemented is:

Rule D: enforce Z Aq integer forl, ke {1,...,n'}

4€Q:q>q' &q;=q; =1

which is another instantiation of the branching scheme of Corollary 5. To account for
the reduced cost modifications that result from a branching constraint based on Rule
D, we add an extra binary variable z;; in the 0-1 knapsack formulation whose weight is
wyr = w;+wg and whose objective coefficient is equal to the sum of those variables x; and
xr plus the dual variable associated with the branching constraint, and we enforce the
constraint x; +xr +x;x < 1. Such GUB constraints can easily be handled in a specialized
branch-and-bound procedure for the 0-1 knapsack as long as they concern disjoint subsets
of variables. Thus, in applying Rule D, we consider only components k£ and [that are not
in any other Rule D type branching constraints at the current node. The combination of
Rules C and D (with restricted selection of component pairs) has enabled us to solve all

the test problems to optimality.

3.3 Computational results

For our computational tests, we used 22 cutting stock problem instances and 17 cutting
strip instances. The first 10 data sets are real-life cutting stock instances used by Vance
in her study (1996). We have selected the 10 instances for which Vance’s algorithm per-
formed the largest total number of master iterations. They are named “npz”, where n is
the number of different widths and x is the problem number used by Vance. For these
instances the average width item can fit between 4 to 15 times on a roll. The following
12 instances are bin packing instances from the OR-Library (Beasley 1990). As these

instances involve multiple items of the same size, they are in fact integer cutting stock

33

problems. Our selection of instances is based on Valerio de Carvalho ’s computational
tests: for each problem size we kept the two instances for which Valerio de Carvalho ’s
algorithm required the largest number of branch-and-bound nodes. For these instances
the feasible cutting patterns include between 1 to 5 strips. The instance names are the

OR-Library reference names, followed by the number of different item widths.

The next 7 instances have been generated by hand drawing from real-life cutting strip
instances used by Hurkens (1995). Each instance is referred to by a name “nbK” where
n is the number of widths and K the number of roll types. The last 10 instances of
the cutting strip problem have been generated randomly using uniform discrete distribu-
tions with parameters in the same range as that of the real-life instances: we generated
d; (cfr PY5 (2)) from U(400,2000), w; from U(50,300), W* from U(900,1000), L* from
U(180,220), and rolls are generated as long as the total metal surface already available is
less than 105% of the required surface. These instances are named “nrK”. Instances of

the same dimensions are distinguished by a trailing letter.

Over the years we have developed a modular implementation of an IP column gener-
ation algorithm that can be easily adapted to new applications (Vanderbeck 1994). The
code, called TPCG, is written in C and uses CPLEX 3.0 to solve the master LPs. The
column generation subproblems are solved using CPLEXMIP, unless a special purpose
algorithm is implemented. Here, we use the algorithm MTR of Martello and Toth (1990)
to solve the 0-1 form of the knapsack subproblems, except for the OR-Library instances
for which we use branching rule D and which have been solved using our own imple-
mentation of a branch-and-bound code for the 0-1 knapsack (based on the presentation
found in Nemhauser and Wolsey, 1988, p.455). For the tests reported here, we have not
implemented any specific algorithm for the general integer knapsack but we solve the
subproblems with CPLEXMIP when branching rules A and B are used. Therefore, the
computational times cannot be used to compare the performance of the different branch-
ing rules and we use counters instead. The computations have been carried out on a
HP9000/712/80 workstation (64Mb of main memory).

In Tables 1 and 2, we present our computational results for the cutting stock and the

cutting strip problem respectively. These results were obtained using branching Rule C

34

(in combination with Rule D for the OR-Library instances) which seems to perform best
overall. The columns of the tables contain the problem names, the lower bound obtained
at the root node (RB), the IP solution, the initial heuristic solution (HR), the branch-
and-bound tree depth (dep), the number of nodes processed in the branch-and-bound tree
(nod), the number of master LP solved (mast), the total number of columns generated
(col), and the CPU time in seconds (time).

