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Abstract

Many practical applications of lot-sizing and scheduling problems involve start-
up times. Operations research literature contains but few studies of lot-sizing models
that take start-up times explicitly into account. Here, we review some of these
studies, discuss the models and their complexity, and we propose further models.
We consider in particular a single-stage single-mode multi-item lot-sizing model with
continuous set-ups and sequence independent start-up times, which we solve using
an integer programming column generation algorithm and we develop a dynamic
programming procedure for the single-item subproblem that treats the initial stock
as a decision variable. We also use cutting planes developed by Constantino for
the multi-item polyhedra. By combining column and cut generation, the lower
bounds that we obtain before branching are on average less than 2% from an optimal
solution. Our algorithm solves instances with 3 to 5 items and 24 periods in an
average of 50 seconds on a modern workstation, and problems with 36 periods in
an average of 750 seconds. Solutions guaranteed to be within 2% of optimality are

obtained in less than 75% of these times.

A manufacturer produces several products on a single production line of fixed capac-
ity. Setting up the line to the specifications of a particular product typically requires
several days that are lost to production. For each of these products, the quantities to be
delivered monthly are negotiated with customers on an annual basis. The problem for the
manufacturer consists in making an annual production plan that minimises production
and holding costs while satisfying demand requirements. There are many applications

such as this that involve making lot-sizing and scheduling decisions in the presence of
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start-up times. Examples include the manufacturing of food products or chemicals where

significant clean-ups must take place between different batches of production.

The model we consider here is a single-stage multi-item single-mode production lot-
sizing and scheduling model with continuous set-ups and sequence-independent start-up
times. Single mode production assumes that the machine/line can only process a single
item in each time period. The machine is set-up according to the specifications of the
item processed. In a so-called “continuous set-up” model, production can take any value
up to capacity, once the machine is properly set up, unlike the discrete set-up model
where production must be at capacity if the machine was set up. A start-up occurs when
the machine is set up for an item for which is was not set up in the previous period.
The associated start-up time reflects the time required to prepare the production facil-
ity, which is assumed to be independent of the production sequence (we do not use the
term changeover time which is perhaps better suited for the sequence dependent case).
Without the single mode assumption, it would be necessary to keep track of the actual
production sequence within each time period in order to model accurately the start-ups

between time periods.

For each item : € {l,...,n}, and time period ¢t € {1,...,T}, let & > 0, C! > 0,
and 0 < L! < C¢ denote respectively the demand, the production capacity, and the lost
capacity due to a start-up for item 7 in period ¢, and let pi > 0, A > 0, ff > 0, ¢: > 0
denote respectively the production, the holding, the set-up and start-up cost for item ¢ in
period t. The decision variables are defined as follows:

2! is the amount of item 7 that is produced in period ¢,
st is the stock level for item 7 at the end of period ¢,
y! is 1 if the machine is set-up for item ¢ during period ¢ and is zero otherwise, and

zis 1 if a start-up occurs for item 7 at the outset of period ¢ and is zero otherwise.

Then the multi-item single-mode Lot-sizing problem with Continuous set-up and se-

quence tndependent Start-up Times can be formulated as:

min Sopiai 4> hisi+ > fiyi+ > giz (1)
it it 2t 1t

[LOCST)| s.t.
>y <1 Vit (2)
siq 2 = dits Vit (3)
zp < Clyi— Liz Vit (4)
yi—yl, <z < min{yf, 1—yi ) Vit (5)
i, 2t € {0,1} Vit (6)



R Vit (7)
s5>0 , sh=0 \Z) (8)

where constraints (2) enforce the single mode restriction, constraints (3) enforce the con-
servation of flow, constraints (4) formulate the capacity restriction including the loss of
capacity due to start-up times, and constraints (5) define the start-up variables in terms
of the set-up variables. As we shall see, this problem is NP-hard. Even the question of fea-
sibility is difficult: there is no known polynomial algorithm to check feasibility a priori.We
allow therefore initial stocks s to be positive, with associated costs A, which could repre-
sent the unit costs of subcontracting for instance. When costs &} represent high penalties,
the solution will provide information on minimal initial stock levels required to sustain
a production plan over time periods 1,...,7T, rather than a mere diagnostic of infeasi-

bility. Without loss of generality, we assume that the final stocks are zero: s = 0 for all 4.

The single item version of this problem is not only interesting in its own right but also
an essential building block in a decomposition approach for solving LCST. The Single-
Item Lot-sizing problem with Continuous set-up and sequence independent Start-up Times

takes the form:

min Zpt:rt + Z his: + Z Jiye + thzt (9)
t ¢ ¢ t

[SILCST] s.t.
si1+x = di+ s vt (10)
e < Ciys— Ly z Vt (11)
Y —Yio1 <z < min{yg, 1 —yeq} Vi (12)
v, 2 € {0,1} Vit (13)
S¢, Ty > 0 ¢ (14)
s50>0 , sp=0 vt . (15)

Note that the upper bounds on variables z; are not necessary as ¢g; > 0 for all £. As we
shall show, the single item problem STLCST is NP-hard if either capacities or start-up
times are not constant, but it is polynomially solvable when the capacities and the start-

up times are constant, i.e. C; =C and L; = Lfort=1,....T.

In this paper, we assume constant capacities and start-up times for each item. Note
that, assuming stationary capacities, maintenance can be accommodated in a production
plan by introducing a dummy item. We present an O(7*°) dynamic program for STLC ST
that explicitly considers initial stock as a decision variable. We show how this algo-
rithm simplifies when production and holding costs satisfy the Wagner-Whitin condition
(pt + hy > peyr V1), yielding an O(T*) complexity. We solve LC'ST using an IP column
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generation algorithm combined with a cutting plane algorithm, where the column gen-
eration subproblem takes the form of SILCST. The cutting planes are the inequalities
that give the convex hull of feasible (y,z) solutions (Constantino, 1995). Our algorithm
solves problems with 3 or 5 items and with 24 and 36 time periods in an average of 50 and
750 seconds of CPU time respectively. We begin with a review the literature on related
lot-sizing models. We discuss and compare different ways of modelling start-up times,

and examine the complexity of some of these models.

1 Literature

Trigeiro et al (1989) have studied a Capacitated Lot-sizing model with Set-up Times
(CLST). Their model assumes that each item can be produced at most once in any
time period. Producing a batch of item ¢ entails a set-up time L' and a capacity con-

sumption B* per unit that is produced. The resulting model includes constraints
SN Biaj+ Ly, <Cp Yt (16)
7

in place of our single mode constraints (2) and start-up variables are absent. Trigeiro et
al note that even the feasibility version of their model is NP-complete (by restriction to
bin packing). They tackle the problem using a Lagrangian relaxation approach, dualiz-
ing constraints (16) to decompose the problem into n single-item uncapacitated lot-sizing
subproblems which they solve by dynamic programming. Using sub-gradient optimiza-
tion, they obtain lower bounds and dual prices which they use in a smoothing heuristic to
construct feasible solutions from the subproblem solutions. They obtain provably near-
optimal solutions for problems with up to 24 items and 30 time periods within 6 min of
CPU time on an IBM 4381. Du Merle et al (1996) study the same model and show that
the Analytic Center Cutting Plane Method (ACCPM) is computationally more efficient
than the sub-gradient method in solving the Lagrangian dual.

Cattryse et al (1993) and van Eijl (1996) consider a Discrete Lot-sizing model with
Start-up Times (DLST) which differs from LCST in two ways: start-up times are mod-
elled as integer numbers of time periods, L' = k' C*® with k' € IN, during which no
production can occur and production must be at capacity. Both papers assume sta-
tionary capacities and start-up times, and eliminate the production variables using the

equality z! = C'y. The demands are normalised in terms of full production periods !, i.e.

Di = [Efgjd;-‘ — [Z:T;?}dl’-‘ (Magnanti and Vachani, 1990). The single mode constraints

!Throughout this paper, we use the notation [z] (resp. |z]) to denote the smaller (resp. larger)

integer not larger (resp. smaller ) than z.



(2) of LCST are replaced by

. min{t+k*,T} ,
> (g + > z;) <1 Vi (17)
ki<t T:max{ki+1,t+1}

since, when 2! = 1, the machine is started up for item 7 during the interval of periods
[t — k', — 1]. Van Eijl has shown that this formulation is tighter than that proposed by
Cattryse et al. Salomon et al (1991) claim that the feasibility version of problem DLST
is NP-complete even when start-up times are all equal to 1, but their proof is incorrect

since the proposed transformation is not polynomial.

Cattryse et al use a Lagrangian relaxation approach to obtain provably good solutions
for DLST. They obtain lower bounds by solving approximately the linear programming
master problem that results from the dualization of constraints (17) using a column gen-
eration procedure: the dual prices are initially obtained using a dual ascent heuristic and
are refined using a few steps of a sub-gradient algorithm. The column generation sub-
problem is solved using a O(kT D) dynamic programming algorithm where D = 3", D; is
the total normalised demand for the item concerned. Feasible solutions are obtained us-
ing a heuristic for the set partitioning formulation of DLST with the generated columns.
For test problems with up to 6 items and 60 time periods, they obtain solutions with
optimality gap less than 1.43% within five minutes of CPU time on an IBM-PS2 2 (Model
80 with math co-processor). Van Eijl gives facet-defining inequalities for the single item
DLST as well as a dynamic programming recursion (similar to that of Cattryse et al.), an
associated network flow formulation, and its projection in the space of the split-variables
Yy and z;;, where y,; is one if production takes place in period ¢ to meet the [-th nor-

malised demand and z;; is the associated start-up variable.

The Discrete Lot-sizing model with Start-up Costs (DLSC') but no start-up times has
been the subject of several studies. Van Hoesel and Kolen (1994) give a O(T D) dynamic
programming algorithm for the single item problem and they show how this algorithm
can be extended to the case of a fixed number of items n, giving rise to an O(n T' D™)
algorithm. When n is part of the input data, however, the problem is NP-hard even for
zero start-up and production costs and constant holding costs as shown in van Eijl (1996)
by restriction to 3-Partition. The feasibility problem remains easy for an arbitrary n as
it amounts to verifying that cumulative demand does not exceed cumulative capacity in

each period:

YDj, <t Vi

where Dit is the cumulative normalised demand for item ¢ up to period ¢. Fleischmann
(1990) solves the multi-item problem using a Lagrangian based branch-and-bound proce-

dure where the subproblems resulting from the Lagrangian relaxation of the single-mode
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constraints are solved by dynamic programming. Magnanti and Vachani (1990) study
the polyhedra of the discrete lot-sizing model with start-up costs where set-up can be

maintained even if no production takes place, i.e z! € {0, C*y}.

The Lot-sizing problem with Continuous set-up and Start-up Costs (LCSC) but no
start-up times is also a well studied model. For the single-item case, Florian and Klein
(1971) have characterised extreme point solutions under concave production and inven-
tory costs. They showed that an extreme solution can be decomposed into sub-plans,
called production sequences, with zero initial and final inventory and at most one period
for which the production level is “fractional”, i.e. neither zero nor at capacity. In the case
of a constant capacity, an optimal sub-plan can be computed by dynamic programming
in O(T?#), and therefore an optimal solution, combining sub-plans, can be obtained in
O(T*). Van Hoesel and Wagelmans (1996) show that this dynamic program can in fact
be implemented in O(T?) time when holding costs are linear. This improvement in com-
plexity arises from the property that all optimal sub-plans over time interval [k, {] with a
fractional production period in [k,!— 1] can be obtained from the optimal sub-plan with

fractional production period in [ in linear time.

Bitran and Yanasse (1982) give properties of optimal solutions of LC'SC and resulting
polynomial dynamic programming algorithms under various assumptions on the cost and
capacity structure (non-increasing or constant costs, non-decreasing or constant capaci-
ties) and they show the NP-hardness of the model under other assumptions on the costs
and capacities. Pochet and Wolsey (1993) consider a related single-item model in which
the production capacity in each period can be an integer multiple of some basic capacity
unit. They give a O(T?) dynamic program for the single-item problem with no capac-
ity upper bound and a polynomial reformulation with O(7?) variables and constraints
whose linear programming relaxation solves the problem. They show that when extra
constraints, placing an upper bound of one basic unit on the capacities, are added, their
linear programming reformulation solves Florian and Klein’s model with constant capac-

ities and linear costs. They also present facet-defining inequalities.

Finally, Constantino (1995) studies the polyhedra of various single-item and multi-item
lot-sizing models, with continuous set-up under the single mode assumption, the most
general of which includes non-stationary capacities, backlogging (i.e. negative stocks),

start-up times and lower bounds on production; i.e. constraints (4) are replaced by
Kjy, Sap+ Lz < Clyp Vit (18)

where K denote a minimum batch size for item 7 in period ¢. Constantino derives families

of valid inequalities (some of which consider start-up times explicitly) and associated

6



separation routines. In particular, Constantino (1995) studies the multi-item polyhedra
and shows that constraints

Y <1 — Z(?Ji - z{) Vi and ¢ > 2 (19)

J#1

together with constraints (2) and (5), describe the convex hull of the feasible (y, z) so-
lutions. Moreover, Constantino shows how the single-item uncapacitated model with
production lower bounds (and no start-ups) can be solved in polynomial time using an
extension of Florian and Klein’s algorithm and he notes that the constant capacity model

with start-up costs can be solved in a similar way.

Constantino conducted computational experiments with a branch-and-cut algorithm
for the continuous set-up lot-sizing problem with stationary capacities, start-up times,
production lower bounds, and constant costs (1995 and 1996). His results show that
the Linear Programming (LP) relaxation of the "natural” formulation (of the form (1-
8), where (4) is replaced by (18)) provides a weak bound with an optimality gap that
is typically larger than 70%. Therefore a standard branch-and-bound procedure cannot
solve instances with much more than 12 periods within reasonable time (2 hours on a
modern workstation). By adding the cutting planes that he derived, Constantino solves
instances with up to 5 items and 36 periods, some to optimality, others that have been
interrupted after 2 hours of CPU time (on a sparc LX), with an optimality gap of no more
than 7%.