Tables 1, 3, 4 and 5 contain comparative results. The performance of different branch-
ing schemes are assessed using measures of the branch-and-bound tree size and counters
of the number of master iterations and column generations. Table 3 shows that Rule B
has an efficiency comparable to that of Rule C. When using a general MIP code to solve
the subproblems with branching rules A and B, we experienced some difficulties (round-
ing problems, time overruns) in solving some instances which therefore have not been
included in the tables. Table 4 shows that, for the cutting stock problem, rule C performs
just as well or better than the branching scheme of Vance. As Vance does not construct
a heuristic solution at the outset, we did not use the first fit decreasing (FFD) heuristic
for this test and Rule C proved to be good at building a primal solution (the comparison
can be made with the results of Table 1). In the last column of Table 1 (VAC nod), we
have included the number of branch-and-bound tree nodes obtained by Valerio de Car-
valho who is branching on the arc flow variables. The comparison with our number of
branch-and-bound tree node shows that, for cutting stock instances from the OR-Library,
the combination of rules C and D tends to yield smaller branch-and-bound tree than that
obtained by Valerio de Carvalho using a branching rule based on Proposition 6. Table 5
shows that using global branching constraints such as Rule B is very helpful in dealing
with a symmetric solution space such as that of the cutting strip problem. Here, instances
4b7c and 4b7 could not be solved with Rule A due to lack of computer memory. Instance
4b7c was solved by Hurkens (1995). Using Rule A, he obtained a branch-and-bound tree
of depth 39 with 7189 nodes and he solved 7374 master LPs.

35

name RB =1IP HR |dep nod mast col time | VAC nod
11p4 101 103 | 39 45 99 80 2.67
5pll 21 21 0 1 1 10 0.12
14p12 56 57| 23 24 65 62 1.47
7pl4 70 71 3 4 11 20 0.26
Tpl7 9 9 0 2 10 0.17
7pl8 91 94 6 8 23 29 0.45
12p19 23 24 8 11 41 48 0.79
6p20 13 13 0 1 3 14 0.14
18p22 33 33 0 1 38 58 0.90
12p24 58 60| 21 24 73 67 141
u250_06_78 102 103 | 43 44 261 275 25.8 44
u250_12_76 105 107 8 14 162 207 5.25 52
u500_08_81 196 199 | 34 44 189 227 8.54 76
u500-15_80 201 204 | 27 31 188 240 T7.57 67
1ul000.03_81 411 416 | 37 41 141 193 8.53 89
1ul1000_14_81 394 421 | 58 65 186 221 14.3 135
£120.04_92 40 46| 14 15 402 434 39.1 31
t120.19_87 40 46| 15 16 375 406 38.9 32
t249_15_142 83 95| 48 50 664 710 387 70
t249_17_145 83 94| 61 69 813 838 542 73
t501_03_199 167 190 | 135 150 1377 1403 3312 134
t501_18_193 167 189 | 105 114 949 1008 1671 131

Table 1: Computational results for the cutting stock problem (using rules C and D) and
comparison with the number of branch-and-bound nodes obtained by Valerio de Carvalho,
using the branching scheme of Proposition 6, for cutting stock instances from the OR-

Library.

36

name RB IP HR | dep nod mast col time
3b2 2 3 3 4 15 26 26 0.44
3b4 0 330 886 5 17 45 24 0.65
4b7b 0 0 60 3 4 8 45 0.23
4b7e | 188890 433274 3312331 | 11 89 131 185 4.50
4b7c | 702054 1674031 infeas | 21 545 843 331 33.27
4b7 1054 1462 1504 | 21 639 1323 689 66.81
4b7d 8804 26979 178501 | 22 961 1465 471 74.85
4r4 583 920 23471 9 33 52 61 1.10
4r3b 0 380 6993 7 35 55 b4 0.97
4r6e 8436 10056 45271 8 45 63 80 1.30
5r7 3057 4367 38140 | 22 1085 1327 269 58.07
5r6b 147 963 35255 | 14 291 339 144 9.85
brée 1682 4048 30687 | 24 2531 3011 370 161.44
6r7 0 0 infeas | 19 69 108 139 3.43
6r10b 1562 2590 62584 | 27 1843 1986 277 125.08
6r8c 0 752 40320 | 28 5903 6528 396 514.00
7r10 0 200 28658 | 26 2171 2378 311 185.15

Table 2: Computational results for the cutting strip problem (using rule C and its sub-

system equivalent).