2 Modelling Issues

The above review of literature presents three classes of lot-sizing models: capacitated
models (such as C'LST'), discrete set-up models (such as DLST') and continuous set-up
models (such as LCST'). They differ mainly according to the length of their time period.
The capacitated lot-sizing model is suitable when set-ups cannot carry over between pe-
riods, as is the case for example when the period length is equal to the maintenance or
shutdown interval (Trigeiro et al, 1989). It otherwise overestimates the number of start-
ups. For long maintenance interval, the assumption that at most one batch of an item can
be processed within a period can be rather restrictive. Moreover, as noted by Fleischmann
(1990), the underlying assumptions that demand in a period can be satisfied at any time
within the period and that inventory costs only depend on the stock at the end of the

period, are questionable when the time period is long.

The discrete model, with “all-or-nothing” production, is suitable in practice where
production quantities are restricted to integer multiples of some minimum batch size (Sa-

lomon et al, 1991). In order to suit the assumptions of the discrete model, it might be
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necessary to consider time periods of short length and thereby a large number of periods.
Indeed, consider an application with no start-up times. Let 1" be the “natural” number of
periods in the time horizon (e.g. a three months horizon with weekly demands amounts to
13 periods). Assume that production is restricted to integer numbers of a minimum batch
size and that demands and capacity ' are expressed as multiples of the minimum batch
size. Then, transforming the instance into an instance for the discrete model requires a
discretization of time in order to match the minimum batch size. The resulting number
of periods would be T" = T (| i.e. pseudo-polynomial in terms of the initial input data
(unless C' is fixed). If there are start-up times consisting of a fraction of the minimum

batch size, time needs to be discretized even further.

When the period length does not match some minimum batch size or when the ap-
plication requires a minimum production batch size but does not require the production
level to be a multiple of it thereafter, the “all-or-nothing” production assumption causes
an increase in stock levels and production costs. Of course, production and stock levels
may be reduced in a postprocessing phase, but typically postprocessing will not entirely
compensate for the extra cost resulting from the “all-or-nothing” assumption. Finally,
most studies of the discrete model assume z! = C?y!. A less restrictive implementation
of the “all-or-nothing” production assumption allows production to be zero when the ma-
chine is set up, i.e. ¢ € {0, C'y'}, so as to allow for carrying out set-ups. This variant

can easily be implemented in a dynamic programming algorithm.

The continuous set-up model can be viewed as a tradeoff between the two above mod-
els with a medium length time period. Here, the single-mode assumption also requires
selection of a relatively short period but not as short as required to match some minimum
batch size. Moreover, short start-up times do not require further discretization. The re-
laxation of the “all-or-nothing” production constraint reduces stock levels and allows for
solutions that trade off more set-ups against savings in holding and production costs (e.g.
one can produce just enough to hold on until the next period of low set-up cost). However,
the assumption of model LC' ST, that start-up times are shorter than the period length,
might sometimes be unsuitable, in particular if different items require start-up times of

different magnitude.

Some of the drawbacks of the discrete and continuous set-up models discussed above
can be overcome by modelling start-up times differently. When start-up times are shorter
than the minimum batch-size, one may consider the “discrete set-up model equivalent”
of LOST with L < C and x; = Cy; — Lz;, and thereby avoid an increase in the number
of periods. On the other hand, when start-up times are longer than the model period

length and/or vary widely from one item to another, it might be more appropriate to



model start-up times as L = kC + o, with £ € IN and 0 < ¢ < (. The model with
L = kC may be viewed as an approximation of this model, which can be justified by

lower computational complexity.

In Table 1, we summarize the different ways of modelling start-up times for discrete
and continuous set-up single-item lot-sizing models. We also show the complexity of a
dynamic programming solution of the problem with stationary capacities and start-ups,
when known. For the capacitated model, a start-up time L < (' is probably the only
option, given that the period is rather long. We emphasize that, even if start-ups are
modelled in the same way, the discrete model might require a finer discretization of time
than the continuous set-up model in order to overcome the drawbacks of “all-or-nothing”
production assumption. On the other hand, for a fixed number of periods, the discrete

model is typically easier to solve than the continuous set-up model.

MODEL Discrete Set-up Continuous Set-up
L<C v, =Cuy— Lz v, < Cuyp— Lz
O(T?) O(T°)

zy=Cyy < Cyy

L=kC Y + Etr+=]§+1 zy <1 Ye + Zt;ljtﬂ zr <1
O(kT D)

L=kC+o fEt:igt—UZt wtgigt_UZt

Ye ‘|‘ ET=t+1 Zr S 1 Ye ‘|‘ Zq':t+1 Zr S 1

Table 1: Single-item single-mode lot-sizing models with constant capacity and start-up

times.

In the sequel, we shall consider the model with start-up times L < ', as this is the
model that suits the application that motivates this study. We leave the more general
case where L = kC' + o to further research which would presumably combine the results

presented here with those of the discrete model where I = kC'.

3 Complexity Issues

Let us now examine the complexity of the capacitated model, the continuous set-up
model, and the discrete set-up lot-sizing model, under the assumption that L < C'. For
all three models, the multi-item problem is NP-hard. However, their complexity differs

when the number of items is fixed. The complexities of the associated feasibility problems



and that of the single-item subproblems that arise from decomposition also differ. For
the capacitated model, the relaxation of the capacity constraints (16) gives rise to the
Wagner-Whitin uncapacitated lot-sizing problem, solvable by dynamic programming in
O(T'logT) — Wagelmans, van Hoesel and Kolen (1990), Federgruen and Tzur (1991),
and Aggarwal and Park (1993).

For the continuous and discrete set-up model, the subproblem resulting from the
dualization of the single mode constraints (2) is NP-hard when capacities or start-up times
are non-stationary. First, consider the case of the continuous set-up model. Florian et al
(1980) have proved that the single-item continuous set-up lot-sizing model with constant
demands, linear production costs, zero holding costs, unit set-up costs and no start-ups
is NP-hard when capacities are not constant (by restriction to SUBSETSUM). We can
easily show that the problem with stationary capacities but non-stationary start-up times

L; < (' is also NP-hard.

Proposition 1 Problem SILCST is NP-hard, even for constant capacities, zero holding

costs and zero start-up costs.

The result can be established by showing that an instance of the single-item continuous
set-up lot-sizing model with no start-ups and non-stationary capacities C; fort =1,..., T
can be polynomially transformed into an instance of the problem with constant capacity
but non-stationary start-up times. Let ' = max;C; and L; = C — Cy for t = 1,...,T.
Then, replace each period ¢t by two successive periods ¢ and ¢'. Each newly-defined period
t' has zero demand, dy = 0, and a large set-up cost, fy = M, where M is sufficiently
large to make any solution that includes a set-up in a period ¢’ suboptimal. Then, in an
optimal solution to the newly-defined problem, a start-up occurs in every period ¢ where

production takes place and therefore the production level is bounded by C; = C' — L;.

In the discrete set-up lot-sizing with no start-up times and non-stationary capacities,
production levels are defined as z; = C; y;. This problem is NP-hard, as it is easily seen to
encompass the SUBSETSUM problem as a special case: let the capacities be 0 < C; < C
fort=1,...,T—1and Cp = C, let dr = C and pr = 1, all other costs and demands
being zero; then there exists a subset S C {1,...,7 — 1} such that > ;s C; = C if and

only if the discrete lot-sizing solution has zero cost. Hence we have proved the following:

Proposition 2 When capacities are not constant, the discrete set-up single-item lot-
sizing problem is NP-hard, even for zero holding costs, zero set-up costs, zero start-up

costs, and zero start-up times.

When capacities are constant but there are non-stationary start-up times, the problem is

also NP-hard. The argument is the same as for the continuous set-up model: one can force
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start-up in each production period by introducing an artificial period with high set-up

cost between each pair of periods. Hence,

Corollary 3 The single-item discrete set-up lot-sizing problem with constant capacities
C' but non-stationary start-up times Ly < C s NP-hard, even for zero holding costs and

zero start-up costs.

Having shown the NP-hardness of single-item problems when capacities or start-up
times are not constant, we shall assume stationary capacities and start-up times in the
rest of this paper. Under this assumption, the single-item lot-sizing model with start-up
times is polynomially solvable by dynamic programming both for discrete and continuous
set-up models as shown in the next section. Moreover, for the discrete set-up model, the
dynamic programming algorithm can be extended to the case of a fixed number of items.
We conjecture that the continuous set-up model is NP-hard even for a fixed number of
items. For the multi-item capacitated model C'LST, Bitran and Yanasse (1982) proved
that the problem with no set-up times, constant set-up costs, zero holding cost, non-
increasing production costs, and constant capacities is NP-hard if the number of items is
2 or more and that the problem with 3 items or more is NP-hard even when production

costs are zero but holding costs are constant.

When the number of items is not fixed but is part of the data, the discrete set-up
model is NP-hard even when start-up times are not present (van Eijl, 1996). Hence the

continuous set-up model is also NP-hard because:

Observation 4 The optimization problem for a lot-sizing model with continuous set-up

and no start-up times is at least as hard as that for the associated discrete set-up model.

Indeed, given a problem with discrete set-ups, one can normalise the demands by letting
Dit = [dé—'t—‘, redefining capacities as C* = 1, for 7 = 1,...,n to solve the problem with
an algorithm designed for the associated continuous model. The solution will not contain
any “fractional production” and will thus be feasible for the discrete set-up model. Note

that the same observation holds where start-up times suit the model L = kC.

Let us now consider the feasibility problems associated with all three multi-item lot-
sizing models with start-up times, when initial stocks are not decision variables. We first
observe that any feasible solution to the discrete set-up model is also feasible for the
continuous set-up model and, inversely, a feasible solution to the continuous set-up model
can be modified by raising production levels to capacity in order to give a feasible solution

to the discrete set-up model. Therefore,

Observation 5 Under the single-mode constraints, the continuous set-up lot-sizing prob-

lem with start-up times is feasible if and only if the associated discrete set-up problem is

feasible.
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OPTIMISATION | For a fixed number of items n When n is not fixed

capacitated NP-hard (even if L = 0) NP-hard (even if L = 0)
model Bitran and Yanasse (1982)
continuous open NP-hard (even if L = 0)
set-up model
discrete polyn. solvable NP-hard (even if L = 0)
set-up model (van Eijl, 1996)

Table 2: Complexity of multi-item lot-sizing optimization problems with stationary ca-

pacities C* and start-up times L' < (C°.

Since the discrete set-up optimization problem with start-up times is polynomially solv-
able when the number of items is fixed, the same is true of the feasibility problem. When
the number of items is not fixed, Salomon et al. (1991) conjecture that the feasibility
problem of the discrete model with L = ' is NP-complete. For the capacitated model,
Trigeiro et al (1989) show the NP-completeness of the feasibility problem, but the pro-
posed restriction does not apply for a fixed number of items. In Tables 2 and 3, we
summarize the complexity results for the optimization and feasibility problems respec-

tively.

FEASIBILITY For a fixed number of items n | When n is not fixed

capacitated open NPC
model Trigeiro et al (1989)
contin. and discr. polyn. solvable open

set-up models

Table 3: Complexity of multi-item lot-sizing feasibility problems with stationary capacities
C* and start-up times L! < C°.

4 Solution Approach

A standard solution approach to multi-item lot-sizing problems consists in using La-
grangian relaxation to decompose the problem into single-item subproblems. In the case
of LCST, dualizing the single mode production constraints (2) with associated weights

7y, decomposes the problem into single-item subproblems of the form:
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min ho so + Z Ty + Z €1yt + th?«’t (20)
t ? ?

[SP] s.t.
So+x1y > dig Vt (21)
sot iy = dir (22)
v, < Cuy—1Lz Vi (23)
Ze 2 Y~ Y Vi (24)
ye, 2 € 10,1} Vi (25)
S0, Ty > 0 ¢ (26)

This formulation SP of the single item subproblem has been obtained from formulation
SILCST (9) by eliminating the stock variables sy,..., sy (using equations (3)) and by
defining cumulative productions z; ; = S _, 2, and cumulative demands dy¢ = S d,.
The modified production costs are defined as ¢; = p; + hyr where h;7 are the cu-
mulative holding costs. The cost of the initial inventory has also been modified to
ho = thLCST + hyr. The constant term _23;1 hy dy; is not included in the objec-
tive function of formulation SP. The set-up costs are defined as e; = f; + 7;. Moreover,

we assume that the capacities and start-up times are constant.

Problem LCST can be reformulated in terms of the feasible solutions to these sub-
problems. Let ¢ € Q' = {(z,y,2,s) € INT x {0,1}7 x {0,1}7 x INTH+' : 5, + 2, =
df; +sg, 1y < Clyy— Lz, 2 > yy —ys_q forall t, so > 0, sy = 0} denote a feasible
production planning for item ¢, ch =S pla 3 hisi+ 30, flyi+ Y giz: be the associated
cost, y? € {0,1}* be the associated set-up vector, and )‘fz be one if production plan ¢ is
selected for item ¢ in the solution and zero otherwise. Then, an alternative formulation

for LO ST, the so-called master formulation, is

min > cé)\é (27)

i geQ!
[M] s.t.
DU =1 vt (28)
i geQ?
2N =21 Vi (29)
qeQ!
Ay € 10,1} Vige @ (30)

where constraints (28) mean that the machine can process at most one item in each period
and constraints (29) ensure that a production plan for each item will be chosen. It is well

known that the linear programming relaxation of the master formulation M is equal to
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the Lagrangian dual obtained by taking the maximum over all # > 0 of the Lagrangian
relaxation described above. It provides a lower bound on the integer solution typically
tighter than that of the LP relaxation of LCST'.