37

Rule B (and A) Rule C (and complement)
name | dep nod mast col|dep nod mast col
opll 0 1 1 10 0 1 1 10
7pl4 18 19 26 20 3 4 11 20
pl7 0 1 2 10 0 1 2 10
7pl18 7 8 27 33 6 8 23 29
6p20 0 1 3 14 0 1 3 14
18p22 0 1 43 63 0 1 38 58
3b2 5 13 22 24 4 15 26 26
3b4 6 17 36 23 5 17 45 24
4b7b 3 4 8 45 3 4 8 45
4bTe 14 79 123 174 11 89 131 185
4bTc 24 1415 1765 508 | 21 545 843 331
4b7 24 871 1431 616 | 21 639 1323 689
4r4 6 35 50 57 9 33 52 61
4r3b 8 29 49 52 7 35 55 54
4r6e 10 79 115 92 8 45 63 80
or7 21 975 1126 225 | 22 1085 1327 269
5r6b 13 2056 234 114 14 291 339 144
or6C 21 1073 1283 232 | 24 2531 3011 370
6r7 5 18 30 76| 19 69 108 139

Table 3: Comparing branching rules B and C for cutting stock and cutting strip problems.

38

Vance’s Branching | Rule C & no FFD heur
name | dep nod mast |dep nod mast
11p4 | 605 1213 3753 | 26 31 101
5pll 40 71 143 4 5 13
14p12 | 60 99 341 | 25 31 99
7pl4 41 66 118 3 4 11
Tpl7 33 49 108 | 25 36 113
7pl8 71 89 135 11 14 46
12p19 | 26 39 150 | 24 32 93
6p20 29 55 136 6 7 23
18p22 | 47 74 224 | 47 64 225
12p24 | 26 38 135 8 9 53

Table 4: Comparing the branching scheme of Vance to branching rule C for the cutting

stock problem, with no heuristic solution at the outset.

4 Further Remarks

We emphasize that some of the branching rules we used would not be easy to formulate
if IP decomposition was based on the convexification of the subsystem instead of on its
discretization. Consider using rule B type branching constraints for the cutting strip
problem in a master formulation resulting from subsystem convexification. For the sake
of argument, assume that the current fractional solution uses a ¢ IV cutting patterns with
at least v strips of width w;. Under the convexification approach, the master variable are
not directly restricted to be integer and the branching constraint 3 cq...>0 Aq > [is
not valid since a cutting pattern z* could be defined as %qk for instance. Enforcing the
corresponding branching constraint requires adding K binary variables to the master,
sk = s¥(\) for k = 1,..., K, where s* = 1if 2F = Ygeqk) %iAg > v and zero otherwise
and the relations s* = s*()\) take a form similar to that used in our column generation

subproblem modification scheme:

k

vsk < > qi)\qg(v—l)—i—(LWJ—v—i-l)sk fork=1,... K.

q€Q(k) Wi

39

Rule A Rule B, then A

name | dep nod mast col|dep nod mast col
3b2 3 9 16 22 5 13 22 24
3b4 6 21 38 22 6 17 36 23
4b7b 17 18 27 66 3 4 8 45
4bTe 22 343 417 145 | 14 79 123 174
4b7c | >19 >4603 >6732 24 1415 1765 508
4b7 | >28 >4594 >6445 24 871 1431 616
4r4 5 17 24 35 6 35 o0 57
4r3b 6 21 35 34 8 29 49 52

4r6e 17 493 638 80| 10 79 115 92
or7 23 2542 2732 201 | 21 975 1126 225
or6b 16 286 331 114 | 13 205 234 114
or6e 22 6475 6734 269 | 21 1073 1283 232
6r7 10 22 35 76) 18 30 76

Table 5: Comparing the use of the sole branching rule A to the use of branching rule B
complemented by A for the cutting strip problem.