We solve the master problem M using an integer programming column generation
algorithm (Vanderbeck and Wolsey, 1996), also known as a branch-and-price algorithm.
The algorithm is a branch-and-bound procedure, where the bounds are obtained by solv-
ing the linear programming relaxation of the master, using a standard column generation
procedure. At each iteration, n column generation subproblems of the form SP (20-26)
are solved in search for columns ¢ of negative reduced costs ﬁq = cfl +3, eyl —o', where 7
and o are the dual variables associated with constraints (28) and (29) respectively. These
subproblems are solved by dynamic programming as detailed below. Because there is a
one-to-one correspondence between the master LP solution and that of the LP relaxation
of LC'ST, branching can be implemented in a straightforward manner by fixing fractional
set-up variables to their integer value (Vanderbeck, 1995). We branch on the fractional
set-up variable with lowest time period index and we break ties by taking the variable

which is most fractional (closest to %)

We use cutting planes to tighten the master LP formulation at each node of the branch-
and-bound tree. Indeed, Constantino (1995) has shown that constraints (19), together
with constraints (2) and (5), describe the convex hull of the feasible (y, z) solutions to

LCST. Inequalities (19) can be expressed in terms of the master variables as

Z(yf_l—yf—l—sz)/\é + ZZ(yg—zf)/\ggl Vi and t > 2 (31)

q€Q" 7 q€eQ?
where z? is the start-up vector in production plan ¢q. The separation routine for these cuts
is a simple enumeration procedure that runs in O(nm T') time, where m is the number of
non-zero master variables in the current solution which is bounded above by the number
of master constraints, initially equal to n +T'. After completion of the column generation
procedure, we search for violated cuts of this form. If one is found, it is added to the
master and the column generation procedure is recalled. In this way, the LP bound we
obtained is that over the intersection of the convex hull of the feasible (y, z) solutions de-

fined by constraints (2) and (5-6) and the convex hulls of the single item feasible solutions

defined by (10-15).
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4.1 Dynamic Program for the discrete set-up single-item prob-

lem

The discrete set-up single-item lot-sizing problem with stationary start-up time and capac-
ity, 0 < L < C, constitutes a building block for the solution of the associated continuous
set-up problem. In particular, we use solutions to the discrete problem for the initialisa-
tion of the dynamic programming solution of the continuous problem. A solution to the
discrete problem can also be used as a heuristic solution for the continuous model after it
has been processed to reduce stock levels. Moreover, as we shall also see, a solution of the
continuous model can be viewed as intervals of “all-or-nothing” productions separated by

“fractional production periods” where 0 < z; < C'y; — Lz;.

Consider the discrete problem defined by (20, 21, 24-26) and the constraints that ei-
ther x; =0or x; = Cy; — Lz Vt, and 0 < s < C. Observe that in an optimal solution to
this discrete problem with non-negative costs, there exists a period p € [0,7] with s, =0
(otherwise the initial stock can be reduced by an amount equal to the minimum stock
level) and hence the solution can be decomposed into two production sub-plans: one over
periods 1 to p and one over period p+ 1 to T if p < T'. Let us refer to the period p of
zero inventory as the pivot period. We can then compute an optimal production plan over
time interval [1, p], where an initial inventory so > 0 is allowed, using a backward dynamic
programming recursion. Let F(y,,p) be the optimal cost of a feasible production plan
over interval [1,p] with final set-up state equal to y,. Similarly, an optimal production
plan over interval [p + 1,7], where a final inventory is allowed, can be obtained using a
forward dynamic programming recursion. Let G(y,,p+1) be the optimal cost of a feasible

production plan over time interval [p + 1, 7] given that the set-up state in period p was

Yp-

First we show how to compute F(y,,p). For a fixed pivot p and final set-up
state y,, let U'(y,u,q) be the minimum cost for a production plan over periods ¢,...,p
that includes exactly u start-up periods with production level L — C and exactly ¢ full
production periods with production level C, given that the set-up variable in period ¢t — 1
takes value y, i.e. y;—y = y. This cost is only defined if u(C'— L)+¢C < d;,, for otherwise
there would be some backlog, and if 2u —y + ¢ < p—1t + 1, i.e. if the interval [t,p] is

large enough to accommodate u start-up periods and ¢ full production periods. Initially,
UP*(y,,0,0) = 0 and UP*!(1 —y,,0,0) = oo .

Then, for t = p down to 1 and for all feasible states (y,u,q), U'(y,u, ¢) can be computed
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recursively as follows:

g+e+(C—L)e,+UT(1,u—1,q)
U'0,u,q) =min{ g+ e+ UH'(1,u,q)
U0, u, q)

e+ Ce + UM (1,u,qg—1)
U1,u,q) = min} e, 4+ UH(1,u,q)
U0, u, q)
where the three terms in the minimisation correspond respectively to producing, setting
up the machine without producing, and setting the machine off. The costs corresponding
to infeasible states are implicitly assumed to be infinity. Then the optimal cost of a

production plan over interval [1, p] is
Flyp,p) = min{ UH0,u,q) + (dip —u(C = L) = ¢C) ho} (32)

where the only pairs (u, ¢) for which U'(0, u, ¢) is defined are those for which 2u—1+¢ < p,
u(C—L)+qC <dy,, and ¢ >0 = u > 0 since yo = 0. These computations take O(p?)

time.

The forward recursion that yields the value G(p+1,y,) is similar. Then the minimum
cost of a solution to the discrete set-up problem can be obtained as

min {F(yp,p) + Glyp,p + 1)}

p=07---7T ’ ype{07l}

in O(T*). Observe, however, that when the initial stock is not a decision variable, as
is the case for the standard single-item discrete lot-sizing problem, the optimal cost is
G(0,1) and is computed in O(T?) time. The multi-item discrete lot-sizing problem with
no initial stocks (resp. no final stocks) can be solved in polynomial time when the number
of items, n, is fixed using an extension of the forward (resp. backward) dynamic program
for the single item problem: then, in each period ¢, the possible states are defined by a
triplet (7,1, ¢) where ¢ is the item being processed in period ¢t (¢ = 0 if the machine is
not set-up), ¥ and ¢ € IN™ are vectors whose component indicate respectively the current
number of start-up production periods and the current number of full production periods

for each item.

4.2 Dynamic Program for the continuous set-up single-item prob-

lem

For the single item continuous set-up lot-sizing model with start-up cost, Florian and

Klein (1971) showed that extreme solutions have the property that the inventory goes to
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zero between any two “fractional” productions, i.e. if 0 < z, < €' and 0 < x; < (', then
there is a period t € [k,[ — 1] such that s; = 0 (see also Pochet and Wolsey, 1993). This
property carries over to the problem with start-up times, STLCST. The argument is the
same. For fixed values of y and z, the problem in variables # and s is a network flow
problem. In an extreme solution (z,s), the basic arcs, i.e. the arcs for which the flow is
neither at its lower nor upper bound, do not form any cycle, which is equivalent to saying
that the inventory goes to zero between any two fractional productions 0 < z; < Cy;— Lz;.
In particular, if the initial inventory is not zero, the inventory must go to zero before the
first fractional production period, since the initial inventory can be viewed as a fractional

production in period 0. We have shown therefore that

Proposition 6 FEzxtreme solutions of SILCST can be decomposed into sub-plans sepa-
rated by periods of zero inventory, called regeneration point, and containing at most one

fractional production.

The decomposition is not unique and allows for different characterisations of “valid sub-
plans” or regeneration intervals. In any case, an optimal solution to STLCST that com-
bines regeneration intervals can be obtained by a shortest path or a dynamic programming
algorithm in O(7?) time, once the optimal costs of regeneration intervals have been com-
puted. When capacities and start-up times are constant, as we assumed in SP, the

optimal sub-plans can them-selves be computed in polynomial time.

Here, a regeneration interval is defined as a set of consecutive periods [k, ..., [] such
that sg—y = s = 0 (ie. sg+ @1, = dyy fort = k—1and t = 1), s, > 0 for all
t € {k,...,1—1} such that di; > 0, and there is at most one fractional production period
fed{k,...,l} suchthat 0 < 2y < Cys—Lzs whileforall t € {k,...,[}\{f}, either z;, = 0,
or x; = Cy; — Lz;. The strict positiveness of intermediate stock levels is not necessary
but limits the number of regeneration intervals being considered. Let G(yi_1,y:, k, 1) be
the minimum cost of a regeneration interval [k,...,[] given that the set-up variables in
period £ — 1 and [ are fixed to yz_; and y; respectively. Then, an optimal solution to SP
can be obtained from the G(yx_1,y:, k, 1) values. Let F(y,t) be the minimum cost of a
feasible production plan over periods 1 to ¢ if the set-up variable in period ¢ takes value
y;. Initially,

F(0,0) =0 and F(1,0)=o0.