40

Then, the constraint
k
> " > [a]
k=1

is added to the master and up to K branching stages might be required to force each s* to
its integer value. This remark points out that the modifications to the column generation
subproblem that arise from our branching schemes are not unduly cumbersome because
implementing such branching constraints would be even more complex in the convexifi-
cation approach. Moreover, in cases such as that of the cutting stock problem, where the
transformation from the master variables to the original variables is not straightforward,
the above attempt to implement such branching constraints in terms of the original vari-
ables falls short.

In a decomposition based on subproblem discretization, one may have to generate
columns ¢ € (@ that are interior points of conv(X). Such interior points will arise
as solutions to the modified column generation subproblem. Indeed, adding auxiliary
variables in the subproblem amounts to working in a space of higher dimension, X’ C
IN™ x {0,1}/¢*I*#*]_ The subproblem solution will be an extreme point of X’ whose
projection in X can be in the interior of conv(X). Typically, only a small subset of inte-

rior points of conv(X) will be considered in the course of the column generation procedure.

The branching constraints that we have introduced amount to defining an additional

integer variable

s = Z V(Q))‘q

qeQ
where the coefficients v(g) are functions of the vectors ¢ €), and enforcing its integrality,
ie. if s = a & IN, branch on s < |a] or s > [a]. This interpretation suggests that in
designing a branching scheme one should not be restricted to branching on the existing
variables. Moreover, the newly defined variables often have a natural signification for
the problem on hand. In the branching schemes considered in Section 2, v(g) are binary
functions. The class of newly defined variables of which to branch could be widen to

include cases where functions y(g) are not restricted to 0-1 values.

Observe that the introduction of cutting planes in the master will require subproblem

modifications that are similar to those required by branching constraints. As we have

41

seen, an additional master constraint of the form

> (@)X < 0

qeQ
can be handled at the subproblem level as long as the relations 7(q) that define the
constraint coefficients can be expressed as MIPs. Moreover, for special value of the con-
straint coefficients, the modification scheme simplifies. For instance, if y(¢) > 0 Vg € Q
and 79 = 0, then the constraint can be directly enforced in the subproblem by adding the
constraint y(¢) = 0 in the subproblem formulation. When ~(g) is a linear function of g,
the modifications simply amount to amending the subproblem objective coefficients. We
have seen cases where y(¢) was not a linear function of ¢, but could be expressed as a
linear function of ¢/, a dissagregation of ¢ (for instance, its 0-1 form, or its associated arc

flow incidence vector in some underlying network).

The issue of branching efficiency touched on in this paper is clearly not specific to
IP decomposition. The study of branching constraints that yield much improvement in
the bounds on every branch, deal effectively with a symmetric solution space and / or
produce good primal solution quickly merits further research. To our knowledge, the lit-
erature on these questions is mostly limited to application specific computational studies.
In a column generation framework, an additional issue is to be considered: the tradeoff
between branching efficiency and its implementation complexity in terms of the required
modifications to the subproblem. This paper and that of Vance (1996) explicitly examine

this tradeoff by way of comparative computational tests.

Acknowledgement

We are grateful to Cor Hurkens and Pamela Vance for providing information and data for
the cutting strip and the cutting stock problem respectively, and to Jacques Desrosiers
and Laurence Wolsey for their constructive comments. We especially want to thank
the anonymous referees who provided a very detailed and very helpful feedback. This
research was supported in part by a Management Research Fellowship granted by the
British Economic and Social Research Council (ESRC).

42

References

Anbil R., C. Barnhart, L. Hatay, E.L. Johnson, and V.S. Ramakrishnan (1993). Crew-
Pairing Optimization at American Airlines Decision Technologies, Optimization in Indus-
try, T.A. Cirani and R.C. Leachman eds., Wiley, 31-36.

Barnhart C., E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh and P.H. Vance (1994).
Branch-and-Price: Column Generation for Solving Huge Integer Programs. Mathematical
Programming, State of the Art, book of the International Symposium on Mathematical
Programming, 1994, edited by J.R.Birge and K.G. Murty.

Beasley J.E. (1990). OR-Library: Distributing test problems by electronic mail. Journal
of the Operational Research society, 41, pp 1069-1072.

Using the CPLEX Linear Optimizer, version 3.0. (1994). CPLEX Optimization, Inc.,
Suite 279, 930 Tahoe Blvd., Bldg. 802, Incline Village, NV 89451-9436. (702) 831-7744.