Then, for t =1,...,7T, F(y;, 1) is updated as follows:

F(ytvt) = min{ﬁ(ytvt)7 Orgklgt{F(O’ k— 1) + G(antv kvt)7 F(lv k— 1) + G(lvyta k7t>}}

where F (y:, 1) represents the minimum cost of a regeneration interval [1, ] with fractional
production in period zero, i.e. with initial inventory, it is obtained by solving the as-

sociated discrete set-up problem and is defined by (32). The optimal solution to SP is
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min{F(0,7), F(1,T)}.

We now turn to the computation of the minimum cost of a regeneration interval k, [
G(yg—1, Y1, k,[)’s. If there are exactly s start-up production, i.e. production periods where

z = (C — L), during the regeneration interval [k,...,[], then there must be

. {dkl—s(C—L)J

C

full capacity production periods (where # = () and the amount produced during the

fractional production period is
r=du—s(C—-L)—pC.

For fixed values k,[,s,y;_1, and y;, let V(y;, ¢,u,q) denote the minimum cost of a
feasible production sequence over the time interval k,¢ that includes u start-up periods
with production at capacity C' — L. ¢ periods with production at full capacity C', and
¢ € {0,1} fractional production period with production at level r < C, given that the

values of the set-up variables in period ¢ is y;. Then,
G(yk—la Y1, k, l) = Hlsin Vl(yla 5(1“), S,p),

where 6(z) =1 if > 0 and zero otherwise.

Feasibility considerations restrict the number of states (y;, ¢, u, ¢) and possible number
of start-ups s to be considered. Let ¢* be the set of feasible states (y;, ¢, u,q) in period ¢:
fort=Fk,...;1—1,

bt = {(ys, &, u, q) € {0,1} x {0,1} x IN x IN :
¢<b(r);u<s; ¢<p
Yher+u+¢8(C—L—r+1)>6(dy)
2u—1+y1+qg+to<t—k+y
2(s—u) =14y +(p—q)+ (8(r)=¢) <I—t—1+y
u(C—L)4+qC+¢r>dy+6(dy) }

and
¢l = {(ylaé(r>7sap)} )

where (33) enforces the condition that there must be a start-up before the first positive
demand if y,_; = 0, (34) specifies that the number of periods required to accommodate u

start-ups, ¢ full production, and ¢ fractional periods cannot exceed the number of available
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periods up to ¢, similarly (35) enforces a lower bound on the number of busy periods that
must have been accommodated by time ¢ if one is to meet the target (s,p,6(r)) by the
end of the interval, (36) enforces strictly positive intermediate stock levels. Lower and

upper bounds on s can be derived from constraints (33) and (34) respectively:

oo[#]- (4]

l—k+y+1—ypo1) C —dy di )
C+1L C—-L|"

In the sequel, it is implicit that V¥(y;, ¢, u,q) = oo if (ys, ¢, u,q) & V.

s < minf

The minimum costs V*(y;, ¢, u, q) are computed recursively. Initially,

0 if Yp—1 = 0

oo otherwise

V+1(0,0,0,0) = {

0 lf Ye—1 = 1

oo otherwise

V+1(1,0,0,0) = {
Then, for all t = k,..., [, and for all u and ¢ such that (y, ¢, u,q) € ¥,

Vi=10.0
V40,0, u,q) = min (0,0, )

Vi1(1,0,u, q)
V0, 1,u, q)

V(0,1,u,q) = mi

4 1(0 07U7Q)+gt+€t

Vi=10,0,u — 1 C—1
Vt(]_707u7q) = mln ( ’u 7q) +gt+et+( )Ct

Vt 1(1 O,u, Q)‘I'et
(

vt 1707u7q_1)+6t+cct

th
Vt 1071 u q)—l_gt—l_et

(0,0,u,q) + g: + e +1e fr<C-1L
(
V0,1, u—1,¢) + g: + e + (C — L)
(
(1,

Vi(1,1,u,q) = min
( ) thl()uq)—l—et—l—rct

VL L u, q) + e
ViYL, Lu,g— 1) + e + Ce

In this straightforward implementation, V!(y;,8(r), s, p) is obtained in O(T?), for any
fixed values k.1, s,y._1, and y;. Therefore, the overall complexity of the dynamic pro-
gramming algorithm is O(T). In light of the work by Van Hoesel and Wagelmans (1996),

it might be possible to improve upon this complexity.
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4.3 Dynamic Program for the continuous set-up single-item prob-

lem with Wagner-Whitin costs

Subproblem STLCST is easier to solve when production and holding costs satisfy the so-
called Wagner-Whitin condition, i.e. when p; +h; > pipq Vi = 1,..., T — 1. In particular,
this condition is satisfied when production costs are non-increasing over time (p; > py41) or
constant and holding costs are non-negative (h; > 0), as is the case in many applications.
Then, in formulation SP, the modified production costs ¢; are non-increasing and it is
optimal to produce as late as possible among the periods in which a set-up is performed.
Thus, in a regeneration interval, the fractional production period, if any, will be the first
period in which production occurs. In the words of Bitran and Yanasse (1982), there

exists an optimal solution with the property that
St—_1 ¢ (Cyt - LZt - .’I?t) =0 Vt

and 0 < z; < (Cyy — Lz;) = ;-1 = 0. This characterisation of optimal solutions reduces
the complexity of the dynamic program above to O(71"), since computation of optimal
discrete set-up production sub-plans can be done jointly for all regeneration intervals [k, []

sharing the same end point [.

We now briefly present a backward dynamic program that solves problem SP with
Wagner-Whitin costs. Let U'(y, k,u,q) be the minimum cost for a feasible production
plan over periods ¢,...,T, where the first regeneration point is k € [t,T + 1], (i.e. k =
argmin{r >t : s,y = 0}) and there are exactly u start-up periods with production at
level (L — (') and ¢ full production periods with production at level C' in the interval
[t,k—1], given that the set-up variable in period ¢ — 1 takes value y, i.e. y;_1 = y. When
k = t, this cost is only defined for u = ¢ = 0. When k& > ¢, this cost is defined for
pairs (u,¢q) such that u (C' — L) 4+ ¢ C' < d;j_1 (insuring a positive stock s; > 0) and
2u—y+q < k—1 (the interval [¢, k — 1] must be large enough to accommodate u start-up
periods and ¢ full production periods). Initially,

U0, 7 4 1,0,0) = UTH(1,T 4+ 1,0,0) = 0

Then, for ¢ = T down to 1 and for all feasible states (y, k, u, ¢) with & > ¢, U'(y, k, u, q)

can be computed recursively as follows:
9t +er+ (C - L) ¢+ UH_l(l? kau - 17Q)
U0, k,u, q) = min{ g, + e, + U (1, k, u, q)
U0, k, u, q)

e+ Ce + UM (1, kyu,g— 1)
U'(1,k,u,q) = ming e, + U1, k, u, q)
Ut+1(07 k’ u7 q)
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where the three terms in the minimisation correspond respectively to producing, setting
up the machine without producing, and setting the machine off. For k = ¢, U'(y,t,0,0)

can be computed as follows:

U40,¢,0,0) = MiN(essug) 19+ €0+ (dip—1 —u(C — L) —qC) e + UT1, kyu, q) -
(dij—1 —u(C—L)—qC)<C -1}

U'(1,£,0,0) = mingsug) {1+ (digo1 —u(C — L) —qC)ei+ U (1, k,u,q):
(djr —u(C— 1) =4 C) £ C)

Then, the optimal solution is

min{U'(0,1,0,0), min ){(dl,k_l —u(C—L)—qC)ho+U"0,k,u,q)}}.

(k>1,u,q

These computations require O(7*) time.

5 Computational Results

In this section we present our computational results for the multi-item lot-sizing problem
with continuous set-up, stationary start-up times, and Wagner-Whitin costs. For the im-
plementation of the proposed algorithm we used our C-code IPCG — Integer Programming
Column Generation (Vanderbeck, 1994). IPCG is a set of subroutines that solves a mas-
ter integer program using a LP-based branch-and-bound algorithm, where the LP-bounds
are obtained using a column generation procedure. The code implements various kinds of
branching scheme and termination criteria specific to integer programming column gener-
ation algorithms (Vanderbeck and Wolsey 1996, Vanderbeck 1995) and it also allows for
the dynamic generation of cutting planes for the master. New applications can be quickly

integrated by providing a solver for the column generation subproblem.

In our implementation of the above dynamic programs we construct the set of feasible
states at stage k by considering all feasible actions from each of the feasible states at stage
(k—1). We use a Red-Black-Tree data structure to maintain the list of feasible states
at the current stage; in this way we can test whether the state that we construct already
exists in O(log!) time, where [ is the current size of the list, and then update its cost. Due
to the significant complexity of the dynamic programming solution of the subproblem, we
have also implemented a greedy heuristic procedure that iteratively satisfies demands by
assigning production to the period with lowest incremental cost per unit. We solve the
subproblem exactly by dynamic programming only when the heuristic fails to return a
column with negative reduced cost (the total time used by the subproblem heuristic is
typically less than 1% of the total CPU time). The master linear programs are solved
using CPLEX 3.0 callable library (CPLEX, 1994). After each solution of the master LP
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we solve a subproblem for each item. The alternative strategy, that consists in reoptimiz-
ing the master every time a column is added, has proved less efficient. The computations
have been carried out on an HP9000/712/80 workstation with 64Mb of main memory.

We have generated test problems randomly as follows. First we select a number of
items n in {3,5}, a number of periods T in {12,24,36,48}, an average capacity C,pe,
in {24,30,40}. Then, for each item 7, we generate the associated capacity C' from the
discrete uniform distribution U[0.8 Cyyer, 1.2 Cape,] and the associated start-up time L
from the discrete uniform distribution U[0.2C?, 0.6 C%]. Holding, set-up and start-up
costs are generated using discrete uniform distributions: A € U[L,3], Al € U[300,400],
fi € U[10,12], and ¢! € U[20,22]. Production costs are zero. Hence, costs satisfy the
Wagner-Whitin assumption. The demands are generated from U[0, dmay] where dpax is
set to 40/n. Thus, the ratio of the average total machine workload over the average total

production capacity

nT dmex 90
T CaUET B Caver
is g, %, or % depending on whether C,,., is 24, 30, or 40. For each selection of n, and Cy,.,

we generate 5 problem instances (i.e. for each number of periods T, we generate a total

of 30 instances), except for problems with 48 periods where we generated 2 instances of

each kind.

In Table 4 we report our results for test problems with 36 time periods when the mas-
ter cuts (31) are not used. The columns contain respectively the instance name (name)
that includes the number of items; the number of periods; the average capacity and an
instance number; the master LP value (LP); the optimal solution (/P); the depth of
the branch-and-bound tree (depth); the number of nodes that have been processed in
the branch-and-bound tree (nod); the number of times the master LP has been solved
(mast); the number of times the column generation subproblem has been solved (S P); the
number of columns generated using the heuristic algorithm (HC'); the total CPU time
in seconds (time), and the percentage of this time spent in solving subproblems (Zsp).
Table 4 shows how the computational effort varies with the ratio of machine workload

over machine capacity and with the number of items.

In Table 5 we give the average results for test problems with 12, 24, 36, and 48 time
periods using a branch-and-price algorithm (without master cuts), a branch-and-price-
and-cut algorithm (i.e using master cuts of the form (31) at each node of the branch-and-
bound tree), and a truncated branch-and-price algorithm (i.e. fathoming nodes for which
the gap between lower and upper bounds is less than 2%). In the latter case, we use a

rounding heuristic to generate intermediate incumbent solution as described in Vander-
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name LP IP depth nod mast SP HC time  tsp
n3t36¢24p0 6487 6487 0 1 216 648 349 3644 97.5
n3t36c24pl 12708 12716 1 3 304 909 356  706.9 97.6
n3t36c24p2 16826 16826 0 1 237 711 379 426.0 97.4
n3t36¢24p3 18367 18495 2 5 318 951 457 7147 97.6
n3t36¢c24p4 20211 21192 T 21 819 2454 480 2079.8 97.7
n3t36¢30p0 2473 2473 0 1 221 663 371 228.6 95.9
n3t36¢30pl 9330 9330 0 1 245 735 347 3495 96.6
n3t36¢30p2 9731 10207 3 9 516 1542 265 1035.9 97.3
n3t36¢30p3 12712 12879 2 5 372 1116 364  709.8 97.1
n3t36¢30p4 13540 13540 0 1 221 663 280 3619 97.3
n3t36¢40p0 2403 2408 2 5 360 1077 275 4159 955
n3t36¢40pl 7988 7988 1 2 253 756 284 269.3 95.6
n3t36c40p2 8314 8314 0 1 239 717 344 209.8 95.0
n3t36¢40p3 8360 8366 2 5 432 1293 298  618.3 95.8
n3t36¢c40p4 9210 9210 0 1 233 699 371 207.6 95.0
n35t36¢24p0 36698 38056 14 123 745 3720 285 1859.4 97.5
n3t36¢24pl 46579 47445 8 35 365 1820 260 1061.0 98.2
n5t36¢24p2 43445 44979 18 191 1030 5135 337 3161.8 97.8
n5t36¢24p3 58633 59298 7T 33 262 1310 235  847.0 98.4
n5t36¢c24p4 36977 37898 10 51 398 1990 319 1072.5 97.7
n5t36¢30p0 20180 20758 4 11 258 1285 312 5149 97.3
n3t36¢30pl 24935 25773 9 31 346 1720 338  713.1 97.0
n5t36¢30p2 19679 21232 19 143 767 3835 327 1878.9 96.8
n5t36¢30p3 28110 29512 14 75 564 2810 290 1300.2 97.3
n5t36¢30p4 19463 20113 7 17 273 1365 298 5164 974
n5t36¢40p0 15263 15263 0 1 133 665 321 127.2 95.8
n5t36¢40pl 15729 15729 0 1 169 845 392 1923 95.9
n5t36¢40p2 13083 13083 0 1 148 740 436 117.9 94.7
n5t36c¢40p3 14254 14257 1 3 235 1170 504 2733 95.5
n5t36¢40p4 10721 10765 2 5 214 1070 409  231.2 95.6
average 18746.9 19153.0  4.43 26.1 363.1 1480.4 342.7 752.2 96.7