Dantzig G.B. and P. Wolfe (1960). Decomposition Principle for Linear Programs, Oper-
ations Research, 8, 101-111.

Desaulniers G., J. Desrosiers, I. Ioachim, M.M. Solomon, and F.Soumis (1998). A Unified
Framework for Deterministic Time Constrained Vehicle Routing and Crew Scheduling
Problems, in Fleet Management and Logistics, T.G. Crainic and G. Laporte (eds), Kluwer,
Boston, MA, 57-93.

Desrosiers J., Y. Dumas, M.M. Solomon and F. Soumis (1994). Time Constrained
Routing and Scheduling, Chapter 2 in M.E. Ball, T.L.. Magnanti, C. Monma, and G.L.

Nembhauser eds Handbooks in Operations Research and Management Sciences: Networks,
North-Holland.

Gilmore P.C. and R.E. Gomory (1961), A Linear Programming Approach to the Cutting
Stock Problem, Operations Research, 9, 849-859.

Gilmore P.C. and R.E. Gomory (1963), A Linear Programming Approach to the Cutting
Stock Problem: Part II, Operations Research, 11, 863-888.

Geoffrion A.M. (1974), Lagrangian Relaxation for Integer Programming, Mathematical

43

Programming Study 2, 82-114.
Hurkens C. (1995). Private Communications.

Johnson E.L., A. Mehrotra and G.L. Nemhauser (1993). Min-Cut Clustering, Mathemat-
ical Programming, 62, 1993, pp 133-151.

Marcotte O. (1985). The Cutting Stock Problem and Integer Rounding, Mathematical
Programming, 33, 89-92.

Martello S. and P. Toth (1990). Knapsack Problems: Algorithms and computer Imple-

mentations, Wiley-Interscience Series in Discrete Mathemathics and Optimization.

Martin R. K. (1987). Generating Alternative Mixed-Integer Programming Models Using
Variable Redefinition. Operations Research, Vol. 35, No. 6, pp 820-831.

Martin R. K. (1991), Using Separation Algorithms to generate Mixed Integer Model
Formulations. Operations Research Letters, 10, pp 119-128.

Nemhauser G.L. and L.A. Wolsey (1988). Integer and Combinatorial Optimization. John
Wiley & Sons, Inc.

Savelsbergh, M.W.P. (1997). A Branch-and-Price Algorithm for the Generalized Assign-
ment Problem. Operations Research 45, 831-841.

Sutter A. , F. Vanderbeck and L.A. Wolsey (1998). Optimal Placement of Add/Drop
Multiplexers: Heuristic and Exact Algorithms, Operations Research, Vol. 46, No. 5, pp
719-728.

Valerio de Carvalho J.M. (1996). Exact Solution of bin-packing problems using column
generation and branch-and-bound. Working paper. Depart. Prouducao e Sistemas, Uni-
versidade do Minho, 4709 Braga Codex, Portugal.

Vance P.H., C. Barnhard, E.L. Johnson, and G.L. Nemhauser (1994). Solving Binary
Cutting Stock Problems by Column Generation and Branch-and-bound. Computational
Optimization and Applications 3, p. 111-130.

Vance, P.H. (1996), Branch-and-Price Algorithms for the One-Dimensional Cutting Stock

44

Problem. Working paper. Department of Industrial Engineering, Auburn University,
Auburn, Alabama 36849-5346. To appear in Computational Optimization and Applica-

tions.

Vanderbeck F. (1994). Decomposition and Column Generation for Integer Programs,
Ph.D. Thesis, Faculté des Sciences Appligées, Université Catholique de Louvain, Louvain-

la-Neuve.

Vanderbeck F. (1996). Computational Study of a Column Generation algorithm for Bin
Packing and Cutting Stock problems, Research Papers in Management Studies, University
of Cambridge, 1996 no 14, forthcoming in Mathematical Programming.

Vanderbeck F. and L. A. Wolsey (1996). An Exact Algorithm for IP Column Generation,
Operations Research Letters Vol. 19, No. 4, pp 151-159.

45