Table 4: Solution of instances with 36 periods.
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beck (1996); LP is then the root lower bound which might be lower than the master LP
value if the column generation procedure is terminated early at the root node, and [P
represents the best integer solution found. The first column of the Table contains the
number of periods T" and the fraction of instances that were solved for problems with 48
periods; column M C' shows the total number of master cuts added during the course of

the algorithm.

branch-and-price (without master cuts)

T LP IP depth nod mast SP HC MC time  tsp
12 12449.1 12526.4 0.68 2.87 34.1 132.2 65.6 0 1.5 72.7
24 14994.4  15182.0 2,17 822 1273  494.7 186.6 0 50.4  93.7
36 18746.9 19153.0  4.43 26.1 363.1 1480.4 342.7 0 752.2 96.7
48 (55) | 13286.1 134521 5.00 36.5 736.2 2926.1 559.7 0 3852.5 97.0
branch-and-price-and-cut (with master cuts)
T LP I[P depth nod mast SP HC MC time  tsp
12 12471.8  12526.4 0.64 2.52 352 136.5 659 0.44 1.7 72.8
24 15061.1 15182.0 1.70  6.78 128.5 5009 184.4 4.39 52.8 93.4
36 18787.7 19153.0  3.88 20.5 386.6 1576.6 337.9 26.6 835.6 96.1

48 (%) | 13303.6 13452.1  4.13 29.2 7623 3021.8 553.6 34.0 4056.9 96.5
truncated branch-and-price (gap < 2%) with rounding heuristic

T LP IP  depth nod mast SP HC MC time  tsp

24 14956.0 15240.4  0.76 3.06 104.8 393.1 184.6 0 33.8 91.5

36 18738.3 192359  2.14 9.81 312.7 1224.1 350.2 0 550.3 96.2

48 (8) | 13283.7 13473.5 1.13  5.00 492.5 1910.5 557.1 0 2049.5 96.9
12

48 (12) | 17957.7 18427.7  2.67 14.8 735.6 2907.3 604.6 0 3961.1 97.3

Table 5: Average solutions of continuous set-up lot-sizing problems with stationary ca-

pacities and stationary start-up times and Wagner-Whitin costs.

Table 5 emphasizes rapidly increasing computational effort with the number of pe-
riods. For problems with 48 periods, 4 out of the 12 instances could not be solved to
optimality within the allocated 4 hours of CPU time; the result averages are over the
solved instances. The remaining sample of 8 instances still includes at least one instance
for each combination of n and Cy,e,. The second set of results shows that although the
master cuts improve the master LP bound and hence yield smaller a branch-and-bound
tree, overall computational effort does not decrease when these cuts are used. The third

set of results shows that, for instances with 24 and 36 periods, a solution which is guar-
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anteed to be within 2% of the optimal solution can be obtained in approximately 2 of the
time required to obtain an optimal solution. For problems with 48 periods, we first con-
sider the 8 instances that were solved by the exact algorithm for the sake of comparison;
we then give average results over the full set of 12 test problems. The rounding heuristic
has not been used for the exact algorithm (first two sets of results) because integer solu-
tions naturally arise in the course of the column generation procedure and typically the
optimal integer solution is found before the optimal lower bound is obtained. Moreover,

the rounding heuristic results in the generation of many more columns.

Finally, we have solved the LP relaxation of the compact formulation LC'ST (1-8) for
comparison purposes. We have added constraints
s +dyyy > dy Vit (37)
a priori to LCST. Table 6 compares the average (over 30 instances) LP bounds that result
from formulations LCST ((1-8) + constraints (37)), M (27-30), and M augmented with
cuts (31), for problems with 24 and 36 periods. We also attempted to solve an instance
with n =3, T = 24, and Cy,., = 24, using the branch-and-bound procedure CPLEXMIP
applied to the augmented compact formulation LC'ST, using the same branching priority.
With the IP column generation algorithm the problem is solved in 113 seconds and 7
nodes. With CPLEXMIP, the node limit of 20000 nodes is reached after 995 seconds,
leaving an optimality gap of 69%. These figures clearly show the superiority of the column

generation approach over a standard LP-based branch-and-bound approach.

nb of periods (T) 24 36
LP relaxation of augmented LCST | 6950.05 | 7175.63
LP gap for augmented LCST 54.22% | 62.53%
LP relaxation of M 14994.40 | 18746.94
LP gap for M 1.23% 2.12%
LP relaxation of M + cuts 15061.14 | 18787.74
LP gap for M + cuts 0.79% 1.90%
IP 15182.06 | 19153.07

Table 6: Comparison of the average LP Bounds using the compact and the Master for-

mulation (without and with additional cuts).
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6 Final Remarks

In this paper, we have considered a single-machine multi-item lot-sizing model with contin-
uous setups and start-up times. We positioned the problem in the literature and discussed
implicit assumptions of alternative ways of modelling start-up times and the complexities
of resulting models. The essence of this study has been to show that, even though this
problem is complex, instances of realistic size can be solved to optimality. Computational
results demonstrate the strength of an integer programming column generation approach
(although our implementation is only a prototype) as an alternative to a branch-and-cut

approach (such as the one developed by Constantino, 1995 and 1996).

There is scope for improving our code. As more than 90% of the CPU time is used by
the dynamic programming procedures, a more efficient implementation of the dynamic
programs for the subproblem can lead to significant reduction in overall computational
times. We have considered the simplification to the dynamic programming solution of the
subproblem that results from Wagner-Whitin costs. Further simplification of the dynamic
programming solution to the subproblem could arise from making assumptions on set-up
and start-up costs, such as non-increasing costs (Bitran and Yanasse, 1982). Another
branching scheme could be used consisting in using SOS branching, i.e. as S,c;yt < 1
for all t and I = {1,...,n}, one can branch by ensuring that either 3 ;c5y! < 0 or
Yien\s y! < 0for some S C I. This branching scheme should lead to a more balanced tree.
Alternatively, one could use a non-binary scheme where branches of the type y; = 1 are
defined for the various items 7 € S that compete for period ¢ and the branch Y ;cqy! <0
completes the partition. However, for our test problems which involve only a few items,

no improvement was gained when experimenting with these alternative branching schemes.

We finish by listing topics for further research. We have seen that defining start-up
times as an integer number of periods plus a fraction of a period, i.e. L = kC + o, with
ke IN and 0 < o < (), leads to a more flexible model that is worth studying. On could
also relax the single mode assumption by replacing it with the softer assumption that
at most one start-up can take place in any time period (Wolsey, 1997). Our computa-
tional results show that the intersection of the subproblem convex hulls and the master
constraints (including Constantino’s cuts (31)) only provides an approximation of the
convex hull of the the multi-item lot-sizing solutions. This suggests that further study of
the polyhedra of multi-item problem could lead to finding new cuts that involve multiple
items. The final question is whether the decomposition approach is a practical approach

for the generalization of model LCST to the case of multiple machines.
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